From 9ecda41acb971ebd07c8fb35faf24005c0baea12 Mon Sep 17 00:00:00 2001 From: Wang Nan Date: Tue, 5 Apr 2016 14:11:18 +0000 Subject: [PATCH] perf/core: Add ::write_backward attribute to perf event This patch introduces 'write_backward' bit to perf_event_attr, which controls the direction of a ring buffer. After set, the corresponding ring buffer is written from end to beginning. This feature is design to support reading from overwritable ring buffer. Ring buffer can be created by mapping a perf event fd. Kernel puts event records into ring buffer, user tooling like perf fetch them from address returned by mmap(). To prevent racing between kernel and tooling, they communicate to each other through 'head' and 'tail' pointers. Kernel maintains 'head' pointer, points it to the next free area (tail of the last record). Tooling maintains 'tail' pointer, points it to the tail of last consumed record (record has already been fetched). Kernel determines the available space in a ring buffer using these two pointers to avoid overwrite unfetched records. By mapping without 'PROT_WRITE', an overwritable ring buffer is created. Different from normal ring buffer, tooling is unable to maintain 'tail' pointer because writing is forbidden. Therefore, for this type of ring buffers, kernel overwrite old records unconditionally, works like flight recorder. This feature would be useful if reading from overwritable ring buffer were as easy as reading from normal ring buffer. However, there's an obscure problem. The following figure demonstrates a full overwritable ring buffer. In this figure, the 'head' pointer points to the end of last record, and a long record 'E' is pending. For a normal ring buffer, a 'tail' pointer would have pointed to position (X), so kernel knows there's no more space in the ring buffer. However, for an overwritable ring buffer, kernel ignore the 'tail' pointer. (X) head . | . V +------+-------+----------+------+---+ |A....A|B.....B|C........C|D....D| | +------+-------+----------+------+---+ Record 'A' is overwritten by event 'E': head | V +--+---+-------+----------+------+---+ |.E|..A|B.....B|C........C|D....D|E..| +--+---+-------+----------+------+---+ Now tooling decides to read from this ring buffer. However, none of these two natural positions, 'head' and the start of this ring buffer, are pointing to the head of a record. Even the full ring buffer can be accessed by tooling, it is unable to find a position to start decoding. The first attempt tries to solve this problem AFAIK can be found from [1]. It makes kernel to maintain 'tail' pointer: updates it when ring buffer is half full. However, this approach introduces overhead to fast path. Test result shows a 1% overhead [2]. In addition, this method utilizes no more tham 50% records. Another attempt can be found from [3], which allows putting the size of an event at the end of each record. This approach allows tooling to find records in a backward manner from 'head' pointer by reading size of a record from its tail. However, because of alignment requirement, it needs 8 bytes to record the size of a record, which is a huge waste. Its performance is also not good, because more data need to be written. This approach also introduces some extra branch instructions to fast path. 'write_backward' is a better solution to this problem. Following figure demonstrates the state of the overwritable ring buffer when 'write_backward' is set before overwriting: head | V +---+------+----------+-------+------+ | |D....D|C........C|B.....B|A....A| +---+------+----------+-------+------+ and after overwriting: head | V +---+------+----------+-------+---+--+ |..E|D....D|C........C|B.....B|A..|E.| +---+------+----------+-------+---+--+ In each situation, 'head' points to the beginning of the newest record. From this record, tooling can iterate over the full ring buffer and fetch records one by one. The only limitation that needs to be considered is back-to-back reading. Due to the non-deterministic of user programs, it is impossible to ensure the ring buffer keeps stable during reading. Consider an extreme situation: tooling is scheduled out after reading record 'D', then a burst of events come, eat up the whole ring buffer (one or multiple rounds). When the tooling process comes back, reading after 'D' is incorrect now. To prevent this problem, we need to find a way to ensure the ring buffer is stable during reading. ioctl(PERF_EVENT_IOC_PAUSE_OUTPUT) is suggested because its overhead is lower than ioctl(PERF_EVENT_IOC_ENABLE). By carefully verifying 'header' pointer, reader can avoid pausing the ring-buffer. For example: /* A union of all possible events */ union perf_event event; p = head = perf_mmap__read_head(); while (true) { /* copy header of next event */ fetch(&event.header, p, sizeof(event.header)); /* read 'head' pointer */ head = perf_mmap__read_head(); /* check overwritten: is the header good? */ if (!verify(sizeof(event.header), p, head)) break; /* copy the whole event */ fetch(&event, p, event.header.size); /* read 'head' pointer again */ head = perf_mmap__read_head(); /* is the whole event good? */ if (!verify(event.header.size, p, head)) break; p += event.header.size; } However, the overhead is high because: a) In-place decoding is not safe. Copying-verifying-decoding is required. b) Fetching 'head' pointer requires additional synchronization. (From Alexei Starovoitov: Even when this trick works, pause is needed for more than stability of reading. When we collect the events into overwrite buffer we're waiting for some other trigger (like all cpu utilization spike or just one cpu running and all others are idle) and when it happens the buffer has valuable info from the past. At this point new events are no longer interesting and buffer should be paused, events read and unpaused until next trigger comes.) This patch utilizes event's default overflow_handler introduced previously. perf_event_output_backward() is created as the default overflow handler for backward ring buffers. To avoid extra overhead to fast path, original perf_event_output() becomes __perf_event_output() and marked '__always_inline'. In theory, there's no extra overhead introduced to fast path. Performance testing: Calling 3000000 times of 'close(-1)', use gettimeofday() to check duration. Use 'perf record -o /dev/null -e raw_syscalls:*' to capture system calls. In ns. Testing environment: CPU : Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz Kernel : v4.5.0 MEAN STDVAR BASE 800214.950 2853.083 PRE1 2253846.700 9997.014 PRE2 2257495.540 8516.293 POST 2250896.100 8933.921 Where 'BASE' is pure performance without capturing. 'PRE1' is test result of pure 'v4.5.0' kernel. 'PRE2' is test result before this patch. 'POST' is test result after this patch. See [4] for the detailed experimental setup. Considering the stdvar, this patch doesn't introduce performance overhead to the fast path. [1] http://lkml.iu.edu/hypermail/linux/kernel/1304.1/04584.html [2] http://lkml.iu.edu/hypermail/linux/kernel/1307.1/00535.html [3] http://lkml.iu.edu/hypermail/linux/kernel/1512.0/01265.html [4] http://lkml.kernel.org/g/56F89DCD.1040202@huawei.com Signed-off-by: Wang Nan Signed-off-by: Peter Zijlstra (Intel) Acked-by: Alexei Starovoitov Cc: Cc: Cc: Alexander Shishkin Cc: Arnaldo Carvalho de Melo Cc: Brendan Gregg Cc: He Kuang Cc: Jiri Olsa Cc: Jiri Olsa Cc: Linus Torvalds Cc: Masami Hiramatsu Cc: Namhyung Kim Cc: Peter Zijlstra Cc: Stephane Eranian Cc: Thomas Gleixner Cc: Vince Weaver Cc: Zefan Li Link: http://lkml.kernel.org/r/1459865478-53413-1-git-send-email-wangnan0@huawei.com [ Fixed the changelog some more. ] Signed-off-by: Ingo Molnar Signed-off-by: Ingo Molnar --- include/linux/perf_event.h | 28 ++++++++++++++++--- include/uapi/linux/perf_event.h | 3 ++- kernel/events/core.c | 48 +++++++++++++++++++++++++++++---- kernel/events/ring_buffer.c | 16 ++++++++++- 4 files changed, 85 insertions(+), 10 deletions(-) diff --git a/include/linux/perf_event.h b/include/linux/perf_event.h index b8b195fbe787..85749ae8cb5f 100644 --- a/include/linux/perf_event.h +++ b/include/linux/perf_event.h @@ -834,14 +834,24 @@ extern int perf_event_overflow(struct perf_event *event, struct perf_sample_data *data, struct pt_regs *regs); +extern void perf_event_output_forward(struct perf_event *event, + struct perf_sample_data *data, + struct pt_regs *regs); +extern void perf_event_output_backward(struct perf_event *event, + struct perf_sample_data *data, + struct pt_regs *regs); extern void perf_event_output(struct perf_event *event, - struct perf_sample_data *data, - struct pt_regs *regs); + struct perf_sample_data *data, + struct pt_regs *regs); static inline bool is_default_overflow_handler(struct perf_event *event) { - return (event->overflow_handler == perf_event_output); + if (likely(event->overflow_handler == perf_event_output_forward)) + return true; + if (unlikely(event->overflow_handler == perf_event_output_backward)) + return true; + return false; } extern void @@ -1051,8 +1061,20 @@ static inline bool has_aux(struct perf_event *event) return event->pmu->setup_aux; } +static inline bool is_write_backward(struct perf_event *event) +{ + return !!event->attr.write_backward; +} + extern int perf_output_begin(struct perf_output_handle *handle, struct perf_event *event, unsigned int size); +extern int perf_output_begin_forward(struct perf_output_handle *handle, + struct perf_event *event, + unsigned int size); +extern int perf_output_begin_backward(struct perf_output_handle *handle, + struct perf_event *event, + unsigned int size); + extern void perf_output_end(struct perf_output_handle *handle); extern unsigned int perf_output_copy(struct perf_output_handle *handle, const void *buf, unsigned int len); diff --git a/include/uapi/linux/perf_event.h b/include/uapi/linux/perf_event.h index a3c19034d5f8..43fc8d213472 100644 --- a/include/uapi/linux/perf_event.h +++ b/include/uapi/linux/perf_event.h @@ -340,7 +340,8 @@ struct perf_event_attr { comm_exec : 1, /* flag comm events that are due to an exec */ use_clockid : 1, /* use @clockid for time fields */ context_switch : 1, /* context switch data */ - __reserved_1 : 37; + write_backward : 1, /* Write ring buffer from end to beginning */ + __reserved_1 : 36; union { __u32 wakeup_events; /* wakeup every n events */ diff --git a/kernel/events/core.c b/kernel/events/core.c index 21ba024c9ed1..eabeb2aec00f 100644 --- a/kernel/events/core.c +++ b/kernel/events/core.c @@ -5694,9 +5694,13 @@ void perf_prepare_sample(struct perf_event_header *header, } } -void perf_event_output(struct perf_event *event, - struct perf_sample_data *data, - struct pt_regs *regs) +static void __always_inline +__perf_event_output(struct perf_event *event, + struct perf_sample_data *data, + struct pt_regs *regs, + int (*output_begin)(struct perf_output_handle *, + struct perf_event *, + unsigned int)) { struct perf_output_handle handle; struct perf_event_header header; @@ -5706,7 +5710,7 @@ void perf_event_output(struct perf_event *event, perf_prepare_sample(&header, data, event, regs); - if (perf_output_begin(&handle, event, header.size)) + if (output_begin(&handle, event, header.size)) goto exit; perf_output_sample(&handle, &header, data, event); @@ -5717,6 +5721,30 @@ exit: rcu_read_unlock(); } +void +perf_event_output_forward(struct perf_event *event, + struct perf_sample_data *data, + struct pt_regs *regs) +{ + __perf_event_output(event, data, regs, perf_output_begin_forward); +} + +void +perf_event_output_backward(struct perf_event *event, + struct perf_sample_data *data, + struct pt_regs *regs) +{ + __perf_event_output(event, data, regs, perf_output_begin_backward); +} + +void +perf_event_output(struct perf_event *event, + struct perf_sample_data *data, + struct pt_regs *regs) +{ + __perf_event_output(event, data, regs, perf_output_begin); +} + /* * read event_id */ @@ -8153,8 +8181,11 @@ perf_event_alloc(struct perf_event_attr *attr, int cpu, if (overflow_handler) { event->overflow_handler = overflow_handler; event->overflow_handler_context = context; + } else if (is_write_backward(event)){ + event->overflow_handler = perf_event_output_backward; + event->overflow_handler_context = NULL; } else { - event->overflow_handler = perf_event_output; + event->overflow_handler = perf_event_output_forward; event->overflow_handler_context = NULL; } @@ -8388,6 +8419,13 @@ perf_event_set_output(struct perf_event *event, struct perf_event *output_event) if (output_event->clock != event->clock) goto out; + /* + * Either writing ring buffer from beginning or from end. + * Mixing is not allowed. + */ + if (is_write_backward(output_event) != is_write_backward(event)) + goto out; + /* * If both events generate aux data, they must be on the same PMU */ diff --git a/kernel/events/ring_buffer.c b/kernel/events/ring_buffer.c index 60be55a64040..c49bab42dc57 100644 --- a/kernel/events/ring_buffer.c +++ b/kernel/events/ring_buffer.c @@ -230,10 +230,24 @@ out: return -ENOSPC; } +int perf_output_begin_forward(struct perf_output_handle *handle, + struct perf_event *event, unsigned int size) +{ + return __perf_output_begin(handle, event, size, false); +} + +int perf_output_begin_backward(struct perf_output_handle *handle, + struct perf_event *event, unsigned int size) +{ + return __perf_output_begin(handle, event, size, true); +} + int perf_output_begin(struct perf_output_handle *handle, struct perf_event *event, unsigned int size) { - return __perf_output_begin(handle, event, size, false); + + return __perf_output_begin(handle, event, size, + unlikely(is_write_backward(event))); } unsigned int perf_output_copy(struct perf_output_handle *handle, -- 2.30.2