cbfbd17
[openwrt/staging/blogic.git] /
1 /*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
50
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
54
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
57
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
61
62 #define NFSDBG_FACILITY NFSDBG_VFS
63
64 static struct kmem_cache *nfs_direct_cachep;
65
66 /*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69 struct nfs_direct_req {
70 struct kref kref; /* release manager */
71
72 /* I/O parameters */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct nfs_lock_context *l_ctx; /* Lock context info */
75 struct kiocb * iocb; /* controlling i/o request */
76 struct inode * inode; /* target file of i/o */
77
78 /* completion state */
79 atomic_t io_count; /* i/os we're waiting for */
80 spinlock_t lock; /* protect completion state */
81 ssize_t count, /* bytes actually processed */
82 bytes_left, /* bytes left to be sent */
83 error; /* any reported error */
84 struct completion completion; /* wait for i/o completion */
85
86 /* commit state */
87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
89 struct work_struct work;
90 int flags;
91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
93 struct nfs_writeverf verf; /* unstable write verifier */
94 };
95
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
100
101 static inline void get_dreq(struct nfs_direct_req *dreq)
102 {
103 atomic_inc(&dreq->io_count);
104 }
105
106 static inline int put_dreq(struct nfs_direct_req *dreq)
107 {
108 return atomic_dec_and_test(&dreq->io_count);
109 }
110
111 /**
112 * nfs_direct_IO - NFS address space operation for direct I/O
113 * @rw: direction (read or write)
114 * @iocb: target I/O control block
115 * @iov: array of vectors that define I/O buffer
116 * @pos: offset in file to begin the operation
117 * @nr_segs: size of iovec array
118 *
119 * The presence of this routine in the address space ops vector means
120 * the NFS client supports direct I/O. However, for most direct IO, we
121 * shunt off direct read and write requests before the VFS gets them,
122 * so this method is only ever called for swap.
123 */
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
125 {
126 #ifndef CONFIG_NFS_SWAP
127 dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
128 iocb->ki_filp, (long long) pos, nr_segs);
129
130 return -EINVAL;
131 #else
132 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
133
134 if (rw == READ || rw == KERNEL_READ)
135 return nfs_file_direct_read(iocb, iov, nr_segs, pos,
136 rw == READ ? true : false);
137 return nfs_file_direct_write(iocb, iov, nr_segs, pos,
138 rw == WRITE ? true : false);
139 #endif /* CONFIG_NFS_SWAP */
140 }
141
142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
143 {
144 unsigned int i;
145 for (i = 0; i < npages; i++)
146 page_cache_release(pages[i]);
147 }
148
149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
150 struct nfs_direct_req *dreq)
151 {
152 cinfo->lock = &dreq->lock;
153 cinfo->mds = &dreq->mds_cinfo;
154 cinfo->ds = &dreq->ds_cinfo;
155 cinfo->dreq = dreq;
156 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
157 }
158
159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
160 {
161 struct nfs_direct_req *dreq;
162
163 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
164 if (!dreq)
165 return NULL;
166
167 kref_init(&dreq->kref);
168 kref_get(&dreq->kref);
169 init_completion(&dreq->completion);
170 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
171 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
172 spin_lock_init(&dreq->lock);
173
174 return dreq;
175 }
176
177 static void nfs_direct_req_free(struct kref *kref)
178 {
179 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
180
181 if (dreq->l_ctx != NULL)
182 nfs_put_lock_context(dreq->l_ctx);
183 if (dreq->ctx != NULL)
184 put_nfs_open_context(dreq->ctx);
185 kmem_cache_free(nfs_direct_cachep, dreq);
186 }
187
188 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
189 {
190 kref_put(&dreq->kref, nfs_direct_req_free);
191 }
192
193 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
194 {
195 return dreq->bytes_left;
196 }
197 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
198
199 /*
200 * Collects and returns the final error value/byte-count.
201 */
202 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
203 {
204 ssize_t result = -EIOCBQUEUED;
205
206 /* Async requests don't wait here */
207 if (dreq->iocb)
208 goto out;
209
210 result = wait_for_completion_killable(&dreq->completion);
211
212 if (!result)
213 result = dreq->error;
214 if (!result)
215 result = dreq->count;
216
217 out:
218 return (ssize_t) result;
219 }
220
221 /*
222 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
223 * the iocb is still valid here if this is a synchronous request.
224 */
225 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
226 {
227 struct inode *inode = dreq->inode;
228
229 if (dreq->iocb && write) {
230 loff_t pos = dreq->iocb->ki_pos + dreq->count;
231
232 spin_lock(&inode->i_lock);
233 if (i_size_read(inode) < pos)
234 i_size_write(inode, pos);
235 spin_unlock(&inode->i_lock);
236 }
237
238 if (write)
239 nfs_zap_mapping(inode, inode->i_mapping);
240
241 inode_dio_done(inode);
242
243 if (dreq->iocb) {
244 long res = (long) dreq->error;
245 if (!res)
246 res = (long) dreq->count;
247 aio_complete(dreq->iocb, res, 0);
248 }
249
250 complete_all(&dreq->completion);
251
252 nfs_direct_req_release(dreq);
253 }
254
255 static void nfs_direct_readpage_release(struct nfs_page *req)
256 {
257 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
258 req->wb_context->dentry->d_inode->i_sb->s_id,
259 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
260 req->wb_bytes,
261 (long long)req_offset(req));
262 nfs_release_request(req);
263 }
264
265 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
266 {
267 unsigned long bytes = 0;
268 struct nfs_direct_req *dreq = hdr->dreq;
269
270 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
271 goto out_put;
272
273 spin_lock(&dreq->lock);
274 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
275 dreq->error = hdr->error;
276 else
277 dreq->count += hdr->good_bytes;
278 spin_unlock(&dreq->lock);
279
280 while (!list_empty(&hdr->pages)) {
281 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
282 struct page *page = req->wb_page;
283
284 if (!PageCompound(page) && bytes < hdr->good_bytes)
285 set_page_dirty(page);
286 bytes += req->wb_bytes;
287 nfs_list_remove_request(req);
288 nfs_direct_readpage_release(req);
289 }
290 out_put:
291 if (put_dreq(dreq))
292 nfs_direct_complete(dreq, false);
293 hdr->release(hdr);
294 }
295
296 static void nfs_read_sync_pgio_error(struct list_head *head)
297 {
298 struct nfs_page *req;
299
300 while (!list_empty(head)) {
301 req = nfs_list_entry(head->next);
302 nfs_list_remove_request(req);
303 nfs_release_request(req);
304 }
305 }
306
307 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
308 {
309 get_dreq(hdr->dreq);
310 }
311
312 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
313 .error_cleanup = nfs_read_sync_pgio_error,
314 .init_hdr = nfs_direct_pgio_init,
315 .completion = nfs_direct_read_completion,
316 };
317
318 /*
319 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
320 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
321 * bail and stop sending more reads. Read length accounting is
322 * handled automatically by nfs_direct_read_result(). Otherwise, if
323 * no requests have been sent, just return an error.
324 */
325 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
326 const struct iovec *iov,
327 loff_t pos, bool uio)
328 {
329 struct nfs_direct_req *dreq = desc->pg_dreq;
330 struct nfs_open_context *ctx = dreq->ctx;
331 struct inode *inode = ctx->dentry->d_inode;
332 unsigned long user_addr = (unsigned long)iov->iov_base;
333 size_t count = iov->iov_len;
334 size_t rsize = NFS_SERVER(inode)->rsize;
335 unsigned int pgbase;
336 int result;
337 ssize_t started = 0;
338 struct page **pagevec = NULL;
339 unsigned int npages;
340
341 do {
342 size_t bytes;
343 int i;
344
345 pgbase = user_addr & ~PAGE_MASK;
346 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
347
348 result = -ENOMEM;
349 npages = nfs_page_array_len(pgbase, bytes);
350 if (!pagevec)
351 pagevec = kmalloc(npages * sizeof(struct page *),
352 GFP_KERNEL);
353 if (!pagevec)
354 break;
355 if (uio) {
356 down_read(&current->mm->mmap_sem);
357 result = get_user_pages(current, current->mm, user_addr,
358 npages, 1, 0, pagevec, NULL);
359 up_read(&current->mm->mmap_sem);
360 if (result < 0)
361 break;
362 } else {
363 WARN_ON(npages != 1);
364 result = get_kernel_page(user_addr, 1, pagevec);
365 if (WARN_ON(result != 1))
366 break;
367 }
368
369 if ((unsigned)result < npages) {
370 bytes = result * PAGE_SIZE;
371 if (bytes <= pgbase) {
372 nfs_direct_release_pages(pagevec, result);
373 break;
374 }
375 bytes -= pgbase;
376 npages = result;
377 }
378
379 for (i = 0; i < npages; i++) {
380 struct nfs_page *req;
381 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
382 /* XXX do we need to do the eof zeroing found in async_filler? */
383 req = nfs_create_request(dreq->ctx, dreq->inode,
384 pagevec[i],
385 pgbase, req_len);
386 if (IS_ERR(req)) {
387 result = PTR_ERR(req);
388 break;
389 }
390 req->wb_index = pos >> PAGE_SHIFT;
391 req->wb_offset = pos & ~PAGE_MASK;
392 if (!nfs_pageio_add_request(desc, req)) {
393 result = desc->pg_error;
394 nfs_release_request(req);
395 break;
396 }
397 pgbase = 0;
398 bytes -= req_len;
399 started += req_len;
400 user_addr += req_len;
401 pos += req_len;
402 count -= req_len;
403 dreq->bytes_left -= req_len;
404 }
405 /* The nfs_page now hold references to these pages */
406 nfs_direct_release_pages(pagevec, npages);
407 } while (count != 0 && result >= 0);
408
409 kfree(pagevec);
410
411 if (started)
412 return started;
413 return result < 0 ? (ssize_t) result : -EFAULT;
414 }
415
416 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
417 const struct iovec *iov,
418 unsigned long nr_segs,
419 loff_t pos, bool uio)
420 {
421 struct nfs_pageio_descriptor desc;
422 struct inode *inode = dreq->inode;
423 ssize_t result = -EINVAL;
424 size_t requested_bytes = 0;
425 unsigned long seg;
426
427 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
428 &nfs_direct_read_completion_ops);
429 get_dreq(dreq);
430 desc.pg_dreq = dreq;
431 atomic_inc(&inode->i_dio_count);
432
433 for (seg = 0; seg < nr_segs; seg++) {
434 const struct iovec *vec = &iov[seg];
435 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
436 if (result < 0)
437 break;
438 requested_bytes += result;
439 if ((size_t)result < vec->iov_len)
440 break;
441 pos += vec->iov_len;
442 }
443
444 nfs_pageio_complete(&desc);
445
446 /*
447 * If no bytes were started, return the error, and let the
448 * generic layer handle the completion.
449 */
450 if (requested_bytes == 0) {
451 inode_dio_done(inode);
452 nfs_direct_req_release(dreq);
453 return result < 0 ? result : -EIO;
454 }
455
456 if (put_dreq(dreq))
457 nfs_direct_complete(dreq, false);
458 return 0;
459 }
460
461 /**
462 * nfs_file_direct_read - file direct read operation for NFS files
463 * @iocb: target I/O control block
464 * @iov: vector of user buffers into which to read data
465 * @nr_segs: size of iov vector
466 * @pos: byte offset in file where reading starts
467 *
468 * We use this function for direct reads instead of calling
469 * generic_file_aio_read() in order to avoid gfar's check to see if
470 * the request starts before the end of the file. For that check
471 * to work, we must generate a GETATTR before each direct read, and
472 * even then there is a window between the GETATTR and the subsequent
473 * READ where the file size could change. Our preference is simply
474 * to do all reads the application wants, and the server will take
475 * care of managing the end of file boundary.
476 *
477 * This function also eliminates unnecessarily updating the file's
478 * atime locally, as the NFS server sets the file's atime, and this
479 * client must read the updated atime from the server back into its
480 * cache.
481 */
482 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
483 unsigned long nr_segs, loff_t pos, bool uio)
484 {
485 struct file *file = iocb->ki_filp;
486 struct address_space *mapping = file->f_mapping;
487 struct inode *inode = mapping->host;
488 struct nfs_direct_req *dreq;
489 struct nfs_lock_context *l_ctx;
490 ssize_t result = -EINVAL;
491 size_t count;
492
493 count = iov_length(iov, nr_segs);
494 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
495
496 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
497 file, count, (long long) pos);
498
499 result = 0;
500 if (!count)
501 goto out;
502
503 result = nfs_sync_mapping(mapping);
504 if (result)
505 goto out;
506
507 task_io_account_read(count);
508
509 result = -ENOMEM;
510 dreq = nfs_direct_req_alloc();
511 if (dreq == NULL)
512 goto out;
513
514 dreq->inode = inode;
515 dreq->bytes_left = iov_length(iov, nr_segs);
516 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
517 l_ctx = nfs_get_lock_context(dreq->ctx);
518 if (IS_ERR(l_ctx)) {
519 result = PTR_ERR(l_ctx);
520 goto out_release;
521 }
522 dreq->l_ctx = l_ctx;
523 if (!is_sync_kiocb(iocb))
524 dreq->iocb = iocb;
525
526 NFS_I(inode)->read_io += iov_length(iov, nr_segs);
527 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
528 if (!result) {
529 result = nfs_direct_wait(dreq);
530 if (result > 0)
531 iocb->ki_pos = pos + result;
532 }
533 out_release:
534 nfs_direct_req_release(dreq);
535 out:
536 return result;
537 }
538
539 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
540 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
541 {
542 struct nfs_pageio_descriptor desc;
543 struct nfs_page *req, *tmp;
544 LIST_HEAD(reqs);
545 struct nfs_commit_info cinfo;
546 LIST_HEAD(failed);
547
548 nfs_init_cinfo_from_dreq(&cinfo, dreq);
549 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
550 spin_lock(cinfo.lock);
551 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
552 spin_unlock(cinfo.lock);
553
554 dreq->count = 0;
555 get_dreq(dreq);
556
557 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
558 &nfs_direct_write_completion_ops);
559 desc.pg_dreq = dreq;
560
561 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
562 if (!nfs_pageio_add_request(&desc, req)) {
563 nfs_list_remove_request(req);
564 nfs_list_add_request(req, &failed);
565 spin_lock(cinfo.lock);
566 dreq->flags = 0;
567 dreq->error = -EIO;
568 spin_unlock(cinfo.lock);
569 }
570 nfs_release_request(req);
571 }
572 nfs_pageio_complete(&desc);
573
574 while (!list_empty(&failed)) {
575 req = nfs_list_entry(failed.next);
576 nfs_list_remove_request(req);
577 nfs_unlock_and_release_request(req);
578 }
579
580 if (put_dreq(dreq))
581 nfs_direct_write_complete(dreq, dreq->inode);
582 }
583
584 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
585 {
586 struct nfs_direct_req *dreq = data->dreq;
587 struct nfs_commit_info cinfo;
588 struct nfs_page *req;
589 int status = data->task.tk_status;
590
591 nfs_init_cinfo_from_dreq(&cinfo, dreq);
592 if (status < 0) {
593 dprintk("NFS: %5u commit failed with error %d.\n",
594 data->task.tk_pid, status);
595 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
596 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
597 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
598 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
599 }
600
601 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
602 while (!list_empty(&data->pages)) {
603 req = nfs_list_entry(data->pages.next);
604 nfs_list_remove_request(req);
605 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
606 /* Note the rewrite will go through mds */
607 nfs_mark_request_commit(req, NULL, &cinfo);
608 } else
609 nfs_release_request(req);
610 nfs_unlock_and_release_request(req);
611 }
612
613 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
614 nfs_direct_write_complete(dreq, data->inode);
615 }
616
617 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
618 {
619 /* There is no lock to clear */
620 }
621
622 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
623 .completion = nfs_direct_commit_complete,
624 .error_cleanup = nfs_direct_error_cleanup,
625 };
626
627 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
628 {
629 int res;
630 struct nfs_commit_info cinfo;
631 LIST_HEAD(mds_list);
632
633 nfs_init_cinfo_from_dreq(&cinfo, dreq);
634 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
635 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
636 if (res < 0) /* res == -ENOMEM */
637 nfs_direct_write_reschedule(dreq);
638 }
639
640 static void nfs_direct_write_schedule_work(struct work_struct *work)
641 {
642 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
643 int flags = dreq->flags;
644
645 dreq->flags = 0;
646 switch (flags) {
647 case NFS_ODIRECT_DO_COMMIT:
648 nfs_direct_commit_schedule(dreq);
649 break;
650 case NFS_ODIRECT_RESCHED_WRITES:
651 nfs_direct_write_reschedule(dreq);
652 break;
653 default:
654 nfs_direct_complete(dreq, true);
655 }
656 }
657
658 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
659 {
660 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
661 }
662
663 #else
664 static void nfs_direct_write_schedule_work(struct work_struct *work)
665 {
666 }
667
668 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
669 {
670 nfs_direct_complete(dreq, true);
671 }
672 #endif
673
674 /*
675 * NB: Return the value of the first error return code. Subsequent
676 * errors after the first one are ignored.
677 */
678 /*
679 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
680 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
681 * bail and stop sending more writes. Write length accounting is
682 * handled automatically by nfs_direct_write_result(). Otherwise, if
683 * no requests have been sent, just return an error.
684 */
685 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
686 const struct iovec *iov,
687 loff_t pos, bool uio)
688 {
689 struct nfs_direct_req *dreq = desc->pg_dreq;
690 struct nfs_open_context *ctx = dreq->ctx;
691 struct inode *inode = ctx->dentry->d_inode;
692 unsigned long user_addr = (unsigned long)iov->iov_base;
693 size_t count = iov->iov_len;
694 size_t wsize = NFS_SERVER(inode)->wsize;
695 unsigned int pgbase;
696 int result;
697 ssize_t started = 0;
698 struct page **pagevec = NULL;
699 unsigned int npages;
700
701 do {
702 size_t bytes;
703 int i;
704
705 pgbase = user_addr & ~PAGE_MASK;
706 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
707
708 result = -ENOMEM;
709 npages = nfs_page_array_len(pgbase, bytes);
710 if (!pagevec)
711 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
712 if (!pagevec)
713 break;
714
715 if (uio) {
716 down_read(&current->mm->mmap_sem);
717 result = get_user_pages(current, current->mm, user_addr,
718 npages, 0, 0, pagevec, NULL);
719 up_read(&current->mm->mmap_sem);
720 if (result < 0)
721 break;
722 } else {
723 WARN_ON(npages != 1);
724 result = get_kernel_page(user_addr, 0, pagevec);
725 if (WARN_ON(result != 1))
726 break;
727 }
728
729 if ((unsigned)result < npages) {
730 bytes = result * PAGE_SIZE;
731 if (bytes <= pgbase) {
732 nfs_direct_release_pages(pagevec, result);
733 break;
734 }
735 bytes -= pgbase;
736 npages = result;
737 }
738
739 for (i = 0; i < npages; i++) {
740 struct nfs_page *req;
741 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
742
743 req = nfs_create_request(dreq->ctx, dreq->inode,
744 pagevec[i],
745 pgbase, req_len);
746 if (IS_ERR(req)) {
747 result = PTR_ERR(req);
748 break;
749 }
750 nfs_lock_request(req);
751 req->wb_index = pos >> PAGE_SHIFT;
752 req->wb_offset = pos & ~PAGE_MASK;
753 if (!nfs_pageio_add_request(desc, req)) {
754 result = desc->pg_error;
755 nfs_unlock_and_release_request(req);
756 break;
757 }
758 pgbase = 0;
759 bytes -= req_len;
760 started += req_len;
761 user_addr += req_len;
762 pos += req_len;
763 count -= req_len;
764 dreq->bytes_left -= req_len;
765 }
766 /* The nfs_page now hold references to these pages */
767 nfs_direct_release_pages(pagevec, npages);
768 } while (count != 0 && result >= 0);
769
770 kfree(pagevec);
771
772 if (started)
773 return started;
774 return result < 0 ? (ssize_t) result : -EFAULT;
775 }
776
777 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
778 {
779 struct nfs_direct_req *dreq = hdr->dreq;
780 struct nfs_commit_info cinfo;
781 int bit = -1;
782 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
783
784 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
785 goto out_put;
786
787 nfs_init_cinfo_from_dreq(&cinfo, dreq);
788
789 spin_lock(&dreq->lock);
790
791 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
792 dreq->flags = 0;
793 dreq->error = hdr->error;
794 }
795 if (dreq->error != 0)
796 bit = NFS_IOHDR_ERROR;
797 else {
798 dreq->count += hdr->good_bytes;
799 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
800 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
801 bit = NFS_IOHDR_NEED_RESCHED;
802 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
803 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
804 bit = NFS_IOHDR_NEED_RESCHED;
805 else if (dreq->flags == 0) {
806 memcpy(&dreq->verf, hdr->verf,
807 sizeof(dreq->verf));
808 bit = NFS_IOHDR_NEED_COMMIT;
809 dreq->flags = NFS_ODIRECT_DO_COMMIT;
810 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
811 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
812 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
813 bit = NFS_IOHDR_NEED_RESCHED;
814 } else
815 bit = NFS_IOHDR_NEED_COMMIT;
816 }
817 }
818 }
819 spin_unlock(&dreq->lock);
820
821 while (!list_empty(&hdr->pages)) {
822 req = nfs_list_entry(hdr->pages.next);
823 nfs_list_remove_request(req);
824 switch (bit) {
825 case NFS_IOHDR_NEED_RESCHED:
826 case NFS_IOHDR_NEED_COMMIT:
827 kref_get(&req->wb_kref);
828 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
829 }
830 nfs_unlock_and_release_request(req);
831 }
832
833 out_put:
834 if (put_dreq(dreq))
835 nfs_direct_write_complete(dreq, hdr->inode);
836 hdr->release(hdr);
837 }
838
839 static void nfs_write_sync_pgio_error(struct list_head *head)
840 {
841 struct nfs_page *req;
842
843 while (!list_empty(head)) {
844 req = nfs_list_entry(head->next);
845 nfs_list_remove_request(req);
846 nfs_unlock_and_release_request(req);
847 }
848 }
849
850 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
851 .error_cleanup = nfs_write_sync_pgio_error,
852 .init_hdr = nfs_direct_pgio_init,
853 .completion = nfs_direct_write_completion,
854 };
855
856 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
857 const struct iovec *iov,
858 unsigned long nr_segs,
859 loff_t pos, bool uio)
860 {
861 struct nfs_pageio_descriptor desc;
862 struct inode *inode = dreq->inode;
863 ssize_t result = 0;
864 size_t requested_bytes = 0;
865 unsigned long seg;
866
867 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
868 &nfs_direct_write_completion_ops);
869 desc.pg_dreq = dreq;
870 get_dreq(dreq);
871 atomic_inc(&inode->i_dio_count);
872
873 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
874 for (seg = 0; seg < nr_segs; seg++) {
875 const struct iovec *vec = &iov[seg];
876 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
877 if (result < 0)
878 break;
879 requested_bytes += result;
880 if ((size_t)result < vec->iov_len)
881 break;
882 pos += vec->iov_len;
883 }
884 nfs_pageio_complete(&desc);
885
886 /*
887 * If no bytes were started, return the error, and let the
888 * generic layer handle the completion.
889 */
890 if (requested_bytes == 0) {
891 inode_dio_done(inode);
892 nfs_direct_req_release(dreq);
893 return result < 0 ? result : -EIO;
894 }
895
896 if (put_dreq(dreq))
897 nfs_direct_write_complete(dreq, dreq->inode);
898 return 0;
899 }
900
901 /**
902 * nfs_file_direct_write - file direct write operation for NFS files
903 * @iocb: target I/O control block
904 * @iov: vector of user buffers from which to write data
905 * @nr_segs: size of iov vector
906 * @pos: byte offset in file where writing starts
907 *
908 * We use this function for direct writes instead of calling
909 * generic_file_aio_write() in order to avoid taking the inode
910 * semaphore and updating the i_size. The NFS server will set
911 * the new i_size and this client must read the updated size
912 * back into its cache. We let the server do generic write
913 * parameter checking and report problems.
914 *
915 * We eliminate local atime updates, see direct read above.
916 *
917 * We avoid unnecessary page cache invalidations for normal cached
918 * readers of this file.
919 *
920 * Note that O_APPEND is not supported for NFS direct writes, as there
921 * is no atomic O_APPEND write facility in the NFS protocol.
922 */
923 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
924 unsigned long nr_segs, loff_t pos, bool uio)
925 {
926 ssize_t result = -EINVAL;
927 struct file *file = iocb->ki_filp;
928 struct address_space *mapping = file->f_mapping;
929 struct inode *inode = mapping->host;
930 struct nfs_direct_req *dreq;
931 struct nfs_lock_context *l_ctx;
932 size_t count;
933
934 count = iov_length(iov, nr_segs);
935 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
936
937 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
938 file, count, (long long) pos);
939
940 result = generic_write_checks(file, &pos, &count, 0);
941 if (result)
942 goto out;
943
944 result = -EINVAL;
945 if ((ssize_t) count < 0)
946 goto out;
947 result = 0;
948 if (!count)
949 goto out;
950
951 result = nfs_sync_mapping(mapping);
952 if (result)
953 goto out;
954
955 task_io_account_write(count);
956
957 result = -ENOMEM;
958 dreq = nfs_direct_req_alloc();
959 if (!dreq)
960 goto out;
961
962 dreq->inode = inode;
963 dreq->bytes_left = count;
964 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
965 l_ctx = nfs_get_lock_context(dreq->ctx);
966 if (IS_ERR(l_ctx)) {
967 result = PTR_ERR(l_ctx);
968 goto out_release;
969 }
970 dreq->l_ctx = l_ctx;
971 if (!is_sync_kiocb(iocb))
972 dreq->iocb = iocb;
973
974 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
975 if (!result) {
976 result = nfs_direct_wait(dreq);
977 if (result > 0) {
978 struct inode *inode = mapping->host;
979
980 iocb->ki_pos = pos + result;
981 spin_lock(&inode->i_lock);
982 if (i_size_read(inode) < iocb->ki_pos)
983 i_size_write(inode, iocb->ki_pos);
984 spin_unlock(&inode->i_lock);
985 }
986 }
987 out_release:
988 nfs_direct_req_release(dreq);
989 out:
990 return result;
991 }
992
993 /**
994 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
995 *
996 */
997 int __init nfs_init_directcache(void)
998 {
999 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1000 sizeof(struct nfs_direct_req),
1001 0, (SLAB_RECLAIM_ACCOUNT|
1002 SLAB_MEM_SPREAD),
1003 NULL);
1004 if (nfs_direct_cachep == NULL)
1005 return -ENOMEM;
1006
1007 return 0;
1008 }
1009
1010 /**
1011 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1012 *
1013 */
1014 void nfs_destroy_directcache(void)
1015 {
1016 kmem_cache_destroy(nfs_direct_cachep);
1017 }