c03f2948
[openwrt/staging/blogic.git] /
1 /*
2 * Adaptec AIC7xxx device driver for Linux.
3 *
4 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $
5 *
6 * Copyright (c) 1994 John Aycock
7 * The University of Calgary Department of Computer Science.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, write to
21 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 *
23 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
24 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
25 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
26 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
27 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
28 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
29 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
30 * ANSI SCSI-2 specification (draft 10c), ...
31 *
32 * --------------------------------------------------------------------------
33 *
34 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
35 *
36 * Substantially modified to include support for wide and twin bus
37 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
38 * SCB paging, and other rework of the code.
39 *
40 * --------------------------------------------------------------------------
41 * Copyright (c) 1994-2000 Justin T. Gibbs.
42 * Copyright (c) 2000-2001 Adaptec Inc.
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions, and the following disclaimer,
50 * without modification.
51 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
52 * substantially similar to the "NO WARRANTY" disclaimer below
53 * ("Disclaimer") and any redistribution must be conditioned upon
54 * including a substantially similar Disclaimer requirement for further
55 * binary redistribution.
56 * 3. Neither the names of the above-listed copyright holders nor the names
57 * of any contributors may be used to endorse or promote products derived
58 * from this software without specific prior written permission.
59 *
60 * Alternatively, this software may be distributed under the terms of the
61 * GNU General Public License ("GPL") version 2 as published by the Free
62 * Software Foundation.
63 *
64 * NO WARRANTY
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
66 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
67 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
68 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
69 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
73 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
74 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
75 * POSSIBILITY OF SUCH DAMAGES.
76 *
77 *---------------------------------------------------------------------------
78 *
79 * Thanks also go to (in alphabetical order) the following:
80 *
81 * Rory Bolt - Sequencer bug fixes
82 * Jay Estabrook - Initial DEC Alpha support
83 * Doug Ledford - Much needed abort/reset bug fixes
84 * Kai Makisara - DMAing of SCBs
85 *
86 * A Boot time option was also added for not resetting the scsi bus.
87 *
88 * Form: aic7xxx=extended
89 * aic7xxx=no_reset
90 * aic7xxx=verbose
91 *
92 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
93 *
94 * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp
95 */
96
97 /*
98 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
99 *
100 * Copyright (c) 1997-1999 Doug Ledford
101 *
102 * These changes are released under the same licensing terms as the FreeBSD
103 * driver written by Justin Gibbs. Please see his Copyright notice above
104 * for the exact terms and conditions covering my changes as well as the
105 * warranty statement.
106 *
107 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
108 * but are not limited to:
109 *
110 * 1: Import of the latest FreeBSD sequencer code for this driver
111 * 2: Modification of kernel code to accommodate different sequencer semantics
112 * 3: Extensive changes throughout kernel portion of driver to improve
113 * abort/reset processing and error hanndling
114 * 4: Other work contributed by various people on the Internet
115 * 5: Changes to printk information and verbosity selection code
116 * 6: General reliability related changes, especially in IRQ management
117 * 7: Modifications to the default probe/attach order for supported cards
118 * 8: SMP friendliness has been improved
119 *
120 */
121
122 #include "aic7xxx_osm.h"
123 #include "aic7xxx_inline.h"
124 #include <scsi/scsicam.h>
125 #include <scsi/scsi_transport.h>
126 #include <scsi/scsi_transport_spi.h>
127
128 static struct scsi_transport_template *ahc_linux_transport_template = NULL;
129
130 /*
131 * Include aiclib.c as part of our
132 * "module dependencies are hard" work around.
133 */
134 #include "aiclib.c"
135
136 #include <linux/init.h> /* __setup */
137 #include <linux/mm.h> /* For fetching system memory size */
138 #include <linux/blkdev.h> /* For block_size() */
139 #include <linux/delay.h> /* For ssleep/msleep */
140
141 /*
142 * Lock protecting manipulation of the ahc softc list.
143 */
144 spinlock_t ahc_list_spinlock;
145
146 /*
147 * Set this to the delay in seconds after SCSI bus reset.
148 * Note, we honor this only for the initial bus reset.
149 * The scsi error recovery code performs its own bus settle
150 * delay handling for error recovery actions.
151 */
152 #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS
153 #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS
154 #else
155 #define AIC7XXX_RESET_DELAY 5000
156 #endif
157
158 /*
159 * Control collection of SCSI transfer statistics for the /proc filesystem.
160 *
161 * NOTE: Do NOT enable this when running on kernels version 1.2.x and below.
162 * NOTE: This does affect performance since it has to maintain statistics.
163 */
164 #ifdef CONFIG_AIC7XXX_PROC_STATS
165 #define AIC7XXX_PROC_STATS
166 #endif
167
168 /*
169 * To change the default number of tagged transactions allowed per-device,
170 * add a line to the lilo.conf file like:
171 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
172 * which will result in the first four devices on the first two
173 * controllers being set to a tagged queue depth of 32.
174 *
175 * The tag_commands is an array of 16 to allow for wide and twin adapters.
176 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
177 * for channel 1.
178 */
179 typedef struct {
180 uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */
181 } adapter_tag_info_t;
182
183 /*
184 * Modify this as you see fit for your system.
185 *
186 * 0 tagged queuing disabled
187 * 1 <= n <= 253 n == max tags ever dispatched.
188 *
189 * The driver will throttle the number of commands dispatched to a
190 * device if it returns queue full. For devices with a fixed maximum
191 * queue depth, the driver will eventually determine this depth and
192 * lock it in (a console message is printed to indicate that a lock
193 * has occurred). On some devices, queue full is returned for a temporary
194 * resource shortage. These devices will return queue full at varying
195 * depths. The driver will throttle back when the queue fulls occur and
196 * attempt to slowly increase the depth over time as the device recovers
197 * from the resource shortage.
198 *
199 * In this example, the first line will disable tagged queueing for all
200 * the devices on the first probed aic7xxx adapter.
201 *
202 * The second line enables tagged queueing with 4 commands/LUN for IDs
203 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
204 * driver to attempt to use up to 64 tags for ID 1.
205 *
206 * The third line is the same as the first line.
207 *
208 * The fourth line disables tagged queueing for devices 0 and 3. It
209 * enables tagged queueing for the other IDs, with 16 commands/LUN
210 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
211 * IDs 2, 5-7, and 9-15.
212 */
213
214 /*
215 * NOTE: The below structure is for reference only, the actual structure
216 * to modify in order to change things is just below this comment block.
217 adapter_tag_info_t aic7xxx_tag_info[] =
218 {
219 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
220 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
221 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
222 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
223 };
224 */
225
226 #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE
227 #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE
228 #else
229 #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE
230 #endif
231
232 #define AIC7XXX_CONFIGED_TAG_COMMANDS { \
233 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
234 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
235 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
236 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
237 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
238 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
239 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
240 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \
241 }
242
243 /*
244 * By default, use the number of commands specified by
245 * the users kernel configuration.
246 */
247 static adapter_tag_info_t aic7xxx_tag_info[] =
248 {
249 {AIC7XXX_CONFIGED_TAG_COMMANDS},
250 {AIC7XXX_CONFIGED_TAG_COMMANDS},
251 {AIC7XXX_CONFIGED_TAG_COMMANDS},
252 {AIC7XXX_CONFIGED_TAG_COMMANDS},
253 {AIC7XXX_CONFIGED_TAG_COMMANDS},
254 {AIC7XXX_CONFIGED_TAG_COMMANDS},
255 {AIC7XXX_CONFIGED_TAG_COMMANDS},
256 {AIC7XXX_CONFIGED_TAG_COMMANDS},
257 {AIC7XXX_CONFIGED_TAG_COMMANDS},
258 {AIC7XXX_CONFIGED_TAG_COMMANDS},
259 {AIC7XXX_CONFIGED_TAG_COMMANDS},
260 {AIC7XXX_CONFIGED_TAG_COMMANDS},
261 {AIC7XXX_CONFIGED_TAG_COMMANDS},
262 {AIC7XXX_CONFIGED_TAG_COMMANDS},
263 {AIC7XXX_CONFIGED_TAG_COMMANDS},
264 {AIC7XXX_CONFIGED_TAG_COMMANDS}
265 };
266
267 /*
268 * There should be a specific return value for this in scsi.h, but
269 * it seems that most drivers ignore it.
270 */
271 #define DID_UNDERFLOW DID_ERROR
272
273 void
274 ahc_print_path(struct ahc_softc *ahc, struct scb *scb)
275 {
276 printk("(scsi%d:%c:%d:%d): ",
277 ahc->platform_data->host->host_no,
278 scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X',
279 scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1,
280 scb != NULL ? SCB_GET_LUN(scb) : -1);
281 }
282
283 /*
284 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
285 * cards in the system. This should be fixed. Exceptions to this
286 * rule are noted in the comments.
287 */
288
289 /*
290 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
291 * has no effect on any later resets that might occur due to things like
292 * SCSI bus timeouts.
293 */
294 static uint32_t aic7xxx_no_reset;
295
296 /*
297 * Certain PCI motherboards will scan PCI devices from highest to lowest,
298 * others scan from lowest to highest, and they tend to do all kinds of
299 * strange things when they come into contact with PCI bridge chips. The
300 * net result of all this is that the PCI card that is actually used to boot
301 * the machine is very hard to detect. Most motherboards go from lowest
302 * PCI slot number to highest, and the first SCSI controller found is the
303 * one you boot from. The only exceptions to this are when a controller
304 * has its BIOS disabled. So, we by default sort all of our SCSI controllers
305 * from lowest PCI slot number to highest PCI slot number. We also force
306 * all controllers with their BIOS disabled to the end of the list. This
307 * works on *almost* all computers. Where it doesn't work, we have this
308 * option. Setting this option to non-0 will reverse the order of the sort
309 * to highest first, then lowest, but will still leave cards with their BIOS
310 * disabled at the very end. That should fix everyone up unless there are
311 * really strange cirumstances.
312 */
313 static uint32_t aic7xxx_reverse_scan;
314
315 /*
316 * Should we force EXTENDED translation on a controller.
317 * 0 == Use whatever is in the SEEPROM or default to off
318 * 1 == Use whatever is in the SEEPROM or default to on
319 */
320 static uint32_t aic7xxx_extended;
321
322 /*
323 * PCI bus parity checking of the Adaptec controllers. This is somewhat
324 * dubious at best. To my knowledge, this option has never actually
325 * solved a PCI parity problem, but on certain machines with broken PCI
326 * chipset configurations where stray PCI transactions with bad parity are
327 * the norm rather than the exception, the error messages can be overwelming.
328 * It's included in the driver for completeness.
329 * 0 = Shut off PCI parity check
330 * non-0 = reverse polarity pci parity checking
331 */
332 static uint32_t aic7xxx_pci_parity = ~0;
333
334 /*
335 * Certain newer motherboards have put new PCI based devices into the
336 * IO spaces that used to typically be occupied by VLB or EISA cards.
337 * This overlap can cause these newer motherboards to lock up when scanned
338 * for older EISA and VLB devices. Setting this option to non-0 will
339 * cause the driver to skip scanning for any VLB or EISA controllers and
340 * only support the PCI controllers. NOTE: this means that if the kernel
341 * os compiled with PCI support disabled, then setting this to non-0
342 * would result in never finding any devices :)
343 */
344 #ifndef CONFIG_AIC7XXX_PROBE_EISA_VL
345 uint32_t aic7xxx_probe_eisa_vl;
346 #else
347 uint32_t aic7xxx_probe_eisa_vl = ~0;
348 #endif
349
350 /*
351 * There are lots of broken chipsets in the world. Some of them will
352 * violate the PCI spec when we issue byte sized memory writes to our
353 * controller. I/O mapped register access, if allowed by the given
354 * platform, will work in almost all cases.
355 */
356 uint32_t aic7xxx_allow_memio = ~0;
357
358 /*
359 * aic7xxx_detect() has been run, so register all device arrivals
360 * immediately with the system rather than deferring to the sorted
361 * attachment performed by aic7xxx_detect().
362 */
363 int aic7xxx_detect_complete;
364
365 /*
366 * So that we can set how long each device is given as a selection timeout.
367 * The table of values goes like this:
368 * 0 - 256ms
369 * 1 - 128ms
370 * 2 - 64ms
371 * 3 - 32ms
372 * We default to 256ms because some older devices need a longer time
373 * to respond to initial selection.
374 */
375 static uint32_t aic7xxx_seltime;
376
377 /*
378 * Certain devices do not perform any aging on commands. Should the
379 * device be saturated by commands in one portion of the disk, it is
380 * possible for transactions on far away sectors to never be serviced.
381 * To handle these devices, we can periodically send an ordered tag to
382 * force all outstanding transactions to be serviced prior to a new
383 * transaction.
384 */
385 uint32_t aic7xxx_periodic_otag;
386
387 /*
388 * Module information and settable options.
389 */
390 static char *aic7xxx = NULL;
391
392 MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>");
393 MODULE_DESCRIPTION("Adaptec Aic77XX/78XX SCSI Host Bus Adapter driver");
394 MODULE_LICENSE("Dual BSD/GPL");
395 MODULE_VERSION(AIC7XXX_DRIVER_VERSION);
396 module_param(aic7xxx, charp, 0444);
397 MODULE_PARM_DESC(aic7xxx,
398 "period delimited, options string.\n"
399 " verbose Enable verbose/diagnostic logging\n"
400 " allow_memio Allow device registers to be memory mapped\n"
401 " debug Bitmask of debug values to enable\n"
402 " no_probe Toggle EISA/VLB controller probing\n"
403 " probe_eisa_vl Toggle EISA/VLB controller probing\n"
404 " no_reset Supress initial bus resets\n"
405 " extended Enable extended geometry on all controllers\n"
406 " periodic_otag Send an ordered tagged transaction\n"
407 " periodically to prevent tag starvation.\n"
408 " This may be required by some older disk\n"
409 " drives or RAID arrays.\n"
410 " reverse_scan Sort PCI devices highest Bus/Slot to lowest\n"
411 " tag_info:<tag_str> Set per-target tag depth\n"
412 " global_tag_depth:<int> Global tag depth for every target\n"
413 " on every bus\n"
414 " seltime:<int> Selection Timeout\n"
415 " (0/256ms,1/128ms,2/64ms,3/32ms)\n"
416 "\n"
417 " Sample /etc/modprobe.conf line:\n"
418 " Toggle EISA/VLB probing\n"
419 " Set tag depth on Controller 1/Target 1 to 10 tags\n"
420 " Shorten the selection timeout to 128ms\n"
421 "\n"
422 " options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n"
423 );
424
425 static void ahc_linux_handle_scsi_status(struct ahc_softc *,
426 struct ahc_linux_device *,
427 struct scb *);
428 static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc,
429 struct scsi_cmnd *cmd);
430 static void ahc_linux_sem_timeout(u_long arg);
431 static void ahc_linux_freeze_simq(struct ahc_softc *ahc);
432 static void ahc_linux_release_simq(u_long arg);
433 static int ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag);
434 static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc);
435 static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc,
436 struct ahc_devinfo *devinfo);
437 static void ahc_linux_device_queue_depth(struct ahc_softc *ahc,
438 struct ahc_linux_device *dev);
439 static struct ahc_linux_target* ahc_linux_alloc_target(struct ahc_softc*,
440 u_int, u_int);
441 static void ahc_linux_free_target(struct ahc_softc*,
442 struct ahc_linux_target*);
443 static struct ahc_linux_device* ahc_linux_alloc_device(struct ahc_softc*,
444 struct ahc_linux_target*,
445 u_int);
446 static void ahc_linux_free_device(struct ahc_softc*,
447 struct ahc_linux_device*);
448 static int ahc_linux_run_command(struct ahc_softc*,
449 struct ahc_linux_device *,
450 struct scsi_cmnd *);
451 static void ahc_linux_setup_tag_info_global(char *p);
452 static aic_option_callback_t ahc_linux_setup_tag_info;
453 static int aic7xxx_setup(char *s);
454 static int ahc_linux_next_unit(void);
455
456 /********************************* Inlines ************************************/
457 static __inline struct ahc_linux_device*
458 ahc_linux_get_device(struct ahc_softc *ahc, u_int channel,
459 u_int target, u_int lun);
460 static __inline void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);
461
462 static __inline int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
463 struct ahc_dma_seg *sg,
464 dma_addr_t addr, bus_size_t len);
465
466 static __inline struct ahc_linux_device*
467 ahc_linux_get_device(struct ahc_softc *ahc, u_int channel, u_int target,
468 u_int lun)
469 {
470 struct ahc_linux_target *targ;
471 struct ahc_linux_device *dev;
472 u_int target_offset;
473
474 target_offset = target;
475 if (channel != 0)
476 target_offset += 8;
477 targ = ahc->platform_data->targets[target_offset];
478 BUG_ON(targ == NULL);
479 dev = targ->devices[lun];
480 return dev;
481 }
482
483 static __inline void
484 ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
485 {
486 struct scsi_cmnd *cmd;
487
488 cmd = scb->io_ctx;
489 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE);
490 if (cmd->use_sg != 0) {
491 struct scatterlist *sg;
492
493 sg = (struct scatterlist *)cmd->request_buffer;
494 pci_unmap_sg(ahc->dev_softc, sg, cmd->use_sg,
495 cmd->sc_data_direction);
496 } else if (cmd->request_bufflen != 0) {
497 pci_unmap_single(ahc->dev_softc,
498 scb->platform_data->buf_busaddr,
499 cmd->request_bufflen,
500 cmd->sc_data_direction);
501 }
502 }
503
504 static __inline int
505 ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
506 struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len)
507 {
508 int consumed;
509
510 if ((scb->sg_count + 1) > AHC_NSEG)
511 panic("Too few segs for dma mapping. "
512 "Increase AHC_NSEG\n");
513
514 consumed = 1;
515 sg->addr = ahc_htole32(addr & 0xFFFFFFFF);
516 scb->platform_data->xfer_len += len;
517
518 if (sizeof(dma_addr_t) > 4
519 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0)
520 len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK;
521
522 sg->len = ahc_htole32(len);
523 return (consumed);
524 }
525
526 /*
527 * Try to detect an Adaptec 7XXX controller.
528 */
529 static int
530 ahc_linux_detect(struct scsi_host_template *template)
531 {
532 struct ahc_softc *ahc;
533 int found = 0;
534
535 /*
536 * Sanity checking of Linux SCSI data structures so
537 * that some of our hacks^H^H^H^H^Hassumptions aren't
538 * violated.
539 */
540 if (offsetof(struct ahc_cmd_internal, end)
541 > offsetof(struct scsi_cmnd, host_scribble)) {
542 printf("ahc_linux_detect: SCSI data structures changed.\n");
543 printf("ahc_linux_detect: Unable to attach\n");
544 return (0);
545 }
546 /*
547 * If we've been passed any parameters, process them now.
548 */
549 if (aic7xxx)
550 aic7xxx_setup(aic7xxx);
551
552 template->proc_name = "aic7xxx";
553
554 /*
555 * Initialize our softc list lock prior to
556 * probing for any adapters.
557 */
558 ahc_list_lockinit();
559
560 found = ahc_linux_pci_init();
561 if (!ahc_linux_eisa_init())
562 found++;
563
564 /*
565 * Register with the SCSI layer all
566 * controllers we've found.
567 */
568 TAILQ_FOREACH(ahc, &ahc_tailq, links) {
569
570 if (ahc_linux_register_host(ahc, template) == 0)
571 found++;
572 }
573
574 aic7xxx_detect_complete++;
575
576 return (found);
577 }
578
579 /*
580 * Return a string describing the driver.
581 */
582 static const char *
583 ahc_linux_info(struct Scsi_Host *host)
584 {
585 static char buffer[512];
586 char ahc_info[256];
587 char *bp;
588 struct ahc_softc *ahc;
589
590 bp = &buffer[0];
591 ahc = *(struct ahc_softc **)host->hostdata;
592 memset(bp, 0, sizeof(buffer));
593 strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev ");
594 strcat(bp, AIC7XXX_DRIVER_VERSION);
595 strcat(bp, "\n");
596 strcat(bp, " <");
597 strcat(bp, ahc->description);
598 strcat(bp, ">\n");
599 strcat(bp, " ");
600 ahc_controller_info(ahc, ahc_info);
601 strcat(bp, ahc_info);
602 strcat(bp, "\n");
603
604 return (bp);
605 }
606
607 /*
608 * Queue an SCB to the controller.
609 */
610 static int
611 ahc_linux_queue(struct scsi_cmnd * cmd, void (*scsi_done) (struct scsi_cmnd *))
612 {
613 struct ahc_softc *ahc;
614 struct ahc_linux_device *dev;
615
616 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
617
618 /*
619 * Save the callback on completion function.
620 */
621 cmd->scsi_done = scsi_done;
622
623 /*
624 * Close the race of a command that was in the process of
625 * being queued to us just as our simq was frozen. Let
626 * DV commands through so long as we are only frozen to
627 * perform DV.
628 */
629 if (ahc->platform_data->qfrozen != 0)
630 return SCSI_MLQUEUE_HOST_BUSY;
631
632 dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id,
633 cmd->device->lun);
634 BUG_ON(dev == NULL);
635
636 cmd->result = CAM_REQ_INPROG << 16;
637
638 return ahc_linux_run_command(ahc, dev, cmd);
639 }
640
641 static int
642 ahc_linux_slave_alloc(struct scsi_device *device)
643 {
644 struct ahc_softc *ahc;
645 struct ahc_linux_target *targ;
646 struct scsi_target *starget = device->sdev_target;
647 struct ahc_linux_device *dev;
648 u_int target_offset;
649
650 target_offset = starget->id;
651 if (starget->channel != 0)
652 target_offset += 8;
653
654 ahc = *((struct ahc_softc **)device->host->hostdata);
655 if (bootverbose)
656 printf("%s: Slave Alloc %d\n", ahc_name(ahc), device->id);
657 targ = ahc->platform_data->targets[target_offset];
658 if (targ == NULL) {
659 targ = ahc_linux_alloc_target(ahc, starget->channel, starget->id);
660 struct seeprom_config *sc = ahc->seep_config;
661 if (targ == NULL)
662 return -ENOMEM;
663 if (sc) {
664 unsigned short scsirate;
665 struct ahc_devinfo devinfo;
666 struct ahc_initiator_tinfo *tinfo;
667 struct ahc_tmode_tstate *tstate;
668 char channel = starget->channel + 'A';
669 unsigned int our_id = ahc->our_id;
670
671 if (starget->channel)
672 our_id = ahc->our_id_b;
673
674 if ((ahc->features & AHC_ULTRA2) != 0) {
675 scsirate = sc->device_flags[target_offset] & CFXFER;
676 } else {
677 scsirate = (sc->device_flags[target_offset] & CFXFER) << 4;
678 if (sc->device_flags[target_offset] & CFSYNCH)
679 scsirate |= SOFS;
680 }
681 if (sc->device_flags[target_offset] & CFWIDEB) {
682 scsirate |= WIDEXFER;
683 spi_max_width(starget) = 1;
684 } else
685 spi_max_width(starget) = 0;
686 spi_min_period(starget) =
687 ahc_find_period(ahc, scsirate, AHC_SYNCRATE_DT);
688 tinfo = ahc_fetch_transinfo(ahc, channel, ahc->our_id,
689 targ->target, &tstate);
690 ahc_compile_devinfo(&devinfo, our_id, targ->target,
691 CAM_LUN_WILDCARD, channel,
692 ROLE_INITIATOR);
693 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
694 AHC_TRANS_GOAL, /*paused*/FALSE);
695 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
696 AHC_TRANS_GOAL, /*paused*/FALSE);
697 }
698
699 }
700 dev = targ->devices[device->lun];
701 if (dev == NULL) {
702 dev = ahc_linux_alloc_device(ahc, targ, device->lun);
703 if (dev == NULL)
704 return -ENOMEM;
705 }
706
707 return 0;
708 }
709
710 static int
711 ahc_linux_slave_configure(struct scsi_device *device)
712 {
713 struct ahc_softc *ahc;
714 struct ahc_linux_device *dev;
715
716 ahc = *((struct ahc_softc **)device->host->hostdata);
717
718 if (bootverbose)
719 printf("%s: Slave Configure %d\n", ahc_name(ahc), device->id);
720
721 dev = ahc_linux_get_device(ahc, device->channel, device->id,
722 device->lun);
723 dev->scsi_device = device;
724 ahc_linux_device_queue_depth(ahc, dev);
725
726 /* Initial Domain Validation */
727 if (!spi_initial_dv(device->sdev_target))
728 spi_dv_device(device);
729
730 return 0;
731 }
732
733 static void
734 ahc_linux_slave_destroy(struct scsi_device *device)
735 {
736 struct ahc_softc *ahc;
737 struct ahc_linux_device *dev;
738
739 ahc = *((struct ahc_softc **)device->host->hostdata);
740 if (bootverbose)
741 printf("%s: Slave Destroy %d\n", ahc_name(ahc), device->id);
742 dev = ahc_linux_get_device(ahc, device->channel,
743 device->id, device->lun);
744
745 BUG_ON(dev->active);
746
747 ahc_linux_free_device(ahc, dev);
748 }
749
750 #if defined(__i386__)
751 /*
752 * Return the disk geometry for the given SCSI device.
753 */
754 static int
755 ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
756 sector_t capacity, int geom[])
757 {
758 uint8_t *bh;
759 int heads;
760 int sectors;
761 int cylinders;
762 int ret;
763 int extended;
764 struct ahc_softc *ahc;
765 u_int channel;
766
767 ahc = *((struct ahc_softc **)sdev->host->hostdata);
768 channel = sdev->channel;
769
770 bh = scsi_bios_ptable(bdev);
771 if (bh) {
772 ret = scsi_partsize(bh, capacity,
773 &geom[2], &geom[0], &geom[1]);
774 kfree(bh);
775 if (ret != -1)
776 return (ret);
777 }
778 heads = 64;
779 sectors = 32;
780 cylinders = aic_sector_div(capacity, heads, sectors);
781
782 if (aic7xxx_extended != 0)
783 extended = 1;
784 else if (channel == 0)
785 extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0;
786 else
787 extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0;
788 if (extended && cylinders >= 1024) {
789 heads = 255;
790 sectors = 63;
791 cylinders = aic_sector_div(capacity, heads, sectors);
792 }
793 geom[0] = heads;
794 geom[1] = sectors;
795 geom[2] = cylinders;
796 return (0);
797 }
798 #endif
799
800 /*
801 * Abort the current SCSI command(s).
802 */
803 static int
804 ahc_linux_abort(struct scsi_cmnd *cmd)
805 {
806 int error;
807
808 error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT);
809 if (error != 0)
810 printf("aic7xxx_abort returns 0x%x\n", error);
811 return (error);
812 }
813
814 /*
815 * Attempt to send a target reset message to the device that timed out.
816 */
817 static int
818 ahc_linux_dev_reset(struct scsi_cmnd *cmd)
819 {
820 int error;
821
822 error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET);
823 if (error != 0)
824 printf("aic7xxx_dev_reset returns 0x%x\n", error);
825 return (error);
826 }
827
828 /*
829 * Reset the SCSI bus.
830 */
831 static int
832 ahc_linux_bus_reset(struct scsi_cmnd *cmd)
833 {
834 struct ahc_softc *ahc;
835 int found;
836
837 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
838 found = ahc_reset_channel(ahc, cmd->device->channel + 'A',
839 /*initiate reset*/TRUE);
840
841 if (bootverbose)
842 printf("%s: SCSI bus reset delivered. "
843 "%d SCBs aborted.\n", ahc_name(ahc), found);
844
845 return SUCCESS;
846 }
847
848 struct scsi_host_template aic7xxx_driver_template = {
849 .module = THIS_MODULE,
850 .name = "aic7xxx",
851 .proc_info = ahc_linux_proc_info,
852 .info = ahc_linux_info,
853 .queuecommand = ahc_linux_queue,
854 .eh_abort_handler = ahc_linux_abort,
855 .eh_device_reset_handler = ahc_linux_dev_reset,
856 .eh_bus_reset_handler = ahc_linux_bus_reset,
857 #if defined(__i386__)
858 .bios_param = ahc_linux_biosparam,
859 #endif
860 .can_queue = AHC_MAX_QUEUE,
861 .this_id = -1,
862 .cmd_per_lun = 2,
863 .use_clustering = ENABLE_CLUSTERING,
864 .slave_alloc = ahc_linux_slave_alloc,
865 .slave_configure = ahc_linux_slave_configure,
866 .slave_destroy = ahc_linux_slave_destroy,
867 };
868
869 /**************************** Tasklet Handler *********************************/
870
871 /******************************** Macros **************************************/
872 #define BUILD_SCSIID(ahc, cmd) \
873 ((((cmd)->device->id << TID_SHIFT) & TID) \
874 | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \
875 | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB))
876
877 /******************************** Bus DMA *************************************/
878 int
879 ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent,
880 bus_size_t alignment, bus_size_t boundary,
881 dma_addr_t lowaddr, dma_addr_t highaddr,
882 bus_dma_filter_t *filter, void *filterarg,
883 bus_size_t maxsize, int nsegments,
884 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
885 {
886 bus_dma_tag_t dmat;
887
888 dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT);
889 if (dmat == NULL)
890 return (ENOMEM);
891
892 /*
893 * Linux is very simplistic about DMA memory. For now don't
894 * maintain all specification information. Once Linux supplies
895 * better facilities for doing these operations, or the
896 * needs of this particular driver change, we might need to do
897 * more here.
898 */
899 dmat->alignment = alignment;
900 dmat->boundary = boundary;
901 dmat->maxsize = maxsize;
902 *ret_tag = dmat;
903 return (0);
904 }
905
906 void
907 ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat)
908 {
909 free(dmat, M_DEVBUF);
910 }
911
912 int
913 ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr,
914 int flags, bus_dmamap_t *mapp)
915 {
916 *vaddr = pci_alloc_consistent(ahc->dev_softc,
917 dmat->maxsize, mapp);
918 if (*vaddr == NULL)
919 return ENOMEM;
920 return 0;
921 }
922
923 void
924 ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat,
925 void* vaddr, bus_dmamap_t map)
926 {
927 pci_free_consistent(ahc->dev_softc, dmat->maxsize,
928 vaddr, map);
929 }
930
931 int
932 ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map,
933 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
934 void *cb_arg, int flags)
935 {
936 /*
937 * Assume for now that this will only be used during
938 * initialization and not for per-transaction buffer mapping.
939 */
940 bus_dma_segment_t stack_sg;
941
942 stack_sg.ds_addr = map;
943 stack_sg.ds_len = dmat->maxsize;
944 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
945 return (0);
946 }
947
948 void
949 ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
950 {
951 }
952
953 int
954 ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
955 {
956 /* Nothing to do */
957 return (0);
958 }
959
960 /********************* Platform Dependent Functions ***************************/
961 /*
962 * Compare "left hand" softc with "right hand" softc, returning:
963 * < 0 - lahc has a lower priority than rahc
964 * 0 - Softcs are equal
965 * > 0 - lahc has a higher priority than rahc
966 */
967 int
968 ahc_softc_comp(struct ahc_softc *lahc, struct ahc_softc *rahc)
969 {
970 int value;
971 int rvalue;
972 int lvalue;
973
974 /*
975 * Under Linux, cards are ordered as follows:
976 * 1) VLB/EISA BIOS enabled devices sorted by BIOS address.
977 * 2) PCI devices with BIOS enabled sorted by bus/slot/func.
978 * 3) All remaining VLB/EISA devices sorted by ioport.
979 * 4) All remaining PCI devices sorted by bus/slot/func.
980 */
981 value = (lahc->flags & AHC_BIOS_ENABLED)
982 - (rahc->flags & AHC_BIOS_ENABLED);
983 if (value != 0)
984 /* Controllers with BIOS enabled have a *higher* priority */
985 return (value);
986
987 /*
988 * Same BIOS setting, now sort based on bus type.
989 * EISA and VL controllers sort together. EISA/VL
990 * have higher priority than PCI.
991 */
992 rvalue = (rahc->chip & AHC_BUS_MASK);
993 if (rvalue == AHC_VL)
994 rvalue = AHC_EISA;
995 lvalue = (lahc->chip & AHC_BUS_MASK);
996 if (lvalue == AHC_VL)
997 lvalue = AHC_EISA;
998 value = rvalue - lvalue;
999 if (value != 0)
1000 return (value);
1001
1002 /* Still equal. Sort by BIOS address, ioport, or bus/slot/func. */
1003 switch (rvalue) {
1004 #ifdef CONFIG_PCI
1005 case AHC_PCI:
1006 {
1007 char primary_channel;
1008
1009 if (aic7xxx_reverse_scan != 0)
1010 value = ahc_get_pci_bus(lahc->dev_softc)
1011 - ahc_get_pci_bus(rahc->dev_softc);
1012 else
1013 value = ahc_get_pci_bus(rahc->dev_softc)
1014 - ahc_get_pci_bus(lahc->dev_softc);
1015 if (value != 0)
1016 break;
1017 if (aic7xxx_reverse_scan != 0)
1018 value = ahc_get_pci_slot(lahc->dev_softc)
1019 - ahc_get_pci_slot(rahc->dev_softc);
1020 else
1021 value = ahc_get_pci_slot(rahc->dev_softc)
1022 - ahc_get_pci_slot(lahc->dev_softc);
1023 if (value != 0)
1024 break;
1025 /*
1026 * On multi-function devices, the user can choose
1027 * to have function 1 probed before function 0.
1028 * Give whichever channel is the primary channel
1029 * the highest priority.
1030 */
1031 primary_channel = (lahc->flags & AHC_PRIMARY_CHANNEL) + 'A';
1032 value = -1;
1033 if (lahc->channel == primary_channel)
1034 value = 1;
1035 break;
1036 }
1037 #endif
1038 case AHC_EISA:
1039 if ((rahc->flags & AHC_BIOS_ENABLED) != 0) {
1040 value = rahc->platform_data->bios_address
1041 - lahc->platform_data->bios_address;
1042 } else {
1043 value = rahc->bsh.ioport
1044 - lahc->bsh.ioport;
1045 }
1046 break;
1047 default:
1048 panic("ahc_softc_sort: invalid bus type");
1049 }
1050 return (value);
1051 }
1052
1053 static void
1054 ahc_linux_setup_tag_info_global(char *p)
1055 {
1056 int tags, i, j;
1057
1058 tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
1059 printf("Setting Global Tags= %d\n", tags);
1060
1061 for (i = 0; i < NUM_ELEMENTS(aic7xxx_tag_info); i++) {
1062 for (j = 0; j < AHC_NUM_TARGETS; j++) {
1063 aic7xxx_tag_info[i].tag_commands[j] = tags;
1064 }
1065 }
1066 }
1067
1068 static void
1069 ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
1070 {
1071
1072 if ((instance >= 0) && (targ >= 0)
1073 && (instance < NUM_ELEMENTS(aic7xxx_tag_info))
1074 && (targ < AHC_NUM_TARGETS)) {
1075 aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff;
1076 if (bootverbose)
1077 printf("tag_info[%d:%d] = %d\n", instance, targ, value);
1078 }
1079 }
1080
1081 /*
1082 * Handle Linux boot parameters. This routine allows for assigning a value
1083 * to a parameter with a ':' between the parameter and the value.
1084 * ie. aic7xxx=stpwlev:1,extended
1085 */
1086 static int
1087 aic7xxx_setup(char *s)
1088 {
1089 int i, n;
1090 char *p;
1091 char *end;
1092
1093 static struct {
1094 const char *name;
1095 uint32_t *flag;
1096 } options[] = {
1097 { "extended", &aic7xxx_extended },
1098 { "no_reset", &aic7xxx_no_reset },
1099 { "verbose", &aic7xxx_verbose },
1100 { "allow_memio", &aic7xxx_allow_memio},
1101 #ifdef AHC_DEBUG
1102 { "debug", &ahc_debug },
1103 #endif
1104 { "reverse_scan", &aic7xxx_reverse_scan },
1105 { "no_probe", &aic7xxx_probe_eisa_vl },
1106 { "probe_eisa_vl", &aic7xxx_probe_eisa_vl },
1107 { "periodic_otag", &aic7xxx_periodic_otag },
1108 { "pci_parity", &aic7xxx_pci_parity },
1109 { "seltime", &aic7xxx_seltime },
1110 { "tag_info", NULL },
1111 { "global_tag_depth", NULL },
1112 { "dv", NULL }
1113 };
1114
1115 end = strchr(s, '\0');
1116
1117 /*
1118 * XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS
1119 * will never be 0 in this case.
1120 */
1121 n = 0;
1122
1123 while ((p = strsep(&s, ",.")) != NULL) {
1124 if (*p == '\0')
1125 continue;
1126 for (i = 0; i < NUM_ELEMENTS(options); i++) {
1127
1128 n = strlen(options[i].name);
1129 if (strncmp(options[i].name, p, n) == 0)
1130 break;
1131 }
1132 if (i == NUM_ELEMENTS(options))
1133 continue;
1134
1135 if (strncmp(p, "global_tag_depth", n) == 0) {
1136 ahc_linux_setup_tag_info_global(p + n);
1137 } else if (strncmp(p, "tag_info", n) == 0) {
1138 s = aic_parse_brace_option("tag_info", p + n, end,
1139 2, ahc_linux_setup_tag_info, 0);
1140 } else if (p[n] == ':') {
1141 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1142 } else if (strncmp(p, "verbose", n) == 0) {
1143 *(options[i].flag) = 1;
1144 } else {
1145 *(options[i].flag) ^= 0xFFFFFFFF;
1146 }
1147 }
1148 return 1;
1149 }
1150
1151 __setup("aic7xxx=", aic7xxx_setup);
1152
1153 uint32_t aic7xxx_verbose;
1154
1155 int
1156 ahc_linux_register_host(struct ahc_softc *ahc, struct scsi_host_template *template)
1157 {
1158 char buf[80];
1159 struct Scsi_Host *host;
1160 char *new_name;
1161 u_long s;
1162
1163 template->name = ahc->description;
1164 host = scsi_host_alloc(template, sizeof(struct ahc_softc *));
1165 if (host == NULL)
1166 return (ENOMEM);
1167
1168 *((struct ahc_softc **)host->hostdata) = ahc;
1169 ahc_lock(ahc, &s);
1170 scsi_assign_lock(host, &ahc->platform_data->spin_lock);
1171 ahc->platform_data->host = host;
1172 host->can_queue = AHC_MAX_QUEUE;
1173 host->cmd_per_lun = 2;
1174 /* XXX No way to communicate the ID for multiple channels */
1175 host->this_id = ahc->our_id;
1176 host->irq = ahc->platform_data->irq;
1177 host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
1178 host->max_lun = AHC_NUM_LUNS;
1179 host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0;
1180 host->sg_tablesize = AHC_NSEG;
1181 ahc_set_unit(ahc, ahc_linux_next_unit());
1182 sprintf(buf, "scsi%d", host->host_no);
1183 new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT);
1184 if (new_name != NULL) {
1185 strcpy(new_name, buf);
1186 ahc_set_name(ahc, new_name);
1187 }
1188 host->unique_id = ahc->unit;
1189 ahc_linux_initialize_scsi_bus(ahc);
1190 ahc_intr_enable(ahc, TRUE);
1191 ahc_unlock(ahc, &s);
1192
1193 host->transportt = ahc_linux_transport_template;
1194
1195 scsi_add_host(host, (ahc->dev_softc ? &ahc->dev_softc->dev : NULL)); /* XXX handle failure */
1196 scsi_scan_host(host);
1197 return (0);
1198 }
1199
1200 uint64_t
1201 ahc_linux_get_memsize(void)
1202 {
1203 struct sysinfo si;
1204
1205 si_meminfo(&si);
1206 return ((uint64_t)si.totalram << PAGE_SHIFT);
1207 }
1208
1209 /*
1210 * Find the smallest available unit number to use
1211 * for a new device. We don't just use a static
1212 * count to handle the "repeated hot-(un)plug"
1213 * scenario.
1214 */
1215 static int
1216 ahc_linux_next_unit(void)
1217 {
1218 struct ahc_softc *ahc;
1219 int unit;
1220
1221 unit = 0;
1222 retry:
1223 TAILQ_FOREACH(ahc, &ahc_tailq, links) {
1224 if (ahc->unit == unit) {
1225 unit++;
1226 goto retry;
1227 }
1228 }
1229 return (unit);
1230 }
1231
1232 /*
1233 * Place the SCSI bus into a known state by either resetting it,
1234 * or forcing transfer negotiations on the next command to any
1235 * target.
1236 */
1237 void
1238 ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc)
1239 {
1240 int i;
1241 int numtarg;
1242
1243 i = 0;
1244 numtarg = 0;
1245
1246 if (aic7xxx_no_reset != 0)
1247 ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B);
1248
1249 if ((ahc->flags & AHC_RESET_BUS_A) != 0)
1250 ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE);
1251 else
1252 numtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
1253
1254 if ((ahc->features & AHC_TWIN) != 0) {
1255
1256 if ((ahc->flags & AHC_RESET_BUS_B) != 0) {
1257 ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE);
1258 } else {
1259 if (numtarg == 0)
1260 i = 8;
1261 numtarg += 8;
1262 }
1263 }
1264
1265 /*
1266 * Force negotiation to async for all targets that
1267 * will not see an initial bus reset.
1268 */
1269 for (; i < numtarg; i++) {
1270 struct ahc_devinfo devinfo;
1271 struct ahc_initiator_tinfo *tinfo;
1272 struct ahc_tmode_tstate *tstate;
1273 u_int our_id;
1274 u_int target_id;
1275 char channel;
1276
1277 channel = 'A';
1278 our_id = ahc->our_id;
1279 target_id = i;
1280 if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
1281 channel = 'B';
1282 our_id = ahc->our_id_b;
1283 target_id = i % 8;
1284 }
1285 tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
1286 target_id, &tstate);
1287 ahc_compile_devinfo(&devinfo, our_id, target_id,
1288 CAM_LUN_WILDCARD, channel, ROLE_INITIATOR);
1289 ahc_update_neg_request(ahc, &devinfo, tstate,
1290 tinfo, AHC_NEG_ALWAYS);
1291 }
1292 /* Give the bus some time to recover */
1293 if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) {
1294 ahc_linux_freeze_simq(ahc);
1295 init_timer(&ahc->platform_data->reset_timer);
1296 ahc->platform_data->reset_timer.data = (u_long)ahc;
1297 ahc->platform_data->reset_timer.expires =
1298 jiffies + (AIC7XXX_RESET_DELAY * HZ)/1000;
1299 ahc->platform_data->reset_timer.function =
1300 ahc_linux_release_simq;
1301 add_timer(&ahc->platform_data->reset_timer);
1302 }
1303 }
1304
1305 int
1306 ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg)
1307 {
1308
1309 ahc->platform_data =
1310 malloc(sizeof(struct ahc_platform_data), M_DEVBUF, M_NOWAIT);
1311 if (ahc->platform_data == NULL)
1312 return (ENOMEM);
1313 memset(ahc->platform_data, 0, sizeof(struct ahc_platform_data));
1314 ahc->platform_data->irq = AHC_LINUX_NOIRQ;
1315 ahc_lockinit(ahc);
1316 init_MUTEX_LOCKED(&ahc->platform_data->eh_sem);
1317 ahc->seltime = (aic7xxx_seltime & 0x3) << 4;
1318 ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4;
1319 if (aic7xxx_pci_parity == 0)
1320 ahc->flags |= AHC_DISABLE_PCI_PERR;
1321
1322 return (0);
1323 }
1324
1325 void
1326 ahc_platform_free(struct ahc_softc *ahc)
1327 {
1328 struct ahc_linux_target *targ;
1329 struct ahc_linux_device *dev;
1330 int i, j;
1331
1332 if (ahc->platform_data != NULL) {
1333 if (ahc->platform_data->host != NULL) {
1334 scsi_remove_host(ahc->platform_data->host);
1335 scsi_host_put(ahc->platform_data->host);
1336 }
1337
1338 /* destroy all of the device and target objects */
1339 for (i = 0; i < AHC_NUM_TARGETS; i++) {
1340 targ = ahc->platform_data->targets[i];
1341 if (targ != NULL) {
1342 /* Keep target around through the loop. */
1343 targ->refcount++;
1344 for (j = 0; j < AHC_NUM_LUNS; j++) {
1345
1346 if (targ->devices[j] == NULL)
1347 continue;
1348 dev = targ->devices[j];
1349 ahc_linux_free_device(ahc, dev);
1350 }
1351 /*
1352 * Forcibly free the target now that
1353 * all devices are gone.
1354 */
1355 ahc_linux_free_target(ahc, targ);
1356 }
1357 }
1358
1359 if (ahc->platform_data->irq != AHC_LINUX_NOIRQ)
1360 free_irq(ahc->platform_data->irq, ahc);
1361 if (ahc->tag == BUS_SPACE_PIO
1362 && ahc->bsh.ioport != 0)
1363 release_region(ahc->bsh.ioport, 256);
1364 if (ahc->tag == BUS_SPACE_MEMIO
1365 && ahc->bsh.maddr != NULL) {
1366 iounmap(ahc->bsh.maddr);
1367 release_mem_region(ahc->platform_data->mem_busaddr,
1368 0x1000);
1369 }
1370
1371 free(ahc->platform_data, M_DEVBUF);
1372 }
1373 }
1374
1375 void
1376 ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
1377 {
1378 ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb),
1379 SCB_GET_CHANNEL(ahc, scb),
1380 SCB_GET_LUN(scb), SCB_LIST_NULL,
1381 ROLE_UNKNOWN, CAM_REQUEUE_REQ);
1382 }
1383
1384 void
1385 ahc_platform_set_tags(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
1386 ahc_queue_alg alg)
1387 {
1388 struct ahc_linux_device *dev;
1389 int was_queuing;
1390 int now_queuing;
1391
1392 dev = ahc_linux_get_device(ahc, devinfo->channel - 'A',
1393 devinfo->target,
1394 devinfo->lun);
1395 if (dev == NULL)
1396 return;
1397 was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED);
1398 switch (alg) {
1399 default:
1400 case AHC_QUEUE_NONE:
1401 now_queuing = 0;
1402 break;
1403 case AHC_QUEUE_BASIC:
1404 now_queuing = AHC_DEV_Q_BASIC;
1405 break;
1406 case AHC_QUEUE_TAGGED:
1407 now_queuing = AHC_DEV_Q_TAGGED;
1408 break;
1409 }
1410 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0
1411 && (was_queuing != now_queuing)
1412 && (dev->active != 0)) {
1413 dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY;
1414 dev->qfrozen++;
1415 }
1416
1417 dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG);
1418 if (now_queuing) {
1419 u_int usertags;
1420
1421 usertags = ahc_linux_user_tagdepth(ahc, devinfo);
1422 if (!was_queuing) {
1423 /*
1424 * Start out agressively and allow our
1425 * dynamic queue depth algorithm to take
1426 * care of the rest.
1427 */
1428 dev->maxtags = usertags;
1429 dev->openings = dev->maxtags - dev->active;
1430 }
1431 if (dev->maxtags == 0) {
1432 /*
1433 * Queueing is disabled by the user.
1434 */
1435 dev->openings = 1;
1436 } else if (alg == AHC_QUEUE_TAGGED) {
1437 dev->flags |= AHC_DEV_Q_TAGGED;
1438 if (aic7xxx_periodic_otag != 0)
1439 dev->flags |= AHC_DEV_PERIODIC_OTAG;
1440 } else
1441 dev->flags |= AHC_DEV_Q_BASIC;
1442 } else {
1443 /* We can only have one opening. */
1444 dev->maxtags = 0;
1445 dev->openings = 1 - dev->active;
1446 }
1447 if (dev->scsi_device != NULL) {
1448 switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) {
1449 case AHC_DEV_Q_BASIC:
1450 scsi_adjust_queue_depth(dev->scsi_device,
1451 MSG_SIMPLE_TASK,
1452 dev->openings + dev->active);
1453 break;
1454 case AHC_DEV_Q_TAGGED:
1455 scsi_adjust_queue_depth(dev->scsi_device,
1456 MSG_ORDERED_TASK,
1457 dev->openings + dev->active);
1458 break;
1459 default:
1460 /*
1461 * We allow the OS to queue 2 untagged transactions to
1462 * us at any time even though we can only execute them
1463 * serially on the controller/device. This should
1464 * remove some latency.
1465 */
1466 scsi_adjust_queue_depth(dev->scsi_device,
1467 /*NON-TAGGED*/0,
1468 /*queue depth*/2);
1469 break;
1470 }
1471 }
1472 }
1473
1474 int
1475 ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel,
1476 int lun, u_int tag, role_t role, uint32_t status)
1477 {
1478 return 0;
1479 }
1480
1481 static u_int
1482 ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
1483 {
1484 static int warned_user;
1485 u_int tags;
1486
1487 tags = 0;
1488 if ((ahc->user_discenable & devinfo->target_mask) != 0) {
1489 if (ahc->unit >= NUM_ELEMENTS(aic7xxx_tag_info)) {
1490 if (warned_user == 0) {
1491
1492 printf(KERN_WARNING
1493 "aic7xxx: WARNING: Insufficient tag_info instances\n"
1494 "aic7xxx: for installed controllers. Using defaults\n"
1495 "aic7xxx: Please update the aic7xxx_tag_info array in\n"
1496 "aic7xxx: the aic7xxx_osm..c source file.\n");
1497 warned_user++;
1498 }
1499 tags = AHC_MAX_QUEUE;
1500 } else {
1501 adapter_tag_info_t *tag_info;
1502
1503 tag_info = &aic7xxx_tag_info[ahc->unit];
1504 tags = tag_info->tag_commands[devinfo->target_offset];
1505 if (tags > AHC_MAX_QUEUE)
1506 tags = AHC_MAX_QUEUE;
1507 }
1508 }
1509 return (tags);
1510 }
1511
1512 /*
1513 * Determines the queue depth for a given device.
1514 */
1515 static void
1516 ahc_linux_device_queue_depth(struct ahc_softc *ahc,
1517 struct ahc_linux_device *dev)
1518 {
1519 struct ahc_devinfo devinfo;
1520 u_int tags;
1521
1522 ahc_compile_devinfo(&devinfo,
1523 dev->target->channel == 0
1524 ? ahc->our_id : ahc->our_id_b,
1525 dev->target->target, dev->lun,
1526 dev->target->channel == 0 ? 'A' : 'B',
1527 ROLE_INITIATOR);
1528 tags = ahc_linux_user_tagdepth(ahc, &devinfo);
1529 if (tags != 0
1530 && dev->scsi_device != NULL
1531 && dev->scsi_device->tagged_supported != 0) {
1532
1533 ahc_set_tags(ahc, &devinfo, AHC_QUEUE_TAGGED);
1534 ahc_print_devinfo(ahc, &devinfo);
1535 printf("Tagged Queuing enabled. Depth %d\n", tags);
1536 } else {
1537 ahc_set_tags(ahc, &devinfo, AHC_QUEUE_NONE);
1538 }
1539 }
1540
1541 static int
1542 ahc_linux_run_command(struct ahc_softc *ahc, struct ahc_linux_device *dev,
1543 struct scsi_cmnd *cmd)
1544 {
1545 struct scb *scb;
1546 struct hardware_scb *hscb;
1547 struct ahc_initiator_tinfo *tinfo;
1548 struct ahc_tmode_tstate *tstate;
1549 uint16_t mask;
1550 struct scb_tailq *untagged_q = NULL;
1551
1552 /*
1553 * Schedule us to run later. The only reason we are not
1554 * running is because the whole controller Q is frozen.
1555 */
1556 if (ahc->platform_data->qfrozen != 0)
1557 return SCSI_MLQUEUE_HOST_BUSY;
1558
1559 /*
1560 * We only allow one untagged transaction
1561 * per target in the initiator role unless
1562 * we are storing a full busy target *lun*
1563 * table in SCB space.
1564 */
1565 if (!blk_rq_tagged(cmd->request)
1566 && (ahc->features & AHC_SCB_BTT) == 0) {
1567 int target_offset;
1568
1569 target_offset = cmd->device->id + cmd->device->channel * 8;
1570 untagged_q = &(ahc->untagged_queues[target_offset]);
1571 if (!TAILQ_EMPTY(untagged_q))
1572 /* if we're already executing an untagged command
1573 * we're busy to another */
1574 return SCSI_MLQUEUE_DEVICE_BUSY;
1575 }
1576
1577 /*
1578 * Get an scb to use.
1579 */
1580 if ((scb = ahc_get_scb(ahc)) == NULL) {
1581 ahc->flags |= AHC_RESOURCE_SHORTAGE;
1582 return SCSI_MLQUEUE_HOST_BUSY;
1583 }
1584
1585 scb->io_ctx = cmd;
1586 scb->platform_data->dev = dev;
1587 hscb = scb->hscb;
1588 cmd->host_scribble = (char *)scb;
1589
1590 /*
1591 * Fill out basics of the HSCB.
1592 */
1593 hscb->control = 0;
1594 hscb->scsiid = BUILD_SCSIID(ahc, cmd);
1595 hscb->lun = cmd->device->lun;
1596 mask = SCB_GET_TARGET_MASK(ahc, scb);
1597 tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb),
1598 SCB_GET_OUR_ID(scb),
1599 SCB_GET_TARGET(ahc, scb), &tstate);
1600 hscb->scsirate = tinfo->scsirate;
1601 hscb->scsioffset = tinfo->curr.offset;
1602 if ((tstate->ultraenb & mask) != 0)
1603 hscb->control |= ULTRAENB;
1604
1605 if ((ahc->user_discenable & mask) != 0)
1606 hscb->control |= DISCENB;
1607
1608 if ((tstate->auto_negotiate & mask) != 0) {
1609 scb->flags |= SCB_AUTO_NEGOTIATE;
1610 scb->hscb->control |= MK_MESSAGE;
1611 }
1612
1613 if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) {
1614 int msg_bytes;
1615 uint8_t tag_msgs[2];
1616
1617 msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs);
1618 if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) {
1619 hscb->control |= tag_msgs[0];
1620 if (tag_msgs[0] == MSG_ORDERED_TASK)
1621 dev->commands_since_idle_or_otag = 0;
1622 } else if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH
1623 && (dev->flags & AHC_DEV_Q_TAGGED) != 0) {
1624 hscb->control |= MSG_ORDERED_TASK;
1625 dev->commands_since_idle_or_otag = 0;
1626 } else {
1627 hscb->control |= MSG_SIMPLE_TASK;
1628 }
1629 }
1630
1631 hscb->cdb_len = cmd->cmd_len;
1632 if (hscb->cdb_len <= 12) {
1633 memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len);
1634 } else {
1635 memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len);
1636 scb->flags |= SCB_CDB32_PTR;
1637 }
1638
1639 scb->platform_data->xfer_len = 0;
1640 ahc_set_residual(scb, 0);
1641 ahc_set_sense_residual(scb, 0);
1642 scb->sg_count = 0;
1643 if (cmd->use_sg != 0) {
1644 struct ahc_dma_seg *sg;
1645 struct scatterlist *cur_seg;
1646 struct scatterlist *end_seg;
1647 int nseg;
1648
1649 cur_seg = (struct scatterlist *)cmd->request_buffer;
1650 nseg = pci_map_sg(ahc->dev_softc, cur_seg, cmd->use_sg,
1651 cmd->sc_data_direction);
1652 end_seg = cur_seg + nseg;
1653 /* Copy the segments into the SG list. */
1654 sg = scb->sg_list;
1655 /*
1656 * The sg_count may be larger than nseg if
1657 * a transfer crosses a 32bit page.
1658 */
1659 while (cur_seg < end_seg) {
1660 dma_addr_t addr;
1661 bus_size_t len;
1662 int consumed;
1663
1664 addr = sg_dma_address(cur_seg);
1665 len = sg_dma_len(cur_seg);
1666 consumed = ahc_linux_map_seg(ahc, scb,
1667 sg, addr, len);
1668 sg += consumed;
1669 scb->sg_count += consumed;
1670 cur_seg++;
1671 }
1672 sg--;
1673 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
1674
1675 /*
1676 * Reset the sg list pointer.
1677 */
1678 scb->hscb->sgptr =
1679 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
1680
1681 /*
1682 * Copy the first SG into the "current"
1683 * data pointer area.
1684 */
1685 scb->hscb->dataptr = scb->sg_list->addr;
1686 scb->hscb->datacnt = scb->sg_list->len;
1687 } else if (cmd->request_bufflen != 0) {
1688 struct ahc_dma_seg *sg;
1689 dma_addr_t addr;
1690
1691 sg = scb->sg_list;
1692 addr = pci_map_single(ahc->dev_softc,
1693 cmd->request_buffer,
1694 cmd->request_bufflen,
1695 cmd->sc_data_direction);
1696 scb->platform_data->buf_busaddr = addr;
1697 scb->sg_count = ahc_linux_map_seg(ahc, scb,
1698 sg, addr,
1699 cmd->request_bufflen);
1700 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
1701
1702 /*
1703 * Reset the sg list pointer.
1704 */
1705 scb->hscb->sgptr =
1706 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
1707
1708 /*
1709 * Copy the first SG into the "current"
1710 * data pointer area.
1711 */
1712 scb->hscb->dataptr = sg->addr;
1713 scb->hscb->datacnt = sg->len;
1714 } else {
1715 scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL);
1716 scb->hscb->dataptr = 0;
1717 scb->hscb->datacnt = 0;
1718 scb->sg_count = 0;
1719 }
1720
1721 LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links);
1722 dev->openings--;
1723 dev->active++;
1724 dev->commands_issued++;
1725 if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0)
1726 dev->commands_since_idle_or_otag++;
1727
1728 scb->flags |= SCB_ACTIVE;
1729 if (untagged_q) {
1730 TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe);
1731 scb->flags |= SCB_UNTAGGEDQ;
1732 }
1733 ahc_queue_scb(ahc, scb);
1734 return 0;
1735 }
1736
1737 /*
1738 * SCSI controller interrupt handler.
1739 */
1740 irqreturn_t
1741 ahc_linux_isr(int irq, void *dev_id, struct pt_regs * regs)
1742 {
1743 struct ahc_softc *ahc;
1744 u_long flags;
1745 int ours;
1746
1747 ahc = (struct ahc_softc *) dev_id;
1748 ahc_lock(ahc, &flags);
1749 ours = ahc_intr(ahc);
1750 ahc_unlock(ahc, &flags);
1751 return IRQ_RETVAL(ours);
1752 }
1753
1754 void
1755 ahc_platform_flushwork(struct ahc_softc *ahc)
1756 {
1757
1758 }
1759
1760 static struct ahc_linux_target*
1761 ahc_linux_alloc_target(struct ahc_softc *ahc, u_int channel, u_int target)
1762 {
1763 struct ahc_linux_target *targ;
1764 u_int target_offset;
1765
1766 target_offset = target;
1767 if (channel != 0)
1768 target_offset += 8;
1769
1770 targ = malloc(sizeof(*targ), M_DEVBUG, M_NOWAIT);
1771 if (targ == NULL)
1772 return (NULL);
1773 memset(targ, 0, sizeof(*targ));
1774 targ->channel = channel;
1775 targ->target = target;
1776 targ->ahc = ahc;
1777 ahc->platform_data->targets[target_offset] = targ;
1778 return (targ);
1779 }
1780
1781 static void
1782 ahc_linux_free_target(struct ahc_softc *ahc, struct ahc_linux_target *targ)
1783 {
1784 struct ahc_devinfo devinfo;
1785 struct ahc_initiator_tinfo *tinfo;
1786 struct ahc_tmode_tstate *tstate;
1787 u_int our_id;
1788 u_int target_offset;
1789 char channel;
1790
1791 /*
1792 * Force a negotiation to async/narrow on any
1793 * future command to this device unless a bus
1794 * reset occurs between now and that command.
1795 */
1796 channel = 'A' + targ->channel;
1797 our_id = ahc->our_id;
1798 target_offset = targ->target;
1799 if (targ->channel != 0) {
1800 target_offset += 8;
1801 our_id = ahc->our_id_b;
1802 }
1803 tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
1804 targ->target, &tstate);
1805 ahc_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD,
1806 channel, ROLE_INITIATOR);
1807 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
1808 AHC_TRANS_GOAL, /*paused*/FALSE);
1809 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1810 AHC_TRANS_GOAL, /*paused*/FALSE);
1811 ahc_update_neg_request(ahc, &devinfo, tstate, tinfo, AHC_NEG_ALWAYS);
1812 ahc->platform_data->targets[target_offset] = NULL;
1813 free(targ, M_DEVBUF);
1814 }
1815
1816 static struct ahc_linux_device*
1817 ahc_linux_alloc_device(struct ahc_softc *ahc,
1818 struct ahc_linux_target *targ, u_int lun)
1819 {
1820 struct ahc_linux_device *dev;
1821
1822 dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT);
1823 if (dev == NULL)
1824 return (NULL);
1825 memset(dev, 0, sizeof(*dev));
1826 dev->lun = lun;
1827 dev->target = targ;
1828
1829 /*
1830 * We start out life using untagged
1831 * transactions of which we allow one.
1832 */
1833 dev->openings = 1;
1834
1835 /*
1836 * Set maxtags to 0. This will be changed if we
1837 * later determine that we are dealing with
1838 * a tagged queuing capable device.
1839 */
1840 dev->maxtags = 0;
1841
1842 targ->refcount++;
1843 targ->devices[lun] = dev;
1844 return (dev);
1845 }
1846
1847 static void
1848 ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev)
1849 {
1850 struct ahc_linux_target *targ;
1851
1852 targ = dev->target;
1853 targ->devices[dev->lun] = NULL;
1854 free(dev, M_DEVBUF);
1855 targ->refcount--;
1856 if (targ->refcount == 0)
1857 ahc_linux_free_target(ahc, targ);
1858 }
1859
1860 void
1861 ahc_send_async(struct ahc_softc *ahc, char channel,
1862 u_int target, u_int lun, ac_code code, void *arg)
1863 {
1864 switch (code) {
1865 case AC_TRANSFER_NEG:
1866 {
1867 char buf[80];
1868 struct ahc_linux_target *targ;
1869 struct info_str info;
1870 struct ahc_initiator_tinfo *tinfo;
1871 struct ahc_tmode_tstate *tstate;
1872 int target_offset;
1873
1874 info.buffer = buf;
1875 info.length = sizeof(buf);
1876 info.offset = 0;
1877 info.pos = 0;
1878 tinfo = ahc_fetch_transinfo(ahc, channel,
1879 channel == 'A' ? ahc->our_id
1880 : ahc->our_id_b,
1881 target, &tstate);
1882
1883 /*
1884 * Don't bother reporting results while
1885 * negotiations are still pending.
1886 */
1887 if (tinfo->curr.period != tinfo->goal.period
1888 || tinfo->curr.width != tinfo->goal.width
1889 || tinfo->curr.offset != tinfo->goal.offset
1890 || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
1891 if (bootverbose == 0)
1892 break;
1893
1894 /*
1895 * Don't bother reporting results that
1896 * are identical to those last reported.
1897 */
1898 target_offset = target;
1899 if (channel == 'B')
1900 target_offset += 8;
1901 targ = ahc->platform_data->targets[target_offset];
1902 if (targ == NULL)
1903 break;
1904 if (tinfo->curr.period == targ->last_tinfo.period
1905 && tinfo->curr.width == targ->last_tinfo.width
1906 && tinfo->curr.offset == targ->last_tinfo.offset
1907 && tinfo->curr.ppr_options == targ->last_tinfo.ppr_options)
1908 if (bootverbose == 0)
1909 break;
1910
1911 targ->last_tinfo.period = tinfo->curr.period;
1912 targ->last_tinfo.width = tinfo->curr.width;
1913 targ->last_tinfo.offset = tinfo->curr.offset;
1914 targ->last_tinfo.ppr_options = tinfo->curr.ppr_options;
1915
1916 printf("(%s:%c:", ahc_name(ahc), channel);
1917 if (target == CAM_TARGET_WILDCARD)
1918 printf("*): ");
1919 else
1920 printf("%d): ", target);
1921 ahc_format_transinfo(&info, &tinfo->curr);
1922 if (info.pos < info.length)
1923 *info.buffer = '\0';
1924 else
1925 buf[info.length - 1] = '\0';
1926 printf("%s", buf);
1927 break;
1928 }
1929 case AC_SENT_BDR:
1930 {
1931 WARN_ON(lun != CAM_LUN_WILDCARD);
1932 scsi_report_device_reset(ahc->platform_data->host,
1933 channel - 'A', target);
1934 break;
1935 }
1936 case AC_BUS_RESET:
1937 if (ahc->platform_data->host != NULL) {
1938 scsi_report_bus_reset(ahc->platform_data->host,
1939 channel - 'A');
1940 }
1941 break;
1942 default:
1943 panic("ahc_send_async: Unexpected async event");
1944 }
1945 }
1946
1947 /*
1948 * Calls the higher level scsi done function and frees the scb.
1949 */
1950 void
1951 ahc_done(struct ahc_softc *ahc, struct scb *scb)
1952 {
1953 struct scsi_cmnd *cmd;
1954 struct ahc_linux_device *dev;
1955
1956 LIST_REMOVE(scb, pending_links);
1957 if ((scb->flags & SCB_UNTAGGEDQ) != 0) {
1958 struct scb_tailq *untagged_q;
1959 int target_offset;
1960
1961 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
1962 untagged_q = &(ahc->untagged_queues[target_offset]);
1963 TAILQ_REMOVE(untagged_q, scb, links.tqe);
1964 BUG_ON(!TAILQ_EMPTY(untagged_q));
1965 }
1966
1967 if ((scb->flags & SCB_ACTIVE) == 0) {
1968 printf("SCB %d done'd twice\n", scb->hscb->tag);
1969 ahc_dump_card_state(ahc);
1970 panic("Stopping for safety");
1971 }
1972 cmd = scb->io_ctx;
1973 dev = scb->platform_data->dev;
1974 dev->active--;
1975 dev->openings++;
1976 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
1977 cmd->result &= ~(CAM_DEV_QFRZN << 16);
1978 dev->qfrozen--;
1979 }
1980 ahc_linux_unmap_scb(ahc, scb);
1981
1982 /*
1983 * Guard against stale sense data.
1984 * The Linux mid-layer assumes that sense
1985 * was retrieved anytime the first byte of
1986 * the sense buffer looks "sane".
1987 */
1988 cmd->sense_buffer[0] = 0;
1989 if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) {
1990 uint32_t amount_xferred;
1991
1992 amount_xferred =
1993 ahc_get_transfer_length(scb) - ahc_get_residual(scb);
1994 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
1995 #ifdef AHC_DEBUG
1996 if ((ahc_debug & AHC_SHOW_MISC) != 0) {
1997 ahc_print_path(ahc, scb);
1998 printf("Set CAM_UNCOR_PARITY\n");
1999 }
2000 #endif
2001 ahc_set_transaction_status(scb, CAM_UNCOR_PARITY);
2002 #ifdef AHC_REPORT_UNDERFLOWS
2003 /*
2004 * This code is disabled by default as some
2005 * clients of the SCSI system do not properly
2006 * initialize the underflow parameter. This
2007 * results in spurious termination of commands
2008 * that complete as expected (e.g. underflow is
2009 * allowed as command can return variable amounts
2010 * of data.
2011 */
2012 } else if (amount_xferred < scb->io_ctx->underflow) {
2013 u_int i;
2014
2015 ahc_print_path(ahc, scb);
2016 printf("CDB:");
2017 for (i = 0; i < scb->io_ctx->cmd_len; i++)
2018 printf(" 0x%x", scb->io_ctx->cmnd[i]);
2019 printf("\n");
2020 ahc_print_path(ahc, scb);
2021 printf("Saw underflow (%ld of %ld bytes). "
2022 "Treated as error\n",
2023 ahc_get_residual(scb),
2024 ahc_get_transfer_length(scb));
2025 ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2026 #endif
2027 } else {
2028 ahc_set_transaction_status(scb, CAM_REQ_CMP);
2029 }
2030 } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
2031 ahc_linux_handle_scsi_status(ahc, dev, scb);
2032 }
2033
2034 if (dev->openings == 1
2035 && ahc_get_transaction_status(scb) == CAM_REQ_CMP
2036 && ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL)
2037 dev->tag_success_count++;
2038 /*
2039 * Some devices deal with temporary internal resource
2040 * shortages by returning queue full. When the queue
2041 * full occurrs, we throttle back. Slowly try to get
2042 * back to our previous queue depth.
2043 */
2044 if ((dev->openings + dev->active) < dev->maxtags
2045 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) {
2046 dev->tag_success_count = 0;
2047 dev->openings++;
2048 }
2049
2050 if (dev->active == 0)
2051 dev->commands_since_idle_or_otag = 0;
2052
2053 if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
2054 printf("Recovery SCB completes\n");
2055 if (ahc_get_transaction_status(scb) == CAM_BDR_SENT
2056 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED)
2057 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);
2058 if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) {
2059 ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE;
2060 up(&ahc->platform_data->eh_sem);
2061 }
2062 }
2063
2064 ahc_free_scb(ahc, scb);
2065 ahc_linux_queue_cmd_complete(ahc, cmd);
2066 }
2067
2068 static void
2069 ahc_linux_handle_scsi_status(struct ahc_softc *ahc,
2070 struct ahc_linux_device *dev, struct scb *scb)
2071 {
2072 struct ahc_devinfo devinfo;
2073
2074 ahc_compile_devinfo(&devinfo,
2075 ahc->our_id,
2076 dev->target->target, dev->lun,
2077 dev->target->channel == 0 ? 'A' : 'B',
2078 ROLE_INITIATOR);
2079
2080 /*
2081 * We don't currently trust the mid-layer to
2082 * properly deal with queue full or busy. So,
2083 * when one occurs, we tell the mid-layer to
2084 * unconditionally requeue the command to us
2085 * so that we can retry it ourselves. We also
2086 * implement our own throttling mechanism so
2087 * we don't clobber the device with too many
2088 * commands.
2089 */
2090 switch (ahc_get_scsi_status(scb)) {
2091 default:
2092 break;
2093 case SCSI_STATUS_CHECK_COND:
2094 case SCSI_STATUS_CMD_TERMINATED:
2095 {
2096 struct scsi_cmnd *cmd;
2097
2098 /*
2099 * Copy sense information to the OS's cmd
2100 * structure if it is available.
2101 */
2102 cmd = scb->io_ctx;
2103 if (scb->flags & SCB_SENSE) {
2104 u_int sense_size;
2105
2106 sense_size = MIN(sizeof(struct scsi_sense_data)
2107 - ahc_get_sense_residual(scb),
2108 sizeof(cmd->sense_buffer));
2109 memcpy(cmd->sense_buffer,
2110 ahc_get_sense_buf(ahc, scb), sense_size);
2111 if (sense_size < sizeof(cmd->sense_buffer))
2112 memset(&cmd->sense_buffer[sense_size], 0,
2113 sizeof(cmd->sense_buffer) - sense_size);
2114 cmd->result |= (DRIVER_SENSE << 24);
2115 #ifdef AHC_DEBUG
2116 if (ahc_debug & AHC_SHOW_SENSE) {
2117 int i;
2118
2119 printf("Copied %d bytes of sense data:",
2120 sense_size);
2121 for (i = 0; i < sense_size; i++) {
2122 if ((i & 0xF) == 0)
2123 printf("\n");
2124 printf("0x%x ", cmd->sense_buffer[i]);
2125 }
2126 printf("\n");
2127 }
2128 #endif
2129 }
2130 break;
2131 }
2132 case SCSI_STATUS_QUEUE_FULL:
2133 {
2134 /*
2135 * By the time the core driver has returned this
2136 * command, all other commands that were queued
2137 * to us but not the device have been returned.
2138 * This ensures that dev->active is equal to
2139 * the number of commands actually queued to
2140 * the device.
2141 */
2142 dev->tag_success_count = 0;
2143 if (dev->active != 0) {
2144 /*
2145 * Drop our opening count to the number
2146 * of commands currently outstanding.
2147 */
2148 dev->openings = 0;
2149 /*
2150 ahc_print_path(ahc, scb);
2151 printf("Dropping tag count to %d\n", dev->active);
2152 */
2153 if (dev->active == dev->tags_on_last_queuefull) {
2154
2155 dev->last_queuefull_same_count++;
2156 /*
2157 * If we repeatedly see a queue full
2158 * at the same queue depth, this
2159 * device has a fixed number of tag
2160 * slots. Lock in this tag depth
2161 * so we stop seeing queue fulls from
2162 * this device.
2163 */
2164 if (dev->last_queuefull_same_count
2165 == AHC_LOCK_TAGS_COUNT) {
2166 dev->maxtags = dev->active;
2167 ahc_print_path(ahc, scb);
2168 printf("Locking max tag count at %d\n",
2169 dev->active);
2170 }
2171 } else {
2172 dev->tags_on_last_queuefull = dev->active;
2173 dev->last_queuefull_same_count = 0;
2174 }
2175 ahc_set_transaction_status(scb, CAM_REQUEUE_REQ);
2176 ahc_set_scsi_status(scb, SCSI_STATUS_OK);
2177 ahc_platform_set_tags(ahc, &devinfo,
2178 (dev->flags & AHC_DEV_Q_BASIC)
2179 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
2180 break;
2181 }
2182 /*
2183 * Drop down to a single opening, and treat this
2184 * as if the target returned BUSY SCSI status.
2185 */
2186 dev->openings = 1;
2187 ahc_set_scsi_status(scb, SCSI_STATUS_BUSY);
2188 ahc_platform_set_tags(ahc, &devinfo,
2189 (dev->flags & AHC_DEV_Q_BASIC)
2190 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
2191 break;
2192 }
2193 }
2194 }
2195
2196 static void
2197 ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, struct scsi_cmnd *cmd)
2198 {
2199 /*
2200 * Map CAM error codes into Linux Error codes. We
2201 * avoid the conversion so that the DV code has the
2202 * full error information available when making
2203 * state change decisions.
2204 */
2205 {
2206 u_int new_status;
2207
2208 switch (ahc_cmd_get_transaction_status(cmd)) {
2209 case CAM_REQ_INPROG:
2210 case CAM_REQ_CMP:
2211 case CAM_SCSI_STATUS_ERROR:
2212 new_status = DID_OK;
2213 break;
2214 case CAM_REQ_ABORTED:
2215 new_status = DID_ABORT;
2216 break;
2217 case CAM_BUSY:
2218 new_status = DID_BUS_BUSY;
2219 break;
2220 case CAM_REQ_INVALID:
2221 case CAM_PATH_INVALID:
2222 new_status = DID_BAD_TARGET;
2223 break;
2224 case CAM_SEL_TIMEOUT:
2225 new_status = DID_NO_CONNECT;
2226 break;
2227 case CAM_SCSI_BUS_RESET:
2228 case CAM_BDR_SENT:
2229 new_status = DID_RESET;
2230 break;
2231 case CAM_UNCOR_PARITY:
2232 new_status = DID_PARITY;
2233 break;
2234 case CAM_CMD_TIMEOUT:
2235 new_status = DID_TIME_OUT;
2236 break;
2237 case CAM_UA_ABORT:
2238 case CAM_REQ_CMP_ERR:
2239 case CAM_AUTOSENSE_FAIL:
2240 case CAM_NO_HBA:
2241 case CAM_DATA_RUN_ERR:
2242 case CAM_UNEXP_BUSFREE:
2243 case CAM_SEQUENCE_FAIL:
2244 case CAM_CCB_LEN_ERR:
2245 case CAM_PROVIDE_FAIL:
2246 case CAM_REQ_TERMIO:
2247 case CAM_UNREC_HBA_ERROR:
2248 case CAM_REQ_TOO_BIG:
2249 new_status = DID_ERROR;
2250 break;
2251 case CAM_REQUEUE_REQ:
2252 new_status = DID_REQUEUE;
2253 break;
2254 default:
2255 /* We should never get here */
2256 new_status = DID_ERROR;
2257 break;
2258 }
2259
2260 ahc_cmd_set_transaction_status(cmd, new_status);
2261 }
2262
2263 cmd->scsi_done(cmd);
2264 }
2265
2266 static void
2267 ahc_linux_sem_timeout(u_long arg)
2268 {
2269 struct ahc_softc *ahc;
2270 u_long s;
2271
2272 ahc = (struct ahc_softc *)arg;
2273
2274 ahc_lock(ahc, &s);
2275 if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) {
2276 ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE;
2277 up(&ahc->platform_data->eh_sem);
2278 }
2279 ahc_unlock(ahc, &s);
2280 }
2281
2282 static void
2283 ahc_linux_freeze_simq(struct ahc_softc *ahc)
2284 {
2285 ahc->platform_data->qfrozen++;
2286 if (ahc->platform_data->qfrozen == 1) {
2287 scsi_block_requests(ahc->platform_data->host);
2288
2289 /* XXX What about Twin channels? */
2290 ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
2291 CAM_LUN_WILDCARD, SCB_LIST_NULL,
2292 ROLE_INITIATOR, CAM_REQUEUE_REQ);
2293 }
2294 }
2295
2296 static void
2297 ahc_linux_release_simq(u_long arg)
2298 {
2299 struct ahc_softc *ahc;
2300 u_long s;
2301 int unblock_reqs;
2302
2303 ahc = (struct ahc_softc *)arg;
2304
2305 unblock_reqs = 0;
2306 ahc_lock(ahc, &s);
2307 if (ahc->platform_data->qfrozen > 0)
2308 ahc->platform_data->qfrozen--;
2309 if (ahc->platform_data->qfrozen == 0)
2310 unblock_reqs = 1;
2311 ahc_unlock(ahc, &s);
2312 /*
2313 * There is still a race here. The mid-layer
2314 * should keep its own freeze count and use
2315 * a bottom half handler to run the queues
2316 * so we can unblock with our own lock held.
2317 */
2318 if (unblock_reqs)
2319 scsi_unblock_requests(ahc->platform_data->host);
2320 }
2321
2322 static int
2323 ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag)
2324 {
2325 struct ahc_softc *ahc;
2326 struct ahc_linux_device *dev;
2327 struct scb *pending_scb;
2328 u_int saved_scbptr;
2329 u_int active_scb_index;
2330 u_int last_phase;
2331 u_int saved_scsiid;
2332 u_int cdb_byte;
2333 int retval;
2334 int was_paused;
2335 int paused;
2336 int wait;
2337 int disconnected;
2338
2339 pending_scb = NULL;
2340 paused = FALSE;
2341 wait = FALSE;
2342 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
2343
2344 printf("%s:%d:%d:%d: Attempting to queue a%s message\n",
2345 ahc_name(ahc), cmd->device->channel,
2346 cmd->device->id, cmd->device->lun,
2347 flag == SCB_ABORT ? "n ABORT" : " TARGET RESET");
2348
2349 printf("CDB:");
2350 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
2351 printf(" 0x%x", cmd->cmnd[cdb_byte]);
2352 printf("\n");
2353
2354 /*
2355 * First determine if we currently own this command.
2356 * Start by searching the device queue. If not found
2357 * there, check the pending_scb list. If not found
2358 * at all, and the system wanted us to just abort the
2359 * command, return success.
2360 */
2361 dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id,
2362 cmd->device->lun);
2363
2364 if (dev == NULL) {
2365 /*
2366 * No target device for this command exists,
2367 * so we must not still own the command.
2368 */
2369 printf("%s:%d:%d:%d: Is not an active device\n",
2370 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2371 cmd->device->lun);
2372 retval = SUCCESS;
2373 goto no_cmd;
2374 }
2375
2376 if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0
2377 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id,
2378 cmd->device->channel + 'A',
2379 cmd->device->lun,
2380 CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) {
2381 printf("%s:%d:%d:%d: Command found on untagged queue\n",
2382 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2383 cmd->device->lun);
2384 retval = SUCCESS;
2385 goto done;
2386 }
2387
2388 /*
2389 * See if we can find a matching cmd in the pending list.
2390 */
2391 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
2392 if (pending_scb->io_ctx == cmd)
2393 break;
2394 }
2395
2396 if (pending_scb == NULL && flag == SCB_DEVICE_RESET) {
2397
2398 /* Any SCB for this device will do for a target reset */
2399 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
2400 if (ahc_match_scb(ahc, pending_scb, cmd->device->id,
2401 cmd->device->channel + 'A',
2402 CAM_LUN_WILDCARD,
2403 SCB_LIST_NULL, ROLE_INITIATOR) == 0)
2404 break;
2405 }
2406 }
2407
2408 if (pending_scb == NULL) {
2409 printf("%s:%d:%d:%d: Command not found\n",
2410 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2411 cmd->device->lun);
2412 goto no_cmd;
2413 }
2414
2415 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
2416 /*
2417 * We can't queue two recovery actions using the same SCB
2418 */
2419 retval = FAILED;
2420 goto done;
2421 }
2422
2423 /*
2424 * Ensure that the card doesn't do anything
2425 * behind our back and that we didn't "just" miss
2426 * an interrupt that would affect this cmd.
2427 */
2428 was_paused = ahc_is_paused(ahc);
2429 ahc_pause_and_flushwork(ahc);
2430 paused = TRUE;
2431
2432 if ((pending_scb->flags & SCB_ACTIVE) == 0) {
2433 printf("%s:%d:%d:%d: Command already completed\n",
2434 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2435 cmd->device->lun);
2436 goto no_cmd;
2437 }
2438
2439 printf("%s: At time of recovery, card was %spaused\n",
2440 ahc_name(ahc), was_paused ? "" : "not ");
2441 ahc_dump_card_state(ahc);
2442
2443 disconnected = TRUE;
2444 if (flag == SCB_ABORT) {
2445 if (ahc_search_qinfifo(ahc, cmd->device->id,
2446 cmd->device->channel + 'A',
2447 cmd->device->lun,
2448 pending_scb->hscb->tag,
2449 ROLE_INITIATOR, CAM_REQ_ABORTED,
2450 SEARCH_COMPLETE) > 0) {
2451 printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
2452 ahc_name(ahc), cmd->device->channel,
2453 cmd->device->id, cmd->device->lun);
2454 retval = SUCCESS;
2455 goto done;
2456 }
2457 } else if (ahc_search_qinfifo(ahc, cmd->device->id,
2458 cmd->device->channel + 'A',
2459 cmd->device->lun, pending_scb->hscb->tag,
2460 ROLE_INITIATOR, /*status*/0,
2461 SEARCH_COUNT) > 0) {
2462 disconnected = FALSE;
2463 }
2464
2465 if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
2466 struct scb *bus_scb;
2467
2468 bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG));
2469 if (bus_scb == pending_scb)
2470 disconnected = FALSE;
2471 else if (flag != SCB_ABORT
2472 && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid
2473 && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb))
2474 disconnected = FALSE;
2475 }
2476
2477 /*
2478 * At this point, pending_scb is the scb associated with the
2479 * passed in command. That command is currently active on the
2480 * bus, is in the disconnected state, or we're hoping to find
2481 * a command for the same target active on the bus to abuse to
2482 * send a BDR. Queue the appropriate message based on which of
2483 * these states we are in.
2484 */
2485 last_phase = ahc_inb(ahc, LASTPHASE);
2486 saved_scbptr = ahc_inb(ahc, SCBPTR);
2487 active_scb_index = ahc_inb(ahc, SCB_TAG);
2488 saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
2489 if (last_phase != P_BUSFREE
2490 && (pending_scb->hscb->tag == active_scb_index
2491 || (flag == SCB_DEVICE_RESET
2492 && SCSIID_TARGET(ahc, saved_scsiid) == cmd->device->id))) {
2493
2494 /*
2495 * We're active on the bus, so assert ATN
2496 * and hope that the target responds.
2497 */
2498 pending_scb = ahc_lookup_scb(ahc, active_scb_index);
2499 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
2500 ahc_outb(ahc, MSG_OUT, HOST_MSG);
2501 ahc_outb(ahc, SCSISIGO, last_phase|ATNO);
2502 printf("%s:%d:%d:%d: Device is active, asserting ATN\n",
2503 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2504 cmd->device->lun);
2505 wait = TRUE;
2506 } else if (disconnected) {
2507
2508 /*
2509 * Actually re-queue this SCB in an attempt
2510 * to select the device before it reconnects.
2511 * In either case (selection or reselection),
2512 * we will now issue the approprate message
2513 * to the timed-out device.
2514 *
2515 * Set the MK_MESSAGE control bit indicating
2516 * that we desire to send a message. We
2517 * also set the disconnected flag since
2518 * in the paging case there is no guarantee
2519 * that our SCB control byte matches the
2520 * version on the card. We don't want the
2521 * sequencer to abort the command thinking
2522 * an unsolicited reselection occurred.
2523 */
2524 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
2525 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
2526
2527 /*
2528 * Remove any cached copy of this SCB in the
2529 * disconnected list in preparation for the
2530 * queuing of our abort SCB. We use the
2531 * same element in the SCB, SCB_NEXT, for
2532 * both the qinfifo and the disconnected list.
2533 */
2534 ahc_search_disc_list(ahc, cmd->device->id,
2535 cmd->device->channel + 'A',
2536 cmd->device->lun, pending_scb->hscb->tag,
2537 /*stop_on_first*/TRUE,
2538 /*remove*/TRUE,
2539 /*save_state*/FALSE);
2540
2541 /*
2542 * In the non-paging case, the sequencer will
2543 * never re-reference the in-core SCB.
2544 * To make sure we are notified during
2545 * reslection, set the MK_MESSAGE flag in
2546 * the card's copy of the SCB.
2547 */
2548 if ((ahc->flags & AHC_PAGESCBS) == 0) {
2549 ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag);
2550 ahc_outb(ahc, SCB_CONTROL,
2551 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE);
2552 }
2553
2554 /*
2555 * Clear out any entries in the QINFIFO first
2556 * so we are the next SCB for this target
2557 * to run.
2558 */
2559 ahc_search_qinfifo(ahc, cmd->device->id,
2560 cmd->device->channel + 'A',
2561 cmd->device->lun, SCB_LIST_NULL,
2562 ROLE_INITIATOR, CAM_REQUEUE_REQ,
2563 SEARCH_COMPLETE);
2564 ahc_qinfifo_requeue_tail(ahc, pending_scb);
2565 ahc_outb(ahc, SCBPTR, saved_scbptr);
2566 ahc_print_path(ahc, pending_scb);
2567 printf("Device is disconnected, re-queuing SCB\n");
2568 wait = TRUE;
2569 } else {
2570 printf("%s:%d:%d:%d: Unable to deliver message\n",
2571 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2572 cmd->device->lun);
2573 retval = FAILED;
2574 goto done;
2575 }
2576
2577 no_cmd:
2578 /*
2579 * Our assumption is that if we don't have the command, no
2580 * recovery action was required, so we return success. Again,
2581 * the semantics of the mid-layer recovery engine are not
2582 * well defined, so this may change in time.
2583 */
2584 retval = SUCCESS;
2585 done:
2586 if (paused)
2587 ahc_unpause(ahc);
2588 if (wait) {
2589 struct timer_list timer;
2590 int ret;
2591
2592 ahc->platform_data->flags |= AHC_UP_EH_SEMAPHORE;
2593 spin_unlock_irq(&ahc->platform_data->spin_lock);
2594 init_timer(&timer);
2595 timer.data = (u_long)ahc;
2596 timer.expires = jiffies + (5 * HZ);
2597 timer.function = ahc_linux_sem_timeout;
2598 add_timer(&timer);
2599 printf("Recovery code sleeping\n");
2600 down(&ahc->platform_data->eh_sem);
2601 printf("Recovery code awake\n");
2602 ret = del_timer_sync(&timer);
2603 if (ret == 0) {
2604 printf("Timer Expired\n");
2605 retval = FAILED;
2606 }
2607 spin_lock_irq(&ahc->platform_data->spin_lock);
2608 }
2609 return (retval);
2610 }
2611
2612 void
2613 ahc_platform_dump_card_state(struct ahc_softc *ahc)
2614 {
2615 }
2616
2617 static void ahc_linux_exit(void);
2618
2619 static void ahc_linux_get_width(struct scsi_target *starget)
2620 {
2621 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2622 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2623 struct ahc_tmode_tstate *tstate;
2624 struct ahc_initiator_tinfo *tinfo
2625 = ahc_fetch_transinfo(ahc,
2626 starget->channel + 'A',
2627 shost->this_id, starget->id, &tstate);
2628 spi_width(starget) = tinfo->curr.width;
2629 }
2630
2631 static void ahc_linux_set_width(struct scsi_target *starget, int width)
2632 {
2633 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2634 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2635 struct ahc_devinfo devinfo;
2636 unsigned long flags;
2637
2638 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2639 starget->channel + 'A', ROLE_INITIATOR);
2640 ahc_lock(ahc, &flags);
2641 ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE);
2642 ahc_unlock(ahc, &flags);
2643 }
2644
2645 static void ahc_linux_get_period(struct scsi_target *starget)
2646 {
2647 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2648 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2649 struct ahc_tmode_tstate *tstate;
2650 struct ahc_initiator_tinfo *tinfo
2651 = ahc_fetch_transinfo(ahc,
2652 starget->channel + 'A',
2653 shost->this_id, starget->id, &tstate);
2654 spi_period(starget) = tinfo->curr.period;
2655 }
2656
2657 static void ahc_linux_set_period(struct scsi_target *starget, int period)
2658 {
2659 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2660 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2661 struct ahc_tmode_tstate *tstate;
2662 struct ahc_initiator_tinfo *tinfo
2663 = ahc_fetch_transinfo(ahc,
2664 starget->channel + 'A',
2665 shost->this_id, starget->id, &tstate);
2666 struct ahc_devinfo devinfo;
2667 unsigned int ppr_options = tinfo->curr.ppr_options;
2668 unsigned long flags;
2669 unsigned long offset = tinfo->curr.offset;
2670 struct ahc_syncrate *syncrate;
2671
2672 if (offset == 0)
2673 offset = MAX_OFFSET;
2674
2675 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2676 starget->channel + 'A', ROLE_INITIATOR);
2677
2678 /* all PPR requests apart from QAS require wide transfers */
2679 if (ppr_options & ~MSG_EXT_PPR_QAS_REQ) {
2680 ahc_linux_get_width(starget);
2681 if (spi_width(starget) == 0)
2682 ppr_options &= MSG_EXT_PPR_QAS_REQ;
2683 }
2684
2685 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
2686 ahc_lock(ahc, &flags);
2687 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
2688 ppr_options, AHC_TRANS_GOAL, FALSE);
2689 ahc_unlock(ahc, &flags);
2690 }
2691
2692 static void ahc_linux_get_offset(struct scsi_target *starget)
2693 {
2694 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2695 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2696 struct ahc_tmode_tstate *tstate;
2697 struct ahc_initiator_tinfo *tinfo
2698 = ahc_fetch_transinfo(ahc,
2699 starget->channel + 'A',
2700 shost->this_id, starget->id, &tstate);
2701 spi_offset(starget) = tinfo->curr.offset;
2702 }
2703
2704 static void ahc_linux_set_offset(struct scsi_target *starget, int offset)
2705 {
2706 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2707 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2708 struct ahc_tmode_tstate *tstate;
2709 struct ahc_initiator_tinfo *tinfo
2710 = ahc_fetch_transinfo(ahc,
2711 starget->channel + 'A',
2712 shost->this_id, starget->id, &tstate);
2713 struct ahc_devinfo devinfo;
2714 unsigned int ppr_options = 0;
2715 unsigned int period = 0;
2716 unsigned long flags;
2717 struct ahc_syncrate *syncrate = NULL;
2718
2719 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2720 starget->channel + 'A', ROLE_INITIATOR);
2721 if (offset != 0) {
2722 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
2723 period = tinfo->curr.period;
2724 ppr_options = tinfo->curr.ppr_options;
2725 }
2726 ahc_lock(ahc, &flags);
2727 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
2728 ppr_options, AHC_TRANS_GOAL, FALSE);
2729 ahc_unlock(ahc, &flags);
2730 }
2731
2732 static void ahc_linux_get_dt(struct scsi_target *starget)
2733 {
2734 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2735 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2736 struct ahc_tmode_tstate *tstate;
2737 struct ahc_initiator_tinfo *tinfo
2738 = ahc_fetch_transinfo(ahc,
2739 starget->channel + 'A',
2740 shost->this_id, starget->id, &tstate);
2741 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ;
2742 }
2743
2744 static void ahc_linux_set_dt(struct scsi_target *starget, int dt)
2745 {
2746 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2747 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2748 struct ahc_tmode_tstate *tstate;
2749 struct ahc_initiator_tinfo *tinfo
2750 = ahc_fetch_transinfo(ahc,
2751 starget->channel + 'A',
2752 shost->this_id, starget->id, &tstate);
2753 struct ahc_devinfo devinfo;
2754 unsigned int ppr_options = tinfo->curr.ppr_options
2755 & ~MSG_EXT_PPR_DT_REQ;
2756 unsigned int period = tinfo->curr.period;
2757 unsigned long flags;
2758 struct ahc_syncrate *syncrate;
2759
2760 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2761 starget->channel + 'A', ROLE_INITIATOR);
2762 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,AHC_SYNCRATE_DT);
2763 ahc_lock(ahc, &flags);
2764 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->curr.offset,
2765 ppr_options, AHC_TRANS_GOAL, FALSE);
2766 ahc_unlock(ahc, &flags);
2767 }
2768
2769 static void ahc_linux_get_qas(struct scsi_target *starget)
2770 {
2771 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2772 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2773 struct ahc_tmode_tstate *tstate;
2774 struct ahc_initiator_tinfo *tinfo
2775 = ahc_fetch_transinfo(ahc,
2776 starget->channel + 'A',
2777 shost->this_id, starget->id, &tstate);
2778 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ;
2779 }
2780
2781 static void ahc_linux_set_qas(struct scsi_target *starget, int qas)
2782 {
2783 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2784 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2785 struct ahc_tmode_tstate *tstate;
2786 struct ahc_initiator_tinfo *tinfo
2787 = ahc_fetch_transinfo(ahc,
2788 starget->channel + 'A',
2789 shost->this_id, starget->id, &tstate);
2790 struct ahc_devinfo devinfo;
2791 unsigned int ppr_options = tinfo->curr.ppr_options
2792 & ~MSG_EXT_PPR_QAS_REQ;
2793 unsigned int period = tinfo->curr.period;
2794 unsigned long flags;
2795 struct ahc_syncrate *syncrate;
2796
2797 if (qas)
2798 ppr_options |= MSG_EXT_PPR_QAS_REQ;
2799
2800 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2801 starget->channel + 'A', ROLE_INITIATOR);
2802 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
2803 ahc_lock(ahc, &flags);
2804 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->curr.offset,
2805 ppr_options, AHC_TRANS_GOAL, FALSE);
2806 ahc_unlock(ahc, &flags);
2807 }
2808
2809 static void ahc_linux_get_iu(struct scsi_target *starget)
2810 {
2811 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2812 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2813 struct ahc_tmode_tstate *tstate;
2814 struct ahc_initiator_tinfo *tinfo
2815 = ahc_fetch_transinfo(ahc,
2816 starget->channel + 'A',
2817 shost->this_id, starget->id, &tstate);
2818 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ;
2819 }
2820
2821 static void ahc_linux_set_iu(struct scsi_target *starget, int iu)
2822 {
2823 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2824 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2825 struct ahc_tmode_tstate *tstate;
2826 struct ahc_initiator_tinfo *tinfo
2827 = ahc_fetch_transinfo(ahc,
2828 starget->channel + 'A',
2829 shost->this_id, starget->id, &tstate);
2830 struct ahc_devinfo devinfo;
2831 unsigned int ppr_options = tinfo->curr.ppr_options
2832 & ~MSG_EXT_PPR_IU_REQ;
2833 unsigned int period = tinfo->curr.period;
2834 unsigned long flags;
2835 struct ahc_syncrate *syncrate;
2836
2837 if (iu)
2838 ppr_options |= MSG_EXT_PPR_IU_REQ;
2839
2840 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2841 starget->channel + 'A', ROLE_INITIATOR);
2842 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
2843 ahc_lock(ahc, &flags);
2844 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->curr.offset,
2845 ppr_options, AHC_TRANS_GOAL, FALSE);
2846 ahc_unlock(ahc, &flags);
2847 }
2848
2849 static struct spi_function_template ahc_linux_transport_functions = {
2850 .get_offset = ahc_linux_get_offset,
2851 .set_offset = ahc_linux_set_offset,
2852 .show_offset = 1,
2853 .get_period = ahc_linux_get_period,
2854 .set_period = ahc_linux_set_period,
2855 .show_period = 1,
2856 .get_width = ahc_linux_get_width,
2857 .set_width = ahc_linux_set_width,
2858 .show_width = 1,
2859 .get_dt = ahc_linux_get_dt,
2860 .set_dt = ahc_linux_set_dt,
2861 .show_dt = 1,
2862 .get_iu = ahc_linux_get_iu,
2863 .set_iu = ahc_linux_set_iu,
2864 .show_iu = 1,
2865 .get_qas = ahc_linux_get_qas,
2866 .set_qas = ahc_linux_set_qas,
2867 .show_qas = 1,
2868 };
2869
2870
2871
2872 static int __init
2873 ahc_linux_init(void)
2874 {
2875 ahc_linux_transport_template = spi_attach_transport(&ahc_linux_transport_functions);
2876 if (!ahc_linux_transport_template)
2877 return -ENODEV;
2878 if (ahc_linux_detect(&aic7xxx_driver_template))
2879 return 0;
2880 spi_release_transport(ahc_linux_transport_template);
2881 ahc_linux_exit();
2882 return -ENODEV;
2883 }
2884
2885 static void
2886 ahc_linux_exit(void)
2887 {
2888 ahc_linux_pci_exit();
2889 ahc_linux_eisa_exit();
2890 spi_release_transport(ahc_linux_transport_template);
2891 }
2892
2893 module_init(ahc_linux_init);
2894 module_exit(ahc_linux_exit);