a12cd66
[openwrt/staging/blogic.git] /
1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36
37 /** Implementation of client-side PortalRPC interfaces */
38
39 #define DEBUG_SUBSYSTEM S_RPC
40
41 #include "../include/obd_support.h"
42 #include "../include/obd_class.h"
43 #include "../include/lustre_lib.h"
44 #include "../include/lustre_ha.h"
45 #include "../include/lustre_import.h"
46 #include "../include/lustre_req_layout.h"
47
48 #include "ptlrpc_internal.h"
49
50 static int ptlrpc_send_new_req(struct ptlrpc_request *req);
51 static int ptlrpcd_check_work(struct ptlrpc_request *req);
52
53 /**
54 * Initialize passed in client structure \a cl.
55 */
56 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
57 struct ptlrpc_client *cl)
58 {
59 cl->cli_request_portal = req_portal;
60 cl->cli_reply_portal = rep_portal;
61 cl->cli_name = name;
62 }
63 EXPORT_SYMBOL(ptlrpc_init_client);
64
65 /**
66 * Return PortalRPC connection for remote uud \a uuid
67 */
68 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid)
69 {
70 struct ptlrpc_connection *c;
71 lnet_nid_t self;
72 lnet_process_id_t peer;
73 int err;
74
75 /* ptlrpc_uuid_to_peer() initializes its 2nd parameter
76 * before accessing its values. */
77 /* coverity[uninit_use_in_call] */
78 err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
79 if (err != 0) {
80 CNETERR("cannot find peer %s!\n", uuid->uuid);
81 return NULL;
82 }
83
84 c = ptlrpc_connection_get(peer, self, uuid);
85 if (c) {
86 memcpy(c->c_remote_uuid.uuid,
87 uuid->uuid, sizeof(c->c_remote_uuid.uuid));
88 }
89
90 CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
91
92 return c;
93 }
94 EXPORT_SYMBOL(ptlrpc_uuid_to_connection);
95
96 /**
97 * Allocate and initialize new bulk descriptor on the sender.
98 * Returns pointer to the descriptor or NULL on error.
99 */
100 struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned npages, unsigned max_brw,
101 unsigned type, unsigned portal)
102 {
103 struct ptlrpc_bulk_desc *desc;
104 int i;
105
106 desc = kzalloc(offsetof(struct ptlrpc_bulk_desc, bd_iov[npages]),
107 GFP_NOFS);
108 if (!desc)
109 return NULL;
110
111 spin_lock_init(&desc->bd_lock);
112 init_waitqueue_head(&desc->bd_waitq);
113 desc->bd_max_iov = npages;
114 desc->bd_iov_count = 0;
115 desc->bd_portal = portal;
116 desc->bd_type = type;
117 desc->bd_md_count = 0;
118 LASSERT(max_brw > 0);
119 desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
120 /* PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
121 * node. Negotiated ocd_brw_size will always be <= this number. */
122 for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
123 LNetInvalidateHandle(&desc->bd_mds[i]);
124
125 return desc;
126 }
127
128 /**
129 * Prepare bulk descriptor for specified outgoing request \a req that
130 * can fit \a npages * pages. \a type is bulk type. \a portal is where
131 * the bulk to be sent. Used on client-side.
132 * Returns pointer to newly allocated initialized bulk descriptor or NULL on
133 * error.
134 */
135 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
136 unsigned npages, unsigned max_brw,
137 unsigned type, unsigned portal)
138 {
139 struct obd_import *imp = req->rq_import;
140 struct ptlrpc_bulk_desc *desc;
141
142 LASSERT(type == BULK_PUT_SINK || type == BULK_GET_SOURCE);
143 desc = ptlrpc_new_bulk(npages, max_brw, type, portal);
144 if (desc == NULL)
145 return NULL;
146
147 desc->bd_import_generation = req->rq_import_generation;
148 desc->bd_import = class_import_get(imp);
149 desc->bd_req = req;
150
151 desc->bd_cbid.cbid_fn = client_bulk_callback;
152 desc->bd_cbid.cbid_arg = desc;
153
154 /* This makes req own desc, and free it when she frees herself */
155 req->rq_bulk = desc;
156
157 return desc;
158 }
159 EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
160
161 /**
162 * Add a page \a page to the bulk descriptor \a desc.
163 * Data to transfer in the page starts at offset \a pageoffset and
164 * amount of data to transfer from the page is \a len
165 */
166 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
167 struct page *page, int pageoffset, int len, int pin)
168 {
169 LASSERT(desc->bd_iov_count < desc->bd_max_iov);
170 LASSERT(page != NULL);
171 LASSERT(pageoffset >= 0);
172 LASSERT(len > 0);
173 LASSERT(pageoffset + len <= PAGE_CACHE_SIZE);
174
175 desc->bd_nob += len;
176
177 if (pin)
178 page_cache_get(page);
179
180 ptlrpc_add_bulk_page(desc, page, pageoffset, len);
181 }
182 EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
183
184 /**
185 * Uninitialize and free bulk descriptor \a desc.
186 * Works on bulk descriptors both from server and client side.
187 */
188 void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc, int unpin)
189 {
190 int i;
191
192 LASSERT(desc != NULL);
193 LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
194 LASSERT(desc->bd_md_count == 0); /* network hands off */
195 LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
196
197 sptlrpc_enc_pool_put_pages(desc);
198
199 if (desc->bd_export)
200 class_export_put(desc->bd_export);
201 else
202 class_import_put(desc->bd_import);
203
204 if (unpin) {
205 for (i = 0; i < desc->bd_iov_count; i++)
206 page_cache_release(desc->bd_iov[i].kiov_page);
207 }
208
209 kfree(desc);
210 }
211 EXPORT_SYMBOL(__ptlrpc_free_bulk);
212
213 /**
214 * Set server timelimit for this req, i.e. how long are we willing to wait
215 * for reply before timing out this request.
216 */
217 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
218 {
219 __u32 serv_est;
220 int idx;
221 struct imp_at *at;
222
223 LASSERT(req->rq_import);
224
225 if (AT_OFF) {
226 /* non-AT settings */
227 /**
228 * \a imp_server_timeout means this is reverse import and
229 * we send (currently only) ASTs to the client and cannot afford
230 * to wait too long for the reply, otherwise the other client
231 * (because of which we are sending this request) would
232 * timeout waiting for us
233 */
234 req->rq_timeout = req->rq_import->imp_server_timeout ?
235 obd_timeout / 2 : obd_timeout;
236 } else {
237 at = &req->rq_import->imp_at;
238 idx = import_at_get_index(req->rq_import,
239 req->rq_request_portal);
240 serv_est = at_get(&at->iat_service_estimate[idx]);
241 req->rq_timeout = at_est2timeout(serv_est);
242 }
243 /* We could get even fancier here, using history to predict increased
244 loading... */
245
246 /* Let the server know what this RPC timeout is by putting it in the
247 reqmsg*/
248 lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
249 }
250 EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
251
252 /* Adjust max service estimate based on server value */
253 static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
254 unsigned int serv_est)
255 {
256 int idx;
257 unsigned int oldse;
258 struct imp_at *at;
259
260 LASSERT(req->rq_import);
261 at = &req->rq_import->imp_at;
262
263 idx = import_at_get_index(req->rq_import, req->rq_request_portal);
264 /* max service estimates are tracked on the server side,
265 so just keep minimal history here */
266 oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
267 if (oldse != 0)
268 CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d has changed from %d to %d\n",
269 req->rq_import->imp_obd->obd_name, req->rq_request_portal,
270 oldse, at_get(&at->iat_service_estimate[idx]));
271 }
272
273 /* Expected network latency per remote node (secs) */
274 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
275 {
276 return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
277 }
278
279 /* Adjust expected network latency */
280 static void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
281 unsigned int service_time)
282 {
283 unsigned int nl, oldnl;
284 struct imp_at *at;
285 time_t now = get_seconds();
286
287 LASSERT(req->rq_import);
288
289 if (service_time > now - req->rq_sent + 3) {
290 /* bz16408, however, this can also happen if early reply
291 * is lost and client RPC is expired and resent, early reply
292 * or reply of original RPC can still be fit in reply buffer
293 * of resent RPC, now client is measuring time from the
294 * resent time, but server sent back service time of original
295 * RPC.
296 */
297 CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ?
298 D_ADAPTTO : D_WARNING,
299 "Reported service time %u > total measured time "
300 CFS_DURATION_T"\n", service_time,
301 cfs_time_sub(now, req->rq_sent));
302 return;
303 }
304
305 /* Network latency is total time less server processing time */
306 nl = max_t(int, now - req->rq_sent -
307 service_time, 0) + 1; /* st rounding */
308 at = &req->rq_import->imp_at;
309
310 oldnl = at_measured(&at->iat_net_latency, nl);
311 if (oldnl != 0)
312 CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) has changed from %d to %d\n",
313 req->rq_import->imp_obd->obd_name,
314 obd_uuid2str(
315 &req->rq_import->imp_connection->c_remote_uuid),
316 oldnl, at_get(&at->iat_net_latency));
317 }
318
319 static int unpack_reply(struct ptlrpc_request *req)
320 {
321 int rc;
322
323 if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
324 rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
325 if (rc) {
326 DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
327 return -EPROTO;
328 }
329 }
330
331 rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
332 if (rc) {
333 DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
334 return -EPROTO;
335 }
336 return 0;
337 }
338
339 /**
340 * Handle an early reply message, called with the rq_lock held.
341 * If anything goes wrong just ignore it - same as if it never happened
342 */
343 static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
344 {
345 struct ptlrpc_request *early_req;
346 time_t olddl;
347 int rc;
348
349 req->rq_early = 0;
350 spin_unlock(&req->rq_lock);
351
352 rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
353 if (rc) {
354 spin_lock(&req->rq_lock);
355 return rc;
356 }
357
358 rc = unpack_reply(early_req);
359 if (rc == 0) {
360 /* Expecting to increase the service time estimate here */
361 ptlrpc_at_adj_service(req,
362 lustre_msg_get_timeout(early_req->rq_repmsg));
363 ptlrpc_at_adj_net_latency(req,
364 lustre_msg_get_service_time(early_req->rq_repmsg));
365 }
366
367 sptlrpc_cli_finish_early_reply(early_req);
368
369 if (rc != 0) {
370 spin_lock(&req->rq_lock);
371 return rc;
372 }
373
374 /* Adjust the local timeout for this req */
375 ptlrpc_at_set_req_timeout(req);
376
377 spin_lock(&req->rq_lock);
378 olddl = req->rq_deadline;
379 /* server assumes it now has rq_timeout from when it sent the
380 * early reply, so client should give it at least that long. */
381 req->rq_deadline = get_seconds() + req->rq_timeout +
382 ptlrpc_at_get_net_latency(req);
383
384 DEBUG_REQ(D_ADAPTTO, req,
385 "Early reply #%d, new deadline in " CFS_DURATION_T "s (" CFS_DURATION_T "s)",
386 req->rq_early_count,
387 cfs_time_sub(req->rq_deadline, get_seconds()),
388 cfs_time_sub(req->rq_deadline, olddl));
389
390 return rc;
391 }
392
393 static struct kmem_cache *request_cache;
394
395 int ptlrpc_request_cache_init(void)
396 {
397 request_cache = kmem_cache_create("ptlrpc_cache",
398 sizeof(struct ptlrpc_request),
399 0, SLAB_HWCACHE_ALIGN, NULL);
400 return request_cache == NULL ? -ENOMEM : 0;
401 }
402
403 void ptlrpc_request_cache_fini(void)
404 {
405 kmem_cache_destroy(request_cache);
406 }
407
408 struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
409 {
410 struct ptlrpc_request *req;
411
412 OBD_SLAB_ALLOC_PTR_GFP(req, request_cache, flags);
413 return req;
414 }
415
416 void ptlrpc_request_cache_free(struct ptlrpc_request *req)
417 {
418 OBD_SLAB_FREE_PTR(req, request_cache);
419 }
420
421 /**
422 * Wind down request pool \a pool.
423 * Frees all requests from the pool too
424 */
425 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
426 {
427 struct list_head *l, *tmp;
428 struct ptlrpc_request *req;
429
430 LASSERT(pool != NULL);
431
432 spin_lock(&pool->prp_lock);
433 list_for_each_safe(l, tmp, &pool->prp_req_list) {
434 req = list_entry(l, struct ptlrpc_request, rq_list);
435 list_del(&req->rq_list);
436 LASSERT(req->rq_reqbuf);
437 LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
438 kvfree(req->rq_reqbuf);
439 ptlrpc_request_cache_free(req);
440 }
441 spin_unlock(&pool->prp_lock);
442 kfree(pool);
443 }
444 EXPORT_SYMBOL(ptlrpc_free_rq_pool);
445
446 /**
447 * Allocates, initializes and adds \a num_rq requests to the pool \a pool
448 */
449 void ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
450 {
451 int i;
452 int size = 1;
453
454 while (size < pool->prp_rq_size)
455 size <<= 1;
456
457 LASSERTF(list_empty(&pool->prp_req_list) ||
458 size == pool->prp_rq_size,
459 "Trying to change pool size with nonempty pool from %d to %d bytes\n",
460 pool->prp_rq_size, size);
461
462 spin_lock(&pool->prp_lock);
463 pool->prp_rq_size = size;
464 for (i = 0; i < num_rq; i++) {
465 struct ptlrpc_request *req;
466 struct lustre_msg *msg;
467
468 spin_unlock(&pool->prp_lock);
469 req = ptlrpc_request_cache_alloc(GFP_NOFS);
470 if (!req)
471 return;
472 msg = libcfs_kvzalloc(size, GFP_NOFS);
473 if (!msg) {
474 ptlrpc_request_cache_free(req);
475 return;
476 }
477 req->rq_reqbuf = msg;
478 req->rq_reqbuf_len = size;
479 req->rq_pool = pool;
480 spin_lock(&pool->prp_lock);
481 list_add_tail(&req->rq_list, &pool->prp_req_list);
482 }
483 spin_unlock(&pool->prp_lock);
484 }
485 EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
486
487 /**
488 * Create and initialize new request pool with given attributes:
489 * \a num_rq - initial number of requests to create for the pool
490 * \a msgsize - maximum message size possible for requests in thid pool
491 * \a populate_pool - function to be called when more requests need to be added
492 * to the pool
493 * Returns pointer to newly created pool or NULL on error.
494 */
495 struct ptlrpc_request_pool *
496 ptlrpc_init_rq_pool(int num_rq, int msgsize,
497 void (*populate_pool)(struct ptlrpc_request_pool *, int))
498 {
499 struct ptlrpc_request_pool *pool;
500
501 pool = kzalloc(sizeof(struct ptlrpc_request_pool), GFP_NOFS);
502 if (!pool)
503 return NULL;
504
505 /* Request next power of two for the allocation, because internally
506 kernel would do exactly this */
507
508 spin_lock_init(&pool->prp_lock);
509 INIT_LIST_HEAD(&pool->prp_req_list);
510 pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
511 pool->prp_populate = populate_pool;
512
513 populate_pool(pool, num_rq);
514
515 if (list_empty(&pool->prp_req_list)) {
516 /* have not allocated a single request for the pool */
517 kfree(pool);
518 pool = NULL;
519 }
520 return pool;
521 }
522 EXPORT_SYMBOL(ptlrpc_init_rq_pool);
523
524 /**
525 * Fetches one request from pool \a pool
526 */
527 static struct ptlrpc_request *
528 ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
529 {
530 struct ptlrpc_request *request;
531 struct lustre_msg *reqbuf;
532
533 if (!pool)
534 return NULL;
535
536 spin_lock(&pool->prp_lock);
537
538 /* See if we have anything in a pool, and bail out if nothing,
539 * in writeout path, where this matters, this is safe to do, because
540 * nothing is lost in this case, and when some in-flight requests
541 * complete, this code will be called again. */
542 if (unlikely(list_empty(&pool->prp_req_list))) {
543 spin_unlock(&pool->prp_lock);
544 return NULL;
545 }
546
547 request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
548 rq_list);
549 list_del_init(&request->rq_list);
550 spin_unlock(&pool->prp_lock);
551
552 LASSERT(request->rq_reqbuf);
553 LASSERT(request->rq_pool);
554
555 reqbuf = request->rq_reqbuf;
556 memset(request, 0, sizeof(*request));
557 request->rq_reqbuf = reqbuf;
558 request->rq_reqbuf_len = pool->prp_rq_size;
559 request->rq_pool = pool;
560
561 return request;
562 }
563
564 /**
565 * Returns freed \a request to pool.
566 */
567 static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
568 {
569 struct ptlrpc_request_pool *pool = request->rq_pool;
570
571 spin_lock(&pool->prp_lock);
572 LASSERT(list_empty(&request->rq_list));
573 LASSERT(!request->rq_receiving_reply);
574 list_add_tail(&request->rq_list, &pool->prp_req_list);
575 spin_unlock(&pool->prp_lock);
576 }
577
578 static int __ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
579 __u32 version, int opcode,
580 int count, __u32 *lengths, char **bufs,
581 struct ptlrpc_cli_ctx *ctx)
582 {
583 struct obd_import *imp = request->rq_import;
584 int rc;
585
586 if (unlikely(ctx))
587 request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
588 else {
589 rc = sptlrpc_req_get_ctx(request);
590 if (rc)
591 goto out_free;
592 }
593
594 sptlrpc_req_set_flavor(request, opcode);
595
596 rc = lustre_pack_request(request, imp->imp_msg_magic, count,
597 lengths, bufs);
598 if (rc) {
599 LASSERT(!request->rq_pool);
600 goto out_ctx;
601 }
602
603 lustre_msg_add_version(request->rq_reqmsg, version);
604 request->rq_send_state = LUSTRE_IMP_FULL;
605 request->rq_type = PTL_RPC_MSG_REQUEST;
606 request->rq_export = NULL;
607
608 request->rq_req_cbid.cbid_fn = request_out_callback;
609 request->rq_req_cbid.cbid_arg = request;
610
611 request->rq_reply_cbid.cbid_fn = reply_in_callback;
612 request->rq_reply_cbid.cbid_arg = request;
613
614 request->rq_reply_deadline = 0;
615 request->rq_phase = RQ_PHASE_NEW;
616 request->rq_next_phase = RQ_PHASE_UNDEFINED;
617
618 request->rq_request_portal = imp->imp_client->cli_request_portal;
619 request->rq_reply_portal = imp->imp_client->cli_reply_portal;
620
621 ptlrpc_at_set_req_timeout(request);
622
623 spin_lock_init(&request->rq_lock);
624 INIT_LIST_HEAD(&request->rq_list);
625 INIT_LIST_HEAD(&request->rq_timed_list);
626 INIT_LIST_HEAD(&request->rq_replay_list);
627 INIT_LIST_HEAD(&request->rq_ctx_chain);
628 INIT_LIST_HEAD(&request->rq_set_chain);
629 INIT_LIST_HEAD(&request->rq_history_list);
630 INIT_LIST_HEAD(&request->rq_exp_list);
631 init_waitqueue_head(&request->rq_reply_waitq);
632 init_waitqueue_head(&request->rq_set_waitq);
633 request->rq_xid = ptlrpc_next_xid();
634 atomic_set(&request->rq_refcount, 1);
635
636 lustre_msg_set_opc(request->rq_reqmsg, opcode);
637
638 return 0;
639 out_ctx:
640 sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
641 out_free:
642 class_import_put(imp);
643 return rc;
644 }
645
646 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
647 __u32 version, int opcode, char **bufs,
648 struct ptlrpc_cli_ctx *ctx)
649 {
650 int count;
651
652 count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
653 return __ptlrpc_request_bufs_pack(request, version, opcode, count,
654 request->rq_pill.rc_area[RCL_CLIENT],
655 bufs, ctx);
656 }
657 EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
658
659 /**
660 * Pack request buffers for network transfer, performing necessary encryption
661 * steps if necessary.
662 */
663 int ptlrpc_request_pack(struct ptlrpc_request *request,
664 __u32 version, int opcode)
665 {
666 int rc;
667 rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
668 if (rc)
669 return rc;
670
671 /* For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
672 * ptlrpc_body sent from server equal to local ptlrpc_body size, so we
673 * have to send old ptlrpc_body to keep interoperability with these
674 * clients.
675 *
676 * Only three kinds of server->client RPCs so far:
677 * - LDLM_BL_CALLBACK
678 * - LDLM_CP_CALLBACK
679 * - LDLM_GL_CALLBACK
680 *
681 * XXX This should be removed whenever we drop the interoperability with
682 * the these old clients.
683 */
684 if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
685 opcode == LDLM_GL_CALLBACK)
686 req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
687 sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
688
689 return rc;
690 }
691 EXPORT_SYMBOL(ptlrpc_request_pack);
692
693 /**
694 * Helper function to allocate new request on import \a imp
695 * and possibly using existing request from pool \a pool if provided.
696 * Returns allocated request structure with import field filled or
697 * NULL on error.
698 */
699 static inline
700 struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
701 struct ptlrpc_request_pool *pool)
702 {
703 struct ptlrpc_request *request = NULL;
704
705 if (pool)
706 request = ptlrpc_prep_req_from_pool(pool);
707
708 if (!request)
709 request = ptlrpc_request_cache_alloc(GFP_NOFS);
710
711 if (request) {
712 LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
713 LASSERT(imp != LP_POISON);
714 LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p",
715 imp->imp_client);
716 LASSERT(imp->imp_client != LP_POISON);
717
718 request->rq_import = class_import_get(imp);
719 } else {
720 CERROR("request allocation out of memory\n");
721 }
722
723 return request;
724 }
725
726 /**
727 * Helper function for creating a request.
728 * Calls __ptlrpc_request_alloc to allocate new request structure and inits
729 * buffer structures according to capsule template \a format.
730 * Returns allocated request structure pointer or NULL on error.
731 */
732 static struct ptlrpc_request *
733 ptlrpc_request_alloc_internal(struct obd_import *imp,
734 struct ptlrpc_request_pool *pool,
735 const struct req_format *format)
736 {
737 struct ptlrpc_request *request;
738
739 request = __ptlrpc_request_alloc(imp, pool);
740 if (request == NULL)
741 return NULL;
742
743 req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
744 req_capsule_set(&request->rq_pill, format);
745 return request;
746 }
747
748 /**
749 * Allocate new request structure for import \a imp and initialize its
750 * buffer structure according to capsule template \a format.
751 */
752 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
753 const struct req_format *format)
754 {
755 return ptlrpc_request_alloc_internal(imp, NULL, format);
756 }
757 EXPORT_SYMBOL(ptlrpc_request_alloc);
758
759 /**
760 * Allocate new request structure for import \a imp from pool \a pool and
761 * initialize its buffer structure according to capsule template \a format.
762 */
763 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
764 struct ptlrpc_request_pool *pool,
765 const struct req_format *format)
766 {
767 return ptlrpc_request_alloc_internal(imp, pool, format);
768 }
769 EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
770
771 /**
772 * For requests not from pool, free memory of the request structure.
773 * For requests obtained from a pool earlier, return request back to pool.
774 */
775 void ptlrpc_request_free(struct ptlrpc_request *request)
776 {
777 if (request->rq_pool)
778 __ptlrpc_free_req_to_pool(request);
779 else
780 ptlrpc_request_cache_free(request);
781 }
782 EXPORT_SYMBOL(ptlrpc_request_free);
783
784 /**
785 * Allocate new request for operation \a opcode and immediately pack it for
786 * network transfer.
787 * Only used for simple requests like OBD_PING where the only important
788 * part of the request is operation itself.
789 * Returns allocated request or NULL on error.
790 */
791 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
792 const struct req_format *format,
793 __u32 version, int opcode)
794 {
795 struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
796 int rc;
797
798 if (req) {
799 rc = ptlrpc_request_pack(req, version, opcode);
800 if (rc) {
801 ptlrpc_request_free(req);
802 req = NULL;
803 }
804 }
805 return req;
806 }
807 EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
808
809 /**
810 * Prepare request (fetched from pool \a pool if not NULL) on import \a imp
811 * for operation \a opcode. Request would contain \a count buffers.
812 * Sizes of buffers are described in array \a lengths and buffers themselves
813 * are provided by a pointer \a bufs.
814 * Returns prepared request structure pointer or NULL on error.
815 */
816 struct ptlrpc_request *
817 ptlrpc_prep_req_pool(struct obd_import *imp,
818 __u32 version, int opcode,
819 int count, __u32 *lengths, char **bufs,
820 struct ptlrpc_request_pool *pool)
821 {
822 struct ptlrpc_request *request;
823 int rc;
824
825 request = __ptlrpc_request_alloc(imp, pool);
826 if (!request)
827 return NULL;
828
829 rc = __ptlrpc_request_bufs_pack(request, version, opcode, count,
830 lengths, bufs, NULL);
831 if (rc) {
832 ptlrpc_request_free(request);
833 request = NULL;
834 }
835 return request;
836 }
837 EXPORT_SYMBOL(ptlrpc_prep_req_pool);
838
839 /**
840 * Same as ptlrpc_prep_req_pool, but without pool
841 */
842 struct ptlrpc_request *
843 ptlrpc_prep_req(struct obd_import *imp, __u32 version, int opcode, int count,
844 __u32 *lengths, char **bufs)
845 {
846 return ptlrpc_prep_req_pool(imp, version, opcode, count, lengths, bufs,
847 NULL);
848 }
849 EXPORT_SYMBOL(ptlrpc_prep_req);
850
851 /**
852 * Allocate and initialize new request set structure.
853 * Returns a pointer to the newly allocated set structure or NULL on error.
854 */
855 struct ptlrpc_request_set *ptlrpc_prep_set(void)
856 {
857 struct ptlrpc_request_set *set;
858
859 set = kzalloc(sizeof(*set), GFP_NOFS);
860 if (!set)
861 return NULL;
862 atomic_set(&set->set_refcount, 1);
863 INIT_LIST_HEAD(&set->set_requests);
864 init_waitqueue_head(&set->set_waitq);
865 atomic_set(&set->set_new_count, 0);
866 atomic_set(&set->set_remaining, 0);
867 spin_lock_init(&set->set_new_req_lock);
868 INIT_LIST_HEAD(&set->set_new_requests);
869 INIT_LIST_HEAD(&set->set_cblist);
870 set->set_max_inflight = UINT_MAX;
871 set->set_producer = NULL;
872 set->set_producer_arg = NULL;
873 set->set_rc = 0;
874
875 return set;
876 }
877 EXPORT_SYMBOL(ptlrpc_prep_set);
878
879 /**
880 * Allocate and initialize new request set structure with flow control
881 * extension. This extension allows to control the number of requests in-flight
882 * for the whole set. A callback function to generate requests must be provided
883 * and the request set will keep the number of requests sent over the wire to
884 * @max_inflight.
885 * Returns a pointer to the newly allocated set structure or NULL on error.
886 */
887 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
888 void *arg)
889
890 {
891 struct ptlrpc_request_set *set;
892
893 set = ptlrpc_prep_set();
894 if (!set)
895 return NULL;
896
897 set->set_max_inflight = max;
898 set->set_producer = func;
899 set->set_producer_arg = arg;
900
901 return set;
902 }
903 EXPORT_SYMBOL(ptlrpc_prep_fcset);
904
905 /**
906 * Wind down and free request set structure previously allocated with
907 * ptlrpc_prep_set.
908 * Ensures that all requests on the set have completed and removes
909 * all requests from the request list in a set.
910 * If any unsent request happen to be on the list, pretends that they got
911 * an error in flight and calls their completion handler.
912 */
913 void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
914 {
915 struct list_head *tmp;
916 struct list_head *next;
917 int expected_phase;
918 int n = 0;
919
920 /* Requests on the set should either all be completed, or all be new */
921 expected_phase = (atomic_read(&set->set_remaining) == 0) ?
922 RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
923 list_for_each(tmp, &set->set_requests) {
924 struct ptlrpc_request *req =
925 list_entry(tmp, struct ptlrpc_request,
926 rq_set_chain);
927
928 LASSERT(req->rq_phase == expected_phase);
929 n++;
930 }
931
932 LASSERTF(atomic_read(&set->set_remaining) == 0 ||
933 atomic_read(&set->set_remaining) == n, "%d / %d\n",
934 atomic_read(&set->set_remaining), n);
935
936 list_for_each_safe(tmp, next, &set->set_requests) {
937 struct ptlrpc_request *req =
938 list_entry(tmp, struct ptlrpc_request,
939 rq_set_chain);
940 list_del_init(&req->rq_set_chain);
941
942 LASSERT(req->rq_phase == expected_phase);
943
944 if (req->rq_phase == RQ_PHASE_NEW) {
945 ptlrpc_req_interpret(NULL, req, -EBADR);
946 atomic_dec(&set->set_remaining);
947 }
948
949 spin_lock(&req->rq_lock);
950 req->rq_set = NULL;
951 req->rq_invalid_rqset = 0;
952 spin_unlock(&req->rq_lock);
953
954 ptlrpc_req_finished(req);
955 }
956
957 LASSERT(atomic_read(&set->set_remaining) == 0);
958
959 ptlrpc_reqset_put(set);
960 }
961 EXPORT_SYMBOL(ptlrpc_set_destroy);
962
963 /**
964 * Add a callback function \a fn to the set.
965 * This function would be called when all requests on this set are completed.
966 * The function will be passed \a data argument.
967 */
968 int ptlrpc_set_add_cb(struct ptlrpc_request_set *set,
969 set_interpreter_func fn, void *data)
970 {
971 struct ptlrpc_set_cbdata *cbdata;
972
973 cbdata = kzalloc(sizeof(*cbdata), GFP_NOFS);
974 if (cbdata == NULL)
975 return -ENOMEM;
976
977 cbdata->psc_interpret = fn;
978 cbdata->psc_data = data;
979 list_add_tail(&cbdata->psc_item, &set->set_cblist);
980
981 return 0;
982 }
983 EXPORT_SYMBOL(ptlrpc_set_add_cb);
984
985 /**
986 * Add a new request to the general purpose request set.
987 * Assumes request reference from the caller.
988 */
989 void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
990 struct ptlrpc_request *req)
991 {
992 LASSERT(list_empty(&req->rq_set_chain));
993
994 /* The set takes over the caller's request reference */
995 list_add_tail(&req->rq_set_chain, &set->set_requests);
996 req->rq_set = set;
997 atomic_inc(&set->set_remaining);
998 req->rq_queued_time = cfs_time_current();
999
1000 if (req->rq_reqmsg != NULL)
1001 lustre_msg_set_jobid(req->rq_reqmsg, NULL);
1002
1003 if (set->set_producer != NULL)
1004 /* If the request set has a producer callback, the RPC must be
1005 * sent straight away */
1006 ptlrpc_send_new_req(req);
1007 }
1008 EXPORT_SYMBOL(ptlrpc_set_add_req);
1009
1010 /**
1011 * Add a request to a request with dedicated server thread
1012 * and wake the thread to make any necessary processing.
1013 * Currently only used for ptlrpcd.
1014 */
1015 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
1016 struct ptlrpc_request *req)
1017 {
1018 struct ptlrpc_request_set *set = pc->pc_set;
1019 int count, i;
1020
1021 LASSERT(req->rq_set == NULL);
1022 LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
1023
1024 spin_lock(&set->set_new_req_lock);
1025 /*
1026 * The set takes over the caller's request reference.
1027 */
1028 req->rq_set = set;
1029 req->rq_queued_time = cfs_time_current();
1030 list_add_tail(&req->rq_set_chain, &set->set_new_requests);
1031 count = atomic_inc_return(&set->set_new_count);
1032 spin_unlock(&set->set_new_req_lock);
1033
1034 /* Only need to call wakeup once for the first entry. */
1035 if (count == 1) {
1036 wake_up(&set->set_waitq);
1037
1038 /* XXX: It maybe unnecessary to wakeup all the partners. But to
1039 * guarantee the async RPC can be processed ASAP, we have
1040 * no other better choice. It maybe fixed in future. */
1041 for (i = 0; i < pc->pc_npartners; i++)
1042 wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
1043 }
1044 }
1045 EXPORT_SYMBOL(ptlrpc_set_add_new_req);
1046
1047 /**
1048 * Based on the current state of the import, determine if the request
1049 * can be sent, is an error, or should be delayed.
1050 *
1051 * Returns true if this request should be delayed. If false, and
1052 * *status is set, then the request can not be sent and *status is the
1053 * error code. If false and status is 0, then request can be sent.
1054 *
1055 * The imp->imp_lock must be held.
1056 */
1057 static int ptlrpc_import_delay_req(struct obd_import *imp,
1058 struct ptlrpc_request *req, int *status)
1059 {
1060 int delay = 0;
1061
1062 LASSERT(status != NULL);
1063 *status = 0;
1064
1065 if (req->rq_ctx_init || req->rq_ctx_fini) {
1066 /* always allow ctx init/fini rpc go through */
1067 } else if (imp->imp_state == LUSTRE_IMP_NEW) {
1068 DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
1069 *status = -EIO;
1070 } else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
1071 /* pings may safely race with umount */
1072 DEBUG_REQ(lustre_msg_get_opc(req->rq_reqmsg) == OBD_PING ?
1073 D_HA : D_ERROR, req, "IMP_CLOSED ");
1074 *status = -EIO;
1075 } else if (ptlrpc_send_limit_expired(req)) {
1076 /* probably doesn't need to be a D_ERROR after initial testing */
1077 DEBUG_REQ(D_ERROR, req, "send limit expired ");
1078 *status = -EIO;
1079 } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
1080 imp->imp_state == LUSTRE_IMP_CONNECTING) {
1081 /* allow CONNECT even if import is invalid */
1082 if (atomic_read(&imp->imp_inval_count) != 0) {
1083 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1084 *status = -EIO;
1085 }
1086 } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
1087 if (!imp->imp_deactive)
1088 DEBUG_REQ(D_NET, req, "IMP_INVALID");
1089 *status = -ESHUTDOWN; /* bz 12940 */
1090 } else if (req->rq_import_generation != imp->imp_generation) {
1091 DEBUG_REQ(D_ERROR, req, "req wrong generation:");
1092 *status = -EIO;
1093 } else if (req->rq_send_state != imp->imp_state) {
1094 /* invalidate in progress - any requests should be drop */
1095 if (atomic_read(&imp->imp_inval_count) != 0) {
1096 DEBUG_REQ(D_ERROR, req, "invalidate in flight");
1097 *status = -EIO;
1098 } else if (imp->imp_dlm_fake || req->rq_no_delay) {
1099 *status = -EWOULDBLOCK;
1100 } else if (req->rq_allow_replay &&
1101 (imp->imp_state == LUSTRE_IMP_REPLAY ||
1102 imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
1103 imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
1104 imp->imp_state == LUSTRE_IMP_RECOVER)) {
1105 DEBUG_REQ(D_HA, req, "allow during recovery.\n");
1106 } else {
1107 delay = 1;
1108 }
1109 }
1110
1111 return delay;
1112 }
1113
1114 /**
1115 * Decide if the error message regarding provided request \a req
1116 * should be printed to the console or not.
1117 * Makes it's decision on request status and other properties.
1118 * Returns 1 to print error on the system console or 0 if not.
1119 */
1120 static int ptlrpc_console_allow(struct ptlrpc_request *req)
1121 {
1122 __u32 opc;
1123 int err;
1124
1125 LASSERT(req->rq_reqmsg != NULL);
1126 opc = lustre_msg_get_opc(req->rq_reqmsg);
1127
1128 /* Suppress particular reconnect errors which are to be expected. No
1129 * errors are suppressed for the initial connection on an import */
1130 if ((lustre_handle_is_used(&req->rq_import->imp_remote_handle)) &&
1131 (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT)) {
1132
1133 /* Suppress timed out reconnect requests */
1134 if (req->rq_timedout)
1135 return 0;
1136
1137 /* Suppress unavailable/again reconnect requests */
1138 err = lustre_msg_get_status(req->rq_repmsg);
1139 if (err == -ENODEV || err == -EAGAIN)
1140 return 0;
1141 }
1142
1143 return 1;
1144 }
1145
1146 /**
1147 * Check request processing status.
1148 * Returns the status.
1149 */
1150 static int ptlrpc_check_status(struct ptlrpc_request *req)
1151 {
1152 int err;
1153
1154 err = lustre_msg_get_status(req->rq_repmsg);
1155 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
1156 struct obd_import *imp = req->rq_import;
1157 __u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
1158 if (ptlrpc_console_allow(req))
1159 LCONSOLE_ERROR_MSG(0x011, "%s: Communicating with %s, operation %s failed with %d.\n",
1160 imp->imp_obd->obd_name,
1161 libcfs_nid2str(
1162 imp->imp_connection->c_peer.nid),
1163 ll_opcode2str(opc), err);
1164 return err < 0 ? err : -EINVAL;
1165 }
1166
1167 if (err < 0) {
1168 DEBUG_REQ(D_INFO, req, "status is %d", err);
1169 } else if (err > 0) {
1170 /* XXX: translate this error from net to host */
1171 DEBUG_REQ(D_INFO, req, "status is %d", err);
1172 }
1173
1174 return err;
1175 }
1176
1177 /**
1178 * save pre-versions of objects into request for replay.
1179 * Versions are obtained from server reply.
1180 * used for VBR.
1181 */
1182 static void ptlrpc_save_versions(struct ptlrpc_request *req)
1183 {
1184 struct lustre_msg *repmsg = req->rq_repmsg;
1185 struct lustre_msg *reqmsg = req->rq_reqmsg;
1186 __u64 *versions = lustre_msg_get_versions(repmsg);
1187
1188 if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
1189 return;
1190
1191 LASSERT(versions);
1192 lustre_msg_set_versions(reqmsg, versions);
1193 CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
1194 versions[0], versions[1]);
1195 }
1196
1197 /**
1198 * Callback function called when client receives RPC reply for \a req.
1199 * Returns 0 on success or error code.
1200 * The return value would be assigned to req->rq_status by the caller
1201 * as request processing status.
1202 * This function also decides if the request needs to be saved for later replay.
1203 */
1204 static int after_reply(struct ptlrpc_request *req)
1205 {
1206 struct obd_import *imp = req->rq_import;
1207 struct obd_device *obd = req->rq_import->imp_obd;
1208 int rc;
1209 struct timeval work_start;
1210 long timediff;
1211
1212 LASSERT(obd != NULL);
1213 /* repbuf must be unlinked */
1214 LASSERT(!req->rq_receiving_reply && !req->rq_reply_unlink);
1215
1216 if (req->rq_reply_truncate) {
1217 if (ptlrpc_no_resend(req)) {
1218 DEBUG_REQ(D_ERROR, req, "reply buffer overflow, expected: %d, actual size: %d",
1219 req->rq_nob_received, req->rq_repbuf_len);
1220 return -EOVERFLOW;
1221 }
1222
1223 sptlrpc_cli_free_repbuf(req);
1224 /* Pass the required reply buffer size (include
1225 * space for early reply).
1226 * NB: no need to roundup because alloc_repbuf
1227 * will roundup it */
1228 req->rq_replen = req->rq_nob_received;
1229 req->rq_nob_received = 0;
1230 spin_lock(&req->rq_lock);
1231 req->rq_resend = 1;
1232 spin_unlock(&req->rq_lock);
1233 return 0;
1234 }
1235
1236 /*
1237 * NB Until this point, the whole of the incoming message,
1238 * including buflens, status etc is in the sender's byte order.
1239 */
1240 rc = sptlrpc_cli_unwrap_reply(req);
1241 if (rc) {
1242 DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
1243 return rc;
1244 }
1245
1246 /*
1247 * Security layer unwrap might ask resend this request.
1248 */
1249 if (req->rq_resend)
1250 return 0;
1251
1252 rc = unpack_reply(req);
1253 if (rc)
1254 return rc;
1255
1256 /* retry indefinitely on EINPROGRESS */
1257 if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
1258 ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
1259 time_t now = get_seconds();
1260
1261 DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
1262 spin_lock(&req->rq_lock);
1263 req->rq_resend = 1;
1264 spin_unlock(&req->rq_lock);
1265 req->rq_nr_resend++;
1266
1267 /* allocate new xid to avoid reply reconstruction */
1268 if (!req->rq_bulk) {
1269 /* new xid is already allocated for bulk in
1270 * ptlrpc_check_set() */
1271 req->rq_xid = ptlrpc_next_xid();
1272 DEBUG_REQ(D_RPCTRACE, req, "Allocating new xid for resend on EINPROGRESS");
1273 }
1274
1275 /* Readjust the timeout for current conditions */
1276 ptlrpc_at_set_req_timeout(req);
1277 /* delay resend to give a chance to the server to get ready.
1278 * The delay is increased by 1s on every resend and is capped to
1279 * the current request timeout (i.e. obd_timeout if AT is off,
1280 * or AT service time x 125% + 5s, see at_est2timeout) */
1281 if (req->rq_nr_resend > req->rq_timeout)
1282 req->rq_sent = now + req->rq_timeout;
1283 else
1284 req->rq_sent = now + req->rq_nr_resend;
1285
1286 return 0;
1287 }
1288
1289 do_gettimeofday(&work_start);
1290 timediff = cfs_timeval_sub(&work_start, &req->rq_arrival_time, NULL);
1291 if (obd->obd_svc_stats != NULL) {
1292 lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
1293 timediff);
1294 ptlrpc_lprocfs_rpc_sent(req, timediff);
1295 }
1296
1297 if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
1298 lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
1299 DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
1300 lustre_msg_get_type(req->rq_repmsg));
1301 return -EPROTO;
1302 }
1303
1304 if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
1305 CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
1306 ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
1307 ptlrpc_at_adj_net_latency(req,
1308 lustre_msg_get_service_time(req->rq_repmsg));
1309
1310 rc = ptlrpc_check_status(req);
1311 imp->imp_connect_error = rc;
1312
1313 if (rc) {
1314 /*
1315 * Either we've been evicted, or the server has failed for
1316 * some reason. Try to reconnect, and if that fails, punt to
1317 * the upcall.
1318 */
1319 if (ll_rpc_recoverable_error(rc)) {
1320 if (req->rq_send_state != LUSTRE_IMP_FULL ||
1321 imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
1322 return rc;
1323 }
1324 ptlrpc_request_handle_notconn(req);
1325 return rc;
1326 }
1327 } else {
1328 /*
1329 * Let's look if server sent slv. Do it only for RPC with
1330 * rc == 0.
1331 */
1332 ldlm_cli_update_pool(req);
1333 }
1334
1335 /*
1336 * Store transno in reqmsg for replay.
1337 */
1338 if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
1339 req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
1340 lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
1341 }
1342
1343 if (imp->imp_replayable) {
1344 spin_lock(&imp->imp_lock);
1345 /*
1346 * No point in adding already-committed requests to the replay
1347 * list, we will just remove them immediately. b=9829
1348 */
1349 if (req->rq_transno != 0 &&
1350 (req->rq_transno >
1351 lustre_msg_get_last_committed(req->rq_repmsg) ||
1352 req->rq_replay)) {
1353 /** version recovery */
1354 ptlrpc_save_versions(req);
1355 ptlrpc_retain_replayable_request(req, imp);
1356 } else if (req->rq_commit_cb != NULL &&
1357 list_empty(&req->rq_replay_list)) {
1358 /* NB: don't call rq_commit_cb if it's already on
1359 * rq_replay_list, ptlrpc_free_committed() will call
1360 * it later, see LU-3618 for details */
1361 spin_unlock(&imp->imp_lock);
1362 req->rq_commit_cb(req);
1363 spin_lock(&imp->imp_lock);
1364 }
1365
1366 /*
1367 * Replay-enabled imports return commit-status information.
1368 */
1369 if (lustre_msg_get_last_committed(req->rq_repmsg)) {
1370 imp->imp_peer_committed_transno =
1371 lustre_msg_get_last_committed(req->rq_repmsg);
1372 }
1373
1374 ptlrpc_free_committed(imp);
1375
1376 if (!list_empty(&imp->imp_replay_list)) {
1377 struct ptlrpc_request *last;
1378
1379 last = list_entry(imp->imp_replay_list.prev,
1380 struct ptlrpc_request,
1381 rq_replay_list);
1382 /*
1383 * Requests with rq_replay stay on the list even if no
1384 * commit is expected.
1385 */
1386 if (last->rq_transno > imp->imp_peer_committed_transno)
1387 ptlrpc_pinger_commit_expected(imp);
1388 }
1389
1390 spin_unlock(&imp->imp_lock);
1391 }
1392
1393 return rc;
1394 }
1395
1396 /**
1397 * Helper function to send request \a req over the network for the first time
1398 * Also adjusts request phase.
1399 * Returns 0 on success or error code.
1400 */
1401 static int ptlrpc_send_new_req(struct ptlrpc_request *req)
1402 {
1403 struct obd_import *imp = req->rq_import;
1404 int rc;
1405
1406 LASSERT(req->rq_phase == RQ_PHASE_NEW);
1407 if (req->rq_sent && (req->rq_sent > get_seconds()) &&
1408 (!req->rq_generation_set ||
1409 req->rq_import_generation == imp->imp_generation))
1410 return 0;
1411
1412 ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
1413
1414 spin_lock(&imp->imp_lock);
1415
1416 if (!req->rq_generation_set)
1417 req->rq_import_generation = imp->imp_generation;
1418
1419 if (ptlrpc_import_delay_req(imp, req, &rc)) {
1420 spin_lock(&req->rq_lock);
1421 req->rq_waiting = 1;
1422 spin_unlock(&req->rq_lock);
1423
1424 DEBUG_REQ(D_HA, req, "req from PID %d waiting for recovery: (%s != %s)",
1425 lustre_msg_get_status(req->rq_reqmsg),
1426 ptlrpc_import_state_name(req->rq_send_state),
1427 ptlrpc_import_state_name(imp->imp_state));
1428 LASSERT(list_empty(&req->rq_list));
1429 list_add_tail(&req->rq_list, &imp->imp_delayed_list);
1430 atomic_inc(&req->rq_import->imp_inflight);
1431 spin_unlock(&imp->imp_lock);
1432 return 0;
1433 }
1434
1435 if (rc != 0) {
1436 spin_unlock(&imp->imp_lock);
1437 req->rq_status = rc;
1438 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1439 return rc;
1440 }
1441
1442 LASSERT(list_empty(&req->rq_list));
1443 list_add_tail(&req->rq_list, &imp->imp_sending_list);
1444 atomic_inc(&req->rq_import->imp_inflight);
1445 spin_unlock(&imp->imp_lock);
1446
1447 lustre_msg_set_status(req->rq_reqmsg, current_pid());
1448
1449 rc = sptlrpc_req_refresh_ctx(req, -1);
1450 if (rc) {
1451 if (req->rq_err) {
1452 req->rq_status = rc;
1453 return 1;
1454 }
1455 spin_lock(&req->rq_lock);
1456 req->rq_wait_ctx = 1;
1457 spin_unlock(&req->rq_lock);
1458 return 0;
1459 }
1460
1461 CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n",
1462 current_comm(),
1463 imp->imp_obd->obd_uuid.uuid,
1464 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1465 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1466 lustre_msg_get_opc(req->rq_reqmsg));
1467
1468 rc = ptl_send_rpc(req, 0);
1469 if (rc) {
1470 DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
1471 spin_lock(&req->rq_lock);
1472 req->rq_net_err = 1;
1473 spin_unlock(&req->rq_lock);
1474 return rc;
1475 }
1476 return 0;
1477 }
1478
1479 static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
1480 {
1481 int remaining, rc;
1482
1483 LASSERT(set->set_producer != NULL);
1484
1485 remaining = atomic_read(&set->set_remaining);
1486
1487 /* populate the ->set_requests list with requests until we
1488 * reach the maximum number of RPCs in flight for this set */
1489 while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
1490 rc = set->set_producer(set, set->set_producer_arg);
1491 if (rc == -ENOENT) {
1492 /* no more RPC to produce */
1493 set->set_producer = NULL;
1494 set->set_producer_arg = NULL;
1495 return 0;
1496 }
1497 }
1498
1499 return (atomic_read(&set->set_remaining) - remaining);
1500 }
1501
1502 /**
1503 * this sends any unsent RPCs in \a set and returns 1 if all are sent
1504 * and no more replies are expected.
1505 * (it is possible to get less replies than requests sent e.g. due to timed out
1506 * requests or requests that we had trouble to send out)
1507 *
1508 * NOTE: This function contains a potential schedule point (cond_resched()).
1509 */
1510 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
1511 {
1512 struct list_head *tmp, *next;
1513 struct list_head comp_reqs;
1514 int force_timer_recalc = 0;
1515
1516 if (atomic_read(&set->set_remaining) == 0)
1517 return 1;
1518
1519 INIT_LIST_HEAD(&comp_reqs);
1520 list_for_each_safe(tmp, next, &set->set_requests) {
1521 struct ptlrpc_request *req =
1522 list_entry(tmp, struct ptlrpc_request,
1523 rq_set_chain);
1524 struct obd_import *imp = req->rq_import;
1525 int unregistered = 0;
1526 int rc = 0;
1527
1528 /* This schedule point is mainly for the ptlrpcd caller of this
1529 * function. Most ptlrpc sets are not long-lived and unbounded
1530 * in length, but at the least the set used by the ptlrpcd is.
1531 * Since the processing time is unbounded, we need to insert an
1532 * explicit schedule point to make the thread well-behaved.
1533 */
1534 cond_resched();
1535
1536 if (req->rq_phase == RQ_PHASE_NEW &&
1537 ptlrpc_send_new_req(req)) {
1538 force_timer_recalc = 1;
1539 }
1540
1541 /* delayed send - skip */
1542 if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
1543 continue;
1544
1545 /* delayed resend - skip */
1546 if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
1547 req->rq_sent > get_seconds())
1548 continue;
1549
1550 if (!(req->rq_phase == RQ_PHASE_RPC ||
1551 req->rq_phase == RQ_PHASE_BULK ||
1552 req->rq_phase == RQ_PHASE_INTERPRET ||
1553 req->rq_phase == RQ_PHASE_UNREGISTERING ||
1554 req->rq_phase == RQ_PHASE_COMPLETE)) {
1555 DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
1556 LBUG();
1557 }
1558
1559 if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
1560 LASSERT(req->rq_next_phase != req->rq_phase);
1561 LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
1562
1563 /*
1564 * Skip processing until reply is unlinked. We
1565 * can't return to pool before that and we can't
1566 * call interpret before that. We need to make
1567 * sure that all rdma transfers finished and will
1568 * not corrupt any data.
1569 */
1570 if (ptlrpc_client_recv_or_unlink(req) ||
1571 ptlrpc_client_bulk_active(req))
1572 continue;
1573
1574 /*
1575 * Turn fail_loc off to prevent it from looping
1576 * forever.
1577 */
1578 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
1579 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
1580 OBD_FAIL_ONCE);
1581 }
1582 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
1583 OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
1584 OBD_FAIL_ONCE);
1585 }
1586
1587 /*
1588 * Move to next phase if reply was successfully
1589 * unlinked.
1590 */
1591 ptlrpc_rqphase_move(req, req->rq_next_phase);
1592 }
1593
1594 if (req->rq_phase == RQ_PHASE_COMPLETE) {
1595 list_move_tail(&req->rq_set_chain, &comp_reqs);
1596 continue;
1597 }
1598
1599 if (req->rq_phase == RQ_PHASE_INTERPRET)
1600 goto interpret;
1601
1602 /*
1603 * Note that this also will start async reply unlink.
1604 */
1605 if (req->rq_net_err && !req->rq_timedout) {
1606 ptlrpc_expire_one_request(req, 1);
1607
1608 /*
1609 * Check if we still need to wait for unlink.
1610 */
1611 if (ptlrpc_client_recv_or_unlink(req) ||
1612 ptlrpc_client_bulk_active(req))
1613 continue;
1614 /* If there is no need to resend, fail it now. */
1615 if (req->rq_no_resend) {
1616 if (req->rq_status == 0)
1617 req->rq_status = -EIO;
1618 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1619 goto interpret;
1620 } else {
1621 continue;
1622 }
1623 }
1624
1625 if (req->rq_err) {
1626 spin_lock(&req->rq_lock);
1627 req->rq_replied = 0;
1628 spin_unlock(&req->rq_lock);
1629 if (req->rq_status == 0)
1630 req->rq_status = -EIO;
1631 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1632 goto interpret;
1633 }
1634
1635 /* ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
1636 * so it sets rq_intr regardless of individual rpc
1637 * timeouts. The synchronous IO waiting path sets
1638 * rq_intr irrespective of whether ptlrpcd
1639 * has seen a timeout. Our policy is to only interpret
1640 * interrupted rpcs after they have timed out, so we
1641 * need to enforce that here.
1642 */
1643
1644 if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
1645 req->rq_wait_ctx)) {
1646 req->rq_status = -EINTR;
1647 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1648 goto interpret;
1649 }
1650
1651 if (req->rq_phase == RQ_PHASE_RPC) {
1652 if (req->rq_timedout || req->rq_resend ||
1653 req->rq_waiting || req->rq_wait_ctx) {
1654 int status;
1655
1656 if (!ptlrpc_unregister_reply(req, 1))
1657 continue;
1658
1659 spin_lock(&imp->imp_lock);
1660 if (ptlrpc_import_delay_req(imp, req,
1661 &status)) {
1662 /* put on delay list - only if we wait
1663 * recovery finished - before send */
1664 list_del_init(&req->rq_list);
1665 list_add_tail(&req->rq_list,
1666 &imp->
1667 imp_delayed_list);
1668 spin_unlock(&imp->imp_lock);
1669 continue;
1670 }
1671
1672 if (status != 0) {
1673 req->rq_status = status;
1674 ptlrpc_rqphase_move(req,
1675 RQ_PHASE_INTERPRET);
1676 spin_unlock(&imp->imp_lock);
1677 goto interpret;
1678 }
1679 if (ptlrpc_no_resend(req) &&
1680 !req->rq_wait_ctx) {
1681 req->rq_status = -ENOTCONN;
1682 ptlrpc_rqphase_move(req,
1683 RQ_PHASE_INTERPRET);
1684 spin_unlock(&imp->imp_lock);
1685 goto interpret;
1686 }
1687
1688 list_del_init(&req->rq_list);
1689 list_add_tail(&req->rq_list,
1690 &imp->imp_sending_list);
1691
1692 spin_unlock(&imp->imp_lock);
1693
1694 spin_lock(&req->rq_lock);
1695 req->rq_waiting = 0;
1696 spin_unlock(&req->rq_lock);
1697
1698 if (req->rq_timedout || req->rq_resend) {
1699 /* This is re-sending anyways,
1700 * let's mark req as resend. */
1701 spin_lock(&req->rq_lock);
1702 req->rq_resend = 1;
1703 spin_unlock(&req->rq_lock);
1704 if (req->rq_bulk) {
1705 __u64 old_xid;
1706
1707 if (!ptlrpc_unregister_bulk(req, 1))
1708 continue;
1709
1710 /* ensure previous bulk fails */
1711 old_xid = req->rq_xid;
1712 req->rq_xid = ptlrpc_next_xid();
1713 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
1714 old_xid, req->rq_xid);
1715 }
1716 }
1717 /*
1718 * rq_wait_ctx is only touched by ptlrpcd,
1719 * so no lock is needed here.
1720 */
1721 status = sptlrpc_req_refresh_ctx(req, -1);
1722 if (status) {
1723 if (req->rq_err) {
1724 req->rq_status = status;
1725 spin_lock(&req->rq_lock);
1726 req->rq_wait_ctx = 0;
1727 spin_unlock(&req->rq_lock);
1728 force_timer_recalc = 1;
1729 } else {
1730 spin_lock(&req->rq_lock);
1731 req->rq_wait_ctx = 1;
1732 spin_unlock(&req->rq_lock);
1733 }
1734
1735 continue;
1736 } else {
1737 spin_lock(&req->rq_lock);
1738 req->rq_wait_ctx = 0;
1739 spin_unlock(&req->rq_lock);
1740 }
1741
1742 rc = ptl_send_rpc(req, 0);
1743 if (rc) {
1744 DEBUG_REQ(D_HA, req,
1745 "send failed: rc = %d", rc);
1746 force_timer_recalc = 1;
1747 spin_lock(&req->rq_lock);
1748 req->rq_net_err = 1;
1749 spin_unlock(&req->rq_lock);
1750 continue;
1751 }
1752 /* need to reset the timeout */
1753 force_timer_recalc = 1;
1754 }
1755
1756 spin_lock(&req->rq_lock);
1757
1758 if (ptlrpc_client_early(req)) {
1759 ptlrpc_at_recv_early_reply(req);
1760 spin_unlock(&req->rq_lock);
1761 continue;
1762 }
1763
1764 /* Still waiting for a reply? */
1765 if (ptlrpc_client_recv(req)) {
1766 spin_unlock(&req->rq_lock);
1767 continue;
1768 }
1769
1770 /* Did we actually receive a reply? */
1771 if (!ptlrpc_client_replied(req)) {
1772 spin_unlock(&req->rq_lock);
1773 continue;
1774 }
1775
1776 spin_unlock(&req->rq_lock);
1777
1778 /* unlink from net because we are going to
1779 * swab in-place of reply buffer */
1780 unregistered = ptlrpc_unregister_reply(req, 1);
1781 if (!unregistered)
1782 continue;
1783
1784 req->rq_status = after_reply(req);
1785 if (req->rq_resend)
1786 continue;
1787
1788 /* If there is no bulk associated with this request,
1789 * then we're done and should let the interpreter
1790 * process the reply. Similarly if the RPC returned
1791 * an error, and therefore the bulk will never arrive.
1792 */
1793 if (req->rq_bulk == NULL || req->rq_status < 0) {
1794 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1795 goto interpret;
1796 }
1797
1798 ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
1799 }
1800
1801 LASSERT(req->rq_phase == RQ_PHASE_BULK);
1802 if (ptlrpc_client_bulk_active(req))
1803 continue;
1804
1805 if (req->rq_bulk->bd_failure) {
1806 /* The RPC reply arrived OK, but the bulk screwed
1807 * up! Dead weird since the server told us the RPC
1808 * was good after getting the REPLY for her GET or
1809 * the ACK for her PUT. */
1810 DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
1811 req->rq_status = -EIO;
1812 }
1813
1814 ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
1815
1816 interpret:
1817 LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
1818
1819 /* This moves to "unregistering" phase we need to wait for
1820 * reply unlink. */
1821 if (!unregistered && !ptlrpc_unregister_reply(req, 1)) {
1822 /* start async bulk unlink too */
1823 ptlrpc_unregister_bulk(req, 1);
1824 continue;
1825 }
1826
1827 if (!ptlrpc_unregister_bulk(req, 1))
1828 continue;
1829
1830 /* When calling interpret receiving already should be
1831 * finished. */
1832 LASSERT(!req->rq_receiving_reply);
1833
1834 ptlrpc_req_interpret(env, req, req->rq_status);
1835
1836 if (ptlrpcd_check_work(req)) {
1837 atomic_dec(&set->set_remaining);
1838 continue;
1839 }
1840 ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
1841
1842 CDEBUG(req->rq_reqmsg != NULL ? D_RPCTRACE : 0,
1843 "Completed RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n",
1844 current_comm(), imp->imp_obd->obd_uuid.uuid,
1845 lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
1846 libcfs_nid2str(imp->imp_connection->c_peer.nid),
1847 lustre_msg_get_opc(req->rq_reqmsg));
1848
1849 spin_lock(&imp->imp_lock);
1850 /* Request already may be not on sending or delaying list. This
1851 * may happen in the case of marking it erroneous for the case
1852 * ptlrpc_import_delay_req(req, status) find it impossible to
1853 * allow sending this rpc and returns *status != 0. */
1854 if (!list_empty(&req->rq_list)) {
1855 list_del_init(&req->rq_list);
1856 atomic_dec(&imp->imp_inflight);
1857 }
1858 spin_unlock(&imp->imp_lock);
1859
1860 atomic_dec(&set->set_remaining);
1861 wake_up_all(&imp->imp_recovery_waitq);
1862
1863 if (set->set_producer) {
1864 /* produce a new request if possible */
1865 if (ptlrpc_set_producer(set) > 0)
1866 force_timer_recalc = 1;
1867
1868 /* free the request that has just been completed
1869 * in order not to pollute set->set_requests */
1870 list_del_init(&req->rq_set_chain);
1871 spin_lock(&req->rq_lock);
1872 req->rq_set = NULL;
1873 req->rq_invalid_rqset = 0;
1874 spin_unlock(&req->rq_lock);
1875
1876 /* record rq_status to compute the final status later */
1877 if (req->rq_status != 0)
1878 set->set_rc = req->rq_status;
1879 ptlrpc_req_finished(req);
1880 } else {
1881 list_move_tail(&req->rq_set_chain, &comp_reqs);
1882 }
1883 }
1884
1885 /* move completed request at the head of list so it's easier for
1886 * caller to find them */
1887 list_splice(&comp_reqs, &set->set_requests);
1888
1889 /* If we hit an error, we want to recover promptly. */
1890 return atomic_read(&set->set_remaining) == 0 || force_timer_recalc;
1891 }
1892 EXPORT_SYMBOL(ptlrpc_check_set);
1893
1894 /**
1895 * Time out request \a req. is \a async_unlink is set, that means do not wait
1896 * until LNet actually confirms network buffer unlinking.
1897 * Return 1 if we should give up further retrying attempts or 0 otherwise.
1898 */
1899 int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
1900 {
1901 struct obd_import *imp = req->rq_import;
1902 int rc = 0;
1903
1904 spin_lock(&req->rq_lock);
1905 req->rq_timedout = 1;
1906 spin_unlock(&req->rq_lock);
1907
1908 DEBUG_REQ(D_WARNING, req, "Request sent has %s: [sent "CFS_DURATION_T
1909 "/real "CFS_DURATION_T"]",
1910 req->rq_net_err ? "failed due to network error" :
1911 ((req->rq_real_sent == 0 ||
1912 time_before((unsigned long)req->rq_real_sent, (unsigned long)req->rq_sent) ||
1913 cfs_time_aftereq(req->rq_real_sent, req->rq_deadline)) ?
1914 "timed out for sent delay" : "timed out for slow reply"),
1915 req->rq_sent, req->rq_real_sent);
1916
1917 if (imp != NULL && obd_debug_peer_on_timeout)
1918 LNetCtl(IOC_LIBCFS_DEBUG_PEER, &imp->imp_connection->c_peer);
1919
1920 ptlrpc_unregister_reply(req, async_unlink);
1921 ptlrpc_unregister_bulk(req, async_unlink);
1922
1923 if (obd_dump_on_timeout)
1924 libcfs_debug_dumplog();
1925
1926 if (imp == NULL) {
1927 DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
1928 return 1;
1929 }
1930
1931 atomic_inc(&imp->imp_timeouts);
1932
1933 /* The DLM server doesn't want recovery run on its imports. */
1934 if (imp->imp_dlm_fake)
1935 return 1;
1936
1937 /* If this request is for recovery or other primordial tasks,
1938 * then error it out here. */
1939 if (req->rq_ctx_init || req->rq_ctx_fini ||
1940 req->rq_send_state != LUSTRE_IMP_FULL ||
1941 imp->imp_obd->obd_no_recov) {
1942 DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
1943 ptlrpc_import_state_name(req->rq_send_state),
1944 ptlrpc_import_state_name(imp->imp_state));
1945 spin_lock(&req->rq_lock);
1946 req->rq_status = -ETIMEDOUT;
1947 req->rq_err = 1;
1948 spin_unlock(&req->rq_lock);
1949 return 1;
1950 }
1951
1952 /* if a request can't be resent we can't wait for an answer after
1953 the timeout */
1954 if (ptlrpc_no_resend(req)) {
1955 DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
1956 rc = 1;
1957 }
1958
1959 ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
1960
1961 return rc;
1962 }
1963
1964 /**
1965 * Time out all uncompleted requests in request set pointed by \a data
1966 * Callback used when waiting on sets with l_wait_event.
1967 * Always returns 1.
1968 */
1969 int ptlrpc_expired_set(void *data)
1970 {
1971 struct ptlrpc_request_set *set = data;
1972 struct list_head *tmp;
1973 time_t now = get_seconds();
1974
1975 LASSERT(set != NULL);
1976
1977 /*
1978 * A timeout expired. See which reqs it applies to...
1979 */
1980 list_for_each(tmp, &set->set_requests) {
1981 struct ptlrpc_request *req =
1982 list_entry(tmp, struct ptlrpc_request,
1983 rq_set_chain);
1984
1985 /* don't expire request waiting for context */
1986 if (req->rq_wait_ctx)
1987 continue;
1988
1989 /* Request in-flight? */
1990 if (!((req->rq_phase == RQ_PHASE_RPC &&
1991 !req->rq_waiting && !req->rq_resend) ||
1992 (req->rq_phase == RQ_PHASE_BULK)))
1993 continue;
1994
1995 if (req->rq_timedout || /* already dealt with */
1996 req->rq_deadline > now) /* not expired */
1997 continue;
1998
1999 /* Deal with this guy. Do it asynchronously to not block
2000 * ptlrpcd thread. */
2001 ptlrpc_expire_one_request(req, 1);
2002 }
2003
2004 /*
2005 * When waiting for a whole set, we always break out of the
2006 * sleep so we can recalculate the timeout, or enable interrupts
2007 * if everyone's timed out.
2008 */
2009 return 1;
2010 }
2011 EXPORT_SYMBOL(ptlrpc_expired_set);
2012
2013 /**
2014 * Sets rq_intr flag in \a req under spinlock.
2015 */
2016 void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
2017 {
2018 spin_lock(&req->rq_lock);
2019 req->rq_intr = 1;
2020 spin_unlock(&req->rq_lock);
2021 }
2022 EXPORT_SYMBOL(ptlrpc_mark_interrupted);
2023
2024 /**
2025 * Interrupts (sets interrupted flag) all uncompleted requests in
2026 * a set \a data. Callback for l_wait_event for interruptible waits.
2027 */
2028 void ptlrpc_interrupted_set(void *data)
2029 {
2030 struct ptlrpc_request_set *set = data;
2031 struct list_head *tmp;
2032
2033 LASSERT(set != NULL);
2034 CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
2035
2036 list_for_each(tmp, &set->set_requests) {
2037 struct ptlrpc_request *req =
2038 list_entry(tmp, struct ptlrpc_request,
2039 rq_set_chain);
2040
2041 if (req->rq_phase != RQ_PHASE_RPC &&
2042 req->rq_phase != RQ_PHASE_UNREGISTERING)
2043 continue;
2044
2045 ptlrpc_mark_interrupted(req);
2046 }
2047 }
2048 EXPORT_SYMBOL(ptlrpc_interrupted_set);
2049
2050 /**
2051 * Get the smallest timeout in the set; this does NOT set a timeout.
2052 */
2053 int ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
2054 {
2055 struct list_head *tmp;
2056 time_t now = get_seconds();
2057 int timeout = 0;
2058 struct ptlrpc_request *req;
2059 int deadline;
2060
2061 list_for_each(tmp, &set->set_requests) {
2062 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2063
2064 /*
2065 * Request in-flight?
2066 */
2067 if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
2068 (req->rq_phase == RQ_PHASE_BULK) ||
2069 (req->rq_phase == RQ_PHASE_NEW)))
2070 continue;
2071
2072 /*
2073 * Already timed out.
2074 */
2075 if (req->rq_timedout)
2076 continue;
2077
2078 /*
2079 * Waiting for ctx.
2080 */
2081 if (req->rq_wait_ctx)
2082 continue;
2083
2084 if (req->rq_phase == RQ_PHASE_NEW)
2085 deadline = req->rq_sent;
2086 else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
2087 deadline = req->rq_sent;
2088 else
2089 deadline = req->rq_sent + req->rq_timeout;
2090
2091 if (deadline <= now) /* actually expired already */
2092 timeout = 1; /* ASAP */
2093 else if (timeout == 0 || timeout > deadline - now)
2094 timeout = deadline - now;
2095 }
2096 return timeout;
2097 }
2098 EXPORT_SYMBOL(ptlrpc_set_next_timeout);
2099
2100 /**
2101 * Send all unset request from the set and then wait until all
2102 * requests in the set complete (either get a reply, timeout, get an
2103 * error or otherwise be interrupted).
2104 * Returns 0 on success or error code otherwise.
2105 */
2106 int ptlrpc_set_wait(struct ptlrpc_request_set *set)
2107 {
2108 struct list_head *tmp;
2109 struct ptlrpc_request *req;
2110 struct l_wait_info lwi;
2111 int rc, timeout;
2112
2113 if (set->set_producer)
2114 (void)ptlrpc_set_producer(set);
2115 else
2116 list_for_each(tmp, &set->set_requests) {
2117 req = list_entry(tmp, struct ptlrpc_request,
2118 rq_set_chain);
2119 if (req->rq_phase == RQ_PHASE_NEW)
2120 (void)ptlrpc_send_new_req(req);
2121 }
2122
2123 if (list_empty(&set->set_requests))
2124 return 0;
2125
2126 do {
2127 timeout = ptlrpc_set_next_timeout(set);
2128
2129 /* wait until all complete, interrupted, or an in-flight
2130 * req times out */
2131 CDEBUG(D_RPCTRACE, "set %p going to sleep for %d seconds\n",
2132 set, timeout);
2133
2134 if (timeout == 0 && !cfs_signal_pending())
2135 /*
2136 * No requests are in-flight (ether timed out
2137 * or delayed), so we can allow interrupts.
2138 * We still want to block for a limited time,
2139 * so we allow interrupts during the timeout.
2140 */
2141 lwi = LWI_TIMEOUT_INTR_ALL(cfs_time_seconds(1),
2142 ptlrpc_expired_set,
2143 ptlrpc_interrupted_set, set);
2144 else
2145 /*
2146 * At least one request is in flight, so no
2147 * interrupts are allowed. Wait until all
2148 * complete, or an in-flight req times out.
2149 */
2150 lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
2151 ptlrpc_expired_set, set);
2152
2153 rc = l_wait_event(set->set_waitq, ptlrpc_check_set(NULL, set), &lwi);
2154
2155 /* LU-769 - if we ignored the signal because it was already
2156 * pending when we started, we need to handle it now or we risk
2157 * it being ignored forever */
2158 if (rc == -ETIMEDOUT && !lwi.lwi_allow_intr &&
2159 cfs_signal_pending()) {
2160 sigset_t blocked_sigs =
2161 cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
2162
2163 /* In fact we only interrupt for the "fatal" signals
2164 * like SIGINT or SIGKILL. We still ignore less
2165 * important signals since ptlrpc set is not easily
2166 * reentrant from userspace again */
2167 if (cfs_signal_pending())
2168 ptlrpc_interrupted_set(set);
2169 cfs_restore_sigs(blocked_sigs);
2170 }
2171
2172 LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
2173
2174 /* -EINTR => all requests have been flagged rq_intr so next
2175 * check completes.
2176 * -ETIMEDOUT => someone timed out. When all reqs have
2177 * timed out, signals are enabled allowing completion with
2178 * EINTR.
2179 * I don't really care if we go once more round the loop in
2180 * the error cases -eeb. */
2181 if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
2182 list_for_each(tmp, &set->set_requests) {
2183 req = list_entry(tmp, struct ptlrpc_request,
2184 rq_set_chain);
2185 spin_lock(&req->rq_lock);
2186 req->rq_invalid_rqset = 1;
2187 spin_unlock(&req->rq_lock);
2188 }
2189 }
2190 } while (rc != 0 || atomic_read(&set->set_remaining) != 0);
2191
2192 LASSERT(atomic_read(&set->set_remaining) == 0);
2193
2194 rc = set->set_rc; /* rq_status of already freed requests if any */
2195 list_for_each(tmp, &set->set_requests) {
2196 req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
2197
2198 LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
2199 if (req->rq_status != 0)
2200 rc = req->rq_status;
2201 }
2202
2203 if (set->set_interpret != NULL) {
2204 int (*interpreter)(struct ptlrpc_request_set *set, void *, int) =
2205 set->set_interpret;
2206 rc = interpreter(set, set->set_arg, rc);
2207 } else {
2208 struct ptlrpc_set_cbdata *cbdata, *n;
2209 int err;
2210
2211 list_for_each_entry_safe(cbdata, n,
2212 &set->set_cblist, psc_item) {
2213 list_del_init(&cbdata->psc_item);
2214 err = cbdata->psc_interpret(set, cbdata->psc_data, rc);
2215 if (err && !rc)
2216 rc = err;
2217 kfree(cbdata);
2218 }
2219 }
2220
2221 return rc;
2222 }
2223 EXPORT_SYMBOL(ptlrpc_set_wait);
2224
2225 /**
2226 * Helper function for request freeing.
2227 * Called when request count reached zero and request needs to be freed.
2228 * Removes request from all sorts of sending/replay lists it might be on,
2229 * frees network buffers if any are present.
2230 * If \a locked is set, that means caller is already holding import imp_lock
2231 * and so we no longer need to reobtain it (for certain lists manipulations)
2232 */
2233 static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
2234 {
2235 if (request == NULL)
2236 return;
2237 LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
2238 LASSERTF(request->rq_rqbd == NULL, "req %p\n", request);/* client-side */
2239 LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
2240 LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
2241 LASSERTF(list_empty(&request->rq_exp_list), "req %p\n", request);
2242 LASSERTF(!request->rq_replay, "req %p\n", request);
2243
2244 req_capsule_fini(&request->rq_pill);
2245
2246 /* We must take it off the imp_replay_list first. Otherwise, we'll set
2247 * request->rq_reqmsg to NULL while osc_close is dereferencing it. */
2248 if (request->rq_import != NULL) {
2249 if (!locked)
2250 spin_lock(&request->rq_import->imp_lock);
2251 list_del_init(&request->rq_replay_list);
2252 if (!locked)
2253 spin_unlock(&request->rq_import->imp_lock);
2254 }
2255 LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
2256
2257 if (atomic_read(&request->rq_refcount) != 0) {
2258 DEBUG_REQ(D_ERROR, request,
2259 "freeing request with nonzero refcount");
2260 LBUG();
2261 }
2262
2263 if (request->rq_repbuf != NULL)
2264 sptlrpc_cli_free_repbuf(request);
2265 if (request->rq_export != NULL) {
2266 class_export_put(request->rq_export);
2267 request->rq_export = NULL;
2268 }
2269 if (request->rq_import != NULL) {
2270 class_import_put(request->rq_import);
2271 request->rq_import = NULL;
2272 }
2273 if (request->rq_bulk != NULL)
2274 ptlrpc_free_bulk_pin(request->rq_bulk);
2275
2276 if (request->rq_reqbuf != NULL || request->rq_clrbuf != NULL)
2277 sptlrpc_cli_free_reqbuf(request);
2278
2279 if (request->rq_cli_ctx)
2280 sptlrpc_req_put_ctx(request, !locked);
2281
2282 if (request->rq_pool)
2283 __ptlrpc_free_req_to_pool(request);
2284 else
2285 ptlrpc_request_cache_free(request);
2286 }
2287
2288 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked);
2289 /**
2290 * Drop one request reference. Must be called with import imp_lock held.
2291 * When reference count drops to zero, request is freed.
2292 */
2293 void ptlrpc_req_finished_with_imp_lock(struct ptlrpc_request *request)
2294 {
2295 assert_spin_locked(&request->rq_import->imp_lock);
2296 (void)__ptlrpc_req_finished(request, 1);
2297 }
2298 EXPORT_SYMBOL(ptlrpc_req_finished_with_imp_lock);
2299
2300 /**
2301 * Helper function
2302 * Drops one reference count for request \a request.
2303 * \a locked set indicates that caller holds import imp_lock.
2304 * Frees the request when reference count reaches zero.
2305 */
2306 static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
2307 {
2308 if (request == NULL)
2309 return 1;
2310
2311 if (request == LP_POISON ||
2312 request->rq_reqmsg == LP_POISON) {
2313 CERROR("dereferencing freed request (bug 575)\n");
2314 LBUG();
2315 return 1;
2316 }
2317
2318 DEBUG_REQ(D_INFO, request, "refcount now %u",
2319 atomic_read(&request->rq_refcount) - 1);
2320
2321 if (atomic_dec_and_test(&request->rq_refcount)) {
2322 __ptlrpc_free_req(request, locked);
2323 return 1;
2324 }
2325
2326 return 0;
2327 }
2328
2329 /**
2330 * Drops one reference count for a request.
2331 */
2332 void ptlrpc_req_finished(struct ptlrpc_request *request)
2333 {
2334 __ptlrpc_req_finished(request, 0);
2335 }
2336 EXPORT_SYMBOL(ptlrpc_req_finished);
2337
2338 /**
2339 * Returns xid of a \a request
2340 */
2341 __u64 ptlrpc_req_xid(struct ptlrpc_request *request)
2342 {
2343 return request->rq_xid;
2344 }
2345 EXPORT_SYMBOL(ptlrpc_req_xid);
2346
2347 /**
2348 * Disengage the client's reply buffer from the network
2349 * NB does _NOT_ unregister any client-side bulk.
2350 * IDEMPOTENT, but _not_ safe against concurrent callers.
2351 * The request owner (i.e. the thread doing the I/O) must call...
2352 * Returns 0 on success or 1 if unregistering cannot be made.
2353 */
2354 int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
2355 {
2356 int rc;
2357 wait_queue_head_t *wq;
2358 struct l_wait_info lwi;
2359
2360 /*
2361 * Might sleep.
2362 */
2363 LASSERT(!in_interrupt());
2364
2365 /*
2366 * Let's setup deadline for reply unlink.
2367 */
2368 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2369 async && request->rq_reply_deadline == 0)
2370 request->rq_reply_deadline = get_seconds()+LONG_UNLINK;
2371
2372 /*
2373 * Nothing left to do.
2374 */
2375 if (!ptlrpc_client_recv_or_unlink(request))
2376 return 1;
2377
2378 LNetMDUnlink(request->rq_reply_md_h);
2379
2380 /*
2381 * Let's check it once again.
2382 */
2383 if (!ptlrpc_client_recv_or_unlink(request))
2384 return 1;
2385
2386 /*
2387 * Move to "Unregistering" phase as reply was not unlinked yet.
2388 */
2389 ptlrpc_rqphase_move(request, RQ_PHASE_UNREGISTERING);
2390
2391 /*
2392 * Do not wait for unlink to finish.
2393 */
2394 if (async)
2395 return 0;
2396
2397 /*
2398 * We have to l_wait_event() whatever the result, to give liblustre
2399 * a chance to run reply_in_callback(), and to make sure we've
2400 * unlinked before returning a req to the pool.
2401 */
2402 if (request->rq_set != NULL)
2403 wq = &request->rq_set->set_waitq;
2404 else
2405 wq = &request->rq_reply_waitq;
2406
2407 for (;;) {
2408 /* Network access will complete in finite time but the HUGE
2409 * timeout lets us CWARN for visibility of sluggish NALs */
2410 lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
2411 cfs_time_seconds(1), NULL, NULL);
2412 rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
2413 &lwi);
2414 if (rc == 0) {
2415 ptlrpc_rqphase_move(request, request->rq_next_phase);
2416 return 1;
2417 }
2418
2419 LASSERT(rc == -ETIMEDOUT);
2420 DEBUG_REQ(D_WARNING, request,
2421 "Unexpectedly long timeout rvcng=%d unlnk=%d/%d",
2422 request->rq_receiving_reply,
2423 request->rq_req_unlink, request->rq_reply_unlink);
2424 }
2425 return 0;
2426 }
2427 EXPORT_SYMBOL(ptlrpc_unregister_reply);
2428
2429 static void ptlrpc_free_request(struct ptlrpc_request *req)
2430 {
2431 spin_lock(&req->rq_lock);
2432 req->rq_replay = 0;
2433 spin_unlock(&req->rq_lock);
2434
2435 if (req->rq_commit_cb != NULL)
2436 req->rq_commit_cb(req);
2437 list_del_init(&req->rq_replay_list);
2438
2439 __ptlrpc_req_finished(req, 1);
2440 }
2441
2442 /**
2443 * the request is committed and dropped from the replay list of its import
2444 */
2445 void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
2446 {
2447 struct obd_import *imp = req->rq_import;
2448
2449 spin_lock(&imp->imp_lock);
2450 if (list_empty(&req->rq_replay_list)) {
2451 spin_unlock(&imp->imp_lock);
2452 return;
2453 }
2454
2455 if (force || req->rq_transno <= imp->imp_peer_committed_transno)
2456 ptlrpc_free_request(req);
2457
2458 spin_unlock(&imp->imp_lock);
2459 }
2460 EXPORT_SYMBOL(ptlrpc_request_committed);
2461
2462 /**
2463 * Iterates through replay_list on import and prunes
2464 * all requests have transno smaller than last_committed for the
2465 * import and don't have rq_replay set.
2466 * Since requests are sorted in transno order, stops when meeting first
2467 * transno bigger than last_committed.
2468 * caller must hold imp->imp_lock
2469 */
2470 void ptlrpc_free_committed(struct obd_import *imp)
2471 {
2472 struct ptlrpc_request *req, *saved;
2473 struct ptlrpc_request *last_req = NULL; /* temporary fire escape */
2474 bool skip_committed_list = true;
2475
2476 LASSERT(imp != NULL);
2477 assert_spin_locked(&imp->imp_lock);
2478
2479 if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
2480 imp->imp_generation == imp->imp_last_generation_checked) {
2481 CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
2482 imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
2483 return;
2484 }
2485 CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
2486 imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
2487 imp->imp_generation);
2488
2489 if (imp->imp_generation != imp->imp_last_generation_checked)
2490 skip_committed_list = false;
2491
2492 imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
2493 imp->imp_last_generation_checked = imp->imp_generation;
2494
2495 list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
2496 rq_replay_list) {
2497 /* XXX ok to remove when 1357 resolved - rread 05/29/03 */
2498 LASSERT(req != last_req);
2499 last_req = req;
2500
2501 if (req->rq_transno == 0) {
2502 DEBUG_REQ(D_EMERG, req, "zero transno during replay");
2503 LBUG();
2504 }
2505 if (req->rq_import_generation < imp->imp_generation) {
2506 DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
2507 goto free_req;
2508 }
2509
2510 /* not yet committed */
2511 if (req->rq_transno > imp->imp_peer_committed_transno) {
2512 DEBUG_REQ(D_RPCTRACE, req, "stopping search");
2513 break;
2514 }
2515
2516 if (req->rq_replay) {
2517 DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
2518 list_move_tail(&req->rq_replay_list,
2519 &imp->imp_committed_list);
2520 continue;
2521 }
2522
2523 DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
2524 imp->imp_peer_committed_transno);
2525 free_req:
2526 ptlrpc_free_request(req);
2527 }
2528 if (skip_committed_list)
2529 return;
2530
2531 list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
2532 rq_replay_list) {
2533 LASSERT(req->rq_transno != 0);
2534 if (req->rq_import_generation < imp->imp_generation) {
2535 DEBUG_REQ(D_RPCTRACE, req, "free stale open request");
2536 ptlrpc_free_request(req);
2537 }
2538 }
2539 }
2540
2541 void ptlrpc_cleanup_client(struct obd_import *imp)
2542 {
2543 }
2544 EXPORT_SYMBOL(ptlrpc_cleanup_client);
2545
2546 /**
2547 * Schedule previously sent request for resend.
2548 * For bulk requests we assign new xid (to avoid problems with
2549 * lost replies and therefore several transfers landing into same buffer
2550 * from different sending attempts).
2551 */
2552 void ptlrpc_resend_req(struct ptlrpc_request *req)
2553 {
2554 DEBUG_REQ(D_HA, req, "going to resend");
2555 spin_lock(&req->rq_lock);
2556
2557 /* Request got reply but linked to the import list still.
2558 Let ptlrpc_check_set() to process it. */
2559 if (ptlrpc_client_replied(req)) {
2560 spin_unlock(&req->rq_lock);
2561 DEBUG_REQ(D_HA, req, "it has reply, so skip it");
2562 return;
2563 }
2564
2565 lustre_msg_set_handle(req->rq_reqmsg, &(struct lustre_handle){ 0 });
2566 req->rq_status = -EAGAIN;
2567
2568 req->rq_resend = 1;
2569 req->rq_net_err = 0;
2570 req->rq_timedout = 0;
2571 if (req->rq_bulk) {
2572 __u64 old_xid = req->rq_xid;
2573
2574 /* ensure previous bulk fails */
2575 req->rq_xid = ptlrpc_next_xid();
2576 CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
2577 old_xid, req->rq_xid);
2578 }
2579 ptlrpc_client_wake_req(req);
2580 spin_unlock(&req->rq_lock);
2581 }
2582 EXPORT_SYMBOL(ptlrpc_resend_req);
2583
2584 /* XXX: this function and rq_status are currently unused */
2585 void ptlrpc_restart_req(struct ptlrpc_request *req)
2586 {
2587 DEBUG_REQ(D_HA, req, "restarting (possibly-)completed request");
2588 req->rq_status = -ERESTARTSYS;
2589
2590 spin_lock(&req->rq_lock);
2591 req->rq_restart = 1;
2592 req->rq_timedout = 0;
2593 ptlrpc_client_wake_req(req);
2594 spin_unlock(&req->rq_lock);
2595 }
2596 EXPORT_SYMBOL(ptlrpc_restart_req);
2597
2598 /**
2599 * Grab additional reference on a request \a req
2600 */
2601 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
2602 {
2603 atomic_inc(&req->rq_refcount);
2604 return req;
2605 }
2606 EXPORT_SYMBOL(ptlrpc_request_addref);
2607
2608 /**
2609 * Add a request to import replay_list.
2610 * Must be called under imp_lock
2611 */
2612 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2613 struct obd_import *imp)
2614 {
2615 struct list_head *tmp;
2616
2617 assert_spin_locked(&imp->imp_lock);
2618
2619 if (req->rq_transno == 0) {
2620 DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
2621 LBUG();
2622 }
2623
2624 /* clear this for new requests that were resent as well
2625 as resent replayed requests. */
2626 lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
2627
2628 /* don't re-add requests that have been replayed */
2629 if (!list_empty(&req->rq_replay_list))
2630 return;
2631
2632 lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
2633
2634 LASSERT(imp->imp_replayable);
2635 /* Balanced in ptlrpc_free_committed, usually. */
2636 ptlrpc_request_addref(req);
2637 list_for_each_prev(tmp, &imp->imp_replay_list) {
2638 struct ptlrpc_request *iter =
2639 list_entry(tmp, struct ptlrpc_request,
2640 rq_replay_list);
2641
2642 /* We may have duplicate transnos if we create and then
2643 * open a file, or for closes retained if to match creating
2644 * opens, so use req->rq_xid as a secondary key.
2645 * (See bugs 684, 685, and 428.)
2646 * XXX no longer needed, but all opens need transnos!
2647 */
2648 if (iter->rq_transno > req->rq_transno)
2649 continue;
2650
2651 if (iter->rq_transno == req->rq_transno) {
2652 LASSERT(iter->rq_xid != req->rq_xid);
2653 if (iter->rq_xid > req->rq_xid)
2654 continue;
2655 }
2656
2657 list_add(&req->rq_replay_list, &iter->rq_replay_list);
2658 return;
2659 }
2660
2661 list_add(&req->rq_replay_list, &imp->imp_replay_list);
2662 }
2663 EXPORT_SYMBOL(ptlrpc_retain_replayable_request);
2664
2665 /**
2666 * Send request and wait until it completes.
2667 * Returns request processing status.
2668 */
2669 int ptlrpc_queue_wait(struct ptlrpc_request *req)
2670 {
2671 struct ptlrpc_request_set *set;
2672 int rc;
2673
2674 LASSERT(req->rq_set == NULL);
2675 LASSERT(!req->rq_receiving_reply);
2676
2677 set = ptlrpc_prep_set();
2678 if (set == NULL) {
2679 CERROR("Unable to allocate ptlrpc set.");
2680 return -ENOMEM;
2681 }
2682
2683 /* for distributed debugging */
2684 lustre_msg_set_status(req->rq_reqmsg, current_pid());
2685
2686 /* add a ref for the set (see comment in ptlrpc_set_add_req) */
2687 ptlrpc_request_addref(req);
2688 ptlrpc_set_add_req(set, req);
2689 rc = ptlrpc_set_wait(set);
2690 ptlrpc_set_destroy(set);
2691
2692 return rc;
2693 }
2694 EXPORT_SYMBOL(ptlrpc_queue_wait);
2695
2696 struct ptlrpc_replay_async_args {
2697 int praa_old_state;
2698 int praa_old_status;
2699 };
2700
2701 /**
2702 * Callback used for replayed requests reply processing.
2703 * In case of successful reply calls registered request replay callback.
2704 * In case of error restart replay process.
2705 */
2706 static int ptlrpc_replay_interpret(const struct lu_env *env,
2707 struct ptlrpc_request *req,
2708 void *data, int rc)
2709 {
2710 struct ptlrpc_replay_async_args *aa = data;
2711 struct obd_import *imp = req->rq_import;
2712
2713 atomic_dec(&imp->imp_replay_inflight);
2714
2715 if (!ptlrpc_client_replied(req)) {
2716 CERROR("request replay timed out, restarting recovery\n");
2717 rc = -ETIMEDOUT;
2718 goto out;
2719 }
2720
2721 if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
2722 (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
2723 lustre_msg_get_status(req->rq_repmsg) == -ENODEV)) {
2724 rc = lustre_msg_get_status(req->rq_repmsg);
2725 goto out;
2726 }
2727
2728 /** VBR: check version failure */
2729 if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
2730 /** replay was failed due to version mismatch */
2731 DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
2732 spin_lock(&imp->imp_lock);
2733 imp->imp_vbr_failed = 1;
2734 imp->imp_no_lock_replay = 1;
2735 spin_unlock(&imp->imp_lock);
2736 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2737 } else {
2738 /** The transno had better not change over replay. */
2739 LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
2740 lustre_msg_get_transno(req->rq_repmsg) ||
2741 lustre_msg_get_transno(req->rq_repmsg) == 0,
2742 "%#llx/%#llx\n",
2743 lustre_msg_get_transno(req->rq_reqmsg),
2744 lustre_msg_get_transno(req->rq_repmsg));
2745 }
2746
2747 spin_lock(&imp->imp_lock);
2748 /** if replays by version then gap occur on server, no trust to locks */
2749 if (lustre_msg_get_flags(req->rq_repmsg) & MSG_VERSION_REPLAY)
2750 imp->imp_no_lock_replay = 1;
2751 imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
2752 spin_unlock(&imp->imp_lock);
2753 LASSERT(imp->imp_last_replay_transno);
2754
2755 /* transaction number shouldn't be bigger than the latest replayed */
2756 if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
2757 DEBUG_REQ(D_ERROR, req,
2758 "Reported transno %llu is bigger than the replayed one: %llu",
2759 req->rq_transno,
2760 lustre_msg_get_transno(req->rq_reqmsg));
2761 rc = -EINVAL;
2762 goto out;
2763 }
2764
2765 DEBUG_REQ(D_HA, req, "got rep");
2766
2767 /* let the callback do fixups, possibly including in the request */
2768 if (req->rq_replay_cb)
2769 req->rq_replay_cb(req);
2770
2771 if (ptlrpc_client_replied(req) &&
2772 lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
2773 DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
2774 lustre_msg_get_status(req->rq_repmsg),
2775 aa->praa_old_status);
2776 } else {
2777 /* Put it back for re-replay. */
2778 lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
2779 }
2780
2781 /*
2782 * Errors while replay can set transno to 0, but
2783 * imp_last_replay_transno shouldn't be set to 0 anyway
2784 */
2785 if (req->rq_transno == 0)
2786 CERROR("Transno is 0 during replay!\n");
2787
2788 /* continue with recovery */
2789 rc = ptlrpc_import_recovery_state_machine(imp);
2790 out:
2791 req->rq_send_state = aa->praa_old_state;
2792
2793 if (rc != 0)
2794 /* this replay failed, so restart recovery */
2795 ptlrpc_connect_import(imp);
2796
2797 return rc;
2798 }
2799
2800 /**
2801 * Prepares and queues request for replay.
2802 * Adds it to ptlrpcd queue for actual sending.
2803 * Returns 0 on success.
2804 */
2805 int ptlrpc_replay_req(struct ptlrpc_request *req)
2806 {
2807 struct ptlrpc_replay_async_args *aa;
2808
2809 LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
2810
2811 LASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
2812 aa = ptlrpc_req_async_args(req);
2813 memset(aa, 0, sizeof(*aa));
2814
2815 /* Prepare request to be resent with ptlrpcd */
2816 aa->praa_old_state = req->rq_send_state;
2817 req->rq_send_state = LUSTRE_IMP_REPLAY;
2818 req->rq_phase = RQ_PHASE_NEW;
2819 req->rq_next_phase = RQ_PHASE_UNDEFINED;
2820 if (req->rq_repmsg)
2821 aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
2822 req->rq_status = 0;
2823 req->rq_interpret_reply = ptlrpc_replay_interpret;
2824 /* Readjust the timeout for current conditions */
2825 ptlrpc_at_set_req_timeout(req);
2826
2827 /* Tell server the net_latency, so the server can calculate how long
2828 * it should wait for next replay */
2829 lustre_msg_set_service_time(req->rq_reqmsg,
2830 ptlrpc_at_get_net_latency(req));
2831 DEBUG_REQ(D_HA, req, "REPLAY");
2832
2833 atomic_inc(&req->rq_import->imp_replay_inflight);
2834 ptlrpc_request_addref(req); /* ptlrpcd needs a ref */
2835
2836 ptlrpcd_add_req(req, PDL_POLICY_LOCAL, -1);
2837 return 0;
2838 }
2839 EXPORT_SYMBOL(ptlrpc_replay_req);
2840
2841 /**
2842 * Aborts all in-flight request on import \a imp sending and delayed lists
2843 */
2844 void ptlrpc_abort_inflight(struct obd_import *imp)
2845 {
2846 struct list_head *tmp, *n;
2847
2848 /* Make sure that no new requests get processed for this import.
2849 * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
2850 * this flag and then putting requests on sending_list or delayed_list.
2851 */
2852 spin_lock(&imp->imp_lock);
2853
2854 /* XXX locking? Maybe we should remove each request with the list
2855 * locked? Also, how do we know if the requests on the list are
2856 * being freed at this time?
2857 */
2858 list_for_each_safe(tmp, n, &imp->imp_sending_list) {
2859 struct ptlrpc_request *req =
2860 list_entry(tmp, struct ptlrpc_request, rq_list);
2861
2862 DEBUG_REQ(D_RPCTRACE, req, "inflight");
2863
2864 spin_lock(&req->rq_lock);
2865 if (req->rq_import_generation < imp->imp_generation) {
2866 req->rq_err = 1;
2867 req->rq_status = -EIO;
2868 ptlrpc_client_wake_req(req);
2869 }
2870 spin_unlock(&req->rq_lock);
2871 }
2872
2873 list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
2874 struct ptlrpc_request *req =
2875 list_entry(tmp, struct ptlrpc_request, rq_list);
2876
2877 DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
2878
2879 spin_lock(&req->rq_lock);
2880 if (req->rq_import_generation < imp->imp_generation) {
2881 req->rq_err = 1;
2882 req->rq_status = -EIO;
2883 ptlrpc_client_wake_req(req);
2884 }
2885 spin_unlock(&req->rq_lock);
2886 }
2887
2888 /* Last chance to free reqs left on the replay list, but we
2889 * will still leak reqs that haven't committed. */
2890 if (imp->imp_replayable)
2891 ptlrpc_free_committed(imp);
2892
2893 spin_unlock(&imp->imp_lock);
2894 }
2895 EXPORT_SYMBOL(ptlrpc_abort_inflight);
2896
2897 /**
2898 * Abort all uncompleted requests in request set \a set
2899 */
2900 void ptlrpc_abort_set(struct ptlrpc_request_set *set)
2901 {
2902 struct list_head *tmp, *pos;
2903
2904 LASSERT(set != NULL);
2905
2906 list_for_each_safe(pos, tmp, &set->set_requests) {
2907 struct ptlrpc_request *req =
2908 list_entry(pos, struct ptlrpc_request,
2909 rq_set_chain);
2910
2911 spin_lock(&req->rq_lock);
2912 if (req->rq_phase != RQ_PHASE_RPC) {
2913 spin_unlock(&req->rq_lock);
2914 continue;
2915 }
2916
2917 req->rq_err = 1;
2918 req->rq_status = -EINTR;
2919 ptlrpc_client_wake_req(req);
2920 spin_unlock(&req->rq_lock);
2921 }
2922 }
2923
2924 static __u64 ptlrpc_last_xid;
2925 static spinlock_t ptlrpc_last_xid_lock;
2926
2927 /**
2928 * Initialize the XID for the node. This is common among all requests on
2929 * this node, and only requires the property that it is monotonically
2930 * increasing. It does not need to be sequential. Since this is also used
2931 * as the RDMA match bits, it is important that a single client NOT have
2932 * the same match bits for two different in-flight requests, hence we do
2933 * NOT want to have an XID per target or similar.
2934 *
2935 * To avoid an unlikely collision between match bits after a client reboot
2936 * (which would deliver old data into the wrong RDMA buffer) initialize
2937 * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
2938 * If the time is clearly incorrect, we instead use a 62-bit random number.
2939 * In the worst case the random number will overflow 1M RPCs per second in
2940 * 9133 years, or permutations thereof.
2941 */
2942 #define YEAR_2004 (1ULL << 30)
2943 void ptlrpc_init_xid(void)
2944 {
2945 time_t now = get_seconds();
2946
2947 spin_lock_init(&ptlrpc_last_xid_lock);
2948 if (now < YEAR_2004) {
2949 cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid));
2950 ptlrpc_last_xid >>= 2;
2951 ptlrpc_last_xid |= (1ULL << 61);
2952 } else {
2953 ptlrpc_last_xid = (__u64)now << 20;
2954 }
2955
2956 /* Always need to be aligned to a power-of-two for multi-bulk BRW */
2957 CLASSERT((PTLRPC_BULK_OPS_COUNT & (PTLRPC_BULK_OPS_COUNT - 1)) == 0);
2958 ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK;
2959 }
2960
2961 /**
2962 * Increase xid and returns resulting new value to the caller.
2963 *
2964 * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
2965 * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
2966 * itself uses the last bulk xid needed, so the server can determine the
2967 * the number of bulk transfers from the RPC XID and a bitmask. The starting
2968 * xid must align to a power-of-two value.
2969 *
2970 * This is assumed to be true due to the initial ptlrpc_last_xid
2971 * value also being initialized to a power-of-two value. LU-1431
2972 */
2973 __u64 ptlrpc_next_xid(void)
2974 {
2975 __u64 next;
2976
2977 spin_lock(&ptlrpc_last_xid_lock);
2978 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2979 ptlrpc_last_xid = next;
2980 spin_unlock(&ptlrpc_last_xid_lock);
2981
2982 return next;
2983 }
2984 EXPORT_SYMBOL(ptlrpc_next_xid);
2985
2986 /**
2987 * Get a glimpse at what next xid value might have been.
2988 * Returns possible next xid.
2989 */
2990 __u64 ptlrpc_sample_next_xid(void)
2991 {
2992 #if BITS_PER_LONG == 32
2993 /* need to avoid possible word tearing on 32-bit systems */
2994 __u64 next;
2995
2996 spin_lock(&ptlrpc_last_xid_lock);
2997 next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
2998 spin_unlock(&ptlrpc_last_xid_lock);
2999
3000 return next;
3001 #else
3002 /* No need to lock, since returned value is racy anyways */
3003 return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
3004 #endif
3005 }
3006 EXPORT_SYMBOL(ptlrpc_sample_next_xid);
3007
3008 /**
3009 * Functions for operating ptlrpc workers.
3010 *
3011 * A ptlrpc work is a function which will be running inside ptlrpc context.
3012 * The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
3013 *
3014 * 1. after a work is created, it can be used many times, that is:
3015 * handler = ptlrpcd_alloc_work();
3016 * ptlrpcd_queue_work();
3017 *
3018 * queue it again when necessary:
3019 * ptlrpcd_queue_work();
3020 * ptlrpcd_destroy_work();
3021 * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
3022 * it will only be queued once in any time. Also as its name implies, it may
3023 * have delay before it really runs by ptlrpcd thread.
3024 */
3025 struct ptlrpc_work_async_args {
3026 int (*cb)(const struct lu_env *, void *);
3027 void *cbdata;
3028 };
3029
3030 static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
3031 {
3032 /* re-initialize the req */
3033 req->rq_timeout = obd_timeout;
3034 req->rq_sent = get_seconds();
3035 req->rq_deadline = req->rq_sent + req->rq_timeout;
3036 req->rq_reply_deadline = req->rq_deadline;
3037 req->rq_phase = RQ_PHASE_INTERPRET;
3038 req->rq_next_phase = RQ_PHASE_COMPLETE;
3039 req->rq_xid = ptlrpc_next_xid();
3040 req->rq_import_generation = req->rq_import->imp_generation;
3041
3042 ptlrpcd_add_req(req, PDL_POLICY_ROUND, -1);
3043 }
3044
3045 static int work_interpreter(const struct lu_env *env,
3046 struct ptlrpc_request *req, void *data, int rc)
3047 {
3048 struct ptlrpc_work_async_args *arg = data;
3049
3050 LASSERT(ptlrpcd_check_work(req));
3051 LASSERT(arg->cb != NULL);
3052
3053 rc = arg->cb(env, arg->cbdata);
3054
3055 list_del_init(&req->rq_set_chain);
3056 req->rq_set = NULL;
3057
3058 if (atomic_dec_return(&req->rq_refcount) > 1) {
3059 atomic_set(&req->rq_refcount, 2);
3060 ptlrpcd_add_work_req(req);
3061 }
3062 return rc;
3063 }
3064
3065 static int worker_format;
3066
3067 static int ptlrpcd_check_work(struct ptlrpc_request *req)
3068 {
3069 return req->rq_pill.rc_fmt == (void *)&worker_format;
3070 }
3071
3072 /**
3073 * Create a work for ptlrpc.
3074 */
3075 void *ptlrpcd_alloc_work(struct obd_import *imp,
3076 int (*cb)(const struct lu_env *, void *), void *cbdata)
3077 {
3078 struct ptlrpc_request *req = NULL;
3079 struct ptlrpc_work_async_args *args;
3080
3081 might_sleep();
3082
3083 if (cb == NULL)
3084 return ERR_PTR(-EINVAL);
3085
3086 /* copy some code from deprecated fakereq. */
3087 req = ptlrpc_request_cache_alloc(GFP_NOFS);
3088 if (req == NULL) {
3089 CERROR("ptlrpc: run out of memory!\n");
3090 return ERR_PTR(-ENOMEM);
3091 }
3092
3093 req->rq_send_state = LUSTRE_IMP_FULL;
3094 req->rq_type = PTL_RPC_MSG_REQUEST;
3095 req->rq_import = class_import_get(imp);
3096 req->rq_export = NULL;
3097 req->rq_interpret_reply = work_interpreter;
3098 /* don't want reply */
3099 req->rq_receiving_reply = 0;
3100 req->rq_req_unlink = req->rq_reply_unlink = 0;
3101 req->rq_no_delay = req->rq_no_resend = 1;
3102 req->rq_pill.rc_fmt = (void *)&worker_format;
3103
3104 spin_lock_init(&req->rq_lock);
3105 INIT_LIST_HEAD(&req->rq_list);
3106 INIT_LIST_HEAD(&req->rq_replay_list);
3107 INIT_LIST_HEAD(&req->rq_set_chain);
3108 INIT_LIST_HEAD(&req->rq_history_list);
3109 INIT_LIST_HEAD(&req->rq_exp_list);
3110 init_waitqueue_head(&req->rq_reply_waitq);
3111 init_waitqueue_head(&req->rq_set_waitq);
3112 atomic_set(&req->rq_refcount, 1);
3113
3114 CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
3115 args = ptlrpc_req_async_args(req);
3116 args->cb = cb;
3117 args->cbdata = cbdata;
3118
3119 return req;
3120 }
3121 EXPORT_SYMBOL(ptlrpcd_alloc_work);
3122
3123 void ptlrpcd_destroy_work(void *handler)
3124 {
3125 struct ptlrpc_request *req = handler;
3126
3127 if (req)
3128 ptlrpc_req_finished(req);
3129 }
3130 EXPORT_SYMBOL(ptlrpcd_destroy_work);
3131
3132 int ptlrpcd_queue_work(void *handler)
3133 {
3134 struct ptlrpc_request *req = handler;
3135
3136 /*
3137 * Check if the req is already being queued.
3138 *
3139 * Here comes a trick: it lacks a way of checking if a req is being
3140 * processed reliably in ptlrpc. Here I have to use refcount of req
3141 * for this purpose. This is okay because the caller should use this
3142 * req as opaque data. - Jinshan
3143 */
3144 LASSERT(atomic_read(&req->rq_refcount) > 0);
3145 if (atomic_inc_return(&req->rq_refcount) == 2)
3146 ptlrpcd_add_work_req(req);
3147 return 0;
3148 }
3149 EXPORT_SYMBOL(ptlrpcd_queue_work);