4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/perf_event.h>
19 #include <linux/platform_device.h>
20 #include <linux/spinlock.h>
21 #include <linux/uaccess.h>
23 #include <asm/cputype.h>
25 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
29 static struct platform_device *pmu_device;
32 * Hardware lock to serialize accesses to PMU registers. Needed for the
33 * read/modify/write sequences.
35 static DEFINE_RAW_SPINLOCK(pmu_lock);
38 * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
39 * another platform that supports more, we need to increase this to be the
40 * largest of all platforms.
42 * ARMv7 supports up to 32 events:
43 * cycle counter CCNT + 31 events counters CNT0..30.
44 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
46 #define ARMPMU_MAX_HWEVENTS 33
48 /* The events for a given CPU. */
49 struct cpu_hw_events {
51 * The events that are active on the CPU for the given index. Index 0
54 struct perf_event *events[ARMPMU_MAX_HWEVENTS];
57 * A 1 bit for an index indicates that the counter is being used for
58 * an event. A 0 means that the counter can be used.
60 unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
63 * A 1 bit for an index indicates that the counter is actively being
66 unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
68 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
71 enum arm_perf_pmu_ids id;
73 irqreturn_t (*handle_irq)(int irq_num, void *dev);
74 void (*enable)(struct hw_perf_event *evt, int idx);
75 void (*disable)(struct hw_perf_event *evt, int idx);
76 int (*get_event_idx)(struct cpu_hw_events *cpuc,
77 struct hw_perf_event *hwc);
78 u32 (*read_counter)(int idx);
79 void (*write_counter)(int idx, u32 val);
82 void (*reset)(void *);
83 const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
84 [PERF_COUNT_HW_CACHE_OP_MAX]
85 [PERF_COUNT_HW_CACHE_RESULT_MAX];
86 const unsigned (*event_map)[PERF_COUNT_HW_MAX];
92 /* Set at runtime when we know what CPU type we are. */
93 static const struct arm_pmu *armpmu;
96 armpmu_get_pmu_id(void)
105 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
108 armpmu_get_max_events(void)
113 max_events = armpmu->num_events;
117 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
119 int perf_num_counters(void)
121 return armpmu_get_max_events();
123 EXPORT_SYMBOL_GPL(perf_num_counters);
125 #define HW_OP_UNSUPPORTED 0xFFFF
128 PERF_COUNT_HW_CACHE_##_x
130 #define CACHE_OP_UNSUPPORTED 0xFFFF
133 armpmu_map_cache_event(u64 config)
135 unsigned int cache_type, cache_op, cache_result, ret;
137 cache_type = (config >> 0) & 0xff;
138 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
141 cache_op = (config >> 8) & 0xff;
142 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
145 cache_result = (config >> 16) & 0xff;
146 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
149 ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
151 if (ret == CACHE_OP_UNSUPPORTED)
158 armpmu_map_event(u64 config)
160 int mapping = (*armpmu->event_map)[config];
161 return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
165 armpmu_map_raw_event(u64 config)
167 return (int)(config & armpmu->raw_event_mask);
171 armpmu_event_set_period(struct perf_event *event,
172 struct hw_perf_event *hwc,
175 s64 left = local64_read(&hwc->period_left);
176 s64 period = hwc->sample_period;
179 if (unlikely(left <= -period)) {
181 local64_set(&hwc->period_left, left);
182 hwc->last_period = period;
186 if (unlikely(left <= 0)) {
188 local64_set(&hwc->period_left, left);
189 hwc->last_period = period;
193 if (left > (s64)armpmu->max_period)
194 left = armpmu->max_period;
196 local64_set(&hwc->prev_count, (u64)-left);
198 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
200 perf_event_update_userpage(event);
206 armpmu_event_update(struct perf_event *event,
207 struct hw_perf_event *hwc,
208 int idx, int overflow)
210 u64 delta, prev_raw_count, new_raw_count;
213 prev_raw_count = local64_read(&hwc->prev_count);
214 new_raw_count = armpmu->read_counter(idx);
216 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
217 new_raw_count) != prev_raw_count)
220 new_raw_count &= armpmu->max_period;
221 prev_raw_count &= armpmu->max_period;
224 delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
226 delta = new_raw_count - prev_raw_count;
228 local64_add(delta, &event->count);
229 local64_sub(delta, &hwc->period_left);
231 return new_raw_count;
235 armpmu_read(struct perf_event *event)
237 struct hw_perf_event *hwc = &event->hw;
239 /* Don't read disabled counters! */
243 armpmu_event_update(event, hwc, hwc->idx, 0);
247 armpmu_stop(struct perf_event *event, int flags)
249 struct hw_perf_event *hwc = &event->hw;
255 * ARM pmu always has to update the counter, so ignore
256 * PERF_EF_UPDATE, see comments in armpmu_start().
258 if (!(hwc->state & PERF_HES_STOPPED)) {
259 armpmu->disable(hwc, hwc->idx);
260 barrier(); /* why? */
261 armpmu_event_update(event, hwc, hwc->idx, 0);
262 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
267 armpmu_start(struct perf_event *event, int flags)
269 struct hw_perf_event *hwc = &event->hw;
275 * ARM pmu always has to reprogram the period, so ignore
276 * PERF_EF_RELOAD, see the comment below.
278 if (flags & PERF_EF_RELOAD)
279 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
283 * Set the period again. Some counters can't be stopped, so when we
284 * were stopped we simply disabled the IRQ source and the counter
285 * may have been left counting. If we don't do this step then we may
286 * get an interrupt too soon or *way* too late if the overflow has
287 * happened since disabling.
289 armpmu_event_set_period(event, hwc, hwc->idx);
290 armpmu->enable(hwc, hwc->idx);
294 armpmu_del(struct perf_event *event, int flags)
296 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
297 struct hw_perf_event *hwc = &event->hw;
302 clear_bit(idx, cpuc->active_mask);
303 armpmu_stop(event, PERF_EF_UPDATE);
304 cpuc->events[idx] = NULL;
305 clear_bit(idx, cpuc->used_mask);
307 perf_event_update_userpage(event);
311 armpmu_add(struct perf_event *event, int flags)
313 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
314 struct hw_perf_event *hwc = &event->hw;
318 perf_pmu_disable(event->pmu);
320 /* If we don't have a space for the counter then finish early. */
321 idx = armpmu->get_event_idx(cpuc, hwc);
328 * If there is an event in the counter we are going to use then make
329 * sure it is disabled.
332 armpmu->disable(hwc, idx);
333 cpuc->events[idx] = event;
334 set_bit(idx, cpuc->active_mask);
336 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
337 if (flags & PERF_EF_START)
338 armpmu_start(event, PERF_EF_RELOAD);
340 /* Propagate our changes to the userspace mapping. */
341 perf_event_update_userpage(event);
344 perf_pmu_enable(event->pmu);
348 static struct pmu pmu;
351 validate_event(struct cpu_hw_events *cpuc,
352 struct perf_event *event)
354 struct hw_perf_event fake_event = event->hw;
356 if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
359 return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
363 validate_group(struct perf_event *event)
365 struct perf_event *sibling, *leader = event->group_leader;
366 struct cpu_hw_events fake_pmu;
368 memset(&fake_pmu, 0, sizeof(fake_pmu));
370 if (!validate_event(&fake_pmu, leader))
373 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
374 if (!validate_event(&fake_pmu, sibling))
378 if (!validate_event(&fake_pmu, event))
384 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
386 struct arm_pmu_platdata *plat = dev_get_platdata(&pmu_device->dev);
388 return plat->handle_irq(irq, dev, armpmu->handle_irq);
392 armpmu_reserve_hardware(void)
394 struct arm_pmu_platdata *plat;
395 irq_handler_t handle_irq;
396 int i, err = -ENODEV, irq;
398 pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
399 if (IS_ERR(pmu_device)) {
400 pr_warning("unable to reserve pmu\n");
401 return PTR_ERR(pmu_device);
404 init_pmu(ARM_PMU_DEVICE_CPU);
406 plat = dev_get_platdata(&pmu_device->dev);
407 if (plat && plat->handle_irq)
408 handle_irq = armpmu_platform_irq;
410 handle_irq = armpmu->handle_irq;
412 if (pmu_device->num_resources < 1) {
413 pr_err("no irqs for PMUs defined\n");
417 for (i = 0; i < pmu_device->num_resources; ++i) {
418 irq = platform_get_irq(pmu_device, i);
422 err = request_irq(irq, handle_irq,
423 IRQF_DISABLED | IRQF_NOBALANCING,
426 pr_warning("unable to request IRQ%d for ARM perf "
433 for (i = i - 1; i >= 0; --i) {
434 irq = platform_get_irq(pmu_device, i);
438 release_pmu(pmu_device);
446 armpmu_release_hardware(void)
450 for (i = pmu_device->num_resources - 1; i >= 0; --i) {
451 irq = platform_get_irq(pmu_device, i);
457 release_pmu(pmu_device);
461 static atomic_t active_events = ATOMIC_INIT(0);
462 static DEFINE_MUTEX(pmu_reserve_mutex);
465 hw_perf_event_destroy(struct perf_event *event)
467 if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
468 armpmu_release_hardware();
469 mutex_unlock(&pmu_reserve_mutex);
474 __hw_perf_event_init(struct perf_event *event)
476 struct hw_perf_event *hwc = &event->hw;
479 /* Decode the generic type into an ARM event identifier. */
480 if (PERF_TYPE_HARDWARE == event->attr.type) {
481 mapping = armpmu_map_event(event->attr.config);
482 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
483 mapping = armpmu_map_cache_event(event->attr.config);
484 } else if (PERF_TYPE_RAW == event->attr.type) {
485 mapping = armpmu_map_raw_event(event->attr.config);
487 pr_debug("event type %x not supported\n", event->attr.type);
492 pr_debug("event %x:%llx not supported\n", event->attr.type,
498 * Check whether we need to exclude the counter from certain modes.
499 * The ARM performance counters are on all of the time so if someone
500 * has asked us for some excludes then we have to fail.
502 if (event->attr.exclude_kernel || event->attr.exclude_user ||
503 event->attr.exclude_hv || event->attr.exclude_idle) {
504 pr_debug("ARM performance counters do not support "
510 * We don't assign an index until we actually place the event onto
511 * hardware. Use -1 to signify that we haven't decided where to put it
512 * yet. For SMP systems, each core has it's own PMU so we can't do any
513 * clever allocation or constraints checking at this point.
518 * Store the event encoding into the config_base field. config and
519 * event_base are unused as the only 2 things we need to know are
520 * the event mapping and the counter to use. The counter to use is
521 * also the indx and the config_base is the event type.
523 hwc->config_base = (unsigned long)mapping;
527 if (!hwc->sample_period) {
528 hwc->sample_period = armpmu->max_period;
529 hwc->last_period = hwc->sample_period;
530 local64_set(&hwc->period_left, hwc->sample_period);
534 if (event->group_leader != event) {
535 err = validate_group(event);
543 static int armpmu_event_init(struct perf_event *event)
547 switch (event->attr.type) {
549 case PERF_TYPE_HARDWARE:
550 case PERF_TYPE_HW_CACHE:
560 event->destroy = hw_perf_event_destroy;
562 if (!atomic_inc_not_zero(&active_events)) {
563 mutex_lock(&pmu_reserve_mutex);
564 if (atomic_read(&active_events) == 0) {
565 err = armpmu_reserve_hardware();
569 atomic_inc(&active_events);
570 mutex_unlock(&pmu_reserve_mutex);
576 err = __hw_perf_event_init(event);
578 hw_perf_event_destroy(event);
583 static void armpmu_enable(struct pmu *pmu)
585 /* Enable all of the perf events on hardware. */
586 int idx, enabled = 0;
587 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
592 for (idx = 0; idx <= armpmu->num_events; ++idx) {
593 struct perf_event *event = cpuc->events[idx];
598 armpmu->enable(&event->hw, idx);
606 static void armpmu_disable(struct pmu *pmu)
612 static struct pmu pmu = {
613 .pmu_enable = armpmu_enable,
614 .pmu_disable = armpmu_disable,
615 .event_init = armpmu_event_init,
618 .start = armpmu_start,
623 /* Include the PMU-specific implementations. */
624 #include "perf_event_xscale.c"
625 #include "perf_event_v6.c"
626 #include "perf_event_v7.c"
629 * Ensure the PMU has sane values out of reset.
630 * This requires SMP to be available, so exists as a separate initcall.
635 if (armpmu && armpmu->reset)
636 return on_each_cpu(armpmu->reset, NULL, 1);
639 arch_initcall(armpmu_reset);
642 init_hw_perf_events(void)
644 unsigned long cpuid = read_cpuid_id();
645 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
646 unsigned long part_number = (cpuid & 0xFFF0);
649 if (0x41 == implementor) {
650 switch (part_number) {
651 case 0xB360: /* ARM1136 */
652 case 0xB560: /* ARM1156 */
653 case 0xB760: /* ARM1176 */
654 armpmu = armv6pmu_init();
656 case 0xB020: /* ARM11mpcore */
657 armpmu = armv6mpcore_pmu_init();
659 case 0xC080: /* Cortex-A8 */
660 armpmu = armv7_a8_pmu_init();
662 case 0xC090: /* Cortex-A9 */
663 armpmu = armv7_a9_pmu_init();
665 case 0xC050: /* Cortex-A5 */
666 armpmu = armv7_a5_pmu_init();
668 case 0xC0F0: /* Cortex-A15 */
669 armpmu = armv7_a15_pmu_init();
672 /* Intel CPUs [xscale]. */
673 } else if (0x69 == implementor) {
674 part_number = (cpuid >> 13) & 0x7;
675 switch (part_number) {
677 armpmu = xscale1pmu_init();
680 armpmu = xscale2pmu_init();
686 pr_info("enabled with %s PMU driver, %d counters available\n",
687 armpmu->name, armpmu->num_events);
689 pr_info("no hardware support available\n");
692 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
696 early_initcall(init_hw_perf_events);
699 * Callchain handling code.
703 * The registers we're interested in are at the end of the variable
704 * length saved register structure. The fp points at the end of this
705 * structure so the address of this struct is:
706 * (struct frame_tail *)(xxx->fp)-1
708 * This code has been adapted from the ARM OProfile support.
711 struct frame_tail __user *fp;
714 } __attribute__((packed));
717 * Get the return address for a single stackframe and return a pointer to the
720 static struct frame_tail __user *
721 user_backtrace(struct frame_tail __user *tail,
722 struct perf_callchain_entry *entry)
724 struct frame_tail buftail;
726 /* Also check accessibility of one struct frame_tail beyond */
727 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
729 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
732 perf_callchain_store(entry, buftail.lr);
735 * Frame pointers should strictly progress back up the stack
736 * (towards higher addresses).
738 if (tail + 1 >= buftail.fp)
741 return buftail.fp - 1;
745 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
747 struct frame_tail __user *tail;
750 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
752 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
753 tail && !((unsigned long)tail & 0x3))
754 tail = user_backtrace(tail, entry);
758 * Gets called by walk_stackframe() for every stackframe. This will be called
759 * whist unwinding the stackframe and is like a subroutine return so we use
763 callchain_trace(struct stackframe *fr,
766 struct perf_callchain_entry *entry = data;
767 perf_callchain_store(entry, fr->pc);
772 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
774 struct stackframe fr;
776 fr.fp = regs->ARM_fp;
777 fr.sp = regs->ARM_sp;
778 fr.lr = regs->ARM_lr;
779 fr.pc = regs->ARM_pc;
780 walk_stackframe(&fr, callchain_trace, entry);