072fdac
[openwrt/staging/blogic.git] /
1 /*
2 * VFIO PCI config space virtualization
3 *
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 */
15
16 /*
17 * This code handles reading and writing of PCI configuration registers.
18 * This is hairy because we want to allow a lot of flexibility to the
19 * user driver, but cannot trust it with all of the config fields.
20 * Tables determine which fields can be read and written, as well as
21 * which fields are 'virtualized' - special actions and translations to
22 * make it appear to the user that he has control, when in fact things
23 * must be negotiated with the underlying OS.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30
31 #include "vfio_pci_private.h"
32
33 #define PCI_CFG_SPACE_SIZE 256
34
35 /* Useful "pseudo" capabilities */
36 #define PCI_CAP_ID_BASIC 0
37 #define PCI_CAP_ID_INVALID 0xFF
38
39 #define is_bar(offset) \
40 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
41 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
42
43 /*
44 * Lengths of PCI Config Capabilities
45 * 0: Removed from the user visible capability list
46 * FF: Variable length
47 */
48 static u8 pci_cap_length[] = {
49 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
50 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
51 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
52 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
53 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
54 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
55 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
57 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
58 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
59 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
60 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
61 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
62 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
63 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
64 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
65 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
66 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
67 [PCI_CAP_ID_SATA] = 0xFF,
68 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
69 };
70
71 /*
72 * Lengths of PCIe/PCI-X Extended Config Capabilities
73 * 0: Removed or masked from the user visible capabilty list
74 * FF: Variable length
75 */
76 static u16 pci_ext_cap_length[] = {
77 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
78 [PCI_EXT_CAP_ID_VC] = 0xFF,
79 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
80 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
81 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
83 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
84 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
85 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
86 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
87 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
88 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
89 [PCI_EXT_CAP_ID_ACS] = 0xFF,
90 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
91 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
92 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
93 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
94 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
95 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
96 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
98 [PCI_EXT_CAP_ID_DPA] = 0xFF,
99 [PCI_EXT_CAP_ID_TPH] = 0xFF,
100 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
101 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
102 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
103 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
104 };
105
106 /*
107 * Read/Write Permission Bits - one bit for each bit in capability
108 * Any field can be read if it exists, but what is read depends on
109 * whether the field is 'virtualized', or just pass thru to the
110 * hardware. Any virtualized field is also virtualized for writes.
111 * Writes are only permitted if they have a 1 bit here.
112 */
113 struct perm_bits {
114 u8 *virt; /* read/write virtual data, not hw */
115 u8 *write; /* writeable bits */
116 int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
117 struct perm_bits *perm, int offset, __le32 *val);
118 int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
119 struct perm_bits *perm, int offset, __le32 val);
120 };
121
122 #define NO_VIRT 0
123 #define ALL_VIRT 0xFFFFFFFFU
124 #define NO_WRITE 0
125 #define ALL_WRITE 0xFFFFFFFFU
126
127 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
128 __le32 *val, int count)
129 {
130 int ret = -EINVAL;
131 u32 tmp_val = 0;
132
133 switch (count) {
134 case 1:
135 {
136 u8 tmp;
137 ret = pci_user_read_config_byte(pdev, offset, &tmp);
138 tmp_val = tmp;
139 break;
140 }
141 case 2:
142 {
143 u16 tmp;
144 ret = pci_user_read_config_word(pdev, offset, &tmp);
145 tmp_val = tmp;
146 break;
147 }
148 case 4:
149 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
150 break;
151 }
152
153 *val = cpu_to_le32(tmp_val);
154
155 return pcibios_err_to_errno(ret);
156 }
157
158 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
159 __le32 val, int count)
160 {
161 int ret = -EINVAL;
162 u32 tmp_val = le32_to_cpu(val);
163
164 switch (count) {
165 case 1:
166 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
167 break;
168 case 2:
169 ret = pci_user_write_config_word(pdev, offset, tmp_val);
170 break;
171 case 4:
172 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
173 break;
174 }
175
176 return pcibios_err_to_errno(ret);
177 }
178
179 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
180 int count, struct perm_bits *perm,
181 int offset, __le32 *val)
182 {
183 __le32 virt = 0;
184
185 memcpy(val, vdev->vconfig + pos, count);
186
187 memcpy(&virt, perm->virt + offset, count);
188
189 /* Any non-virtualized bits? */
190 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
191 struct pci_dev *pdev = vdev->pdev;
192 __le32 phys_val = 0;
193 int ret;
194
195 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
196 if (ret)
197 return ret;
198
199 *val = (phys_val & ~virt) | (*val & virt);
200 }
201
202 return count;
203 }
204
205 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
206 int count, struct perm_bits *perm,
207 int offset, __le32 val)
208 {
209 __le32 virt = 0, write = 0;
210
211 memcpy(&write, perm->write + offset, count);
212
213 if (!write)
214 return count; /* drop, no writable bits */
215
216 memcpy(&virt, perm->virt + offset, count);
217
218 /* Virtualized and writable bits go to vconfig */
219 if (write & virt) {
220 __le32 virt_val = 0;
221
222 memcpy(&virt_val, vdev->vconfig + pos, count);
223
224 virt_val &= ~(write & virt);
225 virt_val |= (val & (write & virt));
226
227 memcpy(vdev->vconfig + pos, &virt_val, count);
228 }
229
230 /* Non-virtualzed and writable bits go to hardware */
231 if (write & ~virt) {
232 struct pci_dev *pdev = vdev->pdev;
233 __le32 phys_val = 0;
234 int ret;
235
236 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
237 if (ret)
238 return ret;
239
240 phys_val &= ~(write & ~virt);
241 phys_val |= (val & (write & ~virt));
242
243 ret = vfio_user_config_write(pdev, pos, phys_val, count);
244 if (ret)
245 return ret;
246 }
247
248 return count;
249 }
250
251 /* Allow direct read from hardware, except for capability next pointer */
252 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
253 int count, struct perm_bits *perm,
254 int offset, __le32 *val)
255 {
256 int ret;
257
258 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
259 if (ret)
260 return pcibios_err_to_errno(ret);
261
262 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
263 if (offset < 4)
264 memcpy(val, vdev->vconfig + pos, count);
265 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
266 if (offset == PCI_CAP_LIST_ID && count > 1)
267 memcpy(val, vdev->vconfig + pos,
268 min(PCI_CAP_FLAGS, count));
269 else if (offset == PCI_CAP_LIST_NEXT)
270 memcpy(val, vdev->vconfig + pos, 1);
271 }
272
273 return count;
274 }
275
276 /* Raw access skips any kind of virtualization */
277 static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
278 int count, struct perm_bits *perm,
279 int offset, __le32 val)
280 {
281 int ret;
282
283 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
284 if (ret)
285 return ret;
286
287 return count;
288 }
289
290 static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
291 int count, struct perm_bits *perm,
292 int offset, __le32 *val)
293 {
294 int ret;
295
296 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
297 if (ret)
298 return pcibios_err_to_errno(ret);
299
300 return count;
301 }
302
303 /* Default capability regions to read-only, no-virtualization */
304 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
305 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
306 };
307 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
308 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
309 };
310 /*
311 * Default unassigned regions to raw read-write access. Some devices
312 * require this to function as they hide registers between the gaps in
313 * config space (be2net). Like MMIO and I/O port registers, we have
314 * to trust the hardware isolation.
315 */
316 static struct perm_bits unassigned_perms = {
317 .readfn = vfio_raw_config_read,
318 .writefn = vfio_raw_config_write
319 };
320
321 static void free_perm_bits(struct perm_bits *perm)
322 {
323 kfree(perm->virt);
324 kfree(perm->write);
325 perm->virt = NULL;
326 perm->write = NULL;
327 }
328
329 static int alloc_perm_bits(struct perm_bits *perm, int size)
330 {
331 /*
332 * Round up all permission bits to the next dword, this lets us
333 * ignore whether a read/write exceeds the defined capability
334 * structure. We can do this because:
335 * - Standard config space is already dword aligned
336 * - Capabilities are all dword alinged (bits 0:1 of next reserved)
337 * - Express capabilities defined as dword aligned
338 */
339 size = round_up(size, 4);
340
341 /*
342 * Zero state is
343 * - All Readable, None Writeable, None Virtualized
344 */
345 perm->virt = kzalloc(size, GFP_KERNEL);
346 perm->write = kzalloc(size, GFP_KERNEL);
347 if (!perm->virt || !perm->write) {
348 free_perm_bits(perm);
349 return -ENOMEM;
350 }
351
352 perm->readfn = vfio_default_config_read;
353 perm->writefn = vfio_default_config_write;
354
355 return 0;
356 }
357
358 /*
359 * Helper functions for filling in permission tables
360 */
361 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
362 {
363 p->virt[off] = virt;
364 p->write[off] = write;
365 }
366
367 /* Handle endian-ness - pci and tables are little-endian */
368 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
369 {
370 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
371 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
372 }
373
374 /* Handle endian-ness - pci and tables are little-endian */
375 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
376 {
377 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
378 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
379 }
380
381 /*
382 * Restore the *real* BARs after we detect a FLR or backdoor reset.
383 * (backdoor = some device specific technique that we didn't catch)
384 */
385 static void vfio_bar_restore(struct vfio_pci_device *vdev)
386 {
387 struct pci_dev *pdev = vdev->pdev;
388 u32 *rbar = vdev->rbar;
389 int i;
390
391 if (pdev->is_virtfn)
392 return;
393
394 pr_info("%s: %s reset recovery - restoring bars\n",
395 __func__, dev_name(&pdev->dev));
396
397 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
398 pci_user_write_config_dword(pdev, i, *rbar);
399
400 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
401 }
402
403 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
404 {
405 unsigned long flags = pci_resource_flags(pdev, bar);
406 u32 val;
407
408 if (flags & IORESOURCE_IO)
409 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
410
411 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
412
413 if (flags & IORESOURCE_PREFETCH)
414 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
415
416 if (flags & IORESOURCE_MEM_64)
417 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
418
419 return cpu_to_le32(val);
420 }
421
422 /*
423 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
424 * to reflect the hardware capabilities. This implements BAR sizing.
425 */
426 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
427 {
428 struct pci_dev *pdev = vdev->pdev;
429 int i;
430 __le32 *bar;
431 u64 mask;
432
433 bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
434
435 for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
436 if (!pci_resource_start(pdev, i)) {
437 *bar = 0; /* Unmapped by host = unimplemented to user */
438 continue;
439 }
440
441 mask = ~(pci_resource_len(pdev, i) - 1);
442
443 *bar &= cpu_to_le32((u32)mask);
444 *bar |= vfio_generate_bar_flags(pdev, i);
445
446 if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
447 bar++;
448 *bar &= cpu_to_le32((u32)(mask >> 32));
449 i++;
450 }
451 }
452
453 bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
454
455 /*
456 * NB. we expose the actual BAR size here, regardless of whether
457 * we can read it. When we report the REGION_INFO for the ROM
458 * we report what PCI tells us is the actual ROM size.
459 */
460 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
461 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
462 mask |= PCI_ROM_ADDRESS_ENABLE;
463 *bar &= cpu_to_le32((u32)mask);
464 } else
465 *bar = 0;
466
467 vdev->bardirty = false;
468 }
469
470 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
471 int count, struct perm_bits *perm,
472 int offset, __le32 *val)
473 {
474 if (is_bar(offset)) /* pos == offset for basic config */
475 vfio_bar_fixup(vdev);
476
477 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
478
479 /* Mask in virtual memory enable for SR-IOV devices */
480 if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
481 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
482 u32 tmp_val = le32_to_cpu(*val);
483
484 tmp_val |= cmd & PCI_COMMAND_MEMORY;
485 *val = cpu_to_le32(tmp_val);
486 }
487
488 return count;
489 }
490
491 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
492 int count, struct perm_bits *perm,
493 int offset, __le32 val)
494 {
495 struct pci_dev *pdev = vdev->pdev;
496 __le16 *virt_cmd;
497 u16 new_cmd = 0;
498 int ret;
499
500 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
501
502 if (offset == PCI_COMMAND) {
503 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
504 u16 phys_cmd;
505
506 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
507 if (ret)
508 return ret;
509
510 new_cmd = le32_to_cpu(val);
511
512 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
513 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
514 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
515
516 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
517 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
518 new_io = !!(new_cmd & PCI_COMMAND_IO);
519
520 /*
521 * If the user is writing mem/io enable (new_mem/io) and we
522 * think it's already enabled (virt_mem/io), but the hardware
523 * shows it disabled (phys_mem/io, then the device has
524 * undergone some kind of backdoor reset and needs to be
525 * restored before we allow it to enable the bars.
526 * SR-IOV devices will trigger this, but we catch them later
527 */
528 if ((new_mem && virt_mem && !phys_mem) ||
529 (new_io && virt_io && !phys_io))
530 vfio_bar_restore(vdev);
531 }
532
533 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
534 if (count < 0)
535 return count;
536
537 /*
538 * Save current memory/io enable bits in vconfig to allow for
539 * the test above next time.
540 */
541 if (offset == PCI_COMMAND) {
542 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
543
544 *virt_cmd &= cpu_to_le16(~mask);
545 *virt_cmd |= cpu_to_le16(new_cmd & mask);
546 }
547
548 /* Emulate INTx disable */
549 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
550 bool virt_intx_disable;
551
552 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
553 PCI_COMMAND_INTX_DISABLE);
554
555 if (virt_intx_disable && !vdev->virq_disabled) {
556 vdev->virq_disabled = true;
557 vfio_pci_intx_mask(vdev);
558 } else if (!virt_intx_disable && vdev->virq_disabled) {
559 vdev->virq_disabled = false;
560 vfio_pci_intx_unmask(vdev);
561 }
562 }
563
564 if (is_bar(offset))
565 vdev->bardirty = true;
566
567 return count;
568 }
569
570 /* Permissions for the Basic PCI Header */
571 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
572 {
573 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
574 return -ENOMEM;
575
576 perm->readfn = vfio_basic_config_read;
577 perm->writefn = vfio_basic_config_write;
578
579 /* Virtualized for SR-IOV functions, which just have FFFF */
580 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
581 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
582
583 /*
584 * Virtualize INTx disable, we use it internally for interrupt
585 * control and can emulate it for non-PCI 2.3 devices.
586 */
587 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
588
589 /* Virtualize capability list, we might want to skip/disable */
590 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
591
592 /* No harm to write */
593 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
594 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
595 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
596
597 /* Virtualize all bars, can't touch the real ones */
598 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
599 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
600 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
601 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
602 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
603 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
604 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
605
606 /* Allow us to adjust capability chain */
607 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
608
609 /* Sometimes used by sw, just virtualize */
610 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
611 return 0;
612 }
613
614 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
615 int count, struct perm_bits *perm,
616 int offset, __le32 val)
617 {
618 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
619 if (count < 0)
620 return count;
621
622 if (offset == PCI_PM_CTRL) {
623 pci_power_t state;
624
625 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
626 case 0:
627 state = PCI_D0;
628 break;
629 case 1:
630 state = PCI_D1;
631 break;
632 case 2:
633 state = PCI_D2;
634 break;
635 case 3:
636 state = PCI_D3hot;
637 break;
638 }
639
640 pci_set_power_state(vdev->pdev, state);
641 }
642
643 return count;
644 }
645
646 /* Permissions for the Power Management capability */
647 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
648 {
649 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
650 return -ENOMEM;
651
652 perm->writefn = vfio_pm_config_write;
653
654 /*
655 * We always virtualize the next field so we can remove
656 * capabilities from the chain if we want to.
657 */
658 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
659
660 /*
661 * Power management is defined *per function*, so we can let
662 * the user change power state, but we trap and initiate the
663 * change ourselves, so the state bits are read-only.
664 */
665 p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
666 return 0;
667 }
668
669 /* Permissions for PCI-X capability */
670 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
671 {
672 /* Alloc 24, but only 8 are used in v0 */
673 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
674 return -ENOMEM;
675
676 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
677
678 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
679 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
680 return 0;
681 }
682
683 /* Permissions for PCI Express capability */
684 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
685 {
686 /* Alloc larger of two possible sizes */
687 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
688 return -ENOMEM;
689
690 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
691
692 /*
693 * Allow writes to device control fields (includes FLR!)
694 * but not to devctl_phantom which could confuse IOMMU
695 * or to the ARI bit in devctl2 which is set at probe time
696 */
697 p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
698 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
699 return 0;
700 }
701
702 /* Permissions for Advanced Function capability */
703 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
704 {
705 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
706 return -ENOMEM;
707
708 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
709 p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
710 return 0;
711 }
712
713 /* Permissions for Advanced Error Reporting extended capability */
714 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
715 {
716 u32 mask;
717
718 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
719 return -ENOMEM;
720
721 /*
722 * Virtualize the first dword of all express capabilities
723 * because it includes the next pointer. This lets us later
724 * remove capabilities from the chain if we need to.
725 */
726 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
727
728 /* Writable bits mask */
729 mask = PCI_ERR_UNC_TRAIN | /* Training */
730 PCI_ERR_UNC_DLP | /* Data Link Protocol */
731 PCI_ERR_UNC_SURPDN | /* Surprise Down */
732 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
733 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
734 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
735 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
736 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
737 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
738 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
739 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
740 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
741 PCI_ERR_UNC_ACSV | /* ACS Violation */
742 PCI_ERR_UNC_INTN | /* internal error */
743 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
744 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
745 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
746 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
747 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
748 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
749
750 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
751 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
752 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
753 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
754 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
755 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
756 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
757 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
758 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
759 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
760
761 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
762 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
763 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
764 return 0;
765 }
766
767 /* Permissions for Power Budgeting extended capability */
768 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
769 {
770 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
771 return -ENOMEM;
772
773 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
774
775 /* Writing the data selector is OK, the info is still read-only */
776 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
777 return 0;
778 }
779
780 /*
781 * Initialize the shared permission tables
782 */
783 void vfio_pci_uninit_perm_bits(void)
784 {
785 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
786
787 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
788 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
789 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
790 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
791
792 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
793 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
794 }
795
796 int __init vfio_pci_init_perm_bits(void)
797 {
798 int ret;
799
800 /* Basic config space */
801 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
802
803 /* Capabilities */
804 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
805 cap_perms[PCI_CAP_ID_VPD].writefn = vfio_raw_config_write;
806 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
807 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
808 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
809 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
810
811 /* Extended capabilities */
812 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
813 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
814 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
815
816 if (ret)
817 vfio_pci_uninit_perm_bits();
818
819 return ret;
820 }
821
822 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
823 {
824 u8 cap;
825 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
826 PCI_STD_HEADER_SIZEOF;
827 cap = vdev->pci_config_map[pos];
828
829 if (cap == PCI_CAP_ID_BASIC)
830 return 0;
831
832 /* XXX Can we have to abutting capabilities of the same type? */
833 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
834 pos--;
835
836 return pos;
837 }
838
839 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
840 int count, struct perm_bits *perm,
841 int offset, __le32 *val)
842 {
843 /* Update max available queue size from msi_qmax */
844 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
845 __le16 *flags;
846 int start;
847
848 start = vfio_find_cap_start(vdev, pos);
849
850 flags = (__le16 *)&vdev->vconfig[start];
851
852 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
853 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
854 }
855
856 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
857 }
858
859 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
860 int count, struct perm_bits *perm,
861 int offset, __le32 val)
862 {
863 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
864 if (count < 0)
865 return count;
866
867 /* Fixup and write configured queue size and enable to hardware */
868 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
869 __le16 *pflags;
870 u16 flags;
871 int start, ret;
872
873 start = vfio_find_cap_start(vdev, pos);
874
875 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
876
877 flags = le16_to_cpu(*pflags);
878
879 /* MSI is enabled via ioctl */
880 if (!is_msi(vdev))
881 flags &= ~PCI_MSI_FLAGS_ENABLE;
882
883 /* Check queue size */
884 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
885 flags &= ~PCI_MSI_FLAGS_QSIZE;
886 flags |= vdev->msi_qmax << 4;
887 }
888
889 /* Write back to virt and to hardware */
890 *pflags = cpu_to_le16(flags);
891 ret = pci_user_write_config_word(vdev->pdev,
892 start + PCI_MSI_FLAGS,
893 flags);
894 if (ret)
895 return pcibios_err_to_errno(ret);
896 }
897
898 return count;
899 }
900
901 /*
902 * MSI determination is per-device, so this routine gets used beyond
903 * initialization time. Don't add __init
904 */
905 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
906 {
907 if (alloc_perm_bits(perm, len))
908 return -ENOMEM;
909
910 perm->readfn = vfio_msi_config_read;
911 perm->writefn = vfio_msi_config_write;
912
913 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
914
915 /*
916 * The upper byte of the control register is reserved,
917 * just setup the lower byte.
918 */
919 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
920 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
921 if (flags & PCI_MSI_FLAGS_64BIT) {
922 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
923 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
924 if (flags & PCI_MSI_FLAGS_MASKBIT) {
925 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
926 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
927 }
928 } else {
929 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
930 if (flags & PCI_MSI_FLAGS_MASKBIT) {
931 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
932 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
933 }
934 }
935 return 0;
936 }
937
938 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
939 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
940 {
941 struct pci_dev *pdev = vdev->pdev;
942 int len, ret;
943 u16 flags;
944
945 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
946 if (ret)
947 return pcibios_err_to_errno(ret);
948
949 len = 10; /* Minimum size */
950 if (flags & PCI_MSI_FLAGS_64BIT)
951 len += 4;
952 if (flags & PCI_MSI_FLAGS_MASKBIT)
953 len += 10;
954
955 if (vdev->msi_perm)
956 return len;
957
958 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
959 if (!vdev->msi_perm)
960 return -ENOMEM;
961
962 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
963 if (ret)
964 return ret;
965
966 return len;
967 }
968
969 /* Determine extended capability length for VC (2 & 9) and MFVC */
970 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
971 {
972 struct pci_dev *pdev = vdev->pdev;
973 u32 tmp;
974 int ret, evcc, phases, vc_arb;
975 int len = PCI_CAP_VC_BASE_SIZEOF;
976
977 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG1, &tmp);
978 if (ret)
979 return pcibios_err_to_errno(ret);
980
981 evcc = tmp & PCI_VC_REG1_EVCC; /* extended vc count */
982 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG2, &tmp);
983 if (ret)
984 return pcibios_err_to_errno(ret);
985
986 if (tmp & PCI_VC_REG2_128_PHASE)
987 phases = 128;
988 else if (tmp & PCI_VC_REG2_64_PHASE)
989 phases = 64;
990 else if (tmp & PCI_VC_REG2_32_PHASE)
991 phases = 32;
992 else
993 phases = 0;
994
995 vc_arb = phases * 4;
996
997 /*
998 * Port arbitration tables are root & switch only;
999 * function arbitration tables are function 0 only.
1000 * In either case, we'll never let user write them so
1001 * we don't care how big they are
1002 */
1003 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1004 if (vc_arb) {
1005 len = round_up(len, 16);
1006 len += vc_arb / 8;
1007 }
1008 return len;
1009 }
1010
1011 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1012 {
1013 struct pci_dev *pdev = vdev->pdev;
1014 u16 word;
1015 u8 byte;
1016 int ret;
1017
1018 switch (cap) {
1019 case PCI_CAP_ID_MSI:
1020 return vfio_msi_cap_len(vdev, pos);
1021 case PCI_CAP_ID_PCIX:
1022 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1023 if (ret)
1024 return pcibios_err_to_errno(ret);
1025
1026 if (PCI_X_CMD_VERSION(word)) {
1027 vdev->extended_caps = true;
1028 return PCI_CAP_PCIX_SIZEOF_V2;
1029 } else
1030 return PCI_CAP_PCIX_SIZEOF_V0;
1031 case PCI_CAP_ID_VNDR:
1032 /* length follows next field */
1033 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1034 if (ret)
1035 return pcibios_err_to_errno(ret);
1036
1037 return byte;
1038 case PCI_CAP_ID_EXP:
1039 /* length based on version */
1040 ret = pci_read_config_word(pdev, pos + PCI_EXP_FLAGS, &word);
1041 if (ret)
1042 return pcibios_err_to_errno(ret);
1043
1044 vdev->extended_caps = true;
1045
1046 if ((word & PCI_EXP_FLAGS_VERS) == 1)
1047 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1048 else
1049 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1050 case PCI_CAP_ID_HT:
1051 ret = pci_read_config_byte(pdev, pos + 3, &byte);
1052 if (ret)
1053 return pcibios_err_to_errno(ret);
1054
1055 return (byte & HT_3BIT_CAP_MASK) ?
1056 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1057 case PCI_CAP_ID_SATA:
1058 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1059 if (ret)
1060 return pcibios_err_to_errno(ret);
1061
1062 byte &= PCI_SATA_REGS_MASK;
1063 if (byte == PCI_SATA_REGS_INLINE)
1064 return PCI_SATA_SIZEOF_LONG;
1065 else
1066 return PCI_SATA_SIZEOF_SHORT;
1067 default:
1068 pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1069 dev_name(&pdev->dev), __func__, cap, pos);
1070 }
1071
1072 return 0;
1073 }
1074
1075 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1076 {
1077 struct pci_dev *pdev = vdev->pdev;
1078 u8 byte;
1079 u32 dword;
1080 int ret;
1081
1082 switch (ecap) {
1083 case PCI_EXT_CAP_ID_VNDR:
1084 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1085 if (ret)
1086 return pcibios_err_to_errno(ret);
1087
1088 return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1089 case PCI_EXT_CAP_ID_VC:
1090 case PCI_EXT_CAP_ID_VC9:
1091 case PCI_EXT_CAP_ID_MFVC:
1092 return vfio_vc_cap_len(vdev, epos);
1093 case PCI_EXT_CAP_ID_ACS:
1094 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1095 if (ret)
1096 return pcibios_err_to_errno(ret);
1097
1098 if (byte & PCI_ACS_EC) {
1099 int bits;
1100
1101 ret = pci_read_config_byte(pdev,
1102 epos + PCI_ACS_EGRESS_BITS,
1103 &byte);
1104 if (ret)
1105 return pcibios_err_to_errno(ret);
1106
1107 bits = byte ? round_up(byte, 32) : 256;
1108 return 8 + (bits / 8);
1109 }
1110 return 8;
1111
1112 case PCI_EXT_CAP_ID_REBAR:
1113 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1114 if (ret)
1115 return pcibios_err_to_errno(ret);
1116
1117 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1118 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1119
1120 return 4 + (byte * 8);
1121 case PCI_EXT_CAP_ID_DPA:
1122 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1123 if (ret)
1124 return pcibios_err_to_errno(ret);
1125
1126 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1127 byte = round_up(byte + 1, 4);
1128 return PCI_DPA_BASE_SIZEOF + byte;
1129 case PCI_EXT_CAP_ID_TPH:
1130 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1131 if (ret)
1132 return pcibios_err_to_errno(ret);
1133
1134 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1135 int sts;
1136
1137 sts = byte & PCI_TPH_CAP_ST_MASK;
1138 sts >>= PCI_TPH_CAP_ST_SHIFT;
1139 return PCI_TPH_BASE_SIZEOF + round_up(sts * 2, 4);
1140 }
1141 return PCI_TPH_BASE_SIZEOF;
1142 default:
1143 pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1144 dev_name(&pdev->dev), __func__, ecap, epos);
1145 }
1146
1147 return 0;
1148 }
1149
1150 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1151 int offset, int size)
1152 {
1153 struct pci_dev *pdev = vdev->pdev;
1154 int ret = 0;
1155
1156 /*
1157 * We try to read physical config space in the largest chunks
1158 * we can, assuming that all of the fields support dword access.
1159 * pci_save_state() makes this same assumption and seems to do ok.
1160 */
1161 while (size) {
1162 int filled;
1163
1164 if (size >= 4 && !(offset % 4)) {
1165 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1166 u32 dword;
1167
1168 ret = pci_read_config_dword(pdev, offset, &dword);
1169 if (ret)
1170 return ret;
1171 *dwordp = cpu_to_le32(dword);
1172 filled = 4;
1173 } else if (size >= 2 && !(offset % 2)) {
1174 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1175 u16 word;
1176
1177 ret = pci_read_config_word(pdev, offset, &word);
1178 if (ret)
1179 return ret;
1180 *wordp = cpu_to_le16(word);
1181 filled = 2;
1182 } else {
1183 u8 *byte = &vdev->vconfig[offset];
1184 ret = pci_read_config_byte(pdev, offset, byte);
1185 if (ret)
1186 return ret;
1187 filled = 1;
1188 }
1189
1190 offset += filled;
1191 size -= filled;
1192 }
1193
1194 return ret;
1195 }
1196
1197 static int vfio_cap_init(struct vfio_pci_device *vdev)
1198 {
1199 struct pci_dev *pdev = vdev->pdev;
1200 u8 *map = vdev->pci_config_map;
1201 u16 status;
1202 u8 pos, *prev, cap;
1203 int loops, ret, caps = 0;
1204
1205 /* Any capabilities? */
1206 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1207 if (ret)
1208 return ret;
1209
1210 if (!(status & PCI_STATUS_CAP_LIST))
1211 return 0; /* Done */
1212
1213 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1214 if (ret)
1215 return ret;
1216
1217 /* Mark the previous position in case we want to skip a capability */
1218 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1219
1220 /* We can bound our loop, capabilities are dword aligned */
1221 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1222 while (pos && loops--) {
1223 u8 next;
1224 int i, len = 0;
1225
1226 ret = pci_read_config_byte(pdev, pos, &cap);
1227 if (ret)
1228 return ret;
1229
1230 ret = pci_read_config_byte(pdev,
1231 pos + PCI_CAP_LIST_NEXT, &next);
1232 if (ret)
1233 return ret;
1234
1235 if (cap <= PCI_CAP_ID_MAX) {
1236 len = pci_cap_length[cap];
1237 if (len == 0xFF) { /* Variable length */
1238 len = vfio_cap_len(vdev, cap, pos);
1239 if (len < 0)
1240 return len;
1241 }
1242 }
1243
1244 if (!len) {
1245 pr_info("%s: %s hiding cap 0x%x\n",
1246 __func__, dev_name(&pdev->dev), cap);
1247 *prev = next;
1248 pos = next;
1249 continue;
1250 }
1251
1252 /* Sanity check, do we overlap other capabilities? */
1253 for (i = 0; i < len; i++) {
1254 if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1255 continue;
1256
1257 pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1258 __func__, dev_name(&pdev->dev),
1259 pos + i, map[pos + i], cap);
1260 }
1261
1262 memset(map + pos, cap, len);
1263 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1264 if (ret)
1265 return ret;
1266
1267 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1268 pos = next;
1269 caps++;
1270 }
1271
1272 /* If we didn't fill any capabilities, clear the status flag */
1273 if (!caps) {
1274 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1275 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1276 }
1277
1278 return 0;
1279 }
1280
1281 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1282 {
1283 struct pci_dev *pdev = vdev->pdev;
1284 u8 *map = vdev->pci_config_map;
1285 u16 epos;
1286 __le32 *prev = NULL;
1287 int loops, ret, ecaps = 0;
1288
1289 if (!vdev->extended_caps)
1290 return 0;
1291
1292 epos = PCI_CFG_SPACE_SIZE;
1293
1294 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1295
1296 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1297 u32 header;
1298 u16 ecap;
1299 int i, len = 0;
1300 bool hidden = false;
1301
1302 ret = pci_read_config_dword(pdev, epos, &header);
1303 if (ret)
1304 return ret;
1305
1306 ecap = PCI_EXT_CAP_ID(header);
1307
1308 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1309 len = pci_ext_cap_length[ecap];
1310 if (len == 0xFF) {
1311 len = vfio_ext_cap_len(vdev, ecap, epos);
1312 if (len < 0)
1313 return ret;
1314 }
1315 }
1316
1317 if (!len) {
1318 pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1319 __func__, dev_name(&pdev->dev), ecap, epos);
1320
1321 /* If not the first in the chain, we can skip over it */
1322 if (prev) {
1323 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1324 *prev &= cpu_to_le32(~(0xffcU << 20));
1325 *prev |= cpu_to_le32(val << 20);
1326 continue;
1327 }
1328
1329 /*
1330 * Otherwise, fill in a placeholder, the direct
1331 * readfn will virtualize this automatically
1332 */
1333 len = PCI_CAP_SIZEOF;
1334 hidden = true;
1335 }
1336
1337 for (i = 0; i < len; i++) {
1338 if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1339 continue;
1340
1341 pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1342 __func__, dev_name(&pdev->dev),
1343 epos + i, map[epos + i], ecap);
1344 }
1345
1346 /*
1347 * Even though ecap is 2 bytes, we're currently a long way
1348 * from exceeding 1 byte capabilities. If we ever make it
1349 * up to 0xFF we'll need to up this to a two-byte, byte map.
1350 */
1351 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID);
1352
1353 memset(map + epos, ecap, len);
1354 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1355 if (ret)
1356 return ret;
1357
1358 /*
1359 * If we're just using this capability to anchor the list,
1360 * hide the real ID. Only count real ecaps. XXX PCI spec
1361 * indicates to use cap id = 0, version = 0, next = 0 if
1362 * ecaps are absent, hope users check all the way to next.
1363 */
1364 if (hidden)
1365 *(__le32 *)&vdev->vconfig[epos] &=
1366 cpu_to_le32((0xffcU << 20));
1367 else
1368 ecaps++;
1369
1370 prev = (__le32 *)&vdev->vconfig[epos];
1371 epos = PCI_EXT_CAP_NEXT(header);
1372 }
1373
1374 if (!ecaps)
1375 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1376
1377 return 0;
1378 }
1379
1380 /*
1381 * For each device we allocate a pci_config_map that indicates the
1382 * capability occupying each dword and thus the struct perm_bits we
1383 * use for read and write. We also allocate a virtualized config
1384 * space which tracks reads and writes to bits that we emulate for
1385 * the user. Initial values filled from device.
1386 *
1387 * Using shared stuct perm_bits between all vfio-pci devices saves
1388 * us from allocating cfg_size buffers for virt and write for every
1389 * device. We could remove vconfig and allocate individual buffers
1390 * for each area requring emulated bits, but the array of pointers
1391 * would be comparable in size (at least for standard config space).
1392 */
1393 int vfio_config_init(struct vfio_pci_device *vdev)
1394 {
1395 struct pci_dev *pdev = vdev->pdev;
1396 u8 *map, *vconfig;
1397 int ret;
1398
1399 /*
1400 * Config space, caps and ecaps are all dword aligned, so we could
1401 * use one byte per dword to record the type. However, there are
1402 * no requiremenst on the length of a capability, so the gap between
1403 * capabilities needs byte granularity.
1404 */
1405 map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1406 if (!map)
1407 return -ENOMEM;
1408
1409 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1410 if (!vconfig) {
1411 kfree(map);
1412 return -ENOMEM;
1413 }
1414
1415 vdev->pci_config_map = map;
1416 vdev->vconfig = vconfig;
1417
1418 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1419 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1420 pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1421
1422 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1423 if (ret)
1424 goto out;
1425
1426 vdev->bardirty = true;
1427
1428 /*
1429 * XXX can we just pci_load_saved_state/pci_restore_state?
1430 * may need to rebuild vconfig after that
1431 */
1432
1433 /* For restore after reset */
1434 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1435 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1436 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1437 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1438 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1439 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1440 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1441
1442 if (pdev->is_virtfn) {
1443 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1444 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1445 }
1446
1447 ret = vfio_cap_init(vdev);
1448 if (ret)
1449 goto out;
1450
1451 ret = vfio_ecap_init(vdev);
1452 if (ret)
1453 goto out;
1454
1455 return 0;
1456
1457 out:
1458 kfree(map);
1459 vdev->pci_config_map = NULL;
1460 kfree(vconfig);
1461 vdev->vconfig = NULL;
1462 return pcibios_err_to_errno(ret);
1463 }
1464
1465 void vfio_config_free(struct vfio_pci_device *vdev)
1466 {
1467 kfree(vdev->vconfig);
1468 vdev->vconfig = NULL;
1469 kfree(vdev->pci_config_map);
1470 vdev->pci_config_map = NULL;
1471 kfree(vdev->msi_perm);
1472 vdev->msi_perm = NULL;
1473 }
1474
1475 /*
1476 * Find the remaining number of bytes in a dword that match the given
1477 * position. Stop at either the end of the capability or the dword boundary.
1478 */
1479 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1480 loff_t pos)
1481 {
1482 u8 cap = vdev->pci_config_map[pos];
1483 size_t i;
1484
1485 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1486 /* nop */;
1487
1488 return i;
1489 }
1490
1491 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1492 size_t count, loff_t *ppos, bool iswrite)
1493 {
1494 struct pci_dev *pdev = vdev->pdev;
1495 struct perm_bits *perm;
1496 __le32 val = 0;
1497 int cap_start = 0, offset;
1498 u8 cap_id;
1499 ssize_t ret;
1500
1501 if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1502 *ppos + count > pdev->cfg_size)
1503 return -EFAULT;
1504
1505 /*
1506 * Chop accesses into aligned chunks containing no more than a
1507 * single capability. Caller increments to the next chunk.
1508 */
1509 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1510 if (count >= 4 && !(*ppos % 4))
1511 count = 4;
1512 else if (count >= 2 && !(*ppos % 2))
1513 count = 2;
1514 else
1515 count = 1;
1516
1517 ret = count;
1518
1519 cap_id = vdev->pci_config_map[*ppos];
1520
1521 if (cap_id == PCI_CAP_ID_INVALID) {
1522 perm = &unassigned_perms;
1523 cap_start = *ppos;
1524 } else {
1525 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1526 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1527
1528 perm = &ecap_perms[cap_id];
1529 cap_start = vfio_find_cap_start(vdev, *ppos);
1530 } else {
1531 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1532
1533 perm = &cap_perms[cap_id];
1534
1535 if (cap_id == PCI_CAP_ID_MSI)
1536 perm = vdev->msi_perm;
1537
1538 if (cap_id > PCI_CAP_ID_BASIC)
1539 cap_start = vfio_find_cap_start(vdev, *ppos);
1540 }
1541 }
1542
1543 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1544 WARN_ON(cap_start > *ppos);
1545
1546 offset = *ppos - cap_start;
1547
1548 if (iswrite) {
1549 if (!perm->writefn)
1550 return ret;
1551
1552 if (copy_from_user(&val, buf, count))
1553 return -EFAULT;
1554
1555 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1556 } else {
1557 if (perm->readfn) {
1558 ret = perm->readfn(vdev, *ppos, count,
1559 perm, offset, &val);
1560 if (ret < 0)
1561 return ret;
1562 }
1563
1564 if (copy_to_user(buf, &val, count))
1565 return -EFAULT;
1566 }
1567
1568 return ret;
1569 }
1570
1571 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1572 size_t count, loff_t *ppos, bool iswrite)
1573 {
1574 size_t done = 0;
1575 int ret = 0;
1576 loff_t pos = *ppos;
1577
1578 pos &= VFIO_PCI_OFFSET_MASK;
1579
1580 while (count) {
1581 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1582 if (ret < 0)
1583 return ret;
1584
1585 count -= ret;
1586 done += ret;
1587 buf += ret;
1588 pos += ret;
1589 }
1590
1591 *ppos += done;
1592
1593 return done;
1594 }