Christoph Lameter [Fri, 20 May 2016 23:58:21 +0000 (16:58 -0700)]
vmstat: get rid of the ugly cpu_stat_off variable
The cpu_stat_off variable is unecessary since we can check if a
workqueue request is pending otherwise. Removal of cpu_stat_off makes
it pretty easy for the vmstat shepherd to ensure that the proper things
happen.
Removing the state also removes all races related to it. Should a
workqueue not be scheduled as needed for vmstat_update then the shepherd
will notice and schedule it as needed. Should a workqueue be
unecessarily scheduled then the vmstat updater will disable it.
[akpm@linux-foundation.org: fix indentation, per Michal]
Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1605061306460.17934@east.gentwo.org
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <htejun@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Greg Thelen [Fri, 20 May 2016 23:58:18 +0000 (16:58 -0700)]
memcg: fix stale mem_cgroup_force_empty() comment
Commit
f61c42a7d911 ("memcg: remove tasks/children test from
mem_cgroup_force_empty()") removed memory reparenting from the function.
Fix the function's comment.
Link: http://lkml.kernel.org/r/1462569810-54496-1-git-send-email-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yu Zhao [Fri, 20 May 2016 23:58:16 +0000 (16:58 -0700)]
mm: use unsigned long constant for page flags
struct page->flags is unsigned long, so when shifting bits we should use
UL suffix to match it.
Found this problem after I added 64-bit CPU specific page flags and
failed to compile the kernel:
mm/page_alloc.c: In function '__free_one_page':
mm/page_alloc.c:672:2: error: integer overflow in expression [-Werror=overflow]
Link: http://lkml.kernel.org/r/1461971723-16187-1-git-send-email-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minfei Huang [Fri, 20 May 2016 23:58:13 +0000 (16:58 -0700)]
mm: use existing helper to convert "on"/"off" to boolean
It's more convenient to use existing function helper to convert string
"on/off" to boolean.
Link: http://lkml.kernel.org/r/1461908824-16129-1-git-send-email-mnghuan@gmail.com
Signed-off-by: Minfei Huang <mnghuan@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo Handa [Fri, 20 May 2016 23:58:10 +0000 (16:58 -0700)]
mm,writeback: don't use memory reserves for wb_start_writeback
When writeback operation cannot make forward progress because memory
allocation requests needed for doing I/O cannot be satisfied (e.g.
under OOM-livelock situation), we can observe flood of order-0 page
allocation failure messages caused by complete depletion of memory
reserves.
This is caused by unconditionally allocating "struct wb_writeback_work"
objects using GFP_ATOMIC from PF_MEMALLOC context.
__alloc_pages_nodemask() {
__alloc_pages_slowpath() {
__alloc_pages_direct_reclaim() {
__perform_reclaim() {
current->flags |= PF_MEMALLOC;
try_to_free_pages() {
do_try_to_free_pages() {
wakeup_flusher_threads() {
wb_start_writeback() {
kzalloc(sizeof(*work), GFP_ATOMIC) {
/* ALLOC_NO_WATERMARKS via PF_MEMALLOC */
}
}
}
}
}
current->flags &= ~PF_MEMALLOC;
}
}
}
}
Since I/O is stalling, allocating writeback requests forever shall
deplete memory reserves. Fortunately, since wb_start_writeback() can
fall back to wb_wakeup() when allocating "struct wb_writeback_work"
failed, we don't need to allow wb_start_writeback() to use memory
reserves.
Mem-Info:
active_anon:289393 inactive_anon:2093 isolated_anon:29
active_file:10838 inactive_file:113013 isolated_file:859
unevictable:0 dirty:108531 writeback:5308 unstable:0
slab_reclaimable:5526 slab_unreclaimable:7077
mapped:9970 shmem:2159 pagetables:2387 bounce:0
free:3042 free_pcp:0 free_cma:0
Node 0 DMA free:6968kB min:44kB low:52kB high:64kB active_anon:6056kB inactive_anon:176kB active_file:712kB inactive_file:744kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15988kB managed:15904kB mlocked:0kB dirty:756kB writeback:0kB mapped:736kB shmem:184kB slab_reclaimable:48kB slab_unreclaimable:208kB kernel_stack:160kB pagetables:144kB unstable:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:9708 all_unreclaimable? yes
lowmem_reserve[]: 0 1732 1732 1732
Node 0 DMA32 free:5200kB min:5200kB low:6500kB high:7800kB active_anon:1151516kB inactive_anon:8196kB active_file:42640kB inactive_file:451076kB unevictable:0kB isolated(anon):116kB isolated(file):3564kB present:2080640kB managed:1775332kB mlocked:0kB dirty:433368kB writeback:21232kB mapped:39144kB shmem:8452kB slab_reclaimable:22056kB slab_unreclaimable:28100kB kernel_stack:20976kB pagetables:9404kB unstable:0kB bounce:0kB free_pcp:120kB local_pcp:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:
2701604 all_unreclaimable? no
lowmem_reserve[]: 0 0 0 0
Node 0 DMA: 25*4kB (UME) 16*8kB (UME) 3*16kB (UE) 5*32kB (UME) 2*64kB (UM) 2*128kB (ME) 2*256kB (ME) 1*512kB (E) 1*1024kB (E) 2*2048kB (ME) 0*4096kB = 6964kB
Node 0 DMA32: 925*4kB (UME) 140*8kB (UME) 5*16kB (ME) 5*32kB (M) 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 5060kB
Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=1048576kB
Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
126847 total pagecache pages
0 pages in swap cache
Swap cache stats: add 0, delete 0, find 0/0
Free swap = 0kB
Total swap = 0kB
524157 pages RAM
0 pages HighMem/MovableOnly
76348 pages reserved
0 pages hwpoisoned
Out of memory: Kill process 4450 (file_io.00) score 998 or sacrifice child
Killed process 4450 (file_io.00) total-vm:4308kB, anon-rss:100kB, file-rss:1184kB, shmem-rss:0kB
kthreadd: page allocation failure: order:0, mode:0x2200020
file_io.00: page allocation failure: order:0, mode:0x2200020
CPU: 0 PID: 4457 Comm: file_io.00 Not tainted 4.5.0-rc7+ #45
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 07/31/2013
Call Trace:
warn_alloc_failed+0xf7/0x150
__alloc_pages_nodemask+0x23f/0xa60
alloc_pages_current+0x87/0x110
new_slab+0x3a1/0x440
___slab_alloc+0x3cf/0x590
__slab_alloc.isra.64+0x18/0x1d
kmem_cache_alloc+0x11c/0x150
wb_start_writeback+0x39/0x90
wakeup_flusher_threads+0x7f/0xf0
do_try_to_free_pages+0x1f9/0x410
try_to_free_pages+0x94/0xc0
__alloc_pages_nodemask+0x566/0xa60
alloc_pages_current+0x87/0x110
__page_cache_alloc+0xaf/0xc0
pagecache_get_page+0x88/0x260
grab_cache_page_write_begin+0x21/0x40
xfs_vm_write_begin+0x2f/0xf0
generic_perform_write+0xca/0x1c0
xfs_file_buffered_aio_write+0xcc/0x1f0
xfs_file_write_iter+0x84/0x140
__vfs_write+0xc7/0x100
vfs_write+0x9d/0x190
SyS_write+0x50/0xc0
entry_SYSCALL_64_fastpath+0x12/0x6a
Mem-Info:
active_anon:293335 inactive_anon:2093 isolated_anon:0
active_file:10829 inactive_file:110045 isolated_file:32
unevictable:0 dirty:109275 writeback:822 unstable:0
slab_reclaimable:5489 slab_unreclaimable:10070
mapped:9999 shmem:2159 pagetables:2420 bounce:0
free:3 free_pcp:0 free_cma:0
Node 0 DMA free:12kB min:44kB low:52kB high:64kB active_anon:6060kB inactive_anon:176kB active_file:708kB inactive_file:756kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15988kB managed:15904kB mlocked:0kB dirty:756kB writeback:0kB mapped:736kB shmem:184kB slab_reclaimable:48kB slab_unreclaimable:7160kB kernel_stack:160kB pagetables:144kB unstable:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:9844 all_unreclaimable? yes
lowmem_reserve[]: 0 1732 1732 1732
Node 0 DMA32 free:0kB min:5200kB low:6500kB high:7800kB active_anon:1167280kB inactive_anon:8196kB active_file:42608kB inactive_file:439424kB unevictable:0kB isolated(anon):0kB isolated(file):128kB present:2080640kB managed:1775332kB mlocked:0kB dirty:436344kB writeback:3288kB mapped:39260kB shmem:8452kB slab_reclaimable:21908kB slab_unreclaimable:33120kB kernel_stack:20976kB pagetables:9536kB unstable:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:
11073180 all_unreclaimable? yes
lowmem_reserve[]: 0 0 0 0
Node 0 DMA: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 0kB
Node 0 DMA32: 0*4kB 0*8kB 0*16kB 0*32kB 0*64kB 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 0kB
Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=1048576kB
Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB
123086 total pagecache pages
0 pages in swap cache
Swap cache stats: add 0, delete 0, find 0/0
Free swap = 0kB
Total swap = 0kB
524157 pages RAM
0 pages HighMem/MovableOnly
76348 pages reserved
0 pages hwpoisoned
SLUB: Unable to allocate memory on node -1 (gfp=0x2088020)
cache: kmalloc-64, object size: 64, buffer size: 64, default order: 0, min order: 0
node 0: slabs: 3218, objs: 205952, free: 0
file_io.00: page allocation failure: order:0, mode:0x2200020
CPU: 0 PID: 4457 Comm: file_io.00 Not tainted 4.5.0-rc7+ #45
Assuming that somebody will find a better solution, let's apply this
patch for now to stop bleeding, for this problem frequently prevents me
from testing OOM livelock condition.
Link: http://lkml.kernel.org/r/20160318131136.GE7152@quack.suse.cz
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Eric Engestrom [Fri, 20 May 2016 23:58:07 +0000 (16:58 -0700)]
Documentation: vm: fix spelling mistakes
Signed-off-by: Eric Engestrom <eric@engestrom.ch>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Weijie Yang [Fri, 20 May 2016 23:58:04 +0000 (16:58 -0700)]
mm fix commmets: if SPARSEMEM, pgdata doesn't have page_ext
If SPARSEMEM, use page_ext in mem_section
if !SPARSEMEM, use page_ext in pgdata
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chen Gang [Fri, 20 May 2016 23:58:01 +0000 (16:58 -0700)]
include/linux/hugetlb.h: use bool instead of int for hugepage_migration_supported()
It is used as a pure bool function within kernel source wide.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chen Gang [Fri, 20 May 2016 23:57:59 +0000 (16:57 -0700)]
include/linux/hugetlb*.h: clean up code
Macro HUGETLBFS_SB is clear enough, so one statement is clearer than 3
lines statements.
Remove redundant return statements for non-return functions, which can
save lines, at least.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ming Li [Fri, 20 May 2016 23:57:56 +0000 (16:57 -0700)]
mm/swap.c: put activate_page_pvecs and other pagevecs together
Put the activate_page_pvecs definition next to those of the other
pagevecs, for clarity.
Signed-off-by: Ming Li <mingli199x@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Eric Dumazet [Fri, 20 May 2016 23:57:53 +0000 (16:57 -0700)]
mm: tighten fault_in_pages_writeable()
copy_page_to_iter_iovec() is currently the only user of
fault_in_pages_writeable(), and it definitely can use fragments from
high order pages.
Make sure fault_in_pages_writeable() is only touching two adjacent pages
at most, as claimed.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Rientjes [Fri, 20 May 2016 23:57:50 +0000 (16:57 -0700)]
mm, hugetlb_cgroup: round limit_in_bytes down to hugepage size
The page_counter rounds limits down to page size values. This makes
sense, except in the case of hugetlb_cgroup where it's not possible to
charge partial hugepages. If the hugetlb_cgroup margin is less than the
hugepage size being charged, it will fail as expected.
Round the hugetlb_cgroup limit down to hugepage size, since it is the
effective limit of the cgroup.
For consistency, round down PAGE_COUNTER_MAX as well when a
hugetlb_cgroup is created: this prevents error reports when a user
cannot restore the value to the kernel default.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nikolay Borisov <kernel@kyup.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rich Felker [Fri, 20 May 2016 23:57:47 +0000 (16:57 -0700)]
tmpfs/ramfs: fix VM_MAYSHARE mappings for NOMMU
The nommu do_mmap expects f_op->get_unmapped_area to either succeed or
return -ENOSYS for VM_MAYSHARE (e.g. private read-only) mappings.
Returning addr in the non-MAP_SHARED case was completely wrong, and only
happened to work because addr was 0. However, it prevented VM_MAYSHARE
mappings from sharing backing with the fs cache, and forced such
mappings (including shareable program text) to be copied whenever the
number of mappings transitioned from 0 to 1, impacting performance and
memory usage. Subsequent mappings beyond the first still correctly
shared memory with the first.
Instead, treat VM_MAYSHARE identically to VM_SHARED at the file ops level;
do_mmap already handles the semantic differences between them.
Signed-off-by: Rich Felker <dalias@libc.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Greg Ungerer <gerg@uclinux.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Konstantin Khlebnikov [Fri, 20 May 2016 23:57:45 +0000 (16:57 -0700)]
mm: enable RLIMIT_DATA by default with workaround for valgrind
Since commit
84638335900f ("mm: rework virtual memory accounting")
RLIMIT_DATA limits both brk() and private mmap() but this's disabled by
default because of incompatibility with older versions of valgrind.
Valgrind always set limit to zero and fails if RLIMIT_DATA is enabled.
Fortunately it changes only rlim_cur and keeps rlim_max for reverting
limit back when needed.
This patch checks current usage also against rlim_max if rlim_cur is
zero. This is safe because task anyway can increase rlim_cur up to
rlim_max. Size of brk is still checked against rlim_cur, so this part
is completely compatible - zero rlim_cur forbids brk() but allows
private mmap().
Link: http://lkml.kernel.org/r/56A28613.5070104@de.ibm.com
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yongji Xie [Fri, 20 May 2016 23:57:41 +0000 (16:57 -0700)]
mm: fix incorrect pfn passed to untrack_pfn() in remap_pfn_range()
We use generic hooks in remap_pfn_range() to help archs to track pfnmap
regions. The code is something like:
int remap_pfn_range()
{
...
track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
...
pfn -= addr >> PAGE_SHIFT;
...
untrack_pfn(vma, pfn, PAGE_ALIGN(size));
...
}
Here we can easily find the pfn is changed but not recovered before
untrack_pfn() is called. That's incorrect.
There are no known runtime effects - this is from inspection.
Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chris Wilson [Fri, 20 May 2016 23:57:38 +0000 (16:57 -0700)]
mm/vmalloc: keep a separate lazy-free list
When mixing lots of vmallocs and set_memory_*() (which calls
vm_unmap_aliases()) I encountered situations where the performance
degraded severely due to the walking of the entire vmap_area list each
invocation.
One simple improvement is to add the lazily freed vmap_area to a
separate lockless free list, such that we then avoid having to walk the
full list on each purge.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Roman Pen <r.peniaev@gmail.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Pen <r.peniaev@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Shawn Lin <shawn.lin@rock-chips.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Alexander Kuleshov [Fri, 20 May 2016 23:57:35 +0000 (16:57 -0700)]
mm/memblock.c: move memblock_{add,reserve}_region into memblock_{add,reserve}
memblock_add_region() and memblock_reserve_region() do nothing specific
before the call of memblock_add_range(), only print debug output.
We can do the same in memblock_add() and memblock_reserve() since both
memblock_add_region() and memblock_reserve_region() are not used by
anybody outside of memblock.c and memblock_{add,reserve}() have the same
set of flags and nids.
Since memblock_add_region() and memblock_reserve_region() will be
inlined, there will not be functional changes, but will improve code
readability a little.
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chen Yucong [Fri, 20 May 2016 23:57:32 +0000 (16:57 -0700)]
mm/memory-failure.c: replace "MCE" with "Memory failure"
HWPoison was specific to some particular x86 platforms. And it is often
seen as high level machine check handler. And therefore, 'MCE' is used
for the format prefix of printk(). However, 'PowerNV' has also used
HWPoison for handling memory errors[1], so 'MCE' is no longer suitable
to memory_failure.c.
Additionally, 'MCE' and 'Memory failure' have different context. The
former belongs to exception context and the latter belongs to process
context. Furthermore, HWPoison can also be used for off-lining those
sub-health pages that do not trigger any machine check exception.
This patch aims to replace 'MCE' with a more appropriate prefix.
[1] commit
75eb3d9b60c2 ("powerpc/powernv: Get FSP memory errors
and plumb into memory poison infrastructure.")
Signed-off-by: Chen Yucong <slaoub@gmail.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yang Shi [Fri, 20 May 2016 23:57:30 +0000 (16:57 -0700)]
mm: thp: simplify the implementation of mk_huge_pmd()
The implementation of mk_huge_pmd looks verbose, it could be just
simplified to one line code.
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tetsuo Handa [Fri, 20 May 2016 23:57:27 +0000 (16:57 -0700)]
mm,oom: speed up select_bad_process() loop
Since commit
3a5dda7a17cf ("oom: prevent unnecessary oom kills or kernel
panics"), select_bad_process() is using for_each_process_thread().
Since oom_unkillable_task() scans all threads in the caller's thread
group and oom_task_origin() scans signal_struct of the caller's thread
group, we don't need to call oom_unkillable_task() and oom_task_origin()
on each thread. Also, since !mm test will be done later at
oom_badness(), we don't need to do !mm test on each thread. Therefore,
we only need to do TIF_MEMDIE test on each thread.
Although the original code was correct it was quite inefficient because
each thread group was scanned num_threads times which can be a lot
especially with processes with many threads. Even though the OOM is
extremely cold path it is always good to be as effective as possible
when we are inside rcu_read_lock() - aka unpreemptible context.
If we track number of TIF_MEMDIE threads inside signal_struct, we don't
need to do TIF_MEMDIE test on each thread. This will allow
select_bad_process() to use for_each_process().
This patch adds a counter to signal_struct for tracking how many
TIF_MEMDIE threads are in a given thread group, and check it at
oom_scan_process_thread() so that select_bad_process() can use
for_each_process() rather than for_each_process_thread().
[mhocko@suse.com: do not blow the signal_struct size]
Link: http://lkml.kernel.org/r/20160520075035.GF19172@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/201605182230.IDC73435.MVSOHLFOQFOJtF@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:57:24 +0000 (16:57 -0700)]
oom: consider multi-threaded tasks in task_will_free_mem
task_will_free_mem is a misnomer for a more complex PF_EXITING test for
early break out from the oom killer because it is believed that such a
task would release its memory shortly and so we do not have to select an
oom victim and perform a disruptive action.
Currently we make sure that the given task is not participating in the
core dumping because it might get blocked for a long time - see commit
d003f371b270 ("oom: don't assume that a coredumping thread will exit
soon").
The check can still do better though. We shouldn't consider the task
unless the whole thread group is going down. This is rather unlikely
but not impossible. A single exiting thread would surely leave all the
address space behind. If we are really unlucky it might get stuck on
the exit path and keep its TIF_MEMDIE and so block the oom killer.
Link: http://lkml.kernel.org/r/1460452756-15491-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:57:21 +0000 (16:57 -0700)]
mm, oom_reaper: do not mmput synchronously from the oom reaper context
Tetsuo has properly noted that mmput slow path might get blocked waiting
for another party (e.g. exit_aio waits for an IO). If that happens the
oom_reaper would be put out of the way and will not be able to process
next oom victim. We should strive for making this context as reliable
and independent on other subsystems as much as possible.
Introduce mmput_async which will perform the slow path from an async
(WQ) context. This will delay the operation but that shouldn't be a
problem because the oom_reaper has reclaimed the victim's address space
for most cases as much as possible and the remaining context shouldn't
bind too much memory anymore. The only exception is when mmap_sem
trylock has failed which shouldn't happen too often.
The issue is only theoretical but not impossible.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:57:18 +0000 (16:57 -0700)]
mm, oom_reaper: hide oom reaped tasks from OOM killer more carefully
Commit
36324a990cf5 ("oom: clear TIF_MEMDIE after oom_reaper managed to
unmap the address space") not only clears TIF_MEMDIE for oom reaped task
but also set OOM_SCORE_ADJ_MIN for the target task to hide it from the
oom killer. This works in simple cases but it is not sufficient for
(unlikely) cases where the mm is shared between independent processes
(as they do not share signal struct). If the mm had only small amount
of memory which could be reaped then another task sharing the mm could
be selected and that wouldn't help to move out from the oom situation.
Introduce MMF_OOM_REAPED mm flag which is checked in oom_badness (same
as OOM_SCORE_ADJ_MIN) and task is skipped if the flag is set. Set the
flag after __oom_reap_task is done with a task. This will force the
select_bad_process() to ignore all already oom reaped tasks as well as
no such task is sacrificed for its parent.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:57:15 +0000 (16:57 -0700)]
mm, oom: protect !costly allocations some more for !CONFIG_COMPACTION
Joonsoo has reported that he is able to trigger OOM for !costly high
order requests (heavy fork() workload close the OOM) with the new oom
detection rework. This is because we rely only on should_reclaim_retry
when the compaction is disabled and it only checks watermarks for the
requested order and so we might trigger OOM when there is a lot of free
memory.
It is not very clear what are the usual workloads when the compaction is
disabled. Relying on high order allocations heavily without any
mechanism to create those orders except for unbound amount of reclaim is
certainly not a good idea.
To prevent from potential regressions let's help this configuration
some. We have to sacrifice the determinsm though because there simply
is none here possible. should_compact_retry implementation for
!CONFIG_COMPACTION, which was empty so far, will do watermark check for
order-0 on all eligible zones. This will cause retrying until either
the reclaim cannot make any further progress or all the zones are
depleted even for order-0 pages. This means that the number of retries
is basically unbounded for !costly orders but that was the case before
the rework as well so this shouldn't regress.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1463051677-29418-3-git-send-email-mhocko@kernel.org
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:57:12 +0000 (16:57 -0700)]
mm, oom, compaction: prevent from should_compact_retry looping for ever for costly orders
"mm: consider compaction feedback also for costly allocation" has
removed the upper bound for the reclaim/compaction retries based on the
number of reclaimed pages for costly orders. While this is desirable
the patch did miss a mis interaction between reclaim, compaction and the
retry logic. The direct reclaim tries to get zones over min watermark
while compaction backs off and returns COMPACT_SKIPPED when all zones
are below low watermark + 1<<order gap. If we are getting really close
to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a
high order request (e.g. hugetlb order-9) while the reclaim is not able
to release enough pages to get us over low watermark. The reclaim is
still able to make some progress (usually trashing over few remaining
pages) so we are not able to break out from the loop.
I have seen this happening with the same test described in "mm: consider
compaction feedback also for costly allocation" on a swapless system.
The original problem got resolved by "vmscan: consider classzone_idx in
compaction_ready" but it shows how things might go wrong when we
approach the oom event horizont.
The reason why compaction requires being over low rather than min
watermark is not clear to me. This check was there essentially since
56de7263fcf3 ("mm: compaction: direct compact when a high-order
allocation fails"). It is clearly an implementation detail though and
we shouldn't pull it into the generic retry logic while we should be
able to cope with such eventuality. The only place in
should_compact_retry where we retry without any upper bound is for
compaction_withdrawn() case.
Introduce compaction_zonelist_suitable function which checks the given
zonelist and returns true only if there is at least one zone which would
would unblock __compaction_suitable if more memory got reclaimed. In
this implementation it checks __compaction_suitable with NR_FREE_PAGES
plus part of the reclaimable memory as the target for the watermark
check. The reclaimable memory is reduced linearly by the allocation
order. The idea is that we do not want to reclaim all the remaining
memory for a single allocation request just unblock
__compaction_suitable which doesn't guarantee we will make a further
progress.
The new helper is then used if compaction_withdrawn() feedback was
provided so we do not retry if there is no outlook for a further
progress. !costly requests shouldn't be affected much - e.g. order-2
pages would require to have at least 64kB on the reclaimable LRUs while
order-9 would need at least 32M which should be enough to not lock up.
[vbabka@suse.cz: fix classzone_idx vs. high_zoneidx usage in compaction_zonelist_suitable]
[akpm@linux-foundation.org: fix it for Mel's mm-page_alloc-remove-field-from-alloc_context.patch]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:57:09 +0000 (16:57 -0700)]
mm: consider compaction feedback also for costly allocation
PAGE_ALLOC_COSTLY_ORDER retry logic is mostly handled inside
should_reclaim_retry currently where we decide to not retry after at
least order worth of pages were reclaimed or the watermark check for at
least one zone would succeed after reclaiming all pages if the reclaim
hasn't made any progress. Compaction feedback is mostly ignored and we
just try to make sure that the compaction did at least something before
giving up.
The first condition was added by
a41f24ea9fd6 ("page allocator: smarter
retry of costly-order allocations) and it assumed that lumpy reclaim
could have created a page of the sufficient order. Lumpy reclaim, has
been removed quite some time ago so the assumption doesn't hold anymore.
Remove the check for the number of reclaimed pages and rely on the
compaction feedback solely. should_reclaim_retry now only makes sure
that we keep retrying reclaim for high order pages only if they are
hidden by watermaks so order-0 reclaim makes really sense.
should_compact_retry now keeps retrying even for the costly allocations.
The number of retries is reduced wrt. !costly requests because they are
less important and harder to grant and so their pressure shouldn't cause
contention for other requests or cause an over reclaim. We also do not
reset no_progress_loops for costly request to make sure we do not keep
reclaiming too agressively.
This has been tested by running a process which fragments memory:
- compact memory
- mmap large portion of the memory (1920M on 2GRAM machine with 2G
of swapspace)
- MADV_DONTNEED single page in PAGE_SIZE*((1UL<<MAX_ORDER)-1)
steps until certain amount of memory is freed (250M in my test)
and reduce the step to (step / 2) + 1 after reaching the end of
the mapping
- then run a script which populates the page cache 2G (MemTotal)
from /dev/zero to a new file
And then tries to allocate
nr_hugepages=$(awk '/MemAvailable/{printf "%d\n", $2/(2*1024)}' /proc/meminfo)
huge pages.
root@test1:~# echo 1 > /proc/sys/vm/overcommit_memory;echo 1 > /proc/sys/vm/compact_memory; ./fragment-mem-and-run /root/alloc_hugepages.sh 1920M 250M
Node 0, zone DMA 31 28 31 10 2 0 2 1 2 3 1
Node 0, zone DMA32 437 319 171 50 28 25 20 16 16 14 437
* This is the /proc/buddyinfo after the compaction
Done fragmenting. size=
2013265920 freed=
262144000
Node 0, zone DMA 165 48 3 1 2 0 2 2 2 2 0
Node 0, zone DMA32 35109 14575 185 51 41 12 6 0 0 0 0
* /proc/buddyinfo after memory got fragmented
Executing "/root/alloc_hugepages.sh"
Eating some pagecache
508623+0 records in
508623+0 records out
2083319808 bytes (2.1 GB) copied, 11.7292 s, 178 MB/s
Node 0, zone DMA 3 5 3 1 2 0 2 2 2 2 0
Node 0, zone DMA32 111 344 153 20 24 10 3 0 0 0 0
* /proc/buddyinfo after page cache got eaten
Trying to allocate 129
129
* 129 hugepages requested and all of them granted.
Node 0, zone DMA 3 5 3 1 2 0 2 2 2 2 0
Node 0, zone DMA32 127 97 30 99 11 6 2 1 4 0 0
* /proc/buddyinfo after hugetlb allocation.
10 runs will behave as follows:
Trying to allocate 130
130
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129
--
Trying to allocate 132
132
--
Trying to allocate 129
129
--
Trying to allocate 128
128
--
Trying to allocate 129
129
So basically 100% success for all 10 attempts.
Without the patch numbers looked much worse:
Trying to allocate 128
12
--
Trying to allocate 129
14
--
Trying to allocate 129
7
--
Trying to allocate 129
16
--
Trying to allocate 129
30
--
Trying to allocate 129
38
--
Trying to allocate 129
19
--
Trying to allocate 129
37
--
Trying to allocate 129
28
--
Trying to allocate 129
37
Just for completness the base kernel without oom detection rework looks
as follows:
Trying to allocate 127
30
--
Trying to allocate 129
12
--
Trying to allocate 129
52
--
Trying to allocate 128
32
--
Trying to allocate 129
12
--
Trying to allocate 129
10
--
Trying to allocate 129
32
--
Trying to allocate 128
14
--
Trying to allocate 128
16
--
Trying to allocate 129
8
As we can see the success rate is much more volatile and smaller without
this patch. So the patch not only makes the retry logic for costly
requests more sensible the success rate is even higher.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:57:06 +0000 (16:57 -0700)]
mm, oom: protect !costly allocations some more
should_reclaim_retry will give up retries for higher order allocations
if none of the eligible zones has any requested or higher order pages
available even if we pass the watermak check for order-0. This is done
because there is no guarantee that the reclaimable and currently free
pages will form the required order.
This can, however, lead to situations where the high-order request (e.g.
order-2 required for the stack allocation during fork) will trigger OOM
too early - e.g. after the first reclaim/compaction round. Such a
system would have to be highly fragmented and there is no guarantee
further reclaim/compaction attempts would help but at least make sure
that the compaction was active before we go OOM and keep retrying even
if should_reclaim_retry tells us to oom if
- the last compaction round backed off or
- we haven't completed at least MAX_COMPACT_RETRIES active
compaction rounds.
The first rule ensures that the very last attempt for compaction was not
ignored while the second guarantees that the compaction has done some
work. Multiple retries might be needed to prevent occasional pigggy
backing of other contexts to steal the compacted pages before the
current context manages to retry to allocate them.
compaction_failed() is taken as a final word from the compaction that
the retry doesn't make much sense. We have to be careful though because
the first compaction round is MIGRATE_ASYNC which is rather weak as it
ignores pages under writeback and gives up too easily in other
situations. We therefore have to make sure that MIGRATE_SYNC_LIGHT mode
has been used before we give up. With this logic in place we do not
have to increase the migration mode unconditionally and rather do it
only if the compaction failed for the weaker mode. A nice side effect
is that the stronger migration mode is used only when really needed so
this has a potential of smaller latencies in some cases.
Please note that the compaction doesn't tell us much about how
successful it was when returning compaction_made_progress so we just
have to blindly trust that another retry is worthwhile and cap the
number to something reasonable to guarantee a convergence.
If the given number of successful retries is not sufficient for a
reasonable workloads we should focus on the collected compaction
tracepoints data and try to address the issue in the compaction code.
If this is not feasible we can increase the retries limit.
[mhocko@suse.com: fix warning]
Link: http://lkml.kernel.org/r/20160512061636.GA4200@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:57:03 +0000 (16:57 -0700)]
mm: throttle on IO only when there are too many dirty and writeback pages
wait_iff_congested has been used to throttle allocator before it retried
another round of direct reclaim to allow the writeback to make some
progress and prevent reclaim from looping over dirty/writeback pages
without making any progress.
We used to do congestion_wait before commit
0e093d99763e ("writeback: do
not sleep on the congestion queue if there are no congested BDIs or if
significant congestion is not being encountered in the current zone")
but that led to undesirable stalls and sleeping for the full timeout
even when the BDI wasn't congested. Hence wait_iff_congested was used
instead.
But it seems that even wait_iff_congested doesn't work as expected. We
might have a small file LRU list with all pages dirty/writeback and yet
the bdi is not congested so this is just a cond_resched in the end and
can end up triggering pre mature OOM.
This patch replaces the unconditional wait_iff_congested by
congestion_wait which is executed only if we _know_ that the last round
of direct reclaim didn't make any progress and dirty+writeback pages are
more than a half of the reclaimable pages on the zone which might be
usable for our target allocation. This shouldn't reintroduce stalls
fixed by
0e093d99763e because congestion_wait is called only when we are
getting hopeless when sleeping is a better choice than OOM with many
pages under IO.
We have to preserve logic introduced by commit
373ccbe59270 ("mm,
vmstat: allow WQ concurrency to discover memory reclaim doesn't make any
progress") into the __alloc_pages_slowpath now that wait_iff_congested
is not used anymore. As the only remaining user of wait_iff_congested
is shrink_inactive_list we can remove the WQ specific short sleep from
wait_iff_congested because the sleep is needed to be done only once in
the allocation retry cycle.
[mhocko@suse.com: high_zoneidx->ac_classzone_idx to evaluate memory reserves properly]
Link: http://lkml.kernel.org/r/1463051677-29418-2-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:57:00 +0000 (16:57 -0700)]
mm, oom: rework oom detection
__alloc_pages_slowpath has traditionally relied on the direct reclaim
and did_some_progress as an indicator that it makes sense to retry
allocation rather than declaring OOM. shrink_zones had to rely on
zone_reclaimable if shrink_zone didn't make any progress to prevent from
a premature OOM killer invocation - the LRU might be full of dirty or
writeback pages and direct reclaim cannot clean those up.
zone_reclaimable allows to rescan the reclaimable lists several times
and restart if a page is freed. This is really subtle behavior and it
might lead to a livelock when a single freed page keeps allocator
looping but the current task will not be able to allocate that single
page. OOM killer would be more appropriate than looping without any
progress for unbounded amount of time.
This patch changes OOM detection logic and pulls it out from shrink_zone
which is too low to be appropriate for any high level decisions such as
OOM which is per zonelist property. It is __alloc_pages_slowpath which
knows how many attempts have been done and what was the progress so far
therefore it is more appropriate to implement this logic.
The new heuristic is implemented in should_reclaim_retry helper called
from __alloc_pages_slowpath. It tries to be more deterministic and
easier to follow. It builds on an assumption that retrying makes sense
only if the currently reclaimable memory + free pages would allow the
current allocation request to succeed (as per __zone_watermark_ok) at
least for one zone in the usable zonelist.
This alone wouldn't be sufficient, though, because the writeback might
get stuck and reclaimable pages might be pinned for a really long time
or even depend on the current allocation context. Therefore there is a
backoff mechanism implemented which reduces the reclaim target after
each reclaim round without any progress. This means that we should
eventually converge to only NR_FREE_PAGES as the target and fail on the
wmark check and proceed to OOM. The backoff is simple and linear with
1/16 of the reclaimable pages for each round without any progress. We
are optimistic and reset counter for successful reclaim rounds.
Costly high order pages mostly preserve their semantic and those without
__GFP_REPEAT fail right away while those which have the flag set will
back off after the amount of reclaimable pages reaches equivalent of the
requested order. The only difference is that if there was no progress
during the reclaim we rely on zone watermark check. This is more
logical thing to do than previous 1<<order attempts which were a result
of zone_reclaimable faking the progress.
[vdavydov@virtuozzo.com: check classzone_idx for shrink_zone]
[hannes@cmpxchg.org: separate the heuristic into should_reclaim_retry]
[rientjes@google.com: use zone_page_state_snapshot for NR_FREE_PAGES]
[rientjes@google.com: shrink_zones doesn't need to return anything]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:56:56 +0000 (16:56 -0700)]
mm, compaction: abstract compaction feedback to helpers
Compaction can provide a wild variation of feedback to the caller. Many
of them are implementation specific and the caller of the compaction
(especially the page allocator) shouldn't be bound to specifics of the
current implementation.
This patch abstracts the feedback into three basic types:
- compaction_made_progress - compaction was active and made some
progress.
- compaction_failed - compaction failed and further attempts to
invoke it would most probably fail and therefore it is not
worth retrying
- compaction_withdrawn - compaction wasn't invoked for an
implementation specific reasons. In the current implementation
it means that the compaction was deferred, contended or the
page scanners met too early without any progress. Retrying is
still worthwhile.
[vbabka@suse.cz: do not change thp back off behavior]
[akpm@linux-foundation.org: fix typo in comment, per Hillf]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:56:53 +0000 (16:56 -0700)]
mm, compaction: simplify __alloc_pages_direct_compact feedback interface
__alloc_pages_direct_compact communicates potential back off by two
variables:
- deferred_compaction tells that the compaction returned
COMPACT_DEFERRED
- contended_compaction is set when there is a contention on
zone->lock resp. zone->lru_lock locks
__alloc_pages_slowpath then backs of for THP allocation requests to
prevent from long stalls. This is rather messy and it would be much
cleaner to return a single compact result value and hide all the nasty
details into __alloc_pages_direct_compact.
This patch shouldn't introduce any functional changes.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:56:50 +0000 (16:56 -0700)]
mm, compaction: update compaction_result ordering
compaction_result will be used as the primary feedback channel for
compaction users. At the same time try_to_compact_pages (and
potentially others) assume a certain ordering where a more specific
feedback takes precendence.
This gets a bit awkward when we have conflicting feedback from different
zones. E.g one returing COMPACT_COMPLETE meaning the full zone has been
scanned without any outcome while other returns with COMPACT_PARTIAL aka
made some progress. The caller should get COMPACT_PARTIAL because that
means that the compaction still can make some progress. The same
applies for COMPACT_PARTIAL vs COMPACT_PARTIAL_SKIPPED.
Reorder PARTIAL to be the largest one so the larger the value is the
more progress we have done.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:56:47 +0000 (16:56 -0700)]
mm, compaction: distinguish between full and partial COMPACT_COMPLETE
COMPACT_COMPLETE now means that compaction and free scanner met. This
is not very useful information if somebody just wants to use this
feedback and make any decisions based on that. The current caller might
be a poor guy who just happened to scan tiny portion of the zone and
that could be the reason no suitable pages were compacted. Make sure we
distinguish the full and partial zone walks.
Consumers should treat COMPACT_PARTIAL_SKIPPED as a potential success
and be optimistic in retrying.
The existing users of COMPACT_COMPLETE are conservatively changed to use
COMPACT_PARTIAL_SKIPPED as well but some of them should be probably
reconsidered and only defer the compaction only for COMPACT_COMPLETE
with the new semantic.
This patch shouldn't introduce any functional changes.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:56:44 +0000 (16:56 -0700)]
mm, compaction: distinguish COMPACT_DEFERRED from COMPACT_SKIPPED
try_to_compact_pages() can currently return COMPACT_SKIPPED even when
the compaction is defered for some zone just because zone DMA is skipped
in 99% of cases due to watermark checks. This makes COMPACT_DEFERRED
basically unusable for the page allocator as a feedback mechanism.
Make sure we distinguish those two states properly and switch their
ordering in the enum. This would mean that the COMPACT_SKIPPED will be
returned only when all eligible zones are skipped.
As a result COMPACT_DEFERRED handling for THP in __alloc_pages_slowpath
will be more precise and we would bail out rather than reclaim.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:56:41 +0000 (16:56 -0700)]
mm, compaction: cover all compaction mode in compact_zone
The compiler is complaining after "mm, compaction: change COMPACT_
constants into enum"
mm/compaction.c: In function `compact_zone':
mm/compaction.c:1350:2: warning: enumeration value `COMPACT_DEFERRED' not handled in switch [-Wswitch]
switch (ret) {
^
mm/compaction.c:1350:2: warning: enumeration value `COMPACT_COMPLETE' not handled in switch [-Wswitch]
mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NO_SUITABLE_PAGE' not handled in switch [-Wswitch]
mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NOT_SUITABLE_ZONE' not handled in switch [-Wswitch]
mm/compaction.c:1350:2: warning: enumeration value `COMPACT_CONTENDED' not handled in switch [-Wswitch]
compaction_suitable is allowed to return only COMPACT_PARTIAL,
COMPACT_SKIPPED and COMPACT_CONTINUE so other cases are simply
impossible. Put a VM_BUG_ON to catch an impossible return value.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:56:38 +0000 (16:56 -0700)]
mm, compaction: change COMPACT_ constants into enum
Compaction code is doing weird dances between COMPACT_FOO -> int ->
unsigned long
But there doesn't seem to be any reason for that. All functions which
return/use one of those constants are not expecting any other value so it
really makes sense to define an enum for them and make it clear that no
other values are expected.
This is a pure cleanup and shouldn't introduce any functional changes.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 23:56:34 +0000 (16:56 -0700)]
vmscan: consider classzone_idx in compaction_ready
Motivation:
As pointed out by Linus [2][3] relying on zone_reclaimable as a way to
communicate the reclaim progress is rater dubious. I tend to agree,
not only it is really obscure, it is not hard to imagine cases where a
single page freed in the loop keeps all the reclaimers looping without
getting any progress because their gfp_mask wouldn't allow to get that
page anyway (e.g. single GFP_ATOMIC alloc and free loop). This is rather
rare so it doesn't happen in the practice but the current logic which we
have is rather obscure and hard to follow a also non-deterministic.
This is an attempt to make the OOM detection more deterministic and
easier to follow because each reclaimer basically tracks its own
progress which is implemented at the page allocator layer rather spread
out between the allocator and the reclaim. The more on the
implementation is described in the first patch.
I have tested several different scenarios but it should be clear that
testing OOM killer is quite hard to be representative. There is usually
a tiny gap between almost OOM and full blown OOM which is often time
sensitive. Anyway, I have tested the following 2 scenarios and I would
appreciate if there are more to test.
Testing environment: a virtual machine with 2G of RAM and 2CPUs without
any swap to make the OOM more deterministic.
1) 2 writers (each doing dd with 4M blocks to an xfs partition with 1G
file size, removes the files and starts over again) running in
parallel for 10s to build up a lot of dirty pages when 100 parallel
mem_eaters (anon private populated mmap which waits until it gets
signal) with 80M each.
This causes an OOM flood of course and I have compared both patched
and unpatched kernels. The test is considered finished after there
are no OOM conditions detected. This should tell us whether there are
any excessive kills or some of them premature (e.g. due to dirty pages):
I have performed two runs this time each after a fresh boot.
* base kernel
$ grep "Out of memory:" base-oom-run1.log | wc -l
78
$ grep "Out of memory:" base-oom-run2.log | wc -l
78
$ grep "Kill process" base-oom-run1.log | tail -n1
[ 91.391203] Out of memory: Kill process 3061 (mem_eater) score 39 or sacrifice child
$ grep "Kill process" base-oom-run2.log | tail -n1
[ 82.141919] Out of memory: Kill process 3086 (mem_eater) score 39 or sacrifice child
$ grep "DMA32 free:" base-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5376.00 max: 6776.00 avg: 5530.75 std: 166.50 nr: 61
$ grep "DMA32 free:" base-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5416.00 max: 5608.00 avg: 5514.15 std: 42.94 nr: 52
$ grep "DMA32.*all_unreclaimable? no" base-oom-run1.log | wc -l
1
$ grep "DMA32.*all_unreclaimable? no" base-oom-run2.log | wc -l
3
* patched kernel
$ grep "Out of memory:" patched-oom-run1.log | wc -l
78
miso@tiehlicka /mnt/share/devel/miso/kvm $ grep "Out of memory:" patched-oom-run2.log | wc -l
77
e grep "Kill process" patched-oom-run1.log | tail -n1
[ 497.317732] Out of memory: Kill process 3108 (mem_eater) score 39 or sacrifice child
$ grep "Kill process" patched-oom-run2.log | tail -n1
[ 316.169920] Out of memory: Kill process 3093 (mem_eater) score 39 or sacrifice child
$ grep "DMA32 free:" patched-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5420.00 max: 5808.00 avg: 5513.90 std: 60.45 nr: 78
$ grep "DMA32 free:" patched-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk
min: 5380.00 max: 6384.00 avg: 5520.94 std: 136.84 nr: 77
e grep "DMA32.*all_unreclaimable? no" patched-oom-run1.log | wc -l
2
$ grep "DMA32.*all_unreclaimable? no" patched-oom-run2.log | wc -l
3
The patched kernel run noticeably longer while invoking OOM killer same
number of times. This means that the original implementation is much
more aggressive and triggers the OOM killer sooner. free pages stats
show that neither kernels went OOM too early most of the time, though. I
guess the difference is in the backoff when retries without any progress
do sleep for a while if there is memory under writeback or dirty which
is highly likely considering the parallel IO.
Both kernels have seen races where zone wasn't marked unreclaimable
and we still hit the OOM killer. This is most likely a race where
a task managed to exit between the last allocation attempt and the oom
killer invocation.
2) 2 writers again with 10s of run and then 10 mem_eaters to consume as much
memory as possible without triggering the OOM killer. This required a lot
of tuning but I've considered 3 consecutive runs in three different boots
without OOM as a success.
* base kernel
size=$(awk '/MemFree/{printf "%dK", ($2/10)-(16*1024)}' /proc/meminfo)
* patched kernel
size=$(awk '/MemFree/{printf "%dK", ($2/10)-(12*1024)}' /proc/meminfo)
That means 40M more memory was usable without triggering OOM killer. The
base kernel sometimes managed to handle the same as patched but it
wasn't consistent and failed in at least on of the 3 runs. This seems
like a minor improvement.
I was testing also GPF_REPEAT costly requests (hughetlb) with fragmented
memory and under memory pressure. The results are in patch 11 where the
logic is implemented. In short I can see huge improvement there.
I am certainly interested in other usecases as well as well as any
feedback. Especially those which require higher order requests.
This patch (of 14):
While playing with the oom detection rework [1] I have noticed that my
heavy order-9 (hugetlb) load close to OOM ended up in an endless loop
where the reclaim hasn't made any progress but did_some_progress didn't
reflect that and compaction_suitable was backing off because no zone is
above low wmark + 1 << order.
It turned out that this is in fact an old standing bug in
compaction_ready which ignores the requested_highidx and did the
watermark check for 0 classzone_idx. This succeeds for zone DMA most
of the time as the zone is mostly unused because of lowmem protection.
As a result costly high order allocatios always report a successfull
progress even when there was none. This wasn't a problem so far
because these allocations usually fail quite early or retry only few
times with __GFP_REPEAT but this will change after later patch in this
series so make sure to not lie about the progress and propagate
requested_highidx down to compaction_ready and use it for both the
watermak check and compaction_suitable to fix this issue.
[1] http://lkml.kernel.org/r/
1459855533-4600-1-git-send-email-mhocko@kernel.org
[2] https://lkml.org/lkml/2015/10/12/808
[3] https://lkml.org/lkml/2015/10/13/597
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rik van Riel [Fri, 20 May 2016 23:56:31 +0000 (16:56 -0700)]
mm: vmscan: reduce size of inactive file list
The inactive file list should still be large enough to contain readahead
windows and freshly written file data, but it no longer is the only
source for detecting multiple accesses to file pages. The workingset
refault measurement code causes recently evicted file pages that get
accessed again after a shorter interval to be promoted directly to the
active list.
With that mechanism in place, we can afford to (on a larger system)
dedicate more memory to the active file list, so we can actually cache
more of the frequently used file pages in memory, and not have them
pushed out by streaming writes, once-used streaming file reads, etc.
This can help things like database workloads, where only half the page
cache can currently be used to cache the database working set. This
patch automatically increases that fraction on larger systems, using the
same ratio that has already been used for anonymous memory.
[hannes@cmpxchg.org: cgroup-awareness]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Fri, 20 May 2016 23:56:28 +0000 (16:56 -0700)]
mm: filemap: only do access activations on reads
Andres observed that his database workload is struggling with the
transaction journal creating pressure on frequently read pages.
Access patterns like transaction journals frequently write the same
pages over and over, but in the majority of cases those pages are never
read back. There are no caching benefits to be had for those pages, so
activating them and having them put pressure on pages that do benefit
from caching is a bad choice.
Leave page activations to read accesses and don't promote pages based on
writes alone.
It could be said that partially written pages do contain cache-worthy
data, because even if *userspace* does not access the unwritten part,
the kernel still has to read it from the filesystem for correctness.
However, a counter argument is that these pages enjoy at least *some*
protection over other inactive file pages through the writeback cache,
in the sense that dirty pages are written back with a delay and cache
reclaim leaves them alone until they have been written back to disk.
Should that turn out to be insufficient and we see increased read IO
from partial writes under memory pressure, we can always go back and
update grab_cache_page_write_begin() to take (pos, len) so that it can
tell partial writes from pages that don't need partial reads. But for
now, keep it simple.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rik van Riel [Fri, 20 May 2016 23:56:25 +0000 (16:56 -0700)]
mm: workingset: only do workingset activations on reads
This is a follow-up to
http://www.spinics.net/lists/linux-mm/msg101739.html
where Andres reported his database workingset being pushed out by the
minimum size enforcement of the inactive file list - currently 50% of
cache - as well as repeatedly written file pages that are never actually
read.
Two changes fell out of the discussions. The first change observes that
pages that are only ever written don't benefit from caching beyond what
the writeback cache does for partial page writes, and so we shouldn't
promote them to the active file list where they compete with pages whose
cached data is actually accessed repeatedly. This change comes in two
patches - one for in-cache write accesses and one for refaults triggered
by writes, neither of which should promote a cache page.
Second, with the refault detection we don't need to set 50% of the cache
aside for used-once cache anymore since we can detect frequently used
pages even when they are evicted between accesses. We can allow the
active list to be bigger and thus protect a bigger workingset that isn't
challenged by streamers. Depending on the access patterns, this can
increase major faults during workingset transitions for better
performance during stable phases.
This patch (of 3):
When rewriting a page, the data in that page is replaced with new data.
This means that evicting something else from the active file list, in
order to cache data that will be replaced by something else, is likely
to be a waste of memory.
It is better to save the active list for frequently read pages, because
reads actually use the data that is in the page.
This patch ignores partial writes, because it is unclear whether the
complexity of identifying those is worth any potential performance gain
obtained from better caching pages that see repeated partial writes at
large enough intervals to not get caught by the use-twice promotion code
used for the inactive file list.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Andres Freund <andres@anarazel.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linus Torvalds [Fri, 20 May 2016 18:10:24 +0000 (11:10 -0700)]
Merge tag 'mfd-for-linus-4.7' of git://git./linux/kernel/git/lee/mfd
Pull MFD updates from Lee Jones:
"New Drivers:
- Add new driver for MAXIM MAX77620/MAX20024 PMIC
- Add new driver for Hisilicon HI665X PMIC
New Device Support:
- Add support for AXP809 in axp20x-rsb
- Add support for Power Supply in axp20x
New core features:
- devm_mfd_* managed resources
Fix-ups:
- Remove unused code (da9063-irq, wm8400-core, tps6105x,
smsc-
ece1099, twl4030-power)
- Improve clean-up in error path (intel_quark_i2c_gpio)
- Explicitly include headers (syscon.h)
- Allow building as modules (max77693)
- Use IS_ENABLED() instead of rolling your own (dm355evm_msp,
wm8400-core)
- DT adaptions (axp20x, hi655x, arizona, max77620)
- Remove CLK_IS_ROOT flag (intel-lpss, intel_quark)
- Move to gpiochip API (asic3, dm355evm_msp, htc-egpio, htc-i2cpld,
sm501, tc6393xb, tps65010, ucb1x00, vexpress)
- Make use of devm_mfd_* calls (act8945a, as3711, atmel-hlcdc,
bcm590xx, hi6421-pmic-core, lp3943, menf21bmc, mt6397, rdc321x,
rk808, rn5t618, rt5033, sky81452, stw481x, tps6507x, tps65217,
wm8400)
Bug Fixes"
- Fix ACPI child matching (mfd-core)
- Fix start-up ordering issues (mt6397-core, arizona-core)
- Fix forgotten register state on resume (intel-lpss)
- Fix Clock related issues (twl6040)
- Fix scheduling whilst atomic (omap-usb-tll)
- Kconfig changes (vexpress)"
* tag 'mfd-for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd: (73 commits)
mfd: hi655x: Add MFD driver for hi655x
mfd: ab8500-debugfs: Trivial fix of spelling mistake on "between"
mfd: vexpress: Add !ARCH_USES_GETTIMEOFFSET dependency
mfd: Add device-tree binding doc for PMIC MAX77620/MAX20024
mfd: max77620: Add core driver for MAX77620/MAX20024
mfd: arizona: Add defines for GPSW values that can be used from DT
mfd: omap-usb-tll: Fix scheduling while atomic BUG
mfd: wm5110: ARIZONA_CLOCK_CONTROL should be volatile
mfd: axp20x: Add a cell for the ac power_supply part of the axp20x PMICs
mfd: intel_soc_pmic_core: Terminate panel control GPIO lookup table correctly
mfd: wl1273-core: Use devm_mfd_add_devices() for mfd_device registration
mfd: tps65910: Use devm_mfd_add_devices and devm_regmap_add_irq_chip
mfd: sec: Use devm_mfd_add_devices and devm_regmap_add_irq_chip
mfd: rc5t583: Use devm_mfd_add_devices and devm_request_threaded_irq
mfd: max77686: Use devm_mfd_add_devices and devm_regmap_add_irq_chip
mfd: as3722: Use devm_mfd_add_devices and devm_regmap_add_irq_chip
mfd: twl4030-power: Remove driver path in file comment
MAINTAINERS: Add entry for X-Powers AXP family PMIC drivers
mfd: smsc-
ece1099: Remove unnecessarily remove callback
mfd: Use IS_ENABLED(CONFIG_FOO) instead of checking FOO || FOO_MODULE
...
Linus Torvalds [Fri, 20 May 2016 18:05:40 +0000 (11:05 -0700)]
Merge tag 'hsi-for-4.7' of git://git./linux/kernel/git/sre/linux-hsi
Pull HSI updates from Sebastian Reichel:
- merge omap-ssi and omap-ssi-port modules
- fix omap-ssi module reloading
- add DVFS support to omap-ssi
* tag 'hsi-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi:
HSI: omap-ssi: move omap_ssi_port_update_fclk
HSI: omap-ssi: include pinctrl header files
HSI: omap-ssi: add COMMON_CLK dependency
HSI: omap-ssi: add clk change support
HSI: omap_ssi: built omap_ssi and omap_ssi_port into one module
HSI: omap_ssi: fix removal of port platform device
HSI: omap_ssi: make sure probe stays available
HSI: omap_ssi: fix module unloading
HSI: omap_ssi_port: switch to gpiod API
Linus Torvalds [Fri, 20 May 2016 18:01:02 +0000 (11:01 -0700)]
Merge tag 'fbdev-4.7' of git://git./linux/kernel/git/tomba/linux
Pull fbdev updates from Tomi Valkeinen:
- imxfb: fix lcd power up
- small fixes and cleanups
* tag 'fbdev-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tomba/linux:
fbdev: Use IS_ENABLED() instead of checking for built-in or module
efifb: Don't show the mapping VA
video: AMBA CLCD: Remove unncessary include in amba-clcd.c
fbdev: ssd1307fb: Fix charge pump setting
Documentation: fb: fix spelling mistakes
fbdev: fbmem: implement error handling in fbmem_init()
fbdev: sh_mipi_dsi: remove driver
video: fbdev: imxfb: add some error handling
video: fbdev: imxfb: fix semantic of .get_power and .set_power
video: fbdev: omap2: Remove deprecated regulator_can_change_voltage() usage
Linus Torvalds [Fri, 20 May 2016 17:25:16 +0000 (10:25 -0700)]
Merge branch 'linus' of git://git./linux/kernel/git/herbert/crypto-2.6
Pull crypto fix from Herbert Xu:
"Fix a regression that causes sha-mb to crash"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: sha1-mb - make sha1_x8_avx2() conform to C function ABI
Arnd Bergmann [Thu, 12 May 2016 21:03:35 +0000 (23:03 +0200)]
irqchip: nps: add 64BIT dependency
The newly added nps irqchip driver causes build warnings on ARM64.
include/soc/nps/common.h: In function 'nps_host_reg_non_cl':
include/soc/nps/common.h:148:9: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast]
As the driver is only used on ARC, we don't need to see it without
COMPILE_TEST elsewhere, and we can avoid the warnings by only building
on 32-bit architectures even with CONFIG_COMPILE_TEST.
Acked-by: Marc Zyngier <narc.zyngier@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Linus Torvalds [Fri, 20 May 2016 17:12:41 +0000 (10:12 -0700)]
Merge tag 'powerpc-4.7-1' of git://git./linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights:
- Support for Power ISA 3.0 (Power9) Radix Tree MMU from Aneesh Kumar K.V
- Live patching support for ppc64le (also merged via livepatching.git)
Various cleanups & minor fixes from:
- Aaro Koskinen, Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V,
Chris Smart, Daniel Axtens, Frederic Barrat, Gavin Shan, Ian Munsie,
Lennart Sorensen, Madhavan Srinivasan, Mahesh Salgaonkar, Markus Elfring,
Michael Ellerman, Oliver O'Halloran, Paul Gortmaker, Paul Mackerras,
Rashmica Gupta, Russell Currey, Suraj Jitindar Singh, Thiago Jung
Bauermann, Valentin Rothberg, Vipin K Parashar.
General:
- Update LMB associativity index during DLPAR add/remove from Nathan
Fontenot
- Fix branching to OOL handlers in relocatable kernel from Hari Bathini
- Add support for userspace Power9 copy/paste from Chris Smart
- Always use STRICT_MM_TYPECHECKS from Michael Ellerman
- Add mask of possible MMU features from Michael Ellerman
PCI:
- Enable pass through of NVLink to guests from Alexey Kardashevskiy
- Cleanups in preparation for powernv PCI hotplug from Gavin Shan
- Don't report error in eeh_pe_reset_and_recover() from Gavin Shan
- Restore initial state in eeh_pe_reset_and_recover() from Gavin Shan
- Revert "powerpc/eeh: Fix crash in eeh_add_device_early() on Cell"
from Guilherme G Piccoli
- Remove the dependency on EEH struct in DDW mechanism from Guilherme
G Piccoli
selftests:
- Test cp_abort during context switch from Chris Smart
- Add several tests for transactional memory support from Rashmica
Gupta
perf:
- Add support for sampling interrupt register state from Anju T
- Add support for unwinding perf-stackdump from Chandan Kumar
cxl:
- Configure the PSL for two CAPI ports on POWER8NVL from Philippe
Bergheaud
- Allow initialization on timebase sync failures from Frederic Barrat
- Increase timeout for detection of AFU mmio hang from Frederic
Barrat
- Handle num_of_processes larger than can fit in the SPA from Ian
Munsie
- Ensure PSL interrupt is configured for contexts with no AFU IRQs
from Ian Munsie
- Add kernel API to allow a context to operate with relocate disabled
from Ian Munsie
- Check periodically the coherent platform function's state from
Christophe Lombard
Freescale:
- Updates from Scott: "Contains 86xx fixes, minor device tree fixes,
an erratum workaround, and a kconfig dependency fix."
* tag 'powerpc-4.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (192 commits)
powerpc/86xx: Fix PCI interrupt map definition
powerpc/86xx: Move pci1 definition to the include file
powerpc/fsl: Fix build of the dtb embedded kernel images
powerpc/fsl: Fix rcpm compatible string
powerpc/fsl: Remove FSL_SOC dependency from FSL_LBC
powerpc/fsl-pci: Add a workaround for PCI 5 errata
powerpc/fsl: Fix SPI compatible on t208xrdb and t1040rdb
powerpc/powernv/npu: Add PE to PHB's list
powerpc/powernv: Fix insufficient memory allocation
powerpc/iommu: Remove the dependency on EEH struct in DDW mechanism
Revert "powerpc/eeh: Fix crash in eeh_add_device_early() on Cell"
powerpc/eeh: Drop unnecessary label in eeh_pe_change_owner()
powerpc/eeh: Ignore handlers in eeh_pe_reset_and_recover()
powerpc/eeh: Restore initial state in eeh_pe_reset_and_recover()
powerpc/eeh: Don't report error in eeh_pe_reset_and_recover()
Revert "powerpc/powernv: Exclude root bus in pnv_pci_reset_secondary_bus()"
powerpc/powernv/npu: Enable NVLink pass through
powerpc/powernv/npu: Rework TCE Kill handling
powerpc/powernv/npu: Add set/unset window helpers
powerpc/powernv/ioda2: Export debug helper pe_level_printk()
...
Linus Torvalds [Fri, 20 May 2016 17:01:38 +0000 (10:01 -0700)]
Merge branch 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
Pull ARM updates from Russell King:
"Changes included in this pull request:
- revert pxa2xx-flash back to using ioremap_cached() and switch
memremap() to use arch_memremap_wb()
- remove pci=firmware command line argument handling
- remove unnecessary arm_dma_set_mask() implementation, the generic
implementation will do for ARM
- removal of the ARM kallsyms "hack" to work around mode switching
veneers and vectors located below PAGE_OFFSET
- tidy up build system output a little
- add L2 cache power management DT bindings
- remove duplicated local_irq_disable() in reboot paths
- handle AMBA primecell devices better at registration time with PM
domains (needed for Samsung SoCs)
- ARM specific preparation to support Keystone II kexec"
* 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
ARM: 8567/1: cache-uniphier: activate ways for secondary CPUs
ARM: 8570/2: Documentation: devicetree: Add PL310 PM bindings
ARM: 8569/1: pl2x0: Add OF control of cache power management
ARM: 8568/1: reboot: remove duplicated local_irq_disable()
ARM: 8566/1: drivers: amba: properly handle devices with power domains
ARM: provide arm_has_idmap_alias() helper
ARM: kexec: remove 512MB restriction on kexec crashdump
ARM: provide improved virt_to_idmap() functionality
ARM: kexec: fix crashkernel= handling
ARM: 8557/1: specify install, zinstall, and uinstall as PHONY targets
ARM: 8562/1: suppress "include/generated/mach-types.h is up to date."
ARM: 8553/1: kallsyms: remove --page-offset command line option
ARM: 8552/1: kallsyms: remove special lower address limit for CONFIG_ARM
ARM: 8555/1: kallsyms: ignore ARM mode switching veneers
ARM: 8548/1: dma-mapping: remove arm_dma_set_mask()
ARM: 8554/1: kernel: pci: remove pci=firmware command line parameter handling
ARM: memremap: implement arch_memremap_wb()
memremap: add arch specific hook for MEMREMAP_WB mappings
mtd: pxa2xx-flash: switch back from memremap to ioremap_cached
ARM: reintroduce ioremap_cached() for creating cached I/O mappings
Linus Torvalds [Fri, 20 May 2016 03:00:06 +0000 (20:00 -0700)]
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:
- fsnotify fix
- poll() timeout fix
- a few scripts/ tweaks
- debugobjects updates
- the (small) ocfs2 queue
- Minor fixes to kernel/padata.c
- Maybe half of the MM queue
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (117 commits)
mm, page_alloc: restore the original nodemask if the fast path allocation failed
mm, page_alloc: uninline the bad page part of check_new_page()
mm, page_alloc: don't duplicate code in free_pcp_prepare
mm, page_alloc: defer debugging checks of pages allocated from the PCP
mm, page_alloc: defer debugging checks of freed pages until a PCP drain
cpuset: use static key better and convert to new API
mm, page_alloc: inline pageblock lookup in page free fast paths
mm, page_alloc: remove unnecessary variable from free_pcppages_bulk
mm, page_alloc: pull out side effects from free_pages_check
mm, page_alloc: un-inline the bad part of free_pages_check
mm, page_alloc: check multiple page fields with a single branch
mm, page_alloc: remove field from alloc_context
mm, page_alloc: avoid looking up the first zone in a zonelist twice
mm, page_alloc: shortcut watermark checks for order-0 pages
mm, page_alloc: reduce cost of fair zone allocation policy retry
mm, page_alloc: shorten the page allocator fast path
mm, page_alloc: check once if a zone has isolated pageblocks
mm, page_alloc: move __GFP_HARDWALL modifications out of the fastpath
mm, page_alloc: simplify last cpupid reset
mm, page_alloc: remove unnecessary initialisation from __alloc_pages_nodemask()
...
Mel Gorman [Fri, 20 May 2016 00:14:44 +0000 (17:14 -0700)]
mm, page_alloc: restore the original nodemask if the fast path allocation failed
The page allocator fast path uses either the requested nodemask or
cpuset_current_mems_allowed if cpusets are enabled. If the allocation
context allows watermarks to be ignored then it can also ignore memory
policies. However, on entering the allocator slowpath the nodemask may
still be cpuset_current_mems_allowed and the policies are enforced.
This patch resets the nodemask appropriately before entering the
slowpath.
Link: http://lkml.kernel.org/r/20160504143628.GU2858@techsingularity.net
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Fri, 20 May 2016 00:14:41 +0000 (17:14 -0700)]
mm, page_alloc: uninline the bad page part of check_new_page()
Bad pages should be rare so the code handling them doesn't need to be
inline for performance reasons. Put it to separate function which
returns void. This also assumes that the initial page_expected_state()
result will match the result of the thorough check, i.e. the page
doesn't become "good" in the meanwhile. This matches the same
expectations already in place in free_pages_check().
!DEBUG_VM bloat-o-meter:
add/remove: 1/0 grow/shrink: 0/1 up/down: 134/-274 (-140)
function old new delta
check_new_page_bad - 134 +134
get_page_from_freelist 3468 3194 -274
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:38 +0000 (17:14 -0700)]
mm, page_alloc: don't duplicate code in free_pcp_prepare
The new free_pcp_prepare() function shares a lot of code with
free_pages_prepare(), which makes this a maintenance risk when some
future patch modifies only one of them. We should be able to achieve
the same effect (skipping free_pages_check() from !DEBUG_VM configs) by
adding a parameter to free_pages_prepare() and making it inline, so the
checks (and the order != 0 parts) are eliminated from the call from
free_pcp_prepare().
!DEBUG_VM: bloat-o-meter reports no difference, as my gcc was already
inlining free_pages_prepare() and the elimination seems to work as
expected
DEBUG_VM bloat-o-meter:
add/remove: 0/1 grow/shrink: 2/0 up/down: 1035/-778 (257)
function old new delta
__free_pages_ok 297 1060 +763
free_hot_cold_page 480 752 +272
free_pages_prepare 778 - -778
Here inlining didn't occur before, and added some code, but it's ok for
a debug option.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:35 +0000 (17:14 -0700)]
mm, page_alloc: defer debugging checks of pages allocated from the PCP
Every page allocated checks a number of page fields for validity. This
catches corruption bugs of pages that are already freed but it is
expensive. This patch weakens the debugging check by checking PCP pages
only when the PCP lists are being refilled. All compound pages are
checked. This potentially avoids debugging checks entirely if the PCP
lists are never emptied and refilled so some corruption issues may be
missed. Full checking requires DEBUG_VM.
With the two deferred debugging patches applied, the impact to a page
allocator microbenchmark is
4.6.0-rc3 4.6.0-rc3
inline-v3r6 deferalloc-v3r7
Min alloc-odr0-1 344.00 ( 0.00%) 317.00 ( 7.85%)
Min alloc-odr0-2 248.00 ( 0.00%) 231.00 ( 6.85%)
Min alloc-odr0-4 209.00 ( 0.00%) 192.00 ( 8.13%)
Min alloc-odr0-8 181.00 ( 0.00%) 166.00 ( 8.29%)
Min alloc-odr0-16 168.00 ( 0.00%) 154.00 ( 8.33%)
Min alloc-odr0-32 161.00 ( 0.00%) 148.00 ( 8.07%)
Min alloc-odr0-64 158.00 ( 0.00%) 145.00 ( 8.23%)
Min alloc-odr0-128 156.00 ( 0.00%) 143.00 ( 8.33%)
Min alloc-odr0-256 168.00 ( 0.00%) 154.00 ( 8.33%)
Min alloc-odr0-512 178.00 ( 0.00%) 167.00 ( 6.18%)
Min alloc-odr0-1024 186.00 ( 0.00%) 174.00 ( 6.45%)
Min alloc-odr0-2048 192.00 ( 0.00%) 180.00 ( 6.25%)
Min alloc-odr0-4096 198.00 ( 0.00%) 184.00 ( 7.07%)
Min alloc-odr0-8192 200.00 ( 0.00%) 188.00 ( 6.00%)
Min alloc-odr0-16384 201.00 ( 0.00%) 188.00 ( 6.47%)
Min free-odr0-1 189.00 ( 0.00%) 180.00 ( 4.76%)
Min free-odr0-2 132.00 ( 0.00%) 126.00 ( 4.55%)
Min free-odr0-4 104.00 ( 0.00%) 99.00 ( 4.81%)
Min free-odr0-8 90.00 ( 0.00%) 85.00 ( 5.56%)
Min free-odr0-16 84.00 ( 0.00%) 80.00 ( 4.76%)
Min free-odr0-32 80.00 ( 0.00%) 76.00 ( 5.00%)
Min free-odr0-64 78.00 ( 0.00%) 74.00 ( 5.13%)
Min free-odr0-128 77.00 ( 0.00%) 73.00 ( 5.19%)
Min free-odr0-256 94.00 ( 0.00%) 91.00 ( 3.19%)
Min free-odr0-512 108.00 ( 0.00%) 112.00 ( -3.70%)
Min free-odr0-1024 115.00 ( 0.00%) 118.00 ( -2.61%)
Min free-odr0-2048 120.00 ( 0.00%) 125.00 ( -4.17%)
Min free-odr0-4096 123.00 ( 0.00%) 129.00 ( -4.88%)
Min free-odr0-8192 126.00 ( 0.00%) 130.00 ( -3.17%)
Min free-odr0-16384 126.00 ( 0.00%) 131.00 ( -3.97%)
Note that the free paths for large numbers of pages is impacted as the
debugging cost gets shifted into that path when the page data is no
longer necessarily cache-hot.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:32 +0000 (17:14 -0700)]
mm, page_alloc: defer debugging checks of freed pages until a PCP drain
Every page free checks a number of page fields for validity. This
catches premature frees and corruptions but it is also expensive. This
patch weakens the debugging check by checking PCP pages at the time they
are drained from the PCP list. This will trigger the bug but the site
that freed the corrupt page will be lost. To get the full context, a
kernel rebuild with DEBUG_VM is necessary.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vlastimil Babka [Fri, 20 May 2016 00:14:30 +0000 (17:14 -0700)]
cpuset: use static key better and convert to new API
An important function for cpusets is cpuset_node_allowed(), which
optimizes on the fact if there's a single root CPU set, it must be
trivially allowed. But the check "nr_cpusets() <= 1" doesn't use the
cpusets_enabled_key static key the right way where static keys eliminate
branching overhead with jump labels.
This patch converts it so that static key is used properly. It's also
switched to the new static key API and the checking functions are
converted to return bool instead of int. We also provide a new variant
__cpuset_zone_allowed() which expects that the static key check was
already done and they key was enabled. This is needed for
get_page_from_freelist() where we want to also avoid the relatively
slower check when ALLOC_CPUSET is not set in alloc_flags.
The impact on the page allocator microbenchmark is less than expected
but the cleanup in itself is worthwhile.
4.6.0-rc2 4.6.0-rc2
multcheck-v1r20 cpuset-v1r20
Min alloc-odr0-1 348.00 ( 0.00%) 348.00 ( 0.00%)
Min alloc-odr0-2 254.00 ( 0.00%) 254.00 ( 0.00%)
Min alloc-odr0-4 213.00 ( 0.00%) 213.00 ( 0.00%)
Min alloc-odr0-8 186.00 ( 0.00%) 183.00 ( 1.61%)
Min alloc-odr0-16 173.00 ( 0.00%) 171.00 ( 1.16%)
Min alloc-odr0-32 166.00 ( 0.00%) 163.00 ( 1.81%)
Min alloc-odr0-64 162.00 ( 0.00%) 159.00 ( 1.85%)
Min alloc-odr0-128 160.00 ( 0.00%) 157.00 ( 1.88%)
Min alloc-odr0-256 169.00 ( 0.00%) 166.00 ( 1.78%)
Min alloc-odr0-512 180.00 ( 0.00%) 180.00 ( 0.00%)
Min alloc-odr0-1024 188.00 ( 0.00%) 187.00 ( 0.53%)
Min alloc-odr0-2048 194.00 ( 0.00%) 193.00 ( 0.52%)
Min alloc-odr0-4096 199.00 ( 0.00%) 198.00 ( 0.50%)
Min alloc-odr0-8192 202.00 ( 0.00%) 201.00 ( 0.50%)
Min alloc-odr0-16384 203.00 ( 0.00%) 202.00 ( 0.49%)
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:27 +0000 (17:14 -0700)]
mm, page_alloc: inline pageblock lookup in page free fast paths
The function call overhead of get_pfnblock_flags_mask() is measurable in
the page free paths. This patch uses an inlined version that is faster.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:24 +0000 (17:14 -0700)]
mm, page_alloc: remove unnecessary variable from free_pcppages_bulk
The original count is never reused so it can be removed.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:21 +0000 (17:14 -0700)]
mm, page_alloc: pull out side effects from free_pages_check
Check without side-effects should be easier to maintain. It also
removes the duplicated cpupid and flags reset done in !DEBUG_VM variant
of both free_pcp_prepare() and then bulkfree_pcp_prepare(). Finally, it
enables the next patch.
It shouldn't result in new branches, thanks to inlining of the check.
!DEBUG_VM bloat-o-meter:
add/remove: 0/0 grow/shrink: 0/2 up/down: 0/-27 (-27)
function old new delta
__free_pages_ok 748 739 -9
free_pcppages_bulk 1403 1385 -18
DEBUG_VM:
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-28 (-28)
function old new delta
free_pages_prepare 806 778 -28
This is also slightly faster because cpupid information is not set on
tail pages so we can avoid resets there.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:18 +0000 (17:14 -0700)]
mm, page_alloc: un-inline the bad part of free_pages_check
From: Vlastimil Babka <vbabka@suse.cz>
!DEBUG_VM size and bloat-o-meter:
add/remove: 1/0 grow/shrink: 0/2 up/down: 124/-370 (-246)
function old new delta
free_pages_check_bad - 124 +124
free_pcppages_bulk 1288 1171 -117
__free_pages_ok 948 695 -253
DEBUG_VM:
add/remove: 1/0 grow/shrink: 0/1 up/down: 124/-214 (-90)
function old new delta
free_pages_check_bad - 124 +124
free_pages_prepare 1112 898 -214
[akpm@linux-foundation.org: fix whitespace]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:15 +0000 (17:14 -0700)]
mm, page_alloc: check multiple page fields with a single branch
Every page allocated or freed is checked for sanity to avoid corruptions
that are difficult to detect later. A bad page could be due to a number
of fields. Instead of using multiple branches, this patch combines
multiple fields into a single branch. A detailed check is only
necessary if that check fails.
4.6.0-rc2 4.6.0-rc2
initonce-v1r20 multcheck-v1r20
Min alloc-odr0-1 359.00 ( 0.00%) 348.00 ( 3.06%)
Min alloc-odr0-2 260.00 ( 0.00%) 254.00 ( 2.31%)
Min alloc-odr0-4 214.00 ( 0.00%) 213.00 ( 0.47%)
Min alloc-odr0-8 186.00 ( 0.00%) 186.00 ( 0.00%)
Min alloc-odr0-16 173.00 ( 0.00%) 173.00 ( 0.00%)
Min alloc-odr0-32 165.00 ( 0.00%) 166.00 ( -0.61%)
Min alloc-odr0-64 162.00 ( 0.00%) 162.00 ( 0.00%)
Min alloc-odr0-128 161.00 ( 0.00%) 160.00 ( 0.62%)
Min alloc-odr0-256 170.00 ( 0.00%) 169.00 ( 0.59%)
Min alloc-odr0-512 181.00 ( 0.00%) 180.00 ( 0.55%)
Min alloc-odr0-1024 190.00 ( 0.00%) 188.00 ( 1.05%)
Min alloc-odr0-2048 196.00 ( 0.00%) 194.00 ( 1.02%)
Min alloc-odr0-4096 202.00 ( 0.00%) 199.00 ( 1.49%)
Min alloc-odr0-8192 205.00 ( 0.00%) 202.00 ( 1.46%)
Min alloc-odr0-16384 205.00 ( 0.00%) 203.00 ( 0.98%)
Again, the benefit is marginal but avoiding excessive branches is
important. Ideally the paths would not have to check these conditions
at all but regrettably abandoning the tests would make use-after-free
bugs much harder to detect.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:13 +0000 (17:14 -0700)]
mm, page_alloc: remove field from alloc_context
The classzone_idx can be inferred from preferred_zoneref so remove the
unnecessary field and save stack space.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:10 +0000 (17:14 -0700)]
mm, page_alloc: avoid looking up the first zone in a zonelist twice
The allocator fast path looks up the first usable zone in a zonelist and
then get_page_from_freelist does the same job in the zonelist iterator.
This patch preserves the necessary information.
4.6.0-rc2 4.6.0-rc2
fastmark-v1r20 initonce-v1r20
Min alloc-odr0-1 364.00 ( 0.00%) 359.00 ( 1.37%)
Min alloc-odr0-2 262.00 ( 0.00%) 260.00 ( 0.76%)
Min alloc-odr0-4 214.00 ( 0.00%) 214.00 ( 0.00%)
Min alloc-odr0-8 186.00 ( 0.00%) 186.00 ( 0.00%)
Min alloc-odr0-16 173.00 ( 0.00%) 173.00 ( 0.00%)
Min alloc-odr0-32 165.00 ( 0.00%) 165.00 ( 0.00%)
Min alloc-odr0-64 161.00 ( 0.00%) 162.00 ( -0.62%)
Min alloc-odr0-128 159.00 ( 0.00%) 161.00 ( -1.26%)
Min alloc-odr0-256 168.00 ( 0.00%) 170.00 ( -1.19%)
Min alloc-odr0-512 180.00 ( 0.00%) 181.00 ( -0.56%)
Min alloc-odr0-1024 190.00 ( 0.00%) 190.00 ( 0.00%)
Min alloc-odr0-2048 196.00 ( 0.00%) 196.00 ( 0.00%)
Min alloc-odr0-4096 202.00 ( 0.00%) 202.00 ( 0.00%)
Min alloc-odr0-8192 206.00 ( 0.00%) 205.00 ( 0.49%)
Min alloc-odr0-16384 206.00 ( 0.00%) 205.00 ( 0.49%)
The benefit is negligible and the results are within the noise but each
cycle counts.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:07 +0000 (17:14 -0700)]
mm, page_alloc: shortcut watermark checks for order-0 pages
Watermarks have to be checked on every allocation including the number
of pages being allocated and whether reserves can be accessed. The
reserves only matter if memory is limited and the free_pages adjustment
only applies to high-order pages. This patch adds a shortcut for
order-0 pages that avoids numerous calculations if there is plenty of
free memory yielding the following performance difference in a page
allocator microbenchmark;
4.6.0-rc2 4.6.0-rc2
optfair-v1r20 fastmark-v1r20
Min alloc-odr0-1 380.00 ( 0.00%) 364.00 ( 4.21%)
Min alloc-odr0-2 273.00 ( 0.00%) 262.00 ( 4.03%)
Min alloc-odr0-4 227.00 ( 0.00%) 214.00 ( 5.73%)
Min alloc-odr0-8 196.00 ( 0.00%) 186.00 ( 5.10%)
Min alloc-odr0-16 183.00 ( 0.00%) 173.00 ( 5.46%)
Min alloc-odr0-32 173.00 ( 0.00%) 165.00 ( 4.62%)
Min alloc-odr0-64 169.00 ( 0.00%) 161.00 ( 4.73%)
Min alloc-odr0-128 169.00 ( 0.00%) 159.00 ( 5.92%)
Min alloc-odr0-256 180.00 ( 0.00%) 168.00 ( 6.67%)
Min alloc-odr0-512 190.00 ( 0.00%) 180.00 ( 5.26%)
Min alloc-odr0-1024 198.00 ( 0.00%) 190.00 ( 4.04%)
Min alloc-odr0-2048 204.00 ( 0.00%) 196.00 ( 3.92%)
Min alloc-odr0-4096 209.00 ( 0.00%) 202.00 ( 3.35%)
Min alloc-odr0-8192 213.00 ( 0.00%) 206.00 ( 3.29%)
Min alloc-odr0-16384 214.00 ( 0.00%) 206.00 ( 3.74%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:04 +0000 (17:14 -0700)]
mm, page_alloc: reduce cost of fair zone allocation policy retry
The fair zone allocation policy is not without cost but it can be
reduced slightly. This patch removes an unnecessary local variable,
checks the likely conditions of the fair zone policy first, uses a bool
instead of a flags check and falls through when a remote node is
encountered instead of doing a full restart. The benefit is marginal
but it's there
4.6.0-rc2 4.6.0-rc2
decstat-v1r20 optfair-v1r20
Min alloc-odr0-1 377.00 ( 0.00%) 380.00 ( -0.80%)
Min alloc-odr0-2 273.00 ( 0.00%) 273.00 ( 0.00%)
Min alloc-odr0-4 226.00 ( 0.00%) 227.00 ( -0.44%)
Min alloc-odr0-8 196.00 ( 0.00%) 196.00 ( 0.00%)
Min alloc-odr0-16 183.00 ( 0.00%) 183.00 ( 0.00%)
Min alloc-odr0-32 175.00 ( 0.00%) 173.00 ( 1.14%)
Min alloc-odr0-64 172.00 ( 0.00%) 169.00 ( 1.74%)
Min alloc-odr0-128 170.00 ( 0.00%) 169.00 ( 0.59%)
Min alloc-odr0-256 183.00 ( 0.00%) 180.00 ( 1.64%)
Min alloc-odr0-512 191.00 ( 0.00%) 190.00 ( 0.52%)
Min alloc-odr0-1024 199.00 ( 0.00%) 198.00 ( 0.50%)
Min alloc-odr0-2048 204.00 ( 0.00%) 204.00 ( 0.00%)
Min alloc-odr0-4096 210.00 ( 0.00%) 209.00 ( 0.48%)
Min alloc-odr0-8192 213.00 ( 0.00%) 213.00 ( 0.00%)
Min alloc-odr0-16384 214.00 ( 0.00%) 214.00 ( 0.00%)
The benefit is marginal at best but one of the most important benefits,
avoiding a second search when falling back to another node is not
triggered by this particular test so the benefit for some corner cases
is understated.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:14:01 +0000 (17:14 -0700)]
mm, page_alloc: shorten the page allocator fast path
The page allocator fast path checks page multiple times unnecessarily.
This patch avoids all the slowpath checks if the first allocation
attempt succeeds.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:58 +0000 (17:13 -0700)]
mm, page_alloc: check once if a zone has isolated pageblocks
When bulk freeing pages from the per-cpu lists the zone is checked for
isolated pageblocks on every release. This patch checks it once per
drain.
[mgorman@techsingularity.net: fix locking radce, per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:56 +0000 (17:13 -0700)]
mm, page_alloc: move __GFP_HARDWALL modifications out of the fastpath
__GFP_HARDWALL only has meaning in the context of cpusets but the fast
path always applies the flag on the first attempt. Move the
manipulations into the cpuset paths where they will be masked by a
static branch in the common case.
With the other micro-optimisations in this series combined, the impact
on a page allocator microbenchmark is
4.6.0-rc2 4.6.0-rc2
decstat-v1r20 micro-v1r20
Min alloc-odr0-1 381.00 ( 0.00%) 377.00 ( 1.05%)
Min alloc-odr0-2 275.00 ( 0.00%) 273.00 ( 0.73%)
Min alloc-odr0-4 229.00 ( 0.00%) 226.00 ( 1.31%)
Min alloc-odr0-8 199.00 ( 0.00%) 196.00 ( 1.51%)
Min alloc-odr0-16 186.00 ( 0.00%) 183.00 ( 1.61%)
Min alloc-odr0-32 179.00 ( 0.00%) 175.00 ( 2.23%)
Min alloc-odr0-64 174.00 ( 0.00%) 172.00 ( 1.15%)
Min alloc-odr0-128 172.00 ( 0.00%) 170.00 ( 1.16%)
Min alloc-odr0-256 181.00 ( 0.00%) 183.00 ( -1.10%)
Min alloc-odr0-512 193.00 ( 0.00%) 191.00 ( 1.04%)
Min alloc-odr0-1024 201.00 ( 0.00%) 199.00 ( 1.00%)
Min alloc-odr0-2048 206.00 ( 0.00%) 204.00 ( 0.97%)
Min alloc-odr0-4096 212.00 ( 0.00%) 210.00 ( 0.94%)
Min alloc-odr0-8192 215.00 ( 0.00%) 213.00 ( 0.93%)
Min alloc-odr0-16384 216.00 ( 0.00%) 214.00 ( 0.93%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:53 +0000 (17:13 -0700)]
mm, page_alloc: simplify last cpupid reset
The current reset unnecessarily clears flags and makes pointless
calculations.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:50 +0000 (17:13 -0700)]
mm, page_alloc: remove unnecessary initialisation from __alloc_pages_nodemask()
page is guaranteed to be set before it is read with or without the
initialisation.
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:47 +0000 (17:13 -0700)]
mm, page_alloc: remove unnecessary initialisation in get_page_from_freelist
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:44 +0000 (17:13 -0700)]
mm, page_alloc: remove unnecessary local variable in get_page_from_freelist
zonelist here is a copy of a struct field that is used once. Ditch it.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:41 +0000 (17:13 -0700)]
mm, page_alloc: convert nr_fair_skipped to bool
The number of zones skipped to a zone expiring its fair zone allocation
quota is irrelevant. Convert to bool.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:38 +0000 (17:13 -0700)]
mm, page_alloc: convert alloc_flags to unsigned
alloc_flags is a bitmask of flags but it is signed which does not
necessarily generate the best code depending on the compiler. Even
without an impact, it makes more sense that this be unsigned.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:36 +0000 (17:13 -0700)]
mm, page_alloc: avoid unnecessary zone lookups during pageblock operations
Pageblocks have an associated bitmap to store migrate types and whether
the pageblock should be skipped during compaction. The bitmap may be
associated with a memory section or a zone but the zone is looked up
unconditionally. The compiler should optimise this away automatically
so this is a cosmetic patch only in many cases.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:33 +0000 (17:13 -0700)]
mm, page_alloc: use __dec_zone_state for order-0 page allocation
__dec_zone_state is cheaper to use for removing an order-0 page as it
has fewer conditions to check.
The performance difference on a page allocator microbenchmark is;
4.6.0-rc2 4.6.0-rc2
optiter-v1r20 decstat-v1r20
Min alloc-odr0-1 382.00 ( 0.00%) 381.00 ( 0.26%)
Min alloc-odr0-2 282.00 ( 0.00%) 275.00 ( 2.48%)
Min alloc-odr0-4 233.00 ( 0.00%) 229.00 ( 1.72%)
Min alloc-odr0-8 203.00 ( 0.00%) 199.00 ( 1.97%)
Min alloc-odr0-16 188.00 ( 0.00%) 186.00 ( 1.06%)
Min alloc-odr0-32 182.00 ( 0.00%) 179.00 ( 1.65%)
Min alloc-odr0-64 177.00 ( 0.00%) 174.00 ( 1.69%)
Min alloc-odr0-128 175.00 ( 0.00%) 172.00 ( 1.71%)
Min alloc-odr0-256 184.00 ( 0.00%) 181.00 ( 1.63%)
Min alloc-odr0-512 197.00 ( 0.00%) 193.00 ( 2.03%)
Min alloc-odr0-1024 203.00 ( 0.00%) 201.00 ( 0.99%)
Min alloc-odr0-2048 209.00 ( 0.00%) 206.00 ( 1.44%)
Min alloc-odr0-4096 214.00 ( 0.00%) 212.00 ( 0.93%)
Min alloc-odr0-8192 218.00 ( 0.00%) 215.00 ( 1.38%)
Min alloc-odr0-16384 219.00 ( 0.00%) 216.00 ( 1.37%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:30 +0000 (17:13 -0700)]
mm, page_alloc: inline the fast path of the zonelist iterator
The page allocator iterates through a zonelist for zones that match the
addressing limitations and nodemask of the caller but many allocations
will not be restricted. Despite this, there is always functional call
overhead which builds up.
This patch inlines the optimistic basic case and only calls the iterator
function for the complex case. A hindrance was the fact that
cpuset_current_mems_allowed is used in the fastpath as the allowed
nodemask even though all nodes are allowed on most systems. The patch
handles this by only considering cpuset_current_mems_allowed if a cpuset
exists. As well as being faster in the fast-path, this removes some
junk in the slowpath.
The performance difference on a page allocator microbenchmark is;
4.6.0-rc2 4.6.0-rc2
statinline-v1r20 optiter-v1r20
Min alloc-odr0-1 412.00 ( 0.00%) 382.00 ( 7.28%)
Min alloc-odr0-2 301.00 ( 0.00%) 282.00 ( 6.31%)
Min alloc-odr0-4 247.00 ( 0.00%) 233.00 ( 5.67%)
Min alloc-odr0-8 215.00 ( 0.00%) 203.00 ( 5.58%)
Min alloc-odr0-16 199.00 ( 0.00%) 188.00 ( 5.53%)
Min alloc-odr0-32 191.00 ( 0.00%) 182.00 ( 4.71%)
Min alloc-odr0-64 187.00 ( 0.00%) 177.00 ( 5.35%)
Min alloc-odr0-128 185.00 ( 0.00%) 175.00 ( 5.41%)
Min alloc-odr0-256 193.00 ( 0.00%) 184.00 ( 4.66%)
Min alloc-odr0-512 207.00 ( 0.00%) 197.00 ( 4.83%)
Min alloc-odr0-1024 213.00 ( 0.00%) 203.00 ( 4.69%)
Min alloc-odr0-2048 220.00 ( 0.00%) 209.00 ( 5.00%)
Min alloc-odr0-4096 226.00 ( 0.00%) 214.00 ( 5.31%)
Min alloc-odr0-8192 229.00 ( 0.00%) 218.00 ( 4.80%)
Min alloc-odr0-16384 229.00 ( 0.00%) 219.00 ( 4.37%)
perf indicated that next_zones_zonelist disappeared in the profile and
__next_zones_zonelist did not appear. This is expected as the
micro-benchmark would hit the inlined fast-path every time.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:27 +0000 (17:13 -0700)]
mm, page_alloc: inline zone_statistics
zone_statistics has one call-site but it's a public function. Make it
static and inline.
The performance difference on a page allocator microbenchmark is;
4.6.0-rc2 4.6.0-rc2
statbranch-v1r20 statinline-v1r20
Min alloc-odr0-1 419.00 ( 0.00%) 412.00 ( 1.67%)
Min alloc-odr0-2 305.00 ( 0.00%) 301.00 ( 1.31%)
Min alloc-odr0-4 250.00 ( 0.00%) 247.00 ( 1.20%)
Min alloc-odr0-8 219.00 ( 0.00%) 215.00 ( 1.83%)
Min alloc-odr0-16 203.00 ( 0.00%) 199.00 ( 1.97%)
Min alloc-odr0-32 195.00 ( 0.00%) 191.00 ( 2.05%)
Min alloc-odr0-64 191.00 ( 0.00%) 187.00 ( 2.09%)
Min alloc-odr0-128 189.00 ( 0.00%) 185.00 ( 2.12%)
Min alloc-odr0-256 198.00 ( 0.00%) 193.00 ( 2.53%)
Min alloc-odr0-512 210.00 ( 0.00%) 207.00 ( 1.43%)
Min alloc-odr0-1024 216.00 ( 0.00%) 213.00 ( 1.39%)
Min alloc-odr0-2048 221.00 ( 0.00%) 220.00 ( 0.45%)
Min alloc-odr0-4096 227.00 ( 0.00%) 226.00 ( 0.44%)
Min alloc-odr0-8192 232.00 ( 0.00%) 229.00 ( 1.29%)
Min alloc-odr0-16384 232.00 ( 0.00%) 229.00 ( 1.29%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:24 +0000 (17:13 -0700)]
mm, page_alloc: reduce branches in zone_statistics
zone_statistics has more branches than it really needs to take an
unlikely GFP flag into account. Reduce the number and annotate the
unlikely flag.
The performance difference on a page allocator microbenchmark is;
4.6.0-rc2 4.6.0-rc2
nocompound-v1r10 statbranch-v1r10
Min alloc-odr0-1 417.00 ( 0.00%) 419.00 ( -0.48%)
Min alloc-odr0-2 308.00 ( 0.00%) 305.00 ( 0.97%)
Min alloc-odr0-4 253.00 ( 0.00%) 250.00 ( 1.19%)
Min alloc-odr0-8 221.00 ( 0.00%) 219.00 ( 0.90%)
Min alloc-odr0-16 205.00 ( 0.00%) 203.00 ( 0.98%)
Min alloc-odr0-32 199.00 ( 0.00%) 195.00 ( 2.01%)
Min alloc-odr0-64 193.00 ( 0.00%) 191.00 ( 1.04%)
Min alloc-odr0-128 191.00 ( 0.00%) 189.00 ( 1.05%)
Min alloc-odr0-256 200.00 ( 0.00%) 198.00 ( 1.00%)
Min alloc-odr0-512 212.00 ( 0.00%) 210.00 ( 0.94%)
Min alloc-odr0-1024 219.00 ( 0.00%) 216.00 ( 1.37%)
Min alloc-odr0-2048 225.00 ( 0.00%) 221.00 ( 1.78%)
Min alloc-odr0-4096 231.00 ( 0.00%) 227.00 ( 1.73%)
Min alloc-odr0-8192 234.00 ( 0.00%) 232.00 ( 0.85%)
Min alloc-odr0-16384 234.00 ( 0.00%) 232.00 ( 0.85%)
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:21 +0000 (17:13 -0700)]
mm, page_alloc: use new PageAnonHead helper in the free page fast path
The PageAnon check always checks for compound_head but this is a
relatively expensive check if the caller already knows the page is a
head page. This patch creates a helper and uses it in the page free
path which only operates on head pages.
With this patch and "Only check PageCompound for high-order pages", the
performance difference on a page allocator microbenchmark is;
4.6.0-rc2 4.6.0-rc2
vanilla nocompound-v1r20
Min alloc-odr0-1 425.00 ( 0.00%) 417.00 ( 1.88%)
Min alloc-odr0-2 313.00 ( 0.00%) 308.00 ( 1.60%)
Min alloc-odr0-4 257.00 ( 0.00%) 253.00 ( 1.56%)
Min alloc-odr0-8 224.00 ( 0.00%) 221.00 ( 1.34%)
Min alloc-odr0-16 208.00 ( 0.00%) 205.00 ( 1.44%)
Min alloc-odr0-32 199.00 ( 0.00%) 199.00 ( 0.00%)
Min alloc-odr0-64 195.00 ( 0.00%) 193.00 ( 1.03%)
Min alloc-odr0-128 192.00 ( 0.00%) 191.00 ( 0.52%)
Min alloc-odr0-256 204.00 ( 0.00%) 200.00 ( 1.96%)
Min alloc-odr0-512 213.00 ( 0.00%) 212.00 ( 0.47%)
Min alloc-odr0-1024 219.00 ( 0.00%) 219.00 ( 0.00%)
Min alloc-odr0-2048 225.00 ( 0.00%) 225.00 ( 0.00%)
Min alloc-odr0-4096 230.00 ( 0.00%) 231.00 ( -0.43%)
Min alloc-odr0-8192 235.00 ( 0.00%) 234.00 ( 0.43%)
Min alloc-odr0-16384 235.00 ( 0.00%) 234.00 ( 0.43%)
Min free-odr0-1 215.00 ( 0.00%) 191.00 ( 11.16%)
Min free-odr0-2 152.00 ( 0.00%) 136.00 ( 10.53%)
Min free-odr0-4 119.00 ( 0.00%) 107.00 ( 10.08%)
Min free-odr0-8 106.00 ( 0.00%) 96.00 ( 9.43%)
Min free-odr0-16 97.00 ( 0.00%) 87.00 ( 10.31%)
Min free-odr0-32 91.00 ( 0.00%) 83.00 ( 8.79%)
Min free-odr0-64 89.00 ( 0.00%) 81.00 ( 8.99%)
Min free-odr0-128 88.00 ( 0.00%) 80.00 ( 9.09%)
Min free-odr0-256 106.00 ( 0.00%) 95.00 ( 10.38%)
Min free-odr0-512 116.00 ( 0.00%) 111.00 ( 4.31%)
Min free-odr0-1024 125.00 ( 0.00%) 118.00 ( 5.60%)
Min free-odr0-2048 133.00 ( 0.00%) 126.00 ( 5.26%)
Min free-odr0-4096 136.00 ( 0.00%) 130.00 ( 4.41%)
Min free-odr0-8192 138.00 ( 0.00%) 130.00 ( 5.80%)
Min free-odr0-16384 137.00 ( 0.00%) 130.00 ( 5.11%)
There is a sizable boost to the free allocator performance. While there
is an apparent boost on the allocation side, it's likely a co-incidence
or due to the patches slightly reducing cache footprint.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Fri, 20 May 2016 00:13:18 +0000 (17:13 -0700)]
mm, page_alloc: only check PageCompound for high-order pages
Another year, another round of page allocator optimisations focusing
this time on the alloc and free fast paths. This should be of help to
workloads that are allocator-intensive from kernel space where the cost
of zeroing is not nceessraily incurred.
The series is motivated by the observation that page alloc
microbenchmarks on multiple machines regressed between 3.12.44 and 4.4.
Second, there is discussions before LSF/MM considering the possibility
of adding another page allocator which is potentially hazardous but a
patch series improving performance is better than whining.
After the series is applied, there are still hazards. In the free
paths, the debugging checking and page zone/pageblock lookups dominate
but there was not an obvious solution to that. In the alloc path, the
major contributers are dealing with zonelists, new page preperation, the
fair zone allocation and numerous statistic updates. The fair zone
allocator is removed by the per-node LRU series if that gets merged so
it's nor a major concern at the moment.
On normal userspace benchmarks, there is little impact as the zeroing
cost is significant but it's visible
aim9
4.6.0-rc3 4.6.0-rc3
vanilla deferalloc-v3
Min page_test 828693.33 ( 0.00%) 887060.00 ( 7.04%)
Min brk_test
4847266.67 ( 0.00%)
4966266.67 ( 2.45%)
Min exec_test 1271.00 ( 0.00%) 1275.67 ( 0.37%)
Min fork_test 12371.75 ( 0.00%) 12380.00 ( 0.07%)
The overall impact on a page allocator microbenchmark for a range of orders
and number of pages allocated in a batch is
4.6.0-rc3 4.6.0-rc3
vanilla deferalloc-v3r7
Min alloc-odr0-1 428.00 ( 0.00%) 316.00 ( 26.17%)
Min alloc-odr0-2 314.00 ( 0.00%) 231.00 ( 26.43%)
Min alloc-odr0-4 256.00 ( 0.00%) 192.00 ( 25.00%)
Min alloc-odr0-8 222.00 ( 0.00%) 166.00 ( 25.23%)
Min alloc-odr0-16 207.00 ( 0.00%) 154.00 ( 25.60%)
Min alloc-odr0-32 197.00 ( 0.00%) 148.00 ( 24.87%)
Min alloc-odr0-64 193.00 ( 0.00%) 144.00 ( 25.39%)
Min alloc-odr0-128 191.00 ( 0.00%) 143.00 ( 25.13%)
Min alloc-odr0-256 203.00 ( 0.00%) 153.00 ( 24.63%)
Min alloc-odr0-512 212.00 ( 0.00%) 165.00 ( 22.17%)
Min alloc-odr0-1024 221.00 ( 0.00%) 172.00 ( 22.17%)
Min alloc-odr0-2048 225.00 ( 0.00%) 179.00 ( 20.44%)
Min alloc-odr0-4096 232.00 ( 0.00%) 185.00 ( 20.26%)
Min alloc-odr0-8192 235.00 ( 0.00%) 187.00 ( 20.43%)
Min alloc-odr0-16384 236.00 ( 0.00%) 188.00 ( 20.34%)
Min alloc-odr1-1 519.00 ( 0.00%) 450.00 ( 13.29%)
Min alloc-odr1-2 391.00 ( 0.00%) 336.00 ( 14.07%)
Min alloc-odr1-4 313.00 ( 0.00%) 268.00 ( 14.38%)
Min alloc-odr1-8 277.00 ( 0.00%) 235.00 ( 15.16%)
Min alloc-odr1-16 256.00 ( 0.00%) 218.00 ( 14.84%)
Min alloc-odr1-32 252.00 ( 0.00%) 212.00 ( 15.87%)
Min alloc-odr1-64 244.00 ( 0.00%) 206.00 ( 15.57%)
Min alloc-odr1-128 244.00 ( 0.00%) 207.00 ( 15.16%)
Min alloc-odr1-256 243.00 ( 0.00%) 207.00 ( 14.81%)
Min alloc-odr1-512 245.00 ( 0.00%) 209.00 ( 14.69%)
Min alloc-odr1-1024 248.00 ( 0.00%) 214.00 ( 13.71%)
Min alloc-odr1-2048 253.00 ( 0.00%) 220.00 ( 13.04%)
Min alloc-odr1-4096 258.00 ( 0.00%) 224.00 ( 13.18%)
Min alloc-odr1-8192 261.00 ( 0.00%) 229.00 ( 12.26%)
Min alloc-odr2-1 560.00 ( 0.00%) 753.00 (-34.46%)
Min alloc-odr2-2 424.00 ( 0.00%) 351.00 ( 17.22%)
Min alloc-odr2-4 339.00 ( 0.00%) 393.00 (-15.93%)
Min alloc-odr2-8 298.00 ( 0.00%) 246.00 ( 17.45%)
Min alloc-odr2-16 276.00 ( 0.00%) 227.00 ( 17.75%)
Min alloc-odr2-32 271.00 ( 0.00%) 221.00 ( 18.45%)
Min alloc-odr2-64 264.00 ( 0.00%) 217.00 ( 17.80%)
Min alloc-odr2-128 264.00 ( 0.00%) 217.00 ( 17.80%)
Min alloc-odr2-256 264.00 ( 0.00%) 218.00 ( 17.42%)
Min alloc-odr2-512 269.00 ( 0.00%) 223.00 ( 17.10%)
Min alloc-odr2-1024 279.00 ( 0.00%) 230.00 ( 17.56%)
Min alloc-odr2-2048 283.00 ( 0.00%) 235.00 ( 16.96%)
Min alloc-odr2-4096 285.00 ( 0.00%) 239.00 ( 16.14%)
Min alloc-odr3-1 629.00 ( 0.00%) 505.00 ( 19.71%)
Min alloc-odr3-2 472.00 ( 0.00%) 374.00 ( 20.76%)
Min alloc-odr3-4 383.00 ( 0.00%) 301.00 ( 21.41%)
Min alloc-odr3-8 341.00 ( 0.00%) 266.00 ( 21.99%)
Min alloc-odr3-16 316.00 ( 0.00%) 248.00 ( 21.52%)
Min alloc-odr3-32 308.00 ( 0.00%) 241.00 ( 21.75%)
Min alloc-odr3-64 305.00 ( 0.00%) 241.00 ( 20.98%)
Min alloc-odr3-128 308.00 ( 0.00%) 244.00 ( 20.78%)
Min alloc-odr3-256 317.00 ( 0.00%) 249.00 ( 21.45%)
Min alloc-odr3-512 327.00 ( 0.00%) 256.00 ( 21.71%)
Min alloc-odr3-1024 331.00 ( 0.00%) 261.00 ( 21.15%)
Min alloc-odr3-2048 333.00 ( 0.00%) 266.00 ( 20.12%)
Min alloc-odr4-1 767.00 ( 0.00%) 572.00 ( 25.42%)
Min alloc-odr4-2 578.00 ( 0.00%) 429.00 ( 25.78%)
Min alloc-odr4-4 474.00 ( 0.00%) 346.00 ( 27.00%)
Min alloc-odr4-8 422.00 ( 0.00%) 310.00 ( 26.54%)
Min alloc-odr4-16 399.00 ( 0.00%) 295.00 ( 26.07%)
Min alloc-odr4-32 392.00 ( 0.00%) 293.00 ( 25.26%)
Min alloc-odr4-64 394.00 ( 0.00%) 293.00 ( 25.63%)
Min alloc-odr4-128 405.00 ( 0.00%) 305.00 ( 24.69%)
Min alloc-odr4-256 417.00 ( 0.00%) 319.00 ( 23.50%)
Min alloc-odr4-512 425.00 ( 0.00%) 326.00 ( 23.29%)
Min alloc-odr4-1024 426.00 ( 0.00%) 329.00 ( 22.77%)
Min free-odr0-1 216.00 ( 0.00%) 178.00 ( 17.59%)
Min free-odr0-2 152.00 ( 0.00%) 125.00 ( 17.76%)
Min free-odr0-4 120.00 ( 0.00%) 99.00 ( 17.50%)
Min free-odr0-8 106.00 ( 0.00%) 85.00 ( 19.81%)
Min free-odr0-16 97.00 ( 0.00%) 80.00 ( 17.53%)
Min free-odr0-32 92.00 ( 0.00%) 76.00 ( 17.39%)
Min free-odr0-64 89.00 ( 0.00%) 74.00 ( 16.85%)
Min free-odr0-128 89.00 ( 0.00%) 73.00 ( 17.98%)
Min free-odr0-256 107.00 ( 0.00%) 90.00 ( 15.89%)
Min free-odr0-512 117.00 ( 0.00%) 108.00 ( 7.69%)
Min free-odr0-1024 125.00 ( 0.00%) 118.00 ( 5.60%)
Min free-odr0-2048 132.00 ( 0.00%) 125.00 ( 5.30%)
Min free-odr0-4096 135.00 ( 0.00%) 130.00 ( 3.70%)
Min free-odr0-8192 137.00 ( 0.00%) 130.00 ( 5.11%)
Min free-odr0-16384 137.00 ( 0.00%) 131.00 ( 4.38%)
Min free-odr1-1 318.00 ( 0.00%) 289.00 ( 9.12%)
Min free-odr1-2 228.00 ( 0.00%) 207.00 ( 9.21%)
Min free-odr1-4 182.00 ( 0.00%) 165.00 ( 9.34%)
Min free-odr1-8 163.00 ( 0.00%) 146.00 ( 10.43%)
Min free-odr1-16 151.00 ( 0.00%) 135.00 ( 10.60%)
Min free-odr1-32 146.00 ( 0.00%) 129.00 ( 11.64%)
Min free-odr1-64 145.00 ( 0.00%) 130.00 ( 10.34%)
Min free-odr1-128 148.00 ( 0.00%) 134.00 ( 9.46%)
Min free-odr1-256 148.00 ( 0.00%) 137.00 ( 7.43%)
Min free-odr1-512 151.00 ( 0.00%) 140.00 ( 7.28%)
Min free-odr1-1024 154.00 ( 0.00%) 143.00 ( 7.14%)
Min free-odr1-2048 156.00 ( 0.00%) 144.00 ( 7.69%)
Min free-odr1-4096 156.00 ( 0.00%) 142.00 ( 8.97%)
Min free-odr1-8192 156.00 ( 0.00%) 140.00 ( 10.26%)
Min free-odr2-1 361.00 ( 0.00%) 457.00 (-26.59%)
Min free-odr2-2 258.00 ( 0.00%) 224.00 ( 13.18%)
Min free-odr2-4 208.00 ( 0.00%) 223.00 ( -7.21%)
Min free-odr2-8 185.00 ( 0.00%) 160.00 ( 13.51%)
Min free-odr2-16 173.00 ( 0.00%) 149.00 ( 13.87%)
Min free-odr2-32 166.00 ( 0.00%) 145.00 ( 12.65%)
Min free-odr2-64 166.00 ( 0.00%) 146.00 ( 12.05%)
Min free-odr2-128 169.00 ( 0.00%) 148.00 ( 12.43%)
Min free-odr2-256 170.00 ( 0.00%) 152.00 ( 10.59%)
Min free-odr2-512 177.00 ( 0.00%) 156.00 ( 11.86%)
Min free-odr2-1024 182.00 ( 0.00%) 162.00 ( 10.99%)
Min free-odr2-2048 181.00 ( 0.00%) 160.00 ( 11.60%)
Min free-odr2-4096 180.00 ( 0.00%) 159.00 ( 11.67%)
Min free-odr3-1 431.00 ( 0.00%) 367.00 ( 14.85%)
Min free-odr3-2 306.00 ( 0.00%) 259.00 ( 15.36%)
Min free-odr3-4 249.00 ( 0.00%) 208.00 ( 16.47%)
Min free-odr3-8 224.00 ( 0.00%) 186.00 ( 16.96%)
Min free-odr3-16 208.00 ( 0.00%) 176.00 ( 15.38%)
Min free-odr3-32 206.00 ( 0.00%) 174.00 ( 15.53%)
Min free-odr3-64 210.00 ( 0.00%) 178.00 ( 15.24%)
Min free-odr3-128 215.00 ( 0.00%) 182.00 ( 15.35%)
Min free-odr3-256 224.00 ( 0.00%) 189.00 ( 15.62%)
Min free-odr3-512 232.00 ( 0.00%) 195.00 ( 15.95%)
Min free-odr3-1024 230.00 ( 0.00%) 195.00 ( 15.22%)
Min free-odr3-2048 229.00 ( 0.00%) 193.00 ( 15.72%)
Min free-odr4-1 561.00 ( 0.00%) 439.00 ( 21.75%)
Min free-odr4-2 418.00 ( 0.00%) 318.00 ( 23.92%)
Min free-odr4-4 339.00 ( 0.00%) 269.00 ( 20.65%)
Min free-odr4-8 299.00 ( 0.00%) 239.00 ( 20.07%)
Min free-odr4-16 289.00 ( 0.00%) 234.00 ( 19.03%)
Min free-odr4-32 291.00 ( 0.00%) 235.00 ( 19.24%)
Min free-odr4-64 298.00 ( 0.00%) 238.00 ( 20.13%)
Min free-odr4-128 308.00 ( 0.00%) 251.00 ( 18.51%)
Min free-odr4-256 321.00 ( 0.00%) 267.00 ( 16.82%)
Min free-odr4-512 327.00 ( 0.00%) 269.00 ( 17.74%)
Min free-odr4-1024 326.00 ( 0.00%) 271.00 ( 16.87%)
Min total-odr0-1 644.00 ( 0.00%) 494.00 ( 23.29%)
Min total-odr0-2 466.00 ( 0.00%) 356.00 ( 23.61%)
Min total-odr0-4 376.00 ( 0.00%) 291.00 ( 22.61%)
Min total-odr0-8 328.00 ( 0.00%) 251.00 ( 23.48%)
Min total-odr0-16 304.00 ( 0.00%) 234.00 ( 23.03%)
Min total-odr0-32 289.00 ( 0.00%) 224.00 ( 22.49%)
Min total-odr0-64 282.00 ( 0.00%) 218.00 ( 22.70%)
Min total-odr0-128 280.00 ( 0.00%) 216.00 ( 22.86%)
Min total-odr0-256 310.00 ( 0.00%) 243.00 ( 21.61%)
Min total-odr0-512 329.00 ( 0.00%) 273.00 ( 17.02%)
Min total-odr0-1024 346.00 ( 0.00%) 290.00 ( 16.18%)
Min total-odr0-2048 357.00 ( 0.00%) 304.00 ( 14.85%)
Min total-odr0-4096 367.00 ( 0.00%) 315.00 ( 14.17%)
Min total-odr0-8192 372.00 ( 0.00%) 317.00 ( 14.78%)
Min total-odr0-16384 373.00 ( 0.00%) 319.00 ( 14.48%)
Min total-odr1-1 838.00 ( 0.00%) 739.00 ( 11.81%)
Min total-odr1-2 619.00 ( 0.00%) 543.00 ( 12.28%)
Min total-odr1-4 495.00 ( 0.00%) 433.00 ( 12.53%)
Min total-odr1-8 440.00 ( 0.00%) 382.00 ( 13.18%)
Min total-odr1-16 407.00 ( 0.00%) 353.00 ( 13.27%)
Min total-odr1-32 398.00 ( 0.00%) 341.00 ( 14.32%)
Min total-odr1-64 389.00 ( 0.00%) 336.00 ( 13.62%)
Min total-odr1-128 392.00 ( 0.00%) 341.00 ( 13.01%)
Min total-odr1-256 391.00 ( 0.00%) 344.00 ( 12.02%)
Min total-odr1-512 396.00 ( 0.00%) 349.00 ( 11.87%)
Min total-odr1-1024 402.00 ( 0.00%) 357.00 ( 11.19%)
Min total-odr1-2048 409.00 ( 0.00%) 364.00 ( 11.00%)
Min total-odr1-4096 414.00 ( 0.00%) 366.00 ( 11.59%)
Min total-odr1-8192 417.00 ( 0.00%) 369.00 ( 11.51%)
Min total-odr2-1 921.00 ( 0.00%) 1210.00 (-31.38%)
Min total-odr2-2 682.00 ( 0.00%) 576.00 ( 15.54%)
Min total-odr2-4 547.00 ( 0.00%) 616.00 (-12.61%)
Min total-odr2-8 483.00 ( 0.00%) 406.00 ( 15.94%)
Min total-odr2-16 449.00 ( 0.00%) 376.00 ( 16.26%)
Min total-odr2-32 437.00 ( 0.00%) 366.00 ( 16.25%)
Min total-odr2-64 431.00 ( 0.00%) 363.00 ( 15.78%)
Min total-odr2-128 433.00 ( 0.00%) 365.00 ( 15.70%)
Min total-odr2-256 434.00 ( 0.00%) 371.00 ( 14.52%)
Min total-odr2-512 446.00 ( 0.00%) 379.00 ( 15.02%)
Min total-odr2-1024 461.00 ( 0.00%) 392.00 ( 14.97%)
Min total-odr2-2048 464.00 ( 0.00%) 395.00 ( 14.87%)
Min total-odr2-4096 465.00 ( 0.00%) 398.00 ( 14.41%)
Min total-odr3-1 1060.00 ( 0.00%) 872.00 ( 17.74%)
Min total-odr3-2 778.00 ( 0.00%) 633.00 ( 18.64%)
Min total-odr3-4 632.00 ( 0.00%) 510.00 ( 19.30%)
Min total-odr3-8 565.00 ( 0.00%) 452.00 ( 20.00%)
Min total-odr3-16 524.00 ( 0.00%) 424.00 ( 19.08%)
Min total-odr3-32 514.00 ( 0.00%) 415.00 ( 19.26%)
Min total-odr3-64 515.00 ( 0.00%) 419.00 ( 18.64%)
Min total-odr3-128 523.00 ( 0.00%) 426.00 ( 18.55%)
Min total-odr3-256 541.00 ( 0.00%) 438.00 ( 19.04%)
Min total-odr3-512 559.00 ( 0.00%) 451.00 ( 19.32%)
Min total-odr3-1024 561.00 ( 0.00%) 456.00 ( 18.72%)
Min total-odr3-2048 562.00 ( 0.00%) 459.00 ( 18.33%)
Min total-odr4-1 1328.00 ( 0.00%) 1011.00 ( 23.87%)
Min total-odr4-2 997.00 ( 0.00%) 747.00 ( 25.08%)
Min total-odr4-4 813.00 ( 0.00%) 615.00 ( 24.35%)
Min total-odr4-8 721.00 ( 0.00%) 550.00 ( 23.72%)
Min total-odr4-16 689.00 ( 0.00%) 529.00 ( 23.22%)
Min total-odr4-32 683.00 ( 0.00%) 528.00 ( 22.69%)
Min total-odr4-64 692.00 ( 0.00%) 531.00 ( 23.27%)
Min total-odr4-128 713.00 ( 0.00%) 556.00 ( 22.02%)
Min total-odr4-256 738.00 ( 0.00%) 586.00 ( 20.60%)
Min total-odr4-512 753.00 ( 0.00%) 595.00 ( 20.98%)
Min total-odr4-1024 752.00 ( 0.00%) 600.00 ( 20.21%)
This patch (of 27):
order-0 pages by definition cannot be compound so avoid the check in the
fast path for those pages.
[akpm@linux-foundation.org: use unlikely(order) in free_pages_prepare(), per Vlastimil]
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 00:13:15 +0000 (17:13 -0700)]
mm, oom_reaper: clear TIF_MEMDIE for all tasks queued for oom_reaper
Right now the oom reaper will clear TIF_MEMDIE only for tasks which were
successfully reaped. This is the safest option because we know that
such an oom victim would only block forward progress of the oom killer
without a good reason because it is highly unlikely it would release
much more memory. Basically most of its memory has been already torn
down.
We can relax this assumption to catch more corner cases though.
The first obvious one is when the oom victim clears its mm and gets
stuck later on. oom_reaper would back of on find_lock_task_mm returning
NULL. We can safely try to clear TIF_MEMDIE in this case because such a
task would be ignored by the oom killer anyway. The flag would be
cleared by that time already most of the time anyway.
The less obvious one is when the oom reaper fails due to mmap_sem
contention. Even if we clear TIF_MEMDIE for this task then it is not
very likely that we would select another task too easily because we
haven't reaped the last victim and so it would be still the #1
candidate. There is a rare race condition possible when the current
victim terminates before the next select_bad_process but considering
that oom_reap_task had retried several times before giving up then this
sounds like a borderline thing.
After this patch we should have a guarantee that the OOM killer will not
be block for unbounded amount of time for most cases.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Raushaniya Maksudova <rmaksudova@parallels.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 00:13:12 +0000 (17:13 -0700)]
oom, oom_reaper: try to reap tasks which skip regular OOM killer path
If either the current task is already killed or PF_EXITING or a selected
task is PF_EXITING then the oom killer is suppressed and so is the oom
reaper. This patch adds try_oom_reaper which checks the given task and
queues it for the oom reaper if that is safe to be done meaning that the
task doesn't share the mm with an alive process.
This might help to release the memory pressure while the task tries to
exit.
[akpm@linux-foundation.org: fix nommu build]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Raushaniya Maksudova <rmaksudova@parallels.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Fri, 20 May 2016 00:13:09 +0000 (17:13 -0700)]
mm, oom: move GFP_NOFS check to out_of_memory
__alloc_pages_may_oom is the central place to decide when the
out_of_memory should be invoked. This is a good approach for most
checks there because they are page allocator specific and the allocation
fails right after for all of them.
The notable exception is GFP_NOFS context which is faking
did_some_progress and keep the page allocator looping even though there
couldn't have been any progress from the OOM killer. This patch doesn't
change this behavior because we are not ready to allow those allocation
requests to fail yet (and maybe we will face the reality that we will
never manage to safely fail these request). Instead __GFP_FS check is
moved down to out_of_memory and prevent from OOM victim selection there.
There are two reasons for that
- OOM notifiers might release some memory even from this context
as none of the registered notifier seems to be FS related
- this might help a dying thread to get an access to memory
reserves and move on which will make the behavior more
consistent with the case when the task gets killed from a
different context.
Keep a comment in __alloc_pages_may_oom to make sure we do not forget
how GFP_NOFS is special and that we really want to do something about
it.
Note to the current oom_notifier users:
The observable difference for you is that oom notifiers cannot depend on
any fs locks because we could deadlock. Not that this would be allowed
today because that would just lockup machine in most of the cases and
ruling out the OOM killer along the way. Another difference is that
callbacks might be invoked sooner now because GFP_NOFS is a weaker
reclaim context and so there could be reclaimable memory which is just
not reachable now. That would require GFP_NOFS only loads which are
really rare and more importantly the observable result would be dropping
of reconstructible object and potential performance drop which is not
such a big deal when we are struggling to fulfill other important
allocation requests.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Raushaniya Maksudova <rmaksudova@parallels.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Daniel Vetter <daniel.vetter@intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vitaly Kuznetsov [Fri, 20 May 2016 00:13:06 +0000 (17:13 -0700)]
memory_hotplug: introduce memhp_default_state= command line parameter
CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE specifies the default value for the
memory hotplug onlining policy. Add a command line parameter to make it
possible to override the default. It may come handy for debug and
testing purposes.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Lennart Poettering <lennart@poettering.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vitaly Kuznetsov [Fri, 20 May 2016 00:13:03 +0000 (17:13 -0700)]
memory_hotplug: introduce CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
This patchset continues the work I started with commit
31bc3858ea3e
("memory-hotplug: add automatic onlining policy for the newly added
memory").
Initially I was going to stop there and bring the policy setting logic
to userspace. I met two issues on this way:
1) It is possible to have memory hotplugged at boot (e.g. with QEMU).
These blocks stay offlined if we turn the onlining policy on by
userspace.
2) My attempt to bring this policy setting to systemd failed, systemd
maintainers suggest to change the default in kernel or ... to use
tmpfiles.d to alter the policy (which looks like a hack to me):
https://github.com/systemd/systemd/pull/2938
Here I suggest to add a config option to set the default value for the
policy and a kernel command line parameter to make the override.
This patch (of 2):
Introduce config option to set the default value for memory hotplug
onlining policy (/sys/devices/system/memory/auto_online_blocks). The
reason one would want to turn this option on are to have early onlining
for hotpluggable memory available at boot and to not require any
userspace actions to make memory hotplug work.
[akpm@linux-foundation.org: tweak Kconfig text]
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Lennart Poettering <lennart@poettering.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh Dickins [Fri, 20 May 2016 00:13:00 +0000 (17:13 -0700)]
arch: fix has_transparent_hugepage()
I've just discovered that the useful-sounding has_transparent_hugepage()
is actually an architecture-dependent minefield: on some arches it only
builds if CONFIG_TRANSPARENT_HUGEPAGE=y, on others it's also there when
not, but on some of those (arm and arm64) it then gives the wrong
answer; and on mips alone it's marked __init, which would crash if
called later (but so far it has not been called later).
Straighten this out: make it available to all configs, with a sensible
default in asm-generic/pgtable.h, removing its definitions from those
arches (arc, arm, arm64, sparc, tile) which are served by the default,
adding #define has_transparent_hugepage has_transparent_hugepage to
those (mips, powerpc, s390, x86) which need to override the default at
runtime, and removing the __init from mips (but maybe that kind of code
should be avoided after init: set a static variable the first time it's
called).
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Vineet Gupta <vgupta@synopsys.com> [arch/arc]
Acked-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> [arch/s390]
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh Dickins [Fri, 20 May 2016 00:12:57 +0000 (17:12 -0700)]
huge pagecache: extend mremap pmd rmap lockout to files
Whatever huge pagecache implementation we go with, file rmap locking
must be added to anon rmap locking, when mremap's move_page_tables()
finds a pmd_trans_huge pmd entry: a simple change, let's do it now.
Factor out take_rmap_locks() and drop_rmap_locks() to handle the locking
for make move_ptes() and move_page_tables(), and delete the
VM_BUG_ON_VMA which rejected vm_file and required anon_vma.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh Dickins [Fri, 20 May 2016 00:12:54 +0000 (17:12 -0700)]
huge mm: move_huge_pmd does not need new_vma
Remove move_huge_pmd()'s redundant new_vma arg: all it was used for was
a VM_NOHUGEPAGE check on new_vma flags, but the new_vma is cloned from
the old vma, so a trans_huge_pmd in the new_vma will be as acceptable as
it was in the old vma, alignment and size permitting.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh Dickins [Fri, 20 May 2016 00:12:50 +0000 (17:12 -0700)]
mm: /proc/sys/vm/stat_refresh to force vmstat update
Provide /proc/sys/vm/stat_refresh to force an immediate update of
per-cpu into global vmstats: useful to avoid a sleep(2) or whatever
before checking counts when testing. Originally added to work around a
bug which left counts stranded indefinitely on a cpu going idle (an
inaccuracy magnified when small below-batch numbers represent "huge"
amounts of memory), but I believe that bug is now fixed: nonetheless,
this is still a useful knob.
Its schedule_on_each_cpu() is probably too expensive just to fold into
reading /proc/meminfo itself: give this mode 0600 to prevent abuse.
Allow a write or a read to do the same: nothing to read, but "grep -h
Shmem /proc/sys/vm/stat_refresh /proc/meminfo" is convenient. Oh, and
since global_page_state() itself is careful to disguise any underflow as
0, hack in an "Invalid argument" and pr_warn() if a counter is negative
after the refresh - this helped to fix a misaccounting of
NR_ISOLATED_FILE in my migration code.
But on recent kernels, I find that NR_ALLOC_BATCH and NR_PAGES_SCANNED
often go negative some of the time. I have not yet worked out why, but
have no evidence that it's actually harmful. Punt for the moment by
just ignoring the anomaly on those.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andres Lagar-Cavilla [Fri, 20 May 2016 00:12:47 +0000 (17:12 -0700)]
tmpfs: mem_cgroup charge fault to vm_mm not current mm
Although shmem_fault() has been careful to count a major fault to vm_mm,
shmem_getpage_gfp() has been careless in charging a remote access fault
to current->mm owner's memcg instead of to vma->vm_mm owner's memcg:
that is inconsistent with all the mem_cgroup charging on remote access
faults in mm/memory.c.
Fix it by passing fault_mm along with fault_type to
shmem_get_page_gfp(); but in that case, now knowing the right mm, it's
better for it to handle the PGMAJFAULT updates itself.
And let's keep this clutter out of most callers' way: change the common
shmem_getpage() wrapper to hide fault_mm and fault_type as well as gfp.
Signed-off-by: Andres Lagar-Cavilla <andreslc@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh Dickins [Fri, 20 May 2016 00:12:44 +0000 (17:12 -0700)]
tmpfs: preliminary minor tidyups
Make a few cleanups in mm/shmem.c, before going on to complicate it.
shmem_alloc_page() will become more complicated: we can't afford to to
have that complication duplicated between a CONFIG_NUMA version and a
!CONFIG_NUMA version, so rearrange the #ifdef'ery there to yield a
single shmem_swapin() and a single shmem_alloc_page().
Yes, it's a shame to inflict the horrid pseudo-vma on non-NUMA
configurations, but eliminating it is a larger cleanup: I have an
alloc_pages_mpol() patchset not yet ready - mpol handling is subtle and
bug-prone, and changed yet again since my last version.
Move __SetPageLocked, __SetPageSwapBacked from shmem_getpage_gfp() to
shmem_alloc_page(): that SwapBacked flag will be useful in future, to
help to distinguish different cases appropriately.
And the SGP_DIRTY variant of SGP_CACHE is hard to understand and of
little use (IIRC it dates back to when shmem_getpage() returned the page
unlocked): kill it and do the necessary in shmem_file_read_iter().
But an arm64 build then complained that info may be uninitialized (where
shmem_getpage_gfp() deletes a freshly alloced page beyond eof), and
advancing to an "sgp <= SGP_CACHE" test jogged it back to reality.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh Dickins [Fri, 20 May 2016 00:12:41 +0000 (17:12 -0700)]
mm: use __SetPageSwapBacked and dont ClearPageSwapBacked
v3.16 commit
07a427884348 ("mm: shmem: avoid atomic operation during
shmem_getpage_gfp") rightly replaced one instance of SetPageSwapBacked
by __SetPageSwapBacked, pointing out that the newly allocated page is
not yet visible to other users (except speculative get_page_unless_zero-
ers, who may not update page flags before their further checks).
That was part of a series in which Mel was focused on tmpfs profiles:
but almost all SetPageSwapBacked uses can be so optimized, with the same
justification.
Remove ClearPageSwapBacked from __read_swap_cache_async() error path:
it's not an error to free a page with PG_swapbacked set.
Follow a convention of __SetPageLocked, __SetPageSwapBacked instead of
doing it differently in different places; but that's for tidiness - if
the ordering actually mattered, we should not be using the __variants.
There's probably scope for further __SetPageFlags in other places, but
SwapBacked is the one I'm interested in at the moment.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Reviewed-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh Dickins [Fri, 20 May 2016 00:12:38 +0000 (17:12 -0700)]
mm: update_lru_size do the __mod_zone_page_state
Konstantin Khlebnikov pointed out (nearly four years ago, when lumpy
reclaim was removed) that lru_size can be updated by -nr_taken once per
call to isolate_lru_pages(), instead of page by page.
Update it inside isolate_lru_pages(), or at its two callsites? I chose
to update it at the callsites, rearranging and grouping the updates by
nr_taken and nr_scanned together in both.
With one exception, mem_cgroup_update_lru_size(,lru,) is then used where
__mod_zone_page_state(,NR_LRU_BASE+lru,) is used; and we shall be adding
some more calls in a future commit. Make the code a little smaller and
simpler by incorporating stat update in lru_size update.
The exception was move_active_pages_to_lru(), which aggregated the
pgmoved stat update separately from the individual lru_size updates; but
I still think this a simplification worth making.
However, the __mod_zone_page_state is not peculiar to mem_cgroups: so
better use the name update_lru_size, calls mem_cgroup_update_lru_size
when CONFIG_MEMCG.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh Dickins [Fri, 20 May 2016 00:12:35 +0000 (17:12 -0700)]
mm: update_lru_size warn and reset bad lru_size
Though debug kernels have a VM_BUG_ON to help protect from misaccounting
lru_size, non-debug kernels are liable to wrap it around: and then the
vast unsigned long size draws page reclaim into a loop of repeatedly
doing nothing on an empty list, without even a cond_resched().
That soft lockup looks confusingly like an over-busy reclaim scenario,
with lots of contention on the lru_lock in shrink_inactive_list(): yet
has a totally different origin.
Help differentiate with a custom warning in
mem_cgroup_update_lru_size(), even in non-debug kernels; and reset the
size to avoid the lockup. But the particular bug which suggested this
change was mine alone, and since fixed.
Make it a WARN_ONCE: the first occurrence is the most informative, a
flurry may follow, yet even when rate-limited little more is learnt.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Yang Shi <yang.shi@linaro.org>
Cc: Ning Qu <quning@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Konstantin Khlebnikov [Fri, 20 May 2016 00:12:32 +0000 (17:12 -0700)]
mm/mmap: kill hook arch_rebalance_pgtables()
Nobody uses it.
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Fri, 20 May 2016 00:12:29 +0000 (17:12 -0700)]
mm/vmstat: make node_page_state() handles all zones by itself
node_page_state() manually adds statistics per each zone and returns
total value for all zones. Whenever we add a new zone, we need to
consider this function and it's really troublesome. Make it handle all
zones by itself.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Fri, 20 May 2016 00:12:26 +0000 (17:12 -0700)]
mm/highmem: make nr_free_highpages() handles all highmem zones by itself
nr_free_highpages() manually adds statistics per each highmem zone and
returns a total value for them. Whenever we add a new highmem zone, we
need to consider this function and it's really troublesome. Make it
handle all highmem zones by itself.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Fri, 20 May 2016 00:12:23 +0000 (17:12 -0700)]
mm/page_alloc: correct highmem memory statistics
ZONE_MOVABLE could be treated as highmem so we need to consider it for
accurate statistics. And, in following patches, ZONE_CMA will be
introduced and it can be treated as highmem, too. So, instead of
manually adding stat of ZONE_MOVABLE, looping all zones and check
whether the zone is highmem or not and add stat of the zone which can be
treated as highmem.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Fri, 20 May 2016 00:12:20 +0000 (17:12 -0700)]
mm/writeback: correct dirty page calculation for highmem
ZONE_MOVABLE could be treated as highmem so we need to consider it for
accurate calculation of dirty pages. And, in following patches,
ZONE_CMA will be introduced and it can be treated as highmem, too. So,
instead of manually adding stat of ZONE_MOVABLE, looping all zones and
check whether the zone is highmem or not and add stat of the zone which
can be treated as highmem.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Fri, 20 May 2016 00:12:16 +0000 (17:12 -0700)]
power: add zone range overlapping check
There is a system thats node's pfns are overlapped as follows:
-----pfn-------->
N0 N1 N2 N0 N1 N2
Therefore, we need to care this overlapping when iterating pfn range.
mark_free_pages() iterates requested zone's pfn range and unset all
range's bitmap first. And then it marks freepages in a zone to the
bitmap. If there is an overlapping zone, above unset could clear
previous marked bit and reference to this bitmap in the future will
cause the problem. To prevent it, this patch adds a zone check in
mark_free_pages().
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joonsoo Kim [Fri, 20 May 2016 00:12:13 +0000 (17:12 -0700)]
mm/page_owner: add zone range overlapping check
There is a system thats node's pfns are overlapped as follows:
-----pfn-------->
N0 N1 N2 N0 N1 N2
Therefore, we need to care this overlapping when iterating pfn range.
There are one place in page_owner.c that iterates pfn range and it
doesn't consider this overlapping. Add it.
Without this patch, above system could over count early allocated page
number before page_owner is activated.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>