Krzysztof Kozlowski [Sun, 1 Dec 2019 01:58:23 +0000 (17:58 -0800)]
mm/Kconfig: fix indentation
Adjust indentation from spaces to tab (+optional two spaces) as in
coding style with command like:
$ sed -e 's/^ / /' -i */Kconfig
Link: http://lkml.kernel.org/r/1574306437-28837-1-git-send-email-krzk@kernel.org
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Kosina <trivial@kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Souptick Joarder [Sun, 1 Dec 2019 01:58:20 +0000 (17:58 -0800)]
mm/memory_hotplug.c: remove __online_page_set_limits()
__online_page_set_limits() is a dummy function - remove it and all
callers.
Link: http://lkml.kernel.org/r/8e1bc9d3b492f6bde16e95ebc1dee11d6aefabd7.1567889743.git.jrdr.linux@gmail.com
Link: http://lkml.kernel.org/r/854db2cf8145d9635249c95584d9a91fd774a229.1567889743.git.jrdr.linux@gmail.com
Link: http://lkml.kernel.org/r/9afe6c5a18158f3884a6b302ac2c772f3da49ccc.1567889743.git.jrdr.linux@gmail.com
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wei Yang [Sun, 1 Dec 2019 01:58:17 +0000 (17:58 -0800)]
mm: fix typos in comments when calling __SetPageUptodate()
There are several places emphasise the effect of __SetPageUptodate(),
while the comment seems to have a typo in two places.
Link: http://lkml.kernel.org/r/20190926023705.7226-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hao Lee [Sun, 1 Dec 2019 01:58:14 +0000 (17:58 -0800)]
mm: fix struct member name in function comments
The member in struct zonelist is _zonerefs instead of zones.
Link: http://lkml.kernel.org/r/20190927144049.GA29622@haolee.github.io
Signed-off-by: Hao Lee <haolee.swjtu@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Chen Jun [Sun, 1 Dec 2019 01:58:11 +0000 (17:58 -0800)]
mm/shmem.c: cast the type of unmap_start to u64
In 64bit system. sb->s_maxbytes of shmem filesystem is MAX_LFS_FILESIZE,
which equal LLONG_MAX.
If offset > LLONG_MAX - PAGE_SIZE, offset + len < LLONG_MAX in
shmem_fallocate, which will pass the checking in vfs_fallocate.
/* Check for wrap through zero too */
if (((offset + len) > inode->i_sb->s_maxbytes) || ((offset + len) < 0))
return -EFBIG;
loff_t unmap_start = round_up(offset, PAGE_SIZE) in shmem_fallocate
causes a overflow.
Syzkaller reports a overflow problem in mm/shmem:
UBSAN: Undefined behaviour in mm/shmem.c:2014:10
signed integer overflow: '
9223372036854775807 + 1' cannot be represented in type 'long long int'
CPU: 0 PID:17076 Comm: syz-executor0 Not tainted 4.1.46+ #1
Hardware name: linux, dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2c8 arch/arm64/kernel/traps.c:100
show_stack+0x20/0x30 arch/arm64/kernel/traps.c:238
__dump_stack lib/dump_stack.c:15 [inline]
ubsan_epilogue+0x18/0x70 lib/ubsan.c:164
handle_overflow+0x158/0x1b0 lib/ubsan.c:195
shmem_fallocate+0x6d0/0x820 mm/shmem.c:2104
vfs_fallocate+0x238/0x428 fs/open.c:312
SYSC_fallocate fs/open.c:335 [inline]
SyS_fallocate+0x54/0xc8 fs/open.c:239
The highest bit of unmap_start will be appended with sign bit 1
(overflow) when calculate shmem_falloc.start:
shmem_falloc.start = unmap_start >> PAGE_SHIFT.
Fix it by casting the type of unmap_start to u64, when right shifted.
This bug is found in LTS Linux 4.1. It also seems to exist in mainline.
Link: http://lkml.kernel.org/r/1573867464-5107-1-git-send-email-chenjun102@huawei.com
Signed-off-by: Chen Jun <chenjun102@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yang Shi [Sun, 1 Dec 2019 01:58:07 +0000 (17:58 -0800)]
mm: shmem: use proper gfp flags for shmem_writepage()
The shmem_writepage() uses GFP_ATOMIC to allocate swap cache. GFP_ATOMIC
used to mean __GFP_HIGH, but now it means __GFP_HIGH | __GFP_ATOMIC |
__GFP_KSWAPD_RECLAIM. However, shmem_writepage() should write out to swap
only in response to memory pressure, so __GFP_KSWAPD_RECLAIM looks useless
since the caller may be kswapd itself or in direct reclaim already.
In addition, XArray node allocations from PF_MEMALLOC contexts could
completely exhaust the page allocator, __GFP_NOMEMALLOC stops emergency
reserves from being allocated.
Here just copy the gfp flags used by add_to_swap().
Hugh:
"a cleanup to make the two calls look the same when they don't need to
be different (whereas the call from __read_swap_cache_async() rightly
uses a lower priority gfp)".
Link: http://lkml.kernel.org/r/1572991351-86061-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Colin Ian King [Sun, 1 Dec 2019 01:58:04 +0000 (17:58 -0800)]
mm/shmem.c: make array 'values' static const, makes object smaller
Don't populate the array 'values' on the stack but instead make it static
const. Makes the object code smaller by 111 bytes.
Before:
text data bss dec hex filename
108612 11169 512 120293 1d5e5 mm/shmem.o
After:
text data bss dec hex filename
108437 11233 512 120182 1d576 mm/shmem.o
(gcc version 9.2.1, amd64)
Link: http://lkml.kernel.org/r/20190906143012.28698-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Rapoport [Sun, 1 Dec 2019 01:58:01 +0000 (17:58 -0800)]
userfaultfd: require CAP_SYS_PTRACE for UFFD_FEATURE_EVENT_FORK
A while ago Andy noticed
(http://lkml.kernel.org/r/CALCETrWY+5ynDct7eU_nDUqx=okQvjm=Y5wJvA4ahBja=CQXGw@mail.gmail.com)
that UFFD_FEATURE_EVENT_FORK used by an unprivileged user may have
security implications.
As the first step of the solution the following patch limits the availably
of UFFD_FEATURE_EVENT_FORK only for those having CAP_SYS_PTRACE.
The usage of CAP_SYS_PTRACE ensures compatibility with CRIU.
Yet, if there are other users of non-cooperative userfaultfd that run
without CAP_SYS_PTRACE, they would be broken :(
Current implementation of UFFD_FEATURE_EVENT_FORK modifies the file
descriptor table from the read() implementation of uffd, which may have
security implications for unprivileged use of the userfaultfd.
Limit availability of UFFD_FEATURE_EVENT_FORK only for callers that have
CAP_SYS_PTRACE.
Link: http://lkml.kernel.org/r/1572967777-8812-2-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Daniel Colascione <dancol@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Nick Kralevich <nnk@google.com>
Cc: Nosh Minwalla <nosh@google.com>
Cc: Pavel Emelyanov <ovzxemul@gmail.com>
Cc: Tim Murray <timmurray@google.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrea Arcangeli [Sun, 1 Dec 2019 01:57:58 +0000 (17:57 -0800)]
fs/userfaultfd.c: wp: clear VM_UFFD_MISSING or VM_UFFD_WP during userfaultfd_register()
If the registration is repeated without VM_UFFD_MISSING or VM_UFFD_WP they
need to be cleared. Currently setting UFFDIO_REGISTER_MODE_WP returns
-EINVAL, so this patch is a noop until the UFFDIO_REGISTER_MODE_WP support
is applied.
Link: http://lkml.kernel.org/r/20191004232834.GP13922@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wei Yang [Sun, 1 Dec 2019 01:57:55 +0000 (17:57 -0800)]
userfaultfd: wrap the common dst_vma check into an inlined function
When doing UFFDIO_COPY, it is necessary to find the correct destination
vma and make sure fault range is in it.
Since there are two places need to do the same task, just wrap those
common check into an inlined function.
Link: http://lkml.kernel.org/r/20190927070032.2129-3-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wei Yang [Sun, 1 Dec 2019 01:57:52 +0000 (17:57 -0800)]
userfaultfd: remove unnecessary WARN_ON() in __mcopy_atomic_hugetlb()
These warning here is to make sure address(dst_addr) and length(len -
copied) are huge page size aligned.
While this is ensured by:
dst_start and len is huge page size aligned
dst_addr equals to dst_start and increase huge page size each time
copied increase huge page size each time
This means these warnings will never be triggered.
Link: http://lkml.kernel.org/r/20190927070032.2129-2-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wei Yang [Sun, 1 Dec 2019 01:57:49 +0000 (17:57 -0800)]
userfaultfd: use vma_pagesize for all huge page size calculation
In __mcopy_atomic_hugetlb() we use two variables to deal with huge page
size: vma_hpagesize and huge_page_size.
Since they are the same, it is not necessary to use two different
mechanism. This patch makes it consistent by all using vma_hpagesize.
Link: http://lkml.kernel.org/r/20190927070032.2129-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wei Yang [Sun, 1 Dec 2019 01:57:46 +0000 (17:57 -0800)]
mm/madvise.c: use PAGE_ALIGN[ED] for range checking
Improve readability, no functional change.
Link: http://lkml.kernel.org/r/20191118032857.22683-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yunfeng Ye [Sun, 1 Dec 2019 01:57:42 +0000 (17:57 -0800)]
mm/madvise.c: replace with page_size() in madvise_inject_error()
page_size() is supported after the commit
a50b854e073c ("mm: introduce
page_size()").
Use page_size() in madvise_inject_error() for readability.
[akpm@linux-foundation.org: use ulong for `size', per David]
Link: http://lkml.kernel.org/r/29dce60c-38d6-0220-f292-e298f0c78c4d@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Hu Shiyuan <hushiyuan@huawei.com>
Cc: Feilong Lin <linfeilong@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wei Yang [Sun, 1 Dec 2019 01:57:39 +0000 (17:57 -0800)]
mm/mmap.c: make vma_merge() comment more easy to understand
Case 1/6, 2/7 and 3/8 have the same pattern and we handle them in the
same logic.
Rearrange the comment to make it a little easy for audience to
understand.
Link: http://lkml.kernel.org/r/20191030012445.16944-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Yangtao Li <tiny.windzz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zhong jiang [Sun, 1 Dec 2019 01:57:35 +0000 (17:57 -0800)]
mm/hwpoison-inject: use DEFINE_DEBUGFS_ATTRIBUTE to define debugfs fops
It is more clear to use DEFINE_DEBUGFS_ATTRIBUTE to define debugfs file
operation rather than DEFINE_SIMPLE_ATTRIBUTE.
Link: http://lkml.kernel.org/r/1572403660-44718-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huang Ying [Sun, 1 Dec 2019 01:57:32 +0000 (17:57 -0800)]
autonuma: reduce cache footprint when scanning page tables
In auto NUMA balancing page table scanning, if the pte_protnone() is
true, the PTE needs not to be changed because it's in target state
already. So other checking on corresponding struct page is unnecessary
too.
So, if we check pte_protnone() firstly for each PTE, we can avoid
unnecessary struct page accessing, so that reduce the cache footprint of
NUMA balancing page table scanning.
In the performance test of pmbench memory accessing benchmark with 80:20
read/write ratio and normal access address distribution on a 2 socket
Intel server with Optance DC Persistent Memory, perf profiling shows
that the autonuma page table scanning time reduces from 1.23% to 0.97%
(that is, reduced 21%) with the patch.
Link: http://lkml.kernel.org/r/20191101075727.26683-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huang Ying [Sun, 1 Dec 2019 01:57:28 +0000 (17:57 -0800)]
autonuma: fix watermark checking in migrate_balanced_pgdat()
When zone_watermark_ok() is called in migrate_balanced_pgdat() to check
migration target node, the parameter classzone_idx (for requested zone)
is specified as 0 (ZONE_DMA). But when allocating memory for autonuma
in alloc_misplaced_dst_page(), the requested zone from GFP flags is
ZONE_MOVABLE. That is, the requested zone is different. The size of
lowmem_reserve for the different requested zone is different. And this
may cause some issues.
For example, in the zoneinfo of a test machine as below,
Node 0, zone DMA32
pages free 61592
min 29
low 454
high 879
spanned
1044480
present 442306
managed 425921
protection: (0, 0, 62457, 62457, 62457)
The free page number of ZONE_DMA32 is greater than "high watermark +
lowmem_reserve[ZONE_DMA]", but less than "high watermark +
lowmem_reserve[ZONE_MOVABLE]". And because __alloc_pages_node() in
alloc_misplaced_dst_page() requests ZONE_MOVABLE, the
zone_watermark_ok() on ZONE_DMA32 in migrate_balanced_pgdat() may always
return true. So, autonuma may not stop even when memory pressure in
node 0 is heavy.
To fix the issue, ZONE_MOVABLE is used as parameter to call
zone_watermark_ok() in migrate_balanced_pgdat(). This makes it same as
requested zone in alloc_misplaced_dst_page(). So that
migrate_balanced_pgdat() returns false when memory pressure is heavy.
Link: http://lkml.kernel.org/r/20191101075727.26683-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zhong jiang [Sun, 1 Dec 2019 01:57:25 +0000 (17:57 -0800)]
mm/cma_debug.c: use DEFINE_DEBUGFS_ATTRIBUTE to define debugfs fops
It is more clear to use DEFINE_DEBUGFS_ATTRIBUTE to define debugfs file
operation rather than DEFINE_SIMPLE_ATTRIBUTE.
Link: http://lkml.kernel.org/r/1572348687-9951-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Yue Hu <huyue2@yulong.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yunfeng Ye [Sun, 1 Dec 2019 01:57:22 +0000 (17:57 -0800)]
mm/cma.c: switch to bitmap_zalloc() for cma bitmap allocation
kzalloc() is used for cma bitmap allocation in cma_activate_area(),
switch to bitmap_zalloc() for clarity.
Link: http://lkml.kernel.org/r/895d4627-f115-c77a-d454-c0a196116426@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Yue Hu <huyue2@yulong.com>
Cc: Peng Fan <peng.fan@nxp.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ryohei Suzuki <ryh.szk.cmnty@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Song Liu [Sun, 1 Dec 2019 01:57:19 +0000 (17:57 -0800)]
mm/thp: flush file for !is_shmem PageDirty() case in collapse_file()
For non-shmem file THPs, khugepaged only collapses read only .text
mapping (VM_DENYWRITE). These pages should not be dirty except the case
where the file hasn't been flushed since first write.
Call filemap_flush() in collapse_file() to accelerate the write back in
such cases.
Link: http://lkml.kernel.org/r/20191106060930.2571389-3-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kirill A. Shutemov [Sun, 1 Dec 2019 01:57:15 +0000 (17:57 -0800)]
mm, thp: do not queue fully unmapped pages for deferred split
Adding fully unmapped pages into deferred split queue is not productive:
these pages are about to be freed or they are pinned and cannot be split
anyway.
Link: http://lkml.kernel.org/r/20190913091849.11151-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yang Shi [Sun, 1 Dec 2019 01:57:12 +0000 (17:57 -0800)]
mm/migrate.c: handle freed page at the first place
When doing migration if the freed page is met, we just return without
migrating it since it is pointless to migrate a freed page. But, the
current code allocates target page unconditionally before handling freed
page, if the page is freed, the newly allocated will be just freed. It
doesn't make too much sense and is just a waste of time although
migrating freed page is rare.
So, handle freed page at the before that to avoid unnecessary page
allocation and free.
Link: http://lkml.kernel.org/r/1573755869-106954-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zhong jiang [Sun, 1 Dec 2019 01:57:09 +0000 (17:57 -0800)]
mm/huge_memory.c: split_huge_pages_fops should be defined with DEFINE_DEBUGFS_ATTRIBUTE
split_huge_pages_fops is used for debugfs file. hence, it is more clear
to use DEFINE_DEBUGFS_ATTRIBUTE.
Link: http://lkml.kernel.org/r/1572347674-8111-1-git-send-email-zhongjiang@huawei.com
Signed-off-by: zhong jiang <zhongjiang@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Zhigang Lu [Sun, 1 Dec 2019 01:57:06 +0000 (17:57 -0800)]
mm/hugetlb: avoid looping to the same hugepage if !pages and !vmas
When mmapping an existing hugetlbfs file with MAP_POPULATE, we find it
is very time consuming. For example, mmapping a 128GB file takes about
50 milliseconds. Sampling with perfevent shows it spends 99% time in
the same_page loop in follow_hugetlb_page().
samples: 205 of event 'cycles', Event count (approx.):
136686374
- 99.04% test_mmap_huget [kernel.kallsyms] [k] follow_hugetlb_page
follow_hugetlb_page
__get_user_pages
__mlock_vma_pages_range
__mm_populate
vm_mmap_pgoff
sys_mmap_pgoff
sys_mmap
system_call_fastpath
__mmap64
follow_hugetlb_page() is called with pages=NULL and vmas=NULL, so for
each hugepage, we run into the same_page loop for pages_per_huge_page()
times, but doing nothing. With this change, it takes less then 1
millisecond to mmap a 128GB file in hugetlbfs.
Link: http://lkml.kernel.org/r/1567581712-5992-1-git-send-email-totty.lu@gmail.com
Signed-off-by: Zhigang Lu <tonnylu@tencent.com>
Reviewed-by: Haozhong Zhang <hzhongzhang@tencent.com>
Reviewed-by: Zongming Zhang <knightzhang@tencent.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wei Yang [Sun, 1 Dec 2019 01:57:02 +0000 (17:57 -0800)]
hugetlb: remove unused hstate in hugetlb_fault_mutex_hash()
The first parameter hstate in function hugetlb_fault_mutex_hash() is not
used anymore.
This patch removes it.
[akpm@linux-foundation.org: various build fixes]
[cai@lca.pw: fix a GCC compilation warning]
Link: http://lkml.kernel.org/r/1570544108-32331-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20191005003302.785-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mina Almasry [Sun, 1 Dec 2019 01:56:59 +0000 (17:56 -0800)]
hugetlb: remove duplicated code
Remove duplicated code between region_chg and region_add, and refactor
it into a common function, add_reservation_in_range. This is mostly
done because there is a follow up change in another series that disables
region coalescing in region_add, and I want to make that change in one
place only. It should improve maintainability anyway on its own.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20190919200428.188797-3-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mina Almasry [Sun, 1 Dec 2019 01:56:54 +0000 (17:56 -0800)]
hugetlb: region_chg provides only cache entry
Current behavior is that region_chg provides both a cache entry in
resv->region_cache, AND a placeholder entry in resv->regions.
region_add first tries to use the placeholder, and if it finds that the
placeholder has been deleted by a racing region_del call, it uses the
cache entry.
This behavior is completely unnecessary and is removed in this patch for
a couple of reasons:
1. region_add needs to either find a cached file_region entry in
resv->region_cache, or find an entry in resv->regions to expand. It
does not need both.
2. region_chg adding a placeholder entry in resv->regions opens up
a possible race with region_del, where region_chg adds a placeholder
region in resv->regions, and this region is deleted by a racing call
to region_del during region_chg execution or before region_add is
called. Removing the race makes the code easier to reason about and
maintain.
In addition, a follow up patch in another series that disables region
coalescing, which would be further complicated if the race with
region_del exists.
Link: http://lkml.kernel.org/r/20190919200428.188797-2-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Waiman Long [Sun, 1 Dec 2019 01:56:49 +0000 (17:56 -0800)]
hugetlbfs: take read_lock on i_mmap for PMD sharing
A customer with large SMP systems (up to 16 sockets) with application
that uses large amount of static hugepages (~500-1500GB) are
experiencing random multisecond delays. These delays were caused by the
long time it took to scan the VMA interval tree with mmap_sem held.
The sharing of huge PMD does not require changes to the i_mmap at all.
Therefore, we can just take the read lock and let other threads
searching for the right VMA share it in parallel. Once the right VMA is
found, either the PMD lock (2M huge page for x86-64) or the
mm->page_table_lock will be acquired to perform the actual PMD sharing.
Lock contention, if present, will happen in the spinlock. That is much
better than contention in the rwsem where the time needed to scan the
the interval tree is indeterminate.
With this patch applied, the customer is seeing significant performance
improvement over the unpatched kernel.
Link: http://lkml.kernel.org/r/20191107211809.9539-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Piotr Sarna [Sun, 1 Dec 2019 01:56:43 +0000 (17:56 -0800)]
hugetlbfs: add O_TMPFILE support
With hugetlbfs, a common pattern for mapping anonymous huge pages is to
create a temporary file first. Currently libraries like libhugetlbfs
and seastar create these with a standard mkstemp+unlink trick, but it
would be more robust to be able to simply pass the O_TMPFILE flag to
open(). O_TMPFILE is already supported by several file systems like
ext4 and xfs. The implementation simply uses the existi= ng d_tmpfile
utility function to instantiate the dcache entry for the file.
Tested manually by successfully creating a temporary file by opening it
with (O_TMPFILE|O_RDWR) on mounted hugetlbfs and successfully mapping 2M
huge pages with it. Without the patch, trying to open a file with
O_TMPFILE results in -ENOSUP.
Link: http://lkml.kernel.org/r/bc9383eff6e1374d79f3a92257ae829ba1e6ae60.1573285189.git.p.sarna@tlen.pl
Signed-off-by: Piotr Sarna <p.sarna@tlen.pl>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Kravetz [Sun, 1 Dec 2019 01:56:40 +0000 (17:56 -0800)]
hugetlbfs: convert macros to static inline, fix sparse warning
huge_pte_offset() produced a sparse warning due to an improper return
type when the kernel was built with !CONFIG_HUGETLB_PAGE. Fix the bad
type and also convert all the macros in this block to static inline
wrappers. Two existing wrappers in this block had lines in excess of 80
columns so clean those up as well.
No functional change.
Link: http://lkml.kernel.org/r/20191112194558.139389-3-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Ben Dooks <ben.dooks@codethink.co.uk>
Suggested-by: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Kravetz [Sun, 1 Dec 2019 01:56:37 +0000 (17:56 -0800)]
powerpc/mm: remove pmd_huge/pud_huge stubs and include hugetlb.h
Patch series "hugetlbfs: convert macros to static inline, fix sparse
warning".
The definition for huge_pte_offset() in <linux/hugetlb.h> causes a
sparse warning in the !CONFIG_HUGETLB_PAGE. Fix this as well as
converting all macros in this block of definitions to static inlines for
better type checking.
When making the above changes, build errors were found in powerpc due to
duplicate definitions. A separate powerpc specific patch is included as
a requisite to remove the definitions and get them from
<linux/hugetlb.h>.
This patch (of 2):
This removes the power specific stubs created by commit
aad71e3928be
("powerpc/mm: Fix build break with RADIX=y & HUGETLBFS=n") used when
!CONFIG_HUGETLB_PAGE. Instead, it addresses the build break by getting
the definitions from <linux/hugetlb.h>. This allows the macros in
<linux/hugetlb.h> to be replaced with static inlines.
Link: http://lkml.kernel.org/r/20191112194558.139389-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ben Dooks <ben.dooks@codethink.co.uk>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Kravetz [Sun, 1 Dec 2019 01:56:34 +0000 (17:56 -0800)]
mm/hugetlbfs: fix error handling when setting up mounts
It is assumed that the hugetlbfs_vfsmount[] array will contain either a
valid vfsmount pointer or NULL for each hstate after initialization.
Changes made while converting to use fs_context broke this assumption.
While fixing the hugetlbfs_vfsmount issue, it was discovered that
init_hugetlbfs_fs never did correctly clean up when encountering a vfs
mount error.
It was found during code inspection. A small memory allocation failure
would be the most likely cause of taking a error path with the bug.
This is unlikely to happen as this is early init code.
Link: http://lkml.kernel.org/r/94b6244d-2c24-e269-b12c-e3ba694b242d@oracle.com
Reported-by: Chengguang Xu <cgxu519@mykernel.net>
Fixes: 32021982a324 ("hugetlbfs: Convert to fs_context")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Kravetz [Sun, 1 Dec 2019 01:56:30 +0000 (17:56 -0800)]
hugetlbfs: hugetlb_fault_mutex_hash() cleanup
A new clang diagnostic (-Wsizeof-array-div) warns about the calculation
to determine the number of u32's in an array of unsigned longs.
Suppress warning by adding parentheses.
While looking at the above issue, noticed that the 'address' parameter
to hugetlb_fault_mutex_hash is no longer used. So, remove it from the
definition and all callers.
No functional change.
Link: http://lkml.kernel.org/r/20190919011847.18400-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Ilie Halip <ilie.halip@gmail.com>
Cc: David Bolvansky <david.bolvansky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yunfeng Ye [Sun, 1 Dec 2019 01:56:27 +0000 (17:56 -0800)]
mm: support memblock alloc on the exact node for sparse_buffer_init()
sparse_buffer_init() use memblock_alloc_try_nid_raw() to allocate memory
for page management structure, if memory allocation fails from specified
node, it will fall back to allocate from other nodes.
Normally, the page management structure will not exceed 2% of the total
memory, but a large continuous block of allocation is needed. In most
cases, memory allocation from the specified node will succeed, but a
node memory become highly fragmented will fail. we expect to allocate
memory base section rather than by allocating a large block of memory
from other NUMA nodes
Add memblock_alloc_exact_nid_raw() for this situation, which allocate
boot memory block on the exact node. If a large contiguous block memory
allocate fail in sparse_buffer_init(), it will fall back to allocate
small block memory base section.
Link: http://lkml.kernel.org/r/66755ea7-ab10-8882-36fd-3e02b03775d5@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cao jin [Sun, 1 Dec 2019 01:56:24 +0000 (17:56 -0800)]
mm/memblock: correct doc for function
Change "max_addr" to "end" for less confusion in
memblock_alloc_range_nid comments.
Link: http://lkml.kernel.org/r/20191113051822.3296-1-ruansy.fnst@cn.fujitsu.com
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Signed-off-by: Shiyang Ruan <ruansy.fnst@cn.fujitsu.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cao jin [Sun, 1 Dec 2019 01:56:21 +0000 (17:56 -0800)]
mm/memblock.c: cleanup doc
fix typos for:
elaboarte -> elaborate
architecure -> architecture
compltes -> completes
And, convert the markup :c:func:`foo` to foo() as kernel documentation
toolchain can recognize foo() as a function.
Link: http://lkml.kernel.org/r/20190912123127.8694-1-caoj.fnst@cn.fujitsu.com
Signed-off-by: Cao jin <caoj.fnst@cn.fujitsu.com>
Suggested-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Li Xinhai [Sun, 1 Dec 2019 01:56:18 +0000 (17:56 -0800)]
mm/mempolicy.c: fix checking unmapped holes for mbind
mbind() is required to report EFAULT if range, specified by addr and
len, contains unmapped holes. In current implementation, below rules
are applied for this checking:
1: Unmapped holes at any part of the specified range should be reported
as EFAULT if mbind() for none MPOL_DEFAULT cases;
2: Unmapped holes at any part of the specified range should be ignored
(do not reprot EFAULT) if mbind() for MPOL_DEFAULT case;
3: The whole range in an unmapped hole should be reported as EFAULT;
Note that rule 2 does not fullfill the mbind() API definition, but since
that behavior has existed for long days (the internal flag
MPOL_MF_DISCONTIG_OK is for this purpose), this patch does not plan to
change it.
In current code, application observed inconsistent behavior on rule 1
and rule 2 respectively. That inconsistency is fixed as below details.
Cases of rule 1:
- Hole at head side of range. Current code reprot EFAULT, no change by
this patch.
[ vma ][ hole ][ vma ]
[ range ]
- Hole at middle of range. Current code report EFAULT, no change by
this patch.
[ vma ][ hole ][ vma ]
[ range ]
- Hole at tail side of range. Current code do not report EFAULT, this
patch fixes it.
[ vma ][ hole ][ vma ]
[ range ]
Cases of rule 2:
- Hole at head side of range. Current code reports EFAULT, this patch
fixes it.
[ vma ][ hole ][ vma ]
[ range ]
- Hole at middle of range. Current code does not report EFAULT, no
change by this patch.
[ vma ][ hole ][ vma]
[ range ]
- Hole at tail side of range. Current code does not report EFAULT, no
change by this patch.
[ vma ][ hole ][ vma]
[ range ]
This patch has no changes to rule 3.
The unmapped hole checking can also be handled by using .pte_hole(),
instead of .test_walk(). But .pte_hole() is called for holes inside and
outside vma, which causes more cost, so this patch keeps the original
design with .test_walk().
Link: http://lkml.kernel.org/r/1573218104-11021-3-git-send-email-lixinhai.lxh@gmail.com
Fixes: 6f4576e3687b ("mempolicy: apply page table walker on queue_pages_range()")
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: linux-man <linux-man@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Li Xinhai [Sun, 1 Dec 2019 01:56:15 +0000 (17:56 -0800)]
mm/mempolicy.c: check range first in queue_pages_test_walk
Patch series "mm: Fix checking unmapped holes for mbind", v4.
This patchset fix checking unmapped holes for mbind().
First patch makes sure the vma been correctly tracked in .test_walk(),
so each time when .test_walk() is called, the neighborhood of two vma
is correct.
Current problem is that the !vma_migratable() check could cause return
immediately without update tracking to vma.
Second patch fix the inconsistent report of EFAULT when mbind() is
called for MPOL_DEFAULT and non MPOL_DEFAULT cases, so application do
not need to have workaround code to handle this special behavior.
Currently there are two problems, one is that the .test_walk() can not
know there is hole at tail side of range, because .test_walk() only
call for vma not for hole. The other one is that mbind_range() checks
for hole at head side of range but do not consider the
MPOL_MF_DISCONTIG_OK flag as done in .test_walk().
This patch (of 2):
Checking unmapped hole and updating the previous vma must be handled
first, otherwise the unmapped hole could be calculated from a wrong
previous vma.
Several commits were relevant to this error:
- commit
6f4576e3687b ("mempolicy: apply page table walker on
queue_pages_range()")
This commit was correct, the VM_PFNMAP check was after updating
previous vma
- commit
48684a65b4e3 ("mm: pagewalk: fix misbehavior of
walk_page_range for vma(VM_PFNMAP)")
This commit added VM_PFNMAP check before updating previous vma. Then,
there were two VM_PFNMAP check did same thing twice.
- commit
acda0c334028 ("mm/mempolicy.c: get rid of duplicated check for
vma(VM_PFNMAP) in queue_page s_range()")
This commit tried to fix the duplicated VM_PFNMAP check, but it
wrongly removed the one which was after updating vma.
Link: http://lkml.kernel.org/r/1573218104-11021-2-git-send-email-lixinhai.lxh@gmail.com
Fixes: acda0c334028 (mm/mempolicy.c: get rid of duplicated check for vma(VM_PFNMAP) in queue_pages_range())
Signed-off-by: Li Xinhai <lixinhai.lxh@gmail.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: linux-man <linux-man@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vitaly Wool [Sun, 1 Dec 2019 01:56:11 +0000 (17:56 -0800)]
mm/z3fold.c: add inter-page compaction
For each page scheduled for compaction (e. g. by z3fold_free()), try to
apply inter-page compaction before running the traditional/ existing
intra-page compaction. That means, if the page has only one buddy, we
treat that buddy as a new object that we aim to place into an existing
z3fold page. If such a page is found, that object is transferred and the
old page is freed completely. The transferred object is named "foreign"
and treated slightly differently thereafter.
Namely, we increase "foreign handle" counter for the new page. Pages with
non-zero "foreign handle" count become unmovable. This patch implements
"foreign handle" detection when a handle is freed to decrement the foreign
handle counter accordingly, so a page may as well become movable again as
the time goes by.
As a result, we almost always have exactly 3 objects per page and
significantly better average compression ratio.
[cai@lca.pw: fix -Wunused-but-set-variable warnings]
Link: http://lkml.kernel.org/r/1570542062-29144-1-git-send-email-cai@lca.pw
[vitalywool@gmail.com: avoid subtle race when freeing slots]
Link: http://lkml.kernel.org/r/20191127152118.6314b99074b0626d4c5a8835@gmail.com
[vitalywool@gmail.com: compact objects more accurately]
Link: http://lkml.kernel.org/r/20191127152216.6ad33745a21ba71c53606acb@gmail.com
[vitalywool@gmail.com: protect handle reads]
Link: http://lkml.kernel.org/r/20191127152345.8059852f60947686674d726d@gmail.com
Link: http://lkml.kernel.org/r/20191006041457.24113-1-vitalywool@gmail.com
Signed-off-by: Vitaly Wool <vitaly.vul@sony.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:56:08 +0000 (17:56 -0800)]
kernel: sysctl: make drop_caches write-only
Currently, the drop_caches proc file and sysctl read back the last value
written, suggesting this is somehow a stateful setting instead of a
one-time command. Make it write-only, like e.g. compact_memory.
While mitigating a VM problem at scale in our fleet, there was confusion
about whether writing to this file will permanently switch the kernel into
a non-caching mode. This influences the decision making in a tense
situation, where tens of people are trying to fix tens of thousands of
affected machines: Do we need a rollback strategy? What are the
performance implications of operating in a non-caching state for several
days? It also caused confusion when the kernel team said we may need to
write the file several times to make sure it's effective ("But it already
reads back 3?").
Link: http://lkml.kernel.org/r/20191031221602.9375-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Xianting Tian [Sun, 1 Dec 2019 01:56:05 +0000 (17:56 -0800)]
mm/vmscan.c: fix typo in comment
Fix the typo "resheduled" -> "rescheduled" in comment
Link: http://lkml.kernel.org/r/1573486327-9591-1-git-send-email-xianting_tian@126.com
Signed-off-by: Xianting Tian <xianting_tian@126.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:56:02 +0000 (17:56 -0800)]
mm: vmscan: enforce inactive:active ratio at the reclaim root
We split the LRU lists into inactive and an active parts to maximize
workingset protection while allowing just enough inactive cache space to
faciltate readahead and writeback for one-off file accesses (e.g. a
linear scan through a file, or logging); or just enough inactive anon to
maintain recent reference information when reclaim needs to swap.
With cgroups and their nested LRU lists, we currently don't do this
correctly. While recursive cgroup reclaim establishes a relative LRU
order among the pages of all involved cgroups, inactive:active size
decisions are done on a per-cgroup level. As a result, we'll reclaim a
cgroup's workingset when it doesn't have cold pages, even when one of its
siblings has plenty of it that should be reclaimed first.
For example: workload A has 50M worth of hot cache but doesn't do any
one-off file accesses; meanwhile, parallel workload B scans files and
rarely accesses the same page twice.
If these workloads were to run in an uncgrouped system, A would be
protected from the high rate of cache faults from B. But if they were put
in parallel cgroups for memory accounting purposes, B's fast cache fault
rate would push out the hot cache pages of A. This is unexpected and
undesirable - the "scan resistance" of the page cache is broken.
This patch moves inactive:active size balancing decisions to the root of
reclaim - the same level where the LRU order is established.
It does this by looking at the recursive size of the inactive and the
active file sets of the cgroup subtree at the beginning of the reclaim
cycle, and then making a decision - scan or skip active pages - that
applies throughout the entire run and to every cgroup involved.
With that in place, in the test above, the VM will recognize that there
are plenty of inactive pages in the combined cache set of workloads A and
B and prefer the one-off cache in B over the hot pages in A. The scan
resistance of the cache is restored.
[cai@lca.pw: fix some -Wenum-conversion warnings]
Link: http://lkml.kernel.org/r/1573848697-29262-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20191107205334.158354-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:55:59 +0000 (17:55 -0800)]
mm: vmscan: detect file thrashing at the reclaim root
We use refault information to determine whether the cache workingset is
stable or transitioning, and dynamically adjust the inactive:active file
LRU ratio so as to maximize protection from one-off cache during stable
periods, and minimize IO during transitions.
With cgroups and their nested LRU lists, we currently don't do this
correctly. While recursive cgroup reclaim establishes a relative LRU
order among the pages of all involved cgroups, refaults only affect the
local LRU order in the cgroup in which they are occuring. As a result,
cache transitions can take longer in a cgrouped system as the active pages
of sibling cgroups aren't challenged when they should be.
[ Right now, this is somewhat theoretical, because the siblings, under
continued regular reclaim pressure, should eventually run out of
inactive pages - and since inactive:active *size* balancing is also
done on a cgroup-local level, we will challenge the active pages
eventually in most cases. But the next patch will move that relative
size enforcement to the reclaim root as well, and then this patch
here will be necessary to propagate refault pressure to siblings. ]
This patch moves refault detection to the root of reclaim. Instead of
remembering the cgroup owner of an evicted page, remember the cgroup that
caused the reclaim to happen. When refaults later occur, they'll
correctly influence the cross-cgroup LRU order that reclaim follows.
I.e. if global reclaim kicked out pages in some subgroup A/B/C, the
refault of those pages will challenge the global LRU order, and not just
the local order down inside C.
[hannes@cmpxchg.org: use page_memcg() instead of another lookup]
Link: http://lkml.kernel.org/r/20191115160722.GA309754@cmpxchg.org
Link: http://lkml.kernel.org/r/20191107205334.158354-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:55:56 +0000 (17:55 -0800)]
mm: vmscan: move file exhaustion detection to the node level
Patch series "mm: fix page aging across multiple cgroups".
When applications are put into unconfigured cgroups for memory accounting
purposes, the cgrouping itself should not change the behavior of the page
reclaim code. We expect the VM to reclaim the coldest pages in the
system. But right now the VM can reclaim hot pages in one cgroup while
there is eligible cold cache in others.
This is because one part of the reclaim algorithm isn't truly cgroup
hierarchy aware: the inactive/active list balancing. That is the part
that is supposed to protect hot cache data from one-off streaming IO.
The recursive cgroup reclaim scheme will scan and rotate the physical LRU
lists of each eligible cgroup at the same rate in a round-robin fashion,
thereby establishing a relative order among the pages of all those
cgroups. However, the inactive/active balancing decisions are made
locally within each cgroup, so when a cgroup is running low on cold pages,
its hot pages will get reclaimed - even when sibling cgroups have plenty
of cold cache eligible in the same reclaim run.
For example:
[root@ham ~]# head -n1 /proc/meminfo
MemTotal:
1016336 kB
[root@ham ~]# ./reclaimtest2.sh
Establishing 50M active files in cgroup A...
Hot pages cached: 12800/12800 workingset-a
Linearly scanning through 18G of file data in cgroup B:
real 0m4.269s
user 0m0.051s
sys 0m4.182s
Hot pages cached: 134/12800 workingset-a
The streaming IO in B, which doesn't benefit from caching at all, pushes
out most of the workingset in A.
Solution
This series fixes the problem by elevating inactive/active balancing
decisions to the toplevel of the reclaim run. This is either a cgroup
that hit its limit, or straight-up global reclaim if there is physical
memory pressure. From there, it takes a recursive view of the cgroup
subtree to decide whether page deactivation is necessary.
In the test above, the VM will then recognize that cgroup B has plenty of
eligible cold cache, and that the hot pages in A can be spared:
[root@ham ~]# ./reclaimtest2.sh
Establishing 50M active files in cgroup A...
Hot pages cached: 12800/12800 workingset-a
Linearly scanning through 18G of file data in cgroup B:
real 0m4.244s
user 0m0.064s
sys 0m4.177s
Hot pages cached: 12800/12800 workingset-a
Implementation
Whether active pages can be deactivated or not is influenced by two
factors: the inactive list dropping below a minimum size relative to the
active list, and the occurence of refaults.
This patch series first moves refault detection to the reclaim root, then
enforces the minimum inactive size based on a recursive view of the cgroup
tree's LRUs.
History
Note that this actually never worked correctly in Linux cgroups. In the
past it worked for global reclaim and leaf limit reclaim only (we used to
have two physical LRU linkages per page), but it never worked for
intermediate limit reclaim over multiple leaf cgroups.
We're noticing this now because 1) we're putting everything into cgroups
for accounting, not just the things we want to control and 2) we're moving
away from leaf limits that invoke reclaim on individual cgroups, toward
large tree reclaim, triggered by high-level limits, or physical memory
pressure that is influenced by local protections such as memory.low and
memory.min instead.
This patch (of 3):
When file pages are lower than the watermark on a node, we try to force
scan anonymous pages to counter-act the balancing algorithms preference
for new file pages when they are likely thrashing. This is a node-level
decision, but it's currently made each time we look at an lruvec. This is
unnecessarily expensive and also a layering violation that makes the code
harder to understand.
Clean this up by making the check once per node and setting a flag in the
scan_control.
Link: http://lkml.kernel.org/r/20191107205334.158354-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:55:52 +0000 (17:55 -0800)]
mm: vmscan: harmonize writeback congestion tracking for nodes & memcgs
The current writeback congestion tracking has separate flags for kswapd
reclaim (node level) and cgroup limit reclaim (memcg-node level). This is
unnecessarily complicated: the lruvec is an existing abstraction layer for
that node-memcg intersection.
Introduce lruvec->flags and LRUVEC_CONGESTED. Then track that at the
reclaim root level, which is either the NUMA node for global reclaim, or
the cgroup-node intersection for cgroup reclaim.
Link: http://lkml.kernel.org/r/20191022144803.302233-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:55:49 +0000 (17:55 -0800)]
mm: vmscan: split shrink_node() into node part and memcgs part
This function is getting long and unwieldy, split out the memcg bits.
The updated shrink_node() handles the generic (node) reclaim aspects:
- global vmpressure notifications
- writeback and congestion throttling
- reclaim/compaction management
- kswapd giving up on unreclaimable nodes
It then calls a new shrink_node_memcgs() which handles cgroup specifics:
- the cgroup tree traversal
- memory.low considerations
- per-cgroup slab shrinking callbacks
- per-cgroup vmpressure notifications
[hannes@cmpxchg.org: rename "root" to "target_memcg", per Roman]
Link: http://lkml.kernel.org/r/20191025143640.GA386981@cmpxchg.org
Link: http://lkml.kernel.org/r/20191022144803.302233-8-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:55:46 +0000 (17:55 -0800)]
mm: vmscan: turn shrink_node_memcg() into shrink_lruvec()
An lruvec holds LRU pages owned by a certain NUMA node and cgroup.
Instead of awkwardly passing around a combination of a pgdat and a memcg
pointer, pass down the lruvec as soon as we can look it up.
Nested callers that need to access node or cgroup properties can look them
them up if necessary, but there are only a few cases.
Link: http://lkml.kernel.org/r/20191022144803.302233-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:55:43 +0000 (17:55 -0800)]
mm: vmscan: replace shrink_node() loop with a retry jump
Most of the function body is inside a loop, which imposes an additional
indentation and scoping level that makes the code a bit hard to follow and
modify.
The looping only happens in case of reclaim-compaction, which isn't the
common case. So rather than adding yet another function level to the
reclaim path and have every reclaim invocation go through a level that
only exists for one specific cornercase, use a retry goto.
Link: http://lkml.kernel.org/r/20191022144803.302233-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:55:40 +0000 (17:55 -0800)]
mm: vmscan: naming fixes: global_reclaim() and sane_reclaim()
Seven years after introducing the global_reclaim() function, I still have
to double take when reading a callsite. I don't know how others do it,
this is a terrible name.
Invert the meaning and rename it to cgroup_reclaim().
[ After all, "global reclaim" is just regular reclaim invoked from the
page allocator. It's reclaim on behalf of a cgroup limit that is a
special case of reclaim, and should be explicit - not the reverse. ]
sane_reclaim() isn't very descriptive either: it tests whether we can use
the regular writeback throttling - available during regular page reclaim
or cgroup2 limit reclaim - or need to use the broken
wait_on_page_writeback() method. Use "writeback_throttling_sane()".
Link: http://lkml.kernel.org/r/20191022144803.302233-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:55:37 +0000 (17:55 -0800)]
mm: vmscan: move inactive_list_is_low() swap check to the caller
inactive_list_is_low() should be about one thing: checking the ratio
between inactive and active list. Kitchensink checks like the one for
swap space makes the function hard to use and modify its callsites.
Luckly, most callers already have an understanding of the swap situation,
so it's easy to clean up.
get_scan_count() has its own, memcg-aware swap check, and doesn't even get
to the inactive_list_is_low() check on the anon list when there is no swap
space available.
shrink_list() is called on the results of get_scan_count(), so that check
is redundant too.
age_active_anon() has its own totalswap_pages check right before it checks
the list proportions.
The shrink_node_memcg() site is the only one that doesn't do its own swap
check. Add it there.
Then delete the swap check from inactive_list_is_low().
Link: http://lkml.kernel.org/r/20191022144803.302233-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:55:34 +0000 (17:55 -0800)]
mm: clean up and clarify lruvec lookup procedure
There is a per-memcg lruvec and a NUMA node lruvec. Which one is being
used is somewhat confusing right now, and it's easy to make mistakes -
especially when it comes to global reclaim.
How it works: when memory cgroups are enabled, we always use the
root_mem_cgroup's per-node lruvecs. When memory cgroups are not compiled
in or disabled at runtime, we use pgdat->lruvec.
Document that in a comment.
Due to the way the reclaim code is generalized, all lookups use the
mem_cgroup_lruvec() helper function, and nobody should have to find the
right lruvec manually right now. But to avoid future mistakes, rename the
pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper
that suggests it's a commonly accessed member.
While in this area, swap the mem_cgroup_lruvec() argument order. The name
suggests a memcg operation, yet it takes a pgdat first and a memcg second.
I have to double take every time I call this. Fix that.
Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Johannes Weiner [Sun, 1 Dec 2019 01:55:31 +0000 (17:55 -0800)]
mm: vmscan: simplify lruvec_lru_size()
Patch series "mm: vmscan: cgroup-related cleanups".
Here are 8 patches that clean up the reclaim code's interaction with
cgroups a bit. They're not supposed to change any behavior, just make
the implementation easier to understand and work with.
This patch (of 8):
This function currently takes the node or lruvec size and subtracts the
zones that are excluded by the classzone index of the allocation. It uses
four different types of counters to do this.
Just add up the eligible zones.
[cai@lca.pw: fix an undefined behavior for zone id]
Link: http://lkml.kernel.org/r/20191108204407.1435-1-cai@lca.pw
[akpm@linux-foundation.org: deal with the MAX_NR_ZONES special case. per Qian Cai]
Link: http://lkml.kernel.org/r/64E60F6F-7582-427B-8DD5-EF97B1656F5A@lca.pw
Link: http://lkml.kernel.org/r/20191022144803.302233-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yang Shi [Sun, 1 Dec 2019 01:55:28 +0000 (17:55 -0800)]
mm/vmscan.c: remove unused scan_control parameter from pageout()
Since lumpy reclaim was removed in v3.5 scan_control is not used by
may_write_to_{queue|inode} and pageout() anymore, remove the unused
parameter.
Link: http://lkml.kernel.org/r/1570124498-19300-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrey Ryabinin [Sun, 1 Dec 2019 01:55:24 +0000 (17:55 -0800)]
mm/vmscan: remove unused lru_pages argument
Since
9092c71bb724 ("mm: use sc->priority for slab shrink targets") the
argument 'unsigned long *lru_pages' passed around with no purpose. Remove
it.
Link: http://lkml.kernel.org/r/20190228083329.31892-4-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lijiazi [Sun, 1 Dec 2019 01:55:21 +0000 (17:55 -0800)]
mm/page_alloc.c: print reserved_highatomic info
Print nr_reserved_highatomic in show_free_areas, because when alloc_harder
is false, this value will be subtracted from the free_pages in
__zone_watermark_ok. Printing this value can help analyze memory
allocaction failure issues.
Link: http://lkml.kernel.org/r/19515f3de2fb6abe66b52e03e4b676a21e82beda.1573634806.git.lijiazi@xiaomi.com
Signed-off-by: lijiazi <lijiazi@xiaomi.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hao Lee [Sun, 1 Dec 2019 01:55:18 +0000 (17:55 -0800)]
include/linux/mmzone.h: fix comment for ISOLATE_UNMAPPED macro
Both file-backed pages and anonymous pages can be unmapped.
ISOLATE_UNMAPPED is not just for file-backed pages.
Link: http://lkml.kernel.org/r/20191024151621.GA20400@haolee.github.io
Signed-off-by: Hao Lee <haolee.swjtu@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Sun, 1 Dec 2019 01:55:15 +0000 (17:55 -0800)]
mm, pcpu: make zone pcp updates and reset internal to the mm
Memory hotplug needs to be able to reset and reinit the pcpu allocator
batch and high limits but this action is internal to the VM. Move the
declaration to internal.h
Link: http://lkml.kernel.org/r/20191021094808.28824-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mel Gorman [Sun, 1 Dec 2019 01:55:11 +0000 (17:55 -0800)]
mm, pcp: share common code between memory hotplug and percpu sysctl handler
Both the percpu_pagelist_fraction sysctl handler and memory hotplug have
a common requirement of updating the pcpu page allocation batch and high
values. Split the relevant helper to share common code.
No functional change.
Link: http://lkml.kernel.org/r/20191021094808.28824-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Anshuman Khandual [Sun, 1 Dec 2019 01:55:06 +0000 (17:55 -0800)]
mm/page_alloc: add alloc_contig_pages()
HugeTLB helper alloc_gigantic_page() implements fairly generic
allocation method where it scans over various zones looking for a large
contiguous pfn range before trying to allocate it with
alloc_contig_range().
Other than deriving the requested order from 'struct hstate', there is
nothing HugeTLB specific in there. This can be made available for
general use to allocate contiguous memory which could not have been
allocated through the buddy allocator.
alloc_gigantic_page() has been split carving out actual allocation
method which is then made available via new alloc_contig_pages() helper
wrapped under CONFIG_CONTIG_ALLOC. All references to 'gigantic' have
been replaced with more generic term 'contig'. Allocated pages here
should be freed with free_contig_range() or by calling __free_page() on
each allocated page.
Link: http://lkml.kernel.org/r/1571300646-32240-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Daniel Axtens [Sun, 1 Dec 2019 01:55:00 +0000 (17:55 -0800)]
x86/kasan: support KASAN_VMALLOC
In the case where KASAN directly allocates memory to back vmalloc space,
don't map the early shadow page over it.
We prepopulate pgds/p4ds for the range that would otherwise be empty.
This is required to get it synced to hardware on boot, allowing the
lower levels of the page tables to be filled dynamically.
Link: http://lkml.kernel.org/r/20191031093909.9228-5-dja@axtens.net
Signed-off-by: Daniel Axtens <dja@axtens.net>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Daniel Axtens [Sun, 1 Dec 2019 01:54:57 +0000 (17:54 -0800)]
fork: support VMAP_STACK with KASAN_VMALLOC
Supporting VMAP_STACK with KASAN_VMALLOC is straightforward:
- clear the shadow region of vmapped stacks when swapping them in
- tweak Kconfig to allow VMAP_STACK to be turned on with KASAN
Link: http://lkml.kernel.org/r/20191031093909.9228-4-dja@axtens.net
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Daniel Axtens [Sun, 1 Dec 2019 01:54:53 +0000 (17:54 -0800)]
kasan: add test for vmalloc
Test kasan vmalloc support by adding a new test to the module.
Link: http://lkml.kernel.org/r/20191031093909.9228-3-dja@axtens.net
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Daniel Axtens [Sun, 1 Dec 2019 01:54:50 +0000 (17:54 -0800)]
kasan: support backing vmalloc space with real shadow memory
Patch series "kasan: support backing vmalloc space with real shadow
memory", v11.
Currently, vmalloc space is backed by the early shadow page. This means
that kasan is incompatible with VMAP_STACK.
This series provides a mechanism to back vmalloc space with real,
dynamically allocated memory. I have only wired up x86, because that's
the only currently supported arch I can work with easily, but it's very
easy to wire up other architectures, and it appears that there is some
work-in-progress code to do this on arm64 and s390.
This has been discussed before in the context of VMAP_STACK:
- https://bugzilla.kernel.org/show_bug.cgi?id=202009
- https://lkml.org/lkml/2018/7/22/198
- https://lkml.org/lkml/2019/7/19/822
In terms of implementation details:
Most mappings in vmalloc space are small, requiring less than a full
page of shadow space. Allocating a full shadow page per mapping would
therefore be wasteful. Furthermore, to ensure that different mappings
use different shadow pages, mappings would have to be aligned to
KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE.
Instead, share backing space across multiple mappings. Allocate a
backing page when a mapping in vmalloc space uses a particular page of
the shadow region. This page can be shared by other vmalloc mappings
later on.
We hook in to the vmap infrastructure to lazily clean up unused shadow
memory.
Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that:
- Turning on KASAN, inline instrumentation, without vmalloc, introuduces
a 4.1x-4.2x slowdown in vmalloc operations.
- Turning this on introduces the following slowdowns over KASAN:
* ~1.76x slower single-threaded (test_vmalloc.sh performance)
* ~2.18x slower when both cpus are performing operations
simultaneously (test_vmalloc.sh sequential_test_order=1)
This is unfortunate but given that this is a debug feature only, not the
end of the world. The benchmarks are also a stress-test for the vmalloc
subsystem: they're not indicative of an overall 2x slowdown!
This patch (of 4):
Hook into vmalloc and vmap, and dynamically allocate real shadow memory
to back the mappings.
Most mappings in vmalloc space are small, requiring less than a full
page of shadow space. Allocating a full shadow page per mapping would
therefore be wasteful. Furthermore, to ensure that different mappings
use different shadow pages, mappings would have to be aligned to
KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE.
Instead, share backing space across multiple mappings. Allocate a
backing page when a mapping in vmalloc space uses a particular page of
the shadow region. This page can be shared by other vmalloc mappings
later on.
We hook in to the vmap infrastructure to lazily clean up unused shadow
memory.
To avoid the difficulties around swapping mappings around, this code
expects that the part of the shadow region that covers the vmalloc space
will not be covered by the early shadow page, but will be left unmapped.
This will require changes in arch-specific code.
This allows KASAN with VMAP_STACK, and may be helpful for architectures
that do not have a separate module space (e.g. powerpc64, which I am
currently working on). It also allows relaxing the module alignment
back to PAGE_SIZE.
Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that:
- Turning on KASAN, inline instrumentation, without vmalloc, introuduces
a 4.1x-4.2x slowdown in vmalloc operations.
- Turning this on introduces the following slowdowns over KASAN:
* ~1.76x slower single-threaded (test_vmalloc.sh performance)
* ~2.18x slower when both cpus are performing operations
simultaneously (test_vmalloc.sh sequential_test_order=3D1)
This is unfortunate but given that this is a debug feature only, not the
end of the world.
The full benchmark results are:
Performance
No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN
fix_size_alloc_test 662004
11404956 17.23
19144610 28.92 1.68
full_fit_alloc_test 710950
12029752 16.92
13184651 18.55 1.10
long_busy_list_alloc_test
9431875 43990172 4.66
82970178 8.80 1.89
random_size_alloc_test
5033626 23061762 4.58
47158834 9.37 2.04
fix_align_alloc_test
1252514 15276910 12.20
31266116 24.96 2.05
random_size_align_alloc_te
1648501 14578321 8.84
25560052 15.51 1.75
align_shift_alloc_test 147 830 5.65 5692 38.72 6.86
pcpu_alloc_test 80732 125520 1.55 140864 1.74 1.12
Total Cycles
119240774314 763211341128 6.40
1390338696894 11.66 1.82
Sequential, 2 cpus
No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN
fix_size_alloc_test
1423150 14276550 10.03
27733022 19.49 1.94
full_fit_alloc_test
1754219 14722640 8.39
15030786 8.57 1.02
long_busy_list_alloc_test
11451858 52154973 4.55
107016027 9.34 2.05
random_size_alloc_test
5989020 26735276 4.46
68885923 11.50 2.58
fix_align_alloc_test
2050976 20166900 9.83
50491675 24.62 2.50
random_size_align_alloc_te
2858229 17971700 6.29
38730225 13.55 2.16
align_shift_alloc_test 405 6428 15.87 26253 64.82 4.08
pcpu_alloc_test 127183 151464 1.19 216263 1.70 1.43
Total Cycles
54181269392 308723699764 5.70
650772566394 12.01 2.11
fix_size_alloc_test
1420404 14289308 10.06
27790035 19.56 1.94
full_fit_alloc_test
1736145 14806234 8.53
15274301 8.80 1.03
long_busy_list_alloc_test
11404638 52270785 4.58
107550254 9.43 2.06
random_size_alloc_test
6017006 26650625 4.43
68696127 11.42 2.58
fix_align_alloc_test
2045504 20280985 9.91
50414862 24.65 2.49
random_size_align_alloc_te
2845338 17931018 6.30
38510276 13.53 2.15
align_shift_alloc_test 472 3760 7.97 9656 20.46 2.57
pcpu_alloc_test 118643 132732 1.12 146504 1.23 1.10
Total Cycles
54040011688 309102805492 5.72
651325675652 12.05 2.11
[dja@axtens.net: fixups]
Link: http://lkml.kernel.org/r/20191120052719.7201-1-dja@axtens.net
Link: https://bugzilla.kernel.org/show_bug.cgi?id=3D202009
Link: http://lkml.kernel.org/r/20191031093909.9228-2-dja@axtens.net
Signed-off-by: Mark Rutland <mark.rutland@arm.com> [shadow rework]
Signed-off-by: Daniel Axtens <dja@axtens.net>
Co-developed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Uladzislau Rezki (Sony) [Sun, 1 Dec 2019 01:54:47 +0000 (17:54 -0800)]
mm/vmalloc: rework vmap_area_lock
With the new allocation approach introduced in the 5.2 kernel, it
becomes possible to get rid of one global spinlock. By doing that we
can further improve the KVA from the performance point of view.
Basically we can have two independent locks, one for allocation part and
another one for deallocation, because of two different entities: "free
data structures" and "busy data structures".
As a result, allocation/deallocation operations can still interfere
between each other in case of running simultaneously on different CPUs,
it means there is still dependency, but with two locks it becomes lower.
Summarizing:
- it reduces the high lock contention
- it allows to perform operations on "free" and "busy"
trees in parallel on different CPUs. Please note it
does not solve scalability issue.
Test results:
In order to evaluate this patch, we can run "vmalloc test driver" to see
how many CPU cycles it takes to complete all test cases running
sequentially. All online CPUs run it so it will cause a high lock
contention.
HiKey 960, ARM64, 8xCPUs, big.LITTLE:
<snip>
sudo ./test_vmalloc.sh sequential_test_order=1
<snip>
<default>
[ 390.950557] All test took CPU0=
457126382 cycles
[ 391.046690] All test took CPU1=
454763452 cycles
[ 391.128586] All test took CPU2=
454539334 cycles
[ 391.222669] All test took CPU3=
455649517 cycles
[ 391.313946] All test took CPU4=
388272196 cycles
[ 391.410425] All test took CPU5=
384036264 cycles
[ 391.492219] All test took CPU6=
387432964 cycles
[ 391.578433] All test took CPU7=
387201996 cycles
<default>
<patched>
[ 304.721224] All test took CPU0=
391521310 cycles
[ 304.821219] All test took CPU1=
393533002 cycles
[ 304.917120] All test took CPU2=
392243032 cycles
[ 305.008986] All test took CPU3=
392353853 cycles
[ 305.108944] All test took CPU4=
297630721 cycles
[ 305.196406] All test took CPU5=
297548736 cycles
[ 305.288602] All test took CPU6=
297092392 cycles
[ 305.381088] All test took CPU7=
297293597 cycles
<patched>
~14%-23% patched variant is better.
Link: http://lkml.kernel.org/r/20191022155800.20468-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Anders Roxell [Sun, 1 Dec 2019 01:54:43 +0000 (17:54 -0800)]
selftests: vm: add fragment CONFIG_TEST_VMALLOC
When running test_vmalloc.sh smoke the following print out states that
the fragment is missing.
# ./test_vmalloc.sh: You must have the following enabled in your kernel:
# CONFIG_TEST_VMALLOC=m
Rework to add the fragment 'CONFIG_TEST_VMALLOC=m' to the config file.
Link: http://lkml.kernel.org/r/20190916095217.19665-1-anders.roxell@linaro.org
Fixes: a05ef00c9790 ("selftests/vm: add script helper for CONFIG_TEST_VMALLOC_MODULE")
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: "Uladzislau Rezki (Sony)" <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Uladzislau Rezki (Sony) [Sun, 1 Dec 2019 01:54:40 +0000 (17:54 -0800)]
mm/vmalloc: add more comments to the adjust_va_to_fit_type()
When fit type is NE_FIT_TYPE there is a need in one extra object.
Usually the "ne_fit_preload_node" per-CPU variable has it and there is
no need in GFP_NOWAIT allocation, but there are exceptions.
This commit just adds more explanations, as a result giving answers on
questions like when it can occur, how often, under which conditions and
what happens if GFP_NOWAIT gets failed.
Link: http://lkml.kernel.org/r/20191016095438.12391-3-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Daniel Wagner <dwagner@suse.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Uladzislau Rezki (Sony) [Sun, 1 Dec 2019 01:54:37 +0000 (17:54 -0800)]
mm/vmalloc: respect passed gfp_mask when doing preloading
Allocation functions should comply with the given gfp_mask as much as
possible. The preallocation code in alloc_vmap_area doesn't follow that
pattern and it is using a hardcoded GFP_KERNEL. Although this doesn't
really make much difference because vmalloc is not GFP_NOWAIT compliant
in general (e.g. page table allocations are GFP_KERNEL) there is no
reason to spread that bad habit and it is good to fix the antipattern.
[mhocko@suse.com: rewrite changelog]
Link: http://lkml.kernel.org/r/20191016095438.12391-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Daniel Wagner <dwagner@suse.de>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Uladzislau Rezki (Sony) [Sun, 1 Dec 2019 01:54:33 +0000 (17:54 -0800)]
mm/vmalloc: remove preempt_disable/enable when doing preloading
Some background. The preemption was disabled before to guarantee that a
preloaded object is available for a CPU, it was stored for. That was
achieved by combining the disabling the preemption and taking the spin
lock while the ne_fit_preload_node is checked.
The aim was to not allocate in atomic context when spinlock is taken
later, for regular vmap allocations. But that approach conflicts with
CONFIG_PREEMPT_RT philosophy. It means that calling spin_lock() with
disabled preemption is forbidden in the CONFIG_PREEMPT_RT kernel.
Therefore, get rid of preempt_disable() and preempt_enable() when the
preload is done for splitting purpose. As a result we do not guarantee
now that a CPU is preloaded, instead we minimize the case when it is
not, with this change, by populating the per cpu preload pointer under
the vmap_area_lock.
This implies that at least each caller that has done the preallocation
will not fallback to an atomic allocation later. It is possible that
the preallocation would be pointless or that no preallocation is done
because of the race but the data shows that this is really rare.
For example i run the special test case that follows the preload pattern
and path. 20 "unbind" threads run it and each does
1000000 allocations.
Only 3.5 times among
1000000 a CPU was not preloaded. So it can happen
but the number is negligible.
[mhocko@suse.com: changelog additions]
Link: http://lkml.kernel.org/r/20191016095438.12391-1-urezki@gmail.com
Fixes: 82dd23e84be3 ("mm/vmalloc.c: preload a CPU with one object for split purpose")
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Daniel Wagner <dwagner@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Liu Xiang [Sun, 1 Dec 2019 01:54:30 +0000 (17:54 -0800)]
mm/vmalloc.c: remove unnecessary highmem_mask from parameter of gfpflags_allow_blocking()
gfpflags_allow_blocking() does not care about __GFP_HIGHMEM, so
highmem_mask can be removed.
Link: http://lkml.kernel.org/r/1568812319-3467-1-git-send-email-liuxiang_1999@126.com
Signed-off-by: Liu Xiang <liuxiang_1999@126.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Michal Hocko [Sun, 1 Dec 2019 01:54:27 +0000 (17:54 -0800)]
mm/sparse.c: do not waste pre allocated memmap space
Vincent has noticed [1] that there is something unusual with the memmap
allocations going on on his platform
: I noticed this because on my ARM64 platform, with 1 GiB of memory the
: first [and only] section is allocated from the zeroing path while with
: 2 GiB of memory the first 1 GiB section is allocated from the
: non-zeroing path.
The underlying problem is that although sparse_buffer_init allocates
enough memory for all sections on the node sparse_buffer_alloc is not
able to consume them due to mismatch in the expected allocation
alignement. While sparse_buffer_init preallocation uses the PAGE_SIZE
alignment the real memmap has to be aligned to section_map_size() this
results in a wasted initial chunk of the preallocated memmap and
unnecessary fallback allocation for a section.
While we are at it also change __populate_section_memmap to align to the
requested size because at least VMEMMAP has constrains to have memmap
properly aligned.
[1] http://lkml.kernel.org/r/
20191030131122.8256-1-vincent.whitchurch@axis.com
[akpm@linux-foundation.org: tweak layout, per David]
Link: http://lkml.kernel.org/r/20191119092642.31799-1-mhocko@kernel.org
Fixes: 35fd1eb1e821 ("mm/sparse: abstract sparse buffer allocations")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Debugged-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ilya Leoshkevich [Sun, 1 Dec 2019 01:54:24 +0000 (17:54 -0800)]
mm/sparse.c: mark populate_section_memmap as __meminit
Building the kernel on s390 with -Og produces the following warning:
WARNING: vmlinux.o(.text+0x28dabe): Section mismatch in reference from the function populate_section_memmap() to the function .meminit.text:__populate_section_memmap()
The function populate_section_memmap() references
the function __meminit __populate_section_memmap().
This is often because populate_section_memmap lacks a __meminit
annotation or the annotation of __populate_section_memmap is wrong.
While -Og is not supported, in theory this might still happen with
another compiler or on another architecture. So fix this by using the
correct section annotations.
[iii@linux.ibm.com: v2]
Link: http://lkml.kernel.org/r/20191030151639.41486-1-iii@linux.ibm.com
Link: http://lkml.kernel.org/r/20191028165549.14478-1-iii@linux.ibm.com
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vincent Whitchurch [Sun, 1 Dec 2019 01:54:20 +0000 (17:54 -0800)]
mm/sparse: consistently do not zero memmap
sparsemem without VMEMMAP has two allocation paths to allocate the
memory needed for its memmap (done in sparse_mem_map_populate()).
In one allocation path (sparse_buffer_alloc() succeeds), the memory is
not zeroed (since it was previously allocated with
memblock_alloc_try_nid_raw()).
In the other allocation path (sparse_buffer_alloc() fails and
sparse_mem_map_populate() falls back to memblock_alloc_try_nid()), the
memory is zeroed.
AFAICS this difference does not appear to be on purpose. If the code is
supposed to work with non-initialized memory (__init_single_page() takes
care of zeroing the struct pages which are actually used), we should
consistently not zero the memory, to avoid masking bugs.
( I noticed this because on my ARM64 platform, with 1 GiB of memory the
first [and only] section is allocated from the zeroing path while with
2 GiB of memory the first 1 GiB section is allocated from the
non-zeroing path. )
Michal:
"the main user visible problem is a memory wastage. The overal amount
of memory should be small. I wouldn't call it stable material."
Link: http://lkml.kernel.org/r/20191030131122.8256-1-vincent.whitchurch@axis.com
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Hildenbrand [Sun, 1 Dec 2019 01:54:17 +0000 (17:54 -0800)]
mm/memory_hotplug.c: don't allow to online/offline memory blocks with holes
Our onlining/offlining code is unnecessarily complicated. Only memory
blocks added during boot can have holes (a range that is not
IORESOURCE_SYSTEM_RAM). Hotplugged memory never has holes (e.g., see
add_memory_resource()). All memory blocks that belong to boot memory
are already online.
Note that boot memory can have holes and the memmap of the holes is
marked PG_reserved. However, also memory allocated early during boot is
PG_reserved - basically every page of boot memory that is not given to
the buddy is PG_reserved.
Therefore, when we stop allowing to offline memory blocks with holes, we
implicitly no longer have to deal with onlining memory blocks with
holes. E.g., online_pages() will do a walk_system_ram_range(...,
online_pages_range), whereby online_pages_range() will effectively only
free the memory holes not falling into a hole to the buddy. The other
pages (holes) are kept PG_reserved (via
move_pfn_range_to_zone()->memmap_init_zone()).
This allows to simplify the code. For example, we no longer have to
worry about marking pages that fall into memory holes PG_reserved when
onlining memory. We can stop setting pages PG_reserved completely in
memmap_init_zone().
Offlining memory blocks added during boot is usually not guaranteed to
work either way (unmovable data might have easily ended up on that
memory during boot). So stopping to do that should not really hurt.
Also, people are not even aware of a setup where onlining/offlining of
memory blocks with holes used to work reliably (see [1] and [2]
especially regarding the hotplug path) - I doubt it worked reliably.
For the use case of offlining memory to unplug DIMMs, we should see no
change. (holes on DIMMs would be weird).
Please note that hardware errors (PG_hwpoison) are not memory holes and
are not affected by this change when offlining.
[1] https://lkml.org/lkml/2019/10/22/135
[2] https://lkml.org/lkml/2019/8/14/1365
Link: http://lkml.kernel.org/r/20191119115237.6662-1-david@redhat.com
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Hildenbrand [Sun, 1 Dec 2019 01:54:14 +0000 (17:54 -0800)]
drivers/base/memory.c: drop the mem_sysfs_mutex
The mem_sysfs_mutex isn't really helpful. Also, it's not really clear
what the mutex protects at all.
The device lists of the memory subsystem are protected separately. We
don't need that mutex when looking up. creating, or removing
independent devices. find_memory_block_by_id() will perform locking on
its own and grab a reference of the returned device.
At the time memory_dev_init() is called, we cannot have concurrent
hot(un)plug operations yet - we're still fairly early during boot. We
don't need any locking.
The creation/removal of memory block devices should be protected on a
higher level - especially using the device hotplug lock to avoid
documented issues (see Documentation/core-api/memory-hotplug.rst) - or
if that is reworked, using similar locking.
Protecting in the context of these functions only doesn't really make
sense. Especially, if we would have a situation where the same memory
blocks are created/deleted at the same time, there is something horribly
going wrong (imagining adding/removing a DIMM at the same time from two
call paths) - after the functions succeeded something else in the
callers would blow up (e.g., create_memory_block_devices() succeeded but
there are no memory block devices anymore).
All relevant call paths (except when adding memory early during boot via
ACPI, which is now documented) hold the device hotplug lock when adding
memory, and when removing memory. Let's document that instead.
Add a simple safety net to create_memory_block_devices() in case we
would actually remove memory blocks while adding them, so we'll never
dereference a NULL pointer. Simplify memory_dev_init() now that the
lock is gone.
Link: http://lkml.kernel.org/r/20190925082621.4927-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ben Dooks (Codethink) [Sun, 1 Dec 2019 01:54:10 +0000 (17:54 -0800)]
include/linux/memory_hotplug.h: move definitions of {set,clear}_zone_contiguous
The {set,clear}_zone_contiguous are built whatever the configuratoon so
move the definitions outside the current ifdef to avoid the following
compiler warnings:
mm/page_alloc.c:1550:6: warning: no previous prototype for 'set_zone_contiguous' [-Wmissing-prototypes]
mm/page_alloc.c:1571:6: warning: no previous prototype for 'clear_zone_contiguous' [-Wmissing-prototypes]
Link: http://lkml.kernel.org/r/20191106123911.7435-1-ben.dooks@codethink.co.uk
Signed-off-by: Ben Dooks (Codethink) <ben.dooks@codethink.co.uk>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Hildenbrand [Sun, 1 Dec 2019 01:54:07 +0000 (17:54 -0800)]
mm/page_isolation.c: convert SKIP_HWPOISON to MEMORY_OFFLINE
We have two types of users of page isolation:
1. Memory offlining: Offline memory so it can be unplugged. Memory
won't be touched.
2. Memory allocation: Allocate memory (e.g., alloc_contig_range()) to
become the owner of the memory and make use of
it.
For example, in case we want to offline memory, we can ignore (skip
over) PageHWPoison() pages, as the memory won't get used. We can allow
to offline memory. In contrast, we don't want to allow to allocate such
memory.
Let's generalize the approach so we can special case other types of
pages we want to skip over in case we offline memory. While at it, also
pass the same flags to test_pages_isolated().
Link: http://lkml.kernel.org/r/20191021172353.3056-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Hildenbrand [Sun, 1 Dec 2019 01:54:03 +0000 (17:54 -0800)]
mm/page_alloc.c: don't set pages PageReserved() when offlining
Patch series "mm: Memory offlining + page isolation cleanups", v2.
This patch (of 2):
We call __offline_isolated_pages() from __offline_pages() after all
pages were isolated and are either free (PageBuddy()) or PageHWPoison.
Nothing can stop us from offlining memory at this point.
In __offline_isolated_pages() we first set all affected memory sections
offline (offline_mem_sections(pfn, end_pfn)), to mark the memmap as
invalid (pfn_to_online_page() will no longer succeed), and then walk
over all pages to pull the free pages from the free lists (to the
isolated free lists, to be precise).
Note that re-onlining a memory block will result in the whole memmap
getting reinitialized, overwriting any old state. We already poision
the memmap when offlining is complete to find any access to
stale/uninitialized memmaps.
So, setting the pages PageReserved() is not helpful. The memap is
marked offline and all pageblocks are isolated. As soon as offline, the
memmap is stale either way.
This looks like a leftover from ancient times where we initialized the
memmap when adding memory and not when onlining it (the pages were set
PageReserved so re-onling would work as expected).
Link: http://lkml.kernel.org/r/20191021172353.3056-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Hildenbrand [Sun, 1 Dec 2019 01:54:00 +0000 (17:54 -0800)]
mm/memory_hotplug: remove __online_page_free() and __online_page_increment_counters()
Let's drop the now unused functions.
Link: http://lkml.kernel.org/r/20190909114830.662-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Hildenbrand [Sun, 1 Dec 2019 01:53:55 +0000 (17:53 -0800)]
hv_balloon: use generic_online_page()
Let's use the generic onlining function - which will now also take care
of calling kernel_map_pages().
Link: http://lkml.kernel.org/r/20190909114830.662-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
David Hildenbrand [Sun, 1 Dec 2019 01:53:51 +0000 (17:53 -0800)]
mm/memory_hotplug: export generic_online_page()
Patch series "mm/memory_hotplug: Export generic_online_page()".
Let's replace the __online_page...() functions by generic_online_page().
Hyper-V only wants to delay the actual onlining of un-backed pages, so
we can simpy re-use the generic function.
This patch (of 3):
Let's expose generic_online_page() so online_page_callback users can
simply fall back to the generic implementation when actually deciding to
online the pages.
Link: http://lkml.kernel.org/r/20190909114830.662-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Alastair D'Silva [Sun, 1 Dec 2019 01:53:48 +0000 (17:53 -0800)]
mm/memory_hotplug.c: add a bounds check to __add_pages()
On PowerPC, the address ranges allocated to OpenCAPI LPC memory are
allocated from firmware. These address ranges may be higher than what
older kernels permit, as we increased the maximum permissable address in
commit
4ffe713b7587 ("powerpc/mm: Increase the max addressable memory to
2PB"). It is possible that the addressable range may change again in
the future.
In this scenario, we end up with a bogus section returned from
__section_nr (see the discussion on the thread "mm: Trigger bug on if a
section is not found in __section_nr").
Adding a check here means that we fail early and have an opportunity to
handle the error gracefully, rather than rumbling on and potentially
accessing an incorrect section.
Further discussion is also on the thread ("powerpc: Perform a bounds
check in arch_add_memory")
http://lkml.kernel.org/r/
20190827052047.31547-1-alastair@au1.ibm.com
Link: http://lkml.kernel.org/r/20191001004617.7536-2-alastair@au1.ibm.com
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Anshuman Khandual [Sun, 1 Dec 2019 01:53:44 +0000 (17:53 -0800)]
mm/hotplug: reorder memblock_[free|remove]() calls in try_remove_memory()
Currently during memory hot add procedure, memory gets into memblock
before calling arch_add_memory() which creates its linear mapping.
add_memory_resource() {
..................
memblock_add_node()
..................
arch_add_memory()
..................
}
But during memory hot remove procedure, removal from memblock happens
first before its linear mapping gets teared down with
arch_remove_memory() which is not consistent. Resource removal should
happen in reverse order as they were added. However this does not pose
any problem for now, unless there is an assumption regarding linear
mapping. One example was a subtle failure on arm64 platform [1].
Though this has now found a different solution.
try_remove_memory() {
..................
memblock_free()
memblock_remove()
..................
arch_remove_memory()
..................
}
This changes the sequence of resource removal including memblock and
linear mapping tear down during memory hot remove which will now be the
reverse order in which they were added during memory hot add. The
changed removal order looks like the following.
try_remove_memory() {
..................
arch_remove_memory()
..................
memblock_free()
memblock_remove()
..................
}
[1] https://patchwork.kernel.org/patch/
11127623/
Memory hot remove now works on arm64 without this because a recent
commit
60bb462fc7ad ("drivers/base/node.c: simplify
unregister_memory_block_under_nodes()").
This does not fix a serious problem. It just removes an inconsistency
while freeing resources during memory hot remove which for now does not
pose a real problem.
David mentioned that re-ordering should still make sense for consistency
purpose (removing stuff in the reverse order they were added). This
patch is now detached from arm64 hot-remove series.
Michal:
: I would just a note that the inconsistency doesn't pose any problem now
: but if somebody makes any assumptions about linear mappings then it could
: get subtly broken like your example for arm64 which has found a different
: solution in the meantime.
Link: http://lkml.kernel.org/r/1569380273-7708-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yunfeng Ye [Sun, 1 Dec 2019 01:53:41 +0000 (17:53 -0800)]
mm/memory-failure.c: use page_shift() in add_to_kill()
page_shift() is supported after the commit
94ad9338109f ("mm: introduce
page_shift()").
So replace with page_shift() in add_to_kill() for readability.
Link: http://lkml.kernel.org/r/543d8bc9-f2e7-3023-7c35-2e7ed67c0e82@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Naoya Horiguchi [Sun, 1 Dec 2019 01:53:38 +0000 (17:53 -0800)]
mm, soft-offline: convert parameter to pfn
Currently soft_offline_page() receives struct page, and its sibling
memory_failure() receives pfn. This discrepancy looks weird and makes
precheck on pfn validity tricky. So let's align them.
Link: http://lkml.kernel.org/r/20191016234706.GA5493@www9186uo.sakura.ne.jp
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jane Chu [Sun, 1 Dec 2019 01:53:35 +0000 (17:53 -0800)]
mm/memory-failure.c clean up around tk pre-allocation
add_to_kill() expects the first 'tk' to be pre-allocated, it makes
subsequent allocations on need basis, this makes the code a bit
difficult to read.
Move all the allocation internal to add_to_kill() and drop the **tk
argument.
Link: http://lkml.kernel.org/r/1565112345-28754-2-git-send-email-jane.chu@oracle.com
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Joel Fernandes (Google) [Sun, 1 Dec 2019 01:53:31 +0000 (17:53 -0800)]
memfd: add test for COW on MAP_PRIVATE and F_SEAL_FUTURE_WRITE mappings
In this test, the parent and child both have writable private mappings.
The test shows that without the patch in this series, the parent and
child shared the same memory which is incorrect. In other words, COW
needs to be triggered so any writes to child's copy stays local to the
child.
Link: http://lkml.kernel.org/r/20191107195355.80608-2-joel@joelfernandes.org
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Nicolas Geoffray <ngeoffray@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nicolas Geoffray [Sun, 1 Dec 2019 01:53:28 +0000 (17:53 -0800)]
mm, memfd: fix COW issue on MAP_PRIVATE and F_SEAL_FUTURE_WRITE mappings
F_SEAL_FUTURE_WRITE has unexpected behavior when used with MAP_PRIVATE:
A private mapping created after the memfd file that gets sealed with
F_SEAL_FUTURE_WRITE loses the copy-on-write at fork behavior, meaning
children and parent share the same memory, even though the mapping is
private.
The reason for this is due to the code below:
static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
{
struct shmem_inode_info *info = SHMEM_I(file_inode(file));
if (info->seals & F_SEAL_FUTURE_WRITE) {
/*
* New PROT_WRITE and MAP_SHARED mmaps are not allowed when
* "future write" seal active.
*/
if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
return -EPERM;
/*
* Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
* read-only mapping, take care to not allow mprotect to revert
* protections.
*/
vma->vm_flags &= ~(VM_MAYWRITE);
}
...
}
And for the mm to know if a mapping is copy-on-write:
static inline bool is_cow_mapping(vm_flags_t flags)
{
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}
The patch fixes the issue by making the mprotect revert protection
happen only for shared mappings. For private mappings, using mprotect
will have no effect on the seal behavior.
The F_SEAL_FUTURE_WRITE feature was introduced in v5.1 so v5.3.x stable
kernels would need a backport.
[akpm@linux-foundation.org: reflow comment, per Christoph]
Link: http://lkml.kernel.org/r/20191107195355.80608-1-joel@joelfernandes.org
Fixes: ab3948f58ff84 ("mm/memfd: add an F_SEAL_FUTURE_WRITE seal to memfd")
Signed-off-by: Nicolas Geoffray <ngeoffray@google.com>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Thomas Hellstrom [Sun, 1 Dec 2019 01:51:32 +0000 (17:51 -0800)]
mm/memory.c: fix a huge pud insertion race during faulting
A huge pud page can theoretically be faulted in racing with pmd_alloc()
in __handle_mm_fault(). That will lead to pmd_alloc() returning an
invalid pmd pointer.
Fix this by adding a pud_trans_unstable() function similar to
pmd_trans_unstable() and check whether the pud is really stable before
using the pmd pointer.
Race:
Thread 1: Thread 2: Comment
create_huge_pud() Fallback - not taken.
create_huge_pud() Taken.
pmd_alloc() Returns an invalid pointer.
This will result in user-visible huge page data corruption.
Note that this was caught during a code audit rather than a real
experienced problem. It looks to me like the only implementation that
currently creates huge pud pagetable entries is dev_dax_huge_fault()
which doesn't appear to care much about private (COW) mappings or
write-tracking which is, I believe, a prerequisite for create_huge_pud()
falling back on thread 1, but not in thread 2.
Link: http://lkml.kernel.org/r/20191115115808.21181-2-thomas_os@shipmail.org
Fixes: a00cc7d9dd93 ("mm, x86: add support for PUD-sized transparent hugepages")
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Thomas Hellstrom [Sun, 1 Dec 2019 01:51:29 +0000 (17:51 -0800)]
mm: move the backup x_devmap() functions to asm-generic/pgtable.h
The asm-generic/pgtable.h include file appears to be the correct place for
the backup x_devmap() inline functions. Moving them here is also
necessary if we want to include x_devmap() in the [pmd|pud]_unstable
functions. So move the x_devmap() functions to asm-generic/pgtable.h
Link: http://lkml.kernel.org/r/20191115115808.21181-1-thomas_os@shipmail.org
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Yang Shi [Sun, 1 Dec 2019 01:51:26 +0000 (17:51 -0800)]
mm/rmap.c: use VM_BUG_ON_PAGE() in __page_check_anon_rmap()
The __page_check_anon_rmap() just calls two BUG_ON()s protected by
CONFIG_DEBUG_VM, the #ifdef could be eliminated by using VM_BUG_ON_PAGE().
Link: http://lkml.kernel.org/r/1573157346-111316-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Miles Chen [Sun, 1 Dec 2019 01:51:23 +0000 (17:51 -0800)]
mm/rmap.c: fix outdated comment in page_get_anon_vma()
Replace DESTROY_BY_RCU with SLAB_TYPESAFE_BY_RCU because
SLAB_DESTROY_BY_RCU has been renamed to SLAB_TYPESAFE_BY_RCU by commit
5f0d5a3ae7cf ("mm: Rename SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU")
Link: http://lkml.kernel.org/r/20191017093554.22562-1-miles.chen@mediatek.com
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vineet Gupta [Sun, 1 Dec 2019 01:51:20 +0000 (17:51 -0800)]
asm-generic/mm: stub out p{4,u}d_clear_bad() if __PAGETABLE_P{4,U}D_FOLDED
This came up when removing __ARCH_HAS_5LEVEL_HACK for ARC as code bloat.
With this patch we see the following code reduction.
| bloat-o-meter2 vmlinux-D-elide-p4d_free_tlb vmlinux-E-elide-p?d_clear_bad
| add/remove: 0/2 grow/shrink: 0/0 up/down: 0/-40 (-40)
| function old new delta
| pud_clear_bad 20 - -20
| p4d_clear_bad 20 - -20
| Total: Before=
4136930, After=
4136890, chg -1.000000%
Link: http://lkml.kernel.org/r/20191016162400.14796-6-vgupta@synopsys.com
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Will Deacon <will@kernel.org>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vineet Gupta [Sun, 1 Dec 2019 01:51:16 +0000 (17:51 -0800)]
asm-generic/tlb: stub out pmd_free_tlb() if nopmd
This came up when removing __ARCH_HAS_5LEVEL_HACK for ARC as code bloat.
With this patch we see the following code reduction.
| bloat-o-meter2 vmlinux-E-elide-p?d_clear_bad vmlinux-F-elide-pmd_free_tlb
| add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-112 (-112)
| function old new delta
| free_pgd_range 422 310 -112
| Total: Before=
4137042, After=
4136930, chg -1.000000%
Note that pmd folding can be tricky: In 2-level setup (where pmd is
conceptually folded) most pmd routines are valid and refer to upper levels.
In this patch we can, but see next patch for example where we can't
Link: http://lkml.kernel.org/r/20191016162400.14796-5-vgupta@synopsys.com
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vineet Gupta [Sun, 1 Dec 2019 01:51:13 +0000 (17:51 -0800)]
asm-generic/tlb: stub out p4d_free_tlb() if nop4d ...
... independent of __ARCH_HAS_5LEVEL_HACK
This came up when removing __ARCH_HAS_5LEVEL_HACK for ARC as code bloat.
With this patch we see the following code reduction
| bloat-o-meter2 vmlinux-C-elide-pud_free_tlb vmlinux-D-elide-p4d_free_tlb
| add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-104 (-104)
| function old new delta
| free_pgd_range 552 422 -130
| Total: Before=
4137172, After=
4137042, chg -1.000000%
Link: http://lkml.kernel.org/r/20191016162400.14796-4-vgupta@synopsys.com
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vineet Gupta [Sun, 1 Dec 2019 01:51:10 +0000 (17:51 -0800)]
asm-generic/tlb: stub out pud_free_tlb() if nopud ...
... independent of __ARCH_HAS_4LEVEL_HACK
This came up when removing __ARCH_HAS_5LEVEL_HACK for ARC as code bloat.
With this patch we see the following code reduction
| bloat-o-meter2 vmlinux-B-elide-ARCH_USE_5LEVEL_HACK vmlinux-C-elide-pud_free_tlb
| add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-104 (-104)
| function old new delta
| free_pgd_range 656 552 -104
| Total: Before=
4137276, After=
4137172, chg -1.000000%
Note: The primary change is alternate defintion for pud_free_tlb() but
while there also removed empty stubs for __pud_free_tlb, which is anyhow
called only from pud_free_tlb()
Link: http://lkml.kernel.org/r/20191016162400.14796-3-vgupta@synopsys.com
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Vineet Gupta [Sun, 1 Dec 2019 01:51:06 +0000 (17:51 -0800)]
ARC: mm: remove __ARCH_USE_5LEVEL_HACK
Patch series "elide extraneous generated code for folded p4d/pud/pmd", v3.
This series came out of seemingly benign excursion into
understanding/removing __ARCH_USE_5LEVEL_HACK from ARC port showing some
extraneous code being generated despite folded p4d/pud/pmd
| bloat-o-meter2 vmlinux-[AB]*
| add/remove: 0/0 grow/shrink: 3/0 up/down: 130/0 (130)
| function old new delta
| free_pgd_range 548 660 +112
| p4d_clear_bad 2 20 +18
The patches here address that
| bloat-o-meter2 vmlinux-[BF]*
| add/remove: 0/2 grow/shrink: 0/1 up/down: 0/-386 (-386)
| function old new delta
| pud_clear_bad 20 - -20
| p4d_clear_bad 20 - -20
| free_pgd_range 660 314 -346
The code savings are not a whole lot, but still worthwhile IMHO.
This patch (of 5):
With paging code made 5-level compliant, this is no longer needed. ARC
has software page walker with 2 lookup levels (pgd -> pte)
This was expected to be non functional change but ended with slight
code bloat due to needless inclusions of p*d_free_tlb() macros which
will be addressed in further patches.
| bloat-o-meter2 vmlinux-[AB]*
| add/remove: 0/0 grow/shrink: 2/0 up/down: 128/0 (128)
| function old new delta
| free_pgd_range 546 656 +110
| p4d_clear_bad 2 20 +18
| Total: Before=
4137148, After=
4137276, chg 0.000000%
Link: http://lkml.kernel.org/r/20191016162400.14796-2-vgupta@synopsys.com
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Gaowei Pu [Sun, 1 Dec 2019 01:51:03 +0000 (17:51 -0800)]
mm/mmap.c: use IS_ERR_VALUE to check return value of get_unmapped_area
get_unmapped_area() returns an address or -errno on failure. Historically
we have checked for the failure by offset_in_page() which is correct but
quite hard to read. Newer code started using IS_ERR_VALUE which is much
easier to read. Convert remaining users of offset_in_page as well.
[mhocko@suse.com: rewrite changelog]
[mhocko@kernel.org: fix mremap.c and uprobes.c sites also]
Link: http://lkml.kernel.org/r/20191012102512.28051-1-pugaowei@gmail.com
Signed-off-by: Gaowei Pu <pugaowei@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wei Yang [Sun, 1 Dec 2019 01:50:59 +0000 (17:50 -0800)]
mm/rmap.c: reuse mergeable anon_vma as parent when fork
In __anon_vma_prepare(), we will try to find anon_vma if it is possible to
reuse it. While on fork, the logic is different.
Since commit
5beb49305251 ("mm: change anon_vma linking to fix
multi-process server scalability issue"), function anon_vma_clone() tries
to allocate new anon_vma for child process. But the logic here will
allocate a new anon_vma for each vma, even in parent this vma is mergeable
and share the same anon_vma with its sibling. This may do better for
scalability issue, while it is not necessary to do so especially after
interval tree is used.
Commit
7a3ef208e662 ("mm: prevent endless growth of anon_vma hierarchy")
tries to reuse some anon_vma by counting child anon_vma and attached vmas.
While for those mergeable anon_vmas, we can just reuse it and not
necessary to go through the logic.
After this change, kernel build test reduces 20% anon_vma allocation.
Do the same kernel build test, it shows run time in sys reduced 11.6%.
Origin:
real 2m50.467s
user 17m52.002s
sys 1m51.953s
real 2m48.662s
user 17m55.464s
sys 1m50.553s
real 2m51.143s
user 17m59.687s
sys 1m53.600s
Patched:
real 2m39.933s
user 17m1.835s
sys 1m38.802s
real 2m39.321s
user 17m1.634s
sys 1m39.206s
real 2m39.575s
user 17m1.420s
sys 1m38.845s
Link: http://lkml.kernel.org/r/20191011072256.16275-2-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Wei Yang [Sun, 1 Dec 2019 01:50:56 +0000 (17:50 -0800)]
mm/rmap.c: don't reuse anon_vma if we just want a copy
Before commit
7a3ef208e662 ("mm: prevent endless growth of anon_vma
hierarchy"), anon_vma_clone() doesn't change dst->anon_vma. While after
this commit, anon_vma_clone() will try to reuse an exist one on forking.
But this commit go a little bit further for the case not forking.
anon_vma_clone() is called from __vma_split(), __split_vma(), copy_vma()
and anon_vma_fork(). For the first three places, the purpose here is
get a copy of src and we don't expect to touch dst->anon_vma even it is
NULL.
While after that commit, it is possible to reuse an anon_vma when
dst->anon_vma is NULL. This is not we intend to have.
This patch stops reuse of anon_vma for non-fork cases.
Link: http://lkml.kernel.org/r/20191011072256.16275-1-richardw.yang@linux.intel.com
Fixes: 7a3ef208e662 ("mm: prevent endless growth of anon_vma hierarchy")
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>