From: Imre Kaloz Date: Mon, 9 Apr 2012 17:00:03 +0000 (+0000) Subject: upgrade to gcc 4.4.7 X-Git-Url: http://git.lede-project.org./?a=commitdiff_plain;h=ca6859aa2941be5a54f3793bb7de2d2868d3a467;p=openwrt%2Fstaging%2Fnbd.git upgrade to gcc 4.4.7 SVN-Revision: 31230 --- diff --git a/toolchain/gcc/Config.in b/toolchain/gcc/Config.in index 90c262db5d..4989c8a36f 100644 --- a/toolchain/gcc/Config.in +++ b/toolchain/gcc/Config.in @@ -2,13 +2,13 @@ choice prompt "GCC compiler Version" if TOOLCHAINOPTS - default GCC_VERSION_4_4_6 if GCC_DEFAULT_VERSION_4_4_6 + default GCC_VERSION_4_4_7 if GCC_DEFAULT_VERSION_4_4_7 default GCC_VERSION_4_6_LINARO help Select the version of gcc you wish to use. - config GCC_VERSION_4_4_6 - bool "gcc 4.4.6" + config GCC_VERSION_4_4_7 + bool "gcc 4.4.7" depends (avr32 || ubicom32) config GCC_VERSION_4_6_2 diff --git a/toolchain/gcc/Config.version b/toolchain/gcc/Config.version index 6c5327533f..06671063df 100644 --- a/toolchain/gcc/Config.version +++ b/toolchain/gcc/Config.version @@ -1,7 +1,7 @@ config GCC_DEFAULT_VERSION bool -config GCC_DEFAULT_VERSION_4_4_6 +config GCC_DEFAULT_VERSION_4_4_7 select GCC_DEFAULT_VERSION default y if (avr32 || ubicom32) bool @@ -13,7 +13,7 @@ config GCC_DEFAULT_VERSION_4_6_LINARO config GCC_VERSION string - default "4.4.6" if GCC_VERSION_4_4_6 + default "4.4.7" if GCC_VERSION_4_4_7 default "4.6.2" if GCC_VERSION_4_6_2 default "4.7.0" if GCC_VERSION_4_7_0 default "4.5-linaro" if GCC_VERSION_4_5_LINARO @@ -23,7 +23,7 @@ config GCC_VERSION config GCC_VERSION_4_4 bool - default y if GCC_VERSION_4_4_6 + default y if GCC_VERSION_4_4_7 config GCC_VERSION_4_5 bool @@ -39,8 +39,8 @@ config GCC_VERSION_4_7 if !TOOLCHAINOPTS - config GCC_VERSION_4_4_6 - default y if GCC_DEFAULT_VERSION_4_4_6 + config GCC_VERSION_4_4_7 + default y if GCC_DEFAULT_VERSION_4_4_7 bool config GCC_VERSION_4_6_LINARO diff --git a/toolchain/gcc/common.mk b/toolchain/gcc/common.mk index 731af95e14..c0bc3f8c5d 100644 --- a/toolchain/gcc/common.mk +++ b/toolchain/gcc/common.mk @@ -57,8 +57,8 @@ else PKG_SOURCE_URL:=@GNU/gcc/gcc-$(PKG_VERSION) PKG_SOURCE:=$(PKG_NAME)-$(PKG_VERSION).tar.bz2 - ifeq ($(PKG_VERSION),4.4.6) - PKG_MD5SUM:=ab525d429ee4425050a554bc9247d6c4 + ifeq ($(PKG_VERSION),4.4.7) + PKG_MD5SUM:=295709feb4441b04e87dea3f1bab4281 endif ifeq ($(PKG_VERSION),4.6.2) PKG_MD5SUM:=028115c4fbfb6cfd75d6369f4a90d87e diff --git a/toolchain/gcc/patches/4.4.6/100-uclibc-conf.patch b/toolchain/gcc/patches/4.4.6/100-uclibc-conf.patch deleted file mode 100644 index 5c77de9b4e..0000000000 --- a/toolchain/gcc/patches/4.4.6/100-uclibc-conf.patch +++ /dev/null @@ -1,33 +0,0 @@ ---- a/contrib/regression/objs-gcc.sh -+++ b/contrib/regression/objs-gcc.sh -@@ -106,6 +106,10 @@ if [ $H_REAL_TARGET = $H_REAL_HOST -a $H - then - make all-gdb all-dejagnu all-ld || exit 1 - make install-gdb install-dejagnu install-ld || exit 1 -+elif [ $H_REAL_TARGET = $H_REAL_HOST -a $H_REAL_TARGET = i686-pc-linux-uclibc ] -+ then -+ make all-gdb all-dejagnu all-ld || exit 1 -+ make install-gdb install-dejagnu install-ld || exit 1 - elif [ $H_REAL_TARGET = $H_REAL_HOST ] ; then - make bootstrap || exit 1 - make install || exit 1 ---- a/libjava/classpath/ltconfig -+++ b/libjava/classpath/ltconfig -@@ -603,7 +603,7 @@ host_os=`echo $host | sed 's/^\([^-]*\)- - - # Transform linux* to *-*-linux-gnu*, to support old configure scripts. - case $host_os in --linux-gnu*) ;; -+linux-gnu*|linux-uclibc*) ;; - linux*) host=`echo $host | sed 's/^\(.*-.*-linux\)\(.*\)$/\1-gnu\2/'` - esac - -@@ -1251,7 +1251,7 @@ linux-gnuoldld* | linux-gnuaout* | linux - ;; - - # This must be Linux ELF. --linux-gnu*) -+linux*) - version_type=linux - need_lib_prefix=no - need_version=no diff --git a/toolchain/gcc/patches/4.4.6/301-missing-execinfo_h.patch b/toolchain/gcc/patches/4.4.6/301-missing-execinfo_h.patch deleted file mode 100644 index b3f1e68d3b..0000000000 --- a/toolchain/gcc/patches/4.4.6/301-missing-execinfo_h.patch +++ /dev/null @@ -1,11 +0,0 @@ ---- a/boehm-gc/include/gc.h -+++ b/boehm-gc/include/gc.h -@@ -503,7 +503,7 @@ GC_API GC_PTR GC_malloc_atomic_ignore_of - #if defined(__linux__) || defined(__GLIBC__) - # include - # if (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 1 || __GLIBC__ > 2) \ -- && !defined(__ia64__) -+ && !defined(__ia64__) && !defined(__UCLIBC__) - # ifndef GC_HAVE_BUILTIN_BACKTRACE - # define GC_HAVE_BUILTIN_BACKTRACE - # endif diff --git a/toolchain/gcc/patches/4.4.6/302-c99-snprintf.patch b/toolchain/gcc/patches/4.4.6/302-c99-snprintf.patch deleted file mode 100644 index ddbe43d810..0000000000 --- a/toolchain/gcc/patches/4.4.6/302-c99-snprintf.patch +++ /dev/null @@ -1,11 +0,0 @@ ---- a/libstdc++-v3/include/c_global/cstdio -+++ b/libstdc++-v3/include/c_global/cstdio -@@ -139,7 +139,7 @@ _GLIBCXX_BEGIN_NAMESPACE(std) - - _GLIBCXX_END_NAMESPACE - --#if _GLIBCXX_USE_C99 -+#if _GLIBCXX_USE_C99 || defined __UCLIBC__ - - #undef snprintf - #undef vfscanf diff --git a/toolchain/gcc/patches/4.4.6/305-libmudflap-susv3-legacy.patch b/toolchain/gcc/patches/4.4.6/305-libmudflap-susv3-legacy.patch deleted file mode 100644 index 8e2d15f81a..0000000000 --- a/toolchain/gcc/patches/4.4.6/305-libmudflap-susv3-legacy.patch +++ /dev/null @@ -1,47 +0,0 @@ ---- a/libmudflap/mf-hooks2.c -+++ b/libmudflap/mf-hooks2.c -@@ -421,7 +421,7 @@ WRAPPER2(void, bzero, void *s, size_t n) - { - TRACE ("%s\n", __PRETTY_FUNCTION__); - MF_VALIDATE_EXTENT(s, n, __MF_CHECK_WRITE, "bzero region"); -- bzero (s, n); -+ memset (s, 0, n); - } - - -@@ -431,7 +431,7 @@ WRAPPER2(void, bcopy, const void *src, v - TRACE ("%s\n", __PRETTY_FUNCTION__); - MF_VALIDATE_EXTENT(src, n, __MF_CHECK_READ, "bcopy src"); - MF_VALIDATE_EXTENT(dest, n, __MF_CHECK_WRITE, "bcopy dest"); -- bcopy (src, dest, n); -+ memmove (dest, src, n); - } - - -@@ -441,7 +441,7 @@ WRAPPER2(int, bcmp, const void *s1, cons - TRACE ("%s\n", __PRETTY_FUNCTION__); - MF_VALIDATE_EXTENT(s1, n, __MF_CHECK_READ, "bcmp 1st arg"); - MF_VALIDATE_EXTENT(s2, n, __MF_CHECK_READ, "bcmp 2nd arg"); -- return bcmp (s1, s2, n); -+ return n == 0 ? 0 : memcmp (s1, s2, n); - } - - -@@ -450,7 +450,7 @@ WRAPPER2(char *, index, const char *s, i - size_t n = strlen (s); - TRACE ("%s\n", __PRETTY_FUNCTION__); - MF_VALIDATE_EXTENT(s, CLAMPADD(n, 1), __MF_CHECK_READ, "index region"); -- return index (s, c); -+ return strchr (s, c); - } - - -@@ -459,7 +459,7 @@ WRAPPER2(char *, rindex, const char *s, - size_t n = strlen (s); - TRACE ("%s\n", __PRETTY_FUNCTION__); - MF_VALIDATE_EXTENT(s, CLAMPADD(n, 1), __MF_CHECK_READ, "rindex region"); -- return rindex (s, c); -+ return strrchr (s, c); - } - - /* XXX: stpcpy, memccpy */ diff --git a/toolchain/gcc/patches/4.4.6/600-ubicom_support.patch b/toolchain/gcc/patches/4.4.6/600-ubicom_support.patch deleted file mode 100644 index 74903bd4b2..0000000000 --- a/toolchain/gcc/patches/4.4.6/600-ubicom_support.patch +++ /dev/null @@ -1,9368 +0,0 @@ ---- a/configure -+++ b/configure -@@ -2688,6 +2688,9 @@ case "${target}" in - ip2k-*-*) - noconfigdirs="$noconfigdirs target-libiberty target-libstdc++-v3 ${libgcj}" - ;; -+ ubicom32-*-*) -+ noconfigdirs="$noconfigdirs target-libffi" -+ ;; - *-*-linux* | *-*-gnu* | *-*-k*bsd*-gnu | *-*-kopensolaris*-gnu) - noconfigdirs="$noconfigdirs target-newlib target-libgloss" - ;; ---- /dev/null -+++ b/gcc/config/ubicom32/constraints.md -@@ -0,0 +1,149 @@ -+; Constraint definitions for Ubicom32 -+ -+; Copyright (C) 2009 Free Software Foundation, Inc. -+; Contributed by Ubicom, Inc. -+ -+; This file is part of GCC. -+ -+; GCC is free software; you can redistribute it and/or modify it -+; under the terms of the GNU General Public License as published -+; by the Free Software Foundation; either version 3, or (at your -+; option) any later version. -+ -+; GCC is distributed in the hope that it will be useful, but WITHOUT -+; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -+; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public -+; License for more details. -+ -+; You should have received a copy of the GNU General Public License -+; along with GCC; see the file COPYING3. If not see -+; . -+ -+(define_register_constraint "a" "ALL_ADDRESS_REGS" -+ "An An register.") -+ -+(define_register_constraint "d" "DATA_REGS" -+ "A Dn register.") -+ -+(define_register_constraint "h" "ACC_REGS" -+ "An accumulator register.") -+ -+(define_register_constraint "l" "ACC_LO_REGS" -+ "An accn_lo register.") -+ -+(define_register_constraint "Z" "FDPIC_REG" -+ "The FD-PIC GOT pointer: A0.") -+ -+(define_constraint "I" -+ "An 8-bit signed constant value." -+ (and (match_code "const_int") -+ (match_test "(ival >= -128) && (ival <= 127)"))) -+ -+(define_constraint "Q" -+ "An 8-bit signed constant value represented as unsigned." -+ (and (match_code "const_int") -+ (match_test "(ival >= 0x00) && (ival <= 0xff)"))) -+ -+(define_constraint "R" -+ "An 8-bit signed constant value represented as unsigned." -+ (and (match_code "const_int") -+ (match_test "((ival >= 0x0000) && (ival <= 0x007f)) || ((ival >= 0xff80) && (ival <= 0xffff))"))) -+ -+(define_constraint "J" -+ "A 7-bit unsigned constant value." -+ (and (match_code "const_int") -+ (match_test "(ival >= 0) && (ival <= 127)"))) -+ -+(define_constraint "K" -+ "A 7-bit unsigned constant value shifted << 1." -+ (and (match_code "const_int") -+ (match_test "(ival >= 0) && (ival <= 254) && ((ival & 1) == 0)"))) -+ -+(define_constraint "L" -+ "A 7-bit unsigned constant value shifted << 2." -+ (and (match_code "const_int") -+ (match_test "(ival >= 0) && (ival <= 508) && ((ival & 3) == 0)"))) -+ -+(define_constraint "M" -+ "A 5-bit unsigned constant value." -+ (and (match_code "const_int") -+ (match_test "(ival >= 0) && (ival <= 31)"))) -+ -+(define_constraint "N" -+ "A signed 16 bit constant value." -+ (and (match_code "const_int") -+ (match_test "(ival >= -32768) && (ival <= 32767)"))) -+ -+(define_constraint "O" -+ "An exact bitmask of contiguous 1 bits starting at bit 0." -+ (and (match_code "const_int") -+ (match_test "exact_log2 (ival + 1) != -1"))) -+ -+(define_constraint "P" -+ "A 7-bit negative constant value shifted << 2." -+ (and (match_code "const_int") -+ (match_test "(ival >= -504) && (ival <= 0) && ((ival & 3) == 0)"))) -+ -+(define_constraint "S" -+ "A symbolic reference." -+ (match_code "symbol_ref")) -+ -+(define_constraint "Y" -+ "An FD-PIC symbolic reference." -+ (and (match_test "TARGET_FDPIC") -+ (match_test "GET_CODE (op) == UNSPEC") -+ (ior (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT") -+ (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT_FUNCDESC")))) -+ -+(define_memory_constraint "T1" -+ "A memory operand that can be used for .1 instruction." -+ (and (match_test "memory_operand (op, GET_MODE(op))") -+ (match_test "GET_MODE (op) == QImode"))) -+ -+(define_memory_constraint "T2" -+ "A memory operand that can be used for .2 instruction." -+ (and (match_test "memory_operand (op, GET_MODE(op))") -+ (match_test "GET_MODE (op) == HImode"))) -+ -+(define_memory_constraint "T4" -+ "A memory operand that can be used for .4 instruction." -+ (and (match_test "memory_operand (op, GET_MODE(op))") -+ (ior (match_test "GET_MODE (op) == SImode") -+ (match_test "GET_MODE (op) == DImode") -+ (match_test "GET_MODE (op) == SFmode")))) -+ -+(define_memory_constraint "U1" -+ "An offsettable memory operand that can be used for .1 instruction." -+ (and (match_test "memory_operand (op, GET_MODE(op))") -+ (match_test "GET_MODE (op) == QImode") -+ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC") -+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC") -+ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC") -+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC") -+ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY") -+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY"))) -+ -+(define_memory_constraint "U2" -+ "An offsettable memory operand that can be used for .2 instruction." -+ (and (match_test "memory_operand (op, GET_MODE(op))") -+ (match_test "GET_MODE (op) == HImode") -+ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC") -+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC") -+ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC") -+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC") -+ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY") -+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY"))) -+ -+(define_memory_constraint "U4" -+ "An offsettable memory operand that can be used for .4 instruction." -+ (and (match_test "memory_operand (op, GET_MODE(op))") -+ (ior (match_test "GET_MODE (op) == SImode") -+ (match_test "GET_MODE (op) == DImode") -+ (match_test "GET_MODE (op) == SFmode")) -+ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC") -+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC") -+ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC") -+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC") -+ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY") -+ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY"))) -+ ---- /dev/null -+++ b/gcc/config/ubicom32/crti.S -@@ -0,0 +1,54 @@ -+/* Specialized code needed to support construction and destruction of -+ file-scope objects in C++ and Java code, and to support exception handling. -+ Copyright (C) 1999 Free Software Foundation, Inc. -+ Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca). -+ -+This file is part of GCC. -+ -+GCC is free software; you can redistribute it and/or modify -+it under the terms of the GNU General Public License as published by -+the Free Software Foundation; either version 2, or (at your option) -+any later version. -+ -+GCC is distributed in the hope that it will be useful, -+but WITHOUT ANY WARRANTY; without even the implied warranty of -+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+GNU General Public License for more details. -+ -+You should have received a copy of the GNU General Public License -+along with GCC; see the file COPYING. If not, write to -+the Free Software Foundation, 59 Temple Place - Suite 330, -+Boston, MA 02111-1307, USA. */ -+ -+/* As a special exception, if you link this library with files -+ compiled with GCC to produce an executable, this does not cause -+ the resulting executable to be covered by the GNU General Public License. -+ This exception does not however invalidate any other reasons why -+ the executable file might be covered by the GNU General Public License. */ -+ -+/* -+ * This file just supplies function prologues for the .init and .fini -+ * sections. It is linked in before crtbegin.o. -+ */ -+ .file "crti.o" -+ .ident "GNU C crti.o" -+ -+ .section .init -+ .align 2 -+ .globl _init -+ .type _init, @function -+_init: -+ move.4 -4(sp)++, a5 -+#ifdef __UBICOM32_FDPIC__ -+ move.4 -4(sp)++, a0 -+#endif -+ -+ .section .fini -+ .align 2 -+ .globl _fini -+ .type _fini, @function -+_fini: -+ move.4 -4(sp)++, a5 -+#ifdef __UBICOM32_FDPIC__ -+ move.4 -4(sp)++, a0 -+#endif ---- /dev/null -+++ b/gcc/config/ubicom32/crtn.S -@@ -0,0 +1,47 @@ -+/* Specialized code needed to support construction and destruction of -+ file-scope objects in C++ and Java code, and to support exception handling. -+ Copyright (C) 1999 Free Software Foundation, Inc. -+ Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca). -+ -+This file is part of GCC. -+ -+GCC is free software; you can redistribute it and/or modify -+it under the terms of the GNU General Public License as published by -+the Free Software Foundation; either version 2, or (at your option) -+any later version. -+ -+GCC is distributed in the hope that it will be useful, -+but WITHOUT ANY WARRANTY; without even the implied warranty of -+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+GNU General Public License for more details. -+ -+You should have received a copy of the GNU General Public License -+along with GCC; see the file COPYING. If not, write to -+the Free Software Foundation, 59 Temple Place - Suite 330, -+Boston, MA 02111-1307, USA. */ -+ -+/* As a special exception, if you link this library with files -+ compiled with GCC to produce an executable, this does not cause -+ the resulting executable to be covered by the GNU General Public License. -+ This exception does not however invalidate any other reasons why -+ the executable file might be covered by the GNU General Public License. */ -+ -+/* -+ * This file supplies function epilogues for the .init and .fini sections. -+ * It is linked in after all other files. -+ */ -+ -+ .file "crtn.o" -+ .ident "GNU C crtn.o" -+ -+ .section .init -+#ifdef __UBICOM32_FDPIC__ -+ move.4 a0, (sp)4++ -+#endif -+ ret (sp)4++ -+ -+ .section .fini -+#ifdef __UBICOM32_FDPIC__ -+ move.4 a0, (sp)4++ -+#endif -+ ret (sp)4++ ---- /dev/null -+++ b/gcc/config/ubicom32/elf.h -@@ -0,0 +1,29 @@ -+#undef STARTFILE_SPEC -+#define STARTFILE_SPEC "\ -+%{msim:%{!shared:crt0%O%s}} \ -+crti%O%s crtbegin%O%s" -+ -+#undef ENDFILE_SPEC -+#define ENDFILE_SPEC "crtend%O%s crtn%O%s" -+ -+#ifdef __UBICOM32_FDPIC__ -+#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ -+ asm (SECTION_OP); \ -+ asm ("move.4 a0, 0(sp);\n\t" \ -+ "call a5," USER_LABEL_PREFIX #FUNC ";"); \ -+ asm (TEXT_SECTION_ASM_OP); -+#endif -+ -+#undef SUBTARGET_DRIVER_SELF_SPECS -+#define SUBTARGET_DRIVER_SELF_SPECS \ -+ "%{mfdpic:-msim} " -+ -+#define NO_IMPLICIT_EXTERN_C -+ -+/* -+ * We need this to compile crtbegin/crtend. This should really be picked -+ * up from elfos.h but at the moment including elfos.h causes other more -+ * serous linker issues. -+ */ -+#define INIT_SECTION_ASM_OP "\t.section\t.init" -+#define FINI_SECTION_ASM_OP "\t.section\t.fini" ---- /dev/null -+++ b/gcc/config/ubicom32/linux.h -@@ -0,0 +1,80 @@ -+/* Definitions of target machine for Ubicom32-uclinux -+ -+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, -+ 2009 Free Software Foundation, Inc. -+ Contributed by Ubicom, Inc. -+ -+ This file is part of GCC. -+ -+ GCC is free software; you can redistribute it and/or modify it -+ under the terms of the GNU General Public License as published -+ by the Free Software Foundation; either version 3, or (at your -+ option) any later version. -+ -+ GCC is distributed in the hope that it will be useful, but WITHOUT -+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public -+ License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with GCC; see the file COPYING3. If not see -+ . */ -+ -+/* Don't assume anything about the header files. */ -+#define NO_IMPLICIT_EXTERN_C -+ -+#undef LIB_SPEC -+#define LIB_SPEC \ -+ "%{pthread:-lpthread} " \ -+ "-lc" -+ -+#undef LINK_GCC_C_SEQUENCE_SPEC -+#define LINK_GCC_C_SEQUENCE_SPEC \ -+ "%{static:--start-group} %G %L %{static:--end-group} " \ -+ "%{!static: %G}" -+ -+#undef STARTFILE_SPEC -+#define STARTFILE_SPEC \ -+ "%{!shared: %{pg|p|profile:gcrt1%O%s;pie:Scrt1%O%s;:crt1%O%s}} " \ -+ "crtreloc%O%s crti%O%s %{shared|pie:crtbeginS%O%s;:crtbegin%O%s}" -+ -+#undef ENDFILE_SPEC -+#define ENDFILE_SPEC \ -+ "%{shared|pie:crtendS%O%s;:crtend%O%s} crtn%O%s" -+ -+/* taken from linux.h */ -+/* The GNU C++ standard library requires that these macros be defined. */ -+#undef CPLUSPLUS_CPP_SPEC -+#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)" -+ -+#define TARGET_OS_CPP_BUILTINS() \ -+ do { \ -+ builtin_define_std ("__UBICOM32__"); \ -+ builtin_define_std ("__ubicom32__"); \ -+ builtin_define ("__gnu_linux__"); \ -+ builtin_define_std ("linux"); \ -+ builtin_define_std ("unix"); \ -+ builtin_assert ("system=linux"); \ -+ builtin_assert ("system=unix"); \ -+ builtin_assert ("system=posix"); \ -+ } while (0) -+ -+#define OBJECT_FORMAT_ELF -+ -+ -+#undef DRIVER_SELF_SPECS -+#define DRIVER_SELF_SPECS \ -+ "%{!mno-fdpic:-mfdpic}" -+ -+#undef LINK_SPEC -+#define LINK_SPEC "%{mfdpic: -m elf32ubicom32fdpic -z text } %{shared} %{pie} \ -+ %{static:-dn -Bstatic} \ -+ %{shared:-G -Bdynamic} \ -+ %{!shared: %{!static: \ -+ %{rdynamic:-export-dynamic} \ -+ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0}} \ -+ %{static}} " -+ -+/* -+#define MD_UNWIND_SUPPORT "config/bfin/linux-unwind.h" -+*/ ---- /dev/null -+++ b/gcc/config/ubicom32/predicates.md -@@ -0,0 +1,327 @@ -+; Predicate definitions for Ubicom32. -+ -+; Copyright (C) 2009 Free Software Foundation, Inc. -+; Contributed by Ubicom, Inc. -+ -+; This file is part of GCC. -+ -+; GCC is free software; you can redistribute it and/or modify it -+; under the terms of the GNU General Public License as published -+; by the Free Software Foundation; either version 3, or (at your -+; option) any later version. -+ -+; GCC is distributed in the hope that it will be useful, but WITHOUT -+; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -+; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public -+; License for more details. -+ -+; You should have received a copy of the GNU General Public License -+; along with GCC; see the file COPYING3. If not see -+; . -+ -+(define_predicate "ubicom32_move_operand" -+ (match_code "const_int, const_double, const, mem, subreg, reg, lo_sum") -+{ -+ if (CONST_INT_P (op)) -+ return true; -+ -+ if (GET_CODE (op) == CONST_DOUBLE) -+ return true; -+ -+ if (GET_CODE (op) == CONST) -+ return memory_address_p (mode, op); -+ -+ if (GET_MODE (op) != mode) -+ return false; -+ -+ if (MEM_P (op)) -+ return memory_address_p (mode, XEXP (op, 0)); -+ -+ if (GET_CODE (op) == SUBREG) { -+ op = SUBREG_REG (op); -+ -+ if (REG_P (op)) -+ return true; -+ -+ if (! MEM_P (op)) -+ return false; -+ -+ /* Paradoxical SUBREG. */ -+ if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (op))) -+ return false; -+ -+ return memory_address_p (GET_MODE (op), XEXP (op, 0)); -+ } -+ -+ return register_operand (op, mode); -+}) -+ -+;; Returns true if OP is either a symbol reference or a sum of a -+;; symbol reference and a constant. -+ -+(define_predicate "ubicom32_symbolic_address_operand" -+ (match_code "symbol_ref, label_ref, const") -+{ -+ switch (GET_CODE (op)) -+ { -+ case SYMBOL_REF: -+ case LABEL_REF: -+ return true; -+ -+ case CONST: -+ op = XEXP (op, 0); -+ return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF -+ || GET_CODE (XEXP (op, 0)) == LABEL_REF) -+ && CONST_INT_P (XEXP (op, 1))); -+ -+ default: -+ return false; -+ } -+}) -+ -+;; Return true if operand is the uClinux FD-PIC register. -+ -+(define_predicate "ubicom32_fdpic_operand" -+ (match_code "reg") -+{ -+ if (! TARGET_FDPIC) -+ return false; -+ -+ if (!REG_P (op)) -+ return false; -+ -+ if (GET_MODE (op) != mode && mode != VOIDmode) -+ return false; -+ -+ if (REGNO (op) != FDPIC_REGNUM && REGNO (op) < FIRST_PSEUDO_REGISTER) -+ return false; -+ -+ return true; -+}) -+ -+(define_predicate "ubicom32_fdpic_got_offset_operand" -+ (match_code "unspec") -+{ -+ if (! TARGET_FDPIC) -+ return false; -+ -+ if (GET_CODE (op) != UNSPEC) -+ return false; -+ -+ if (XINT (op, 1) != UNSPEC_FDPIC_GOT -+ && XINT (op, 1) != UNSPEC_FDPIC_GOT_FUNCDESC) -+ return false; -+ -+ return true; -+}) -+ -+(define_predicate "ubicom32_arith_operand" -+ (match_code "subreg, reg, const_int, lo_sum, mem") -+{ -+ return (ubicom32_move_operand (op, mode) -+ && ! ubicom32_symbolic_address_operand (op, mode) -+ && (! CONST_INT_P (op) -+ || satisfies_constraint_I (op))); -+}) -+ -+(define_predicate "ubicom32_arith_operand_dot1" -+ (match_code "subreg, reg, const_int, lo_sum, mem") -+{ -+ return (ubicom32_move_operand (op, mode) -+ && ! ubicom32_symbolic_address_operand (op, mode) -+ && (! CONST_INT_P (op) -+ || satisfies_constraint_Q (op))); -+}) -+ -+(define_predicate "ubicom32_arith_operand_dot2" -+ (match_code "subreg, reg, const_int, lo_sum, mem") -+{ -+ return (ubicom32_move_operand (op, mode) -+ && ! ubicom32_symbolic_address_operand (op, mode) -+ && (! CONST_INT_P (op) -+ || satisfies_constraint_R (op))); -+}) -+ -+(define_predicate "ubicom32_compare_operand" -+ (match_code "subreg, reg, const_int, lo_sum, mem") -+{ -+ return (ubicom32_move_operand (op, mode) -+ && ! ubicom32_symbolic_address_operand (op, mode) -+ && (! CONST_INT_P (op) -+ || satisfies_constraint_N (op))); -+}) -+ -+(define_predicate "ubicom32_compare_operator" -+ (match_code "compare")) -+ -+(define_predicate "ubicom32_and_or_si3_operand" -+ (match_code "subreg, reg, const_int, lo_sum, mem") -+{ -+ return (ubicom32_arith_operand (op, mode) -+ || (CONST_INT_P (op) -+ && ((exact_log2 (INTVAL (op) + 1) != -1 -+ && exact_log2 (INTVAL (op) + 1) <= 31) -+ || (exact_log2 (INTVAL (op)) != -1 -+ && exact_log2 (INTVAL (op)) <= 31) -+ || (exact_log2 (~INTVAL (op)) != -1 -+ && exact_log2 (~INTVAL (op)) <= 31)))); -+}) -+ -+(define_predicate "ubicom32_and_or_hi3_operand" -+ (match_code "subreg, reg, const_int, lo_sum, mem") -+{ -+ return (ubicom32_arith_operand (op, mode) -+ || (CONST_INT_P (op) -+ && exact_log2 (INTVAL (op) + 1) != -1 -+ && exact_log2 (INTVAL (op) + 1) <= 15)); -+}) -+ -+(define_predicate "ubicom32_mem_or_address_register_operand" -+ (match_code "subreg, reg, mem") -+{ -+ unsigned int regno; -+ -+ if (MEM_P (op) -+ && memory_operand (op, mode)) -+ return true; -+ -+ if (REG_P (op)) -+ regno = REGNO (op); -+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))) -+ { -+ int offset; -+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER) -+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op))); -+ else -+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), -+ GET_MODE (SUBREG_REG (op)), -+ SUBREG_BYTE (op), -+ GET_MODE (op)); -+ regno = REGNO (SUBREG_REG (op)) + offset; -+ } -+ else -+ return false; -+ -+ return (regno >= FIRST_PSEUDO_REGISTER -+ || REGNO_REG_CLASS (regno) == FDPIC_REG -+ || REGNO_REG_CLASS (regno) == ADDRESS_REGS); -+}) -+ -+(define_predicate "ubicom32_data_register_operand" -+ (match_code "subreg, reg") -+{ -+ unsigned int regno; -+ -+ if (REG_P (op)) -+ regno = REGNO (op); -+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))) -+ { -+ int offset; -+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER) -+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op))); -+ else -+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), -+ GET_MODE (SUBREG_REG (op)), -+ SUBREG_BYTE (op), -+ GET_MODE (op)); -+ regno = REGNO (SUBREG_REG (op)) + offset; -+ } -+ else -+ return false; -+ -+ return ((regno >= FIRST_PSEUDO_REGISTER -+ && regno != REGNO (virtual_stack_vars_rtx)) -+ || REGNO_REG_CLASS (regno) == DATA_REGS); -+}) -+ -+(define_predicate "ubicom32_address_register_operand" -+ (match_code "subreg, reg") -+{ -+ unsigned int regno; -+ -+ if (REG_P (op)) -+ regno = REGNO (op); -+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))) -+ { -+ int offset; -+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER) -+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op))); -+ else -+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), -+ GET_MODE (SUBREG_REG (op)), -+ SUBREG_BYTE (op), -+ GET_MODE (op)); -+ regno = REGNO (SUBREG_REG (op)) + offset; -+ } -+ else -+ return false; -+ -+ return (regno >= FIRST_PSEUDO_REGISTER -+ || REGNO_REG_CLASS (regno) == FDPIC_REG -+ || REGNO_REG_CLASS (regno) == ADDRESS_REGS); -+}) -+ -+(define_predicate "ubicom32_acc_lo_register_operand" -+ (match_code "subreg, reg") -+{ -+ unsigned int regno; -+ -+ if (REG_P (op)) -+ regno = REGNO (op); -+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))) -+ { -+ int offset; -+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER) -+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op))); -+ else -+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), -+ GET_MODE (SUBREG_REG (op)), -+ SUBREG_BYTE (op), -+ GET_MODE (op)); -+ regno = REGNO (SUBREG_REG (op)) + offset; -+ } -+ else -+ return false; -+ -+ return ((regno >= FIRST_PSEUDO_REGISTER -+ && regno != REGNO (virtual_stack_vars_rtx)) -+ || REGNO_REG_CLASS (regno) == ACC_LO_REGS); -+}) -+ -+(define_predicate "ubicom32_acc_hi_register_operand" -+ (match_code "subreg, reg") -+{ -+ unsigned int regno; -+ -+ if (REG_P (op)) -+ regno = REGNO (op); -+ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))) -+ { -+ int offset; -+ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER) -+ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op))); -+ else -+ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), -+ GET_MODE (SUBREG_REG (op)), -+ SUBREG_BYTE (op), -+ GET_MODE (op)); -+ regno = REGNO (SUBREG_REG (op)) + offset; -+ } -+ else -+ return false; -+ -+ return ((regno >= FIRST_PSEUDO_REGISTER -+ && regno != REGNO (virtual_stack_vars_rtx)) -+ || REGNO_REG_CLASS (regno) == ACC_REGS); -+}) -+ -+(define_predicate "ubicom32_call_address_operand" -+ (match_code "symbol_ref, subreg, reg") -+{ -+ return (GET_CODE (op) == SYMBOL_REF || REG_P (op)); -+}) -+ -+(define_special_predicate "ubicom32_cc_register_operand" -+ (and (match_code "reg") -+ (match_test "REGNO (op) == CC_REGNUM"))) -+ ---- /dev/null -+++ b/gcc/config/ubicom32/t-ubicom32 -@@ -0,0 +1,52 @@ -+# Name of assembly file containing libgcc1 functions. -+# This entry must be present, but it can be empty if the target does -+# not need any assembler functions to support its code generation. -+CROSS_LIBGCC1 = -+ -+# Alternatively if assembler functions *are* needed then define the -+# entries below: -+# CROSS_LIBGCC1 = libgcc1-asm.a -+ -+LIB2FUNCS_EXTRA = \ -+ $(srcdir)/config/udivmodsi4.c \ -+ $(srcdir)/config/divmod.c \ -+ $(srcdir)/config/udivmod.c -+ -+# If any special flags are necessary when building libgcc2 put them here. -+# -+# TARGET_LIBGCC2_CFLAGS = -+ -+# We want fine grained libraries, so use the new code to build the -+# floating point emulation libraries. -+FPBIT = fp-bit.c -+DPBIT = dp-bit.c -+ -+fp-bit.c: $(srcdir)/config/fp-bit.c -+ echo '#define FLOAT' > fp-bit.c -+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c -+ -+dp-bit.c: $(srcdir)/config/fp-bit.c -+ cat $(srcdir)/config/fp-bit.c > dp-bit.c -+ -+# Commented out to speed up compiler development! -+# -+# MULTILIB_OPTIONS = march=ubicom32v1/march=ubicom32v2/march=ubicom32v3/march=ubicom32v4 -+# MULTILIB_DIRNAMES = ubicom32v1 ubicom32v2 ubicom32v3 ubicom32v4 -+ -+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4 -+MULTILIB_OPTIONS += mfdpic -+MULTILIB_OPTIONS += mno-ipos-abi/mipos-abi -+MULTILIB_OPTIONS += fno-leading-underscore/fleading-underscore -+ -+# Assemble startup files. -+$(T)crti.o: $(srcdir)/config/ubicom32/crti.S $(GCC_PASSES) -+ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \ -+ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crti.S -+ -+$(T)crtn.o: $(srcdir)/config/ubicom32/crtn.S $(GCC_PASSES) -+ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \ -+ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crtn.S -+ -+# these parts are required because uClibc ldso needs them to link. -+# they are not in the specfile so they will not be included automatically. -+EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o crti.o crtn.o ---- /dev/null -+++ b/gcc/config/ubicom32/t-ubicom32-linux -@@ -0,0 +1,35 @@ -+# Name of assembly file containing libgcc1 functions. -+# This entry must be present, but it can be empty if the target does -+# not need any assembler functions to support its code generation. -+CROSS_LIBGCC1 = -+ -+# Alternatively if assembler functions *are* needed then define the -+# entries below: -+# CROSS_LIBGCC1 = libgcc1-asm.a -+ -+LIB2FUNCS_EXTRA = \ -+ $(srcdir)/config/udivmodsi4.c \ -+ $(srcdir)/config/divmod.c \ -+ $(srcdir)/config/udivmod.c -+ -+# If any special flags are necessary when building libgcc2 put them here. -+# -+# TARGET_LIBGCC2_CFLAGS = -+ -+# We want fine grained libraries, so use the new code to build the -+# floating point emulation libraries. -+FPBIT = fp-bit.c -+DPBIT = dp-bit.c -+ -+fp-bit.c: $(srcdir)/config/fp-bit.c -+ echo '#define FLOAT' > fp-bit.c -+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c -+ -+dp-bit.c: $(srcdir)/config/fp-bit.c -+ cat $(srcdir)/config/fp-bit.c > dp-bit.c -+ -+# We only support v3 and v4 ISAs for uClinux. -+ -+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4 -+ -+#EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o ---- /dev/null -+++ b/gcc/config/ubicom32/t-ubicom32-uclinux -@@ -0,0 +1,35 @@ -+# Name of assembly file containing libgcc1 functions. -+# This entry must be present, but it can be empty if the target does -+# not need any assembler functions to support its code generation. -+CROSS_LIBGCC1 = -+ -+# Alternatively if assembler functions *are* needed then define the -+# entries below: -+# CROSS_LIBGCC1 = libgcc1-asm.a -+ -+LIB2FUNCS_EXTRA = \ -+ $(srcdir)/config/udivmodsi4.c \ -+ $(srcdir)/config/divmod.c \ -+ $(srcdir)/config/udivmod.c -+ -+# If any special flags are necessary when building libgcc2 put them here. -+# -+# TARGET_LIBGCC2_CFLAGS = -+ -+# We want fine grained libraries, so use the new code to build the -+# floating point emulation libraries. -+FPBIT = fp-bit.c -+DPBIT = dp-bit.c -+ -+fp-bit.c: $(srcdir)/config/fp-bit.c -+ echo '#define FLOAT' > fp-bit.c -+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c -+ -+dp-bit.c: $(srcdir)/config/fp-bit.c -+ cat $(srcdir)/config/fp-bit.c > dp-bit.c -+ -+# We only support v3 and v4 ISAs for uClinux. -+ -+MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4 -+ -+EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o # crtbeginS.o crtendS.o ---- /dev/null -+++ b/gcc/config/ubicom32/ubicom32-modes.def -@@ -0,0 +1,30 @@ -+/* Definitions of target machine for GNU compiler, Ubicom32 architecture. -+ Copyright (C) 2009 Free Software Foundation, Inc. -+ Contributed by Ubicom, Inc. -+ -+ This file is part of GCC. -+ -+ GCC is free software; you can redistribute it and/or modify it -+ under the terms of the GNU General Public License as published -+ by the Free Software Foundation; either version 3, or (at your -+ option) any later version. -+ -+ GCC is distributed in the hope that it will be useful, but WITHOUT -+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public -+ License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with GCC; see the file COPYING3. If not see -+ . */ -+ -+/* Some insns set all condition code flags, some only set the Z and N flags, and -+ some only set the Z flag. */ -+ -+CC_MODE (CCW); -+CC_MODE (CCWZN); -+CC_MODE (CCWZ); -+CC_MODE (CCS); -+CC_MODE (CCSZN); -+CC_MODE (CCSZ); -+ ---- /dev/null -+++ b/gcc/config/ubicom32/ubicom32-protos.h -@@ -0,0 +1,84 @@ -+/* Function prototypes for Ubicom IP3000. -+ -+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, -+ 2009 Free Software Foundation, Inc. -+ Contributed by Ubicom, Inc. -+ -+ This file is part of GNU CC. -+ -+ GNU CC is free software; you can redistribute it and/or modify it under -+ the terms of the GNU General Public License as published by the Free -+ Software Foundation; either version 2, or (at your option) any later -+ version. -+ -+ GNU CC is distributed in the hope that it will be useful, but WITHOUT -+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -+ for more details. -+ -+ You should have received a copy of the GNU General Public License along -+ with GNU CC; see the file COPYING. If not, write to the Free Software -+ Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ -+ -+#ifdef RTX_CODE -+ -+#ifdef TREE_CODE -+extern void ubicom32_va_start (tree, rtx); -+#endif /* TREE_CODE */ -+ -+extern void ubicom32_print_operand (FILE *, rtx, int); -+extern void ubicom32_print_operand_address (FILE *, rtx); -+ -+extern void ubicom32_conditional_register_usage (void); -+extern enum reg_class ubicom32_preferred_reload_class (rtx, enum reg_class); -+extern int ubicom32_regno_ok_for_index_p (int, int); -+extern void ubicom32_expand_movsi (rtx *); -+extern void ubicom32_expand_addsi3 (rtx *); -+extern int ubicom32_emit_mult_sequence (rtx *); -+extern void ubicom32_emit_move_const_int (rtx, rtx); -+extern bool ubicom32_legitimate_constant_p (rtx); -+extern bool ubicom32_legitimate_address_p (enum machine_mode, rtx, int); -+extern rtx ubicom32_legitimize_address (rtx, rtx, enum machine_mode); -+extern rtx ubicom32_legitimize_reload_address (rtx, enum machine_mode, int, int); -+extern void ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1); -+extern int ubicom32_mode_dependent_address_p (rtx); -+extern void ubicom32_output_cond_jump (rtx, rtx, rtx); -+extern void ubicom32_expand_eh_return (rtx *); -+extern void ubicom32_expand_call_fdpic (rtx *); -+extern void ubicom32_expand_call_value_fdpic (rtx *); -+extern enum machine_mode ubicom32_select_cc_mode (RTX_CODE, rtx, rtx); -+extern rtx ubicom32_gen_compare_reg (RTX_CODE, rtx, rtx); -+extern int ubicom32_shiftable_const_int (int); -+#endif /* RTX_CODE */ -+ -+#ifdef TREE_CODE -+extern void init_cumulative_args (CUMULATIVE_ARGS *cum, -+ tree fntype, -+ struct rtx_def *libname, -+ int indirect); -+extern struct rtx_def *function_arg (CUMULATIVE_ARGS *, -+ enum machine_mode, tree, int); -+extern struct rtx_def *function_incoming_arg (CUMULATIVE_ARGS *, -+ enum machine_mode, -+ tree, int); -+extern int function_arg_partial_nregs (CUMULATIVE_ARGS *, -+ enum machine_mode, tree, int); -+extern struct rtx_def *ubicom32_va_arg (tree, tree); -+extern int ubicom32_reg_parm_stack_space (tree); -+#endif /* TREE_CODE */ -+ -+extern struct rtx_def * ubicom32_builtin_saveregs (void); -+extern void asm_file_start (FILE *); -+extern void ubicom32_expand_prologue (void); -+extern void ubicom32_expand_epilogue (void); -+extern int ubicom32_initial_elimination_offset (int, int); -+extern int ubicom32_regno_ok_for_base_p (int, int); -+extern bool ubicom32_hard_regno_mode_ok (unsigned int, enum machine_mode); -+extern int ubicom32_can_use_return_insn_p (void); -+extern rtx ubicom32_return_addr_rtx (int, rtx); -+extern void ubicom32_optimization_options (int, int); -+extern void ubicom32_override_options (void); -+extern bool ubicom32_match_cc_mode (rtx, enum machine_mode); -+ -+extern int ubicom32_reorg_completed; -+ ---- /dev/null -+++ b/gcc/config/ubicom32/ubicom32.c -@@ -0,0 +1,2881 @@ -+/* Subroutines for insn-output.c for Ubicom32 -+ -+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, -+ 2009 Free Software Foundation, Inc. -+ Contributed by Ubicom, Inc. -+ -+ This file is part of GCC. -+ -+ GCC is free software; you can redistribute it and/or modify it -+ under the terms of the GNU General Public License as published -+ by the Free Software Foundation; either version 3, or (at your -+ option) any later version. -+ -+ GCC is distributed in the hope that it will be useful, but WITHOUT -+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public -+ License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with GCC; see the file COPYING3. If not see -+ . */ -+ -+#include "config.h" -+#include "system.h" -+#include "coretypes.h" -+#include "tm.h" -+#include "rtl.h" -+#include "tree.h" -+#include "regs.h" -+#include "hard-reg-set.h" -+#include "real.h" -+#include "insn-config.h" -+#include "conditions.h" -+#include "insn-flags.h" -+#include "output.h" -+#include "insn-attr.h" -+#include "insn-codes.h" -+#include "flags.h" -+#include "recog.h" -+#include "expr.h" -+#include "function.h" -+#include "obstack.h" -+#include "toplev.h" -+#include "tm_p.h" -+#include "tm-constrs.h" -+#include "basic-block.h" -+#include "integrate.h" -+#include "target.h" -+#include "target-def.h" -+#include "reload.h" -+#include "df.h" -+#include "langhooks.h" -+#include "optabs.h" -+ -+static tree ubicom32_handle_fndecl_attribute (tree *, tree, tree, int, bool *); -+static void ubicom32_layout_frame (void); -+static void ubicom32_function_prologue (FILE *, HOST_WIDE_INT); -+static void ubicom32_function_epilogue (FILE *, HOST_WIDE_INT); -+static bool ubicom32_rtx_costs (rtx, int, int, int *, bool speed); -+static bool ubicom32_fixed_condition_code_regs (unsigned int *, -+ unsigned int *); -+static enum machine_mode ubicom32_cc_modes_compatible (enum machine_mode, -+ enum machine_mode); -+static int ubicom32_naked_function_p (void); -+static void ubicom32_machine_dependent_reorg (void); -+static bool ubicom32_assemble_integer (rtx, unsigned int, int); -+static void ubicom32_asm_init_sections (void); -+static int ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,tree, -+ bool); -+static bool ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, -+ enum machine_mode mode, const_tree type, -+ bool named ATTRIBUTE_UNUSED); -+static bool ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, -+ enum machine_mode mode, const_tree type, -+ bool named ATTRIBUTE_UNUSED); -+ -+static bool ubicom32_return_in_memory (const_tree type, -+ const_tree fntype ATTRIBUTE_UNUSED); -+static bool ubicom32_is_base_reg (rtx, int); -+static void ubicom32_init_builtins (void); -+static rtx ubicom32_expand_builtin (tree, rtx, rtx, enum machine_mode, int); -+static tree ubicom32_fold_builtin (tree, tree, bool); -+static int ubicom32_get_valid_offset_mask (enum machine_mode); -+static bool ubicom32_cannot_force_const_mem (rtx); -+ -+/* Case values threshold */ -+int ubicom32_case_values_threshold = 6; -+ -+/* Nonzero if this chip supports the Ubicom32 v3 ISA. */ -+int ubicom32_v3 = 1; -+ -+/* Nonzero if this chip supports the Ubicom32 v4 ISA. */ -+int ubicom32_v4 = 1; -+ -+/* Valid attributes: -+ naked - don't generate function prologue/epilogue and `ret' command. */ -+const struct attribute_spec ubicom32_attribute_table[] = -+{ -+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ -+ { "naked", 0, 0, true, false, false, ubicom32_handle_fndecl_attribute }, -+ { NULL, 0, 0, false, false, false, NULL } -+}; -+ -+#undef TARGET_ASM_FUNCTION_PROLOGUE -+#define TARGET_ASM_FUNCTION_PROLOGUE ubicom32_function_prologue -+ -+#undef TARGET_ASM_FUNCTION_EPILOGUE -+#define TARGET_ASM_FUNCTION_EPILOGUE ubicom32_function_epilogue -+ -+#undef TARGET_ATTRIBUTE_TABLE -+#define TARGET_ATTRIBUTE_TABLE ubicom32_attribute_table -+ -+/* All addresses cost the same amount. */ -+#undef TARGET_ADDRESS_COST -+#define TARGET_ADDRESS_COST hook_int_rtx_bool_0 -+ -+#undef TARGET_RTX_COSTS -+#define TARGET_RTX_COSTS ubicom32_rtx_costs -+ -+#undef TARGET_FIXED_CONDITION_CODE_REGS -+#define TARGET_FIXED_CONDITION_CODE_REGS ubicom32_fixed_condition_code_regs -+ -+#undef TARGET_CC_MODES_COMPATIBLE -+#define TARGET_CC_MODES_COMPATIBLE ubicom32_cc_modes_compatible -+ -+#undef TARGET_MACHINE_DEPENDENT_REORG -+#define TARGET_MACHINE_DEPENDENT_REORG ubicom32_machine_dependent_reorg -+ -+#undef TARGET_ASM_INTEGER -+#define TARGET_ASM_INTEGER ubicom32_assemble_integer -+ -+#undef TARGET_ASM_INIT_SECTIONS -+#define TARGET_ASM_INIT_SECTIONS ubicom32_asm_init_sections -+ -+#undef TARGET_ARG_PARTIAL_BYTES -+#define TARGET_ARG_PARTIAL_BYTES ubicom32_arg_partial_bytes -+ -+#undef TARGET_PASS_BY_REFERENCE -+#define TARGET_PASS_BY_REFERENCE ubicom32_pass_by_reference -+ -+#undef TARGET_CALLEE_COPIES -+#define TARGET_CALLEE_COPIES ubicom32_callee_copies -+ -+#undef TARGET_RETURN_IN_MEMORY -+#define TARGET_RETURN_IN_MEMORY ubicom32_return_in_memory -+ -+#undef TARGET_INIT_BUILTINS -+#define TARGET_INIT_BUILTINS ubicom32_init_builtins -+ -+#undef TARGET_EXPAND_BUILTIN -+#define TARGET_EXPAND_BUILTIN ubicom32_expand_builtin -+ -+#undef TARGET_FOLD_BUILTIN -+#define TARGET_FOLD_BUILTIN ubicom32_fold_builtin -+ -+#undef TARGET_CANNOT_FORCE_CONST_MEM -+#define TARGET_CANNOT_FORCE_CONST_MEM ubicom32_cannot_force_const_mem -+ -+struct gcc_target targetm = TARGET_INITIALIZER; -+ -+static char save_regs[FIRST_PSEUDO_REGISTER]; -+static int nregs; -+static int frame_size; -+int ubicom32_stack_size = 0; /* size of allocated stack (including frame) */ -+int ubicom32_can_use_calli_to_ret; -+ -+#define STACK_UNIT_BOUNDARY (STACK_BOUNDARY / BITS_PER_UNIT) -+#define ROUND_CALL_BLOCK_SIZE(BYTES) \ -+ (((BYTES) + (STACK_UNIT_BOUNDARY - 1)) & ~(STACK_UNIT_BOUNDARY - 1)) -+ -+/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we -+ must report the mode of the memory reference from PRINT_OPERAND to -+ PRINT_OPERAND_ADDRESS. */ -+enum machine_mode output_memory_reference_mode; -+ -+/* Flag for some split insns from the ubicom32.md. */ -+int ubicom32_reorg_completed; -+ -+enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER] = -+{ -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ DATA_REGS, -+ FDPIC_REG, -+ ADDRESS_REGS, -+ ADDRESS_REGS, -+ ADDRESS_REGS, -+ ADDRESS_REGS, -+ ADDRESS_REGS, -+ ADDRESS_REGS, -+ ADDRESS_REGS, -+ ACC_REGS, -+ ACC_LO_REGS, -+ ACC_REGS, -+ ACC_LO_REGS, -+ SOURCE3_REG, -+ ADDRESS_REGS, -+ NO_REGS, /* CC_REG must be NO_REGS */ -+ SPECIAL_REGS, -+ SPECIAL_REGS, -+ SPECIAL_REGS, -+ SPECIAL_REGS, -+ SPECIAL_REGS, -+ SPECIAL_REGS, -+ SPECIAL_REGS, -+ SPECIAL_REGS -+}; -+ -+rtx ubicom32_compare_op0; -+rtx ubicom32_compare_op1; -+ -+/* Handle command line option overrides. */ -+ -+void -+ubicom32_override_options (void) -+{ -+ flag_pic = 0; -+ -+ if (strcmp (ubicom32_arch_name, "ubicom32v1") == 0) { -+ /* If we have a version 1 architecture then we want to avoid using jump -+ tables. */ -+ ubicom32_case_values_threshold = 30000; -+ ubicom32_v3 = 0; -+ ubicom32_v4 = 0; -+ } else if (strcmp (ubicom32_arch_name, "ubicom32v2") == 0) { -+ ubicom32_v3 = 0; -+ ubicom32_v4 = 0; -+ } else if (strcmp (ubicom32_arch_name, "ubicom32v3") == 0) { -+ ubicom32_v3 = 1; -+ ubicom32_v4 = 0; -+ } else if (strcmp (ubicom32_arch_name, "ubicom32v4") == 0) { -+ ubicom32_v3 = 1; -+ ubicom32_v4 = 1; -+ } -+ -+ /* There is no single unaligned SI op for PIC code. Sometimes we -+ need to use ".4byte" and sometimes we need to use ".picptr". -+ See ubicom32_assemble_integer for details. */ -+ if (TARGET_FDPIC) -+ targetm.asm_out.unaligned_op.si = 0; -+} -+ -+void -+ubicom32_conditional_register_usage (void) -+{ -+ /* If we're using the old ipOS ABI we need to make D10 through D13 -+ caller-clobbered. */ -+ if (TARGET_IPOS_ABI) -+ { -+ call_used_regs[D10_REGNUM] = 1; -+ call_used_regs[D11_REGNUM] = 1; -+ call_used_regs[D12_REGNUM] = 1; -+ call_used_regs[D13_REGNUM] = 1; -+ } -+} -+ -+/* We have some number of optimizations that don't really work for the Ubicom32 -+ architecture so we deal with them here. */ -+ -+void -+ubicom32_optimization_options (int level ATTRIBUTE_UNUSED, -+ int size ATTRIBUTE_UNUSED) -+{ -+ /* The tree IVOPTs pass seems to do really bad things for the Ubicom32 -+ architecture - it tends to turn things that would happily use pre/post -+ increment/decrement into operations involving unecessary loop -+ indicies. */ -+ flag_ivopts = 0; -+ -+ /* We have problems where DSE at the RTL level misses partial stores -+ to the stack. For now we disable it to avoid this. */ -+ flag_dse = 0; -+} -+ -+/* Print operand X using operand code CODE to assembly language output file -+ FILE. */ -+ -+void -+ubicom32_print_operand (FILE *file, rtx x, int code) -+{ -+ switch (code) -+ { -+ case 'A': -+ /* Identify the correct accumulator to use. */ -+ if (REGNO (x) == ACC0_HI_REGNUM || REGNO (x) == ACC0_LO_REGNUM) -+ fprintf (file, "acc0"); -+ else if (REGNO (x) == ACC1_HI_REGNUM || REGNO (x) == ACC1_LO_REGNUM) -+ fprintf (file, "acc1"); -+ else -+ abort (); -+ break; -+ -+ case 'b': -+ case 'B': -+ { -+ enum machine_mode mode; -+ -+ mode = GET_MODE (XEXP (x, 0)); -+ -+ /* These are normal and reversed branches. */ -+ switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x))) -+ { -+ case NE: -+ fprintf (file, "ne"); -+ break; -+ -+ case EQ: -+ fprintf (file, "eq"); -+ break; -+ -+ case GE: -+ if (mode == CCSZNmode || mode == CCWZNmode) -+ fprintf (file, "pl"); -+ else -+ fprintf (file, "ge"); -+ break; -+ -+ case GT: -+ fprintf (file, "gt"); -+ break; -+ -+ case LE: -+ fprintf (file, "le"); -+ break; -+ -+ case LT: -+ if (mode == CCSZNmode || mode == CCWZNmode) -+ fprintf (file, "mi"); -+ else -+ fprintf (file, "lt"); -+ break; -+ -+ case GEU: -+ fprintf (file, "cs"); -+ break; -+ -+ case GTU: -+ fprintf (file, "hi"); -+ break; -+ -+ case LEU: -+ fprintf (file, "ls"); -+ break; -+ -+ case LTU: -+ fprintf (file, "cc"); -+ break; -+ -+ default: -+ abort (); -+ } -+ } -+ break; -+ -+ case 'C': -+ /* This is used for the operand to a call instruction; -+ if it's a REG, enclose it in parens, else output -+ the operand normally. */ -+ if (REG_P (x)) -+ { -+ fputc ('(', file); -+ ubicom32_print_operand (file, x, 0); -+ fputc (')', file); -+ } -+ else -+ ubicom32_print_operand (file, x, 0); -+ break; -+ -+ case 'd': -+ /* Bit operations we need bit numbers. */ -+ fprintf (file, "%d", exact_log2 (INTVAL (x))); -+ break; -+ -+ case 'D': -+ /* Bit operations we need bit numbers. */ -+ fprintf (file, "%d", exact_log2 (~ INTVAL (x))); -+ break; -+ -+ case 'E': -+ /* For lea, which we use to add address registers. -+ We don't want the '#' on a constant. */ -+ if (CONST_INT_P (x)) -+ { -+ fprintf (file, "%ld", INTVAL (x)); -+ break; -+ } -+ /* FALL THROUGH */ -+ -+ default: -+ switch (GET_CODE (x)) -+ { -+ case MEM: -+ output_memory_reference_mode = GET_MODE (x); -+ output_address (XEXP (x, 0)); -+ break; -+ -+ case PLUS: -+ output_address (x); -+ break; -+ -+ case REG: -+ fprintf (file, "%s", reg_names[REGNO (x)]); -+ break; -+ -+ case SUBREG: -+ fprintf (file, "%s", reg_names[subreg_regno (x)]); -+ break; -+ -+ /* This will only be single precision.... */ -+ case CONST_DOUBLE: -+ { -+ unsigned long val; -+ REAL_VALUE_TYPE rv; -+ -+ REAL_VALUE_FROM_CONST_DOUBLE (rv, x); -+ REAL_VALUE_TO_TARGET_SINGLE (rv, val); -+ fprintf (file, "0x%lx", val); -+ break; -+ } -+ -+ case CONST_INT: -+ case SYMBOL_REF: -+ case CONST: -+ case LABEL_REF: -+ case CODE_LABEL: -+ case LO_SUM: -+ ubicom32_print_operand_address (file, x); -+ break; -+ -+ case HIGH: -+ fprintf (file, "#%%hi("); -+ ubicom32_print_operand_address (file, XEXP (x, 0)); -+ fprintf (file, ")"); -+ break; -+ -+ case UNSPEC: -+ switch (XINT (x, 1)) -+ { -+ case UNSPEC_FDPIC_GOT: -+ fprintf (file, "#%%got_lo("); -+ ubicom32_print_operand_address (file, XVECEXP (x, 0, 0)); -+ fprintf (file, ")"); -+ break; -+ -+ case UNSPEC_FDPIC_GOT_FUNCDESC: -+ fprintf (file, "#%%got_funcdesc_lo("); -+ ubicom32_print_operand_address (file, XVECEXP (x, 0, 0)); -+ fprintf (file, ")"); -+ break; -+ -+ default: -+ abort (); -+ } -+ break; -+ -+ default: -+ abort (); -+ } -+ break; -+ } -+} -+ -+/* Output assembly language output for the address ADDR to FILE. */ -+ -+void -+ubicom32_print_operand_address (FILE *file, rtx addr) -+{ -+ switch (GET_CODE (addr)) -+ { -+ case POST_INC: -+ ubicom32_print_operand_address (file, XEXP (addr, 0)); -+ fprintf (file, "%d++", GET_MODE_SIZE (output_memory_reference_mode)); -+ break; -+ -+ case PRE_INC: -+ fprintf (file, "%d", GET_MODE_SIZE (output_memory_reference_mode)); -+ ubicom32_print_operand_address (file, XEXP (addr, 0)); -+ fprintf (file, "++"); -+ break; -+ -+ case POST_DEC: -+ ubicom32_print_operand_address (file, XEXP (addr, 0)); -+ fprintf (file, "%d++", -GET_MODE_SIZE (output_memory_reference_mode)); -+ break; -+ -+ case PRE_DEC: -+ fprintf (file, "%d", -GET_MODE_SIZE (output_memory_reference_mode)); -+ ubicom32_print_operand_address (file, XEXP (addr, 0)); -+ fprintf (file, "++"); -+ break; -+ -+ case POST_MODIFY: -+ ubicom32_print_operand_address (file, XEXP (addr, 0)); -+ fprintf (file, "%ld++", INTVAL (XEXP (XEXP (addr,1), 1))); -+ break; -+ -+ case PRE_MODIFY: -+ fprintf (file, "%ld", INTVAL (XEXP (XEXP (addr,1), 1))); -+ ubicom32_print_operand_address (file, XEXP (addr, 0)); -+ fprintf (file, "++"); -+ break; -+ -+ case REG: -+ fputc ('(', file); -+ fprintf (file, "%s", reg_names[REGNO (addr)]); -+ fputc (')', file); -+ break; -+ -+ case PLUS: -+ { -+ rtx base = XEXP (addr, 0); -+ rtx index = XEXP (addr, 1); -+ -+ /* Switch around addresses of the form index * scaling + base. */ -+ if (! ubicom32_is_base_reg (base, 1)) -+ { -+ rtx tmp = base; -+ base = index; -+ index = tmp; -+ } -+ -+ if (CONST_INT_P (index)) -+ { -+ fprintf (file, "%ld", INTVAL (index)); -+ fputc ('(', file); -+ fputs (reg_names[REGNO (base)], file); -+ } -+ else if (GET_CODE (index) == MULT -+ || REG_P (index)) -+ { -+ if (GET_CODE (index) == MULT) -+ index = XEXP (index, 0); -+ fputc ('(', file); -+ fputs (reg_names[REGNO (base)], file); -+ fputc (',', file); -+ fputs (reg_names[REGNO (index)], file); -+ } -+ else -+ abort (); -+ -+ fputc (')', file); -+ break; -+ } -+ -+ case LO_SUM: -+ fprintf (file, "%%lo("); -+ ubicom32_print_operand (file, XEXP (addr, 1), 'L'); -+ fprintf (file, ")("); -+ ubicom32_print_operand (file, XEXP (addr, 0), 0); -+ fprintf (file, ")"); -+ break; -+ -+ case CONST_INT: -+ fputc ('#', file); -+ output_addr_const (file, addr); -+ break; -+ -+ default: -+ output_addr_const (file, addr); -+ break; -+ } -+} -+ -+/* X and Y are two things to compare using CODE. Emit the compare insn and -+ return the rtx for the cc reg in the proper mode. */ -+ -+rtx -+ubicom32_gen_compare_reg (enum rtx_code code, rtx x, rtx y) -+{ -+ enum machine_mode mode = SELECT_CC_MODE (code, x, y); -+ rtx cc_reg; -+ -+ cc_reg = gen_rtx_REG (mode, CC_REGNUM); -+ -+ emit_insn (gen_rtx_SET (VOIDmode, cc_reg, -+ gen_rtx_COMPARE (mode, x, y))); -+ -+ return cc_reg; -+} -+ -+/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, -+ return the mode to be used for the comparison. */ -+ -+enum machine_mode -+ubicom32_select_cc_mode (enum rtx_code op, rtx x, rtx y) -+{ -+ /* Is this a short compare? */ -+ if (GET_MODE (x) == QImode -+ || GET_MODE (x) == HImode -+ || GET_MODE (y) == QImode -+ || GET_MODE (y) == HImode) -+ { -+ switch (op) -+ { -+ case EQ : -+ case NE : -+ return CCSZmode; -+ -+ case GE: -+ case LT: -+ if (y == const0_rtx) -+ return CCSZNmode; -+ -+ default : -+ return CCSmode; -+ } -+ } -+ -+ /* We have a word compare. */ -+ switch (op) -+ { -+ case EQ : -+ case NE : -+ return CCWZmode; -+ -+ case GE : -+ case LT : -+ if (y == const0_rtx) -+ return CCWZNmode; -+ -+ default : -+ return CCWmode; -+ } -+} -+ -+/* Return TRUE or FALSE depending on whether the first SET in INSN -+ has source and destination with matching CC modes, and that the -+ CC mode is at least as constrained as REQ_MODE. */ -+bool -+ubicom32_match_cc_mode (rtx insn, enum machine_mode req_mode) -+{ -+ rtx set; -+ enum machine_mode set_mode; -+ -+ set = PATTERN (insn); -+ if (GET_CODE (set) == PARALLEL) -+ set = XVECEXP (set, 0, 0); -+ gcc_assert (GET_CODE (set) == SET); -+ gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE); -+ -+ /* SET_MODE is the mode we have in the instruction. This must either -+ be the same or less restrictive that the required mode REQ_MODE. */ -+ set_mode = GET_MODE (SET_DEST (set)); -+ -+ switch (req_mode) -+ { -+ case CCSZmode: -+ if (set_mode != CCSZmode) -+ return 0; -+ break; -+ -+ case CCSZNmode: -+ if (set_mode != CCSZmode -+ && set_mode != CCSZNmode) -+ return 0; -+ break; -+ -+ case CCSmode: -+ if (set_mode != CCSmode -+ && set_mode != CCSZmode -+ && set_mode != CCSZNmode) -+ return 0; -+ break; -+ -+ case CCWZmode: -+ if (set_mode != CCWZmode) -+ return 0; -+ break; -+ -+ case CCWZNmode: -+ if (set_mode != CCWZmode -+ && set_mode != CCWZNmode) -+ return 0; -+ break; -+ -+ case CCWmode: -+ if (set_mode != CCWmode -+ && set_mode != CCWZmode -+ && set_mode != CCWZNmode) -+ return 0; -+ break; -+ -+ default: -+ gcc_unreachable (); -+ } -+ -+ return (GET_MODE (SET_SRC (set)) == set_mode); -+} -+ -+/* Replace the comparison OP0 CODE OP1 by a semantically equivalent one -+ that we can implement more efficiently. */ -+ -+void -+ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1) -+{ -+ /* If we have a REG and a MEM then compare the MEM with the REG and not -+ the other way round. */ -+ if (REG_P (*op0) && MEM_P (*op1)) -+ { -+ rtx tem = *op0; -+ *op0 = *op1; -+ *op1 = tem; -+ *code = swap_condition (*code); -+ return; -+ } -+ -+ /* If we have a REG and a CONST_INT then we may want to reverse things -+ if the constant can be represented as an "I" constraint. */ -+ if (REG_P (*op0) && CONST_INT_P (*op1) && satisfies_constraint_I (*op1)) -+ { -+ rtx tem = *op0; -+ *op0 = *op1; -+ *op1 = tem; -+ *code = swap_condition (*code); -+ return; -+ } -+} -+ -+/* Return the fixed registers used for condition codes. */ -+ -+static bool -+ubicom32_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) -+{ -+ *p1 = CC_REGNUM; -+ *p2 = INVALID_REGNUM; -+ -+ return true; -+} -+ -+/* If two condition code modes are compatible, return a condition code -+ mode which is compatible with both. Otherwise, return -+ VOIDmode. */ -+ -+static enum machine_mode -+ubicom32_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2) -+{ -+ if (m1 == m2) -+ return m1; -+ -+ if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC) -+ return VOIDmode; -+ -+ switch (m1) -+ { -+ case CCWmode: -+ if (m2 == CCWZNmode || m2 == CCWZmode) -+ return m1; -+ -+ return VOIDmode; -+ -+ case CCWZNmode: -+ if (m2 == CCWmode) -+ return m2; -+ -+ if (m2 == CCWZmode) -+ return m1; -+ -+ return VOIDmode; -+ -+ case CCWZmode: -+ if (m2 == CCWmode || m2 == CCWZNmode) -+ return m2; -+ -+ return VOIDmode; -+ -+ case CCSmode: -+ if (m2 == CCSZNmode || m2 == CCSZmode) -+ return m1; -+ -+ return VOIDmode; -+ -+ case CCSZNmode: -+ if (m2 == CCSmode) -+ return m2; -+ -+ if (m2 == CCSZmode) -+ return m1; -+ -+ return VOIDmode; -+ -+ case CCSZmode: -+ if (m2 == CCSmode || m2 == CCSZNmode) -+ return m2; -+ -+ return VOIDmode; -+ -+ default: -+ gcc_unreachable (); -+ } -+} -+ -+static rtx -+ubicom32_legitimize_fdpic_address_symbol (rtx orig, rtx reg, rtx fdpic_reg) -+{ -+ int unspec; -+ rtx got_offs; -+ rtx got_offs_scaled; -+ rtx plus_scaled; -+ rtx tmp; -+ rtx new_rtx; -+ -+ gcc_assert (reg != 0); -+ -+ if (GET_CODE (orig) == SYMBOL_REF -+ && SYMBOL_REF_FUNCTION_P (orig)) -+ unspec = UNSPEC_FDPIC_GOT_FUNCDESC; -+ else -+ unspec = UNSPEC_FDPIC_GOT; -+ -+ got_offs = gen_reg_rtx (SImode); -+ tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, orig), unspec); -+ emit_move_insn (got_offs, tmp); -+ -+ got_offs_scaled = gen_rtx_MULT (SImode, got_offs, GEN_INT (4)); -+ plus_scaled = gen_rtx_PLUS (Pmode, fdpic_reg, got_offs_scaled); -+ new_rtx = gen_const_mem (Pmode, plus_scaled); -+ emit_move_insn (reg, new_rtx); -+ -+ return reg; -+} -+ -+static rtx -+ubicom32_legitimize_fdpic_address (rtx orig, rtx reg, rtx fdpic_reg) -+{ -+ rtx addr = orig; -+ rtx new_rtx = orig; -+ -+ if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS) -+ { -+ rtx base; -+ -+ if (GET_CODE (addr) == CONST) -+ { -+ addr = XEXP (addr, 0); -+ gcc_assert (GET_CODE (addr) == PLUS); -+ } -+ -+ base = ubicom32_legitimize_fdpic_address_symbol (XEXP (addr, 0), reg, fdpic_reg); -+ return gen_rtx_PLUS (Pmode, base, XEXP (addr, 1)); -+ } -+ -+ return new_rtx; -+} -+ -+/* Code generation. */ -+ -+void -+ubicom32_expand_movsi (rtx *operands) -+{ -+ if (GET_CODE (operands[1]) == SYMBOL_REF -+ || (GET_CODE (operands[1]) == CONST -+ && GET_CODE (XEXP (operands[1], 0)) == PLUS -+ && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF) -+ || CONSTANT_ADDRESS_P (operands[1])) -+ { -+ if (TARGET_FDPIC) -+ { -+ rtx tmp; -+ rtx fdpic_reg; -+ -+ gcc_assert (can_create_pseudo_p ()); -+ tmp = gen_reg_rtx (Pmode); -+ fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM); -+ if (GET_CODE (operands[1]) == SYMBOL_REF -+ || GET_CODE (operands[1]) == LABEL_REF) -+ operands[1] = ubicom32_legitimize_fdpic_address_symbol (operands[1], tmp, fdpic_reg); -+ else -+ operands[1] = ubicom32_legitimize_fdpic_address (operands[1], tmp, fdpic_reg); -+ } -+ else -+ { -+ rtx tmp; -+ enum machine_mode mode; -+ -+ /* We want to avoid reusing operand 0 if we can because it limits -+ our ability to optimize later. */ -+ tmp = ! can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode); -+ -+ mode = GET_MODE (operands[0]); -+ emit_insn (gen_rtx_SET (VOIDmode, tmp, -+ gen_rtx_HIGH (mode, operands[1]))); -+ operands[1] = gen_rtx_LO_SUM (mode, tmp, operands[1]); -+ if (can_create_pseudo_p() && ! REG_P (operands[0])) -+ { -+ tmp = gen_reg_rtx (mode); -+ emit_insn (gen_rtx_SET (VOIDmode, tmp, operands[1])); -+ operands[1] = tmp; -+ } -+ } -+ } -+} -+ -+/* Emit code for addsi3. */ -+ -+void -+ubicom32_expand_addsi3 (rtx *operands) -+{ -+ rtx op, clob; -+ -+ if (can_create_pseudo_p ()) -+ { -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (SImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (SImode, operands[2]); -+ } -+ -+ /* Emit the instruction. */ -+ -+ op = gen_rtx_SET (VOIDmode, operands[0], -+ gen_rtx_PLUS (SImode, operands[1], operands[2])); -+ -+ if (! can_create_pseudo_p ()) -+ { -+ /* Reload doesn't know about the flags register, and doesn't know that -+ it doesn't want to clobber it. We can only do this with PLUS. */ -+ emit_insn (op); -+ } -+ else -+ { -+ clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM)); -+ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); -+ } -+} -+ -+/* Emit code for mulsi3. Return 1 if we have generated all the code -+ necessary to do the multiplication. */ -+ -+int -+ubicom32_emit_mult_sequence (rtx *operands) -+{ -+ if (! ubicom32_v4) -+ { -+ rtx a1, a1_1, a2; -+ rtx b1, b1_1, b2; -+ rtx mac_lo_rtx; -+ rtx t1, t2, t3; -+ -+ /* Give up if we cannot create new pseudos. */ -+ if (!can_create_pseudo_p()) -+ return 0; -+ -+ /* Synthesize 32-bit multiplication using 16-bit operations: -+ -+ a1 = highpart (a) -+ a2 = lowpart (a) -+ -+ b1 = highpart (b) -+ b2 = lowpart (b) -+ -+ c = (a1 * b1) << 32 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2 -+ = 0 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2 -+ ^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^ ^^^^^^^ -+ Signed Signed Unsigned */ -+ -+ if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))) -+ { -+ rtx op1; -+ -+ op1 = gen_reg_rtx (SImode); -+ emit_move_insn (op1, operands[1]); -+ operands[1] = op1; -+ } -+ -+ if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2]))) -+ { -+ rtx op2; -+ -+ op2 = gen_reg_rtx (SImode); -+ emit_move_insn (op2, operands[2]); -+ operands[2] = op2; -+ } -+ -+ /* a1 = highpart (a) */ -+ a1 = gen_reg_rtx (HImode); -+ a1_1 = gen_reg_rtx (SImode); -+ emit_insn (gen_ashrsi3 (a1_1, operands[1], GEN_INT (16))); -+ emit_move_insn (a1, gen_lowpart (HImode, a1_1)); -+ -+ /* a2 = lowpart (a) */ -+ a2 = gen_reg_rtx (HImode); -+ emit_move_insn (a2, gen_lowpart (HImode, operands[1])); -+ -+ /* b1 = highpart (b) */ -+ b1 = gen_reg_rtx (HImode); -+ b1_1 = gen_reg_rtx (SImode); -+ emit_insn (gen_ashrsi3 (b1_1, operands[2], GEN_INT (16))); -+ emit_move_insn (b1, gen_lowpart (HImode, b1_1)); -+ -+ /* b2 = lowpart (b) */ -+ b2 = gen_reg_rtx (HImode); -+ emit_move_insn (b2, gen_lowpart (HImode, operands[2])); -+ -+ /* t1 = (a1 * b2) << 16 */ -+ t1 = gen_reg_rtx (SImode); -+ mac_lo_rtx = gen_rtx_REG (SImode, ACC0_LO_REGNUM); -+ emit_insn (gen_mulhisi3 (mac_lo_rtx, a1, b2)); -+ emit_insn (gen_ashlsi3 (t1, mac_lo_rtx, GEN_INT (16))); -+ -+ /* t2 = (a2 * b1) << 16 */ -+ t2 = gen_reg_rtx (SImode); -+ emit_insn (gen_mulhisi3 (mac_lo_rtx, a2, b1)); -+ emit_insn (gen_ashlsi3 (t2, mac_lo_rtx, GEN_INT (16))); -+ -+ /* mac_lo = a2 * b2 */ -+ emit_insn (gen_umulhisi3 (mac_lo_rtx, a2, b2)); -+ -+ /* t3 = t1 + t2 */ -+ t3 = gen_reg_rtx (SImode); -+ emit_insn (gen_addsi3 (t3, t1, t2)); -+ -+ /* c = t3 + mac_lo_rtx */ -+ emit_insn (gen_addsi3 (operands[0], mac_lo_rtx, t3)); -+ -+ return 1; -+ } -+ else -+ { -+ rtx acc_rtx; -+ -+ /* Give up if we cannot create new pseudos. */ -+ if (!can_create_pseudo_p()) -+ return 0; -+ -+ if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))) -+ { -+ rtx op1; -+ -+ op1 = gen_reg_rtx (SImode); -+ emit_move_insn (op1, operands[1]); -+ operands[1] = op1; -+ } -+ -+ if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2]))) -+ { -+ rtx op2; -+ -+ op2 = gen_reg_rtx (SImode); -+ emit_move_insn (op2, operands[2]); -+ operands[2] = op2; -+ } -+ -+ acc_rtx = gen_reg_rtx (DImode); -+ emit_insn (gen_umulsidi3 (acc_rtx, operands[1], operands[2])); -+ emit_move_insn (operands[0], gen_lowpart (SImode, acc_rtx)); -+ -+ return 1; -+ } -+} -+ -+/* Move the integer value VAL into OPERANDS[0]. */ -+ -+void -+ubicom32_emit_move_const_int (rtx dest, rtx imm) -+{ -+ rtx xoperands[2]; -+ -+ xoperands[0] = dest; -+ xoperands[1] = imm; -+ -+ /* Treat mem destinations separately. Values must be explicitly sign -+ extended. */ -+ if (MEM_P (dest)) -+ { -+ rtx low_hword_mem; -+ rtx low_hword_addr; -+ -+ /* Emit shorter sequence for signed 7-bit quantities. */ -+ if (satisfies_constraint_I (imm)) -+ { -+ output_asm_insn ("move.4\t%0, %1", xoperands); -+ return; -+ } -+ -+ /* Special case for pushing constants. */ -+ if (GET_CODE (XEXP (dest, 0)) == PRE_DEC -+ && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx) -+ { -+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands); -+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands); -+ return; -+ } -+ -+ /* See if we can add 2 to the original address. This is only -+ possible if the original address is of the form REG or -+ REG+const. */ -+ low_hword_addr = plus_constant (XEXP (dest, 0), 2); -+ if (ubicom32_legitimate_address_p (HImode, low_hword_addr, 1)) -+ { -+ low_hword_mem = gen_rtx_MEM (HImode, low_hword_addr); -+ MEM_COPY_ATTRIBUTES (low_hword_mem, dest); -+ output_asm_insn ("movei\t%0, #%%hi(%E1)", xoperands); -+ xoperands[0] = low_hword_mem; -+ output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands); -+ return; -+ } -+ -+ /* The original address is too complex. We need to use a -+ scratch memory by (sp) and move that to the original -+ destination. */ -+ if (! reg_mentioned_p (stack_pointer_rtx, dest)) -+ { -+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands); -+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands); -+ output_asm_insn ("move.4\t%0, (sp)4++", xoperands); -+ return; -+ } -+ -+ /* Our address mentions the stack pointer so we need to -+ use our scratch data register here as well as scratch -+ memory. */ -+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands); -+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands); -+ output_asm_insn ("move.4\td15, (sp)4++", xoperands); -+ output_asm_insn ("move.4\t%0, d15", xoperands); -+ return; -+ } -+ -+ /* Move into registers are zero extended by default. */ -+ if (! REG_P (dest)) -+ abort (); -+ -+ if (satisfies_constraint_N (imm)) -+ { -+ output_asm_insn ("movei\t%0, %1", xoperands); -+ return; -+ } -+ -+ if (INTVAL (xoperands[1]) >= 0xff80 -+ && INTVAL (xoperands[1]) < 0x10000) -+ { -+ xoperands[1] = GEN_INT (INTVAL (xoperands[1]) - 0x10000); -+ output_asm_insn ("move.2\t%0, %1", xoperands); -+ return; -+ } -+ -+ if ((REGNO_REG_CLASS (REGNO (xoperands[0])) == ADDRESS_REGS -+ || REGNO_REG_CLASS (REGNO (xoperands[0])) == FDPIC_REG) -+ && ((INTVAL (xoperands[1]) & 0x80000000) == 0)) -+ { -+ output_asm_insn ("moveai\t%0, #%%hi(%E1)", xoperands); -+ if ((INTVAL (xoperands[1]) & 0x7f) != 0) -+ output_asm_insn ("lea.1\t%0, %%lo(%E1)(%0)", xoperands); -+ return; -+ } -+ -+ if ((INTVAL (xoperands[1]) & 0xffff0000) == 0) -+ { -+ output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands); -+ output_asm_insn ("move.2\t%0, %0", xoperands); -+ return; -+ } -+ -+ /* This is very expensive. The constant is so large that we -+ need to use the stack to do the load. */ -+ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands); -+ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands); -+ output_asm_insn ("move.4\t%0, (sp)4++", xoperands); -+} -+ -+/* Stack layout. Prologue/Epilogue. */ -+ -+static int save_regs_size; -+ -+static void -+ubicom32_layout_frame (void) -+{ -+ int regno; -+ -+ memset ((char *) &save_regs[0], 0, sizeof (save_regs)); -+ nregs = 0; -+ frame_size = get_frame_size (); -+ -+ if (frame_pointer_needed || df_regs_ever_live_p (FRAME_POINTER_REGNUM)) -+ { -+ save_regs[FRAME_POINTER_REGNUM] = 1; -+ ++nregs; -+ } -+ -+ if (current_function_is_leaf && ! df_regs_ever_live_p (LINK_REGNO)) -+ ubicom32_can_use_calli_to_ret = 1; -+ else -+ { -+ ubicom32_can_use_calli_to_ret = 0; -+ save_regs[LINK_REGNO] = 1; -+ ++nregs; -+ } -+ -+ /* Figure out which register(s) needs to be saved. */ -+ for (regno = 0; regno <= LAST_ADDRESS_REGNUM; regno++) -+ if (df_regs_ever_live_p(regno) -+ && ! call_used_regs[regno] -+ && ! fixed_regs[regno] -+ && ! save_regs[regno]) -+ { -+ save_regs[regno] = 1; -+ ++nregs; -+ } -+ -+ save_regs_size = 4 * nregs; -+} -+ -+static void -+ubicom32_emit_add_movsi (int regno, int adj) -+{ -+ rtx x; -+ rtx reg = gen_rtx_REG (SImode, regno); -+ -+ adj += 4; -+ if (adj > 8 * 4) -+ { -+ x = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, -+ GEN_INT (-adj))); -+ RTX_FRAME_RELATED_P (x) = 1; -+ x = emit_move_insn (gen_rtx_MEM (SImode, stack_pointer_rtx), reg); -+ } -+ else -+ { -+ rtx addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, -+ gen_rtx_PLUS (Pmode, stack_pointer_rtx, -+ GEN_INT (-adj))); -+ x = emit_move_insn (gen_rtx_MEM (SImode, addr), reg); -+ } -+ RTX_FRAME_RELATED_P (x) = 1; -+} -+ -+void -+ubicom32_expand_prologue (void) -+{ -+ rtx x; -+ int regno; -+ int outgoing_args_size = crtl->outgoing_args_size; -+ int adj; -+ -+ if (ubicom32_naked_function_p ()) -+ return; -+ -+ ubicom32_builtin_saveregs (); -+ -+ ubicom32_layout_frame (); -+ adj = (outgoing_args_size + get_frame_size () + save_regs_size -+ + crtl->args.pretend_args_size); -+ -+ if (!adj) -+ ; -+ else if (outgoing_args_size + save_regs_size < 508 -+ && get_frame_size () + save_regs_size > 508) -+ { -+ int i = 0; -+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, -+ GEN_INT (-adj)); -+ x = emit_insn (x); -+ RTX_FRAME_RELATED_P (x) = 1; -+ -+ for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno) -+ if (save_regs[regno] && regno != LINK_REGNO) -+ { -+ x = gen_rtx_MEM (SImode, -+ gen_rtx_PLUS (Pmode, -+ stack_pointer_rtx, -+ GEN_INT (i * 4 + outgoing_args_size))); -+ x = emit_move_insn (x, gen_rtx_REG (SImode, regno)); -+ RTX_FRAME_RELATED_P (x) = 1; -+ ++i; -+ } -+ if (save_regs[LINK_REGNO]) -+ { -+ x = gen_rtx_MEM (SImode, -+ gen_rtx_PLUS (Pmode, -+ stack_pointer_rtx, -+ GEN_INT (i * 4 + outgoing_args_size))); -+ x = emit_move_insn (x, gen_rtx_REG (SImode, LINK_REGNO)); -+ RTX_FRAME_RELATED_P (x) = 1; -+ } -+ } -+ else -+ { -+ int regno; -+ int adj = get_frame_size () + crtl->args.pretend_args_size; -+ int i = 0; -+ -+ if (save_regs[LINK_REGNO]) -+ { -+ ubicom32_emit_add_movsi (LINK_REGNO, adj); -+ ++i; -+ } -+ -+ for (regno = 0; regno <= LAST_ADDRESS_REGNUM; ++regno) -+ if (save_regs[regno] && regno != LINK_REGNO) -+ { -+ if (i) -+ { -+ rtx mem = gen_rtx_MEM (SImode, -+ gen_rtx_PRE_DEC (Pmode, -+ stack_pointer_rtx)); -+ x = emit_move_insn (mem, gen_rtx_REG (SImode, regno)); -+ RTX_FRAME_RELATED_P (x) = 1; -+ } -+ else -+ ubicom32_emit_add_movsi (regno, adj); -+ ++i; -+ } -+ -+ if (outgoing_args_size || (!i && adj)) -+ { -+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, -+ GEN_INT (-outgoing_args_size - (i ? 0 : adj))); -+ x = emit_insn (x); -+ RTX_FRAME_RELATED_P (x) = 1; -+ } -+ } -+ -+ if (frame_pointer_needed) -+ { -+ int fp_adj = save_regs_size + outgoing_args_size; -+ x = gen_addsi3 (frame_pointer_rtx, stack_pointer_rtx, -+ GEN_INT (fp_adj)); -+ x = emit_insn (x); -+ RTX_FRAME_RELATED_P (x) = 1; -+ } -+} -+ -+void -+ubicom32_expand_epilogue (void) -+{ -+ rtx x; -+ int regno; -+ int outgoing_args_size = crtl->outgoing_args_size; -+ int adj; -+ int i; -+ -+ if (ubicom32_naked_function_p ()) -+ { -+ emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode, -+ LINK_REGNO))); -+ return; -+ } -+ -+ if (cfun->calls_alloca) -+ { -+ x = gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx, -+ GEN_INT (-save_regs_size)); -+ emit_insn (x); -+ outgoing_args_size = 0; -+ } -+ -+ if (outgoing_args_size) -+ { -+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, -+ GEN_INT (outgoing_args_size)); -+ emit_insn (x); -+ } -+ -+ i = 0; -+ for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno) -+ if (save_regs[regno] && regno != LINK_REGNO) -+ { -+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx)); -+ emit_move_insn (gen_rtx_REG (SImode, regno), x); -+ ++i; -+ } -+ -+ /* Do we have to adjust the stack after we've finished restoring regs? */ -+ adj = get_frame_size() + crtl->args.pretend_args_size; -+ if (cfun->stdarg) -+ adj += UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD; -+ -+#if 0 -+ if (crtl->calls_eh_return && 0) -+ { -+ if (save_regs[LINK_REGNO]) -+ { -+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx)); -+ emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x); -+ } -+ -+ if (adj) -+ { -+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, -+ GEN_INT (adj)); -+ x = emit_insn (x); -+ } -+ -+ /* Perform the additional bump for __throw. */ -+ emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, -+ EH_RETURN_STACKADJ_RTX)); -+ emit_jump_insn (gen_eh_return_internal ()); -+ return; -+ } -+#endif -+ -+ if (save_regs[LINK_REGNO]) -+ { -+ if (adj >= 4 && adj <= (6 * 4)) -+ { -+ x = GEN_INT (adj + 4); -+ emit_jump_insn (gen_return_from_post_modify_sp (x)); -+ return; -+ } -+ -+ if (adj == 0) -+ { -+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx)); -+ emit_jump_insn (gen_return_internal (x)); -+ return; -+ } -+ -+ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx)); -+ emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x); -+ } -+ -+ if (adj) -+ { -+ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, -+ GEN_INT (adj)); -+ x = emit_insn (x); -+ adj = 0; -+ } -+ -+ /* Given that we've just done all the hard work here we may as well use -+ a calli to return. */ -+ ubicom32_can_use_calli_to_ret = 1; -+ emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode, LINK_REGNO))); -+} -+ -+void -+ubicom32_expand_call_fdpic (rtx *operands) -+{ -+ rtx c; -+ rtx addr; -+ rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM); -+ -+ addr = XEXP (operands[0], 0); -+ -+ c = gen_call_fdpic (addr, operands[1], fdpic_reg); -+ emit_call_insn (c); -+} -+ -+void -+ubicom32_expand_call_value_fdpic (rtx *operands) -+{ -+ rtx c; -+ rtx addr; -+ rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM); -+ -+ addr = XEXP (operands[1], 0); -+ -+ c = gen_call_value_fdpic (operands[0], addr, operands[2], fdpic_reg); -+ emit_call_insn (c); -+} -+ -+void -+ubicom32_expand_eh_return (rtx *operands) -+{ -+ if (REG_P (operands[0]) -+ || REGNO (operands[0]) != EH_RETURN_STACKADJ_REGNO) -+ { -+ rtx sp = EH_RETURN_STACKADJ_RTX; -+ emit_move_insn (sp, operands[0]); -+ operands[0] = sp; -+ } -+ -+ if (REG_P (operands[1]) -+ || REGNO (operands[1]) != EH_RETURN_HANDLER_REGNO) -+ { -+ rtx ra = EH_RETURN_HANDLER_RTX; -+ emit_move_insn (ra, operands[1]); -+ operands[1] = ra; -+ } -+} -+ -+/* Compute the offsets between eliminable registers. */ -+ -+int -+ubicom32_initial_elimination_offset (int from, int to) -+{ -+ ubicom32_layout_frame (); -+ if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM) -+ return save_regs_size + crtl->outgoing_args_size; -+ -+ if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM) -+ return get_frame_size ()/* + save_regs_size */; -+ -+ if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM) -+ return get_frame_size () -+ + crtl->outgoing_args_size -+ + save_regs_size; -+ -+ return 0; -+} -+ -+/* Return 1 if it is appropriate to emit `ret' instructions in the -+ body of a function. Do this only if the epilogue is simple, needing a -+ couple of insns. Prior to reloading, we can't tell how many registers -+ must be saved, so return 0 then. Return 0 if there is no frame -+ marker to de-allocate. -+ -+ If NON_SAVING_SETJMP is defined and true, then it is not possible -+ for the epilogue to be simple, so return 0. This is a special case -+ since NON_SAVING_SETJMP will not cause regs_ever_live to change -+ until final, but jump_optimize may need to know sooner if a -+ `return' is OK. */ -+ -+int -+ubicom32_can_use_return_insn_p (void) -+{ -+ if (! reload_completed || frame_pointer_needed) -+ return 0; -+ -+ return 1; -+} -+ -+/* Attributes and CC handling. */ -+ -+/* Handle an attribute requiring a FUNCTION_DECL; arguments as in -+ struct attribute_spec.handler. */ -+static tree -+ubicom32_handle_fndecl_attribute (tree *node, tree name, -+ tree args ATTRIBUTE_UNUSED, -+ int flags ATTRIBUTE_UNUSED, -+ bool *no_add_attrs) -+{ -+ if (TREE_CODE (*node) != FUNCTION_DECL) -+ { -+ warning ("'%s' attribute only applies to functions", -+ IDENTIFIER_POINTER (name)); -+ *no_add_attrs = true; -+ } -+ -+ return NULL_TREE; -+} -+ -+/* A C expression that places additional restrictions on the register class to -+ use when it is necessary to copy value X into a register in class CLASS. -+ The value is a register class; perhaps CLASS, or perhaps another, smaller -+ class. On many machines, the following definition is safe: -+ -+ #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS -+ -+ Sometimes returning a more restrictive class makes better code. For -+ example, on the 68000, when X is an integer constant that is in range for a -+ `moveq' instruction, the value of this macro is always `DATA_REGS' as long -+ as CLASS includes the data registers. Requiring a data register guarantees -+ that a `moveq' will be used. -+ -+ If X is a `const_double', by returning `NO_REGS' you can force X into a -+ memory constant. This is useful on certain machines where immediate -+ floating values cannot be loaded into certain kinds of registers. */ -+ -+enum reg_class -+ubicom32_preferred_reload_class (rtx x, enum reg_class class) -+{ -+ /* If a symbolic constant, HIGH or a PLUS is reloaded, -+ it is most likely being used as an address, so -+ prefer ADDRESS_REGS. If 'class' is not a superset -+ of ADDRESS_REGS, e.g. DATA_REGS, then reject this reload. */ -+ if (GET_CODE (x) == PLUS -+ || GET_CODE (x) == HIGH -+ || GET_CODE (x) == LABEL_REF -+ || GET_CODE (x) == SYMBOL_REF -+ || GET_CODE (x) == CONST) -+ { -+ if (reg_class_subset_p (ALL_ADDRESS_REGS, class)) -+ return ALL_ADDRESS_REGS; -+ -+ return NO_REGS; -+ } -+ -+ return class; -+} -+ -+/* Function arguments and varargs. */ -+ -+int -+ubicom32_reg_parm_stack_space (tree fndecl) -+{ -+ return 0; -+ -+ if (fndecl -+ && TYPE_ARG_TYPES (TREE_TYPE (fndecl)) != 0 -+ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (TREE_TYPE (fndecl)))) -+ != void_type_node)) -+ return UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD; -+ -+ return 0; -+} -+ -+/* Flush the argument registers to the stack for a stdarg function; -+ return the new argument pointer. */ -+ -+rtx -+ubicom32_builtin_saveregs (void) -+{ -+ int regno; -+ -+ if (! cfun->stdarg) -+ return 0; -+ -+ for (regno = UBICOM32_FUNCTION_ARG_REGS - 1; regno >= 0; --regno) -+ emit_move_insn (gen_rtx_MEM (SImode, -+ gen_rtx_PRE_DEC (SImode, -+ stack_pointer_rtx)), -+ gen_rtx_REG (SImode, regno)); -+ -+ return stack_pointer_rtx; -+} -+ -+void -+ubicom32_va_start (tree valist, rtx nextarg) -+{ -+ std_expand_builtin_va_start (valist, nextarg); -+} -+ -+rtx -+ubicom32_va_arg (tree valist, tree type) -+{ -+ HOST_WIDE_INT size, rsize; -+ tree addr, incr, tmp; -+ rtx addr_rtx; -+ int indirect = 0; -+ -+ /* Round up sizeof(type) to a word. */ -+ size = int_size_in_bytes (type); -+ rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD; -+ -+ /* Large types are passed by reference. */ -+ if (size > 8) -+ { -+ indirect = 1; -+ size = rsize = UNITS_PER_WORD; -+ } -+ -+ incr = valist; -+ addr = incr = save_expr (incr); -+ -+ /* FIXME Nat's version - is it correct? */ -+ tmp = fold_convert (ptr_type_node, size_int (rsize)); -+ tmp = build2 (PLUS_EXPR, ptr_type_node, incr, tmp); -+ incr = fold (tmp); -+ -+ /* FIXME Nat's version - is it correct? */ -+ incr = build2 (MODIFY_EXPR, ptr_type_node, valist, incr); -+ -+ TREE_SIDE_EFFECTS (incr) = 1; -+ expand_expr (incr, const0_rtx, VOIDmode, EXPAND_NORMAL); -+ -+ addr_rtx = expand_expr (addr, NULL, Pmode, EXPAND_NORMAL); -+ -+ if (size < UNITS_PER_WORD) -+ emit_insn (gen_addsi3 (addr_rtx, addr_rtx, -+ GEN_INT (UNITS_PER_WORD - size))); -+ -+ if (indirect) -+ { -+ addr_rtx = force_reg (Pmode, addr_rtx); -+ addr_rtx = gen_rtx_MEM (Pmode, addr_rtx); -+ set_mem_alias_set (addr_rtx, get_varargs_alias_set ()); -+ } -+ -+ return addr_rtx; -+} -+ -+void -+init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname, -+ int indirect ATTRIBUTE_UNUSED) -+{ -+ cum->nbytes = 0; -+ -+ if (!libname) -+ { -+ cum->stdarg = (TYPE_ARG_TYPES (fntype) != 0 -+ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) -+ != void_type_node)); -+ } -+} -+ -+/* Return an RTX to represent where a value in mode MODE will be passed -+ to a function. If the result is 0, the argument will be pushed. */ -+ -+rtx -+function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, -+ int named ATTRIBUTE_UNUSED) -+{ -+ rtx result = 0; -+ int size, align; -+ int nregs = UBICOM32_FUNCTION_ARG_REGS; -+ -+ /* Figure out the size of the object to be passed. */ -+ if (mode == BLKmode) -+ size = int_size_in_bytes (type); -+ else -+ size = GET_MODE_SIZE (mode); -+ -+ /* Figure out the alignment of the object to be passed. */ -+ align = size; -+ -+ cum->nbytes = (cum->nbytes + 3) & ~3; -+ -+ /* Don't pass this arg via a register if all the argument registers -+ are used up. */ -+ if (cum->nbytes >= nregs * UNITS_PER_WORD) -+ return 0; -+ -+ /* Don't pass this arg via a register if it would be split between -+ registers and memory. */ -+ result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD); -+ -+ return result; -+} -+ -+rtx -+function_incoming_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, -+ int named ATTRIBUTE_UNUSED) -+{ -+ if (cfun->stdarg) -+ return 0; -+ -+ return function_arg (cum, mode, type, named); -+} -+ -+ -+/* Implement hook TARGET_ARG_PARTIAL_BYTES. -+ -+ Returns the number of bytes at the beginning of an argument that -+ must be put in registers. The value must be zero for arguments -+ that are passed entirely in registers or that are entirely pushed -+ on the stack. */ -+static int -+ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode, -+ tree type, bool named ATTRIBUTE_UNUSED) -+{ -+ int size, diff; -+ -+ int nregs = UBICOM32_FUNCTION_ARG_REGS; -+ -+ /* round up to full word */ -+ cum->nbytes = (cum->nbytes + 3) & ~3; -+ -+ if (targetm.calls.pass_by_reference (cum, mode, type, named)) -+ return 0; -+ -+ /* number of bytes left in registers */ -+ diff = nregs*UNITS_PER_WORD - cum->nbytes; -+ -+ /* regs all used up */ -+ if (diff <= 0) -+ return 0; -+ -+ /* Figure out the size of the object to be passed. */ -+ if (mode == BLKmode) -+ size = int_size_in_bytes (type); -+ else -+ size = GET_MODE_SIZE (mode); -+ -+ /* enough space left in regs for size */ -+ if (size <= diff) -+ return 0; -+ -+ /* put diff bytes in regs and rest on stack */ -+ return diff; -+ -+} -+ -+static bool -+ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, -+ enum machine_mode mode, const_tree type, -+ bool named ATTRIBUTE_UNUSED) -+{ -+ int size; -+ -+ if (type) -+ size = int_size_in_bytes (type); -+ else -+ size = GET_MODE_SIZE (mode); -+ -+ return size <= 0 || size > 8; -+} -+ -+static bool -+ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, -+ enum machine_mode mode, const_tree type, -+ bool named ATTRIBUTE_UNUSED) -+{ -+ int size; -+ -+ if (type) -+ size = int_size_in_bytes (type); -+ else -+ size = GET_MODE_SIZE (mode); -+ -+ return size <= 0 || size > 8; -+} -+ -+static bool -+ubicom32_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) -+{ -+ int size, mode; -+ -+ if (!type) -+ return true; -+ -+ size = int_size_in_bytes(type); -+ if (size > 8) -+ return true; -+ -+ mode = TYPE_MODE(type); -+ if (mode == BLKmode) -+ return true; -+ -+ return false; -+} -+ -+/* Return true if a given register number REGNO is acceptable for machine -+ mode MODE. */ -+bool -+ubicom32_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode) -+{ -+ /* If we're not at least a v3 ISA then ACC0_HI is only 16 bits. */ -+ if (! ubicom32_v3) -+ { -+ if (regno == ACC0_HI_REGNUM) -+ return (mode == QImode || mode == HImode); -+ } -+ -+ /* Only the flags reg can hold CCmode. */ -+ if (GET_MODE_CLASS (mode) == MODE_CC) -+ return regno == CC_REGNUM; -+ -+ /* We restrict the choice of DImode registers to only being address, -+ data or accumulator regs. We also restrict them to only start on -+ even register numbers so we never have to worry about partial -+ overlaps between operands in instructions. */ -+ if (GET_MODE_SIZE (mode) > 4) -+ { -+ switch (REGNO_REG_CLASS (regno)) -+ { -+ case ADDRESS_REGS: -+ case DATA_REGS: -+ case ACC_REGS: -+ return (regno & 1) == 0; -+ -+ default: -+ return false; -+ } -+ } -+ -+ return true; -+} -+ -+/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx -+ and check its validity for a certain class. -+ We have two alternate definitions for each of them. -+ The usual definition accepts all pseudo regs; the other rejects -+ them unless they have been allocated suitable hard regs. -+ The symbol REG_OK_STRICT causes the latter definition to be used. -+ -+ Most source files want to accept pseudo regs in the hope that -+ they will get allocated to the class that the insn wants them to be in. -+ Source files for reload pass need to be strict. -+ After reload, it makes no difference, since pseudo regs have -+ been eliminated by then. -+ -+ These assume that REGNO is a hard or pseudo reg number. -+ They give nonzero only if REGNO is a hard reg of the suitable class -+ or a pseudo reg currently allocated to a suitable hard reg. -+ Since they use reg_renumber, they are safe only once reg_renumber -+ has been allocated, which happens in local-alloc.c. */ -+ -+int -+ubicom32_regno_ok_for_base_p (int regno, int strict) -+{ -+ if ((regno >= FIRST_ADDRESS_REGNUM && regno <= STACK_POINTER_REGNUM) -+ || (!strict -+ && (regno >= FIRST_PSEUDO_REGISTER -+ || regno == ARG_POINTER_REGNUM)) -+ || (strict && (reg_renumber -+ && reg_renumber[regno] >= FIRST_ADDRESS_REGNUM -+ && reg_renumber[regno] <= STACK_POINTER_REGNUM))) -+ return 1; -+ -+ return 0; -+} -+ -+int -+ubicom32_regno_ok_for_index_p (int regno, int strict) -+{ -+ if ((regno >= FIRST_DATA_REGNUM && regno <= LAST_DATA_REGNUM) -+ || (!strict && regno >= FIRST_PSEUDO_REGISTER) -+ || (strict && (reg_renumber -+ && reg_renumber[regno] >= FIRST_DATA_REGNUM -+ && reg_renumber[regno] <= LAST_DATA_REGNUM))) -+ return 1; -+ -+ return 0; -+} -+ -+/* Returns 1 if X is a valid index register. STRICT is 1 if only hard -+ registers should be accepted. Accept either REG or SUBREG where a -+ register is valid. */ -+ -+static bool -+ubicom32_is_index_reg (rtx x, int strict) -+{ -+ if ((REG_P (x) && ubicom32_regno_ok_for_index_p (REGNO (x), strict)) -+ || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)) -+ && ubicom32_regno_ok_for_index_p (REGNO (SUBREG_REG (x)), strict))) -+ return true; -+ -+ return false; -+} -+ -+/* Return 1 if X is a valid index for a memory address. */ -+ -+static bool -+ubicom32_is_index_expr (enum machine_mode mode, rtx x, int strict) -+{ -+ /* Immediate index must be an unsigned 7-bit offset multiple of 1, 2 -+ or 4 depending on mode. */ -+ if (CONST_INT_P (x)) -+ { -+ switch (mode) -+ { -+ case QImode: -+ return satisfies_constraint_J (x); -+ -+ case HImode: -+ return satisfies_constraint_K (x); -+ -+ case SImode: -+ case SFmode: -+ return satisfies_constraint_L (x); -+ -+ case DImode: -+ return satisfies_constraint_L (x) -+ && satisfies_constraint_L (GEN_INT (INTVAL (x) + 4)); -+ -+ default: -+ return false; -+ } -+ } -+ -+ if (mode != SImode && mode != HImode && mode != QImode) -+ return false; -+ -+ /* Register index scaled by mode of operand: REG + REG * modesize. -+ Valid scaled index registers are: -+ -+ SImode (mult (dreg) 4)) -+ HImode (mult (dreg) 2)) -+ QImode (mult (dreg) 1)) */ -+ if (GET_CODE (x) == MULT -+ && ubicom32_is_index_reg (XEXP (x, 0), strict) -+ && CONST_INT_P (XEXP (x, 1)) -+ && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT)GET_MODE_SIZE (mode)) -+ return true; -+ -+ /* REG + REG addressing is allowed for QImode. */ -+ if (ubicom32_is_index_reg (x, strict) && mode == QImode) -+ return true; -+ -+ return false; -+} -+ -+static bool -+ubicom32_is_valid_offset (enum machine_mode mode, HOST_WIDE_INT offs) -+{ -+ if (offs < 0) -+ return false; -+ -+ switch (mode) -+ { -+ case QImode: -+ return offs <= 127; -+ -+ case HImode: -+ return offs <= 254; -+ -+ case SImode: -+ case SFmode: -+ return offs <= 508; -+ -+ case DImode: -+ return offs <= 504; -+ -+ default: -+ return false; -+ } -+} -+ -+static int -+ubicom32_get_valid_offset_mask (enum machine_mode mode) -+{ -+ switch (mode) -+ { -+ case QImode: -+ return 127; -+ -+ case HImode: -+ return 255; -+ -+ case SImode: -+ case SFmode: -+ return 511; -+ -+ case DImode: -+ return 255; -+ -+ default: -+ return 0; -+ } -+} -+ -+/* Returns 1 if X is a valid base register. STRICT is 1 if only hard -+ registers should be accepted. Accept either REG or SUBREG where a -+ register is valid. */ -+ -+static bool -+ubicom32_is_base_reg (rtx x, int strict) -+{ -+ if ((REG_P (x) && ubicom32_regno_ok_for_base_p (REGNO (x), strict)) -+ || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)) -+ && ubicom32_regno_ok_for_base_p (REGNO (SUBREG_REG (x)), strict))) -+ return true; -+ -+ return false; -+} -+ -+static bool -+ubicom32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED) -+{ -+ return TARGET_FDPIC; -+} -+ -+/* Determine if X is a legitimate constant. */ -+ -+bool -+ubicom32_legitimate_constant_p (rtx x) -+{ -+ /* Among its other duties, LEGITIMATE_CONSTANT_P decides whether -+ a constant can be entered into reg_equiv_constant[]. If we return true, -+ reload can create new instances of the constant whenever it likes. -+ -+ The idea is therefore to accept as many constants as possible (to give -+ reload more freedom) while rejecting constants that can only be created -+ at certain times. In particular, anything with a symbolic component will -+ require use of the pseudo FDPIC register, which is only available before -+ reload. */ -+ if (TARGET_FDPIC) -+ { -+ if (GET_CODE (x) == SYMBOL_REF -+ || (GET_CODE (x) == CONST -+ && GET_CODE (XEXP (x, 0)) == PLUS -+ && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF) -+ || CONSTANT_ADDRESS_P (x)) -+ return false; -+ -+ return true; -+ } -+ -+ /* For non-PIC code anything goes! */ -+ return true; -+} -+ -+/* Address validation. */ -+ -+bool -+ubicom32_legitimate_address_p (enum machine_mode mode, rtx x, int strict) -+{ -+ if (TARGET_DEBUG_ADDRESS) -+ { -+ fprintf (stderr, "\n==> GO_IF_LEGITIMATE_ADDRESS%s\n", -+ (strict) ? " (STRICT)" : ""); -+ debug_rtx (x); -+ } -+ -+ if (CONSTANT_ADDRESS_P (x)) -+ return false; -+ -+ if (ubicom32_is_base_reg (x, strict)) -+ return true; -+ -+ if ((GET_CODE (x) == POST_INC -+ || GET_CODE (x) == PRE_INC -+ || GET_CODE (x) == POST_DEC -+ || GET_CODE (x) == PRE_DEC) -+ && REG_P (XEXP (x, 0)) -+ && ubicom32_is_base_reg (XEXP (x, 0), strict) -+ && mode != DImode) -+ return true; -+ -+ if ((GET_CODE (x) == PRE_MODIFY || GET_CODE (x) == POST_MODIFY) -+ && ubicom32_is_base_reg (XEXP (x, 0), strict) -+ && GET_CODE (XEXP (x, 1)) == PLUS -+ && rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0)) -+ && CONST_INT_P (XEXP (XEXP (x, 1), 1)) -+ && mode != DImode) -+ { -+ HOST_WIDE_INT disp = INTVAL (XEXP (XEXP (x, 1), 1)); -+ switch (mode) -+ { -+ case QImode: -+ return disp >= -8 && disp <= 7; -+ -+ case HImode: -+ return disp >= -16 && disp <= 14 && ! (disp & 1); -+ -+ case SImode: -+ return disp >= -32 && disp <= 28 && ! (disp & 3); -+ -+ default: -+ return false; -+ } -+ } -+ -+ /* Accept base + index * scale. */ -+ if (GET_CODE (x) == PLUS -+ && ubicom32_is_base_reg (XEXP (x, 0), strict) -+ && ubicom32_is_index_expr (mode, XEXP (x, 1), strict)) -+ return true; -+ -+ /* Accept index * scale + base. */ -+ if (GET_CODE (x) == PLUS -+ && ubicom32_is_base_reg (XEXP (x, 1), strict) -+ && ubicom32_is_index_expr (mode, XEXP (x, 0), strict)) -+ return true; -+ -+ if (! TARGET_FDPIC) -+ { -+ /* Accept (lo_sum (reg) (symbol_ref)) that can be used as a mem+7bits -+ displacement operand: -+ -+ moveai a1, #%hi(SYM) -+ move.4 d3, %lo(SYM)(a1) */ -+ if (GET_CODE (x) == LO_SUM -+ && ubicom32_is_base_reg (XEXP (x, 0), strict) -+ && (GET_CODE (XEXP (x, 1)) == SYMBOL_REF -+ || GET_CODE (XEXP (x, 1)) == LABEL_REF /* FIXME: wrong */) -+ && mode != DImode) -+ return true; -+ } -+ -+ if (TARGET_DEBUG_ADDRESS) -+ fprintf (stderr, "\nNot a legitimate address.\n"); -+ -+ return false; -+} -+ -+rtx -+ubicom32_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, -+ enum machine_mode mode) -+{ -+ if (mode == BLKmode) -+ return NULL_RTX; -+ -+ if (GET_CODE (x) == PLUS -+ && REG_P (XEXP (x, 0)) -+ && ! REGNO_PTR_FRAME_P (REGNO (XEXP (x, 0))) -+ && CONST_INT_P (XEXP (x, 1)) -+ && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (x, 1)))) -+ { -+ rtx base; -+ rtx plus; -+ rtx new_rtx; -+ HOST_WIDE_INT val = INTVAL (XEXP (x, 1)); -+ HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode); -+ HOST_WIDE_INT high = val ^ low; -+ -+ if (val < 0) -+ return NULL_RTX; -+ -+ if (! low) -+ return NULL_RTX; -+ -+ /* Reload the high part into a base reg; leave the low part -+ in the mem directly. */ -+ base = XEXP (x, 0); -+ if (! ubicom32_is_base_reg (base, 0)) -+ base = copy_to_mode_reg (Pmode, base); -+ -+ plus = expand_simple_binop (Pmode, PLUS, -+ gen_int_mode (high, Pmode), -+ base, NULL, 0, OPTAB_WIDEN); -+ new_rtx = plus_constant (plus, low); -+ -+ return new_rtx; -+ } -+ -+ return NULL_RTX; -+} -+ -+/* Try a machine-dependent way of reloading an illegitimate address AD -+ operand. If we find one, push the reload and and return the new address. -+ -+ MODE is the mode of the enclosing MEM. OPNUM is the operand number -+ and TYPE is the reload type of the current reload. */ -+ -+rtx -+ubicom32_legitimize_reload_address (rtx ad, enum machine_mode mode, -+ int opnum, int type) -+{ -+ /* Is this an address that we've already fixed up? If it is then -+ recognize it and move on. */ -+ if (GET_CODE (ad) == PLUS -+ && GET_CODE (XEXP (ad, 0)) == PLUS -+ && REG_P (XEXP (XEXP (ad, 0), 0)) -+ && CONST_INT_P (XEXP (XEXP (ad, 0), 1)) -+ && CONST_INT_P (XEXP (ad, 1))) -+ { -+ push_reload (XEXP (ad, 0), NULL_RTX, &XEXP (ad, 0), NULL, -+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, -+ opnum, (enum reload_type) type); -+ return ad; -+ } -+ -+ /* Have we got an address where the offset is simply out of range? If -+ yes then reload the range as a high part and smaller offset. */ -+ if (GET_CODE (ad) == PLUS -+ && REG_P (XEXP (ad, 0)) -+ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER -+ && REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0))) -+ && CONST_INT_P (XEXP (ad, 1)) -+ && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (ad, 1)))) -+ { -+ rtx temp; -+ rtx new_rtx; -+ -+ HOST_WIDE_INT val = INTVAL (XEXP (ad, 1)); -+ HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode); -+ HOST_WIDE_INT high = val ^ low; -+ -+ /* Reload the high part into a base reg; leave the low part -+ in the mem directly. */ -+ temp = gen_rtx_PLUS (Pmode, XEXP (ad, 0), GEN_INT (high)); -+ new_rtx = gen_rtx_PLUS (Pmode, temp, GEN_INT (low)); -+ -+ push_reload (XEXP (new_rtx, 0), NULL_RTX, &XEXP (new_rtx, 0), NULL, -+ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, -+ opnum, (enum reload_type) type); -+ return new_rtx; -+ } -+ -+ /* If we're presented with an pre/post inc/dec then we must force this -+ to be done in an address register. The register allocator should -+ work this out for itself but at times ends up trying to use the wrong -+ class. If we get the wrong class then reload will end up generating -+ at least 3 instructions whereas this way we can hopefully keep it to -+ just 2. */ -+ if ((GET_CODE (ad) == POST_INC -+ || GET_CODE (ad) == PRE_INC -+ || GET_CODE (ad) == POST_DEC -+ || GET_CODE (ad) == PRE_DEC) -+ && REG_P (XEXP (ad, 0)) -+ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER -+ && ! REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0)))) -+ { -+ push_reload (XEXP (ad, 0), XEXP (ad, 0), &XEXP (ad, 0), &XEXP (ad, 0), -+ BASE_REG_CLASS, GET_MODE (XEXP (ad, 0)), GET_MODE (XEXP (ad, 0)), 0, 0, -+ opnum, RELOAD_OTHER); -+ return ad; -+ } -+ -+ return NULL_RTX; -+} -+ -+/* Compute a (partial) cost for rtx X. Return true if the complete -+ cost has been computed, and false if subexpressions should be -+ scanned. In either case, *TOTAL contains the cost result. */ -+ -+static bool -+ubicom32_rtx_costs (rtx x, int code, int outer_code, int *total, -+ bool speed ATTRIBUTE_UNUSED) -+{ -+ enum machine_mode mode = GET_MODE (x); -+ -+ switch (code) -+ { -+ case CONST_INT: -+ /* Very short constants often fold into instructions so -+ we pretend that they don't cost anything! This is -+ really important as regards zero values as otherwise -+ the compiler has a nasty habit of wanting to reuse -+ zeroes that are in regs but that tends to pessimize -+ the code. */ -+ if (satisfies_constraint_I (x)) -+ { -+ *total = 0; -+ return true; -+ } -+ -+ /* Bit clearing costs nothing */ -+ if (outer_code == AND -+ && exact_log2 (~INTVAL (x)) != -1) -+ { -+ *total = 0; -+ return true; -+ } -+ -+ /* Masking the lower set of bits costs nothing. */ -+ if (outer_code == AND -+ && exact_log2 (INTVAL (x) + 1) != -1) -+ { -+ *total = 0; -+ return true; -+ } -+ -+ /* Bit setting costs nothing. */ -+ if (outer_code == IOR -+ && exact_log2 (INTVAL (x)) != -1) -+ { -+ *total = 0; -+ return true; -+ } -+ -+ /* Larger constants that can be loaded via movei aren't too -+ bad. If we're just doing a set they cost nothing extra. */ -+ if (satisfies_constraint_N (x)) -+ { -+ if (mode == DImode) -+ *total = COSTS_N_INSNS (2); -+ else -+ *total = COSTS_N_INSNS (1); -+ return true; -+ } -+ -+ if (mode == DImode) -+ *total = COSTS_N_INSNS (5); -+ else -+ *total = COSTS_N_INSNS (3); -+ return true; -+ -+ case CONST_DOUBLE: -+ /* We don't optimize CONST_DOUBLEs well nor do we relax them well, -+ so their cost is very high. */ -+ *total = COSTS_N_INSNS (6); -+ return true; -+ -+ case CONST: -+ case SYMBOL_REF: -+ case MEM: -+ *total = 0; -+ return true; -+ -+ case IF_THEN_ELSE: -+ *total = COSTS_N_INSNS (1); -+ return true; -+ -+ case LABEL_REF: -+ case HIGH: -+ case LO_SUM: -+ case BSWAP: -+ case PLUS: -+ case MINUS: -+ case AND: -+ case IOR: -+ case XOR: -+ case ASHIFT: -+ case ASHIFTRT: -+ case LSHIFTRT: -+ case NEG: -+ case NOT: -+ case SIGN_EXTEND: -+ case ZERO_EXTEND: -+ case ZERO_EXTRACT: -+ if (outer_code == SET) -+ { -+ if (mode == DImode) -+ *total = COSTS_N_INSNS (2); -+ else -+ *total = COSTS_N_INSNS (1); -+ } -+ return true; -+ -+ case COMPARE: -+ if (outer_code == SET) -+ { -+ if (GET_MODE (XEXP (x, 0)) == DImode -+ || GET_MODE (XEXP (x, 1)) == DImode) -+ *total = COSTS_N_INSNS (2); -+ else -+ *total = COSTS_N_INSNS (1); -+ } -+ return true; -+ -+ case UMOD: -+ case UDIV: -+ case MOD: -+ case DIV: -+ if (outer_code == SET) -+ { -+ if (mode == DImode) -+ *total = COSTS_N_INSNS (600); -+ else -+ *total = COSTS_N_INSNS (200); -+ } -+ return true; -+ -+ case MULT: -+ if (outer_code == SET) -+ { -+ if (! ubicom32_v4) -+ { -+ if (mode == DImode) -+ *total = COSTS_N_INSNS (15); -+ else -+ *total = COSTS_N_INSNS (5); -+ } -+ else -+ { -+ if (mode == DImode) -+ *total = COSTS_N_INSNS (6); -+ else -+ *total = COSTS_N_INSNS (2); -+ } -+ } -+ return true; -+ -+ case UNSPEC: -+ if (XINT (x, 1) == UNSPEC_FDPIC_GOT -+ || XINT (x, 1) == UNSPEC_FDPIC_GOT_FUNCDESC) -+ *total = 0; -+ return true; -+ -+ default: -+ return false; -+ } -+} -+ -+/* Return 1 if ADDR can have different meanings depending on the machine -+ mode of the memory reference it is used for or if the address is -+ valid for some modes but not others. -+ -+ Autoincrement and autodecrement addresses typically have -+ mode-dependent effects because the amount of the increment or -+ decrement is the size of the operand being addressed. Some machines -+ have other mode-dependent addresses. Many RISC machines have no -+ mode-dependent addresses. -+ -+ You may assume that ADDR is a valid address for the machine. */ -+ -+int -+ubicom32_mode_dependent_address_p (rtx addr) -+{ -+ if (GET_CODE (addr) == POST_INC -+ || GET_CODE (addr) == PRE_INC -+ || GET_CODE (addr) == POST_DEC -+ || GET_CODE (addr) == PRE_DEC -+ || GET_CODE (addr) == POST_MODIFY -+ || GET_CODE (addr) == PRE_MODIFY) -+ return 1; -+ -+ return 0; -+} -+ -+static void -+ubicom32_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED) -+{ -+ fprintf (file, "/* frame/pretend: %ld/%d save_regs: %d out_args: %d %s */\n", -+ get_frame_size (), crtl->args.pretend_args_size, -+ save_regs_size, crtl->outgoing_args_size, -+ current_function_is_leaf ? "leaf" : "nonleaf"); -+} -+ -+static void -+ubicom32_function_epilogue (FILE *file ATTRIBUTE_UNUSED, -+ HOST_WIDE_INT size ATTRIBUTE_UNUSED) -+{ -+ ubicom32_reorg_completed = 0; -+} -+ -+static void -+ubicom32_machine_dependent_reorg (void) -+{ -+#if 0 /* Commenting out this optimization until it is fixed */ -+ if (optimize) -+ { -+ compute_bb_for_insn (); -+ -+ /* Do a very simple CSE pass over just the hard registers. */ -+ reload_cse_regs (get_insns ()); -+ -+ /* Reload_cse_regs can eliminate potentially-trapping MEMs. -+ Remove any EH edges associated with them. */ -+ if (flag_non_call_exceptions) -+ purge_all_dead_edges (); -+ } -+#endif -+ ubicom32_reorg_completed = 1; -+} -+ -+void -+ubicom32_output_cond_jump (rtx insn, rtx cond, rtx target) -+{ -+ rtx note; -+ int mostly_false_jump; -+ rtx xoperands[2]; -+ rtx cc_reg; -+ -+ note = find_reg_note (insn, REG_BR_PROB, 0); -+ mostly_false_jump = !note || (INTVAL (XEXP (note, 0)) -+ <= REG_BR_PROB_BASE / 2); -+ -+ xoperands[0] = target; -+ xoperands[1] = cond; -+ cc_reg = XEXP (cond, 0); -+ -+ if (GET_MODE (cc_reg) == CCWmode -+ || GET_MODE (cc_reg) == CCWZmode -+ || GET_MODE (cc_reg) == CCWZNmode) -+ { -+ if (mostly_false_jump) -+ output_asm_insn ("jmp%b1.w.f\t%0", xoperands); -+ else -+ output_asm_insn ("jmp%b1.w.t\t%0", xoperands); -+ return; -+ } -+ -+ if (GET_MODE (cc_reg) == CCSmode -+ || GET_MODE (cc_reg) == CCSZmode -+ || GET_MODE (cc_reg) == CCSZNmode) -+ { -+ if (mostly_false_jump) -+ output_asm_insn ("jmp%b1.s.f\t%0", xoperands); -+ else -+ output_asm_insn ("jmp%b1.s.t\t%0", xoperands); -+ return; -+ } -+ -+ abort (); -+} -+ -+/* Return non-zero if FUNC is a naked function. */ -+ -+static int -+ubicom32_naked_function_p (void) -+{ -+ return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE; -+} -+ -+/* Return an RTX indicating where the return address to the -+ calling function can be found. */ -+rtx -+ubicom32_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED) -+{ -+ if (count != 0) -+ return NULL_RTX; -+ -+ return get_hard_reg_initial_val (Pmode, LINK_REGNO); -+} -+ -+/* -+ * ubicom32_readonly_data_section: This routtine handles code -+ * at the start of readonly data sections -+ */ -+static void -+ubicom32_readonly_data_section (const void *data ATTRIBUTE_UNUSED) -+{ -+ static int num = 0; -+ if (in_section == readonly_data_section){ -+ fprintf (asm_out_file, "%s", DATA_SECTION_ASM_OP); -+ if (flag_data_sections){ -+ fprintf (asm_out_file, ".rodata%d", num); -+ fprintf (asm_out_file, ",\"a\""); -+ } -+ fprintf (asm_out_file, "\n"); -+ } -+ num++; -+} -+ -+/* -+ * ubicom32_text_section: not in readonly section -+ */ -+static void -+ubicom32_text_section(const void *data ATTRIBUTE_UNUSED) -+{ -+ fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP); -+} -+ -+/* -+ * ubicom32_data_section: not in readonly section -+ */ -+static void -+ubicom32_data_section(const void *data ATTRIBUTE_UNUSED) -+{ -+ fprintf (asm_out_file, "%s\n", DATA_SECTION_ASM_OP); -+} -+ -+/* -+ * ubicom32_asm_init_sections: This routine implements special -+ * section handling -+ */ -+static void -+ubicom32_asm_init_sections(void) -+{ -+ text_section = get_unnamed_section(SECTION_CODE, ubicom32_text_section, NULL); -+ -+ data_section = get_unnamed_section(SECTION_WRITE, ubicom32_data_section, NULL); -+ -+ readonly_data_section = get_unnamed_section(0, ubicom32_readonly_data_section, NULL); -+} -+ -+/* -+ * ubicom32_profiler: This routine would call -+ * mcount to support prof and gprof if mcount -+ * was supported. Currently, do nothing. -+ */ -+void -+ubicom32_profiler(void) -+{ -+} -+ -+/* Initialise the builtin functions. Start by initialising -+ descriptions of different types of functions (e.g., void fn(int), -+ int fn(void)), and then use these to define the builtins. */ -+static void -+ubicom32_init_builtins (void) -+{ -+ tree endlink; -+ tree short_unsigned_endlink; -+ tree unsigned_endlink; -+ tree short_unsigned_ftype_short_unsigned; -+ tree unsigned_ftype_unsigned; -+ -+ endlink = void_list_node; -+ -+ short_unsigned_endlink -+ = tree_cons (NULL_TREE, short_unsigned_type_node, endlink); -+ -+ unsigned_endlink -+ = tree_cons (NULL_TREE, unsigned_type_node, endlink); -+ -+ short_unsigned_ftype_short_unsigned -+ = build_function_type (short_unsigned_type_node, short_unsigned_endlink); -+ -+ unsigned_ftype_unsigned -+ = build_function_type (unsigned_type_node, unsigned_endlink); -+ -+ /* Initialise the byte swap function. */ -+ add_builtin_function ("__builtin_ubicom32_swapb_2", -+ short_unsigned_ftype_short_unsigned, -+ UBICOM32_BUILTIN_UBICOM32_SWAPB_2, -+ BUILT_IN_MD, NULL, -+ NULL_TREE); -+ -+ /* Initialise the byte swap function. */ -+ add_builtin_function ("__builtin_ubicom32_swapb_4", -+ unsigned_ftype_unsigned, -+ UBICOM32_BUILTIN_UBICOM32_SWAPB_4, -+ BUILT_IN_MD, NULL, -+ NULL_TREE); -+} -+ -+/* Given a builtin function taking 2 operands (i.e., target + source), -+ emit the RTL for the underlying instruction. */ -+static rtx -+ubicom32_expand_builtin_2op (enum insn_code icode, tree arglist, rtx target) -+{ -+ tree arg0; -+ rtx op0, pat; -+ enum machine_mode tmode, mode0; -+ -+ /* Grab the incoming argument and emit its RTL. */ -+ arg0 = TREE_VALUE (arglist); -+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); -+ -+ /* Determine the modes of the instruction operands. */ -+ tmode = insn_data[icode].operand[0].mode; -+ mode0 = insn_data[icode].operand[1].mode; -+ -+ /* Ensure that the incoming argument RTL is in a register of the -+ correct mode. */ -+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) -+ op0 = copy_to_mode_reg (mode0, op0); -+ -+ /* If there isn't a suitable target, emit a target register. */ -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ -+ /* Emit and return the new instruction. */ -+ pat = GEN_FCN (icode) (target, op0); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ -+ return target; -+} -+ -+/* Expand a call to a builtin function. */ -+static rtx -+ubicom32_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, -+ enum machine_mode mode ATTRIBUTE_UNUSED, -+ int ignore ATTRIBUTE_UNUSED) -+{ -+ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); -+ tree arglist = CALL_EXPR_ARGS(exp); -+ int fcode = DECL_FUNCTION_CODE (fndecl); -+ -+ switch (fcode) -+ { -+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_2: -+ return ubicom32_expand_builtin_2op (CODE_FOR_bswaphi, arglist, target); -+ -+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_4: -+ return ubicom32_expand_builtin_2op (CODE_FOR_bswapsi, arglist, target); -+ -+ default: -+ gcc_unreachable(); -+ } -+ -+ /* Should really do something sensible here. */ -+ return NULL_RTX; -+} -+ -+/* Fold any constant argument for a swapb.2 instruction. */ -+static tree -+ubicom32_fold_builtin_ubicom32_swapb_2 (tree fndecl, tree arglist) -+{ -+ tree arg0; -+ -+ arg0 = TREE_VALUE (arglist); -+ -+ /* Optimize constant value. */ -+ if (TREE_CODE (arg0) == INTEGER_CST) -+ { -+ HOST_WIDE_INT v; -+ HOST_WIDE_INT res; -+ -+ v = TREE_INT_CST_LOW (arg0); -+ res = ((v >> 8) & 0xff) -+ | ((v & 0xff) << 8); -+ -+ return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), res); -+ } -+ -+ return NULL_TREE; -+} -+ -+/* Fold any constant argument for a swapb.4 instruction. */ -+static tree -+ubicom32_fold_builtin_ubicom32_swapb_4 (tree fndecl, tree arglist) -+{ -+ tree arg0; -+ -+ arg0 = TREE_VALUE (arglist); -+ -+ /* Optimize constant value. */ -+ if (TREE_CODE (arg0) == INTEGER_CST) -+ { -+ unsigned HOST_WIDE_INT v; -+ unsigned HOST_WIDE_INT res; -+ -+ v = TREE_INT_CST_LOW (arg0); -+ res = ((v >> 24) & 0xff) -+ | (((v >> 16) & 0xff) << 8) -+ | (((v >> 8) & 0xff) << 16) -+ | ((v & 0xff) << 24); -+ -+ return build_int_cst_wide (TREE_TYPE (TREE_TYPE (fndecl)), res, 0); -+ } -+ -+ return NULL_TREE; -+} -+ -+/* Fold any constant arguments for builtin functions. */ -+static tree -+ubicom32_fold_builtin (tree fndecl, tree arglist, bool ignore ATTRIBUTE_UNUSED) -+{ -+ switch (DECL_FUNCTION_CODE (fndecl)) -+ { -+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_2: -+ return ubicom32_fold_builtin_ubicom32_swapb_2 (fndecl, arglist); -+ -+ case UBICOM32_BUILTIN_UBICOM32_SWAPB_4: -+ return ubicom32_fold_builtin_ubicom32_swapb_4 (fndecl, arglist); -+ -+ default: -+ return NULL; -+ } -+} -+ -+/* Implementation of TARGET_ASM_INTEGER. When using FD-PIC, we need to -+ tell the assembler to generate pointers to function descriptors in -+ some cases. */ -+static bool -+ubicom32_assemble_integer (rtx value, unsigned int size, int aligned_p) -+{ -+ if (TARGET_FDPIC && size == UNITS_PER_WORD) -+ { -+ if (GET_CODE (value) == SYMBOL_REF -+ && SYMBOL_REF_FUNCTION_P (value)) -+ { -+ fputs ("\t.picptr\t%funcdesc(", asm_out_file); -+ output_addr_const (asm_out_file, value); -+ fputs (")\n", asm_out_file); -+ return true; -+ } -+ -+ if (!aligned_p) -+ { -+ /* We've set the unaligned SI op to NULL, so we always have to -+ handle the unaligned case here. */ -+ assemble_integer_with_op ("\t.4byte\t", value); -+ return true; -+ } -+ } -+ -+ return default_assemble_integer (value, size, aligned_p); -+} -+ -+/* If the constant I can be constructed by shifting a source-1 immediate -+ by a constant number of bits then return the bit count. If not -+ return 0. */ -+ -+int -+ubicom32_shiftable_const_int (int i) -+{ -+ int shift = 0; -+ -+ /* Note that any constant that can be represented as an immediate to -+ a movei instruction is automatically ignored here in the interests -+ of the clarity of the output asm code. */ -+ if (i >= -32768 && i <= 32767) -+ return 0; -+ -+ /* Find the number of trailing zeroes. We could use __builtin_ctz -+ here but it's not obvious if this is supported on all build -+ compilers so we err on the side of caution. */ -+ if ((i & 0xffff) == 0) -+ { -+ shift += 16; -+ i >>= 16; -+ } -+ -+ if ((i & 0xff) == 0) -+ { -+ shift += 8; -+ i >>= 8; -+ } -+ -+ if ((i & 0xf) == 0) -+ { -+ shift += 4; -+ i >>= 4; -+ } -+ -+ if ((i & 0x3) == 0) -+ { -+ shift += 2; -+ i >>= 2; -+ } -+ -+ if ((i & 0x1) == 0) -+ { -+ shift += 1; -+ i >>= 1; -+ } -+ -+ if (i >= -128 && i <= 127) -+ return shift; -+ -+ return 0; -+} -+ ---- /dev/null -+++ b/gcc/config/ubicom32/ubicom32.h -@@ -0,0 +1,1564 @@ -+/* Definitions of target machine for Ubicom32 -+ -+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, -+ 2009 Free Software Foundation, Inc. -+ Contributed by Ubicom, Inc. -+ -+ This file is part of GCC. -+ -+ GCC is free software; you can redistribute it and/or modify it -+ under the terms of the GNU General Public License as published -+ by the Free Software Foundation; either version 3, or (at your -+ option) any later version. -+ -+ GCC is distributed in the hope that it will be useful, but WITHOUT -+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public -+ License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with GCC; see the file COPYING3. If not see -+ . */ -+ -+ -+ -+#define OBJECT_FORMAT_ELF -+ -+/* Run-time target specifications. */ -+ -+/* Target CPU builtins. */ -+#define TARGET_CPU_CPP_BUILTINS() \ -+ do \ -+ { \ -+ builtin_define_std ("__UBICOM32__"); \ -+ builtin_define_std ("__ubicom32__"); \ -+ \ -+ if (TARGET_FDPIC) \ -+ { \ -+ builtin_define ("__UBICOM32_FDPIC__"); \ -+ builtin_define ("__FDPIC__"); \ -+ } \ -+ } \ -+ while (0) -+ -+#ifndef TARGET_DEFAULT -+#define TARGET_DEFAULT 0 -+#endif -+ -+extern int ubicom32_case_values_threshold; -+ -+/* Nonzero if this chip supports the Ubicom32 v3 ISA. */ -+extern int ubicom32_v3; -+ -+/* Nonzero if this chip supports the Ubicom32 v4 ISA. */ -+extern int ubicom32_v4; -+ -+extern int ubicom32_stack_size; -+ -+/* Flag for whether we can use calli instead of ret in returns. */ -+extern int ubicom32_can_use_calli_to_ret; -+ -+/* This macro is a C statement to print on `stderr' a string describing the -+ particular machine description choice. Every machine description should -+ define `TARGET_VERSION'. */ -+#define TARGET_VERSION fprintf (stderr, " (UBICOM32)"); -+ -+/* We don't need a frame pointer to debug things. Doing this means -+ that gcc can turn on -fomit-frame-pointer when '-O' is specified. */ -+#define CAN_DEBUG_WITHOUT_FP -+ -+/* We need to handle processor-specific options. */ -+#define OVERRIDE_OPTIONS ubicom32_override_options () -+ -+#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \ -+ ubicom32_optimization_options (LEVEL, SIZE) -+ -+/* For Ubicom32 the least significant bit has the lowest bit number -+ so we define this to be 0. */ -+#define BITS_BIG_ENDIAN 0 -+ -+/* For Ubicom32 the most significant byte in a word has the lowest -+ number. */ -+#define BYTES_BIG_ENDIAN 1 -+ -+/* For Ubicom32, in a multiword object, the most signifant word has the -+ lowest number. */ -+#define WORDS_BIG_ENDIAN 1 -+ -+/* Ubicom32 has 8 bits per byte. */ -+#define BITS_PER_UNIT 8 -+ -+/* Ubicom32 has 32 bits per word. */ -+#define BITS_PER_WORD 32 -+ -+/* Width of a word, in units (bytes). */ -+#define UNITS_PER_WORD 4 -+ -+/* Width of a pointer, in bits. */ -+#define POINTER_SIZE 32 -+ -+/* Alias for pointers. Ubicom32 is a 32-bit architecture so we use -+ SImode. */ -+#define Pmode SImode -+ -+/* Normal alignment required for function parameters on the stack, in -+ bits. */ -+#define PARM_BOUNDARY 32 -+ -+/* We need to maintain the stack on a 32-bit boundary. */ -+#define STACK_BOUNDARY 32 -+ -+/* Alignment required for a function entry point, in bits. */ -+#define FUNCTION_BOUNDARY 32 -+ -+/* Alias for the machine mode used for memory references to functions being -+ called, in `call' RTL expressions. We use byte-oriented addresses -+ here. */ -+#define FUNCTION_MODE QImode -+ -+/* Biggest alignment that any data type can require on this machine, -+ in bits. */ -+#define BIGGEST_ALIGNMENT 32 -+ -+/* this default to BIGGEST_ALIGNMENT unless defined */ -+/* ART: What's the correct value here? Default is (((unsigned int)1<<28)*8)*/ -+#undef MAX_OFILE_ALIGNMENT -+#define MAX_OFILE_ALIGNMENT (128 * 8) -+ -+/* Alignment in bits to be given to a structure bit field that follows an empty -+ field such as `int : 0;'. */ -+#define EMPTY_FIELD_BOUNDARY 32 -+ -+/* All structures must be a multiple of 32 bits in size. */ -+#define STRUCTURE_SIZE_BOUNDARY 32 -+ -+/* A bit-field declared as `int' forces `int' alignment for the struct. */ -+#define PCC_BITFIELD_TYPE_MATTERS 1 -+ -+/* For Ubicom32 we absolutely require that data be aligned with nominal -+ alignment. */ -+#define STRICT_ALIGNMENT 1 -+ -+/* Make strcpy of constants fast. */ -+#define CONSTANT_ALIGNMENT(EXP, ALIGN) \ -+ (TREE_CODE (EXP) == STRING_CST \ -+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) -+ -+/* Define this macro as an expression for the alignment of a structure -+ (given by STRUCT as a tree node) if the alignment computed in the -+ usual way is COMPUTED and the alignment explicitly specified was -+ SPECIFIED. */ -+#define DATA_ALIGNMENT(TYPE, ALIGN) \ -+ ((((ALIGN) < BITS_PER_WORD) \ -+ && (TREE_CODE (TYPE) == ARRAY_TYPE \ -+ || TREE_CODE (TYPE) == UNION_TYPE \ -+ || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN)) -+ -+#define LOCAL_ALIGNMENT(TYPE,ALIGN) DATA_ALIGNMENT(TYPE,ALIGN) -+ -+/* For Ubicom32 we default to unsigned chars. */ -+#define DEFAULT_SIGNED_CHAR 0 -+ -+/* Machine-specific data register numbers. */ -+#define FIRST_DATA_REGNUM 0 -+#define D10_REGNUM 10 -+#define D11_REGNUM 11 -+#define D12_REGNUM 12 -+#define D13_REGNUM 13 -+#define LAST_DATA_REGNUM 15 -+ -+/* Machine-specific address register numbers. */ -+#define FIRST_ADDRESS_REGNUM 16 -+#define LAST_ADDRESS_REGNUM 22 -+ -+/* Register numbers used for passing a function's static chain pointer. If -+ register windows are used, the register number as seen by the called -+ function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as -+ seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers -+ are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined. -+ -+ The static chain register need not be a fixed register. -+ -+ If the static chain is passed in memory, these macros should not be defined; -+ instead, the next two macros should be defined. */ -+#define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1) -+ -+/* The register number of the frame pointer register, which is used to access -+ automatic variables in the stack frame. We generally eliminate this anyway -+ for Ubicom32 but we make it A6 by default. */ -+#define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM) -+ -+/* The register number of the stack pointer register, which is also be a -+ fixed register according to `FIXED_REGISTERS'. For Ubicom32 we don't -+ have a hardware requirement about which register this is, but by convention -+ we use A7. */ -+#define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1) -+ -+/* Machine-specific accumulator register numbers. */ -+#define ACC0_HI_REGNUM 24 -+#define ACC0_LO_REGNUM 25 -+#define ACC1_HI_REGNUM 26 -+#define ACC1_LO_REGNUM 27 -+ -+/* source3 register number */ -+#define SOURCE3_REGNUM 28 -+ -+/* The register number of the arg pointer register, which is used to access the -+ function's argument list. On some machines, this is the same as the frame -+ pointer register. On some machines, the hardware determines which register -+ this is. On other machines, you can choose any register you wish for this -+ purpose. If this is not the same register as the frame pointer register, -+ then you must mark it as a fixed register according to `FIXED_REGISTERS', or -+ arrange to be able to eliminate it. */ -+#define ARG_POINTER_REGNUM 29 -+ -+/* Pseudo-reg for condition code. */ -+#define CC_REGNUM 30 -+ -+/* Interrupt set/clear registers. */ -+#define INT_SET0_REGNUM 31 -+#define INT_SET1_REGNUM 32 -+#define INT_CLR0_REGNUM 33 -+#define INT_CLR1_REGNUM 34 -+ -+/* Scratchpad registers. */ -+#define SCRATCHPAD0_REGNUM 35 -+#define SCRATCHPAD1_REGNUM 36 -+#define SCRATCHPAD2_REGNUM 37 -+#define SCRATCHPAD3_REGNUM 38 -+ -+/* FDPIC register. */ -+#define FDPIC_REGNUM 16 -+ -+/* Number of hardware registers known to the compiler. They receive numbers 0 -+ through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number -+ really is assigned the number `FIRST_PSEUDO_REGISTER'. */ -+#define FIRST_PSEUDO_REGISTER 39 -+ -+/* An initializer that says which registers are used for fixed purposes all -+ throughout the compiled code and are therefore not available for general -+ allocation. These would include the stack pointer, the frame pointer -+ (except on machines where that can be used as a general register when no -+ frame pointer is needed), the program counter on machines where that is -+ considered one of the addressable registers, and any other numbered register -+ with a standard use. -+ -+ This information is expressed as a sequence of numbers, separated by commas -+ and surrounded by braces. The Nth number is 1 if register N is fixed, 0 -+ otherwise. -+ -+ The table initialized from this macro, and the table initialized by the -+ following one, may be overridden at run time either automatically, by the -+ actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the -+ command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */ -+#define FIXED_REGISTERS \ -+ { \ -+ 0, 0, 0, 0, 0, 0, 0, 0, /* d0 - d7 */ \ -+ 0, 0, 0, 0, 0, 0, 0, 1, /* d8 - d15 */ \ -+ 0, 0, 0, 0, 0, 0, 0, 1, /* a0 - a7 */ \ -+ 0, 0, /* acc0 hi/lo */ \ -+ 0, 0, /* acc1 hi/lo */ \ -+ 0, /* source3 */ \ -+ 1, /* arg */ \ -+ 1, /* cc */ \ -+ 1, 1, /* int_set[01] */ \ -+ 1, 1, /* int_clr[01] */ \ -+ 1, 1, 1, 1 /* scratchpad[0123] */ \ -+ } -+ -+/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in -+ general) by function calls as well as for fixed registers. This macro -+ therefore identifies the registers that are not available for general -+ allocation of values that must live across function calls. -+ -+ If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically -+ saves it on function entry and restores it on function exit, if the register -+ is used within the function. */ -+#define CALL_USED_REGISTERS \ -+ { \ -+ 1, 1, 1, 1, 1, 1, 1, 1, /* d0 - d7 */ \ -+ 1, 1, 0, 0, 0, 0, 1, 1, /* d8 - d15 */ \ -+ 1, 0, 0, 1, 1, 1, 0, 1, /* a0 - a7 */ \ -+ 1, 1, /* acc0 hi/lo */ \ -+ 1, 1, /* acc1 hi/lo */ \ -+ 1, /* source3 */ \ -+ 1, /* arg */ \ -+ 1, /* cc */ \ -+ 1, 1, /* int_set[01] */ \ -+ 1, 1, /* int_clr[01] */ \ -+ 1, 1, 1, 1 /* scratchpad[0123] */ \ -+ } -+ -+/* How to refer to registers in assembler output. -+ This sequence is indexed by compiler's hard-register-number (see above). */ -+ -+/* A C initializer containing the assembler's names for the machine registers, -+ each one as a C string constant. This is what translates register numbers -+ in the compiler into assembler language. */ -+#define REGISTER_NAMES \ -+ { \ -+ "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \ -+ "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", \ -+ "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \ -+ "acc0_hi", "acc0_lo", \ -+ "acc1_hi", "acc1_lo", \ -+ "source3", \ -+ "arg", \ -+ "cc", \ -+ "int_set0", "int_set1", \ -+ "int_clr0", "int_clr1", \ -+ "scratchpad0", "scratchpad1", "scratchpad2", "scratchpad3" \ -+ } -+ -+#define CONDITIONAL_REGISTER_USAGE \ -+ ubicom32_conditional_register_usage (); -+ -+/* Order of allocation of registers. */ -+ -+/* If defined, an initializer for a vector of integers, containing the numbers -+ of hard registers in the order in which GNU CC should prefer to use them -+ (from most preferred to least). -+ -+ For Ubicom32 we try using caller-clobbered data registers first, then -+ callee-saved data registers, then caller-clobbered address registers, -+ then callee-saved address registers and finally everything else. -+ -+ The caller-clobbered registers are usually slightly cheaper to use because -+ there's no need to save/restore. */ -+#define REG_ALLOC_ORDER \ -+ { \ -+ 0, 1, 2, 3, 4, /* d0 - d4 */ \ -+ 5, 6, 7, 8, 9, /* d5 - d9 */ \ -+ 14, /* d14 */ \ -+ 10, 11, 12, 13, /* d10 - d13 */ \ -+ 19, 20, 16, 21, /* a3, a4, a0, a5 */ \ -+ 17, 18, 22, /* a1, a2, a6 */ \ -+ 24, 25, /* acc0 hi/lo */ \ -+ 26, 27, /* acc0 hi/lo */ \ -+ 28 /* source3 */ \ -+ } -+ -+/* C expression for the number of consecutive hard registers, starting at -+ register number REGNO, required to hold a value of mode MODE. */ -+#define HARD_REGNO_NREGS(REGNO, MODE) \ -+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) -+ -+/* Most registers can hold QImode, HImode and SImode values but we have to -+ be able to indicate any hard registers that cannot hold values with some -+ modes. */ -+#define HARD_REGNO_MODE_OK(REGNO, MODE) \ -+ ubicom32_hard_regno_mode_ok(REGNO, MODE) -+ -+/* We can rename most registers aside from the FDPIC register if we're using -+ FDPIC. */ -+#define HARD_REGNO_RENAME_OK(from, to) (TARGET_FDPIC ? ((to) != FDPIC_REGNUM) : 1) -+ -+/* A C expression that is nonzero if it is desirable to choose register -+ allocation so as to avoid move instructions between a value of mode MODE1 -+ and a value of mode MODE2. -+ -+ If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are -+ ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be -+ zero. */ -+#define MODES_TIEABLE_P(MODE1, MODE2) 1 -+ -+/* An enumeral type that must be defined with all the register class names as -+ enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last -+ register class, followed by one more enumeral value, `LIM_REG_CLASSES', -+ which is not a register class but rather tells how many classes there are. -+ -+ Each register class has a number, which is the value of casting the class -+ name to type `int'. The number serves as an index in many of the tables -+ described below. */ -+ -+enum reg_class -+{ -+ NO_REGS, -+ DATA_REGS, -+ FDPIC_REG, -+ ADDRESS_REGS, -+ ALL_ADDRESS_REGS, -+ ACC_LO_REGS, -+ ACC_REGS, -+ CC_REG, -+ DATA_ACC_REGS, -+ SOURCE3_REG, -+ SPECIAL_REGS, -+ GENERAL_REGS, -+ ALL_REGS, -+ LIM_REG_CLASSES -+}; -+ -+/* The number of distinct register classes. */ -+#define N_REG_CLASSES (int) LIM_REG_CLASSES -+ -+/* An initializer containing the names of the register classes as C string -+ constants. These names are used in writing some of the debugging dumps. */ -+ -+#define REG_CLASS_NAMES \ -+{ \ -+ "NO_REGS", \ -+ "DATA_REGS", \ -+ "FDPIC_REG", \ -+ "ADDRESS_REGS", \ -+ "ALL_ADDRESS_REGS", \ -+ "ACC_LO_REGS", \ -+ "ACC_REGS", \ -+ "CC_REG", \ -+ "DATA_ACC_REGS", \ -+ "SOURCE3_REG", \ -+ "SPECIAL_REGS", \ -+ "GENERAL_REGS", \ -+ "ALL_REGS", \ -+ "LIM_REGS" \ -+} -+ -+/* An initializer containing the contents of the register classes, as integers -+ which are bit masks. The Nth integer specifies the contents of class N. -+ The way the integer MASK is interpreted is that register R is in the class -+ if `MASK & (1 << R)' is 1. -+ -+ When the machine has more than 32 registers, an integer does not suffice. -+ Then the integers are replaced by sub-initializers, braced groupings -+ containing several integers. Each sub-initializer must be suitable as an -+ initializer for the type `HARD_REG_SET' which is defined in -+ `hard-reg-set.h'. */ -+#define REG_CLASS_CONTENTS \ -+{ \ -+ {0x00000000, 0x00000000}, /* No regs */ \ -+ {0x0000ffff, 0x00000000}, /* DATA_REGS */ \ -+ {0x00010000, 0x00000000}, /* FDPIC_REG */ \ -+ {0x20fe0000, 0x00000000}, /* ADDRESS_REGS */ \ -+ {0x20ff0000, 0x00000000}, /* ALL_ADDRESS_REGS */ \ -+ {0x0a000000, 0x00000000}, /* ACC_LO_REGS */ \ -+ {0x0f000000, 0x00000000}, /* ACC_REGS */ \ -+ {0x40000000, 0x00000000}, /* CC_REG */ \ -+ {0x0f00ffff, 0x00000000}, /* DATA_ACC_REGS */ \ -+ {0x10000000, 0x00000000}, /* SOURGE3_REG */ \ -+ {0x80000000, 0x0000007f}, /* SPECIAL_REGS */ \ -+ {0xbfffffff, 0x0000007f}, /* GENERAL_REGS */ \ -+ {0xbfffffff, 0x0000007f} /* ALL_REGS */ \ -+} -+ -+extern enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER]; -+ -+/* A C expression whose value is a register class containing hard register -+ REGNO. In general there is more than one such class; choose a class which -+ is "minimal", meaning that no smaller class also contains the register. */ -+#define REGNO_REG_CLASS(REGNO) (ubicom32_regclass_map[REGNO]) -+ -+#define IRA_COVER_CLASSES \ -+{ \ -+ GENERAL_REGS, \ -+ LIM_REG_CLASSES \ -+} -+ -+/* Ubicom32 base registers must be address registers since addresses can -+ only be reached via address registers. */ -+#define BASE_REG_CLASS ALL_ADDRESS_REGS -+ -+/* Ubicom32 index registers must be data registers since we cannot add -+ two address registers together to form an address. */ -+#define INDEX_REG_CLASS DATA_REGS -+ -+/* A C expression which is nonzero if register number NUM is suitable for use -+ as a base register in operand addresses. It may be either a suitable hard -+ register or a pseudo register that has been allocated such a hard register. */ -+ -+#ifndef REG_OK_STRICT -+#define REGNO_OK_FOR_BASE_P(regno) \ -+ ubicom32_regno_ok_for_base_p (regno, 0) -+#else -+#define REGNO_OK_FOR_BASE_P(regno) \ -+ ubicom32_regno_ok_for_base_p (regno, 1) -+#endif -+ -+/* A C expression which is nonzero if register number NUM is suitable for use -+ as an index register in operand addresses. It may be either a suitable hard -+ register or a pseudo register that has been allocated such a hard register. -+ -+ The difference between an index register and a base register is that the -+ index register may be scaled. If an address involves the sum of two -+ registers, neither one of them scaled, then either one may be labeled the -+ "base" and the other the "index"; but whichever labeling is used must fit -+ the machine's constraints of which registers may serve in each capacity. -+ The compiler will try both labelings, looking for one that is valid, and -+ will reload one or both registers only if neither labeling works. */ -+#ifndef REG_OK_STRICT -+#define REGNO_OK_FOR_INDEX_P(regno) \ -+ ubicom32_regno_ok_for_index_p (regno, 0) -+#else -+#define REGNO_OK_FOR_INDEX_P(regno) \ -+ ubicom32_regno_ok_for_index_p (regno, 1) -+#endif -+ -+/* Attempt to restrict the register class we need to copy value X intoto the -+ would-be register class CLASS. Most things are fine for Ubicom32 but we -+ have to restrict certain types of address loads. */ -+#define PREFERRED_RELOAD_CLASS(X, CLASS) \ -+ ubicom32_preferred_reload_class (X, CLASS) -+ -+/* A C expression for the maximum number of consecutive registers of -+ class CLASS needed to hold a value of mode MODE. For Ubicom32 this -+ is pretty much identical to HARD_REGNO_NREGS. */ -+#define CLASS_MAX_NREGS(CLASS, MODE) \ -+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) -+ -+/* For Ubicom32 the stack grows downwards when we push a word onto the stack -+ - i.e. it moves to a smaller address. */ -+#define STACK_GROWS_DOWNWARD 1 -+ -+/* Offset from the frame pointer to the first local variable slot to -+ be allocated. */ -+#define STARTING_FRAME_OFFSET 0 -+ -+/* Offset from the argument pointer register to the first argument's -+ address. */ -+#define FIRST_PARM_OFFSET(FNDECL) 0 -+ -+/* A C expression whose value is RTL representing the value of the return -+ address for the frame COUNT steps up from the current frame, after the -+ prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame -+ pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is -+ defined. -+ -+ The value of the expression must always be the correct address when COUNT is -+ zero, but may be `NULL_RTX' if there is not way to determine the return -+ address of other frames. */ -+#define RETURN_ADDR_RTX(COUNT, FRAME) \ -+ ubicom32_return_addr_rtx (COUNT, FRAME) -+ -+/* Register That Address the Stack Frame. */ -+ -+/* We don't actually require a frame pointer in most functions with the -+ Ubicom32 architecture so we allow it to be eliminated. */ -+#define FRAME_POINTER_REQUIRED 0 -+ -+/* Macro that defines a table of register pairs used to eliminate unecessary -+ registers that point into the stack frame. -+ -+ For Ubicom32 we don't generally need an arg pointer of a frame pointer -+ so we allow the arg pointer to be replaced by either the frame pointer or -+ the stack pointer. We also allow the frame pointer to be replaced by -+ the stack pointer. */ -+#define ELIMINABLE_REGS \ -+{ \ -+ {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ -+ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ -+ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \ -+} -+ -+/* Let the compiler know that we want to use the ELIMINABLE_REGS macro -+ above. */ -+#define CAN_ELIMINATE(FROM, TO) 1 -+ -+/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the -+ initial difference between the specified pair of registers. This macro must -+ be defined if `ELIMINABLE_REGS' is defined. */ -+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ -+ (OFFSET) = ubicom32_initial_elimination_offset (FROM, TO) -+ -+/* If defined, the maximum amount of space required for outgoing arguments will -+ be computed and placed into the variable -+ `current_function_outgoing_args_size'. No space will be pushed onto the -+ stack for each call; instead, the function prologue should increase the -+ stack frame size by this amount. -+ -+ Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not -+ proper. */ -+#define ACCUMULATE_OUTGOING_ARGS 1 -+ -+/* Define this macro if functions should assume that stack space has been -+ allocated for arguments even when their values are passed in registers. -+ -+ The value of this macro is the size, in bytes, of the area reserved for -+ arguments passed in registers for the function represented by FNDECL. -+ -+ This space can be allocated by the caller, or be a part of the -+ machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says -+ which. */ -+#define REG_PARM_STACK_SPACE(FNDECL) ubicom32_reg_parm_stack_space(FNDECL) -+ -+/* A C expression that should indicate the number of bytes of its own arguments -+ that a function pops on returning, or 0 if the function pops no arguments -+ and the caller must therefore pop them all after the function returns. -+ -+ FUNDECL is a C variable whose value is a tree node that describes the -+ function in question. Normally it is a node of type `FUNCTION_DECL' that -+ describes the declaration of the function. From this it is possible to -+ obtain the DECL_MACHINE_ATTRIBUTES of the function. -+ -+ FUNTYPE is a C variable whose value is a tree node that describes the -+ function in question. Normally it is a node of type `FUNCTION_TYPE' that -+ describes the data type of the function. From this it is possible to obtain -+ the data types of the value and arguments (if known). -+ -+ When a call to a library function is being considered, FUNTYPE will contain -+ an identifier node for the library function. Thus, if you need to -+ distinguish among various library functions, you can do so by their names. -+ Note that "library function" in this context means a function used to -+ perform arithmetic, whose name is known specially in the compiler and was -+ not mentioned in the C code being compiled. -+ -+ STACK-SIZE is the number of bytes of arguments passed on the stack. If a -+ variable number of bytes is passed, it is zero, and argument popping will -+ always be the responsibility of the calling function. -+ -+ On the Vax, all functions always pop their arguments, so the definition of -+ this macro is STACK-SIZE. On the 68000, using the standard calling -+ convention, no functions pop their arguments, so the value of the macro is -+ always 0 in this case. But an alternative calling convention is available -+ in which functions that take a fixed number of arguments pop them but other -+ functions (such as `printf') pop nothing (the caller pops all). When this -+ convention is in use, FUNTYPE is examined to determine whether a function -+ takes a fixed number of arguments. */ -+#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0 -+ -+/* A C expression that controls whether a function argument is passed in a -+ register, and which register. -+ -+ The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way -+ defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous -+ arguments so far passed in registers; MODE, the machine mode of the argument; -+ TYPE, the data type of the argument as a tree node or 0 if that is not known -+ (which happens for C support library functions); and NAMED, which is 1 for an -+ ordinary argument and 0 for nameless arguments that correspond to `...' in the -+ called function's prototype. -+ -+ The value of the expression should either be a `reg' RTX for the hard -+ register in which to pass the argument, or zero to pass the argument on the -+ stack. -+ -+ For machines like the Vax and 68000, where normally all arguments are -+ pushed, zero suffices as a definition. -+ -+ The usual way to make the ANSI library `stdarg.h' work on a machine where -+ some arguments are usually passed in registers, is to cause nameless -+ arguments to be passed on the stack instead. This is done by making -+ `FUNCTION_ARG' return 0 whenever NAMED is 0. -+ -+ You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of -+ this macro to determine if this argument is of a type that must be passed in -+ the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG' -+ returns non-zero for such an argument, the compiler will abort. If -+ `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the -+ stack and then loaded into a register. */ -+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ -+ function_arg (&CUM, MODE, TYPE, NAMED) -+ -+#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \ -+ function_incoming_arg (&CUM, MODE, TYPE, NAMED) -+ -+/* A C expression for the number of words, at the beginning of an argument, -+ must be put in registers. The value must be zero for arguments that are -+ passed entirely in registers or that are entirely pushed on the stack. -+ -+ On some machines, certain arguments must be passed partially in registers -+ and partially in memory. On these machines, typically the first N words of -+ arguments are passed in registers, and the rest on the stack. If a -+ multi-word argument (a `double' or a structure) crosses that boundary, its -+ first few words must be passed in registers and the rest must be pushed. -+ This macro tells the compiler when this occurs, and how many of the words -+ should go in registers. -+ -+ `FUNCTION_ARG' for these arguments should return the first register to be -+ used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for -+ the called function. */ -+ -+/* A C expression that indicates when an argument must be passed by reference. -+ If nonzero for an argument, a copy of that argument is made in memory and a -+ pointer to the argument is passed instead of the argument itself. The -+ pointer is passed in whatever way is appropriate for passing a pointer to -+ that type. -+ -+ On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable -+ definition of this macro might be -+ #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \ -+ MUST_PASS_IN_STACK (MODE, TYPE) */ -+ -+/* If defined, a C expression that indicates when it is the called function's -+ responsibility to make a copy of arguments passed by invisible reference. -+ Normally, the caller makes a copy and passes the address of the copy to the -+ routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is -+ nonzero, the caller does not make a copy. Instead, it passes a pointer to -+ the "live" value. The called function must not modify this value. If it -+ can be determined that the value won't be modified, it need not make a copy; -+ otherwise a copy must be made. */ -+ -+/* A C type for declaring a variable that is used as the first argument of -+ `FUNCTION_ARG' and other related values. For some target machines, the type -+ `int' suffices and can hold the number of bytes of argument so far. -+ -+ There is no need to record in `CUMULATIVE_ARGS' anything about the arguments -+ that have been passed on the stack. The compiler has other variables to -+ keep track of that. For target machines on which all arguments are passed -+ on the stack, there is no need to store anything in `CUMULATIVE_ARGS'; -+ however, the data structure must exist and should not be empty, so use -+ `int'. */ -+struct cum_arg -+{ -+ int nbytes; -+ int reg; -+ int stdarg; -+}; -+#define CUMULATIVE_ARGS struct cum_arg -+ -+/* A C statement (sans semicolon) for initializing the variable CUM for the -+ state at the beginning of the argument list. The variable has type -+ `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type -+ of the function which will receive the args, or 0 if the args are to a -+ compiler support library function. The value of INDIRECT is nonzero when -+ processing an indirect call, for example a call through a function pointer. -+ The value of INDIRECT is zero for a call to an explicitly named function, a -+ library function call, or when `INIT_CUMULATIVE_ARGS' is used to find -+ arguments for the function being compiled. -+ -+ When processing a call to a compiler support library function, LIBNAME -+ identifies which one. It is a `symbol_ref' rtx which contains the name of -+ the function, as a string. LIBNAME is 0 when an ordinary C function call is -+ being processed. Thus, each time this macro is called, either LIBNAME or -+ FNTYPE is nonzero, but never both of them at once. */ -+ -+#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, NAMED_ARGS) \ -+ init_cumulative_args (&(CUM), FNTYPE, LIBNAME, INDIRECT); -+ -+/* A C statement (sans semicolon) to update the summarizer variable CUM to -+ advance past an argument in the argument list. The values MODE, TYPE and -+ NAMED describe that argument. Once this is done, the variable CUM is -+ suitable for analyzing the *following* argument with `FUNCTION_ARG', etc. -+ -+ This macro need not do anything if the argument in question was passed on -+ the stack. The compiler knows how to track the amount of stack space used -+ for arguments without any special help. */ -+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ -+ ((CUM).nbytes += ((MODE) != BLKmode \ -+ ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ -+ : (int_size_in_bytes (TYPE) + 3) & ~3)) -+ -+/* For the Ubicom32 we define the upper function argument register here. */ -+#define UBICOM32_FUNCTION_ARG_REGS 10 -+ -+/* A C expression that is nonzero if REGNO is the number of a hard register in -+ which function arguments are sometimes passed. This does *not* include -+ implicit arguments such as the static chain and the structure-value address. -+ On many machines, no registers can be used for this purpose since all -+ function arguments are pushed on the stack. */ -+#define FUNCTION_ARG_REGNO_P(N) ((N) < UBICOM32_FUNCTION_ARG_REGS) -+ -+ -+/* How Scalar Function Values are Returned. */ -+ -+/* The number of the hard register that is used to return a scalar value from a -+ function call. */ -+#define RETURN_VALUE_REGNUM 0 -+ -+/* A C expression to create an RTX representing the place where a function -+ returns a value of data type VALTYPE. VALTYPE is a tree node representing a -+ data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to -+ represent that type. On many machines, only the mode is relevant. -+ (Actually, on most machines, scalar values are returned in the same place -+ regardless of mode). -+ -+ If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion -+ rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type. -+ -+ If the precise function being called is known, FUNC is a tree node -+ (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it -+ possible to use a different value-returning convention for specific -+ functions when all their calls are known. -+ -+ `FUNCTION_VALUE' is not used for return vales with aggregate data types, -+ because these are returned in another way. See `STRUCT_VALUE_REGNUM' and -+ related macros, below. */ -+#define FUNCTION_VALUE(VALTYPE, FUNC) \ -+ gen_rtx_REG (TYPE_MODE (VALTYPE), FIRST_DATA_REGNUM) -+ -+/* A C expression to create an RTX representing the place where a library -+ function returns a value of mode MODE. -+ -+ Note that "library function" in this context means a compiler support -+ routine, used to perform arithmetic, whose name is known specially by the -+ compiler and was not mentioned in the C code being compiled. -+ -+ The definition of `LIBRARY_VALUE' need not be concerned aggregate data -+ types, because none of the library functions returns such types. */ -+#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM) -+ -+/* A C expression that is nonzero if REGNO is the number of a hard register in -+ which the values of called function may come back. -+ -+ A register whose use for returning values is limited to serving as the -+ second of a pair (for a value of type `double', say) need not be recognized -+ by this macro. So for most machines, this definition suffices: -+ -+ #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN) -+ -+ If the machine has register windows, so that the caller and the called -+ function use different registers for the return value, this macro should -+ recognize only the caller's register numbers. */ -+#define FUNCTION_VALUE_REGNO_P(N) ((N) == FIRST_DATA_REGNUM) -+ -+ -+/* How Large Values are Returned. */ -+ -+/* A C expression which can inhibit the returning of certain function values in -+ registers, based on the type of value. A nonzero value says to return the -+ function value in memory, just as large structures are always returned. -+ Here TYPE will be a C expression of type `tree', representing the data type -+ of the value. -+ -+ Note that values of mode `BLKmode' must be explicitly handled by this macro. -+ Also, the option `-fpcc-struct-return' takes effect regardless of this -+ macro. On most systems, it is possible to leave the macro undefined; this -+ causes a default definition to be used, whose value is the constant 1 for -+ `BLKmode' values, and 0 otherwise. -+ -+ Do not use this macro to indicate that structures and unions should always -+ be returned in memory. You should instead use `DEFAULT_PCC_STRUCT_RETURN' -+ to indicate this. */ -+#define RETURN_IN_MEMORY(TYPE) \ -+ (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode) -+ -+/* Define this macro to be 1 if all structure and union return values must be -+ in memory. Since this results in slower code, this should be defined only -+ if needed for compatibility with other compilers or with an ABI. If you -+ define this macro to be 0, then the conventions used for structure and union -+ return values are decided by the `RETURN_IN_MEMORY' macro. -+ -+ If not defined, this defaults to the value 1. */ -+#define DEFAULT_PCC_STRUCT_RETURN 0 -+ -+/* If the structure value address is not passed in a register, define -+ `STRUCT_VALUE' as an expression returning an RTX for the place -+ where the address is passed. If it returns 0, the address is -+ passed as an "invisible" first argument. */ -+#define STRUCT_VALUE 0 -+ -+/* Define this macro as a C expression that is nonzero if the return -+ instruction or the function epilogue ignores the value of the stack pointer; -+ in other words, if it is safe to delete an instruction to adjust the stack -+ pointer before a return from the function. -+ -+ Note that this macro's value is relevant only for functions for which frame -+ pointers are maintained. It is never safe to delete a final stack -+ adjustment in a function that has no frame pointer, and the compiler knows -+ this regardless of `EXIT_IGNORE_STACK'. */ -+#define EXIT_IGNORE_STACK 1 -+ -+/* A C statement or compound statement to output to FILE some assembler code to -+ call the profiling subroutine `mcount'. Before calling, the assembler code -+ must load the address of a counter variable into a register where `mcount' -+ expects to find the address. The name of this variable is `LP' followed by -+ the number LABELNO, so you would generate the name using `LP%d' in a -+ `fprintf'. -+ -+ The details of how the address should be passed to `mcount' are determined -+ by your operating system environment, not by GNU CC. To figure them out, -+ compile a small program for profiling using the system's installed C -+ compiler and look at the assembler code that results. -+ -+ This declaration must be present, but it can be an abort if profiling is -+ not implemented. */ -+ -+#define FUNCTION_PROFILER(file, labelno) ubicom32_profiler(file, labelno) -+ -+/* A C statement to output, on the stream FILE, assembler code for a block of -+ data that contains the constant parts of a trampoline. This code should not -+ include a label--the label is taken care of automatically. */ -+#if 0 -+#define TRAMPOLINE_TEMPLATE(FILE) \ -+ do { \ -+ fprintf (FILE, "\tadd -4,sp\n"); \ -+ fprintf (FILE, "\t.long 0x0004fffa\n"); \ -+ fprintf (FILE, "\tmov (0,sp),a0\n"); \ -+ fprintf (FILE, "\tadd 4,sp\n"); \ -+ fprintf (FILE, "\tmov (13,a0),a1\n"); \ -+ fprintf (FILE, "\tmov (17,a0),a0\n"); \ -+ fprintf (FILE, "\tjmp (a0)\n"); \ -+ fprintf (FILE, "\t.long 0\n"); \ -+ fprintf (FILE, "\t.long 0\n"); \ -+ } while (0) -+#endif -+ -+/* A C expression for the size in bytes of the trampoline, as an integer. */ -+#define TRAMPOLINE_SIZE 0x1b -+ -+/* Alignment required for trampolines, in bits. -+ -+ If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for -+ aligning trampolines. */ -+#define TRAMPOLINE_ALIGNMENT 32 -+ -+/* A C statement to initialize the variable parts of a trampoline. ADDR is an -+ RTX for the address of the trampoline; FNADDR is an RTX for the address of -+ the nested function; STATIC_CHAIN is an RTX for the static chain value that -+ should be passed to the function when it is called. */ -+#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ -+{ \ -+ emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \ -+ (CXT)); \ -+ emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \ -+ (FNADDR)); \ -+} -+ -+/* Ubicom32 supports pre and post increment/decrement addressing. */ -+#define HAVE_POST_INCREMENT 1 -+#define HAVE_PRE_INCREMENT 1 -+#define HAVE_POST_DECREMENT 1 -+#define HAVE_PRE_DECREMENT 1 -+ -+/* Ubicom32 supports pre and post address side-effects with constants -+ other than the size of the memory operand. */ -+#define HAVE_PRE_MODIFY_DISP 1 -+#define HAVE_POST_MODIFY_DISP 1 -+ -+/* A C expression that is 1 if the RTX X is a constant which is a valid -+ address. On most machines, this can be defined as `CONSTANT_P (X)', -+ but a few machines are more restrictive in which constant addresses -+ are supported. -+ -+ `CONSTANT_P' accepts integer-values expressions whose values are not -+ explicitly known, such as `symbol_ref', `label_ref', and `high' -+ expressions and `const' arithmetic expressions, in addition to -+ `const_int' and `const_double' expressions. */ -+#define CONSTANT_ADDRESS_P(X) \ -+ (GET_CODE (X) == LABEL_REF \ -+ || (GET_CODE (X) == CONST \ -+ && GET_CODE (XEXP (X, 0)) == PLUS \ -+ && GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF)) -+ -+/* Ubicom32 supports a maximum of 2 registers in a valid memory address. -+ One is always an address register while a second, optional, one may be a -+ data register. */ -+#define MAX_REGS_PER_ADDRESS 2 -+ -+/* A C compound statement with a conditional `goto LABEL;' executed if X (an -+ RTX) is a legitimate memory address on the target machine for a memory -+ operand of mode MODE. -+ -+ It usually pays to define several simpler macros to serve as subroutines for -+ this one. Otherwise it may be too complicated to understand. -+ -+ This macro must exist in two variants: a strict variant and a non-strict -+ one. The strict variant is used in the reload pass. It must be defined so -+ that any pseudo-register that has not been allocated a hard register is -+ considered a memory reference. In contexts where some kind of register is -+ required, a pseudo-register with no hard register must be rejected. -+ -+ The non-strict variant is used in other passes. It must be defined to -+ accept all pseudo-registers in every context where some kind of register is -+ required. -+ -+ Compiler source files that want to use the strict variant of this macro -+ define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT' -+ conditional to define the strict variant in that case and the non-strict -+ variant otherwise. -+ -+ Subroutines to check for acceptable registers for various purposes (one for -+ base registers, one for index registers, and so on) are typically among the -+ subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these -+ subroutine macros need have two variants; the higher levels of macros may be -+ the same whether strict or not. -+ -+ Normally, constant addresses which are the sum of a `symbol_ref' and an -+ integer are stored inside a `const' RTX to mark them as constant. -+ Therefore, there is no need to recognize such sums specifically as -+ legitimate addresses. Normally you would simply recognize any `const' as -+ legitimate. -+ -+ Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that -+ are not marked with `const'. It assumes that a naked `plus' indicates -+ indexing. If so, then you *must* reject such naked constant sums as -+ illegitimate addresses, so that none of them will be given to -+ `PRINT_OPERAND_ADDRESS'. -+ -+ On some machines, whether a symbolic address is legitimate depends on the -+ section that the address refers to. On these machines, define the macro -+ `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and -+ then check for it here. When you see a `const', you will have to look -+ inside it to find the `symbol_ref' in order to determine the section. -+ -+ The best way to modify the name string is by adding text to the beginning, -+ with suitable punctuation to prevent any ambiguity. Allocate the new name -+ in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to -+ remove and decode the added text and output the name accordingly, and define -+ `STRIP_NAME_ENCODING' to access the original name string. -+ -+ You can check the information stored here into the `symbol_ref' in the -+ definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and -+ `PRINT_OPERAND_ADDRESS'. */ -+/* On the ubicom32, the value in the address register must be -+ in the same memory space/segment as the effective address. -+ -+ This is problematical for reload since it does not understand -+ that base+index != index+base in a memory reference. */ -+ -+#ifdef REG_OK_STRICT -+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -+ if (ubicom32_legitimate_address_p (MODE, X, 1)) goto ADDR; -+#else -+#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ -+ if (ubicom32_legitimate_address_p (MODE, X, 0)) goto ADDR; -+#endif -+ -+/* Try machine-dependent ways of modifying an illegitimate address -+ to be legitimate. If we find one, return the new, valid address. -+ This macro is used in only one place: `memory_address' in explow.c. -+ -+ OLDX is the address as it was before break_out_memory_refs was called. -+ In some cases it is useful to look at this to decide what needs to be done. -+ -+ MODE and WIN are passed so that this macro can use -+ GO_IF_LEGITIMATE_ADDRESS. -+ -+ It is always safe for this macro to do nothing. It exists to recognize -+ opportunities to optimize the output. -+ -+ On RS/6000, first check for the sum of a register with a constant -+ integer that is out of range. If so, generate code to add the -+ constant with the low-order 16 bits masked to the register and force -+ this result into another register (this can be done with `cau'). -+ Then generate an address of REG+(CONST&0xffff), allowing for the -+ possibility of bit 16 being a one. -+ -+ Then check for the sum of a register and something not constant, try to -+ load the other things into a register and return the sum. */ -+ -+#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ -+{ \ -+ rtx result = ubicom32_legitimize_address ((X), (OLDX), (MODE)); \ -+ if (result != NULL_RTX) \ -+ { \ -+ (X) = result; \ -+ goto WIN; \ -+ } \ -+} -+ -+/* Try a machine-dependent way of reloading an illegitimate address -+ operand. If we find one, push the reload and jump to WIN. This -+ macro is used in only one place: `find_reloads_address' in reload.c. */ -+#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \ -+{ \ -+ rtx new_rtx = ubicom32_legitimize_reload_address ((AD), (MODE), (OPNUM), (int)(TYPE)); \ -+ if (new_rtx) \ -+ { \ -+ (AD) = new_rtx; \ -+ goto WIN; \ -+ } \ -+} -+ -+/* A C statement or compound statement with a conditional `goto LABEL;' -+ executed if memory address X (an RTX) can have different meanings depending -+ on the machine mode of the memory reference it is used for or if the address -+ is valid for some modes but not others. -+ -+ Autoincrement and autodecrement addresses typically have mode-dependent -+ effects because the amount of the increment or decrement is the size of the -+ operand being addressed. Some machines have other mode-dependent addresses. -+ Many RISC machines have no mode-dependent addresses. -+ -+ You may assume that ADDR is a valid address for the machine. */ -+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ -+ if (ubicom32_mode_dependent_address_p (ADDR)) \ -+ goto LABEL; -+ -+/* A C expression that is nonzero if X is a legitimate constant for an -+ immediate operand on the target machine. You can assume that X -+ satisfies `CONSTANT_P', so you need not check this. In fact, `1' is -+ a suitable definition for this macro on machines where anything -+ `CONSTANT_P' is valid. */ -+#define LEGITIMATE_CONSTANT_P(X) \ -+ ubicom32_legitimate_constant_p ((X)) -+ -+/* Moves between registers are pretty-much single instructions for -+ Ubicom32. We make this the default "2" that gcc likes. */ -+#define REGISTER_MOVE_COST(MODE, FROM, TO) 2 -+ -+/* This is a little bit of magic from the S390 port that wins 2% on code -+ size when building the Linux kernel! Unfortunately while it wins on -+ that size the user-space apps built using FD-PIC don't improve and the -+ performance is lower because we put more pressure on the caches. We may -+ want this back on some future CPU that has higher cache performance. */ -+/* #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) 0.5 */ -+ -+/* Moves between registers and memory are more expensive than between -+ registers because we have caches and write buffers that slow things -+ down! */ -+#define MEMORY_MOVE_COST(MODE, CLASS, IN) 2 -+ -+/* A fall-through branch is very low cost but anything that changes the PC -+ incurs a major pipeline hazard. We don't make the full extent of this -+ hazard visible because we hope that multiple threads will absorb much -+ of the cost and so we don't want a jump being replaced with, say, 7 -+ instructions. */ -+#define BRANCH_COST(SPEED_P, PREDICTABLE_P) \ -+ ((PREDICTABLE_P) ? 1 : 3) -+ -+/* Define this macro as a C expression which is nonzero if accessing less than -+ a word of memory (i.e. a `char' or a `short') is no faster than accessing a -+ word of memory, i.e., if such access require more than one instruction or if -+ there is no difference in cost between byte and (aligned) word loads. -+ -+ When this macro is not defined, the compiler will access a field by finding -+ the smallest containing object; when it is defined, a fullword load will be -+ used if alignment permits. Unless bytes accesses are faster than word -+ accesses, using word accesses is preferable since it may eliminate -+ subsequent memory access if subsequent accesses occur to other fields in the -+ same word of the structure, but to different bytes. */ -+#define SLOW_BYTE_ACCESS 0 -+ -+/* The number of scalar move insns which should be generated instead of a -+ string move insn or a library call. Increasing the value will always make -+ code faster, but eventually incurs high cost in increased code size. -+ -+ If you don't define this, a reasonable default is used. */ -+/* According to expr.c, a value of around 6 should minimize code size. */ -+#define MOVE_RATIO(SPEED) 6 -+ -+/* We're much better off calling a constant function address with the -+ Ubicom32 architecture because we have an opcode for doing so. Don't -+ let the compiler extract function addresses as common subexpressions -+ into an address register. */ -+#define NO_FUNCTION_CSE -+ -+#define SELECT_CC_MODE(OP, X, Y) ubicom32_select_cc_mode (OP, X, Y) -+ -+#define REVERSIBLE_CC_MODE(MODE) 1 -+ -+/* Canonicalize a comparison from one we don't have to one we do have. */ -+#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \ -+ ubicom32_canonicalize_comparison (&(CODE), &(OP0), &(OP1)) -+ -+/* Dividing the output into sections. */ -+ -+/* A C expression whose value is a string containing the assembler operation -+ that should precede instructions and read-only data. Normally `".text"' is -+ right. */ -+#define TEXT_SECTION_ASM_OP "\t.section .text" -+ -+/* A C expression whose value is a string containing the assembler operation to -+ identify the following data as writable initialized data. Normally -+ `".data"' is right. */ -+#define DATA_SECTION_ASM_OP "\t.section .data" -+ -+ -+/* If defined, a C expression whose value is a string containing the -+ assembler operation to identify the following data as -+ uninitialized global data. If not defined, and neither -+ `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined, -+ uninitialized global data will be output in the data section if -+ `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be -+ used. */ -+#define BSS_SECTION_ASM_OP "\t.section .bss" -+ -+/* This is how we tell the assembler that a symbol is weak. */ -+ -+#define ASM_WEAKEN_LABEL(FILE, NAME) \ -+ do \ -+ { \ -+ fputs ("\t.weak\t", (FILE)); \ -+ assemble_name ((FILE), (NAME)); \ -+ fputc ('\n', (FILE)); \ -+ } \ -+ while (0) -+ -+/* The Overall Framework of an Assembler File. */ -+ -+#undef SET_ASM_OP -+#define SET_ASM_OP "\t.set\t" -+ -+/* A C string constant describing how to begin a comment in the target -+ assembler language. The compiler assumes that the comment will end at the -+ end of the line. */ -+#define ASM_COMMENT_START ";" -+ -+/* A C string constant for text to be output before each `asm' statement or -+ group of consecutive ones. Normally this is `"#APP"', which is a comment -+ that has no effect on most assemblers but tells the GNU assembler that it -+ must check the lines that follow for all valid assembler constructs. */ -+#define ASM_APP_ON "#APP\n" -+ -+/* A C string constant for text to be output after each `asm' statement or -+ group of consecutive ones. Normally this is `"#NO_APP"', which tells the -+ GNU assembler to resume making the time-saving assumptions that are valid -+ for ordinary compiler output. */ -+#define ASM_APP_OFF "#NO_APP\n" -+ -+/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a separate, -+ explicit argument. If you define this macro, it is used in place of -+ `ASM_OUTPUT_BSS', and gives you more flexibility in handling the required -+ alignment of the variable. The alignment is specified as the number of -+ bits. -+ -+ Try to use function `asm_output_aligned_bss' defined in file `varasm.c' when -+ defining this macro. */ -+#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ -+ asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN)) -+ -+/* A C expression to assign to OUTVAR (which is a variable of type `char *') a -+ newly allocated string made from the string NAME and the number NUMBER, with -+ some suitable punctuation added. Use `alloca' to get space for the string. -+ -+ The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce -+ an assembler label for an internal static variable whose name is NAME. -+ Therefore, the string must be such as to result in valid assembler code. -+ The argument NUMBER is different each time this macro is executed; it -+ prevents conflicts between similarly-named internal static variables in -+ different scopes. -+ -+ Ideally this string should not be a valid C identifier, to prevent any -+ conflict with the user's own symbols. Most assemblers allow periods or -+ percent signs in assembler symbols; putting at least one of these between -+ the name and the number will suffice. */ -+#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ -+ ((OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ -+ sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO))) -+ -+#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \ -+ sprintf (STRING, "*.%s%ld", PREFIX, (long)(NUM)) -+/* A C statement to store into the string STRING a label whose name -+ is made from the string PREFIX and the number NUM. -+ -+ This string, when output subsequently by `assemble_name', should -+ produce the output that `(*targetm.asm_out.internal_label)' would produce -+ with the same PREFIX and NUM. -+ -+ If the string begins with `*', then `assemble_name' will output -+ the rest of the string unchanged. It is often convenient for -+ `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the -+ string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to -+ output the string, and may change it. (Of course, -+ `ASM_OUTPUT_LABELREF' is also part of your machine description, so -+ you should know what it does on your machine.) */ -+ -+/* This says how to output assembler code to declare an -+ uninitialized external linkage data object. Under SVR4, -+ the linker seems to want the alignment of data objects -+ to depend on their types. We do exactly that here. */ -+ -+#define COMMON_ASM_OP "\t.comm\t" -+ -+#undef ASM_OUTPUT_COMMON -+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ -+ do \ -+ { \ -+ fprintf ((FILE), "%s", COMMON_ASM_OP); \ -+ assemble_name ((FILE), (NAME)); \ -+ fprintf ((FILE), ", %u\n", (SIZE)); \ -+ } \ -+ while (0) -+ -+/* This says how to output assembler code to declare an -+ uninitialized internal linkage data object. Under SVR4, -+ the linker seems to want the alignment of data objects -+ to depend on their types. We do exactly that here. */ -+#define LOCAL_ASM_OP "\t.lcomm\t" -+ -+#undef ASM_OUTPUT_LOCAL -+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ -+ do \ -+ { \ -+ fprintf ((FILE), "%s", LOCAL_ASM_OP); \ -+ assemble_name ((FILE), (NAME)); \ -+ fprintf ((FILE), ", %u\n", (SIZE)); \ -+ } \ -+ while (0) -+ -+/* Globalizing directive for a label. */ -+#define GLOBAL_ASM_OP ".global\t" -+ -+/* Output the operand of an instruction. */ -+#define PRINT_OPERAND(FILE, X, CODE) \ -+ ubicom32_print_operand(FILE, X, CODE) -+ -+/* Output the address of an operand. */ -+#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ -+ ubicom32_print_operand_address (FILE, ADDR) -+ -+/* A C expression to output to STREAM some assembler code which will push hard -+ register number REGNO onto the stack. The code need not be optimal, since -+ this macro is used only when profiling. */ -+#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) -+ -+/* A C expression to output to STREAM some assembler code which will pop hard -+ register number REGNO off of the stack. The code need not be optimal, since -+ this macro is used only when profiling. */ -+#define ASM_OUTPUT_REG_POP(FILE, REGNO) -+ -+/* This macro should be provided on machines where the addresses in a dispatch -+ table are relative to the table's own address. -+ -+ The definition should be a C statement to output to the stdio stream STREAM -+ an assembler pseudo-instruction to generate a difference between two labels. -+ VALUE and REL are the numbers of two internal labels. The definitions of -+ these labels are output using `ASM_OUTPUT_INTERNAL_LABEL', and they must be -+ printed in the same way here. For example, -+ -+ fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */ -+#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ -+ fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL) -+ -+/* This macro should be provided on machines where the addresses in a dispatch -+ table are absolute. -+ -+ The definition should be a C statement to output to the stdio stream STREAM -+ an assembler pseudo-instruction to generate a reference to a label. VALUE -+ is the number of an internal label whose definition is output using -+ `ASM_OUTPUT_INTERNAL_LABEL'. For example, -+ -+ fprintf (STREAM, "\t.word L%d\n", VALUE) */ -+#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ -+ fprintf (STREAM, "\t.word .L%d\n", VALUE) -+ -+/* Switch into a generic section. */ -+#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section -+ -+/* Assembler Commands for Alignment. */ -+ -+#define ASM_OUTPUT_SKIP(STREAM, N) fprintf (STREAM, "\t.skip %d,0\n", N) -+/* A C statement to output to the stdio stream STREAM an assembler -+ instruction to advance the location counter by NBYTES bytes. -+ Those bytes should be zero when loaded. NBYTES will be a C -+ expression of type `int'. */ -+ -+/* A C statement to output to the stdio stream STREAM an assembler command to -+ advance the location counter to a multiple of 2 to the POWER bytes. POWER -+ will be a C expression of type `int'. */ -+#define ASM_OUTPUT_ALIGN(FILE, LOG) \ -+ if ((LOG) != 0) \ -+ fprintf (FILE, "\t.align %d\n", (LOG)) -+ -+/* A C expression that returns the DBX register number for the compiler -+ register number REGNO. In simple cases, the value of this expression may be -+ REGNO itself. But sometimes there are some registers that the compiler -+ knows about and DBX does not, or vice versa. In such cases, some register -+ may need to have one number in the compiler and another for DBX. -+ -+ If two registers have consecutive numbers inside GNU CC, and they can be -+ used as a pair to hold a multiword value, then they *must* have consecutive -+ numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers -+ will be unable to access such a pair, because they expect register pairs to -+ be consecutive in their own numbering scheme. -+ -+ If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not -+ preserve register pairs, then what you must do instead is redefine the -+ actual register numbering scheme. -+ -+ This declaration is required. */ -+#define DBX_REGISTER_NUMBER(REGNO) REGNO -+ -+/* A C expression that returns the integer offset value for an automatic -+ variable having address X (an RTL expression). The default computation -+ assumes that X is based on the frame-pointer and gives the offset from the -+ frame-pointer. This is required for targets that produce debugging output -+ for DBX or COFF-style debugging output for SDB and allow the frame-pointer -+ to be eliminated when the `-g' options is used. */ -+#define DEBUGGER_AUTO_OFFSET(X) \ -+ ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \ -+ + (frame_pointer_needed \ -+ ? 0 : -initial_elimination_offset (FRAME_POINTER_REGNUM, \ -+ STACK_POINTER_REGNUM))) -+ -+/* A C expression that returns the integer offset value for an argument having -+ address X (an RTL expression). The nominal offset is OFFSET. */ -+#define DEBUGGER_ARG_OFFSET(OFFSET, X) \ -+ ((GET_CODE (X) == PLUS ? OFFSET : 0) \ -+ + (frame_pointer_needed \ -+ ? 0 : -initial_elimination_offset (ARG_POINTER_REGNUM, \ -+ STACK_POINTER_REGNUM))) -+ -+/* A C expression that returns the type of debugging output GNU CC produces -+ when the user specifies `-g' or `-ggdb'. Define this if you have arranged -+ for GNU CC to support more than one format of debugging output. Currently, -+ the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG', -+ `DWARF2_DEBUG', and `XCOFF_DEBUG'. -+ -+ The value of this macro only affects the default debugging output; the user -+ can always get a specific type of output by using `-gstabs', `-gcoff', -+ `-gdwarf-1', `-gdwarf-2', or `-gxcoff'. -+ -+ Defined in svr4.h. -+*/ -+#undef PREFERRED_DEBUGGING_TYPE -+#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG -+ -+/* Define this macro if GNU CC should produce dwarf version 2 format debugging -+ output in response to the `-g' option. -+ -+ To support optional call frame debugging information, you must also define -+ `INCOMING_RETURN_ADDR_RTX' and either set `RTX_FRAME_RELATED_P' on the -+ prologue insns if you use RTL for the prologue, or call `dwarf2out_def_cfa' -+ and `dwarf2out_reg_save' as appropriate from `FUNCTION_PROLOGUE' if you -+ don't. -+ -+ Defined in svr4.h. */ -+ -+#define DWARF2_DEBUGGING_INFO 1 -+/*#define DWARF2_UNWIND_INFO 1*/ -+#define DWARF2_UNWIND_INFO 0 -+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGNO) -+#define INCOMING_FRAME_SP_OFFSET 0 -+#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGNO) -+#define EH_RETURN_FIRST 9 -+#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + EH_RETURN_FIRST : INVALID_REGNUM) -+ -+/* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the -+ location used to store the amount to ajdust the stack. This is -+ usually a registers that is available from end of the function's body -+ to the end of the epilogue. Thus, this cannot be a register used as a -+ temporary by the epilogue. -+ -+ This must be an integer register. */ -+#define EH_RETURN_STACKADJ_REGNO 11 -+#define EH_RETURN_STACKADJ_RTX \ -+ gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO) -+ -+/* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the -+ location used to store the address the processor should jump to -+ catch exception. This is usually a registers that is available from -+ end of the function's body to the end of the epilogue. Thus, this -+ cannot be a register used as a temporary by the epilogue. -+ -+ This must be an address register. */ -+#define EH_RETURN_HANDLER_REGNO 18 -+#define EH_RETURN_HANDLER_RTX \ -+ gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO) -+ -+/* #define DWARF2_DEBUGGING_INFO */ -+ -+/* Define this macro if GNU CC should produce dwarf version 2-style -+ line numbers. This usually requires extending the assembler to -+ support them, and #defining DWARF2_LINE_MIN_INSN_LENGTH in the -+ assembler configuration header files. */ -+/* #define DWARF2_ASM_LINE_DEBUG_INFO 1 */ -+ -+ -+/* An alias for a machine mode name. This is the machine mode that elements -+ of a jump-table have. */ -+#define CASE_VECTOR_MODE Pmode -+ -+/* Smallest number of different values for which it is best to use a -+ jump-table instead of a tree of conditional branches. For most Ubicom32 -+ targets this is quite small, but for the v1 architecture implementations -+ we had very little data memory and so heavily prefer the tree approach -+ rather than the jump tables. */ -+#define CASE_VALUES_THRESHOLD ubicom32_case_values_threshold -+ -+/* Register operations within the Ubicom32 architecture always operate on -+ the whole register word and not just the sub-bits required for the opcode -+ mode size. */ -+#define WORD_REGISTER_OPERATIONS -+ -+/* The maximum number of bytes that a single instruction can move quickly from -+ memory to memory. */ -+#define MOVE_MAX 4 -+ -+/* A C expression that is nonzero if on this machine the number of bits -+ actually used for the count of a shift operation is equal to the number of -+ bits needed to represent the size of the object being shifted. When this -+ macro is non-zero, the compiler will assume that it is safe to omit a -+ sign-extend, zero-extend, and certain bitwise `and' instructions that -+ truncates the count of a shift operation. On machines that have -+ instructions that act on bitfields at variable positions, which may include -+ `bit test' instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables -+ deletion of truncations of the values that serve as arguments to bitfield -+ instructions. -+ -+ If both types of instructions truncate the count (for shifts) and position -+ (for bitfield operations), or if no variable-position bitfield instructions -+ exist, you should define this macro. -+ -+ However, on some machines, such as the 80386 and the 680x0, truncation only -+ applies to shift operations and not the (real or pretended) bitfield -+ operations. Define `SHIFT_COUNT_TRUNCATED' to be zero on such machines. -+ Instead, add patterns to the `md' file that include the implied truncation -+ of the shift instructions. -+ -+ You need not define this macro if it would always have the value of zero. */ -+#define SHIFT_COUNT_TRUNCATED 1 -+ -+/* A C expression which is nonzero if on this machine it is safe to "convert" -+ an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller -+ than INPREC) by merely operating on it as if it had only OUTPREC bits. -+ -+ On many machines, this expression can be 1. -+ -+ When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for -+ which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the -+ case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve -+ things. */ -+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 -+ -+/* A C string constant that tells the GNU CC driver program options to pass -+ to the assembler. It can also specify how to translate options you give -+ to GNU CC into options for GNU CC to pass to the assembler. See the -+ file `sun3.h' for an example of this. -+ -+ Defined in svr4.h. */ -+#undef ASM_SPEC -+#define ASM_SPEC \ -+ "%{march=*:-m%*} %{!march=*:-mubicom32v4} %{mfdpic:-mfdpic}" -+ -+#define LINK_SPEC "\ -+%{h*} %{v:-V} \ -+%{b} \ -+%{mfdpic:-melf32ubicom32fdpic -z text} \ -+%{static:-dn -Bstatic} \ -+%{shared:-G -Bdynamic} \ -+%{symbolic:-Bsymbolic} \ -+%{G*} \ -+%{YP,*} \ -+%{Qy:} %{!Qn:-Qy}" -+ -+#undef STARTFILE_SPEC -+#undef ENDFILE_SPEC -+ -+/* The svr4.h LIB_SPEC with -leval and --*group tacked on */ -+ -+#undef LIB_SPEC -+#define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}" -+ -+#undef HAVE_GAS_SHF_MERGE -+#define HAVE_GAS_SHF_MERGE 0 -+ -+#define HANDLE_SYSV_PRAGMA 1 -+#undef HANDLE_PRAGMA_PACK -+ -+typedef void (*ubicom32_func_ptr) (void); -+ -+/* Define builtins for selected special-purpose instructions. */ -+enum ubicom32_builtins -+{ -+ UBICOM32_BUILTIN_UBICOM32_SWAPB_2, -+ UBICOM32_BUILTIN_UBICOM32_SWAPB_4 -+}; -+ -+extern rtx ubicom32_compare_op0; -+extern rtx ubicom32_compare_op1; -+ -+#define TYPE_ASM_OP "\t.type\t" -+#define TYPE_OPERAND_FMT "@%s" -+ -+#ifndef ASM_DECLARE_RESULT -+#define ASM_DECLARE_RESULT(FILE, RESULT) -+#endif -+ -+/* These macros generate the special .type and .size directives which -+ are used to set the corresponding fields of the linker symbol table -+ entries in an ELF object file under SVR4. These macros also output -+ the starting labels for the relevant functions/objects. */ -+ -+/* Write the extra assembler code needed to declare a function properly. -+ Some svr4 assemblers need to also have something extra said about the -+ function's return value. We allow for that here. */ -+ -+#ifndef ASM_DECLARE_FUNCTION_NAME -+#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ -+ do \ -+ { \ -+ ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \ -+ ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \ -+ ASM_OUTPUT_LABEL (FILE, NAME); \ -+ } \ -+ while (0) -+#endif ---- /dev/null -+++ b/gcc/config/ubicom32/ubicom32.md -@@ -0,0 +1,3753 @@ -+; GCC machine description for Ubicom32 -+; -+; Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software -+; Foundation, Inc. -+; Contributed by Ubicom, Inc. -+; -+; This file is part of GCC. -+; -+; GCC is free software; you can redistribute it and/or modify -+; it under the terms of the GNU General Public License as published by -+; the Free Software Foundation; either version 3, or (at your option) -+; any later version. -+; -+; GCC is distributed in the hope that it will be useful, -+; but WITHOUT ANY WARRANTY; without even the implied warranty of -+; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+; GNU General Public License for more details. -+; -+; You should have received a copy of the GNU General Public License -+; along with GCC; see the file COPYING3. If not see -+; . -+ -+(define_constants -+ [(AUX_DATA_REGNO 15) -+ (LINK_REGNO 21) -+ (SP_REGNO 23) -+ (ACC0_HI_REGNO 24) -+ (ACC1_HI_REGNO 26) -+ (CC_REGNO 30)]) -+ -+(define_constants -+ [(UNSPEC_FDPIC_GOT 0) -+ (UNSPEC_FDPIC_GOT_FUNCDESC 1)]) -+ -+(define_constants -+ [(UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC 0)]) -+ -+;; Types of instructions (for scheduling purposes). -+ -+(define_attr "type" "mul,addr,other" -+ (const_string "other")) -+ -+; Define instruction scheduling characteristics. We can only issue -+; one instruction per clock so we don't need to define CPU units. -+; -+(define_automaton "ubicom32") -+ -+(define_cpu_unit "i_pipeline" "ubicom32"); -+ -+; We have a 4 cycle hazard associated with address calculations which -+; seems rather tricky to avoid so we go with a defensive assumption -+; that almost anything can be used to generate addresses. -+; -+;(define_insn_reservation "ubicom32_other" 4 -+; (eq_attr "type" "other") -+; "i_pipeline") -+ -+; Some moves don't generate hazards. -+; -+;(define_insn_reservation "ubicom32_addr" 1 -+; (eq_attr "type" "addr") -+; "i_pipeline") -+ -+; We need 3 cycles between a multiply instruction and any use of the -+; matching accumulator register(s). -+; -+(define_insn_reservation "ubicom32_mul" 4 -+ (eq_attr "type" "mul") -+ "i_pipeline") -+ -+(define_attr "length" "" -+ (const_int 4)) -+ -+(include "predicates.md") -+(include "constraints.md") -+ -+; 8-bit move with no change to the flags reg. -+; -+(define_insn "movqi" -+ [(set (match_operand:QI 0 "nonimmediate_operand" "=rm") -+ (match_operand:QI 1 "ubicom32_move_operand" "g"))] -+ "" -+ "move.1\\t%0, %1") -+ -+; Combiner-generated 8-bit move with the zero flag set accordingly. -+; -+(define_insn "movqi_ccszn" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:QI 0 "nonimmediate_operand" "rm") -+ (const_int 0))) -+ (set (match_operand:QI 1 "nonimmediate_operand" "=rm") -+ (match_dup 0))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "ext.1\\t%1, %0") -+ -+; Combine isn't very good at merging some types of operations so we -+; have to make do with a peephole. It's not as effective but it's better -+; than doing nothing. -+; -+(define_peephole2 -+ [(set (match_operand:QI 0 "nonimmediate_operand" "") -+ (match_operand:QI 1 "nonimmediate_operand" "")) -+ (set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (match_operator 3 "ubicom32_compare_operator" -+ [(match_dup 0) -+ (const_int 0)]))] -+ "(GET_MODE (operands[2]) == CCSZNmode -+ || GET_MODE (operands[2]) == CCSZmode)" -+ [(parallel -+ [(set (match_dup 2) -+ (match_op_dup 3 -+ [(match_dup 1) -+ (const_int 0)])) -+ (set (match_dup 0) -+ (match_dup 1))])] -+ "") -+ -+; Combine isn't very good at merging some types of operations so we -+; have to make do with a peephole. It's not as effective but it's better -+; than doing nothing. -+; -+(define_peephole2 -+ [(set (match_operand:QI 0 "nonimmediate_operand" "") -+ (match_operand:QI 1 "nonimmediate_operand" "")) -+ (set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (match_operator 3 "ubicom32_compare_operator" -+ [(match_dup 1) -+ (const_int 0)]))] -+ "(GET_MODE (operands[2]) == CCSZNmode -+ || GET_MODE (operands[2]) == CCSZmode)" -+ [(parallel -+ [(set (match_dup 2) -+ (match_op_dup 3 -+ [(match_dup 1) -+ (const_int 0)])) -+ (set (match_dup 0) -+ (match_dup 1))])] -+ "") -+ -+; 16-bit move with no change to the flags reg. -+; -+(define_insn "movhi" -+ [(set (match_operand:HI 0 "nonimmediate_operand" "=rm") -+ (match_operand:HI 1 "ubicom32_move_operand" "g"))] -+ "" -+ "* -+ { -+ if (CONST_INT_P (operands[1])) -+ return \"movei\\t%0, %1\"; -+ -+ return \"move.2\\t%0, %1\"; -+ }") -+ -+; Combiner-generated 16-bit move with the zero flag set accordingly. -+; -+(define_insn "movhi_ccszn" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:HI 0 "nonimmediate_operand" "rm") -+ (const_int 0))) -+ (set (match_operand:HI 1 "nonimmediate_operand" "=rm") -+ (match_dup 0))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "ext.2\\t%1, %0") -+ -+; Combine isn't very good at merging some types of operations so we -+; have to make do with a peephole. It's not as effective but it's better -+; than doing nothing. -+; -+(define_peephole2 -+ [(set (match_operand:HI 0 "nonimmediate_operand" "") -+ (match_operand:HI 1 "nonimmediate_operand" "")) -+ (set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (match_operator 3 "ubicom32_compare_operator" -+ [(match_dup 0) -+ (const_int 0)]))] -+ "(GET_MODE (operands[2]) == CCSZNmode -+ || GET_MODE (operands[2]) == CCSZmode)" -+ [(parallel -+ [(set (match_dup 2) -+ (match_op_dup 3 -+ [(match_dup 1) -+ (const_int 0)])) -+ (set (match_dup 0) -+ (match_dup 1))])] -+ "") -+ -+; Combine isn't very good at merging some types of operations so we -+; have to make do with a peephole. It's not as effective but it's better -+; than doing nothing. -+; -+(define_peephole2 -+ [(set (match_operand:HI 0 "nonimmediate_operand" "") -+ (match_operand:HI 1 "nonimmediate_operand" "")) -+ (set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (match_operator 3 "ubicom32_compare_operator" -+ [(match_dup 1) -+ (const_int 0)]))] -+ "(GET_MODE (operands[2]) == CCSZNmode -+ || GET_MODE (operands[2]) == CCSZmode)" -+ [(parallel -+ [(set (match_dup 2) -+ (match_op_dup 3 -+ [(match_dup 1) -+ (const_int 0)])) -+ (set (match_dup 0) -+ (match_dup 1))])] -+ "") -+ -+; 32-bit move with no change to the flags reg. -+; -+(define_expand "movsi" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "") -+ (match_operand:SI 1 "general_operand" ""))] -+ "" -+ "{ -+ /* Convert any complexities in operand 1 into something that can just -+ fall into the default expander code. */ -+ ubicom32_expand_movsi (operands); -+ }") -+ -+(define_insn "movsi_high" -+ [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a") -+ (high:SI (match_operand:SI 1 "ubicom32_symbolic_address_operand" "s")))] -+ "" -+ "moveai\\t%0, #%%hi(%E1)") -+ -+(define_insn "movsi_lo_sum" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (lo_sum:SI (match_operand:SI 1 "ubicom32_address_register_operand" "a") -+ (match_operand:SI 2 "immediate_operand" "s")))] -+ "" -+ "lea.1\\t%0, %%lo(%E2)(%1)") -+ -+(define_insn "movsi_internal" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (match_operand:SI 1 "ubicom32_move_operand" "rmnY"))] -+ "" -+ "* -+ { -+ if (CONST_INT_P (operands[1])) -+ { -+ ubicom32_emit_move_const_int (operands[0], operands[1]); -+ return \"\"; -+ } -+ -+ if (GET_CODE (operands[1]) == CONST_DOUBLE) -+ { -+ HOST_WIDE_INT i = CONST_DOUBLE_LOW (operands[1]); -+ -+ ubicom32_emit_move_const_int (operands[0], GEN_INT (i)); -+ return \"\"; -+ } -+ -+ if (ubicom32_address_register_operand (operands[0], VOIDmode) -+ && register_operand (operands[1], VOIDmode)) -+ { -+ if (ubicom32_address_register_operand (operands[1], VOIDmode)) -+ return \"lea.1\\t%0, 0(%1)\"; -+ -+ /* Use movea here to utilize the hazard bypass in the >= v4 ISA. */ -+ if (ubicom32_v4) -+ return \"movea\\t%0, %1\"; -+ -+ return \"move.4\\t%0, %1\"; -+ } -+ -+ return \"move.4\\t%0, %1\"; -+ }") -+ -+; If we're not dependent on the state of the condition codes we can construct -+; constants of value 2^n by using a bset. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "nonimmediate_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(exact_log2 (INTVAL (operands[1])) > 14 -+ && peep2_regno_dead_p (0, CC_REGNO))" -+ [(parallel -+ [(set (match_dup 0) -+ (ior:SI (const_int 0) -+ (match_dup 1))) -+ (clobber (reg:CC CC_REGNO))])] -+ "") -+ -+; If we're not dependent on the state of the condition codes we can construct -+; constants of value ~(2^n) by using a bclr. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "nonimmediate_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(exact_log2 (~INTVAL (operands[1])) > 14 -+ && peep2_regno_dead_p (0, CC_REGNO))" -+ [(parallel -+ [(set (match_dup 0) -+ (and:SI (const_int -1) -+ (match_dup 1))) -+ (clobber (reg:CC CC_REGNO))])] -+ "") -+ -+; For 32-bit constants that have bits 0 through 24 and bit 31 set the same -+; we can use swapb.4! -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "nonimmediate_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(ubicom32_v4 -+ && (INTVAL (operands[1]) & 0xffffffff) != 0xffffffff -+ && (INTVAL (operands[1]) & 0xffffffff) != 0 -+ && ((INTVAL (operands[1]) & 0x80ffffff) == 0 -+ || (INTVAL (operands[1]) & 0x80ffffff) == 0x80ffffff))" -+ [(set (match_dup 0) -+ (bswap:SI (match_dup 2)))] -+ "{ -+ operands[2] = GEN_INT (INTVAL (operands[1]) >> 24); -+ }") -+ -+; If this is a write of a constant to memory look to see if we can usefully -+; transform this into 2 smaller writes. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "memory_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "! satisfies_constraint_I (operands[1]) -+ && ubicom32_legitimate_address_p (HImode, plus_constant (XEXP (operands[0], 0), 2), 1)" -+ [(set (match_dup 4) (match_dup 2)) -+ (set (match_dup 5) (match_dup 3))] -+ "{ -+ rtx low_hword_addr; -+ -+ operands[2] = gen_highpart_mode (HImode, SImode, operands[1]); -+ operands[3] = gen_lowpart (HImode, operands[1]); -+ -+ operands[4] = gen_rtx_MEM (HImode, XEXP (operands[0], 0)); -+ MEM_COPY_ATTRIBUTES (operands[4], operands[0]); -+ -+ low_hword_addr = plus_constant (XEXP (operands[0], 0), 2); -+ operands[5] = gen_rtx_MEM (HImode, low_hword_addr); -+ MEM_COPY_ATTRIBUTES (operands[5], operands[0]); -+ }") -+ -+; If we're writing memory and we've not found a better way to do this then -+; try loading into a D register and then copying to memory. This will -+; perform the fewest possible memory read/writes. -+; -+(define_peephole2 -+ [(match_scratch:SI 2 "d") -+ (set (match_operand:SI 0 "memory_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "! satisfies_constraint_I (operands[1])" -+ [(set (match_dup 2) (match_dup 1)) -+ (set (match_dup 0) (match_dup 2))] -+ "") -+ -+; If we're not dependent on the state of the condition codes we can construct -+; constants of value (2^n - 1) by using an lsr.4. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(exact_log2 (INTVAL (operands[1]) + 1) > 14 -+ && peep2_regno_dead_p (0, CC_REGNO))" -+ [(parallel -+ [(set (match_dup 0) -+ (lshiftrt:SI (const_int -1) -+ (match_dup 2))) -+ (clobber (reg:CC CC_REGNO))])] -+ "{ -+ operands[2] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1)); -+ }") -+ -+; If we're not dependent on the state of the condition codes we can construct -+; constants of value (2^n - 1) by using an lsr.4. -+; -+(define_peephole2 -+ [(match_scratch:SI 2 "d") -+ (set (match_operand:SI 0 "nonimmediate_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(exact_log2 (INTVAL (operands[1]) + 1) > 14 -+ && peep2_regno_dead_p (0, CC_REGNO))" -+ [(parallel -+ [(set (match_dup 2) -+ (lshiftrt:SI (const_int -1) -+ (match_dup 3))) -+ (clobber (reg:CC CC_REGNO))]) -+ (set (match_dup 0) -+ (match_dup 2))] -+ "{ -+ operands[3] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1)); -+ }") -+ -+; If we're not dependent on the state of the condition codes we can construct -+; some other constants by using an lsl.4 to shift 7 bits left by some -+; constant. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(ubicom32_shiftable_const_int (INTVAL (operands[1])) -+ && peep2_regno_dead_p (0, CC_REGNO))" -+ [(parallel -+ [(set (match_dup 0) -+ (ashift:SI (match_dup 2) -+ (match_dup 3))) -+ (clobber (reg:CC CC_REGNO))])] -+ "{ -+ int shift = ubicom32_shiftable_const_int (INTVAL (operands[1])); -+ operands[2] = GEN_INT (INTVAL (operands[1]) >> shift); -+ operands[3] = GEN_INT (shift); -+ }") -+ -+; If we're not dependent on the state of the condition codes we can construct -+; some other constants by using an lsl.4 to shift 7 bits left by some -+; constant. -+; -+(define_peephole2 -+ [(match_scratch:SI 2 "d") -+ (set (match_operand:SI 0 "nonimmediate_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(ubicom32_shiftable_const_int (INTVAL (operands[1])) -+ && peep2_regno_dead_p (0, CC_REGNO))" -+ [(parallel -+ [(set (match_dup 2) -+ (ashift:SI (match_dup 3) -+ (match_dup 4))) -+ (clobber (reg:CC CC_REGNO))]) -+ (set (match_dup 0) -+ (match_dup 2))] -+ "{ -+ int shift = ubicom32_shiftable_const_int (INTVAL (operands[1])); -+ operands[3] = GEN_INT (INTVAL (operands[1]) >> shift); -+ operands[4] = GEN_INT (shift); -+ }") -+ -+; For some 16-bit unsigned constants that have bit 15 set we can use -+; swapb.2! -+; -+; Note that the movsi code emits the same sequence but by using a peephole2 -+; we split the pattern early enough to allow instruction scheduling to -+; occur. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(ubicom32_v4 -+ && (INTVAL (operands[1]) & 0xffff80ff) == 0x80ff)" -+ [(set (match_dup 0) -+ (zero_extend:SI (bswap:HI (match_dup 2))))] -+ "{ -+ HOST_WIDE_INT i = INTVAL (operands[1]) >> 8; -+ if (i >= 0x80) -+ i -= 0x100; -+ operands[2] = GEN_INT (i); -+ }") -+ -+; In general for a 16-bit unsigned constant that has bit 15 set -+; then we need a movei/move.2 pair unless we can represent it -+; via just a move.2. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(INTVAL (operands[1]) & 0xffff8000) == 0x8000 -+ && (INTVAL (operands[1]) & 0xffff) < 0xff80" -+ [(set (match_dup 2) -+ (match_dup 1)) -+ (set (match_dup 0) -+ (zero_extend:SI (match_dup 2)))] -+ "{ -+ operands[2] = gen_rtx_REG (HImode, REGNO (operands[0])); -+ }") -+ -+; If we're not dependent on the state of the condition codes we can construct -+; 32-bit constants that have bits 16 through 31 set to arbitrary values -+; and have bits 0 through 15 set to something representable as a default -+; source-1 immediate - we use movei/shmrg.2 -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(((INTVAL (operands[1]) >= 0x8000 -+ && INTVAL (operands[1]) < 0xff80) -+ || INTVAL (operands[1]) >= 0x10000 -+ || INTVAL (operands[1]) < -0x8000) -+ && ((INTVAL (operands[1]) & 0xffff) >= 0xff80 -+ || (INTVAL (operands[1]) & 0xffff) < 0x80) -+ && peep2_regno_dead_p (0, CC_REGNO))" -+ [(set (match_dup 0) -+ (match_dup 2)) -+ (parallel -+ [(set (match_dup 0) -+ (ior:SI -+ (ashift:SI (match_dup 0) -+ (const_int 16)) -+ (zero_extend:SI -+ (match_dup 3)))) -+ (clobber (reg:CC CC_REGNO))])] -+ "{ -+ operands[2] = gen_highpart_mode (HImode, SImode, operands[1]); -+ operands[3] = gen_lowpart (HImode, operands[1]); -+ }") -+ -+; Exactly the same as the peephole2 preceding except that this targets a -+; general register instead of D register. Hopefully the later optimization -+; passes will notice that the value ended up in a D register first here -+; and eliminate away the other register! -+; -+(define_peephole2 -+ [(match_scratch:SI 2 "d") -+ (set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(((INTVAL (operands[1]) >= 0x8000 -+ && INTVAL (operands[1]) < 0xff80) -+ || INTVAL (operands[1]) >= 0x10000 -+ || INTVAL (operands[1]) < -0x8000) -+ && ((INTVAL (operands[1]) & 0xffff) >= 0xff80 -+ || (INTVAL (operands[1]) & 0xffff) < 0x80) -+ && peep2_regno_dead_p (0, CC_REGNO))" -+ [(set (match_dup 2) -+ (match_dup 3)) -+ (parallel -+ [(set (match_dup 2) -+ (ior:SI -+ (ashift:SI (match_dup 2) -+ (const_int 16)) -+ (zero_extend:SI -+ (match_dup 4)))) -+ (clobber (reg:CC CC_REGNO))]) -+ (set (match_dup 0) -+ (match_dup 2))] -+ "{ -+ operands[3] = gen_highpart_mode (HImode, SImode, operands[1]); -+ operands[4] = gen_lowpart (HImode, operands[1]); -+ }") -+ -+; If we have a load of a large integer constant which does not have bit 31 -+; set and we have a spare A reg then construct it with a moveai/lea.1 pair -+; instead. This avoids constructing it in 3 instructions on the stack. -+; -+; Note that we have to be careful not to match anything that matches -+; something we can do in a single instruction! There aren't many such -+; constants but there are some. -+; -+(define_peephole2 -+ [(match_scratch:SI 2 "a") -+ (set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "const_int_operand" ""))] -+ "(! (INTVAL (operands[1]) & 0x80000000) -+ && ((INTVAL (operands[1]) >= 0x8000 -+ && INTVAL (operands[1]) < 0xff80) -+ || INTVAL (operands[1]) >= 0x10000))" -+ [(set (match_dup 2) -+ (match_dup 3)) -+ (set (match_dup 0) -+ (plus:SI (match_dup 2) -+ (match_dup 4)))] -+ "{ -+ HOST_WIDE_INT i = INTVAL (operands[1]); -+ operands[3] = GEN_INT (i & 0xffffff80); -+ operands[4] = GEN_INT (i & 0x7f); -+ }") -+ -+; If we're not dependent on the state of the condition codes we can construct -+; a 32-bit constant with a movei/movei/shmrg.2 sequence if possible. -+; -+(define_peephole2 -+ [(match_scratch:HI 2 "d") -+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "") -+ (match_operand:SI 1 "const_int_operand" "")) -+ (match_dup 2)] -+ "(INTVAL (operands[1]) & 0x80000000 -+ && INTVAL (operands[1]) < -0x8000 -+ && peep2_regno_dead_p (0, CC_REGNO))" -+ [(set (match_dup 0) -+ (match_dup 3)) -+ (set (match_dup 2) -+ (match_dup 4)) -+ (parallel -+ [(set (match_dup 0) -+ (ior:SI -+ (ashift:SI (match_dup 0) -+ (const_int 16)) -+ (zero_extend:SI -+ (match_dup 2)))) -+ (clobber (reg:CC CC_REGNO))])] -+ "{ -+ operands[3] = gen_highpart_mode (HImode, SImode, operands[1]); -+ operands[4] = gen_lowpart (HImode, operands[1]); -+ }") -+ -+; Exactly the same as the peephole2 preceding except that this targets a -+; general register instead of D register. Hopefully the later optimization -+; passes will notice that the value ended up in a D register first here -+; and eliminate away the other register! -+; -+(define_peephole2 -+ [(match_scratch:SI 2 "d") -+ (match_scratch:HI 3 "d") -+ (set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "const_int_operand" "")) -+ (match_dup 3)] -+ "(INTVAL (operands[1]) & 0x80000000 -+ && INTVAL (operands[1]) < -0x8000 -+ && peep2_regno_dead_p (0, CC_REGNO))" -+ [(set (match_dup 2) -+ (match_dup 4)) -+ (set (match_dup 3) -+ (match_dup 5)) -+ (parallel -+ [(set (match_dup 2) -+ (ior:SI -+ (ashift:SI (match_dup 2) -+ (const_int 16)) -+ (zero_extend:SI -+ (match_dup 3)))) -+ (clobber (reg:CC CC_REGNO))]) -+ (set (match_dup 0) -+ (match_dup 2))] -+ "{ -+ operands[4] = gen_highpart_mode (HImode, SImode, operands[1]); -+ operands[5] = gen_lowpart (HImode, operands[1]); -+ }") -+ -+(define_insn "movsi_fdpic_got_offset" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (match_operand:SI 1 "ubicom32_fdpic_got_offset_operand" "Y"))] -+ "" -+ "movei\\t%0, %1") -+ -+; The explicit MEM inside the UNSPEC prevents the compiler from moving -+; the load before a branch after a NULL test, or before a store that -+; initializes a function descriptor. -+ -+(define_insn_and_split "load_fdpic_funcdesc" -+ [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a") -+ (unspec_volatile:SI [(mem:SI (match_operand:SI 1 "address_operand" "p"))] -+ UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC))] -+ "" -+ "#" -+ "reload_completed" -+ [(set (match_dup 0) -+ (mem:SI (match_dup 1)))]) -+ -+; Combiner-generated 32-bit move with the zero flag set accordingly. -+; -+(define_insn "movsi_ccwzn" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm, d") -+ (const_int 0))) -+ (set (match_operand:SI 1 "nonimmediate_operand" "=d,rm") -+ (match_dup 0))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "@ -+ lsl.4\\t%1, %0, #0 -+ add.4\\t%1, #0, %0") -+ -+; Combiner-generated 32-bit move with all flags set accordingly. -+; -+(define_insn "movsi_ccw" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d") -+ (const_int 0))) -+ (set (match_operand:SI 1 "nonimmediate_operand" "=rm") -+ (match_dup 0))] -+ "ubicom32_match_cc_mode(insn, CCWmode)" -+ "add.4\\t%1, #0, %0") -+ -+; Combine isn't very good at merging some types of operations so we -+; have to make do with a peephole. It's not as effective but it's better -+; than doing nothing. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "") -+ (match_operand:SI 1 "nonimmediate_operand" "")) -+ (parallel -+ [(set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (match_operator 3 "ubicom32_compare_operator" -+ [(match_dup 0) -+ (const_int 0)])) -+ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])] -+ "(GET_MODE (operands[2]) == CCWZNmode -+ || GET_MODE (operands[2]) == CCWZmode)" -+ [(parallel -+ [(set (match_dup 2) -+ (match_op_dup 3 -+ [(match_dup 1) -+ (const_int 0)])) -+ (set (match_dup 0) -+ (match_dup 1))])] -+ "") -+ -+; Combine isn't very good at merging some types of operations so we -+; have to make do with a peephole. It's not as effective but it's better -+; than doing nothing. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "nonimmediate_operand" "") -+ (match_operand:SI 1 "ubicom32_data_register_operand" "")) -+ (parallel -+ [(set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (match_operator 3 "ubicom32_compare_operator" -+ [(match_dup 1) -+ (const_int 0)])) -+ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])] -+ "(GET_MODE (operands[2]) == CCWZNmode -+ || GET_MODE (operands[2]) == CCWZmode)" -+ [(parallel -+ [(set (match_dup 2) -+ (match_op_dup 3 -+ [(match_dup 1) -+ (const_int 0)])) -+ (set (match_dup 0) -+ (match_dup 1))])] -+ "") -+ -+; Combine isn't very good at merging some types of operations so we -+; have to make do with a peephole. It's not as effective but it's better -+; than doing nothing. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "nonimmediate_operand" "")) -+ (parallel -+ [(set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (match_operator 3 "ubicom32_compare_operator" -+ [(match_dup 0) -+ (const_int 0)])) -+ (set (match_operand:SI 4 "ubicom32_data_register_operand" "") -+ (match_dup 0))])] -+ "(peep2_reg_dead_p (2, operands[0]) -+ && (GET_MODE (operands[2]) == CCWZNmode -+ || GET_MODE (operands[2]) == CCWZmode))" -+ [(parallel -+ [(set (match_dup 2) -+ (match_op_dup 3 -+ [(match_dup 1) -+ (const_int 0)])) -+ (set (match_dup 4) -+ (match_dup 1))])] -+ "") -+ -+; Register renaming may make a general reg into a D reg in which case -+; we may be able to simplify a compare. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "nonimmediate_operand" "")) -+ (parallel -+ [(set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (match_operator 3 "ubicom32_compare_operator" -+ [(match_dup 0) -+ (const_int 0)])) -+ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])] -+ "(peep2_reg_dead_p (2, operands[0]) -+ && (GET_MODE (operands[2]) == CCWZNmode -+ || GET_MODE (operands[2]) == CCWZmode))" -+ [(parallel -+ [(set (match_dup 2) -+ (match_op_dup 3 -+ [(match_dup 1) -+ (const_int 0)])) -+ (clobber (match_dup 4))])] -+ "") -+ -+(define_insn_and_split "movdi" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,rm") -+ (match_operand:DI 1 "general_operand" "rmi,ri"))] -+ "" -+ "#" -+ "reload_completed" -+ [(set (match_dup 2) (match_dup 3)) -+ (set (match_dup 4) (match_dup 5))] -+ "{ -+ rtx dest_low; -+ rtx src_low; -+ -+ dest_low = gen_lowpart (SImode, operands[0]); -+ src_low = gen_lowpart (SImode, operands[1]); -+ -+ if (REG_P (operands[0]) -+ && REG_P (operands[1]) -+ && REGNO (operands[0]) < REGNO (operands[1])) -+ { -+ operands[2] = gen_highpart (SImode, operands[0]); -+ operands[3] = gen_highpart_mode (SImode, DImode, operands[1]); -+ operands[4] = dest_low; -+ operands[5] = src_low; -+ } -+ else if (reg_mentioned_p (dest_low, src_low)) -+ { -+ operands[2] = gen_highpart (SImode, operands[0]); -+ operands[3] = gen_highpart_mode (SImode, DImode, operands[1]); -+ operands[4] = dest_low; -+ operands[5] = src_low; -+ } -+ else -+ { -+ operands[2] = dest_low; -+ operands[3] = src_low; -+ operands[4] = gen_highpart (SImode, operands[0]); -+ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]); -+ } -+ }" -+ [(set_attr "length" "8")]) -+ -+; Combiner-generated 64-bit move with all flags set accordingly. -+; -+(define_insn "movdi_ccwzn" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r") -+ (const_int 0))) -+ (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm") -+ (match_dup 0)) -+ (clobber (match_scratch:SI 2 "=X, d, d"))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "* -+ { -+ operands[3] = gen_lowpart (SImode, operands[0]); -+ operands[4] = gen_lowpart (SImode, operands[1]); -+ operands[5] = gen_highpart (SImode, operands[0]); -+ operands[6] = gen_highpart (SImode, operands[1]); -+ -+ if (ubicom32_data_register_operand (operands[0], VOIDmode)) -+ return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\"; -+ -+ return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\"; -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_insn "movdi_ccw" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r") -+ (const_int 0))) -+ (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm") -+ (match_dup 0)) -+ (clobber (match_scratch:SI 2 "=X, d, d"))] -+ "ubicom32_match_cc_mode(insn, CCWmode)" -+ "* -+ { -+ operands[3] = gen_lowpart (SImode, operands[0]); -+ operands[4] = gen_lowpart (SImode, operands[1]); -+ operands[5] = gen_highpart (SImode, operands[0]); -+ operands[6] = gen_highpart (SImode, operands[1]); -+ -+ if (ubicom32_data_register_operand (operands[0], VOIDmode)) -+ return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\"; -+ -+ return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\"; -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_insn "movsf" -+ [(set (match_operand:SF 0 "nonimmediate_operand" "=!d,*rm") -+ (match_operand:SF 1 "ubicom32_move_operand" "rmF,rmF"))] -+ "" -+ "* -+ { -+ if (GET_CODE (operands[1]) == CONST_DOUBLE) -+ { -+ HOST_WIDE_INT val; -+ REAL_VALUE_TYPE rv; -+ -+ REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]); -+ REAL_VALUE_TO_TARGET_SINGLE (rv, val); -+ -+ ubicom32_emit_move_const_int (operands[0], GEN_INT (val)); -+ return \"\"; -+ } -+ -+ return \"move.4\\t%0, %1\"; -+ }") -+ -+(define_insn "zero_extendqihi2" -+ [(set (match_operand:HI 0 "register_operand" "=r") -+ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))] -+ "" -+ "move.1\\t%0, %1") -+ -+(define_insn "zero_extendqisi2" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))] -+ "" -+ "move.1\\t%0, %1") -+ -+(define_insn "zero_extendqisi2_ccwz_1" -+ [(set (reg CC_REGNO) -+ (compare -+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (zero_extend:SI (match_dup 1)))] -+ "ubicom32_match_cc_mode(insn, CCWZmode)" -+ "shmrg.1\\t%0, %1, #0") -+ -+(define_insn "zero_extendhisi2" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))] -+ "" -+ "move.2\\t%0, %1") -+ -+(define_insn "zero_extendhisi2_ccwz_1" -+ [(set (reg CC_REGNO) -+ (compare -+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (zero_extend:SI (match_dup 1)))] -+ "ubicom32_match_cc_mode(insn, CCWZmode)" -+ "shmrg.2\\t%0, %1, #0") -+ -+(define_insn_and_split "zero_extendqidi2" -+ [(set (match_operand:DI 0 "register_operand" "=r") -+ (zero_extend:DI (match_operand:QI 1 "nonimmediate_operand" "rm")))] -+ "" -+ "#" -+ "reload_completed" -+ [(set (match_dup 2) -+ (zero_extend:SI (match_dup 1))) -+ (set (match_dup 3) -+ (const_int 0))] -+ "{ -+ operands[2] = gen_lowpart (SImode, operands[0]); -+ operands[3] = gen_highpart (SImode, operands[0]); -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_insn_and_split "zero_extendhidi2" -+ [(set (match_operand:DI 0 "register_operand" "=r") -+ (zero_extend:DI (match_operand:HI 1 "nonimmediate_operand" "rm")))] -+ "" -+ "#" -+ "reload_completed" -+ [(set (match_dup 2) -+ (zero_extend:SI (match_dup 1))) -+ (set (match_dup 3) -+ (const_int 0))] -+ "{ -+ operands[2] = gen_lowpart (SImode, operands[0]); -+ operands[3] = gen_highpart (SImode, operands[0]); -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_insn_and_split "zero_extendsidi2" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=rm") -+ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))] -+ "" -+ "#" -+ "reload_completed" -+ [(set (match_dup 2) -+ (match_dup 1)) -+ (set (match_dup 3) -+ (const_int 0))] -+ "{ -+ operands[2] = gen_lowpart (SImode, operands[0]); -+ operands[3] = gen_highpart (SImode, operands[0]); -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_insn "extendqihi2" -+ [(set (match_operand:HI 0 "register_operand" "=r") -+ (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "ext.1\\t%0, %1") -+ -+(define_insn "extendqisi2" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "ext.1\\t%0, %1") -+ -+(define_insn "extendhisi2" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "ext.2\\t%0, %1") -+ -+(define_insn_and_split "extendsidi2" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=d") -+ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "#" -+ "reload_completed" -+ [(set (match_dup 2) -+ (match_dup 1)) -+ (parallel -+ [(set (match_dup 3) -+ (ashiftrt:SI (match_dup 2) -+ (const_int 31))) -+ (clobber (reg:CC CC_REGNO))])] -+ "{ -+ operands[2] = gen_lowpart (SImode, operands[0]); -+ operands[3] = gen_highpart (SImode, operands[0]); -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_insn "bswaphi" -+ [(set (match_operand:HI 0 "nonimmediate_operand" "=rm") -+ (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))] -+ "(ubicom32_v4)" -+ "swapb.2\\t%0, %1"); -+ -+(define_insn "bswaphisi" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (zero_extend:SI -+ (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI"))))] -+ "(ubicom32_v4)" -+ "swapb.2\\t%0, %1"); -+ -+(define_insn "bswapsi" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (bswap:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))] -+ "(ubicom32_v4)" -+ "swapb.4\\t%0, %1"); -+ -+(define_insn "tstqi_ext1" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:QI 0 "nonimmediate_operand" "rm") -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "ext.1\\t#0, %0") -+ -+(define_expand "cmpqi" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:QI 0 "ubicom32_arith_operand" "") -+ (match_operand:QI 1 "ubicom32_data_register_operand" "")))] -+ "(ubicom32_v4)" -+ "{ -+ ubicom32_compare_op0 = operands[0]; -+ ubicom32_compare_op1 = operands[1]; -+ DONE; -+ }") -+ -+(define_insn "sub1_ccs" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:QI 0 "ubicom32_arith_operand" "rmI") -+ (match_operand:QI 1 "ubicom32_data_register_operand" "d")))] -+ "(ubicom32_v4)" -+ "sub.1\\t#0, %0, %1") -+ -+; If we're testing for equality we don't have to worry about reversing conditions. -+; -+(define_insn "sub1_ccsz_1" -+ [(set (reg:CCSZ CC_REGNO) -+ (compare:CCSZ (match_operand:QI 0 "nonimmediate_operand" "rm") -+ (match_operand:QI 1 "ubicom32_data_register_operand" "d")))] -+ "(ubicom32_v4)" -+ "sub.1\\t#0, %0, %1") -+ -+(define_insn "sub1_ccsz_2" -+ [(set (reg:CCSZ CC_REGNO) -+ (compare:CCSZ (match_operand:QI 0 "ubicom32_data_register_operand" "d") -+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI")))] -+ "(ubicom32_v4)" -+ "sub.1\\t#0, %1, %0") -+ -+; When the combiner runs it doesn't have any insight into whether or not an argument -+; to a compare is spilled to the stack and therefore can't swap the comparison in -+; an attempt to use sub.1 more effectively. We peephole this case here. -+; -+(define_peephole2 -+ [(set (match_operand:QI 0 "register_operand" "") -+ (match_operand:QI 1 "ubicom32_arith_operand" "")) -+ (set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (compare (match_operand:QI 3 "ubicom32_data_register_operand" "") -+ (match_dup 0))) -+ (set (pc) -+ (if_then_else (match_operator 4 "comparison_operator" -+ [(match_dup 2) -+ (const_int 0)]) -+ (label_ref (match_operand 5 "" "")) -+ (pc)))] -+ "(peep2_reg_dead_p (2, operands[0]) -+ && peep2_regno_dead_p (3, CC_REGNO))" -+ [(set (match_dup 2) -+ (compare (match_dup 1) -+ (match_dup 3))) -+ (set (pc) -+ (if_then_else (match_op_dup 6 -+ [(match_dup 2) -+ (const_int 0)]) -+ (label_ref (match_dup 5)) -+ (pc)))] -+ "{ -+ rtx cc_reg; -+ -+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO); -+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])), -+ GET_MODE (operands[4]), -+ cc_reg, -+ const0_rtx); -+ }") -+ -+(define_insn "tsthi_ext2" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:HI 0 "nonimmediate_operand" "rm") -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "ext.2\\t#0, %0") -+ -+(define_expand "cmphi" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:HI 0 "ubicom32_arith_operand" "") -+ (match_operand:HI 1 "ubicom32_compare_operand" "")))] -+ "" -+ "{ -+ do -+ { -+ /* Is this a cmpi? */ -+ if (CONST_INT_P (operands[1])) -+ break; -+ -+ /* Must be a sub.2 - if necessary copy an operand into a reg. */ -+ if (! ubicom32_data_register_operand (operands[1], HImode)) -+ operands[1] = copy_to_mode_reg (HImode, operands[1]); -+ } -+ while (0); -+ -+ ubicom32_compare_op0 = operands[0]; -+ ubicom32_compare_op1 = operands[1]; -+ DONE; -+ }") -+ -+(define_insn "cmpi" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:HI 0 "nonimmediate_operand" "rm") -+ (match_operand 1 "const_int_operand" "N")))] -+ "" -+ "cmpi\\t%0, %1") -+ -+(define_insn "sub2_ccs" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:HI 0 "ubicom32_arith_operand" "rmI") -+ (match_operand:HI 1 "ubicom32_data_register_operand" "d")))] -+ "" -+ "sub.2\\t#0, %0, %1") -+ -+; If we're testing for equality we don't have to worry about reversing conditions. -+; -+(define_insn "sub2_ccsz_1" -+ [(set (reg:CCSZ CC_REGNO) -+ (compare:CCSZ (match_operand:HI 0 "nonimmediate_operand" "rm") -+ (match_operand:HI 1 "ubicom32_data_register_operand" "d")))] -+ "" -+ "sub.2\\t#0, %0, %1") -+ -+(define_insn "sub2_ccsz_2" -+ [(set (reg:CCSZ CC_REGNO) -+ (compare:CCSZ (match_operand:HI 0 "ubicom32_data_register_operand" "d") -+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))] -+ "" -+ "sub.2\\t#0, %1, %0") -+ -+; When the combiner runs it doesn't have any insight into whether or not an argument -+; to a compare is spilled to the stack and therefore can't swap the comparison in -+; an attempt to use sub.2 more effectively. We peephole this case here. -+; -+(define_peephole2 -+ [(set (match_operand:HI 0 "register_operand" "") -+ (match_operand:HI 1 "ubicom32_arith_operand" "")) -+ (set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (compare (match_operand:HI 3 "ubicom32_data_register_operand" "") -+ (match_dup 0))) -+ (set (pc) -+ (if_then_else (match_operator 4 "comparison_operator" -+ [(match_dup 2) -+ (const_int 0)]) -+ (label_ref (match_operand 5 "" "")) -+ (pc)))] -+ "(peep2_reg_dead_p (2, operands[0]) -+ && peep2_regno_dead_p (3, CC_REGNO))" -+ [(set (match_dup 2) -+ (compare (match_dup 1) -+ (match_dup 3))) -+ (set (pc) -+ (if_then_else (match_op_dup 6 -+ [(match_dup 2) -+ (const_int 0)]) -+ (label_ref (match_dup 5)) -+ (pc)))] -+ "{ -+ rtx cc_reg; -+ -+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO); -+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])), -+ GET_MODE (operands[4]), -+ cc_reg, -+ const0_rtx); -+ }") -+ -+(define_insn_and_split "tstsi_lsl4" -+ [(set (match_operand 0 "ubicom32_cc_register_operand" "=r") -+ (match_operator 1 "ubicom32_compare_operator" -+ [(match_operand:SI 2 "nonimmediate_operand" "rm") -+ (const_int 0)]))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "#" -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ [(parallel -+ [(set (match_dup 0) -+ (match_op_dup 1 -+ [(match_dup 2) -+ (const_int 0)])) -+ (clobber (match_dup 3))])] -+ "{ -+ operands[3] = gen_reg_rtx (SImode); -+ }") -+ -+(define_insn "tstsi_lsl4_d" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm") -+ (const_int 0))) -+ (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "lsl.4\\t%1, %0, #0") -+ -+; Comparison for equality with -1. -+; -+(define_insn "cmpsi_not4_ccwz" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm") -+ (const_int -1)))] -+ "ubicom32_match_cc_mode(insn, CCWZmode)" -+ "not.4\\t#0, %0") -+ -+(define_expand "cmpsi" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:SI 0 "ubicom32_arith_operand" "") -+ (match_operand:SI 1 "ubicom32_compare_operand" "")))] -+ "" -+ "{ -+ do -+ { -+ /* Is this a cmpi? We can't take a memory address as cmpi takes -+ 16-bit operands. */ -+ if (register_operand (operands[0], SImode) -+ && CONST_INT_P (operands[1]) -+ && satisfies_constraint_N (operands[1])) -+ break; -+ -+ /* Must be a sub.4 - if necessary copy an operand into a reg. */ -+ if (! ubicom32_data_register_operand (operands[1], SImode)) -+ operands[1] = copy_to_mode_reg (SImode, operands[1]); -+ } -+ while (0); -+ -+ ubicom32_compare_op0 = operands[0]; -+ ubicom32_compare_op1 = operands[1]; -+ DONE; -+ }") -+ -+(define_insn "cmpsi_cmpi" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:SI 0 "register_operand" "r") -+ (match_operand 1 "const_int_operand" "N")))] -+ "(satisfies_constraint_N (operands[1]))" -+ "cmpi\\t%0, %1") -+ -+(define_insn "cmpsi_sub4" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:SI 0 "ubicom32_arith_operand" "rmI") -+ (match_operand:SI 1 "ubicom32_data_register_operand" "d")))] -+ "" -+ "sub.4\\t#0, %0, %1") -+ -+; If we're testing for equality we don't have to worry about reversing conditions. -+; -+(define_insn "cmpsi_sub4_ccwz_1" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:SI 0 "nonimmediate_operand" "rm") -+ (match_operand:SI 1 "ubicom32_data_register_operand" "d")))] -+ "ubicom32_match_cc_mode(insn, CCWZmode)" -+ "sub.4\\t#0, %0, %1") -+ -+(define_insn "cmpsi_sub4_ccwz_2" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d") -+ (match_operand:SI 1 "nonimmediate_operand" "rm")))] -+ "ubicom32_match_cc_mode(insn, CCWZmode)" -+ "sub.4\\t#0, %1, %0") -+ -+; When the combiner runs it doesn't have any insight into whether or not an argument -+; to a compare is spilled to the stack and therefore can't swap the comparison in -+; an attempt to use sub.4 more effectively. We peephole this case here. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "ubicom32_arith_operand" "")) -+ (set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (compare (match_operand:SI 3 "ubicom32_data_register_operand" "") -+ (match_dup 0))) -+ (set (pc) -+ (if_then_else (match_operator 4 "comparison_operator" -+ [(match_dup 2) -+ (const_int 0)]) -+ (label_ref (match_operand 5 "" "")) -+ (pc)))] -+ "(peep2_reg_dead_p (2, operands[0]) -+ && peep2_regno_dead_p (3, CC_REGNO))" -+ [(set (match_dup 2) -+ (compare (match_dup 1) -+ (match_dup 3))) -+ (set (pc) -+ (if_then_else (match_op_dup 6 -+ [(match_dup 2) -+ (const_int 0)]) -+ (label_ref (match_dup 5)) -+ (pc)))] -+ "{ -+ rtx cc_reg; -+ -+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO); -+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])), -+ GET_MODE (operands[4]), -+ cc_reg, -+ const0_rtx); -+ }") -+ -+(define_insn_and_split "tstdi_or4" -+ [(set (reg:CCWZ CC_REGNO) -+ (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm") -+ (const_int 0)))] -+ "" -+ "#" -+ "" -+ [(parallel -+ [(set (reg:CCWZ CC_REGNO) -+ (compare:CCWZ (match_dup 0) -+ (const_int 0))) -+ (clobber (match_dup 1))])] -+ "{ -+ operands[1] = gen_reg_rtx (SImode); -+ }") -+ -+(define_insn "tstdi_or4_d" -+ [(set (reg:CCWZ CC_REGNO) -+ (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm") -+ (const_int 0))) -+ (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))] -+ "" -+ "* -+ { -+ operands[2] = gen_lowpart (SImode, operands[0]); -+ operands[3] = gen_highpart_mode (SImode, DImode, operands[0]); -+ -+ if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0]))) -+ return \"or.4\\t#0, %2, %3\"; -+ -+ return \"move.4\\t%1, %2\;or.4\\t%1, %3, %1\"; -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_expand "cmpdi" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:DI 0 "ubicom32_arith_operand" "") -+ (match_operand:DI 1 "ubicom32_data_register_operand" "")))] -+ "" -+ "{ -+ ubicom32_compare_op0 = operands[0]; -+ ubicom32_compare_op1 = operands[1]; -+ DONE; -+ }") -+ -+(define_insn "cmpdi_sub4subc" -+ [(set (reg CC_REGNO) -+ (compare (match_operand:DI 0 "ubicom32_arith_operand" "rmI") -+ (match_operand:DI 1 "ubicom32_data_register_operand" "d")))] -+ "" -+ "* -+ { -+ operands[2] = gen_lowpart (SImode, operands[0]); -+ operands[3] = gen_lowpart (SImode, operands[1]); -+ operands[4] = gen_highpart_mode (SImode, DImode, operands[0]); -+ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]); -+ -+ return \"sub.4\\t#0, %2, %3\;subc\\t#0, %4, %5\"; -+ }" -+ [(set_attr "length" "8")]) -+ -+; When the combiner runs it doesn't have any insight into whether or not an argument -+; to a compare is spilled to the stack and therefore can't swap the comparison in -+; an attempt to use sub.4/subc more effectively. We peephole this case here. -+; -+(define_peephole2 -+ [(set (match_operand:DI 0 "register_operand" "") -+ (match_operand:DI 1 "ubicom32_arith_operand" "")) -+ (set (match_operand 2 "ubicom32_cc_register_operand" "") -+ (compare (match_operand:DI 3 "ubicom32_data_register_operand" "") -+ (match_dup 0))) -+ (set (pc) -+ (if_then_else (match_operator 4 "comparison_operator" -+ [(match_dup 2) -+ (const_int 0)]) -+ (label_ref (match_operand 5 "" "")) -+ (pc)))] -+ "(peep2_reg_dead_p (2, operands[0]) -+ && peep2_regno_dead_p (3, CC_REGNO))" -+ [(set (match_dup 2) -+ (compare (match_dup 1) -+ (match_dup 3))) -+ (set (pc) -+ (if_then_else (match_op_dup 6 -+ [(match_dup 2) -+ (const_int 0)]) -+ (label_ref (match_dup 5)) -+ (pc)))] -+ "{ -+ rtx cc_reg; -+ -+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO); -+ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])), -+ GET_MODE (operands[4]), -+ cc_reg, -+ const0_rtx); -+ }") -+ -+(define_insn "btst" -+ [(set (reg:CCWZ CC_REGNO) -+ (compare:CCWZ -+ (zero_extract:SI -+ (match_operand:SI 0 "nonimmediate_operand" "rm") -+ (const_int 1) -+ (match_operand:SI 1 "ubicom32_arith_operand" "dM")) -+ (const_int 0)))] -+ "" -+ "btst\\t%0, %1") -+ -+(define_insn "bfextu_ccwz_null" -+ [(set (reg:CCWZ CC_REGNO) -+ (compare:CCWZ -+ (zero_extract:SI -+ (match_operand:SI 0 "nonimmediate_operand" "rm") -+ (match_operand 1 "const_int_operand" "M") -+ (const_int 0)) -+ (const_int 0))) -+ (clobber (match_scratch:SI 2 "=d"))] -+ "" -+ "bfextu\\t%2, %0, %1") -+ -+(define_expand "addqi3" -+ [(parallel -+ [(set (match_operand:QI 0 "memory_operand" "") -+ (plus:QI (match_operand:QI 1 "nonimmediate_operand" "") -+ (match_operand:QI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "(ubicom32_v4)" -+ "{ -+ if (!memory_operand (operands[0], QImode)) -+ FAIL; -+ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (QImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (QImode, operands[2]); -+ }") -+ -+(define_insn "addqi3_add1" -+ [(set (match_operand:QI 0 "memory_operand" "=m, m") -+ (plus:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4)" -+ "@ -+ add.1\\t%0, %2, %1 -+ add.1\\t%0, %1, %2") -+ -+(define_insn "addqi3_add1_ccszn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (neg:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm")) -+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d")))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "@ -+ add.1\\t#0, %1, %0 -+ add.1\\t#0, %0, %1") -+ -+(define_expand "addhi3" -+ [(parallel -+ [(set (match_operand:HI 0 "memory_operand" "") -+ (plus:HI (match_operand:HI 1 "nonimmediate_operand" "") -+ (match_operand:HI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ "{ -+ if (!memory_operand (operands[0], HImode)) -+ FAIL; -+ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (HImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (HImode, operands[2]); -+ }") -+ -+(define_insn "addhi3_add2" -+ [(set (match_operand:HI 0 "memory_operand" "=m, m") -+ (plus:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "@ -+ add.2\\t%0, %2, %1 -+ add.2\\t%0, %1, %2") -+ -+(define_insn "addhi3_add2_ccszn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (neg:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm")) -+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d")))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "@ -+ add.2\\t#0, %1, %0 -+ add.2\\t#0, %0, %1") -+ -+(define_expand "addsi3" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "") -+ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "") -+ (match_operand:SI 2 "ubicom32_move_operand" "")))] -+ "" -+ "{ -+ ubicom32_expand_addsi3 (operands); -+ DONE; -+ }") -+ -+; We start with an instruction pattern that can do all sorts of interesting -+; things but we split out any uses of lea or pdec instructions because -+; those instructions don't clobber the condition codes. -+; -+(define_insn_and_split "addsi3_1" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm, rm,rm") -+ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%a, a, a, a, a, d,rm") -+ (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d,rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "@ -+ # -+ # -+ # -+ # -+ # -+ add.4\\t%0, %2, %1 -+ add.4\\t%0, %1, %2" -+ "(reload_completed -+ && ubicom32_address_register_operand (operands[1], GET_MODE (operands[1])))" -+ [(set (match_dup 0) -+ (plus:SI (match_dup 1) -+ (match_dup 2)))] -+ "" -+) -+ -+(define_insn "addsi3_1_ccwzn" -+ [(set (reg CC_REGNO) -+ (compare -+ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") -+ (plus:SI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "@ -+ add.4\\t%0, %2, %1 -+ add.4\\t%0, %1, %2") -+ -+(define_insn "addsi3_1_ccwzn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (neg:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")) -+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "@ -+ add.4\\t#0, %1, %0 -+ add.4\\t#0, %0, %1") -+ -+(define_insn_and_split "addsi3_2" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm,rm") -+ (plus:SI (match_operand:SI 1 "ubicom32_address_register_operand" "%a, a, a, a, a, a") -+ (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d, n")))] -+ "" -+ "@ -+ lea.4\\t%0, %E2(%1) -+ lea.2\\t%0, %E2(%1) -+ lea.1\\t%0, %E2(%1) -+ pdec\\t%0, %n2(%1) -+ lea.1\\t%0, (%1,%2) -+ #" -+ "(reload_completed -+ && ! satisfies_constraint_L (operands[2]) -+ && ! satisfies_constraint_K (operands[2]) -+ && ! satisfies_constraint_J (operands[2]) -+ && ! satisfies_constraint_P (operands[2]) -+ && ! ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))" -+ [(set (reg:SI AUX_DATA_REGNO) -+ (match_dup 2)) -+ (set (match_dup 0) -+ (plus:SI (match_dup 1) -+ (reg:SI AUX_DATA_REGNO)))] -+ "" -+) -+ -+(define_insn "lea_2" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") -+ (const_int 2)) -+ (match_operand:SI 2 "ubicom32_address_register_operand" "a")))] -+ "" -+ "lea.2\\t%0, (%2,%1)") -+ -+(define_insn "lea_4" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") -+ (const_int 4)) -+ (match_operand:SI 2 "ubicom32_address_register_operand" "a")))] -+ "" -+ "lea.4\\t%0, (%2,%1)") -+ -+(define_expand "adddi3" -+ [(parallel -+ [(set (match_operand:DI 0 "nonimmediate_operand" "") -+ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "") -+ (match_operand:DI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ "{ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (DImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (DImode, operands[2]); -+ }") -+ -+; We construct a 64-bit add from 32-bit operations. Note that we use the -+; & constraint to prevent overlapping registers being allocated. We do -+; allow identical registers though as that won't break anything. -+; -+(define_insn "adddi3_add4addc" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m") -+ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm") -+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "* -+ { -+ operands[3] = gen_lowpart (SImode, operands[0]); -+ operands[4] = gen_lowpart (SImode, operands[1]); -+ operands[5] = gen_lowpart (SImode, operands[2]); -+ operands[6] = gen_highpart (SImode, operands[0]); -+ operands[7] = gen_highpart (SImode, operands[1]); -+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); -+ -+ if (ubicom32_data_register_operand (operands[2], GET_MODE (operands[2]))) -+ return \"add.4\\t%3, %4, %5\;addc\\t%6, %7, %8\"; -+ -+ return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\"; -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_insn "adddi3_ccwz" -+ [(set (reg CC_REGNO) -+ (compare -+ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm") -+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d")) -+ (const_int 0))) -+ (set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m") -+ (plus:DI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "* -+ { -+ operands[3] = gen_lowpart (SImode, operands[0]); -+ operands[6] = gen_highpart (SImode, operands[0]); -+ -+ if (ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))) -+ { -+ operands[4] = gen_lowpart (SImode, operands[1]); -+ operands[5] = gen_lowpart (SImode, operands[2]); -+ operands[7] = gen_highpart (SImode, operands[1]); -+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); -+ } -+ else -+ { -+ operands[4] = gen_lowpart (SImode, operands[2]); -+ operands[5] = gen_lowpart (SImode, operands[1]); -+ operands[7] = gen_highpart (SImode, operands[2]); -+ operands[8] = gen_highpart (SImode, operands[1]); -+ } -+ -+ return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\"; -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_insn "adddi3_ccwz_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (neg:DI (match_operand:DI 0 "nonimmediate_operand" "%d,rm")) -+ (match_operand:DI 1 "ubicom32_arith_operand" "rmI, d")))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "* -+ { -+ if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0]))) -+ { -+ operands[2] = gen_lowpart (SImode, operands[0]); -+ operands[3] = gen_lowpart (SImode, operands[1]); -+ operands[4] = gen_highpart (SImode, operands[0]); -+ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]); -+ } -+ else -+ { -+ operands[2] = gen_lowpart (SImode, operands[1]); -+ operands[3] = gen_lowpart (SImode, operands[0]); -+ operands[4] = gen_highpart (SImode, operands[1]); -+ operands[5] = gen_highpart (SImode, operands[0]); -+ } -+ -+ return \"add.4\\t#0, %3, %2\;addc\\t#0, %5, %4\"; -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_expand "subqi3" -+ [(parallel -+ [(set (match_operand:QI 0 "memory_operand" "") -+ (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "") -+ (match_operand:QI 2 "ubicom32_data_register_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "(ubicom32_v4)" -+ "{ -+ if (!memory_operand (operands[0], QImode)) -+ FAIL; -+ }") -+ -+(define_insn "subqi3_sub1" -+ [(set (match_operand:QI 0 "memory_operand" "=m") -+ (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "rmI") -+ (match_operand:QI 2 "ubicom32_data_register_operand" "d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4)" -+ "sub.1\\t%0, %1, %2") -+ -+(define_expand "subhi3" -+ [(parallel -+ [(set (match_operand:HI 0 "memory_operand" "") -+ (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "") -+ (match_operand:HI 2 "ubicom32_data_register_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "(ubicom32_v4)" -+ "{ -+ if (!memory_operand (operands[0], HImode)) -+ FAIL; -+ }") -+ -+(define_insn "subhi3_sub2" -+ [(set (match_operand:HI 0 "memory_operand" "=m") -+ (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI") -+ (match_operand:HI 2 "ubicom32_data_register_operand" "d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "sub.2\\t%0, %1, %2") -+ -+(define_insn "subsi3" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") -+ (match_operand:SI 2 "ubicom32_data_register_operand" "d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "sub.4\\t%0, %1, %2") -+ -+(define_insn "subsi3_ccwz" -+ [(set (reg CC_REGNO) -+ (compare -+ (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") -+ (match_operand:SI 2 "ubicom32_data_register_operand" "d")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (minus:SI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "sub.4\\t%0, %1, %2") -+ -+; We construct a 64-bit add from 32-bit operations. Note that we use the -+; & constraint to prevent overlapping registers being allocated. We do -+; allow identical registers though as that won't break anything. -+; -+(define_insn "subdi3" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,r, d, m") -+ (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,0,rmI,rmI") -+ (match_operand:DI 2 "ubicom32_data_register_operand" "d,d, 0, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "* -+ { -+ operands[3] = gen_lowpart (SImode, operands[0]); -+ operands[4] = gen_lowpart (SImode, operands[1]); -+ operands[5] = gen_lowpart (SImode, operands[2]); -+ operands[6] = gen_highpart (SImode, operands[0]); -+ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); -+ operands[8] = gen_highpart (SImode, operands[2]); -+ -+ return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\"; -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_insn "subdi3_ccwz" -+ [(set (reg CC_REGNO) -+ (compare -+ (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,rmI") -+ (match_operand:DI 2 "ubicom32_data_register_operand" "d, d")) -+ (const_int 0))) -+ (set (match_operand:DI 0 "nonimmediate_operand" "=&r, m") -+ (minus:DI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "* -+ { -+ operands[3] = gen_lowpart (SImode, operands[0]); -+ operands[4] = gen_lowpart (SImode, operands[1]); -+ operands[5] = gen_lowpart (SImode, operands[2]); -+ operands[6] = gen_highpart (SImode, operands[0]); -+ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); -+ operands[8] = gen_highpart (SImode, operands[2]); -+ -+ return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\"; -+ }" -+ [(set_attr "length" "8")]) -+ -+;(define_insn "negqi2" -+; [(set (match_operand:QI 0 "nonimmediate_operand" "=rm") -+; (neg:QI (match_operand:QI 1 "ubicom32_data_register_operand" "d"))) -+; (clobber (reg:CC CC_REGNO))] -+; "(ubicom32_v4)" -+; "sub.1\\t%0, #0, %1") -+ -+;(define_insn "neghi2" -+; [(set (match_operand:HI 0 "nonimmediate_operand" "=rm") -+; (neg:HI (match_operand:HI 1 "ubicom32_data_register_operand" "d"))) -+; (clobber (reg:CC CC_REGNO))] -+; "" -+; "sub.2\\t%0, #0, %1") -+ -+(define_insn "negsi2" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (neg:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "sub.4\\t%0, #0, %1") -+ -+(define_insn_and_split "negdi2" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm") -+ (neg:DI (match_operand:DI 1 "ubicom32_data_register_operand" "d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "#" -+ "reload_completed" -+ [(parallel [(set (match_dup 0) -+ (minus:DI (const_int 0) -+ (match_dup 1))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ [(set_attr "length" "8")]) -+ -+(define_insn "umulhisi3" -+ [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l") -+ (mult:SI -+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")) -+ (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d")))) -+ (clobber (reg:HI ACC0_HI_REGNO)) -+ (clobber (reg:HI ACC1_HI_REGNO))] -+ "" -+ "@ -+ mulu\\t%A0, %2, %1 -+ mulu\\t%A0, %1, %2" -+ [(set_attr "type" "mul,mul")]) -+ -+(define_insn "mulhisi3" -+ [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l") -+ (mult:SI -+ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")) -+ (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d")))) -+ (clobber (reg:HI ACC0_HI_REGNO)) -+ (clobber (reg:HI ACC1_HI_REGNO))] -+ "" -+ "@ -+ muls\\t%A0, %2, %1 -+ muls\\t%A0, %1, %2" -+ [(set_attr "type" "mul,mul")]) -+ -+(define_expand "mulsi3" -+ [(set (match_operand:SI 0 "ubicom32_acc_hi_register_operand" "") -+ (mult:SI (match_operand:SI 1 "ubicom32_arith_operand" "") -+ (match_operand:SI 2 "ubicom32_arith_operand" "")))] -+ "" -+ "{ -+ if (ubicom32_emit_mult_sequence (operands)) -+ DONE; -+ }") -+ -+(define_insn "umulsidi3" -+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h") -+ (mult:DI -+ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")) -+ (zero_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))] -+ "(ubicom32_v4)" -+ "@ -+ mulu.4\\t%A0, %2, %1 -+ mulu.4\\t%A0, %1, %2" -+ [(set_attr "type" "mul,mul")]) -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "nonimmediate_operand" "")) -+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "") -+ (mult:DI -+ (zero_extend:DI (match_dup 0)) -+ (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))] -+ "(peep2_reg_dead_p (2, operands[0]) -+ || REGNO (operands[0]) == REGNO (operands[2]) -+ || REGNO (operands[0]) == REGNO (operands[2]) + 1) -+ && ! rtx_equal_p (operands[0], operands[3])" -+ [(set (match_dup 2) -+ (mult:DI -+ (zero_extend:DI (match_dup 1)) -+ (zero_extend:DI (match_dup 3))))] -+ "") -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "nonimmediate_operand" "")) -+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "") -+ (mult:DI -+ (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" "")) -+ (zero_extend:DI (match_dup 0))))] -+ "(peep2_reg_dead_p (2, operands[0]) -+ || REGNO (operands[0]) == REGNO (operands[2]) -+ || REGNO (operands[0]) == REGNO (operands[2]) + 1) -+ && ! rtx_equal_p (operands[0], operands[3])" -+ [(set (match_dup 2) -+ (mult:DI -+ (zero_extend:DI (match_dup 1)) -+ (zero_extend:DI (match_dup 3))))] -+ "") -+ -+(define_insn "umulsidi3_const" -+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h") -+ (mult:DI -+ (zero_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d")) -+ (match_operand 2 "const_int_operand" "I")))] -+ "(ubicom32_v4 && satisfies_constraint_I (operands[2]))" -+ "mulu.4\\t%A0, %2, %1" -+ [(set_attr "type" "mul")]) -+ -+(define_insn "mulsidi3" -+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h") -+ (mult:DI -+ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")) -+ (sign_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))] -+ "(ubicom32_v4)" -+ "@ -+ muls.4\\t%A0, %2, %1 -+ muls.4\\t%A0, %1, %2" -+ [(set_attr "type" "mul,mul")]) -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "nonimmediate_operand" "")) -+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "") -+ (mult:DI -+ (sign_extend:DI (match_dup 0)) -+ (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))] -+ "(peep2_reg_dead_p (2, operands[0]) -+ || REGNO (operands[0]) == REGNO (operands[2]) -+ || REGNO (operands[0]) == REGNO (operands[2]) + 1) -+ && ! rtx_equal_p (operands[0], operands[3])" -+ [(set (match_dup 2) -+ (mult:DI -+ (sign_extend:DI (match_dup 1)) -+ (sign_extend:DI (match_dup 3))))] -+ "") -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "nonimmediate_operand" "")) -+ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "") -+ (mult:DI -+ (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" "")) -+ (sign_extend:DI (match_dup 0))))] -+ "(peep2_reg_dead_p (2, operands[0]) -+ || REGNO (operands[0]) == REGNO (operands[2]) -+ || REGNO (operands[0]) == REGNO (operands[2]) + 1) -+ && ! rtx_equal_p (operands[0], operands[3])" -+ [(set (match_dup 2) -+ (mult:DI -+ (sign_extend:DI (match_dup 1)) -+ (sign_extend:DI (match_dup 3))))] -+ "") -+ -+(define_insn "mulsidi3_const" -+ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h") -+ (mult:DI -+ (sign_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d")) -+ (match_operand 2 "const_int_operand" "I")))] -+ "(ubicom32_v4 && satisfies_constraint_I (operands[2]))" -+ "muls.4\\t%A0, %2, %1" -+ [(set_attr "type" "mul")]) -+ -+(define_expand "andqi3" -+ [(parallel -+ [(set (match_operand:QI 0 "memory_operand" "") -+ (and:QI (match_operand:QI 1 "nonimmediate_operand" "") -+ (match_operand:QI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "(ubicom32_v4)" -+ "{ -+ if (!memory_operand (operands[0], QImode)) -+ FAIL; -+ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (QImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (QImode, operands[2]); -+ }") -+ -+(define_insn "andqi3_and1" -+ [(set (match_operand:QI 0 "memory_operand" "=m, m") -+ (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4)" -+ "@ -+ and.1\\t%0, %2, %1 -+ and.1\\t%0, %1, %2") -+ -+(define_insn "andqi3_and1_ccszn" -+ [(set (reg CC_REGNO) -+ (compare -+ (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0))) -+ (set (match_operand:QI 0 "memory_operand" "=m, m") -+ (and:QI (match_dup 1) -+ (match_dup 2)))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "@ -+ and.1\\t%0, %2, %1 -+ and.1\\t%0, %1, %2") -+ -+(define_insn "andqi3_and1_ccszn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (and:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm") -+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0)))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "@ -+ and.1\\t#0, %1, %0 -+ and.1\\t#0, %0, %1") -+ -+(define_insn "and1_ccszn_null_1" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:QI -+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d") -+ (match_operand:SI 1 "ubicom32_arith_operand" "rI")) -+ 3) -+ (const_int 0)))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "and.1\\t#0, %1, %0") -+ -+(define_insn "and1_ccszn_null_2" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:QI -+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d") -+ (subreg:SI -+ (match_operand:QI 1 "memory_operand" "m") -+ 0)) -+ 3) -+ (const_int 0)))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "and.1\\t#0, %1, %0") -+ -+(define_insn "and1_ccszn_null_3" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:QI -+ (and:SI (subreg:SI -+ (match_operand:QI 0 "memory_operand" "m") -+ 0) -+ (match_operand:SI 1 "ubicom32_data_register_operand" "d")) -+ 3) -+ (const_int 0)))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "and.1\\t#0, %0, %1") -+ -+(define_expand "andhi3" -+ [(parallel -+ [(set (match_operand:HI 0 "memory_operand" "") -+ (and:HI (match_operand:HI 1 "nonimmediate_operand" "") -+ (match_operand:HI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ "{ -+ if (!memory_operand (operands[0], HImode)) -+ FAIL; -+ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (HImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (HImode, operands[2]); -+ }") -+ -+(define_insn "andhi3_and2" -+ [(set (match_operand:HI 0 "memory_operand" "=m, m") -+ (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "@ -+ and.2\\t%0, %2, %1 -+ and.2\\t%0, %1, %2") -+ -+(define_insn "andhi3_and2_ccszn" -+ [(set (reg CC_REGNO) -+ (compare -+ (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0))) -+ (set (match_operand:HI 0 "memory_operand" "=m, m") -+ (and:HI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "@ -+ and.2\\t%0, %2, %1 -+ and.2\\t%0, %1, %2") -+ -+(define_insn "andhi3_and2_ccszn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (and:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm") -+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "@ -+ and.2\\t#0, %1, %0 -+ and.2\\t#0, %0, %1") -+ -+(define_insn "and2_ccszn_null_1" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:HI -+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d") -+ (match_operand:SI 1 "ubicom32_arith_operand" "rI")) -+ 2) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "and.2\\t#0, %1, %0") -+ -+(define_insn "and2_ccszn_null_2" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:HI -+ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d") -+ (subreg:SI -+ (match_operand:HI 1 "memory_operand" "m") -+ 0)) -+ 2) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "and.2\\t#0, %1, %0") -+ -+(define_insn "and2_ccszn_null_3" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:HI -+ (and:SI (subreg:SI -+ (match_operand:HI 0 "memory_operand" "m") -+ 0) -+ (match_operand:SI 1 "ubicom32_data_register_operand" "d")) -+ 2) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "and.2\\t#0, %0, %1") -+ -+(define_expand "andsi3" -+ [(parallel -+ [(set (match_operand:SI 0 "nonimmediate_operand" "") -+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "") -+ (match_operand:SI 2 "ubicom32_and_or_si3_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ "{ -+ do -+ { -+ /* Is this a bfextu? */ -+ if (ubicom32_data_register_operand (operands[0], SImode) -+ && CONST_INT_P (operands[2]) -+ && exact_log2 (INTVAL (operands[2]) + 1) != -1) -+ break; -+ -+ /* Is this a bclr? */ -+ if (CONST_INT_P (operands[2]) -+ && exact_log2 (~INTVAL (operands[2])) != -1) -+ break; -+ -+ /* Must be an and.4 */ -+ if (!ubicom32_data_register_operand (operands[1], SImode)) -+ operands[1] = copy_to_mode_reg (SImode, operands[1]); -+ -+ if (!ubicom32_arith_operand (operands[2], SImode)) -+ operands[2] = copy_to_mode_reg (SImode, operands[2]); -+ } -+ while (0); -+ }") -+ -+(define_insn "andsi3_bfextu" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm") -+ (match_operand:SI 2 "const_int_operand" "O"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(satisfies_constraint_O (operands[2]))" -+ "* -+ { -+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1)); -+ -+ return \"bfextu\\t%0, %1, %3\"; -+ }") -+ -+(define_insn "andsi3_bfextu_ccwz" -+ [(set (reg CC_REGNO) -+ (compare -+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm") -+ (match_operand:SI 2 "const_int_operand" "O")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (and:SI (match_dup 1) -+ (match_dup 2)))] -+ "(satisfies_constraint_O (operands[2]) -+ && ubicom32_match_cc_mode(insn, CCWZmode))" -+ "* -+ { -+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1)); -+ -+ return \"bfextu\\t%0, %1, %3\"; -+ }") -+ -+(define_insn "andsi3_bfextu_ccwz_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm") -+ (match_operand:SI 1 "const_int_operand" "O")) -+ (const_int 0))) -+ (clobber (match_scratch:SI 2 "=d"))] -+ "(satisfies_constraint_O (operands[1]) -+ && ubicom32_match_cc_mode(insn, CCWZmode))" -+ "* -+ { -+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1]) + 1)); -+ -+ return \"bfextu\\t%2, %0, %3\"; -+ }") -+ -+(define_insn "andsi3_bclr" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (and:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI") -+ (match_operand:SI 2 "const_int_operand" "n"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(exact_log2 (~INTVAL (operands[2])) != -1)" -+ "bclr\\t%0, %1, #%D2") -+ -+(define_insn "andsi3_and4" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") -+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "@ -+ and.4\\t%0, %2, %1 -+ and.4\\t%0, %1, %2") -+ -+(define_insn "andsi3_and4_ccwzn" -+ [(set (reg CC_REGNO) -+ (compare -+ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") -+ (and:SI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "@ -+ and.4\\t%0, %2, %1 -+ and.4\\t%0, %1, %2") -+ -+(define_insn "andsi3_and4_ccwzn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm") -+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "@ -+ and.4\\t#0, %1, %0 -+ and.4\\t#0, %0, %1") -+ -+(define_insn "andsi3_lsr4_ccwz_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm") -+ (match_operand:SI 1 "const_int_operand" "n")) -+ (const_int 0))) -+ (clobber (match_scratch:SI 2 "=d"))] -+ "(exact_log2 ((~(INTVAL (operands[1]))) + 1) != -1 -+ && ubicom32_match_cc_mode(insn, CCWZmode))" -+ "* -+ { -+ operands[3] = GEN_INT (exact_log2 ((~(INTVAL (operands[1]))) + 1)); -+ -+ return \"lsr.4\\t%2, %0, %3\"; -+ }") -+ -+; We really would like the combiner to recognize this scenario and deal with -+; it but unfortunately it tries to canonicalize zero_extract ops on MEMs -+; into QImode operations and we can't match them in any useful way. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand:SI 1 "const_int_operand" "")) -+ (set (reg:CCWZ CC_REGNO) -+ (compare:CCWZ -+ (and:SI (match_operand:SI 2 "nonimmediate_operand" "") -+ (match_dup 0)) -+ (const_int 0)))] -+ "(exact_log2 (INTVAL (operands[1])) != -1 -+ && peep2_reg_dead_p (2, operands[0]))" -+ [(set (reg:CCWZ CC_REGNO) -+ (compare:CCWZ -+ (zero_extract:SI -+ (match_dup 2) -+ (const_int 1) -+ (match_dup 3)) -+ (const_int 0)))] -+ "{ -+ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1]))); -+ }") -+ -+(define_expand "anddi3" -+ [(parallel -+ [(set (match_operand:DI 0 "nonimmediate_operand" "") -+ (and:DI (match_operand:DI 1 "nonimmediate_operand" "") -+ (match_operand:DI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ "{ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (DImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (DImode, operands[2]); -+ }") -+ -+(define_insn_and_split "anddi3_and4" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m") -+ (and:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm") -+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "#" -+ "reload_completed" -+ [(parallel [(set (match_dup 3) -+ (and:SI (match_dup 4) -+ (match_dup 5))) -+ (clobber (reg:CC CC_REGNO))]) -+ (parallel [(set (match_dup 6) -+ (and:SI (match_dup 7) -+ (match_dup 8))) -+ (clobber (reg:CC CC_REGNO))])] -+ "{ -+ operands[3] = gen_lowpart (SImode, operands[0]); -+ operands[4] = gen_lowpart (SImode, operands[1]); -+ operands[5] = gen_lowpart (SImode, operands[2]); -+ operands[6] = gen_highpart (SImode, operands[0]); -+ operands[7] = gen_highpart (SImode, operands[1]); -+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_expand "iorqi3" -+ [(parallel -+ [(set (match_operand:QI 0 "memory_operand" "") -+ (ior:QI (match_operand:QI 1 "nonimmediate_operand" "") -+ (match_operand:QI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "(ubicom32_v4)" -+ "{ -+ if (!memory_operand (operands[0], QImode)) -+ FAIL; -+ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (QImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (QImode, operands[2]); -+ }") -+ -+(define_insn "iorqi3_or1" -+ [(set (match_operand:QI 0 "memory_operand" "=m, m") -+ (ior:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4)" -+ "@ -+ or.1\\t%0, %2, %1 -+ or.1\\t%0, %1, %2") -+ -+(define_expand "iorhi3" -+ [(parallel -+ [(set (match_operand:HI 0 "memory_operand" "") -+ (ior:HI (match_operand:HI 1 "nonimmediate_operand" "") -+ (match_operand:HI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ "{ -+ if (!memory_operand (operands[0], HImode)) -+ FAIL; -+ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (HImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (HImode, operands[2]); -+ }") -+ -+(define_insn "iorhi3_or2" -+ [(set (match_operand:HI 0 "memory_operand" "=m, m") -+ (ior:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "@ -+ or.2\\t%0, %2, %1 -+ or.2\\t%0, %1, %2") -+ -+(define_expand "iorsi3" -+ [(parallel -+ [(set (match_operand:SI 0 "nonimmediate_operand" "") -+ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "") -+ (match_operand:SI 2 "ubicom32_and_or_si3_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ "{ -+ do -+ { -+ /* Is this a bset? */ -+ if (CONST_INT_P (operands[2]) -+ && exact_log2 (INTVAL (operands[2])) != -1) -+ break; -+ -+ /* Must be an or.4 */ -+ if (!ubicom32_data_register_operand (operands[1], SImode)) -+ operands[1] = copy_to_mode_reg (SImode, operands[1]); -+ -+ if (!ubicom32_arith_operand (operands[2], SImode)) -+ operands[2] = copy_to_mode_reg (SImode, operands[2]); -+ } -+ while (0); -+ }") -+ -+(define_insn "iorsi3_bset" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (ior:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI") -+ (match_operand 2 "const_int_operand" "n"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(exact_log2 (INTVAL (operands[2])) != -1)" -+ "bset\\t%0, %1, #%d2") -+ -+(define_insn "iorsi3_or4" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") -+ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "@ -+ or.4\\t%0, %2, %1 -+ or.4\\t%0, %1, %2") -+ -+(define_insn "iorsi3_ccwzn" -+ [(set (reg CC_REGNO) -+ (compare -+ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") -+ (ior:SI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "@ -+ or.4\\t%0, %2, %1 -+ or.4\\t%0, %1, %2") -+ -+(define_insn "iorsi3_ccwzn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (ior:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm") -+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "@ -+ or.4\\t#0, %1, %0 -+ or.4\\t#0, %0, %1") -+ -+(define_expand "iordi3" -+ [(parallel -+ [(set (match_operand:DI 0 "nonimmediate_operand" "") -+ (ior:DI (match_operand:DI 1 "nonimmediate_operand" "") -+ (match_operand:DI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ "{ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (DImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (DImode, operands[2]); -+ }") -+ -+(define_insn_and_split "iordi3_or4" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m") -+ (ior:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm") -+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "#" -+ "reload_completed" -+ [(parallel [(set (match_dup 3) -+ (ior:SI (match_dup 4) -+ (match_dup 5))) -+ (clobber (reg:CC CC_REGNO))]) -+ (parallel [(set (match_dup 6) -+ (ior:SI (match_dup 7) -+ (match_dup 8))) -+ (clobber (reg:CC CC_REGNO))])] -+ "{ -+ operands[3] = gen_lowpart (SImode, operands[0]); -+ operands[4] = gen_lowpart (SImode, operands[1]); -+ operands[5] = gen_lowpart (SImode, operands[2]); -+ operands[6] = gen_highpart (SImode, operands[0]); -+ operands[7] = gen_highpart (SImode, operands[1]); -+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_expand "xorqi3" -+ [(parallel -+ [(set (match_operand:QI 0 "memory_operand" "") -+ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "") -+ (match_operand:QI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "(ubicom32_v4)" -+ "{ -+ if (!memory_operand (operands[0], QImode)) -+ FAIL; -+ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (QImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (QImode, operands[2]); -+ }") -+ -+(define_insn "xorqi3_xor1" -+ [(set (match_operand:QI 0 "memory_operand" "=m, m") -+ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4)" -+ "@ -+ xor.1\\t%0, %2, %1 -+ xor.1\\t%0, %1, %2") -+ -+(define_insn "xorqi3_xor1_ccszn" -+ [(set (reg CC_REGNO) -+ (compare -+ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0))) -+ (set (match_operand:QI 0 "memory_operand" "=m, m") -+ (xor:QI (match_dup 1) -+ (match_dup 2)))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "@ -+ xor.1\\t%0, %2, %1 -+ xor.1\\t%0, %1, %2") -+ -+(define_insn "xorqi3_xor1_ccszn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (xor:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm") -+ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0)))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "@ -+ xor.1\\t#0, %1, %0 -+ xor.1\\t#0, %0, %1") -+ -+(define_insn "xor1_ccszn_null_1" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:QI -+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d") -+ (match_operand:SI 1 "ubicom32_arith_operand" "rI")) -+ 3) -+ (const_int 0)))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "xor.1\\t#0, %1, %0") -+ -+(define_insn "xor1_ccszn_null_2" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:QI -+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d") -+ (subreg:SI -+ (match_operand:QI 1 "memory_operand" "m") -+ 0)) -+ 3) -+ (const_int 0)))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "xor.1\\t#0, %1, %0") -+ -+(define_insn "xor1_ccwzn_null_3" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:QI -+ (xor:SI (subreg:SI -+ (match_operand:QI 0 "memory_operand" "m") -+ 0) -+ (match_operand:SI 1 "ubicom32_data_register_operand" "d")) -+ 3) -+ (const_int 0)))] -+ "(ubicom32_v4 -+ && ubicom32_match_cc_mode(insn, CCSZNmode))" -+ "xor.1\\t#0, %0, %1") -+ -+(define_expand "xorhi3" -+ [(parallel -+ [(set (match_operand:HI 0 "memory_operand" "") -+ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "") -+ (match_operand:HI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ "{ -+ if (!memory_operand (operands[0], HImode)) -+ FAIL; -+ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (HImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (HImode, operands[2]); -+ }") -+ -+(define_insn "xorhi3_xor2" -+ [(set (match_operand:HI 0 "memory_operand" "=m, m") -+ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "@ -+ xor.2\\t%0, %2, %1 -+ xor.2\\t%0, %1, %2") -+ -+(define_insn "xorhi3_xor2_ccszn" -+ [(set (reg CC_REGNO) -+ (compare -+ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0))) -+ (set (match_operand:HI 0 "memory_operand" "=m, m") -+ (xor:HI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "@ -+ xor.2\\t%0, %2, %1 -+ xor.2\\t%0, %1, %2") -+ -+(define_insn "xorhi3_xor2_ccszn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (xor:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm") -+ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "@ -+ xor.2\\t#0, %1, %0 -+ xor.2\\t#0, %0, %1") -+ -+(define_insn "xor2_ccszn_null_1" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:HI -+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d") -+ (match_operand:SI 1 "ubicom32_arith_operand" "rI")) -+ 2) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "xor.2\\t#0, %1, %0") -+ -+(define_insn "xor2_ccszn_null_2" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:HI -+ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d") -+ (subreg:SI -+ (match_operand:HI 1 "memory_operand" "m") -+ 0)) -+ 2) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "xor.2\\t#0, %1, %0") -+ -+(define_insn "xor2_ccszn_null_3" -+ [(set (reg CC_REGNO) -+ (compare -+ (subreg:HI -+ (xor:SI (subreg:SI -+ (match_operand:HI 0 "memory_operand" "m") -+ 0) -+ (match_operand:SI 1 "ubicom32_data_register_operand" "d")) -+ 2) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCSZNmode)" -+ "xor.2\\t#0, %0, %1") -+ -+(define_insn "xorsi3" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") -+ (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "@ -+ xor.4\\t%0, %2, %1 -+ xor.4\\t%0, %1, %2") -+ -+(define_insn "xorsi3_ccwzn" -+ [(set (reg CC_REGNO) -+ (compare -+ (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") -+ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") -+ (xor:SI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "@ -+ xor.4\\t%0, %2, %1 -+ xor.4\\t%0, %1, %2") -+ -+(define_insn "xorsi3_ccwzn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (xor:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm") -+ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "@ -+ xor.4\\t#0, %1, %0 -+ xor.4\\t#0, %0, %1") -+ -+(define_expand "xordi3" -+ [(parallel -+ [(set (match_operand:DI 0 "nonimmediate_operand" "") -+ (xor:DI (match_operand:DI 1 "nonimmediate_operand" "") -+ (match_operand:DI 2 "ubicom32_arith_operand" ""))) -+ (clobber (reg:CC CC_REGNO))])] -+ "" -+ "{ -+ /* If we have a non-data reg for operand 1 then prefer that over -+ a CONST_INT in operand 2. */ -+ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) -+ && CONST_INT_P (operands[2])) -+ operands[2] = copy_to_mode_reg (DImode, operands[2]); -+ -+ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) -+ operands[2] = copy_to_mode_reg (DImode, operands[2]); -+ }") -+ -+(define_insn_and_split "xordi3_xor4" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m") -+ (xor:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm") -+ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "#" -+ "reload_completed" -+ [(parallel [(set (match_dup 3) -+ (xor:SI (match_dup 4) -+ (match_dup 5))) -+ (clobber (reg:CC CC_REGNO))]) -+ (parallel [(set (match_dup 6) -+ (xor:SI (match_dup 7) -+ (match_dup 8))) -+ (clobber (reg:CC CC_REGNO))])] -+ "{ -+ operands[3] = gen_lowpart (SImode, operands[0]); -+ operands[4] = gen_lowpart (SImode, operands[1]); -+ operands[5] = gen_lowpart (SImode, operands[2]); -+ operands[6] = gen_highpart (SImode, operands[0]); -+ operands[7] = gen_highpart (SImode, operands[1]); -+ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); -+ }" -+ [(set_attr "length" "8")]) -+ -+(define_insn "not2_2" -+ [(set (match_operand:HI 0 "memory_operand" "=m") -+ (subreg:HI -+ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")) -+ 2)) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "not.2\\t%0, %1") -+ -+(define_insn "one_cmplsi2" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "not.4\\t%0, %1") -+ -+(define_insn "one_cmplsi2_ccwzn" -+ [(set (reg CC_REGNO) -+ (compare -+ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "nonimmediate_operand" "=rm") -+ (not:SI (match_dup 1)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "not.4\\t%0, %1") -+ -+(define_insn "one_cmplsi2_ccwzn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (not:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")) -+ (const_int 0)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "not.4\\t#0, %0") -+ -+(define_insn_and_split "one_cmpldi2" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm") -+ (not:DI (match_operand:DI 1 "nonimmediate_operand" "rmI0"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "#" -+ "" -+ [(parallel [(set (match_dup 2) -+ (not:SI (match_dup 3))) -+ (clobber (reg:CC CC_REGNO))]) -+ (parallel [(set (match_dup 4) -+ (not:SI (match_dup 5))) -+ (clobber (reg:CC CC_REGNO))])] -+ "{ -+ operands[2] = gen_lowpart (SImode, operands[0]); -+ operands[3] = gen_lowpart (SImode, operands[1]); -+ operands[4] = gen_highpart (SImode, operands[0]); -+ operands[5] = gen_highpart (SImode, operands[1]); -+ }" -+ [(set_attr "length" "8")]) -+ -+; Conditional jump instructions -+ -+(define_expand "beq" -+ [(set (pc) -+ (if_then_else (eq (match_dup 1) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "{ -+ operands[1] = ubicom32_gen_compare_reg (EQ, ubicom32_compare_op0, -+ ubicom32_compare_op1); -+ }") -+ -+(define_expand "bne" -+ [(set (pc) -+ (if_then_else (ne (match_dup 1) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "{ -+ operands[1] = ubicom32_gen_compare_reg (NE, ubicom32_compare_op0, -+ ubicom32_compare_op1); -+ }") -+ -+(define_expand "bgt" -+ [(set (pc) -+ (if_then_else (gt (match_dup 1) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "{ -+ operands[1] = ubicom32_gen_compare_reg (GT, ubicom32_compare_op0, -+ ubicom32_compare_op1); -+ }") -+ -+(define_expand "ble" -+ [(set (pc) -+ (if_then_else (le (match_dup 1) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "{ -+ operands[1] = ubicom32_gen_compare_reg (LE, ubicom32_compare_op0, -+ ubicom32_compare_op1); -+ }") -+ -+(define_expand "bge" -+ [(set (pc) -+ (if_then_else (ge (match_dup 1) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "{ -+ operands[1] = ubicom32_gen_compare_reg (GE, ubicom32_compare_op0, -+ ubicom32_compare_op1); -+ }") -+ -+(define_expand "blt" -+ [(set (pc) -+ (if_then_else (lt (match_dup 1) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "{ -+ operands[1] = ubicom32_gen_compare_reg (LT, ubicom32_compare_op0, -+ ubicom32_compare_op1); -+ }") -+ -+(define_expand "bgtu" -+ [(set (pc) -+ (if_then_else (gtu (match_dup 1) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "{ -+ operands[1] = ubicom32_gen_compare_reg (GTU, ubicom32_compare_op0, -+ ubicom32_compare_op1); -+ }") -+ -+(define_expand "bleu" -+ [(set (pc) -+ (if_then_else (leu (match_dup 1) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "{ -+ operands[1] = ubicom32_gen_compare_reg (LEU, ubicom32_compare_op0, -+ ubicom32_compare_op1); -+ }") -+ -+(define_expand "bgeu" -+ [(set (pc) -+ (if_then_else (geu (match_dup 1) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "{ -+ operands[1] = ubicom32_gen_compare_reg (GEU, ubicom32_compare_op0, -+ ubicom32_compare_op1); -+ }") -+ -+(define_expand "bltu" -+ [(set (pc) -+ (if_then_else (ltu (match_dup 1) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "{ -+ operands[1] = ubicom32_gen_compare_reg (LTU, ubicom32_compare_op0, -+ ubicom32_compare_op1); -+ }") -+ -+(define_insn "jcc" -+ [(set (pc) -+ (if_then_else (match_operator 1 "comparison_operator" -+ [(match_operand 2 "ubicom32_cc_register_operand" "") -+ (const_int 0)]) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "* -+ { -+ ubicom32_output_cond_jump (insn, operands[1], operands[0]); -+ return \"\"; -+ }") -+ -+; Reverse branch - reverse our comparison condition so that we can -+; branch in the opposite sense. -+; -+(define_insn_and_split "jcc_reverse" -+ [(set (pc) -+ (if_then_else (match_operator 1 "comparison_operator" -+ [(match_operand 2 "ubicom32_cc_register_operand" "") -+ (const_int 0)]) -+ (pc) -+ (label_ref (match_operand 0 "" ""))))] -+ "" -+ "#" -+ "reload_completed" -+ [(set (pc) -+ (if_then_else (match_dup 3) -+ (label_ref (match_dup 0)) -+ (pc)))] -+ "{ -+ rtx cc_reg; -+ -+ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO); -+ operands[3] = gen_rtx_fmt_ee (reverse_condition (GET_CODE (operands[1])), -+ GET_MODE (operands[1]), -+ cc_reg, -+ const0_rtx); -+ }") -+ -+(define_insn "jump" -+ [(set (pc) -+ (label_ref (match_operand 0 "" "")))] -+ "" -+ "jmpt\\t%l0") -+ -+(define_expand "indirect_jump" -+ [(parallel [(set (pc) -+ (match_operand:SI 0 "register_operand" "")) -+ (clobber (match_dup 0))])] -+ "" -+ "") -+ -+(define_insn "indirect_jump_internal" -+ [(set (pc) -+ (match_operand:SI 0 "register_operand" "a")) -+ (clobber (match_dup 0))] -+ "" -+ "calli\\t%0,0(%0)") -+ -+; Program Space: The table contains instructions, typically jumps. -+; CALL An,TABLE_SIZE(PC) ;An = Jump Table Base Address. -+; ;An -> Here. -+; LEA Ak, (An,Dn) ;Ak -> Table Entry -+; JMP/CALL (Ak) -+ -+(define_expand "tablejump" -+ [(parallel [(set (pc) -+ (match_operand:SI 0 "nonimmediate_operand" "")) -+ (use (label_ref (match_operand 1 "" "")))])] -+ "" -+ "") -+ -+(define_insn "tablejump_internal" -+ [(set (pc) -+ (match_operand:SI 0 "nonimmediate_operand" "rm")) -+ (use (label_ref (match_operand 1 "" "")))] -+ "" -+ "ret\\t%0") -+ -+; Call subroutine with no return value. -+; -+(define_expand "call" -+ [(call (match_operand:QI 0 "general_operand" "") -+ (match_operand:SI 1 "general_operand" ""))] -+ "" -+ "{ -+ if (TARGET_FDPIC) -+ { -+ ubicom32_expand_call_fdpic (operands); -+ DONE; -+ } -+ -+ if (! ubicom32_call_address_operand (XEXP (operands[0], 0), VOIDmode)) -+ XEXP (operands[0], 0) = force_reg (SImode, XEXP (operands[0], 0)); -+ }") -+ -+; We expand to a simple form that doesn't clobber the link register and -+; then split to a form that does. This allows the RTL optimizers that -+; run before the splitter to have the opportunity to eliminate the call -+; without marking A5 as being clobbered and this in turn avoids saves -+; and returns in a number of cases. -+; -+(define_insn_and_split "call_1" -+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S")) -+ (match_operand:SI 1 "general_operand" "g,g"))] -+ "! TARGET_FDPIC" -+ "#" -+ "" -+ [(parallel -+ [(call (mem:QI (match_dup 0)) -+ (match_dup 1)) -+ (clobber (reg:SI LINK_REGNO))])] -+ "") -+ -+(define_insn "call_slow" -+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S")) -+ (match_operand:SI 1 "general_operand" "g,g")) -+ (clobber (reg:SI LINK_REGNO))] -+ "(! TARGET_FDPIC && ! TARGET_FASTCALL)" -+ "@ -+ calli\\ta5, 0(%0) -+ moveai\\ta5, #%%hi(%C0)\;calli\\ta5, %%lo(%C0)(a5)") -+ -+(define_insn "call_fast" -+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S")) -+ (match_operand:SI 1 "general_operand" "g,g")) -+ (clobber (reg:SI LINK_REGNO))] -+ "(! TARGET_FDPIC && TARGET_FASTCALL)" -+ "@ -+ calli\\ta5, 0(%0) -+ call\\ta5, %C0") -+ -+; We expand to a simple form that doesn't clobber the link register and -+; then split to a form that does. This allows the RTL optimizers that -+; run before the splitter to have the opportunity to eliminate the call -+; without marking A5 as being clobbered and this in turn avoids saves -+; and returns in a number of cases. -+; -+(define_insn_and_split "call_fdpic" -+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S")) -+ (match_operand:SI 1 "general_operand" "g,g")) -+ (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z"))] -+ "TARGET_FDPIC" -+ "#" -+ "" -+ [(parallel -+ [(call (mem:QI (match_dup 0)) -+ (match_dup 1)) -+ (use (match_dup 2)) -+ (clobber (reg:SI LINK_REGNO))])] -+ "") -+ -+(define_insn "call_fdpic_clobber" -+ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S")) -+ (match_operand:SI 1 "general_operand" "g,g")) -+ (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z")) -+ (clobber (reg:SI LINK_REGNO))] -+ "TARGET_FDPIC" -+ "@ -+ move.4\\ta5, 0(%0)\;move.4\\t%2, 4(%0)\;calli\\ta5, 0(a5) -+ call\\ta5, %C0") -+ -+; Call subroutine, returning value in operand 0 -+; (which must be a hard register). -+; -+(define_expand "call_value" -+ [(set (match_operand 0 "" "") -+ (call (match_operand:QI 1 "general_operand" "") -+ (match_operand:SI 2 "general_operand" "")))] -+ "" -+ "{ -+ if (TARGET_FDPIC) -+ { -+ ubicom32_expand_call_value_fdpic (operands); -+ DONE; -+ } -+ -+ if (! ubicom32_call_address_operand (XEXP (operands[1], 0), VOIDmode)) -+ XEXP (operands[1], 0) = force_reg (SImode, XEXP (operands[1], 0)); -+ }") -+ -+; We expand to a simple form that doesn't clobber the link register and -+; then split to a form that does. This allows the RTL optimizers that -+; run before the splitter to have the opportunity to eliminate the call -+; without marking A5 as being clobbered and this in turn avoids saves -+; and returns in a number of cases. -+; -+(define_insn_and_split "call_value_1" -+ [(set (match_operand 0 "register_operand" "=r,r") -+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S")) -+ (match_operand:SI 2 "general_operand" "g,g")))] -+ "! TARGET_FDPIC" -+ "#" -+ "" -+ [(parallel -+ [(set (match_dup 0) -+ (call (mem:QI (match_dup 1)) -+ (match_dup 2))) -+ (clobber (reg:SI LINK_REGNO))])] -+ "") -+ -+(define_insn "call_value_slow" -+ [(set (match_operand 0 "register_operand" "=r,r") -+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S")) -+ (match_operand:SI 2 "general_operand" "g,g"))) -+ (clobber (reg:SI LINK_REGNO))] -+ "(! TARGET_FDPIC && ! TARGET_FASTCALL)" -+ "@ -+ calli\\ta5, 0(%1) -+ moveai\\ta5, #%%hi(%C1)\;calli\\ta5, %%lo(%C1)(a5)") -+ -+(define_insn "call_value_fast" -+ [(set (match_operand 0 "register_operand" "=r,r") -+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S")) -+ (match_operand:SI 2 "general_operand" "g,g"))) -+ (clobber (reg:SI LINK_REGNO))] -+ "(! TARGET_FDPIC && TARGET_FASTCALL)" -+ "@ -+ calli\\ta5, 0(%1) -+ call\\ta5, %C1") -+ -+; We expand to a simple form that doesn't clobber the link register and -+; then split to a form that does. This allows the RTL optimizers that -+; run before the splitter to have the opportunity to eliminate the call -+; without marking A5 as being clobbered and this in turn avoids saves -+; and returns in a number of cases. -+; -+(define_insn_and_split "call_value_fdpic" -+ [(set (match_operand 0 "register_operand" "=r,r") -+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S")) -+ (match_operand:SI 2 "general_operand" "g,g"))) -+ (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z"))] -+ "TARGET_FDPIC" -+ "#" -+ "" -+ [(parallel -+ [(set (match_dup 0) -+ (call (mem:QI (match_dup 1)) -+ (match_dup 2))) -+ (use (match_dup 3)) -+ (clobber (reg:SI LINK_REGNO))])] -+ "") -+ -+(define_insn "call_value_fdpic_clobber" -+ [(set (match_operand 0 "register_operand" "=r,r") -+ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S")) -+ (match_operand:SI 2 "general_operand" "g,g"))) -+ (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z")) -+ (clobber (reg:SI LINK_REGNO))] -+ "TARGET_FDPIC" -+ "@ -+ move.4\\ta5, 0(%1)\;move.4\\t%3, 4(%1)\;calli\\ta5, 0(a5) -+ call\\ta5, %C1") -+ -+(define_expand "untyped_call" -+ [(parallel [(call (match_operand 0 "" "") -+ (const_int 0)) -+ (match_operand 1 "" "") -+ (match_operand 2 "" "")])] -+ "" -+ "{ -+ int i; -+ -+ emit_call_insn (gen_call (operands[0], const0_rtx)); -+ -+ for (i = 0; i < XVECLEN (operands[2], 0); i++) -+ { -+ rtx set = XVECEXP (operands[2], 0, i); -+ emit_move_insn (SET_DEST (set), SET_SRC (set)); -+ } -+ DONE; -+ }") -+ -+(define_insn "lsl1_1" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (ashift:SI (subreg:SI -+ (match_operand:QI 1 "memory_operand" "m") -+ 0) -+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4)" -+ "lsl.1\\t%0, %1, %2") -+ -+; The combiner gets rather creative about left shifts of sub-word memory -+; operands because it's uncertain about whether the memory is sign or -+; zero extended. It only wants zero-extended behaviour and so throws -+; in an extra and operation. -+; -+(define_insn "lsl1_2" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (and:SI -+ (ashift:SI (subreg:SI -+ (match_operand:QI 1 "memory_operand" "m") -+ 0) -+ (match_operand:SI 2 "const_int_operand" "M")) -+ (match_operand:SI 3 "const_int_operand" "n"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4 -+ && INTVAL (operands[3]) == (0xff << INTVAL (operands[2])))" -+ "lsl.1\\t%0, %1, %2") -+ -+(define_insn "lsl2_1" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (ashift:SI (subreg:SI -+ (match_operand:HI 1 "memory_operand" "m") -+ 0) -+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4)" -+ "lsl.2\\t%0, %1, %2") -+ -+; The combiner gets rather creative about left shifts of sub-word memory -+; operands because it's uncertain about whether the memory is sign or -+; zero extended. It only wants zero-extended behaviour and so throws -+; in an extra and operation. -+; -+(define_insn "lsl2_2" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (and:SI -+ (ashift:SI (subreg:SI -+ (match_operand:HI 1 "memory_operand" "m") -+ 0) -+ (match_operand:SI 2 "const_int_operand" "M")) -+ (match_operand:SI 3 "const_int_operand" "n"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4 -+ && INTVAL (operands[3]) == (0xffff << INTVAL (operands[2])))" -+ "lsl.2\\t%0, %1, %2") -+ -+(define_insn "ashlsi3" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") -+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "lsl.4\\t%0, %1, %2") -+ -+(define_insn "lshlsi3_ccwz" -+ [(set (reg CC_REGNO) -+ (compare -+ (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") -+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (ashift:SI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCWZmode)" -+ "lsl.4\\t%0, %1, %2") -+ -+(define_insn "lshlsi3_ccwz_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (ashift:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI") -+ (match_operand:SI 1 "ubicom32_arith_operand" "dM")) -+ (const_int 0))) -+ (clobber (match_scratch:SI 2 "=d"))] -+ "ubicom32_match_cc_mode(insn, CCWZmode)" -+ "lsl.4\\t%2, %0, %1") -+ -+; The combiner finds this canonical form for what is in essence a right -+; shift. -+; -+(define_insn "asr1_2" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (sign_extract:SI (match_operand:QI 1 "memory_operand" "m") -+ (match_operand:SI 2 "const_int_operand" "M") -+ (match_operand:SI 3 "const_int_operand" "M"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4 -+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))" -+ "asr.1\\t%0, %1, %3") -+ -+; The combiner finds this canonical form for what is in essence a right -+; shift. -+; -+(define_insn "asr2_2" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (sign_extract:SI (match_operand:HI 1 "memory_operand" "m") -+ (match_operand:SI 2 "const_int_operand" "M") -+ (match_operand:SI 3 "const_int_operand" "M"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4 -+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))" -+ "asr.2\\t%0, %1, %3") -+ -+(define_insn "ashrsi3" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ") -+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "asr.4\\t%0, %1, %2") -+ -+(define_insn "ashrsi3_ccwzn" -+ [(set (reg CC_REGNO) -+ (compare -+ (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ") -+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (ashiftrt:SI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "asr.4\\t%0, %1, %2") -+ -+(define_insn "ashrsi3_ccwzn_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (ashiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmJ") -+ (match_operand:SI 1 "ubicom32_arith_operand" "dM")) -+ (const_int 0))) -+ (clobber (match_scratch:SI 2 "=d"))] -+ "ubicom32_match_cc_mode(insn, CCWZNmode)" -+ "asr.4\\t%2, %0, %1") -+ -+(define_insn "lsr1_1" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (lshiftrt:SI (subreg:SI -+ (match_operand:QI 1 "memory_operand" "m") -+ 0) -+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4)" -+ "lsr.1\\t%0, %1, %2") -+ -+; The combiner finds this canonical form for what is in essence a right -+; shift. -+; -+(define_insn "lsr1_2" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (zero_extract:SI (match_operand:QI 1 "memory_operand" "m") -+ (match_operand:SI 2 "const_int_operand" "M") -+ (match_operand:SI 3 "const_int_operand" "M"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4 -+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))" -+ "lsr.1\\t%0, %1, %3") -+ -+(define_insn "lsr2_1" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (lshiftrt:SI (subreg:SI -+ (match_operand:HI 1 "memory_operand" "m") -+ 0) -+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4)" -+ "lsr.2\\t%0, %1, %2") -+ -+; The combiner finds this canonical form for what is in essence a right -+; shift. -+; -+(define_insn "lsr2_2" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (zero_extract:SI (match_operand:HI 1 "memory_operand" "m") -+ (match_operand:SI 2 "const_int_operand" "M") -+ (match_operand:SI 3 "const_int_operand" "M"))) -+ (clobber (reg:CC CC_REGNO))] -+ "(ubicom32_v4 -+ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))" -+ "lsr.2\\t%0, %1, %3") -+ -+(define_insn "lshrsi3" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") -+ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "lsr.4\\t%0, %1, %2") -+ -+(define_insn "lshrsi3_ccwz" -+ [(set (reg CC_REGNO) -+ (compare -+ (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") -+ (match_operand:SI 2 "ubicom32_arith_operand" "dM")) -+ (const_int 0))) -+ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (lshiftrt:SI (match_dup 1) -+ (match_dup 2)))] -+ "ubicom32_match_cc_mode(insn, CCWZmode)" -+ "lsr.4\\t%0, %1, %2") -+ -+(define_insn "lshrsi3_ccwz_null" -+ [(set (reg CC_REGNO) -+ (compare -+ (lshiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI") -+ (match_operand:SI 1 "ubicom32_arith_operand" "dM")) -+ (const_int 0))) -+ (clobber (match_scratch:SI 2 "=d"))] -+ "ubicom32_match_cc_mode(insn, CCWZmode)" -+ "lsr.4\\t%2, %0, %1") -+ -+(define_expand "prologue" -+ [(const_int 0)] -+ "" -+ "{ -+ ubicom32_expand_prologue (); -+ DONE; -+ }") -+ -+(define_expand "epilogue" -+ [(return)] -+ "" -+ "{ -+ ubicom32_expand_epilogue (); -+ DONE; -+ }") -+ -+(define_expand "return" -+ [(return)] -+ "" -+ "{ -+ ubicom32_expand_epilogue (); -+ DONE; -+ }") -+ -+(define_expand "_eh_return" -+ [(use (match_operand:SI 0 "register_operand" "r")) -+ (use (match_operand:SI 1 "register_operand" "r"))] -+ "" -+ "{ -+ ubicom32_expand_eh_return (operands); -+ DONE; -+ }") -+ -+; XXX - it looks almost certain that we could make return_internal use a Dn -+; register too. In that instance we'd have to use a ret instruction -+; rather than a calli but it might save cycles. -+; -+(define_insn "return_internal" -+ [(const_int 2) -+ (return) -+ (use (match_operand:SI 0 "ubicom32_mem_or_address_register_operand" "rm"))] -+ "" -+ "* -+ { -+ if (REG_P (operands[0]) && REGNO (operands[0]) == LINK_REGNO -+ && ubicom32_can_use_calli_to_ret) -+ return \"calli\\t%0, 0(%0)\"; -+ -+ return \"ret\\t%0\"; -+ }") -+ -+(define_insn "return_from_post_modify_sp" -+ [(parallel -+ [(const_int 2) -+ (return) -+ (use (mem:SI (post_modify:SI -+ (reg:SI SP_REGNO) -+ (plus:SI (reg:SI SP_REGNO) -+ (match_operand:SI 0 "const_int_operand" "n")))))])] -+ "INTVAL (operands[0]) >= 4 && INTVAL (operands[0]) <= 7 * 4" -+ "ret\\t(sp)%E0++") -+ -+;(define_insn "eh_return_internal" -+; [(const_int 4) -+; (return) -+; (use (reg:SI 34))] -+; "" -+; "ret\\ta2") -+ -+; No operation, needed in case the user uses -g but not -O. -+(define_expand "nop" -+ [(const_int 0)] -+ "" -+ "") -+ -+(define_insn "nop_internal" -+ [(const_int 0)] -+ "" -+ "nop") -+ -+; The combiner will generate this pattern given shift and add operations. -+; The canonical form that the combiner wants to use appears to be multiplies -+; instead of shifts even if the compiled sources use shifts. -+; -+(define_insn "shmrg1_add" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (plus:SI -+ (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") -+ (const_int 256)) -+ (zero_extend:SI -+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI")))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "shmrg.1\\t%0, %2, %1") -+ -+; The combiner will generate this pattern given shift and or operations. -+; -+(define_insn "shmrg1_ior" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (ior:SI -+ (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") -+ (const_int 8)) -+ (zero_extend:SI -+ (match_operand:QI 2 "ubicom32_arith_operand" "rmI")))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "shmrg.1\\t%0, %2, %1") -+ -+; The combiner will generate this pattern given shift and add operations. -+; The canonical form that the combiner wants to use appears to be multiplies -+; instead of shifts even if the compiled sources use shifts. -+; -+(define_insn "shmrg2_add" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (plus:SI -+ (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") -+ (const_int 65536)) -+ (zero_extend:SI -+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI")))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "shmrg.2\\t%0, %2, %1") -+ -+; The combiner will generate this pattern given shift and or operations. -+; -+(define_insn "shmrg2_ior" -+ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") -+ (ior:SI -+ (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") -+ (const_int 16)) -+ (zero_extend:SI -+ (match_operand:HI 2 "ubicom32_arith_operand" "rmI")))) -+ (clobber (reg:CC CC_REGNO))] -+ "" -+ "shmrg.2\\t%0, %2, %1") -+ -+; Match the case where we load a word from the stack but then discard the -+; upper 16 bits. We turn this into a zero-extended load of that useful -+; 16 bits direct from the stack where possible. -+; -+ -+; XXX - do these peephole2 ops actually work after the CCmode conversion? -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (mem:SI (plus:SI (reg:SI SP_REGNO) -+ (match_operand:SI 1 "const_int_operand" "")))) -+ (set (match_operand:SI 2 "nonimmediate_operand" "") -+ (zero_extend:SI (match_operand:HI 3 "register_operand" "")))] -+ "(INTVAL (operands[1]) <= 252 -+ && REGNO (operands[3]) == REGNO (operands[0]) -+ && ((peep2_reg_dead_p (2, operands[0]) -+ && ! reg_mentioned_p (operands[0], operands[2])) -+ || rtx_equal_p (operands[0], operands[2])))" -+ [(set (match_dup 2) -+ (zero_extend:SI (mem:HI (plus:SI (reg:SI SP_REGNO) -+ (match_dup 4)))))] -+ "{ -+ operands[4] = GEN_INT (INTVAL (operands[1]) + 2); -+ }") -+ -+; Match the case where we load a word from the stack but then discard the -+; upper 16 bits. We turn this into a 16-bit load of that useful -+; 16 bits direct from the stack where possible. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (mem:SI (plus:SI (reg:SI SP_REGNO) -+ (match_operand:SI 1 "const_int_operand" "")))) -+ (set (match_operand:HI 2 "nonimmediate_operand" "") -+ (match_operand:HI 3 "register_operand" ""))] -+ "(INTVAL (operands[1]) <= 252 -+ && REGNO (operands[3]) == REGNO (operands[0]) -+ && ((peep2_reg_dead_p (2, operands[0]) -+ && ! reg_mentioned_p (operands[0], operands[2])) -+ || rtx_equal_p (operands[0], operands[2])))" -+ [(set (match_dup 2) -+ (mem:HI (plus:SI (reg:SI SP_REGNO) -+ (match_dup 4))))] -+ "{ -+ operands[4] = GEN_INT (INTVAL (operands[1]) + 2); -+ }") -+ -+; Match the case where we load a word from the stack but then discard the -+; upper 24 bits. We turn this into a zero-extended load of that useful -+; 8 bits direct from the stack where possible. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (mem:SI (plus:SI (reg:SI SP_REGNO) -+ (match_operand:SI 1 "const_int_operand" "")))) -+ (set (match_operand:SI 2 "nonimmediate_operand" "") -+ (zero_extend:SI (match_operand:QI 3 "register_operand" "")))] -+ "(INTVAL (operands[1]) <= 124 -+ && REGNO (operands[3]) == REGNO (operands[0]) -+ && ((peep2_reg_dead_p (2, operands[0]) -+ && ! reg_mentioned_p (operands[0], operands[2])) -+ || rtx_equal_p (operands[0], operands[2])))" -+ [(set (match_dup 2) -+ (zero_extend:SI (mem:QI (plus:SI (reg:SI SP_REGNO) -+ (match_dup 4)))))] -+ "{ -+ operands[4] = GEN_INT (INTVAL (operands[1]) + 3); -+ }") -+ -+; Match the case where we load a word from the stack but then discard the -+; upper 24 bits. We turn this into an 8-bit load of that useful -+; 8 bits direct from the stack where possible. -+; -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (mem:SI (plus:SI (reg:SI SP_REGNO) -+ (match_operand:SI 1 "const_int_operand" "")))) -+ (set (match_operand:QI 2 "nonimmediate_operand" "") -+ (match_operand:QI 3 "register_operand" ""))] -+ "(INTVAL (operands[1]) <= 124 -+ && REGNO (operands[3]) == REGNO (operands[0]) -+ && ((peep2_reg_dead_p (2, operands[0]) -+ && ! reg_mentioned_p (operands[0], operands[2])) -+ || rtx_equal_p (operands[0], operands[2])))" -+ [(set (match_dup 2) -+ (mem:QI (plus:SI (reg:SI SP_REGNO) -+ (match_dup 4))))] -+ "{ -+ operands[4] = GEN_INT (INTVAL (operands[1]) + 3); -+ }") -+ ---- /dev/null -+++ b/gcc/config/ubicom32/ubicom32.opt -@@ -0,0 +1,27 @@ -+mdebug-address -+Target RejectNegative Report Undocumented Mask(DEBUG_ADDRESS) -+Debug addresses -+ -+mdebug-context -+Target RejectNegative Report Undocumented Mask(DEBUG_CONTEXT) -+Debug contexts -+ -+march= -+Target Report Var(ubicom32_arch_name) Init("ubicom32v4") Joined -+Specify the name of the target architecture -+ -+mfdpic -+Target Report Mask(FDPIC) -+Enable Function Descriptor PIC mode -+ -+minline-plt -+Target Report Mask(INLINE_PLT) -+Enable inlining of PLT in function calls -+ -+mfastcall -+Target Report Mask(FASTCALL) -+Enable default fast (call) calling sequence for smaller applications -+ -+mipos-abi -+Target Report Mask(IPOS_ABI) -+Enable the ipOS ABI in which D10-D13 are caller-clobbered ---- /dev/null -+++ b/gcc/config/ubicom32/uclinux.h -@@ -0,0 +1,67 @@ -+/* Definitions of target machine for Ubicom32-uclinux -+ -+ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, -+ 2009 Free Software Foundation, Inc. -+ Contributed by Ubicom, Inc. -+ -+ This file is part of GCC. -+ -+ GCC is free software; you can redistribute it and/or modify it -+ under the terms of the GNU General Public License as published -+ by the Free Software Foundation; either version 3, or (at your -+ option) any later version. -+ -+ GCC is distributed in the hope that it will be useful, but WITHOUT -+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -+ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public -+ License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with GCC; see the file COPYING3. If not see -+ . */ -+ -+/* Don't assume anything about the header files. */ -+#define NO_IMPLICIT_EXTERN_C -+ -+#undef LIB_SPEC -+#define LIB_SPEC \ -+ "%{pthread:-lpthread} " \ -+ "%{!shared:%{!symbolic: -lc}} " -+ -+ -+#undef LINK_GCC_C_SEQUENCE_SPEC -+#define LINK_GCC_C_SEQUENCE_SPEC \ -+ "%{!shared:--start-group} %G %L %{!shared:--end-group}%{shared:%G} " -+ -+#undef STARTFILE_SPEC -+#define STARTFILE_SPEC \ -+ "%{!shared: crt1%O%s}" \ -+ " crti%O%s crtbegin%O%s" -+ -+#undef ENDFILE_SPEC -+#define ENDFILE_SPEC "crtend%O%s crtn%O%s" -+ -+/* This macro applies on top of OBJECT_FORMAT_ELF and indicates that -+ we want to support both flat and ELF output. */ -+#define OBJECT_FORMAT_FLAT -+ -+#undef DRIVER_SELF_SPECS -+#define DRIVER_SELF_SPECS \ -+ "%{!mno-fastcall:-mfastcall}" -+ -+/* taken from linux.h */ -+/* The GNU C++ standard library requires that these macros be defined. */ -+#undef CPLUSPLUS_CPP_SPEC -+#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)" -+ -+#define TARGET_OS_CPP_BUILTINS() \ -+ do { \ -+ builtin_define_std ("__UBICOM32__"); \ -+ builtin_define_std ("__ubicom32__"); \ -+ builtin_define ("__gnu_linux__"); \ -+ builtin_define_std ("linux"); \ -+ builtin_define_std ("unix"); \ -+ builtin_assert ("system=linux"); \ -+ builtin_assert ("system=unix"); \ -+ builtin_assert ("system=posix"); \ -+ } while (0) ---- /dev/null -+++ b/gcc/config/ubicom32/xm-ubicom32.h -@@ -0,0 +1,36 @@ -+/* Configuration for Ubicom's Ubicom32 architecture. -+ Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software -+ Foundation, Inc. -+ Contributed by Ubicom Inc. -+ -+This file is part of GNU CC. -+ -+GNU CC is free software; you can redistribute it and/or modify -+it under the terms of the GNU General Public License as published by -+the Free Software Foundation; either version 2, or (at your option) -+any later version. -+ -+GNU CC is distributed in the hope that it will be useful, -+but WITHOUT ANY WARRANTY; without even the implied warranty of -+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+GNU General Public License for more details. -+ -+You should have received a copy of the GNU General Public License -+along with GNU CC; see the file COPYING. If not, write to -+the Free Software Foundation, 59 Temple Place - Suite 330, -+Boston, MA 02111-1307, USA. */ -+ -+/* #defines that need visibility everywhere. */ -+#define FALSE 0 -+#define TRUE 1 -+ -+/* This describes the machine the compiler is hosted on. */ -+#define HOST_BITS_PER_CHAR 8 -+#define HOST_BITS_PER_SHORT 16 -+#define HOST_BITS_PER_INT 32 -+#define HOST_BITS_PER_LONG 32 -+#define HOST_BITS_PER_LONGLONG 64 -+ -+/* Arguments to use with `exit'. */ -+#define SUCCESS_EXIT_CODE 0 -+#define FATAL_EXIT_CODE 33 ---- a/gcc/config.gcc -+++ b/gcc/config.gcc -@@ -2340,6 +2340,34 @@ spu-*-elf*) - c_target_objs="${c_target_objs} spu-c.o" - cxx_target_objs="${cxx_target_objs} spu-c.o" - ;; -+ubicom32-*-elf) -+ xm_file=ubicom32/xm-ubicom32.h -+ tm_file="${tm_file} ubicom32/elf.h" # still need dbxelf.h elfos.h -+ tmake_file=ubicom32/t-ubicom32 -+ ;; -+ubicom32-*-uclinux*) -+ xm_file=ubicom32/xm-ubicom32.h -+ tm_file="${tm_file} ubicom32/elf.h ubicom32/uclinux.h" # still need dbxelf.h elfos.h linux.h -+ tm_defines="${tm_defines} UCLIBC_DEFAULT=1" -+ extra_options="${extra_options} linux.opt" -+ tmake_file=ubicom32/t-ubicom32-uclinux -+ use_collect2=no -+ ;; -+ubicom32-*-linux-uclibc) -+ xm_file=ubicom32/xm-ubicom32.h -+ tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h -+ tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux" -+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" -+ use_collect2=no -+ ;; -+ubicom32-*-linux*) -+ xm_file=ubicom32/xm-ubicom32.h -+ tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h -+ tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux" -+ tm_defines="${tm_defines} UCLIBC_DEFAULT=1" -+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" -+ use_collect2=no -+ ;; - v850e1-*-*) - target_cpu_default="TARGET_CPU_v850e1" - tm_file="dbxelf.h elfos.h svr4.h v850/v850.h" ---- a/libgcc/config.host -+++ b/libgcc/config.host -@@ -551,6 +551,15 @@ sparc64-*-netbsd*) - ;; - spu-*-elf*) - ;; -+ubicom32*-*-elf*) -+ ;; -+ubicom32*-*-uclinux*) -+ ;; -+ubicom32*-*-linux*) -+ # No need to build crtbeginT.o on uClibc systems. Should probably -+ # be moved to the OS specific section above. -+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" -+ ;; - v850e1-*-*) - ;; - v850e-*-*) diff --git a/toolchain/gcc/patches/4.4.6/810-arm-softfloat-libgcc.patch b/toolchain/gcc/patches/4.4.6/810-arm-softfloat-libgcc.patch deleted file mode 100644 index 7af72aadfa..0000000000 --- a/toolchain/gcc/patches/4.4.6/810-arm-softfloat-libgcc.patch +++ /dev/null @@ -1,25 +0,0 @@ ---- a/gcc/config/arm/linux-elf.h -+++ b/gcc/config/arm/linux-elf.h -@@ -60,7 +60,7 @@ - %{shared:-lc} \ - %{!shared:%{profile:-lc_p}%{!profile:-lc}}" - --#define LIBGCC_SPEC "%{msoft-float:-lfloat} %{mfloat-abi=soft*:-lfloat} -lgcc" -+#define LIBGCC_SPEC "-lgcc" - - #define GLIBC_DYNAMIC_LINKER "/lib/ld-linux.so.2" - ---- a/gcc/config/arm/t-linux -+++ b/gcc/config/arm/t-linux -@@ -4,7 +4,10 @@ TARGET_LIBGCC2_CFLAGS = -fomit-frame-poi - - LIB1ASMSRC = arm/lib1funcs.asm - LIB1ASMFUNCS = _udivsi3 _divsi3 _umodsi3 _modsi3 _dvmd_lnx _clzsi2 _clzdi2 \ -- _arm_addsubdf3 _arm_addsubsf3 -+ _arm_addsubdf3 _arm_addsubsf3 \ -+ _negdf2 _addsubdf3 _muldivdf3 _cmpdf2 _unorddf2 _fixdfsi _fixunsdfsi \ -+ _truncdfsf2 _negsf2 _addsubsf3 _muldivsf3 _cmpsf2 _unordsf2 \ -+ _fixsfsi _fixunssfsi _floatdidf _floatundidf _floatdisf _floatundisf - - # MULTILIB_OPTIONS = mhard-float/msoft-float - # MULTILIB_DIRNAMES = hard-float soft-float diff --git a/toolchain/gcc/patches/4.4.6/820-libgcc_pic.patch b/toolchain/gcc/patches/4.4.6/820-libgcc_pic.patch deleted file mode 100644 index 18386dfd42..0000000000 --- a/toolchain/gcc/patches/4.4.6/820-libgcc_pic.patch +++ /dev/null @@ -1,36 +0,0 @@ ---- a/libgcc/Makefile.in -+++ b/libgcc/Makefile.in -@@ -729,11 +729,12 @@ $(libgcov-objects): %$(objext): $(gcc_sr - - # Static libraries. - libgcc.a: $(libgcc-objects) -+libgcc_pic.a: $(libgcc-s-objects) - libgcov.a: $(libgcov-objects) - libunwind.a: $(libunwind-objects) - libgcc_eh.a: $(libgcc-eh-objects) - --libgcc.a libgcov.a libunwind.a libgcc_eh.a: -+libgcc.a libgcov.a libunwind.a libgcc_eh.a libgcc_pic.a: - -rm -f $@ - - objects="$(objects)"; \ -@@ -755,7 +756,7 @@ libgcc_s$(SHLIB_EXT): libunwind$(SHLIB_E - endif - - ifeq ($(enable_shared),yes) --all: libgcc_eh.a libgcc_s$(SHLIB_EXT) -+all: libgcc_eh.a libgcc_pic.a libgcc_s$(SHLIB_EXT) - ifneq ($(LIBUNWIND),) - all: libunwind$(SHLIB_EXT) - endif -@@ -928,6 +929,10 @@ install-shared: - chmod 644 $(DESTDIR)$(inst_libdir)/libgcc_eh.a - $(RANLIB) $(DESTDIR)$(inst_libdir)/libgcc_eh.a - -+ $(INSTALL_DATA) libgcc_pic.a $(mapfile) $(DESTDIR)$(inst_libdir)/ -+ chmod 644 $(DESTDIR)$(inst_libdir)/libgcc_pic.a -+ $(RANLIB) $(DESTDIR)$(inst_libdir)/libgcc_pic.a -+ - $(subst @multilib_dir@,$(MULTIDIR),$(subst \ - @shlib_base_name@,libgcc_s,$(subst \ - @shlib_slibdir_qual@,$(MULTIOSSUBDIR),$(SHLIB_INSTALL)))) diff --git a/toolchain/gcc/patches/4.4.6/910-mbsd_multi.patch b/toolchain/gcc/patches/4.4.6/910-mbsd_multi.patch deleted file mode 100644 index 1b17e983e9..0000000000 --- a/toolchain/gcc/patches/4.4.6/910-mbsd_multi.patch +++ /dev/null @@ -1,269 +0,0 @@ - - This patch brings over a few features from MirBSD: - * -fhonour-copts - If this option is not given, it's warned (depending - on environment variables). This is to catch errors - of misbuilt packages which override CFLAGS themselves. - * -Werror-maybe-reset - Has the effect of -Wno-error if GCC_NO_WERROR is - set and not '0', a no-operation otherwise. This is - to be able to use -Werror in "make" but prevent - GNU autoconf generated configure scripts from - freaking out. - * Make -fno-strict-aliasing and -fno-delete-null-pointer-checks - the default for -O2/-Os, because they trigger gcc bugs - and can delete code with security implications. - - This patch was authored by Thorsten Glaser - with copyright assignment to the FSF in effect. - ---- a/gcc/c-opts.c -+++ b/gcc/c-opts.c -@@ -105,6 +105,9 @@ static size_t deferred_count; - /* Number of deferred options scanned for -include. */ - static size_t include_cursor; - -+/* Check if a port honours COPTS. */ -+static int honour_copts = 0; -+ - static void set_Wimplicit (int); - static void handle_OPT_d (const char *); - static void set_std_cxx98 (int); -@@ -454,6 +457,14 @@ c_common_handle_option (size_t scode, co - enable_warning_as_error ("implicit-function-declaration", value, CL_C | CL_ObjC); - break; - -+ case OPT_Werror_maybe_reset: -+ { -+ char *ev = getenv ("GCC_NO_WERROR"); -+ if ((ev != NULL) && (*ev != '0')) -+ cpp_opts->warnings_are_errors = 0; -+ } -+ break; -+ - case OPT_Wformat: - set_Wformat (value); - break; -@@ -690,6 +701,12 @@ c_common_handle_option (size_t scode, co - flag_exceptions = value; - break; - -+ case OPT_fhonour_copts: -+ if (c_language == clk_c) { -+ honour_copts++; -+ } -+ break; -+ - case OPT_fimplement_inlines: - flag_implement_inlines = value; - break; -@@ -1209,6 +1226,47 @@ c_common_init (void) - return false; - } - -+ if (c_language == clk_c) { -+ char *ev = getenv ("GCC_HONOUR_COPTS"); -+ int evv; -+ if (ev == NULL) -+ evv = -1; -+ else if ((*ev == '0') || (*ev == '\0')) -+ evv = 0; -+ else if (*ev == '1') -+ evv = 1; -+ else if (*ev == '2') -+ evv = 2; -+ else if (*ev == 's') -+ evv = -1; -+ else { -+ warning (0, "unknown GCC_HONOUR_COPTS value, assuming 1"); -+ evv = 1; /* maybe depend this on something like MIRBSD_NATIVE? */ -+ } -+ if (evv == 1) { -+ if (honour_copts == 0) { -+ error ("someone does not honour COPTS at all in lenient mode"); -+ return false; -+ } else if (honour_copts != 1) { -+ warning (0, "someone does not honour COPTS correctly, passed %d times", -+ honour_copts); -+ } -+ } else if (evv == 2) { -+ if (honour_copts == 0) { -+ error ("someone does not honour COPTS at all in strict mode"); -+ return false; -+ } else if (honour_copts != 1) { -+ error ("someone does not honour COPTS correctly, passed %d times", -+ honour_copts); -+ return false; -+ } -+ } else if (evv == 0) { -+ if (honour_copts != 1) -+ inform (0, "someone does not honour COPTS correctly, passed %d times", -+ honour_copts); -+ } -+ } -+ - return true; - } - ---- a/gcc/c.opt -+++ b/gcc/c.opt -@@ -215,6 +215,10 @@ Werror-implicit-function-declaration - C ObjC RejectNegative Warning - This switch is deprecated; use -Werror=implicit-function-declaration instead - -+Werror-maybe-reset -+C ObjC C++ ObjC++ -+; Documented in common.opt -+ - Wfloat-equal - C ObjC C++ ObjC++ Var(warn_float_equal) Warning - Warn if testing floating point numbers for equality -@@ -613,6 +617,9 @@ C++ ObjC++ Optimization - fhonor-std - C++ ObjC++ - -+fhonour-copts -+C ObjC C++ ObjC++ RejectNegative -+ - fhosted - C ObjC - Assume normal C execution environment ---- a/gcc/common.opt -+++ b/gcc/common.opt -@@ -102,6 +102,10 @@ Werror= - Common Joined - Treat specified warning as error - -+Werror-maybe-reset -+Common -+If environment variable GCC_NO_WERROR is set, act as -Wno-error -+ - Wextra - Common Warning - Print extra (possibly unwanted) warnings -@@ -573,6 +577,9 @@ fguess-branch-probability - Common Report Var(flag_guess_branch_prob) Optimization - Enable guessing of branch probabilities - -+fhonour-copts -+Common RejectNegative -+ - ; Nonzero means ignore `#ident' directives. 0 means handle them. - ; Generate position-independent code for executables if possible - ; On SVR4 targets, it also controls whether or not to emit a ---- a/gcc/opts.c -+++ b/gcc/opts.c -@@ -898,9 +898,6 @@ decode_options (unsigned int argc, const - flag_schedule_insns_after_reload = opt2; - #endif - flag_regmove = opt2; -- flag_strict_aliasing = opt2; -- flag_strict_overflow = opt2; -- flag_delete_null_pointer_checks = opt2; - flag_reorder_blocks = opt2; - flag_reorder_functions = opt2; - flag_tree_vrp = opt2; -@@ -924,6 +921,9 @@ decode_options (unsigned int argc, const - - /* -O3 optimizations. */ - opt3 = (optimize >= 3); -+ flag_strict_aliasing = opt3; -+ flag_strict_overflow = opt3; -+ flag_delete_null_pointer_checks = opt3; - flag_predictive_commoning = opt3; - flag_inline_functions = opt3; - flag_unswitch_loops = opt3; -@@ -1603,6 +1603,17 @@ common_handle_option (size_t scode, cons - enable_warning_as_error (arg, value, lang_mask); - break; - -+ case OPT_Werror_maybe_reset: -+ { -+ char *ev = getenv ("GCC_NO_WERROR"); -+ if ((ev != NULL) && (*ev != '0')) -+ warnings_are_errors = 0; -+ } -+ break; -+ -+ case OPT_fhonour_copts: -+ break; -+ - case OPT_Wextra: - set_Wextra (value); - break; ---- a/gcc/doc/cppopts.texi -+++ b/gcc/doc/cppopts.texi -@@ -164,6 +164,11 @@ in older programs. This warning is on b - Make all warnings into hard errors. Source code which triggers warnings - will be rejected. - -+ at item -Werror-maybe-reset -+ at opindex Werror-maybe-reset -+Act like @samp{-Wno-error} if the @env{GCC_NO_WERROR} environment -+variable is set to anything other than 0 or empty. -+ - @item -Wsystem-headers - @opindex Wsystem-headers - Issue warnings for code in system headers. These are normally unhelpful ---- a/gcc/doc/invoke.texi -+++ b/gcc/doc/invoke.texi -@@ -234,7 +234,7 @@ Objective-C and Objective-C++ Dialects}. - -Wconversion -Wcoverage-mismatch -Wno-deprecated @gol - -Wno-deprecated-declarations -Wdisabled-optimization @gol - -Wno-div-by-zero -Wempty-body -Wenum-compare -Wno-endif-labels @gol ---Werror -Werror=* @gol -+-Werror -Werror=* -Werror-maybe-reset @gol - -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol - -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol - -Wformat-security -Wformat-y2k @gol -@@ -4182,6 +4182,22 @@ This option is only supported for C and - @option{-Wall} and by @option{-pedantic}, which can be disabled with - @option{-Wno-pointer-sign}. - -+ at item -Werror-maybe-reset -+ at opindex Werror-maybe-reset -+Act like @samp{-Wno-error} if the @env{GCC_NO_WERROR} environment -+variable is set to anything other than 0 or empty. -+ -+ at item -fhonour-copts -+ at opindex fhonour-copts -+If @env{GCC_HONOUR_COPTS} is set to 1, abort if this option is not -+given at least once, and warn if it is given more than once. -+If @env{GCC_HONOUR_COPTS} is set to 2, abort if this option is not -+given exactly once. -+If @env{GCC_HONOUR_COPTS} is set to 0 or unset, warn if this option -+is not given exactly once. -+The warning is quelled if @env{GCC_HONOUR_COPTS} is set to @samp{s}. -+This flag and environment variable only affect the C language. -+ - @item -Wstack-protector - @opindex Wstack-protector - @opindex Wno-stack-protector -@@ -5721,7 +5737,7 @@ so, the first branch is redirected to ei - second branch or a point immediately following it, depending on whether - the condition is known to be true or false. - --Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. -+Enabled at levels @option{-O3}. - - @item -fsplit-wide-types - @opindex fsplit-wide-types -@@ -5866,7 +5882,7 @@ safely dereference null pointers. Use - @option{-fno-delete-null-pointer-checks} to disable this optimization - for programs which depend on that behavior. - --Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. -+Enabled at levels @option{-O3}. - - @item -fexpensive-optimizations - @opindex fexpensive-optimizations ---- a/gcc/java/jvspec.c -+++ b/gcc/java/jvspec.c -@@ -670,6 +670,7 @@ lang_specific_pre_link (void) - class name. Append dummy `.c' that can be stripped by set_input so %b - is correct. */ - set_input (concat (main_class_name, "main.c", NULL)); -+ putenv ("GCC_HONOUR_COPTS=s"); /* XXX hack! */ - err = do_spec (jvgenmain_spec); - if (err == 0) - { diff --git a/toolchain/gcc/patches/4.4.6/930-avr32_support.patch b/toolchain/gcc/patches/4.4.6/930-avr32_support.patch deleted file mode 100644 index 334d2cd134..0000000000 --- a/toolchain/gcc/patches/4.4.6/930-avr32_support.patch +++ /dev/null @@ -1,22706 +0,0 @@ ---- a/gcc/builtins.c -+++ b/gcc/builtins.c -@@ -11108,7 +11108,7 @@ validate_gimple_arglist (const_gimple ca - - do - { -- code = va_arg (ap, enum tree_code); -+ code = va_arg (ap, int); - switch (code) - { - case 0: ---- a/gcc/calls.c -+++ b/gcc/calls.c -@@ -3447,7 +3447,7 @@ emit_library_call_value_1 (int retval, r - for (; count < nargs; count++) - { - rtx val = va_arg (p, rtx); -- enum machine_mode mode = va_arg (p, enum machine_mode); -+ enum machine_mode mode = va_arg (p, int); - - /* We cannot convert the arg value to the mode the library wants here; - must do it earlier where we know the signedness of the arg. */ ---- /dev/null -+++ b/gcc/config/avr32/avr32.c -@@ -0,0 +1,8060 @@ -+/* -+ Target hooks and helper functions for AVR32. -+ Copyright 2003,2004,2005,2006,2007,2008,2009,2010 Atmel Corporation. -+ -+ This file is part of GCC. -+ -+ This program is free software; you can redistribute it and/or modify -+ it under the terms of the GNU General Public License as published by -+ the Free Software Foundation; either version 2 of the License, or -+ (at your option) any later version. -+ -+ This program is distributed in the hope that it will be useful, -+ but WITHOUT ANY WARRANTY; without even the implied warranty of -+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+ GNU General Public License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with this program; if not, write to the Free Software -+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ -+ -+#include "config.h" -+#include "system.h" -+#include "coretypes.h" -+#include "tm.h" -+#include "rtl.h" -+#include "tree.h" -+#include "obstack.h" -+#include "regs.h" -+#include "hard-reg-set.h" -+#include "real.h" -+#include "insn-config.h" -+#include "conditions.h" -+#include "output.h" -+#include "insn-attr.h" -+#include "flags.h" -+#include "reload.h" -+#include "function.h" -+#include "expr.h" -+#include "optabs.h" -+#include "toplev.h" -+#include "recog.h" -+#include "ggc.h" -+#include "except.h" -+#include "c-pragma.h" -+#include "integrate.h" -+#include "tm_p.h" -+#include "langhooks.h" -+#include "hooks.h" -+#include "df.h" -+ -+#include "target.h" -+#include "target-def.h" -+ -+#include -+ -+ -+ -+/* Global variables. */ -+typedef struct minipool_node Mnode; -+typedef struct minipool_fixup Mfix; -+ -+/* Obstack for minipool constant handling. */ -+static struct obstack minipool_obstack; -+static char *minipool_startobj; -+static rtx minipool_vector_label; -+ -+/* True if we are currently building a constant table. */ -+int making_const_table; -+ -+tree fndecl_attribute_args = NULL_TREE; -+ -+ -+/* Function prototypes. */ -+static unsigned long avr32_isr_value (tree); -+static unsigned long avr32_compute_func_type (void); -+static tree avr32_handle_isr_attribute (tree *, tree, tree, int, bool *); -+static tree avr32_handle_acall_attribute (tree *, tree, tree, int, bool *); -+static tree avr32_handle_fndecl_attribute (tree * node, tree name, tree args, -+ int flags, bool * no_add_attrs); -+static void avr32_reorg (void); -+bool avr32_return_in_msb (tree type); -+bool avr32_vector_mode_supported (enum machine_mode mode); -+static void avr32_init_libfuncs (void); -+static void avr32_file_end (void); -+static void flashvault_decl_list_add (unsigned int vector_num, const char *name); -+ -+ -+ -+static void -+avr32_add_gc_roots (void) -+{ -+ gcc_obstack_init (&minipool_obstack); -+ minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0); -+} -+ -+ -+/* List of all known AVR32 parts */ -+static const struct part_type_s avr32_part_types[] = { -+ /* name, part_type, architecture type, macro */ -+ {"none", PART_TYPE_AVR32_NONE, ARCH_TYPE_AVR32_AP, "__AVR32__"}, -+ {"ap7000", PART_TYPE_AVR32_AP7000, ARCH_TYPE_AVR32_AP, "__AVR32_AP7000__"}, -+ {"ap7001", PART_TYPE_AVR32_AP7001, ARCH_TYPE_AVR32_AP, "__AVR32_AP7001__"}, -+ {"ap7002", PART_TYPE_AVR32_AP7002, ARCH_TYPE_AVR32_AP, "__AVR32_AP7002__"}, -+ {"ap7200", PART_TYPE_AVR32_AP7200, ARCH_TYPE_AVR32_AP, "__AVR32_AP7200__"}, -+ {"uc3a0128", PART_TYPE_AVR32_UC3A0128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0128__"}, -+ {"uc3a0256", PART_TYPE_AVR32_UC3A0256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0256__"}, -+ {"uc3a0512", PART_TYPE_AVR32_UC3A0512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0512__"}, -+ {"uc3a0512es", PART_TYPE_AVR32_UC3A0512ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3A0512ES__"}, -+ {"uc3a1128", PART_TYPE_AVR32_UC3A1128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1128__"}, -+ {"uc3a1256", PART_TYPE_AVR32_UC3A1256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1256__"}, -+ {"uc3a1512", PART_TYPE_AVR32_UC3A1512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1512__"}, -+ {"uc3a1512es", PART_TYPE_AVR32_UC3A1512ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3A1512ES__"}, -+ {"uc3a3revd", PART_TYPE_AVR32_UC3A3REVD, ARCH_TYPE_AVR32_UCR2NOMUL, "__AVR32_UC3A3256S__"}, -+ {"uc3a364", PART_TYPE_AVR32_UC3A364, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A364__"}, -+ {"uc3a364s", PART_TYPE_AVR32_UC3A364S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A364S__"}, -+ {"uc3a3128", PART_TYPE_AVR32_UC3A3128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3128__"}, -+ {"uc3a3128s", PART_TYPE_AVR32_UC3A3128S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3128S__"}, -+ {"uc3a3256", PART_TYPE_AVR32_UC3A3256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3256__"}, -+ {"uc3a3256s", PART_TYPE_AVR32_UC3A3256S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3256S__"}, -+ {"uc3a464", PART_TYPE_AVR32_UC3A464, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A464__"}, -+ {"uc3a464s", PART_TYPE_AVR32_UC3A464S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A464S__"}, -+ {"uc3a4128", PART_TYPE_AVR32_UC3A4128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4128__"}, -+ {"uc3a4128s", PART_TYPE_AVR32_UC3A4128S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4128S__"}, -+ {"uc3a4256", PART_TYPE_AVR32_UC3A4256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4256__"}, -+ {"uc3a4256s", PART_TYPE_AVR32_UC3A4256S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4256S__"}, -+ {"uc3b064", PART_TYPE_AVR32_UC3B064, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B064__"}, -+ {"uc3b0128", PART_TYPE_AVR32_UC3B0128, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0128__"}, -+ {"uc3b0256", PART_TYPE_AVR32_UC3B0256, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0256__"}, -+ {"uc3b0256es", PART_TYPE_AVR32_UC3B0256ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0256ES__"}, -+ {"uc3b0512", PART_TYPE_AVR32_UC3B0512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B0512__"}, -+ {"uc3b0512revc", PART_TYPE_AVR32_UC3B0512REVC, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B0512REVC__"}, -+ {"uc3b164", PART_TYPE_AVR32_UC3B164, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B164__"}, -+ {"uc3b1128", PART_TYPE_AVR32_UC3B1128, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1128__"}, -+ {"uc3b1256", PART_TYPE_AVR32_UC3B1256, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1256__"}, -+ {"uc3b1256es", PART_TYPE_AVR32_UC3B1256ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1256ES__"}, -+ {"uc3b1512", PART_TYPE_AVR32_UC3B1512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B1512__"}, -+ {"uc3b1512revc", PART_TYPE_AVR32_UC3B1512REVC, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B1512REVC__"}, -+ {"uc64d3", PART_TYPE_AVR32_UC64D3, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64D3__"}, -+ {"uc128d3", PART_TYPE_AVR32_UC128D3, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128D3__"}, -+ {"uc64d4", PART_TYPE_AVR32_UC64D4, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64D4__"}, -+ {"uc128d4", PART_TYPE_AVR32_UC128D4, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128D4__"}, -+ {"uc3c0512crevc", PART_TYPE_AVR32_UC3C0512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C0512CREVC__"}, -+ {"uc3c1512crevc", PART_TYPE_AVR32_UC3C1512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C1512CREVC__"}, -+ {"uc3c2512crevc", PART_TYPE_AVR32_UC3C2512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C2512CREVC__"}, -+ {"uc3l0256", PART_TYPE_AVR32_UC3L0256, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L0256__"}, -+ {"uc3l0128", PART_TYPE_AVR32_UC3L0128, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L0128__"}, -+ {"uc3l064", PART_TYPE_AVR32_UC3L064, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L064__"}, -+ {"uc3l032", PART_TYPE_AVR32_UC3L032, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L032__"}, -+ {"uc3l016", PART_TYPE_AVR32_UC3L016, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L016__"}, -+ {"uc3l064revb", PART_TYPE_AVR32_UC3L064REVB, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L064REVB__"}, -+ {"uc64l3u", PART_TYPE_AVR32_UC64L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64L3U__"}, -+ {"uc128l3u", PART_TYPE_AVR32_UC128L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128L3U__"}, -+ {"uc256l3u", PART_TYPE_AVR32_UC256L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC256L3U__"}, -+ {"uc64l4u", PART_TYPE_AVR32_UC64L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64L4U__"}, -+ {"uc128l4u", PART_TYPE_AVR32_UC128L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128L4U__"}, -+ {"uc256l4u", PART_TYPE_AVR32_UC256L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC256L4U__"}, -+ {"uc3c064c", PART_TYPE_AVR32_UC3C064C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C064C__"}, -+ {"uc3c0128c", PART_TYPE_AVR32_UC3C0128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0128C__"}, -+ {"uc3c0256c", PART_TYPE_AVR32_UC3C0256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0256C__"}, -+ {"uc3c0512c", PART_TYPE_AVR32_UC3C0512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0512C__"}, -+ {"uc3c164c", PART_TYPE_AVR32_UC3C164C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C164C__"}, -+ {"uc3c1128c", PART_TYPE_AVR32_UC3C1128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1128C__"}, -+ {"uc3c1256c", PART_TYPE_AVR32_UC3C1256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1256C__"}, -+ {"uc3c1512c", PART_TYPE_AVR32_UC3C1512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1512C__"}, -+ {"uc3c264c", PART_TYPE_AVR32_UC3C264C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C264C__"}, -+ {"uc3c2128c", PART_TYPE_AVR32_UC3C2128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2128C__"}, -+ {"uc3c2256c", PART_TYPE_AVR32_UC3C2256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2256C__"}, -+ {"uc3c2512c", PART_TYPE_AVR32_UC3C2512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2512C__"}, -+ {"mxt768e", PART_TYPE_AVR32_MXT768E, ARCH_TYPE_AVR32_UCR3, "__AVR32_MXT768E__"}, -+ {NULL, 0, 0, NULL} -+}; -+ -+/* List of all known AVR32 architectures */ -+static const struct arch_type_s avr32_arch_types[] = { -+ /* name, architecture type, microarchitecture type, feature flags, macro */ -+ {"ap", ARCH_TYPE_AVR32_AP, UARCH_TYPE_AVR32B, -+ (FLAG_AVR32_HAS_DSP -+ | FLAG_AVR32_HAS_SIMD -+ | FLAG_AVR32_HAS_UNALIGNED_WORD -+ | FLAG_AVR32_HAS_BRANCH_PRED | FLAG_AVR32_HAS_RETURN_STACK -+ | FLAG_AVR32_HAS_CACHES), -+ "__AVR32_AP__"}, -+ {"ucr1", ARCH_TYPE_AVR32_UCR1, UARCH_TYPE_AVR32A, -+ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW), -+ "__AVR32_UC__=1"}, -+ {"ucr2", ARCH_TYPE_AVR32_UCR2, UARCH_TYPE_AVR32A, -+ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW -+ | FLAG_AVR32_HAS_V2_INSNS), -+ "__AVR32_UC__=2"}, -+ {"ucr2nomul", ARCH_TYPE_AVR32_UCR2NOMUL, UARCH_TYPE_AVR32A, -+ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW -+ | FLAG_AVR32_HAS_V2_INSNS | FLAG_AVR32_HAS_NO_MUL_INSNS), -+ "__AVR32_UC__=2"}, -+ {"ucr3", ARCH_TYPE_AVR32_UCR3, UARCH_TYPE_AVR32A, -+ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW -+ | FLAG_AVR32_HAS_V2_INSNS), -+ "__AVR32_UC__=3"}, -+ {"ucr3fp", ARCH_TYPE_AVR32_UCR3FP, UARCH_TYPE_AVR32A, -+ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW | FLAG_AVR32_HAS_FPU -+ | FLAG_AVR32_HAS_V2_INSNS), -+ "__AVR32_UC__=3"}, -+ {NULL, 0, 0, 0, NULL} -+}; -+ -+/* Default arch name */ -+const char *avr32_arch_name = "none"; -+const char *avr32_part_name = "none"; -+ -+const struct part_type_s *avr32_part; -+const struct arch_type_s *avr32_arch; -+ -+ -+/* FIXME: needs to use GC. */ -+struct flashvault_decl_list -+{ -+ struct flashvault_decl_list *next; -+ unsigned int vector_num; -+ const char *name; -+}; -+ -+static struct flashvault_decl_list *flashvault_decl_list_head = NULL; -+ -+ -+/* Set default target_flags. */ -+#undef TARGET_DEFAULT_TARGET_FLAGS -+#define TARGET_DEFAULT_TARGET_FLAGS \ -+ (MASK_HAS_ASM_ADDR_PSEUDOS | MASK_MD_REORG_OPTIMIZATION | MASK_COND_EXEC_BEFORE_RELOAD) -+ -+void -+avr32_optimization_options (int level, int size) -+{ -+ if (AVR32_ALWAYS_PIC) -+ flag_pic = 1; -+ -+ /* Enable section anchors if optimization is enabled. */ -+ if (level > 0 || size) -+ flag_section_anchors = 2; -+} -+ -+ -+/* Override command line options */ -+void -+avr32_override_options (void) -+{ -+ const struct part_type_s *part; -+ const struct arch_type_s *arch; -+ -+ /*Add backward compability*/ -+ if (strcmp ("uc", avr32_arch_name)== 0) -+ { -+ fprintf (stderr, "Warning: Deprecated arch `%s' specified. " -+ "Please use '-march=ucr1' instead. " -+ "Converting to arch 'ucr1'\n", -+ avr32_arch_name); -+ avr32_arch_name="ucr1"; -+ } -+ -+ /* Check if arch type is set. */ -+ for (arch = avr32_arch_types; arch->name; arch++) -+ { -+ if (strcmp (arch->name, avr32_arch_name) == 0) -+ break; -+ } -+ avr32_arch = arch; -+ -+ if (!arch->name && strcmp("none", avr32_arch_name) != 0) -+ { -+ fprintf (stderr, "Unknown arch `%s' specified\n" -+ "Known arch names:\n" -+ "\tuc (deprecated)\n", -+ avr32_arch_name); -+ for (arch = avr32_arch_types; arch->name; arch++) -+ fprintf (stderr, "\t%s\n", arch->name); -+ avr32_arch = &avr32_arch_types[ARCH_TYPE_AVR32_AP]; -+ } -+ -+ /* Check if part type is set. */ -+ for (part = avr32_part_types; part->name; part++) -+ if (strcmp (part->name, avr32_part_name) == 0) -+ break; -+ -+ avr32_part = part; -+ if (!part->name) -+ { -+ fprintf (stderr, "Unknown part `%s' specified\nKnown part names:\n", -+ avr32_part_name); -+ for (part = avr32_part_types; part->name; part++) -+ { -+ if (strcmp("none", part->name) != 0) -+ fprintf (stderr, "\t%s\n", part->name); -+ } -+ /* Set default to NONE*/ -+ avr32_part = &avr32_part_types[PART_TYPE_AVR32_NONE]; -+ } -+ -+ /* NB! option -march= overrides option -mpart -+ * if both are used at the same time */ -+ if (!arch->name) -+ avr32_arch = &avr32_arch_types[avr32_part->arch_type]; -+ -+ /* If optimization level is two or greater, then align start of loops to a -+ word boundary since this will allow folding the first insn of the loop. -+ Do this only for targets supporting branch prediction. */ -+ if (optimize >= 2 && TARGET_BRANCH_PRED) -+ align_loops = 2; -+ -+ -+ /* Enable fast-float library if unsafe math optimizations -+ are used. */ -+ if (flag_unsafe_math_optimizations) -+ target_flags |= MASK_FAST_FLOAT; -+ -+ /* Check if we should set avr32_imm_in_const_pool -+ based on if caches are present or not. */ -+ if ( avr32_imm_in_const_pool == -1 ) -+ { -+ if ( TARGET_CACHES ) -+ avr32_imm_in_const_pool = 1; -+ else -+ avr32_imm_in_const_pool = 0; -+ } -+ -+ if (TARGET_NO_PIC) -+ flag_pic = 0; -+ avr32_add_gc_roots (); -+} -+ -+ -+/* -+If defined, a function that outputs the assembler code for entry to a -+function. The prologue is responsible for setting up the stack frame, -+initializing the frame pointer register, saving registers that must be -+saved, and allocating size additional bytes of storage for the -+local variables. size is an integer. file is a stdio -+stream to which the assembler code should be output. -+ -+The label for the beginning of the function need not be output by this -+macro. That has already been done when the macro is run. -+ -+To determine which registers to save, the macro can refer to the array -+regs_ever_live: element r is nonzero if hard register -+r is used anywhere within the function. This implies the function -+prologue should save register r, provided it is not one of the -+call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use -+regs_ever_live.) -+ -+On machines that have ``register windows'', the function entry code does -+not save on the stack the registers that are in the windows, even if -+they are supposed to be preserved by function calls; instead it takes -+appropriate steps to ``push'' the register stack, if any non-call-used -+registers are used in the function. -+ -+On machines where functions may or may not have frame-pointers, the -+function entry code must vary accordingly; it must set up the frame -+pointer if one is wanted, and not otherwise. To determine whether a -+frame pointer is in wanted, the macro can refer to the variable -+frame_pointer_needed. The variable's value will be 1 at run -+time in a function that needs a frame pointer. (see Elimination). -+ -+The function entry code is responsible for allocating any stack space -+required for the function. This stack space consists of the regions -+listed below. In most cases, these regions are allocated in the -+order listed, with the last listed region closest to the top of the -+stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and -+the highest address if it is not defined). You can use a different order -+for a machine if doing so is more convenient or required for -+compatibility reasons. Except in cases where required by standard -+or by a debugger, there is no reason why the stack layout used by GCC -+need agree with that used by other compilers for a machine. -+*/ -+ -+#undef TARGET_ASM_FUNCTION_PROLOGUE -+#define TARGET_ASM_FUNCTION_PROLOGUE avr32_target_asm_function_prologue -+ -+#undef TARGET_ASM_FILE_END -+#define TARGET_ASM_FILE_END avr32_file_end -+ -+#undef TARGET_DEFAULT_SHORT_ENUMS -+#define TARGET_DEFAULT_SHORT_ENUMS hook_bool_void_false -+ -+#undef TARGET_PROMOTE_FUNCTION_ARGS -+#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true -+ -+#undef TARGET_PROMOTE_FUNCTION_RETURN -+#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true -+ -+#undef TARGET_PROMOTE_PROTOTYPES -+#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true -+ -+#undef TARGET_MUST_PASS_IN_STACK -+#define TARGET_MUST_PASS_IN_STACK avr32_must_pass_in_stack -+ -+#undef TARGET_PASS_BY_REFERENCE -+#define TARGET_PASS_BY_REFERENCE avr32_pass_by_reference -+ -+#undef TARGET_STRICT_ARGUMENT_NAMING -+#define TARGET_STRICT_ARGUMENT_NAMING avr32_strict_argument_naming -+ -+#undef TARGET_VECTOR_MODE_SUPPORTED_P -+#define TARGET_VECTOR_MODE_SUPPORTED_P avr32_vector_mode_supported -+ -+#undef TARGET_RETURN_IN_MEMORY -+#define TARGET_RETURN_IN_MEMORY avr32_return_in_memory -+ -+#undef TARGET_RETURN_IN_MSB -+#define TARGET_RETURN_IN_MSB avr32_return_in_msb -+ -+#undef TARGET_ENCODE_SECTION_INFO -+#define TARGET_ENCODE_SECTION_INFO avr32_encode_section_info -+ -+#undef TARGET_ARG_PARTIAL_BYTES -+#define TARGET_ARG_PARTIAL_BYTES avr32_arg_partial_bytes -+ -+#undef TARGET_STRIP_NAME_ENCODING -+#define TARGET_STRIP_NAME_ENCODING avr32_strip_name_encoding -+ -+#define streq(string1, string2) (strcmp (string1, string2) == 0) -+ -+#undef TARGET_NARROW_VOLATILE_BITFIELD -+#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false -+ -+#undef TARGET_ATTRIBUTE_TABLE -+#define TARGET_ATTRIBUTE_TABLE avr32_attribute_table -+ -+#undef TARGET_COMP_TYPE_ATTRIBUTES -+#define TARGET_COMP_TYPE_ATTRIBUTES avr32_comp_type_attributes -+ -+ -+#undef TARGET_RTX_COSTS -+#define TARGET_RTX_COSTS avr32_rtx_costs -+ -+#undef TARGET_CANNOT_FORCE_CONST_MEM -+#define TARGET_CANNOT_FORCE_CONST_MEM avr32_cannot_force_const_mem -+ -+#undef TARGET_ASM_INTEGER -+#define TARGET_ASM_INTEGER avr32_assemble_integer -+ -+#undef TARGET_FUNCTION_VALUE -+#define TARGET_FUNCTION_VALUE avr32_function_value -+ -+#undef TARGET_MIN_ANCHOR_OFFSET -+#define TARGET_MIN_ANCHOR_OFFSET (0) -+ -+#undef TARGET_MAX_ANCHOR_OFFSET -+#define TARGET_MAX_ANCHOR_OFFSET ((1 << 15) - 1) -+#undef TARGET_SECONDARY_RELOAD -+#define TARGET_SECONDARY_RELOAD avr32_secondary_reload -+ -+ -+/* -+ * Defining the option, -mlist-devices to list the devices supported by gcc. -+ * This option should be used while printing target-help to list all the -+ * supported devices. -+ */ -+#undef TARGET_HELP -+#define TARGET_HELP avr32_target_help -+ -+void avr32_target_help () -+{ -+ if (avr32_list_supported_parts) -+ { -+ const struct part_type_s *list; -+ fprintf (stdout, "List of parts supported by avr32-gcc:\n"); -+ for (list = avr32_part_types; list->name; list++) -+ { -+ if (strcmp("none", list->name) != 0) -+ fprintf (stdout, "%-20s%s\n", list->name, list->macro); -+ } -+ fprintf (stdout, "\n\n"); -+ } -+} -+ -+enum reg_class -+avr32_secondary_reload (bool in_p, rtx x, enum reg_class class, -+ enum machine_mode mode, secondary_reload_info *sri) -+{ -+ -+ if ( avr32_rmw_memory_operand (x, mode) ) -+ { -+ if (!in_p) -+ sri->icode = CODE_FOR_reload_out_rmw_memory_operand; -+ else -+ sri->icode = CODE_FOR_reload_in_rmw_memory_operand; -+ } -+ return NO_REGS; -+ -+} -+/* -+ * Switches to the appropriate section for output of constant pool -+ * entry x in mode. You can assume that x is some kind of constant in -+ * RTL. The argument mode is redundant except in the case of a -+ * const_int rtx. Select the section by calling readonly_data_ section -+ * or one of the alternatives for other sections. align is the -+ * constant alignment in bits. -+ * -+ * The default version of this function takes care of putting symbolic -+ * constants in flag_ pic mode in data_section and everything else in -+ * readonly_data_section. -+ */ -+//#undef TARGET_ASM_SELECT_RTX_SECTION -+//#define TARGET_ASM_SELECT_RTX_SECTION avr32_select_rtx_section -+ -+ -+/* -+ * If non-null, this hook performs a target-specific pass over the -+ * instruction stream. The compiler will run it at all optimization -+ * levels, just before the point at which it normally does -+ * delayed-branch scheduling. -+ * -+ * The exact purpose of the hook varies from target to target. Some -+ * use it to do transformations that are necessary for correctness, -+ * such as laying out in-function constant pools or avoiding hardware -+ * hazards. Others use it as an opportunity to do some -+ * machine-dependent optimizations. -+ * -+ * You need not implement the hook if it has nothing to do. The -+ * default definition is null. -+ */ -+#undef TARGET_MACHINE_DEPENDENT_REORG -+#define TARGET_MACHINE_DEPENDENT_REORG avr32_reorg -+ -+/* Target hook for assembling integer objects. -+ Need to handle integer vectors */ -+static bool -+avr32_assemble_integer (rtx x, unsigned int size, int aligned_p) -+{ -+ if (avr32_vector_mode_supported (GET_MODE (x))) -+ { -+ int i, units; -+ -+ if (GET_CODE (x) != CONST_VECTOR) -+ abort (); -+ -+ units = CONST_VECTOR_NUNITS (x); -+ -+ switch (GET_MODE (x)) -+ { -+ case V2HImode: -+ size = 2; -+ break; -+ case V4QImode: -+ size = 1; -+ break; -+ default: -+ abort (); -+ } -+ -+ for (i = 0; i < units; i++) -+ { -+ rtx elt; -+ -+ elt = CONST_VECTOR_ELT (x, i); -+ assemble_integer (elt, size, i == 0 ? 32 : size * BITS_PER_UNIT, 1); -+ } -+ -+ return true; -+ } -+ -+ return default_assemble_integer (x, size, aligned_p); -+} -+ -+ -+/* -+ * This target hook describes the relative costs of RTL expressions. -+ * -+ * The cost may depend on the precise form of the expression, which is -+ * available for examination in x, and the rtx code of the expression -+ * in which it is contained, found in outer_code. code is the -+ * expression code--redundant, since it can be obtained with GET_CODE -+ * (x). -+ * -+ * In implementing this hook, you can use the construct COSTS_N_INSNS -+ * (n) to specify a cost equal to n fast instructions. -+ * -+ * On entry to the hook, *total contains a default estimate for the -+ * cost of the expression. The hook should modify this value as -+ * necessary. Traditionally, the default costs are COSTS_N_INSNS (5) -+ * for multiplications, COSTS_N_INSNS (7) for division and modulus -+ * operations, and COSTS_N_INSNS (1) for all other operations. -+ * -+ * When optimizing for code size, i.e. when optimize_size is non-zero, -+ * this target hook should be used to estimate the relative size cost -+ * of an expression, again relative to COSTS_N_INSNS. -+ * -+ * The hook returns true when all subexpressions of x have been -+ * processed, and false when rtx_cost should recurse. -+ */ -+ -+/* Worker routine for avr32_rtx_costs. */ -+static inline int -+avr32_rtx_costs_1 (rtx x, enum rtx_code code ATTRIBUTE_UNUSED, -+ enum rtx_code outer ATTRIBUTE_UNUSED) -+{ -+ enum machine_mode mode = GET_MODE (x); -+ -+ switch (GET_CODE (x)) -+ { -+ case MEM: -+ /* Using pre decrement / post increment memory operations on the -+ avr32_uc architecture means that two writebacks must be performed -+ and hence two cycles are needed. */ -+ if (!optimize_size -+ && GET_MODE_SIZE (mode) <= 2 * UNITS_PER_WORD -+ && TARGET_ARCH_UC -+ && (GET_CODE (XEXP (x, 0)) == PRE_DEC -+ || GET_CODE (XEXP (x, 0)) == POST_INC)) -+ return COSTS_N_INSNS (5); -+ -+ /* Memory costs quite a lot for the first word, but subsequent words -+ load at the equivalent of a single insn each. */ -+ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) -+ return COSTS_N_INSNS (3 + (GET_MODE_SIZE (mode) / UNITS_PER_WORD)); -+ -+ return COSTS_N_INSNS (4); -+ case SYMBOL_REF: -+ case CONST: -+ /* These are valid for the pseudo insns: lda.w and call which operates -+ on direct addresses. We assume that the cost of a lda.w is the same -+ as the cost of a ld.w insn. */ -+ return (outer == SET) ? COSTS_N_INSNS (4) : COSTS_N_INSNS (1); -+ case DIV: -+ case MOD: -+ case UDIV: -+ case UMOD: -+ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16); -+ -+ case ROTATE: -+ case ROTATERT: -+ if (mode == TImode) -+ return COSTS_N_INSNS (100); -+ -+ if (mode == DImode) -+ return COSTS_N_INSNS (10); -+ return COSTS_N_INSNS (4); -+ case ASHIFT: -+ case LSHIFTRT: -+ case ASHIFTRT: -+ case NOT: -+ if (mode == TImode) -+ return COSTS_N_INSNS (10); -+ -+ if (mode == DImode) -+ return COSTS_N_INSNS (4); -+ return COSTS_N_INSNS (1); -+ case PLUS: -+ case MINUS: -+ case NEG: -+ case COMPARE: -+ case ABS: -+ if (GET_MODE_CLASS (mode) == MODE_FLOAT) -+ return COSTS_N_INSNS (100); -+ -+ if (mode == TImode) -+ return COSTS_N_INSNS (50); -+ -+ if (mode == DImode) -+ return COSTS_N_INSNS (2); -+ return COSTS_N_INSNS (1); -+ -+ case MULT: -+ { -+ if (GET_MODE_CLASS (mode) == MODE_FLOAT) -+ return COSTS_N_INSNS (300); -+ -+ if (mode == TImode) -+ return COSTS_N_INSNS (16); -+ -+ if (mode == DImode) -+ return COSTS_N_INSNS (4); -+ -+ if (mode == HImode) -+ return COSTS_N_INSNS (2); -+ -+ return COSTS_N_INSNS (3); -+ } -+ case IF_THEN_ELSE: -+ if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC) -+ return COSTS_N_INSNS (4); -+ return COSTS_N_INSNS (1); -+ case SIGN_EXTEND: -+ case ZERO_EXTEND: -+ /* Sign/Zero extensions of registers cost quite much since these -+ instrcutions only take one register operand which means that gcc -+ often must insert some move instrcutions */ -+ if (mode == QImode || mode == HImode) -+ return (COSTS_N_INSNS (GET_CODE (XEXP (x, 0)) == MEM ? 0 : 1)); -+ return COSTS_N_INSNS (4); -+ case UNSPEC: -+ /* divmod operations */ -+ if (XINT (x, 1) == UNSPEC_UDIVMODSI4_INTERNAL -+ || XINT (x, 1) == UNSPEC_DIVMODSI4_INTERNAL) -+ { -+ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16); -+ } -+ /* Fallthrough */ -+ default: -+ return COSTS_N_INSNS (1); -+ } -+} -+ -+ -+static bool -+avr32_rtx_costs (rtx x, int code, int outer_code, int *total) -+{ -+ *total = avr32_rtx_costs_1 (x, code, outer_code); -+ return true; -+} -+ -+ -+bool -+avr32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED) -+{ -+ /* Do not want symbols in the constant pool when compiling pic or if using -+ address pseudo instructions. */ -+ return ((flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS) -+ && avr32_find_symbol (x) != NULL_RTX); -+} -+ -+ -+/* Table of machine attributes. */ -+const struct attribute_spec avr32_attribute_table[] = { -+ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ -+ /* Interrupt Service Routines have special prologue and epilogue -+ requirements. */ -+ {"isr", 0, 1, false, false, false, avr32_handle_isr_attribute}, -+ {"interrupt", 0, 1, false, false, false, avr32_handle_isr_attribute}, -+ {"acall", 0, 1, false, true, true, avr32_handle_acall_attribute}, -+ {"naked", 0, 0, true, false, false, avr32_handle_fndecl_attribute}, -+ {"rmw_addressable", 0, 0, true, false, false, NULL}, -+ {"flashvault", 0, 1, true, false, false, avr32_handle_fndecl_attribute}, -+ {"flashvault_impl", 0, 1, true, false, false, avr32_handle_fndecl_attribute}, -+ {NULL, 0, 0, false, false, false, NULL} -+}; -+ -+ -+typedef struct -+{ -+ const char *const arg; -+ const unsigned long return_value; -+} -+isr_attribute_arg; -+ -+ -+static const isr_attribute_arg isr_attribute_args[] = { -+ {"FULL", AVR32_FT_ISR_FULL}, -+ {"full", AVR32_FT_ISR_FULL}, -+ {"HALF", AVR32_FT_ISR_HALF}, -+ {"half", AVR32_FT_ISR_HALF}, -+ {"NONE", AVR32_FT_ISR_NONE}, -+ {"none", AVR32_FT_ISR_NONE}, -+ {"UNDEF", AVR32_FT_ISR_NONE}, -+ {"undef", AVR32_FT_ISR_NONE}, -+ {"SWI", AVR32_FT_ISR_NONE}, -+ {"swi", AVR32_FT_ISR_NONE}, -+ {NULL, AVR32_FT_ISR_NONE} -+}; -+ -+ -+/* Returns the (interrupt) function type of the current -+ function, or AVR32_FT_UNKNOWN if the type cannot be determined. */ -+static unsigned long -+avr32_isr_value (tree argument) -+{ -+ const isr_attribute_arg *ptr; -+ const char *arg; -+ -+ /* No argument - default to ISR_NONE. */ -+ if (argument == NULL_TREE) -+ return AVR32_FT_ISR_NONE; -+ -+ /* Get the value of the argument. */ -+ if (TREE_VALUE (argument) == NULL_TREE -+ || TREE_CODE (TREE_VALUE (argument)) != STRING_CST) -+ return AVR32_FT_UNKNOWN; -+ -+ arg = TREE_STRING_POINTER (TREE_VALUE (argument)); -+ -+ /* Check it against the list of known arguments. */ -+ for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++) -+ if (streq (arg, ptr->arg)) -+ return ptr->return_value; -+ -+ /* An unrecognized interrupt type. */ -+ return AVR32_FT_UNKNOWN; -+} -+ -+ -+/* -+These hooks specify assembly directives for creating certain kinds -+of integer object. The TARGET_ASM_BYTE_OP directive creates a -+byte-sized object, the TARGET_ASM_ALIGNED_HI_OP one creates an -+aligned two-byte object, and so on. Any of the hooks may be -+NULL, indicating that no suitable directive is available. -+ -+The compiler will print these strings at the start of a new line, -+followed immediately by the object's initial value. In most cases, -+the string should contain a tab, a pseudo-op, and then another tab. -+*/ -+#undef TARGET_ASM_BYTE_OP -+#define TARGET_ASM_BYTE_OP "\t.byte\t" -+#undef TARGET_ASM_ALIGNED_HI_OP -+#define TARGET_ASM_ALIGNED_HI_OP "\t.align 1\n\t.short\t" -+#undef TARGET_ASM_ALIGNED_SI_OP -+#define TARGET_ASM_ALIGNED_SI_OP "\t.align 2\n\t.int\t" -+#undef TARGET_ASM_ALIGNED_DI_OP -+#define TARGET_ASM_ALIGNED_DI_OP NULL -+#undef TARGET_ASM_ALIGNED_TI_OP -+#define TARGET_ASM_ALIGNED_TI_OP NULL -+#undef TARGET_ASM_UNALIGNED_HI_OP -+#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t" -+#undef TARGET_ASM_UNALIGNED_SI_OP -+#define TARGET_ASM_UNALIGNED_SI_OP "\t.int\t" -+#undef TARGET_ASM_UNALIGNED_DI_OP -+#define TARGET_ASM_UNALIGNED_DI_OP NULL -+#undef TARGET_ASM_UNALIGNED_TI_OP -+#define TARGET_ASM_UNALIGNED_TI_OP NULL -+ -+#undef TARGET_ASM_OUTPUT_MI_THUNK -+#define TARGET_ASM_OUTPUT_MI_THUNK avr32_output_mi_thunk -+ -+#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK -+#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true -+ -+ -+static void -+avr32_output_mi_thunk (FILE * file, -+ tree thunk ATTRIBUTE_UNUSED, -+ HOST_WIDE_INT delta, -+ HOST_WIDE_INT vcall_offset, tree function) -+ { -+ int mi_delta = delta; -+ int this_regno = -+ (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ? -+ INTERNAL_REGNUM (11) : INTERNAL_REGNUM (12)); -+ -+ -+ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21") -+ || vcall_offset) -+ { -+ fputs ("\tpushm\tlr\n", file); -+ } -+ -+ -+ if (mi_delta != 0) -+ { -+ if (avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")) -+ { -+ fprintf (file, "\tsub\t%s, %d\n", reg_names[this_regno], -mi_delta); -+ } -+ else -+ { -+ /* Immediate is larger than k21 we must make us a temp register by -+ pushing a register to the stack. */ -+ fprintf (file, "\tmov\tlr, lo(%d)\n", mi_delta); -+ fprintf (file, "\torh\tlr, hi(%d)\n", mi_delta); -+ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]); -+ } -+ } -+ -+ -+ if (vcall_offset != 0) -+ { -+ fprintf (file, "\tld.w\tlr, %s[0]\n", reg_names[this_regno]); -+ fprintf (file, "\tld.w\tlr, lr[%i]\n", (int) vcall_offset); -+ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]); -+ } -+ -+ -+ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21") -+ || vcall_offset) -+ { -+ fputs ("\tpopm\tlr\n", file); -+ } -+ -+ /* Jump to the function. We assume that we can use an rjmp since the -+ function to jump to is local and probably not too far away from -+ the thunk. If this assumption proves to be wrong we could implement -+ this jump by calculating the offset between the jump source and destination -+ and put this in the constant pool and then perform an add to pc. -+ This would also be legitimate PIC code. But for now we hope that an rjmp -+ will be sufficient... -+ */ -+ fputs ("\trjmp\t", file); -+ assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0)); -+ fputc ('\n', file); -+ } -+ -+ -+/* Implements target hook vector_mode_supported. */ -+bool -+avr32_vector_mode_supported (enum machine_mode mode) -+{ -+ if ((mode == V2HImode) || (mode == V4QImode)) -+ return true; -+ -+ return false; -+} -+ -+ -+#undef TARGET_INIT_LIBFUNCS -+#define TARGET_INIT_LIBFUNCS avr32_init_libfuncs -+ -+#undef TARGET_INIT_BUILTINS -+#define TARGET_INIT_BUILTINS avr32_init_builtins -+ -+#undef TARGET_EXPAND_BUILTIN -+#define TARGET_EXPAND_BUILTIN avr32_expand_builtin -+ -+tree int_ftype_int, int_ftype_void, short_ftype_short, void_ftype_int_int, -+ void_ftype_ptr_int; -+tree void_ftype_int, void_ftype_ulong, void_ftype_void, int_ftype_ptr_int; -+tree short_ftype_short, int_ftype_int_short, int_ftype_short_short, -+ short_ftype_short_short; -+tree int_ftype_int_int, longlong_ftype_int_short, longlong_ftype_short_short; -+tree void_ftype_int_int_int_int_int, void_ftype_int_int_int; -+tree longlong_ftype_int_int, void_ftype_int_int_longlong; -+tree int_ftype_int_int_int, longlong_ftype_longlong_int_short; -+tree longlong_ftype_longlong_short_short, int_ftype_int_short_short; -+ -+#define def_builtin(NAME, TYPE, CODE) \ -+ add_builtin_function ((NAME), (TYPE), (CODE), \ -+ BUILT_IN_MD, NULL, NULL_TREE) -+ -+#define def_mbuiltin(MASK, NAME, TYPE, CODE) \ -+ do \ -+ { \ -+ if ((MASK)) \ -+ add_builtin_function ((NAME), (TYPE), (CODE), \ -+ BUILT_IN_MD, NULL, NULL_TREE); \ -+ } \ -+ while (0) -+ -+struct builtin_description -+{ -+ const unsigned int mask; -+ const enum insn_code icode; -+ const char *const name; -+ const int code; -+ const enum rtx_code comparison; -+ const unsigned int flag; -+ const tree *ftype; -+}; -+ -+static const struct builtin_description bdesc_2arg[] = { -+ -+#define DSP_BUILTIN(code, builtin, ftype) \ -+ { 1, CODE_FOR_##code, "__builtin_" #code , \ -+ AVR32_BUILTIN_##builtin, 0, 0, ftype } -+ -+ DSP_BUILTIN (mulsathh_h, MULSATHH_H, &short_ftype_short_short), -+ DSP_BUILTIN (mulsathh_w, MULSATHH_W, &int_ftype_short_short), -+ DSP_BUILTIN (mulsatrndhh_h, MULSATRNDHH_H, &short_ftype_short_short), -+ DSP_BUILTIN (mulsatrndwh_w, MULSATRNDWH_W, &int_ftype_int_short), -+ DSP_BUILTIN (mulsatwh_w, MULSATWH_W, &int_ftype_int_short), -+ DSP_BUILTIN (satadd_h, SATADD_H, &short_ftype_short_short), -+ DSP_BUILTIN (satsub_h, SATSUB_H, &short_ftype_short_short), -+ DSP_BUILTIN (satadd_w, SATADD_W, &int_ftype_int_int), -+ DSP_BUILTIN (satsub_w, SATSUB_W, &int_ftype_int_int), -+ DSP_BUILTIN (mulwh_d, MULWH_D, &longlong_ftype_int_short), -+ DSP_BUILTIN (mulnwh_d, MULNWH_D, &longlong_ftype_int_short) -+}; -+ -+ -+void -+avr32_init_builtins (void) -+{ -+ unsigned int i; -+ const struct builtin_description *d; -+ tree endlink = void_list_node; -+ tree int_endlink = tree_cons (NULL_TREE, integer_type_node, endlink); -+ tree longlong_endlink = -+ tree_cons (NULL_TREE, long_long_integer_type_node, endlink); -+ tree short_endlink = -+ tree_cons (NULL_TREE, short_integer_type_node, endlink); -+ tree void_endlink = tree_cons (NULL_TREE, void_type_node, endlink); -+ -+ /* int func (int) */ -+ int_ftype_int = build_function_type (integer_type_node, int_endlink); -+ -+ /* short func (short) */ -+ short_ftype_short -+ = build_function_type (short_integer_type_node, short_endlink); -+ -+ /* short func (short, short) */ -+ short_ftype_short_short -+ = build_function_type (short_integer_type_node, -+ tree_cons (NULL_TREE, short_integer_type_node, -+ short_endlink)); -+ -+ /* long long func (long long, short, short) */ -+ longlong_ftype_longlong_short_short -+ = build_function_type (long_long_integer_type_node, -+ tree_cons (NULL_TREE, long_long_integer_type_node, -+ tree_cons (NULL_TREE, -+ short_integer_type_node, -+ short_endlink))); -+ -+ /* long long func (short, short) */ -+ longlong_ftype_short_short -+ = build_function_type (long_long_integer_type_node, -+ tree_cons (NULL_TREE, short_integer_type_node, -+ short_endlink)); -+ -+ /* int func (int, int) */ -+ int_ftype_int_int -+ = build_function_type (integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ int_endlink)); -+ -+ /* long long func (int, int) */ -+ longlong_ftype_int_int -+ = build_function_type (long_long_integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ int_endlink)); -+ -+ /* long long int func (long long, int, short) */ -+ longlong_ftype_longlong_int_short -+ = build_function_type (long_long_integer_type_node, -+ tree_cons (NULL_TREE, long_long_integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ short_endlink))); -+ -+ /* long long int func (int, short) */ -+ longlong_ftype_int_short -+ = build_function_type (long_long_integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ short_endlink)); -+ -+ /* int func (int, short, short) */ -+ int_ftype_int_short_short -+ = build_function_type (integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ tree_cons (NULL_TREE, -+ short_integer_type_node, -+ short_endlink))); -+ -+ /* int func (short, short) */ -+ int_ftype_short_short -+ = build_function_type (integer_type_node, -+ tree_cons (NULL_TREE, short_integer_type_node, -+ short_endlink)); -+ -+ /* int func (int, short) */ -+ int_ftype_int_short -+ = build_function_type (integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ short_endlink)); -+ -+ /* void func (int, int) */ -+ void_ftype_int_int -+ = build_function_type (void_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ int_endlink)); -+ -+ /* void func (int, int, int) */ -+ void_ftype_int_int_int -+ = build_function_type (void_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ int_endlink))); -+ -+ /* void func (int, int, long long) */ -+ void_ftype_int_int_longlong -+ = build_function_type (void_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ longlong_endlink))); -+ -+ /* void func (int, int, int, int, int) */ -+ void_ftype_int_int_int_int_int -+ = build_function_type (void_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ tree_cons (NULL_TREE, -+ integer_type_node, -+ tree_cons -+ (NULL_TREE, -+ integer_type_node, -+ int_endlink))))); -+ -+ /* void func (void *, int) */ -+ void_ftype_ptr_int -+ = build_function_type (void_type_node, -+ tree_cons (NULL_TREE, ptr_type_node, int_endlink)); -+ -+ /* void func (int) */ -+ void_ftype_int = build_function_type (void_type_node, int_endlink); -+ -+ /* void func (ulong) */ -+ void_ftype_ulong = build_function_type_list (void_type_node, -+ long_unsigned_type_node, NULL_TREE); -+ -+ /* void func (void) */ -+ void_ftype_void = build_function_type (void_type_node, void_endlink); -+ -+ /* int func (void) */ -+ int_ftype_void = build_function_type (integer_type_node, void_endlink); -+ -+ /* int func (void *, int) */ -+ int_ftype_ptr_int -+ = build_function_type (integer_type_node, -+ tree_cons (NULL_TREE, ptr_type_node, int_endlink)); -+ -+ /* int func (int, int, int) */ -+ int_ftype_int_int_int -+ = build_function_type (integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ tree_cons (NULL_TREE, integer_type_node, -+ int_endlink))); -+ -+ /* Initialize avr32 builtins. */ -+ def_builtin ("__builtin_mfsr", int_ftype_int, AVR32_BUILTIN_MFSR); -+ def_builtin ("__builtin_mtsr", void_ftype_int_int, AVR32_BUILTIN_MTSR); -+ def_builtin ("__builtin_mfdr", int_ftype_int, AVR32_BUILTIN_MFDR); -+ def_builtin ("__builtin_mtdr", void_ftype_int_int, AVR32_BUILTIN_MTDR); -+ def_builtin ("__builtin_cache", void_ftype_ptr_int, AVR32_BUILTIN_CACHE); -+ def_builtin ("__builtin_sync", void_ftype_int, AVR32_BUILTIN_SYNC); -+ def_builtin ("__builtin_ssrf", void_ftype_int, AVR32_BUILTIN_SSRF); -+ def_builtin ("__builtin_csrf", void_ftype_int, AVR32_BUILTIN_CSRF); -+ def_builtin ("__builtin_tlbr", void_ftype_void, AVR32_BUILTIN_TLBR); -+ def_builtin ("__builtin_tlbs", void_ftype_void, AVR32_BUILTIN_TLBS); -+ def_builtin ("__builtin_tlbw", void_ftype_void, AVR32_BUILTIN_TLBW); -+ def_builtin ("__builtin_breakpoint", void_ftype_void, -+ AVR32_BUILTIN_BREAKPOINT); -+ def_builtin ("__builtin_xchg", int_ftype_ptr_int, AVR32_BUILTIN_XCHG); -+ def_builtin ("__builtin_ldxi", int_ftype_ptr_int, AVR32_BUILTIN_LDXI); -+ def_builtin ("__builtin_bswap_16", short_ftype_short, -+ AVR32_BUILTIN_BSWAP16); -+ def_builtin ("__builtin_bswap_32", int_ftype_int, AVR32_BUILTIN_BSWAP32); -+ def_builtin ("__builtin_cop", void_ftype_int_int_int_int_int, -+ AVR32_BUILTIN_COP); -+ def_builtin ("__builtin_mvcr_w", int_ftype_int_int, AVR32_BUILTIN_MVCR_W); -+ def_builtin ("__builtin_mvrc_w", void_ftype_int_int_int, -+ AVR32_BUILTIN_MVRC_W); -+ def_builtin ("__builtin_mvcr_d", longlong_ftype_int_int, -+ AVR32_BUILTIN_MVCR_D); -+ def_builtin ("__builtin_mvrc_d", void_ftype_int_int_longlong, -+ AVR32_BUILTIN_MVRC_D); -+ def_builtin ("__builtin_sats", int_ftype_int_int_int, AVR32_BUILTIN_SATS); -+ def_builtin ("__builtin_satu", int_ftype_int_int_int, AVR32_BUILTIN_SATU); -+ def_builtin ("__builtin_satrnds", int_ftype_int_int_int, -+ AVR32_BUILTIN_SATRNDS); -+ def_builtin ("__builtin_satrndu", int_ftype_int_int_int, -+ AVR32_BUILTIN_SATRNDU); -+ def_builtin ("__builtin_musfr", void_ftype_int, AVR32_BUILTIN_MUSFR); -+ def_builtin ("__builtin_mustr", int_ftype_void, AVR32_BUILTIN_MUSTR); -+ def_builtin ("__builtin_macsathh_w", int_ftype_int_short_short, -+ AVR32_BUILTIN_MACSATHH_W); -+ def_builtin ("__builtin_macwh_d", longlong_ftype_longlong_int_short, -+ AVR32_BUILTIN_MACWH_D); -+ def_builtin ("__builtin_machh_d", longlong_ftype_longlong_short_short, -+ AVR32_BUILTIN_MACHH_D); -+ def_builtin ("__builtin_mems", void_ftype_ptr_int, AVR32_BUILTIN_MEMS); -+ def_builtin ("__builtin_memt", void_ftype_ptr_int, AVR32_BUILTIN_MEMT); -+ def_builtin ("__builtin_memc", void_ftype_ptr_int, AVR32_BUILTIN_MEMC); -+ def_builtin ("__builtin_sleep", void_ftype_int, AVR32_BUILTIN_SLEEP); -+ def_builtin ("__builtin_avr32_delay_cycles", void_ftype_int, AVR32_BUILTIN_DELAY_CYCLES); -+ -+ /* Add all builtins that are more or less simple operations on two -+ operands. */ -+ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) -+ { -+ /* Use one of the operands; the target can have a different mode for -+ mask-generating compares. */ -+ -+ if (d->name == 0) -+ continue; -+ -+ def_mbuiltin (d->mask, d->name, *(d->ftype), d->code); -+ } -+} -+ -+ -+/* Subroutine of avr32_expand_builtin to take care of binop insns. */ -+static rtx -+avr32_expand_binop_builtin (enum insn_code icode, tree exp, rtx target) -+{ -+ rtx pat; -+ tree arg0 = CALL_EXPR_ARG (exp,0); -+ tree arg1 = CALL_EXPR_ARG (exp,1); -+ rtx op0 = expand_normal (arg0); -+ rtx op1 = expand_normal (arg1); -+ enum machine_mode tmode = insn_data[icode].operand[0].mode; -+ enum machine_mode mode0 = insn_data[icode].operand[1].mode; -+ enum machine_mode mode1 = insn_data[icode].operand[2].mode; -+ -+ if (!target -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ -+ /* In case the insn wants input operands in modes different from the -+ result, abort. */ -+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) -+ { -+ /* If op0 is already a reg we must cast it to the correct mode. */ -+ if (REG_P (op0)) -+ op0 = convert_to_mode (mode0, op0, 1); -+ else -+ op0 = copy_to_mode_reg (mode0, op0); -+ } -+ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) -+ { -+ /* If op1 is already a reg we must cast it to the correct mode. */ -+ if (REG_P (op1)) -+ op1 = convert_to_mode (mode1, op1, 1); -+ else -+ op1 = copy_to_mode_reg (mode1, op1); -+ } -+ pat = GEN_FCN (icode) (target, op0, op1); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return target; -+} -+ -+ -+/* Expand an expression EXP that calls a built-in function, -+ with result going to TARGET if that's convenient -+ (and in mode MODE if that's convenient). -+ SUBTARGET may be used as the target for computing one of EXP's operands. -+ IGNORE is nonzero if the value is to be ignored. */ -+rtx -+avr32_expand_builtin (tree exp, -+ rtx target, -+ rtx subtarget ATTRIBUTE_UNUSED, -+ enum machine_mode mode ATTRIBUTE_UNUSED, -+ int ignore ATTRIBUTE_UNUSED) -+{ -+ const struct builtin_description *d; -+ unsigned int i; -+ enum insn_code icode = 0; -+ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); -+ tree arg0, arg1, arg2; -+ rtx op0, op1, op2, pat; -+ enum machine_mode tmode, mode0, mode1; -+ enum machine_mode arg0_mode; -+ int fcode = DECL_FUNCTION_CODE (fndecl); -+ -+ switch (fcode) -+ { -+ default: -+ break; -+ -+ case AVR32_BUILTIN_SATS: -+ case AVR32_BUILTIN_SATU: -+ case AVR32_BUILTIN_SATRNDS: -+ case AVR32_BUILTIN_SATRNDU: -+ { -+ const char *fname; -+ switch (fcode) -+ { -+ default: -+ case AVR32_BUILTIN_SATS: -+ icode = CODE_FOR_sats; -+ fname = "sats"; -+ break; -+ case AVR32_BUILTIN_SATU: -+ icode = CODE_FOR_satu; -+ fname = "satu"; -+ break; -+ case AVR32_BUILTIN_SATRNDS: -+ icode = CODE_FOR_satrnds; -+ fname = "satrnds"; -+ break; -+ case AVR32_BUILTIN_SATRNDU: -+ icode = CODE_FOR_satrndu; -+ fname = "satrndu"; -+ break; -+ } -+ -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ arg2 = CALL_EXPR_ARG (exp,2); -+ op0 = expand_normal (arg0); -+ op1 = expand_normal (arg1); -+ op2 = expand_normal (arg2); -+ -+ tmode = insn_data[icode].operand[0].mode; -+ -+ -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ -+ -+ if (!(*insn_data[icode].operand[0].predicate) (op0, GET_MODE (op0))) -+ { -+ op0 = copy_to_mode_reg (insn_data[icode].operand[0].mode, op0); -+ } -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) -+ { -+ error ("Parameter 2 to __builtin_%s should be a constant number.", -+ fname); -+ return NULL_RTX; -+ } -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op2, SImode)) -+ { -+ error ("Parameter 3 to __builtin_%s should be a constant number.", -+ fname); -+ return NULL_RTX; -+ } -+ -+ emit_move_insn (target, op0); -+ pat = GEN_FCN (icode) (target, op1, op2); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ -+ return target; -+ } -+ case AVR32_BUILTIN_MUSTR: -+ icode = CODE_FOR_mustr; -+ tmode = insn_data[icode].operand[0].mode; -+ -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ pat = GEN_FCN (icode) (target); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return target; -+ -+ case AVR32_BUILTIN_MFSR: -+ icode = CODE_FOR_mfsr; -+ arg0 = CALL_EXPR_ARG (exp,0); -+ op0 = expand_normal (arg0); -+ tmode = insn_data[icode].operand[0].mode; -+ mode0 = insn_data[icode].operand[1].mode; -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) -+ { -+ error ("Parameter 1 to __builtin_mfsr must be a constant number"); -+ } -+ -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ pat = GEN_FCN (icode) (target, op0); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return target; -+ case AVR32_BUILTIN_MTSR: -+ icode = CODE_FOR_mtsr; -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ op0 = expand_normal (arg0); -+ op1 = expand_normal (arg1); -+ mode0 = insn_data[icode].operand[0].mode; -+ mode1 = insn_data[icode].operand[1].mode; -+ -+ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) -+ { -+ error ("Parameter 1 to __builtin_mtsr must be a constant number"); -+ return gen_reg_rtx (mode0); -+ } -+ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) -+ op1 = copy_to_mode_reg (mode1, op1); -+ pat = GEN_FCN (icode) (op0, op1); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return NULL_RTX; -+ case AVR32_BUILTIN_MFDR: -+ icode = CODE_FOR_mfdr; -+ arg0 = CALL_EXPR_ARG (exp,0); -+ op0 = expand_normal (arg0); -+ tmode = insn_data[icode].operand[0].mode; -+ mode0 = insn_data[icode].operand[1].mode; -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) -+ { -+ error ("Parameter 1 to __builtin_mfdr must be a constant number"); -+ } -+ -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ pat = GEN_FCN (icode) (target, op0); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return target; -+ case AVR32_BUILTIN_MTDR: -+ icode = CODE_FOR_mtdr; -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ op0 = expand_normal (arg0); -+ op1 = expand_normal (arg1); -+ mode0 = insn_data[icode].operand[0].mode; -+ mode1 = insn_data[icode].operand[1].mode; -+ -+ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) -+ { -+ error ("Parameter 1 to __builtin_mtdr must be a constant number"); -+ return gen_reg_rtx (mode0); -+ } -+ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) -+ op1 = copy_to_mode_reg (mode1, op1); -+ pat = GEN_FCN (icode) (op0, op1); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return NULL_RTX; -+ case AVR32_BUILTIN_CACHE: -+ icode = CODE_FOR_cache; -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ op0 = expand_normal (arg0); -+ op1 = expand_normal (arg1); -+ mode0 = insn_data[icode].operand[0].mode; -+ mode1 = insn_data[icode].operand[1].mode; -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) -+ { -+ error ("Parameter 2 to __builtin_cache must be a constant number"); -+ return gen_reg_rtx (mode1); -+ } -+ -+ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) -+ op0 = copy_to_mode_reg (mode0, op0); -+ -+ pat = GEN_FCN (icode) (op0, op1); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return NULL_RTX; -+ case AVR32_BUILTIN_SYNC: -+ case AVR32_BUILTIN_MUSFR: -+ case AVR32_BUILTIN_SSRF: -+ case AVR32_BUILTIN_CSRF: -+ { -+ const char *fname; -+ switch (fcode) -+ { -+ default: -+ case AVR32_BUILTIN_SYNC: -+ icode = CODE_FOR_sync; -+ fname = "sync"; -+ break; -+ case AVR32_BUILTIN_MUSFR: -+ icode = CODE_FOR_musfr; -+ fname = "musfr"; -+ break; -+ case AVR32_BUILTIN_SSRF: -+ icode = CODE_FOR_ssrf; -+ fname = "ssrf"; -+ break; -+ case AVR32_BUILTIN_CSRF: -+ icode = CODE_FOR_csrf; -+ fname = "csrf"; -+ break; -+ } -+ -+ arg0 = CALL_EXPR_ARG (exp,0); -+ op0 = expand_normal (arg0); -+ mode0 = insn_data[icode].operand[0].mode; -+ -+ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) -+ { -+ if (icode == CODE_FOR_musfr) -+ op0 = copy_to_mode_reg (mode0, op0); -+ else -+ { -+ error ("Parameter to __builtin_%s is illegal.", fname); -+ return gen_reg_rtx (mode0); -+ } -+ } -+ pat = GEN_FCN (icode) (op0); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return NULL_RTX; -+ } -+ case AVR32_BUILTIN_TLBR: -+ icode = CODE_FOR_tlbr; -+ pat = GEN_FCN (icode) (NULL_RTX); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return NULL_RTX; -+ case AVR32_BUILTIN_TLBS: -+ icode = CODE_FOR_tlbs; -+ pat = GEN_FCN (icode) (NULL_RTX); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return NULL_RTX; -+ case AVR32_BUILTIN_TLBW: -+ icode = CODE_FOR_tlbw; -+ pat = GEN_FCN (icode) (NULL_RTX); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return NULL_RTX; -+ case AVR32_BUILTIN_BREAKPOINT: -+ icode = CODE_FOR_breakpoint; -+ pat = GEN_FCN (icode) (NULL_RTX); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return NULL_RTX; -+ case AVR32_BUILTIN_XCHG: -+ icode = CODE_FOR_sync_lock_test_and_setsi; -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ op0 = expand_normal (arg0); -+ op1 = expand_normal (arg1); -+ tmode = insn_data[icode].operand[0].mode; -+ mode0 = insn_data[icode].operand[1].mode; -+ mode1 = insn_data[icode].operand[2].mode; -+ -+ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) -+ { -+ op1 = copy_to_mode_reg (mode1, op1); -+ } -+ -+ op0 = force_reg (GET_MODE (op0), op0); -+ op0 = gen_rtx_MEM (GET_MODE (op0), op0); -+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) -+ { -+ error -+ ("Parameter 1 to __builtin_xchg must be a pointer to an integer."); -+ } -+ -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ pat = GEN_FCN (icode) (target, op0, op1); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return target; -+ case AVR32_BUILTIN_LDXI: -+ icode = CODE_FOR_ldxi; -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ arg2 = CALL_EXPR_ARG (exp,2); -+ op0 = expand_normal (arg0); -+ op1 = expand_normal (arg1); -+ op2 = expand_normal (arg2); -+ tmode = insn_data[icode].operand[0].mode; -+ mode0 = insn_data[icode].operand[1].mode; -+ mode1 = insn_data[icode].operand[2].mode; -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) -+ { -+ op0 = copy_to_mode_reg (mode0, op0); -+ } -+ -+ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) -+ { -+ op1 = copy_to_mode_reg (mode1, op1); -+ } -+ -+ if (!(*insn_data[icode].operand[3].predicate) (op2, SImode)) -+ { -+ error -+ ("Parameter 3 to __builtin_ldxi must be a valid extract shift operand: (0|8|16|24)"); -+ return gen_reg_rtx (mode0); -+ } -+ -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ pat = GEN_FCN (icode) (target, op0, op1, op2); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return target; -+ case AVR32_BUILTIN_BSWAP16: -+ { -+ icode = CODE_FOR_bswap_16; -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg0_mode = TYPE_MODE (TREE_TYPE (arg0)); -+ mode0 = insn_data[icode].operand[1].mode; -+ if (arg0_mode != mode0) -+ arg0 = build1 (NOP_EXPR, -+ (*lang_hooks.types.type_for_mode) (mode0, 0), arg0); -+ -+ op0 = expand_expr (arg0, NULL_RTX, HImode, 0); -+ tmode = insn_data[icode].operand[0].mode; -+ -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) -+ { -+ if ( CONST_INT_P (op0) ) -+ { -+ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x00ff) << 8) | -+ ((INTVAL (op0)&0xff00) >> 8) ); -+ /* Sign extend 16-bit value to host wide int */ -+ val <<= (HOST_BITS_PER_WIDE_INT - 16); -+ val >>= (HOST_BITS_PER_WIDE_INT - 16); -+ op0 = GEN_INT(val); -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ emit_move_insn(target, op0); -+ return target; -+ } -+ else -+ op0 = copy_to_mode_reg (mode0, op0); -+ } -+ -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ { -+ target = gen_reg_rtx (tmode); -+ } -+ -+ -+ pat = GEN_FCN (icode) (target, op0); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ -+ return target; -+ } -+ case AVR32_BUILTIN_BSWAP32: -+ { -+ icode = CODE_FOR_bswap_32; -+ arg0 = CALL_EXPR_ARG (exp,0); -+ op0 = expand_normal (arg0); -+ tmode = insn_data[icode].operand[0].mode; -+ mode0 = insn_data[icode].operand[1].mode; -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) -+ { -+ if ( CONST_INT_P (op0) ) -+ { -+ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x000000ff) << 24) | -+ ((INTVAL (op0)&0x0000ff00) << 8) | -+ ((INTVAL (op0)&0x00ff0000) >> 8) | -+ ((INTVAL (op0)&0xff000000) >> 24) ); -+ /* Sign extend 32-bit value to host wide int */ -+ val <<= (HOST_BITS_PER_WIDE_INT - 32); -+ val >>= (HOST_BITS_PER_WIDE_INT - 32); -+ op0 = GEN_INT(val); -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ emit_move_insn(target, op0); -+ return target; -+ } -+ else -+ op0 = copy_to_mode_reg (mode0, op0); -+ } -+ -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ -+ -+ pat = GEN_FCN (icode) (target, op0); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ -+ return target; -+ } -+ case AVR32_BUILTIN_MVCR_W: -+ case AVR32_BUILTIN_MVCR_D: -+ { -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ op0 = expand_normal (arg0); -+ op1 = expand_normal (arg1); -+ -+ if (fcode == AVR32_BUILTIN_MVCR_W) -+ icode = CODE_FOR_mvcrsi; -+ else -+ icode = CODE_FOR_mvcrdi; -+ -+ tmode = insn_data[icode].operand[0].mode; -+ -+ if (target == 0 -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op0, SImode)) -+ { -+ error -+ ("Parameter 1 to __builtin_cop is not a valid coprocessor number."); -+ error ("Number should be between 0 and 7."); -+ return NULL_RTX; -+ } -+ -+ if (!(*insn_data[icode].operand[2].predicate) (op1, SImode)) -+ { -+ error -+ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number."); -+ error ("Number should be between 0 and 15."); -+ return NULL_RTX; -+ } -+ -+ pat = GEN_FCN (icode) (target, op0, op1); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ -+ return target; -+ } -+ case AVR32_BUILTIN_MACSATHH_W: -+ case AVR32_BUILTIN_MACWH_D: -+ case AVR32_BUILTIN_MACHH_D: -+ { -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ arg2 = CALL_EXPR_ARG (exp,2); -+ op0 = expand_normal (arg0); -+ op1 = expand_normal (arg1); -+ op2 = expand_normal (arg2); -+ -+ icode = ((fcode == AVR32_BUILTIN_MACSATHH_W) ? CODE_FOR_macsathh_w : -+ (fcode == AVR32_BUILTIN_MACWH_D) ? CODE_FOR_macwh_d : -+ CODE_FOR_machh_d); -+ -+ tmode = insn_data[icode].operand[0].mode; -+ mode0 = insn_data[icode].operand[1].mode; -+ mode1 = insn_data[icode].operand[2].mode; -+ -+ -+ if (!target -+ || GET_MODE (target) != tmode -+ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) -+ target = gen_reg_rtx (tmode); -+ -+ if (!(*insn_data[icode].operand[0].predicate) (op0, tmode)) -+ { -+ /* If op0 is already a reg we must cast it to the correct mode. */ -+ if (REG_P (op0)) -+ op0 = convert_to_mode (tmode, op0, 1); -+ else -+ op0 = copy_to_mode_reg (tmode, op0); -+ } -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op1, mode0)) -+ { -+ /* If op1 is already a reg we must cast it to the correct mode. */ -+ if (REG_P (op1)) -+ op1 = convert_to_mode (mode0, op1, 1); -+ else -+ op1 = copy_to_mode_reg (mode0, op1); -+ } -+ -+ if (!(*insn_data[icode].operand[2].predicate) (op2, mode1)) -+ { -+ /* If op1 is already a reg we must cast it to the correct mode. */ -+ if (REG_P (op2)) -+ op2 = convert_to_mode (mode1, op2, 1); -+ else -+ op2 = copy_to_mode_reg (mode1, op2); -+ } -+ -+ emit_move_insn (target, op0); -+ -+ pat = GEN_FCN (icode) (target, op1, op2); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return target; -+ } -+ case AVR32_BUILTIN_MVRC_W: -+ case AVR32_BUILTIN_MVRC_D: -+ { -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ arg2 = CALL_EXPR_ARG (exp,2); -+ op0 = expand_normal (arg0); -+ op1 = expand_normal (arg1); -+ op2 = expand_normal (arg2); -+ -+ if (fcode == AVR32_BUILTIN_MVRC_W) -+ icode = CODE_FOR_mvrcsi; -+ else -+ icode = CODE_FOR_mvrcdi; -+ -+ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode)) -+ { -+ error ("Parameter 1 is not a valid coprocessor number."); -+ error ("Number should be between 0 and 7."); -+ return NULL_RTX; -+ } -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) -+ { -+ error ("Parameter 2 is not a valid coprocessor register number."); -+ error ("Number should be between 0 and 15."); -+ return NULL_RTX; -+ } -+ -+ if (GET_CODE (op2) == CONST_INT -+ || GET_CODE (op2) == CONST -+ || GET_CODE (op2) == SYMBOL_REF || GET_CODE (op2) == LABEL_REF) -+ { -+ op2 = force_const_mem (insn_data[icode].operand[2].mode, op2); -+ } -+ -+ if (!(*insn_data[icode].operand[2].predicate) (op2, GET_MODE (op2))) -+ op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2); -+ -+ -+ pat = GEN_FCN (icode) (op0, op1, op2); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ -+ return NULL_RTX; -+ } -+ case AVR32_BUILTIN_COP: -+ { -+ rtx op3, op4; -+ tree arg3, arg4; -+ icode = CODE_FOR_cop; -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ arg2 = CALL_EXPR_ARG (exp,2); -+ arg3 = CALL_EXPR_ARG (exp,3); -+ arg4 = CALL_EXPR_ARG (exp,4); -+ op0 = expand_normal (arg0); -+ op1 = expand_normal (arg1); -+ op2 = expand_normal (arg2); -+ op3 = expand_normal (arg3); -+ op4 = expand_normal (arg4); -+ -+ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode)) -+ { -+ error -+ ("Parameter 1 to __builtin_cop is not a valid coprocessor number."); -+ error ("Number should be between 0 and 7."); -+ return NULL_RTX; -+ } -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) -+ { -+ error -+ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number."); -+ error ("Number should be between 0 and 15."); -+ return NULL_RTX; -+ } -+ -+ if (!(*insn_data[icode].operand[2].predicate) (op2, SImode)) -+ { -+ error -+ ("Parameter 3 to __builtin_cop is not a valid coprocessor register number."); -+ error ("Number should be between 0 and 15."); -+ return NULL_RTX; -+ } -+ -+ if (!(*insn_data[icode].operand[3].predicate) (op3, SImode)) -+ { -+ error -+ ("Parameter 4 to __builtin_cop is not a valid coprocessor register number."); -+ error ("Number should be between 0 and 15."); -+ return NULL_RTX; -+ } -+ -+ if (!(*insn_data[icode].operand[4].predicate) (op4, SImode)) -+ { -+ error -+ ("Parameter 5 to __builtin_cop is not a valid coprocessor operation."); -+ error ("Number should be between 0 and 127."); -+ return NULL_RTX; -+ } -+ -+ pat = GEN_FCN (icode) (op0, op1, op2, op3, op4); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ -+ return target; -+ } -+ -+ case AVR32_BUILTIN_MEMS: -+ case AVR32_BUILTIN_MEMC: -+ case AVR32_BUILTIN_MEMT: -+ { -+ if (!TARGET_RMW) -+ error ("Trying to use __builtin_mem(s/c/t) when target does not support RMW insns."); -+ -+ switch (fcode) { -+ case AVR32_BUILTIN_MEMS: -+ icode = CODE_FOR_iorsi3; -+ break; -+ case AVR32_BUILTIN_MEMC: -+ icode = CODE_FOR_andsi3; -+ break; -+ case AVR32_BUILTIN_MEMT: -+ icode = CODE_FOR_xorsi3; -+ break; -+ } -+ arg0 = CALL_EXPR_ARG (exp,0); -+ arg1 = CALL_EXPR_ARG (exp,1); -+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); -+ if ( GET_CODE (op0) == SYMBOL_REF ) -+ // This symbol must be RMW addressable -+ SYMBOL_REF_FLAGS (op0) |= (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT); -+ op0 = gen_rtx_MEM(SImode, op0); -+ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); -+ mode0 = insn_data[icode].operand[1].mode; -+ -+ -+ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) -+ { -+ error ("Parameter 1 to __builtin_mem(s/c/t) must be a Ks15<<2 address or a rmw addressable symbol."); -+ } -+ -+ if ( !CONST_INT_P (op1) -+ || INTVAL (op1) > 31 -+ || INTVAL (op1) < 0 ) -+ error ("Parameter 2 to __builtin_mem(s/c/t) must be a constant between 0 and 31."); -+ -+ if ( fcode == AVR32_BUILTIN_MEMC ) -+ op1 = GEN_INT((~(1 << INTVAL(op1)))&0xffffffff); -+ else -+ op1 = GEN_INT((1 << INTVAL(op1))&0xffffffff); -+ pat = GEN_FCN (icode) (op0, op0, op1); -+ if (!pat) -+ return 0; -+ emit_insn (pat); -+ return op0; -+ } -+ -+ case AVR32_BUILTIN_SLEEP: -+ { -+ arg0 = CALL_EXPR_ARG (exp, 0); -+ op0 = expand_normal (arg0); -+ int intval = INTVAL(op0); -+ -+ /* Check if the argument if integer and if the value of integer -+ is greater than 0. */ -+ -+ if (!CONSTANT_P (op0)) -+ error ("Parameter 1 to __builtin_sleep() is not a valid integer."); -+ if (intval < 0 ) -+ error ("Parameter 1 to __builtin_sleep() should be an integer greater than 0."); -+ -+ int strncmpval = strncmp (avr32_part_name,"uc3l", 4); -+ -+ /* Check if op0 is less than 7 for uc3l* and less than 6 for other -+ devices. By this check we are avoiding if operand is less than -+ 256. For more devices, add more such checks. */ -+ -+ if ( strncmpval == 0 && intval >= 7) -+ error ("Parameter 1 to __builtin_sleep() should be less than or equal to 7."); -+ else if ( strncmp != 0 && intval >= 6) -+ error ("Parameter 1 to __builtin_sleep() should be less than or equal to 6."); -+ -+ emit_insn (gen_sleep(op0)); -+ return target; -+ -+ } -+ case AVR32_BUILTIN_DELAY_CYCLES: -+ { -+ arg0 = CALL_EXPR_ARG (exp, 0); -+ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); -+ -+ if (TARGET_ARCH_AP) -+ error (" __builtin_avr32_delay_cycles() not supported for \'%s\' architecture.", avr32_arch_name); -+ if (!CONSTANT_P (op0)) -+ error ("Parameter 1 to __builtin_avr32_delay_cycles() should be an integer."); -+ emit_insn (gen_delay_cycles (op0)); -+ return 0; -+ -+ } -+ -+ } -+ -+ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) -+ if (d->code == fcode) -+ return avr32_expand_binop_builtin (d->icode, exp, target); -+ -+ -+ /* @@@ Should really do something sensible here. */ -+ return NULL_RTX; -+} -+ -+ -+/* Handle an "interrupt" or "isr" attribute; -+ arguments as in struct attribute_spec.handler. */ -+static tree -+avr32_handle_isr_attribute (tree * node, tree name, tree args, -+ int flags, bool * no_add_attrs) -+{ -+ if (DECL_P (*node)) -+ { -+ if (TREE_CODE (*node) != FUNCTION_DECL) -+ { -+ warning (OPT_Wattributes,"`%s' attribute only applies to functions", -+ IDENTIFIER_POINTER (name)); -+ *no_add_attrs = true; -+ } -+ /* FIXME: the argument if any is checked for type attributes; should it -+ be checked for decl ones? */ -+ } -+ else -+ { -+ if (TREE_CODE (*node) == FUNCTION_TYPE -+ || TREE_CODE (*node) == METHOD_TYPE) -+ { -+ if (avr32_isr_value (args) == AVR32_FT_UNKNOWN) -+ { -+ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name)); -+ *no_add_attrs = true; -+ } -+ } -+ else if (TREE_CODE (*node) == POINTER_TYPE -+ && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE -+ || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE) -+ && avr32_isr_value (args) != AVR32_FT_UNKNOWN) -+ { -+ *node = build_variant_type_copy (*node); -+ TREE_TYPE (*node) = build_type_attribute_variant -+ (TREE_TYPE (*node), -+ tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node)))); -+ *no_add_attrs = true; -+ } -+ else -+ { -+ /* Possibly pass this attribute on from the type to a decl. */ -+ if (flags & ((int) ATTR_FLAG_DECL_NEXT -+ | (int) ATTR_FLAG_FUNCTION_NEXT -+ | (int) ATTR_FLAG_ARRAY_NEXT)) -+ { -+ *no_add_attrs = true; -+ return tree_cons (name, args, NULL_TREE); -+ } -+ else -+ { -+ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name)); -+ } -+ } -+ } -+ -+ return NULL_TREE; -+} -+ -+ -+/* Handle an attribute requiring a FUNCTION_DECL; -+ arguments as in struct attribute_spec.handler. */ -+static tree -+avr32_handle_fndecl_attribute (tree * node, tree name, -+ tree args, -+ int flags ATTRIBUTE_UNUSED, -+ bool * no_add_attrs) -+{ -+ if (TREE_CODE (*node) != FUNCTION_DECL) -+ { -+ warning (OPT_Wattributes,"%qs attribute only applies to functions", -+ IDENTIFIER_POINTER (name)); -+ *no_add_attrs = true; -+ return NULL_TREE; -+ } -+ -+ fndecl_attribute_args = args; -+ if (args == NULL_TREE) -+ return NULL_TREE; -+ -+ tree value = TREE_VALUE (args); -+ if (TREE_CODE (value) != INTEGER_CST) -+ { -+ warning (OPT_Wattributes, -+ "argument of %qs attribute is not an integer constant", -+ IDENTIFIER_POINTER (name)); -+ *no_add_attrs = true; -+ } -+ -+ return NULL_TREE; -+} -+ -+ -+/* Handle an acall attribute; -+ arguments as in struct attribute_spec.handler. */ -+ -+static tree -+avr32_handle_acall_attribute (tree * node, tree name, -+ tree args ATTRIBUTE_UNUSED, -+ int flags ATTRIBUTE_UNUSED, bool * no_add_attrs) -+{ -+ if (TREE_CODE (*node) == FUNCTION_TYPE || TREE_CODE (*node) == METHOD_TYPE) -+ { -+ warning (OPT_Wattributes,"`%s' attribute not yet supported...", -+ IDENTIFIER_POINTER (name)); -+ *no_add_attrs = true; -+ return NULL_TREE; -+ } -+ -+ warning (OPT_Wattributes,"`%s' attribute only applies to functions", -+ IDENTIFIER_POINTER (name)); -+ *no_add_attrs = true; -+ return NULL_TREE; -+} -+ -+ -+bool -+avr32_flashvault_call(tree decl) -+{ -+ tree attributes; -+ tree fv_attribute; -+ tree vector_tree; -+ unsigned int vector; -+ -+ if (decl && TREE_CODE (decl) == FUNCTION_DECL) -+ { -+ attributes = DECL_ATTRIBUTES(decl); -+ fv_attribute = lookup_attribute ("flashvault", attributes); -+ if (fv_attribute != NULL_TREE) -+ { -+ /* Get attribute parameter, for the function vector number. */ -+ /* -+ There is probably an easier, standard way to retrieve the -+ attribute parameter which needs to be done here. -+ */ -+ vector_tree = TREE_VALUE(fv_attribute); -+ if (vector_tree != NULL_TREE) -+ { -+ vector = (unsigned int)TREE_INT_CST_LOW(TREE_VALUE(vector_tree)); -+ fprintf (asm_out_file, -+ "\tmov\tr8, lo(%i)\t# Load vector number for sscall.\n", -+ vector); -+ } -+ -+ fprintf (asm_out_file, -+ "\tsscall\t# Secure system call.\n"); -+ -+ return true; -+ } -+ } -+ -+ return false; -+} -+ -+ -+static bool has_attribute_p (tree decl, const char *name) -+{ -+ if (decl && TREE_CODE (decl) == FUNCTION_DECL) -+ { -+ return (lookup_attribute (name, DECL_ATTRIBUTES(decl)) != NULL_TREE); -+ } -+ return NULL_TREE; -+} -+ -+ -+/* Return 0 if the attributes for two types are incompatible, 1 if they -+ are compatible, and 2 if they are nearly compatible (which causes a -+ warning to be generated). */ -+static int -+avr32_comp_type_attributes (tree type1, tree type2) -+{ -+ bool acall1, acall2, isr1, isr2, naked1, naked2, fv1, fv2, fvimpl1, fvimpl2; -+ -+ /* Check for mismatch of non-default calling convention. */ -+ if (TREE_CODE (type1) != FUNCTION_TYPE) -+ return 1; -+ -+ /* Check for mismatched call attributes. */ -+ acall1 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type1)) != NULL; -+ acall2 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type2)) != NULL; -+ naked1 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type1)) != NULL; -+ naked2 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type2)) != NULL; -+ fv1 = lookup_attribute ("flashvault", TYPE_ATTRIBUTES (type1)) != NULL; -+ fv2 = lookup_attribute ("flashvault", TYPE_ATTRIBUTES (type2)) != NULL; -+ fvimpl1 = lookup_attribute ("flashvault_impl", TYPE_ATTRIBUTES (type1)) != NULL; -+ fvimpl2 = lookup_attribute ("flashvault_impl", TYPE_ATTRIBUTES (type2)) != NULL; -+ isr1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL; -+ if (!isr1) -+ isr1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL; -+ -+ isr2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL; -+ if (!isr2) -+ isr2 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL; -+ -+ if ((acall1 && isr2) -+ || (acall2 && isr1) -+ || (naked1 && isr2) -+ || (naked2 && isr1) -+ || (fv1 && isr2) -+ || (fv2 && isr1) -+ || (fvimpl1 && isr2) -+ || (fvimpl2 && isr1) -+ || (fv1 && fvimpl2) -+ || (fv2 && fvimpl1) -+ ) -+ return 0; -+ -+ return 1; -+} -+ -+ -+/* Computes the type of the current function. */ -+static unsigned long -+avr32_compute_func_type (void) -+{ -+ unsigned long type = AVR32_FT_UNKNOWN; -+ tree a; -+ tree attr; -+ -+ if (TREE_CODE (current_function_decl) != FUNCTION_DECL) -+ abort (); -+ -+ /* Decide if the current function is volatile. Such functions never -+ return, and many memory cycles can be saved by not storing register -+ values that will never be needed again. This optimization was added to -+ speed up context switching in a kernel application. */ -+ if (optimize > 0 -+ && TREE_NOTHROW (current_function_decl) -+ && TREE_THIS_VOLATILE (current_function_decl)) -+ type |= AVR32_FT_VOLATILE; -+ -+ if (cfun->static_chain_decl != NULL) -+ type |= AVR32_FT_NESTED; -+ -+ attr = DECL_ATTRIBUTES (current_function_decl); -+ -+ a = lookup_attribute ("isr", attr); -+ if (a == NULL_TREE) -+ a = lookup_attribute ("interrupt", attr); -+ -+ if (a == NULL_TREE) -+ type |= AVR32_FT_NORMAL; -+ else -+ type |= avr32_isr_value (TREE_VALUE (a)); -+ -+ -+ a = lookup_attribute ("acall", attr); -+ if (a != NULL_TREE) -+ type |= AVR32_FT_ACALL; -+ -+ a = lookup_attribute ("naked", attr); -+ if (a != NULL_TREE) -+ type |= AVR32_FT_NAKED; -+ -+ a = lookup_attribute ("flashvault", attr); -+ if (a != NULL_TREE) -+ type |= AVR32_FT_FLASHVAULT; -+ -+ a = lookup_attribute ("flashvault_impl", attr); -+ if (a != NULL_TREE) -+ type |= AVR32_FT_FLASHVAULT_IMPL; -+ -+ return type; -+} -+ -+ -+/* Returns the type of the current function. */ -+static unsigned long -+avr32_current_func_type (void) -+{ -+ if (AVR32_FUNC_TYPE (cfun->machine->func_type) == AVR32_FT_UNKNOWN) -+ cfun->machine->func_type = avr32_compute_func_type (); -+ -+ return cfun->machine->func_type; -+} -+ -+ -+/* -+This target hook should return true if we should not pass type solely -+in registers. The file expr.h defines a definition that is usually appropriate, -+refer to expr.h for additional documentation. -+*/ -+bool -+avr32_must_pass_in_stack (enum machine_mode mode ATTRIBUTE_UNUSED, tree type) -+{ -+ if (type && AGGREGATE_TYPE_P (type) -+ /* If the alignment is less than the size then pass in the struct on -+ the stack. */ -+ && ((unsigned int) TYPE_ALIGN_UNIT (type) < -+ (unsigned int) int_size_in_bytes (type)) -+ /* If we support unaligned word accesses then structs of size 4 and 8 -+ can have any alignment and still be passed in registers. */ -+ && !(TARGET_UNALIGNED_WORD -+ && (int_size_in_bytes (type) == 4 -+ || int_size_in_bytes (type) == 8)) -+ /* Double word structs need only a word alignment. */ -+ && !(int_size_in_bytes (type) == 8 && TYPE_ALIGN_UNIT (type) >= 4)) -+ return true; -+ -+ if (type && AGGREGATE_TYPE_P (type) -+ /* Structs of size 3,5,6,7 are always passed in registers. */ -+ && (int_size_in_bytes (type) == 3 -+ || int_size_in_bytes (type) == 5 -+ || int_size_in_bytes (type) == 6 || int_size_in_bytes (type) == 7)) -+ return true; -+ -+ -+ return (type && TREE_ADDRESSABLE (type)); -+} -+ -+ -+bool -+avr32_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED) -+{ -+ return true; -+} -+ -+ -+/* -+ This target hook should return true if an argument at the position indicated -+ by cum should be passed by reference. This predicate is queried after target -+ independent reasons for being passed by reference, such as TREE_ADDRESSABLE (type). -+ -+ If the hook returns true, a copy of that argument is made in memory and a -+ pointer to the argument is passed instead of the argument itself. The pointer -+ is passed in whatever way is appropriate for passing a pointer to that type. -+*/ -+bool -+avr32_pass_by_reference (CUMULATIVE_ARGS * cum ATTRIBUTE_UNUSED, -+ enum machine_mode mode ATTRIBUTE_UNUSED, -+ tree type, bool named ATTRIBUTE_UNUSED) -+{ -+ return (type && (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)); -+} -+ -+ -+static int -+avr32_arg_partial_bytes (CUMULATIVE_ARGS * pcum ATTRIBUTE_UNUSED, -+ enum machine_mode mode ATTRIBUTE_UNUSED, -+ tree type ATTRIBUTE_UNUSED, -+ bool named ATTRIBUTE_UNUSED) -+{ -+ return 0; -+} -+ -+ -+struct gcc_target targetm = TARGET_INITIALIZER; -+ -+/* -+ Table used to convert from register number in the assembler instructions and -+ the register numbers used in gcc. -+*/ -+const int avr32_function_arg_reglist[] = { -+ INTERNAL_REGNUM (12), -+ INTERNAL_REGNUM (11), -+ INTERNAL_REGNUM (10), -+ INTERNAL_REGNUM (9), -+ INTERNAL_REGNUM (8) -+}; -+ -+ -+rtx avr32_compare_op0 = NULL_RTX; -+rtx avr32_compare_op1 = NULL_RTX; -+rtx avr32_compare_operator = NULL_RTX; -+rtx avr32_acc_cache = NULL_RTX; -+/* type of branch to use */ -+enum avr32_cmp_type avr32_branch_type; -+ -+ -+/* -+ Returns nonzero if it is allowed to store a value of mode mode in hard -+ register number regno. -+*/ -+int -+avr32_hard_regno_mode_ok (int regnr, enum machine_mode mode) -+{ -+ switch (mode) -+ { -+ case DImode: /* long long */ -+ case DFmode: /* double */ -+ case SCmode: /* __complex__ float */ -+ case CSImode: /* __complex__ int */ -+ if (regnr < 4) -+ { /* long long int not supported in r12, sp, lr or pc. */ -+ return 0; -+ } -+ else -+ { -+ /* long long int has to be referred in even registers. */ -+ if (regnr % 2) -+ return 0; -+ else -+ return 1; -+ } -+ case CDImode: /* __complex__ long long */ -+ case DCmode: /* __complex__ double */ -+ case TImode: /* 16 bytes */ -+ if (regnr < 7) -+ return 0; -+ else if (regnr % 2) -+ return 0; -+ else -+ return 1; -+ default: -+ return 1; -+ } -+} -+ -+ -+int -+avr32_rnd_operands (rtx add, rtx shift) -+{ -+ if (GET_CODE (shift) == CONST_INT && -+ GET_CODE (add) == CONST_INT && INTVAL (shift) > 0) -+ { -+ if ((1 << (INTVAL (shift) - 1)) == INTVAL (add)) -+ return TRUE; -+ } -+ -+ return FALSE; -+} -+ -+ -+int -+avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, const char *str) -+{ -+ switch (c) -+ { -+ case 'K': -+ case 'I': -+ { -+ HOST_WIDE_INT min_value = 0, max_value = 0; -+ char size_str[3]; -+ int const_size; -+ -+ size_str[0] = str[2]; -+ size_str[1] = str[3]; -+ size_str[2] = '\0'; -+ const_size = atoi (size_str); -+ -+ if (TOUPPER (str[1]) == 'U') -+ { -+ min_value = 0; -+ max_value = (1 << const_size) - 1; -+ } -+ else if (TOUPPER (str[1]) == 'S') -+ { -+ min_value = -(1 << (const_size - 1)); -+ max_value = (1 << (const_size - 1)) - 1; -+ } -+ -+ if (c == 'I') -+ { -+ value = -value; -+ } -+ -+ if (value >= min_value && value <= max_value) -+ { -+ return 1; -+ } -+ break; -+ } -+ case 'M': -+ return avr32_mask_upper_bits_operand (GEN_INT (value), VOIDmode); -+ case 'J': -+ return avr32_hi16_immediate_operand (GEN_INT (value), VOIDmode); -+ case 'O': -+ return one_bit_set_operand (GEN_INT (value), VOIDmode); -+ case 'N': -+ return one_bit_cleared_operand (GEN_INT (value), VOIDmode); -+ case 'L': -+ /* The lower 16-bits are set. */ -+ return ((value & 0xffff) == 0xffff) ; -+ } -+ -+ return 0; -+} -+ -+ -+/* Compute mask of registers which needs saving upon function entry. */ -+static unsigned long -+avr32_compute_save_reg_mask (int push) -+{ -+ unsigned long func_type; -+ unsigned int save_reg_mask = 0; -+ unsigned int reg; -+ -+ func_type = avr32_current_func_type (); -+ -+ if (IS_INTERRUPT (func_type)) -+ { -+ unsigned int max_reg = 12; -+ -+ /* Get the banking scheme for the interrupt */ -+ switch (func_type) -+ { -+ case AVR32_FT_ISR_FULL: -+ max_reg = 0; -+ break; -+ case AVR32_FT_ISR_HALF: -+ max_reg = 7; -+ break; -+ case AVR32_FT_ISR_NONE: -+ max_reg = 12; -+ break; -+ } -+ -+ /* Interrupt functions must not corrupt any registers, even call -+ clobbered ones. If this is a leaf function we can just examine the -+ registers used by the RTL, but otherwise we have to assume that -+ whatever function is called might clobber anything, and so we have -+ to save all the call-clobbered registers as well. */ -+ -+ /* Need not push the registers r8-r12 for AVR32A architectures, as this -+ is automatially done in hardware. We also do not have any shadow -+ registers. */ -+ if (TARGET_UARCH_AVR32A) -+ { -+ max_reg = 7; -+ func_type = AVR32_FT_ISR_NONE; -+ } -+ -+ /* All registers which are used and are not shadowed must be saved. */ -+ for (reg = 0; reg <= max_reg; reg++) -+ if (df_regs_ever_live_p (INTERNAL_REGNUM (reg)) -+ || (!current_function_is_leaf -+ && call_used_regs[INTERNAL_REGNUM (reg)])) -+ save_reg_mask |= (1 << reg); -+ -+ /* Check LR */ -+ if ((df_regs_ever_live_p (LR_REGNUM) -+ || !current_function_is_leaf || frame_pointer_needed) -+ /* Only non-shadowed register models */ -+ && (func_type == AVR32_FT_ISR_NONE)) -+ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM)); -+ -+ /* Make sure that the GOT register is pushed. */ -+ if (max_reg >= ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM) -+ && crtl->uses_pic_offset_table) -+ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)); -+ -+ } -+ else -+ { -+ int use_pushm = optimize_size; -+ -+ /* In the normal case we only need to save those registers which are -+ call saved and which are used by this function. */ -+ for (reg = 0; reg <= 7; reg++) -+ if (df_regs_ever_live_p (INTERNAL_REGNUM (reg)) -+ && !call_used_regs[INTERNAL_REGNUM (reg)]) -+ save_reg_mask |= (1 << reg); -+ -+ /* Make sure that the GOT register is pushed. */ -+ if (crtl->uses_pic_offset_table) -+ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)); -+ -+ -+ /* If we optimize for size and do not have anonymous arguments: use -+ pushm/popm always. */ -+ if (use_pushm) -+ { -+ if ((save_reg_mask & (1 << 0)) -+ || (save_reg_mask & (1 << 1)) -+ || (save_reg_mask & (1 << 2)) || (save_reg_mask & (1 << 3))) -+ save_reg_mask |= 0xf; -+ -+ if ((save_reg_mask & (1 << 4)) -+ || (save_reg_mask & (1 << 5)) -+ || (save_reg_mask & (1 << 6)) || (save_reg_mask & (1 << 7))) -+ save_reg_mask |= 0xf0; -+ -+ if ((save_reg_mask & (1 << 8)) || (save_reg_mask & (1 << 9))) -+ save_reg_mask |= 0x300; -+ } -+ -+ -+ /* Check LR */ -+ if ((df_regs_ever_live_p (LR_REGNUM) -+ || !current_function_is_leaf -+ || (optimize_size -+ && save_reg_mask -+ && !crtl->calls_eh_return) -+ || frame_pointer_needed) -+ && !IS_FLASHVAULT (func_type)) -+ { -+ if (push -+ /* Never pop LR into PC for functions which -+ calls __builtin_eh_return, since we need to -+ fix the SP after the restoring of the registers -+ and before returning. */ -+ || crtl->calls_eh_return) -+ { -+ /* Push/Pop LR */ -+ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM)); -+ } -+ else -+ { -+ /* Pop PC */ -+ save_reg_mask |= (1 << ASM_REGNUM (PC_REGNUM)); -+ } -+ } -+ } -+ -+ -+ /* Save registers so the exception handler can modify them. */ -+ if (crtl->calls_eh_return) -+ { -+ unsigned int i; -+ -+ for (i = 0;; i++) -+ { -+ reg = EH_RETURN_DATA_REGNO (i); -+ if (reg == INVALID_REGNUM) -+ break; -+ save_reg_mask |= 1 << ASM_REGNUM (reg); -+ } -+ } -+ -+ return save_reg_mask; -+} -+ -+ -+/* Compute total size in bytes of all saved registers. */ -+static int -+avr32_get_reg_mask_size (int reg_mask) -+{ -+ int reg, size; -+ size = 0; -+ -+ for (reg = 0; reg <= 15; reg++) -+ if (reg_mask & (1 << reg)) -+ size += 4; -+ -+ return size; -+} -+ -+ -+/* Get a register from one of the registers which are saved onto the stack -+ upon function entry. */ -+static int -+avr32_get_saved_reg (int save_reg_mask) -+{ -+ unsigned int reg; -+ -+ /* Find the first register which is saved in the saved_reg_mask */ -+ for (reg = 0; reg <= 15; reg++) -+ if (save_reg_mask & (1 << reg)) -+ return reg; -+ -+ return -1; -+} -+ -+ -+/* Return 1 if it is possible to return using a single instruction. */ -+int -+avr32_use_return_insn (int iscond) -+{ -+ unsigned int func_type = avr32_current_func_type (); -+ unsigned long saved_int_regs; -+ -+ /* Never use a return instruction before reload has run. */ -+ if (!reload_completed) -+ return 0; -+ -+ /* Must adjust the stack for vararg functions. */ -+ if (crtl->args.info.uses_anonymous_args) -+ return 0; -+ -+ /* If there a stack adjstment. */ -+ if (get_frame_size ()) -+ return 0; -+ -+ saved_int_regs = avr32_compute_save_reg_mask (TRUE); -+ -+ /* Conditional returns can not be performed in one instruction if we need -+ to restore registers from the stack */ -+ if (iscond && saved_int_regs) -+ return 0; -+ -+ /* Conditional return can not be used for interrupt handlers. */ -+ if (iscond && IS_INTERRUPT (func_type)) -+ return 0; -+ -+ /* For interrupt handlers which needs to pop registers */ -+ if (saved_int_regs && IS_INTERRUPT (func_type)) -+ return 0; -+ -+ -+ /* If there are saved registers but the LR isn't saved, then we need two -+ instructions for the return. */ -+ if (saved_int_regs && !(saved_int_regs & (1 << ASM_REGNUM (LR_REGNUM)))) -+ return 0; -+ -+ -+ return 1; -+} -+ -+ -+/* Generate some function prologue info in the assembly file. */ -+void -+avr32_target_asm_function_prologue (FILE * f, HOST_WIDE_INT frame_size) -+{ -+ unsigned long func_type = avr32_current_func_type (); -+ -+ if (IS_NAKED (func_type)) -+ fprintf (f, -+ "\t# Function is naked: Prologue and epilogue provided by programmer\n"); -+ -+ if (IS_FLASHVAULT (func_type)) -+ { -+ fprintf(f, -+ "\t.ident \"flashvault\"\n\t# Function is defined with flashvault attribute.\n"); -+ } -+ -+ if (IS_FLASHVAULT_IMPL (func_type)) -+ { -+ fprintf(f, -+ "\t.ident \"flashvault\"\n\t# Function is defined with flashvault_impl attribute.\n"); -+ -+ /* Save information on flashvault function declaration. */ -+ tree fv_attribute = lookup_attribute ("flashvault_impl", DECL_ATTRIBUTES(current_function_decl)); -+ if (fv_attribute != NULL_TREE) -+ { -+ tree vector_tree = TREE_VALUE(fv_attribute); -+ if (vector_tree != NULL_TREE) -+ { -+ unsigned int vector_num; -+ const char * name; -+ -+ vector_num = (unsigned int) TREE_INT_CST_LOW (TREE_VALUE (vector_tree)); -+ -+ name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); -+ -+ flashvault_decl_list_add (vector_num, name); -+ } -+ } -+ } -+ -+ if (IS_INTERRUPT (func_type)) -+ { -+ switch (func_type) -+ { -+ case AVR32_FT_ISR_FULL: -+ fprintf (f, -+ "\t# Interrupt Function: Fully shadowed register file\n"); -+ break; -+ case AVR32_FT_ISR_HALF: -+ fprintf (f, -+ "\t# Interrupt Function: Half shadowed register file\n"); -+ break; -+ default: -+ case AVR32_FT_ISR_NONE: -+ fprintf (f, "\t# Interrupt Function: No shadowed register file\n"); -+ break; -+ } -+ } -+ -+ -+ fprintf (f, "\t# args = %i, frame = %li, pretend = %i\n", -+ crtl->args.size, frame_size, -+ crtl->args.pretend_args_size); -+ -+ fprintf (f, "\t# frame_needed = %i, leaf_function = %i\n", -+ frame_pointer_needed, current_function_is_leaf); -+ -+ fprintf (f, "\t# uses_anonymous_args = %i\n", -+ crtl->args.info.uses_anonymous_args); -+ -+ if (crtl->calls_eh_return) -+ fprintf (f, "\t# Calls __builtin_eh_return.\n"); -+ -+} -+ -+ -+/* Generate and emit an insn that we will recognize as a pushm or stm. -+ Unfortunately, since this insn does not reflect very well the actual -+ semantics of the operation, we need to annotate the insn for the benefit -+ of DWARF2 frame unwind information. */ -+ -+int avr32_convert_to_reglist16 (int reglist8_vect); -+ -+static rtx -+emit_multi_reg_push (int reglist, int usePUSHM) -+{ -+ rtx insn; -+ rtx dwarf; -+ rtx tmp; -+ rtx reg; -+ int i; -+ int nr_regs; -+ int index = 0; -+ -+ if (usePUSHM) -+ { -+ insn = emit_insn (gen_pushm (gen_rtx_CONST_INT (SImode, reglist))); -+ reglist = avr32_convert_to_reglist16 (reglist); -+ } -+ else -+ { -+ insn = emit_insn (gen_stm (stack_pointer_rtx, -+ gen_rtx_CONST_INT (SImode, reglist), -+ gen_rtx_CONST_INT (SImode, 1))); -+ } -+ -+ nr_regs = avr32_get_reg_mask_size (reglist) / 4; -+ dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1)); -+ -+ for (i = 15; i >= 0; i--) -+ { -+ if (reglist & (1 << i)) -+ { -+ reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (i)); -+ tmp = gen_rtx_SET (VOIDmode, -+ gen_rtx_MEM (SImode, -+ plus_constant (stack_pointer_rtx, -+ 4 * index)), reg); -+ RTX_FRAME_RELATED_P (tmp) = 1; -+ XVECEXP (dwarf, 0, 1 + index++) = tmp; -+ } -+ } -+ -+ tmp = gen_rtx_SET (SImode, -+ stack_pointer_rtx, -+ gen_rtx_PLUS (SImode, -+ stack_pointer_rtx, -+ GEN_INT (-4 * nr_regs))); -+ RTX_FRAME_RELATED_P (tmp) = 1; -+ XVECEXP (dwarf, 0, 0) = tmp; -+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf, -+ REG_NOTES (insn)); -+ return insn; -+} -+ -+rtx -+avr32_gen_load_multiple (rtx * regs, int count, rtx from, -+ int write_back, int in_struct_p, int scalar_p) -+{ -+ -+ rtx result; -+ int i = 0, j; -+ -+ result = -+ gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + (write_back ? 1 : 0))); -+ -+ if (write_back) -+ { -+ XVECEXP (result, 0, 0) -+ = gen_rtx_SET (GET_MODE (from), from, -+ plus_constant (from, count * 4)); -+ i = 1; -+ count++; -+ } -+ -+ -+ for (j = 0; i < count; i++, j++) -+ { -+ rtx unspec; -+ rtx mem = gen_rtx_MEM (SImode, plus_constant (from, j * 4)); -+ MEM_IN_STRUCT_P (mem) = in_struct_p; -+ MEM_SCALAR_P (mem) = scalar_p; -+ unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, mem), UNSPEC_LDM); -+ XVECEXP (result, 0, i) = gen_rtx_SET (VOIDmode, regs[j], unspec); -+ } -+ -+ return result; -+} -+ -+ -+rtx -+avr32_gen_store_multiple (rtx * regs, int count, rtx to, -+ int in_struct_p, int scalar_p) -+{ -+ rtx result; -+ int i = 0, j; -+ -+ result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count)); -+ -+ for (j = 0; i < count; i++, j++) -+ { -+ rtx mem = gen_rtx_MEM (SImode, plus_constant (to, j * 4)); -+ MEM_IN_STRUCT_P (mem) = in_struct_p; -+ MEM_SCALAR_P (mem) = scalar_p; -+ XVECEXP (result, 0, i) -+ = gen_rtx_SET (VOIDmode, mem, -+ gen_rtx_UNSPEC (VOIDmode, -+ gen_rtvec (1, regs[j]), -+ UNSPEC_STORE_MULTIPLE)); -+ } -+ -+ return result; -+} -+ -+ -+/* Move a block of memory if it is word aligned or we support unaligned -+ word memory accesses. The size must be maximum 64 bytes. */ -+int -+avr32_gen_movmemsi (rtx * operands) -+{ -+ HOST_WIDE_INT bytes_to_go; -+ rtx src, dst; -+ rtx st_src, st_dst; -+ int src_offset = 0, dst_offset = 0; -+ int block_size; -+ int dst_in_struct_p, src_in_struct_p; -+ int dst_scalar_p, src_scalar_p; -+ int unaligned; -+ -+ if (GET_CODE (operands[2]) != CONST_INT -+ || GET_CODE (operands[3]) != CONST_INT -+ || INTVAL (operands[2]) > 64 -+ || ((INTVAL (operands[3]) & 3) && !TARGET_UNALIGNED_WORD)) -+ return 0; -+ -+ unaligned = (INTVAL (operands[3]) & 3) != 0; -+ -+ block_size = 4; -+ -+ st_dst = XEXP (operands[0], 0); -+ st_src = XEXP (operands[1], 0); -+ -+ dst_in_struct_p = MEM_IN_STRUCT_P (operands[0]); -+ dst_scalar_p = MEM_SCALAR_P (operands[0]); -+ src_in_struct_p = MEM_IN_STRUCT_P (operands[1]); -+ src_scalar_p = MEM_SCALAR_P (operands[1]); -+ -+ dst = copy_to_mode_reg (SImode, st_dst); -+ src = copy_to_mode_reg (SImode, st_src); -+ -+ bytes_to_go = INTVAL (operands[2]); -+ -+ while (bytes_to_go) -+ { -+ enum machine_mode move_mode; -+ /* (Seems to be a problem with reloads for the movti pattern so this is -+ disabled until that problem is resolved) -+ UPDATE: Problem seems to be solved now.... */ -+ if (bytes_to_go >= GET_MODE_SIZE (TImode) && !unaligned -+ /* Do not emit ldm/stm for UC3 as ld.d/st.d is more optimal. */ -+ && !TARGET_ARCH_UC) -+ move_mode = TImode; -+ else if ((bytes_to_go >= GET_MODE_SIZE (DImode)) && !unaligned) -+ move_mode = DImode; -+ else if (bytes_to_go >= GET_MODE_SIZE (SImode)) -+ move_mode = SImode; -+ else -+ move_mode = QImode; -+ -+ { -+ rtx src_mem; -+ rtx dst_mem = gen_rtx_MEM (move_mode, -+ gen_rtx_PLUS (SImode, dst, -+ GEN_INT (dst_offset))); -+ dst_offset += GET_MODE_SIZE (move_mode); -+ if ( 0 /* This causes an error in GCC. Think there is -+ something wrong in the gcse pass which causes REQ_EQUIV notes -+ to be wrong so disabling it for now. */ -+ && move_mode == TImode -+ && INTVAL (operands[2]) > GET_MODE_SIZE (TImode) ) -+ { -+ src_mem = gen_rtx_MEM (move_mode, -+ gen_rtx_POST_INC (SImode, src)); -+ } -+ else -+ { -+ src_mem = gen_rtx_MEM (move_mode, -+ gen_rtx_PLUS (SImode, src, -+ GEN_INT (src_offset))); -+ src_offset += GET_MODE_SIZE (move_mode); -+ } -+ -+ bytes_to_go -= GET_MODE_SIZE (move_mode); -+ -+ MEM_IN_STRUCT_P (dst_mem) = dst_in_struct_p; -+ MEM_SCALAR_P (dst_mem) = dst_scalar_p; -+ -+ MEM_IN_STRUCT_P (src_mem) = src_in_struct_p; -+ MEM_SCALAR_P (src_mem) = src_scalar_p; -+ emit_move_insn (dst_mem, src_mem); -+ -+ } -+ } -+ -+ return 1; -+} -+ -+ -+/* Expand the prologue instruction. */ -+void -+avr32_expand_prologue (void) -+{ -+ rtx insn, dwarf; -+ unsigned long saved_reg_mask; -+ int reglist8 = 0; -+ -+ /* Naked functions do not have a prologue. */ -+ if (IS_NAKED (avr32_current_func_type ())) -+ return; -+ -+ saved_reg_mask = avr32_compute_save_reg_mask (TRUE); -+ -+ if (saved_reg_mask) -+ { -+ /* Must push used registers. */ -+ -+ /* Should we use POPM or LDM? */ -+ int usePUSHM = TRUE; -+ reglist8 = 0; -+ if (((saved_reg_mask & (1 << 0)) || -+ (saved_reg_mask & (1 << 1)) || -+ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3)))) -+ { -+ /* One of R0-R3 should at least be pushed. */ -+ if (((saved_reg_mask & (1 << 0)) && -+ (saved_reg_mask & (1 << 1)) && -+ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3)))) -+ { -+ /* All should be pushed. */ -+ reglist8 |= 0x01; -+ } -+ else -+ { -+ usePUSHM = FALSE; -+ } -+ } -+ -+ if (((saved_reg_mask & (1 << 4)) || -+ (saved_reg_mask & (1 << 5)) || -+ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7)))) -+ { -+ /* One of R4-R7 should at least be pushed */ -+ if (((saved_reg_mask & (1 << 4)) && -+ (saved_reg_mask & (1 << 5)) && -+ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7)))) -+ { -+ if (usePUSHM) -+ /* All should be pushed */ -+ reglist8 |= 0x02; -+ } -+ else -+ { -+ usePUSHM = FALSE; -+ } -+ } -+ -+ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9)))) -+ { -+ /* One of R8-R9 should at least be pushed. */ -+ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9)))) -+ { -+ if (usePUSHM) -+ /* All should be pushed. */ -+ reglist8 |= 0x04; -+ } -+ else -+ { -+ usePUSHM = FALSE; -+ } -+ } -+ -+ if (saved_reg_mask & (1 << 10)) -+ reglist8 |= 0x08; -+ -+ if (saved_reg_mask & (1 << 11)) -+ reglist8 |= 0x10; -+ -+ if (saved_reg_mask & (1 << 12)) -+ reglist8 |= 0x20; -+ -+ if ((saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM))) -+ && !IS_FLASHVAULT (avr32_current_func_type ())) -+ { -+ /* Push LR */ -+ reglist8 |= 0x40; -+ } -+ -+ if (usePUSHM) -+ { -+ insn = emit_multi_reg_push (reglist8, TRUE); -+ } -+ else -+ { -+ insn = emit_multi_reg_push (saved_reg_mask, FALSE); -+ } -+ RTX_FRAME_RELATED_P (insn) = 1; -+ -+ /* Prevent this instruction from being scheduled after any other -+ instructions. */ -+ emit_insn (gen_blockage ()); -+ } -+ -+ /* Set frame pointer */ -+ if (frame_pointer_needed) -+ { -+ insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx); -+ RTX_FRAME_RELATED_P (insn) = 1; -+ } -+ -+ if (get_frame_size () > 0) -+ { -+ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks21")) -+ { -+ insn = emit_insn (gen_rtx_SET (SImode, -+ stack_pointer_rtx, -+ gen_rtx_PLUS (SImode, -+ stack_pointer_rtx, -+ gen_rtx_CONST_INT -+ (SImode, -+ -get_frame_size -+ ())))); -+ RTX_FRAME_RELATED_P (insn) = 1; -+ } -+ else -+ { -+ /* Immediate is larger than k21 We must either check if we can use -+ one of the pushed reegisters as temporary storage or we must -+ make us a temp register by pushing a register to the stack. */ -+ rtx temp_reg, const_pool_entry, insn; -+ if (saved_reg_mask) -+ { -+ temp_reg = -+ gen_rtx_REG (SImode, -+ INTERNAL_REGNUM (avr32_get_saved_reg -+ (saved_reg_mask))); -+ } -+ else -+ { -+ temp_reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (7)); -+ emit_move_insn (gen_rtx_MEM -+ (SImode, -+ gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)), -+ temp_reg); -+ } -+ -+ const_pool_entry = -+ force_const_mem (SImode, -+ gen_rtx_CONST_INT (SImode, get_frame_size ())); -+ emit_move_insn (temp_reg, const_pool_entry); -+ -+ insn = emit_insn (gen_rtx_SET (SImode, -+ stack_pointer_rtx, -+ gen_rtx_MINUS (SImode, -+ stack_pointer_rtx, -+ temp_reg))); -+ -+ dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx, -+ gen_rtx_PLUS (SImode, stack_pointer_rtx, -+ GEN_INT (-get_frame_size ()))); -+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, -+ dwarf, REG_NOTES (insn)); -+ RTX_FRAME_RELATED_P (insn) = 1; -+ -+ if (!saved_reg_mask) -+ { -+ insn = -+ emit_move_insn (temp_reg, -+ gen_rtx_MEM (SImode, -+ gen_rtx_POST_INC (SImode, -+ gen_rtx_REG -+ (SImode, -+ 13)))); -+ } -+ -+ /* Mark the temp register as dead */ -+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, temp_reg, -+ REG_NOTES (insn)); -+ -+ -+ } -+ -+ /* Prevent the the stack adjustment to be scheduled after any -+ instructions using the frame pointer. */ -+ emit_insn (gen_blockage ()); -+ } -+ -+ /* Load GOT */ -+ if (flag_pic) -+ { -+ avr32_load_pic_register (); -+ -+ /* gcc does not know that load or call instructions might use the pic -+ register so it might schedule these instructions before the loading -+ of the pic register. To avoid this emit a barrier for now. TODO! -+ Find out a better way to let gcc know which instructions might use -+ the pic register. */ -+ emit_insn (gen_blockage ()); -+ } -+ return; -+} -+ -+ -+void -+avr32_set_return_address (rtx source, rtx scratch) -+{ -+ rtx addr; -+ unsigned long saved_regs; -+ -+ saved_regs = avr32_compute_save_reg_mask (TRUE); -+ -+ if (!(saved_regs & (1 << ASM_REGNUM (LR_REGNUM)))) -+ emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source); -+ else -+ { -+ if (frame_pointer_needed) -+ addr = gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM); -+ else -+ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks16")) -+ { -+ addr = plus_constant (stack_pointer_rtx, get_frame_size ()); -+ } -+ else -+ { -+ emit_insn (gen_movsi (scratch, GEN_INT (get_frame_size ()))); -+ addr = scratch; -+ } -+ emit_move_insn (gen_rtx_MEM (Pmode, addr), source); -+ } -+} -+ -+ -+/* Return the length of INSN. LENGTH is the initial length computed by -+ attributes in the machine-description file. */ -+int -+avr32_adjust_insn_length (rtx insn ATTRIBUTE_UNUSED, -+ int length ATTRIBUTE_UNUSED) -+{ -+ return length; -+} -+ -+ -+void -+avr32_output_return_instruction (int single_ret_inst ATTRIBUTE_UNUSED, -+ int iscond ATTRIBUTE_UNUSED, -+ rtx cond ATTRIBUTE_UNUSED, rtx r12_imm) -+{ -+ -+ unsigned long saved_reg_mask; -+ int insert_ret = TRUE; -+ int reglist8 = 0; -+ int stack_adjustment = get_frame_size (); -+ unsigned int func_type = avr32_current_func_type (); -+ FILE *f = asm_out_file; -+ -+ /* Naked functions does not have an epilogue */ -+ if (IS_NAKED (func_type)) -+ return; -+ -+ saved_reg_mask = avr32_compute_save_reg_mask (FALSE); -+ -+ /* Reset frame pointer */ -+ if (stack_adjustment > 0) -+ { -+ if (avr32_const_ok_for_constraint_p (stack_adjustment, 'I', "Is21")) -+ { -+ fprintf (f, "\tsub\tsp, %i # Reset Frame Pointer\n", -+ -stack_adjustment); -+ } -+ else -+ { -+ /* TODO! Is it safe to use r8 as scratch?? */ -+ fprintf (f, "\tmov\tr8, lo(%i) # Reset Frame Pointer\n", -+ -stack_adjustment); -+ fprintf (f, "\torh\tr8, hi(%i) # Reset Frame Pointer\n", -+ -stack_adjustment); -+ fprintf (f, "\tadd\tsp, r8 # Reset Frame Pointer\n"); -+ } -+ } -+ -+ if (saved_reg_mask) -+ { -+ /* Must pop used registers */ -+ -+ /* Should we use POPM or LDM? */ -+ int usePOPM = TRUE; -+ if (((saved_reg_mask & (1 << 0)) || -+ (saved_reg_mask & (1 << 1)) || -+ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3)))) -+ { -+ /* One of R0-R3 should at least be popped */ -+ if (((saved_reg_mask & (1 << 0)) && -+ (saved_reg_mask & (1 << 1)) && -+ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3)))) -+ { -+ /* All should be popped */ -+ reglist8 |= 0x01; -+ } -+ else -+ { -+ usePOPM = FALSE; -+ } -+ } -+ -+ if (((saved_reg_mask & (1 << 4)) || -+ (saved_reg_mask & (1 << 5)) || -+ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7)))) -+ { -+ /* One of R0-R3 should at least be popped */ -+ if (((saved_reg_mask & (1 << 4)) && -+ (saved_reg_mask & (1 << 5)) && -+ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7)))) -+ { -+ if (usePOPM) -+ /* All should be popped */ -+ reglist8 |= 0x02; -+ } -+ else -+ { -+ usePOPM = FALSE; -+ } -+ } -+ -+ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9)))) -+ { -+ /* One of R8-R9 should at least be pushed */ -+ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9)))) -+ { -+ if (usePOPM) -+ /* All should be pushed */ -+ reglist8 |= 0x04; -+ } -+ else -+ { -+ usePOPM = FALSE; -+ } -+ } -+ -+ if (saved_reg_mask & (1 << 10)) -+ reglist8 |= 0x08; -+ -+ if (saved_reg_mask & (1 << 11)) -+ reglist8 |= 0x10; -+ -+ if (saved_reg_mask & (1 << 12)) -+ reglist8 |= 0x20; -+ -+ if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM))) -+ /* Pop LR */ -+ reglist8 |= 0x40; -+ -+ if ((saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM))) -+ && !IS_FLASHVAULT_IMPL (func_type)) -+ /* Pop LR into PC. */ -+ reglist8 |= 0x80; -+ -+ if (usePOPM) -+ { -+ char reglist[64]; /* 64 bytes should be enough... */ -+ avr32_make_reglist8 (reglist8, (char *) reglist); -+ -+ if (reglist8 & 0x80) -+ /* This instruction is also a return */ -+ insert_ret = FALSE; -+ -+ if (r12_imm && !insert_ret) -+ fprintf (f, "\tpopm\t%s, r12=%li\n", reglist, INTVAL (r12_imm)); -+ else -+ fprintf (f, "\tpopm\t%s\n", reglist); -+ -+ } -+ else -+ { -+ char reglist[64]; /* 64 bytes should be enough... */ -+ avr32_make_reglist16 (saved_reg_mask, (char *) reglist); -+ if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM))) -+ /* This instruction is also a return */ -+ insert_ret = FALSE; -+ -+ if (r12_imm && !insert_ret) -+ fprintf (f, "\tldm\tsp++, %s, r12=%li\n", reglist, -+ INTVAL (r12_imm)); -+ else -+ fprintf (f, "\tldm\tsp++, %s\n", reglist); -+ -+ } -+ -+ } -+ -+ /* Stack adjustment for exception handler. */ -+ if (crtl->calls_eh_return) -+ fprintf (f, "\tadd\tsp, r%d\n", ASM_REGNUM (EH_RETURN_STACKADJ_REGNO)); -+ -+ -+ if (IS_INTERRUPT (func_type)) -+ { -+ fprintf (f, "\trete\n"); -+ } -+ else if (IS_FLASHVAULT (func_type)) -+ { -+ /* Normal return from Secure System call, increment SS_RAR before -+ returning. Use R8 as scratch. */ -+ fprintf (f, -+ "\t# Normal return from sscall.\n" -+ "\t# Increment SS_RAR before returning.\n" -+ "\t# Use R8 as scratch.\n" -+ "\tmfsr\tr8, 440\n" -+ "\tsub\tr8, -2\n" -+ "\tmtsr\t440, r8\n" -+ "\tretss\n"); -+ } -+ else if (insert_ret) -+ { -+ if (r12_imm) -+ fprintf (f, "\tretal\t%li\n", INTVAL (r12_imm)); -+ else -+ fprintf (f, "\tretal\tr12\n"); -+ } -+} -+ -+void -+avr32_make_reglist16 (int reglist16_vect, char *reglist16_string) -+{ -+ int i; -+ bool first_reg = true; -+ /* Make sure reglist16_string is empty. */ -+ reglist16_string[0] = '\0'; -+ -+ for (i = 0; i < 16; ++i) -+ { -+ if (reglist16_vect & (1 << i)) -+ { -+ first_reg == true ? first_reg = false : strcat(reglist16_string,", "); -+ strcat (reglist16_string, reg_names[INTERNAL_REGNUM (i)]); -+ } -+ } -+} -+ -+int -+avr32_convert_to_reglist16 (int reglist8_vect) -+{ -+ int reglist16_vect = 0; -+ if (reglist8_vect & 0x1) -+ reglist16_vect |= 0xF; -+ if (reglist8_vect & 0x2) -+ reglist16_vect |= 0xF0; -+ if (reglist8_vect & 0x4) -+ reglist16_vect |= 0x300; -+ if (reglist8_vect & 0x8) -+ reglist16_vect |= 0x400; -+ if (reglist8_vect & 0x10) -+ reglist16_vect |= 0x800; -+ if (reglist8_vect & 0x20) -+ reglist16_vect |= 0x1000; -+ if (reglist8_vect & 0x40) -+ reglist16_vect |= 0x4000; -+ if (reglist8_vect & 0x80) -+ reglist16_vect |= 0x8000; -+ -+ return reglist16_vect; -+} -+ -+void -+avr32_make_reglist8 (int reglist8_vect, char *reglist8_string) -+{ -+ /* Make sure reglist8_string is empty. */ -+ reglist8_string[0] = '\0'; -+ -+ if (reglist8_vect & 0x1) -+ strcpy (reglist8_string, "r0-r3"); -+ if (reglist8_vect & 0x2) -+ strlen (reglist8_string) ? strcat (reglist8_string, ", r4-r7") : -+ strcpy (reglist8_string, "r4-r7"); -+ if (reglist8_vect & 0x4) -+ strlen (reglist8_string) ? strcat (reglist8_string, ", r8-r9") : -+ strcpy (reglist8_string, "r8-r9"); -+ if (reglist8_vect & 0x8) -+ strlen (reglist8_string) ? strcat (reglist8_string, ", r10") : -+ strcpy (reglist8_string, "r10"); -+ if (reglist8_vect & 0x10) -+ strlen (reglist8_string) ? strcat (reglist8_string, ", r11") : -+ strcpy (reglist8_string, "r11"); -+ if (reglist8_vect & 0x20) -+ strlen (reglist8_string) ? strcat (reglist8_string, ", r12") : -+ strcpy (reglist8_string, "r12"); -+ if (reglist8_vect & 0x40) -+ strlen (reglist8_string) ? strcat (reglist8_string, ", lr") : -+ strcpy (reglist8_string, "lr"); -+ if (reglist8_vect & 0x80) -+ strlen (reglist8_string) ? strcat (reglist8_string, ", pc") : -+ strcpy (reglist8_string, "pc"); -+} -+ -+ -+int -+avr32_eh_return_data_regno (int n) -+{ -+ if (n >= 0 && n <= 3) -+ return 8 + n; -+ else -+ return INVALID_REGNUM; -+} -+ -+ -+/* Compute the distance from register FROM to register TO. -+ These can be the arg pointer, the frame pointer or -+ the stack pointer. -+ Typical stack layout looks like this: -+ -+ old stack pointer -> | | -+ ---- -+ | | \ -+ | | saved arguments for -+ | | vararg functions -+ arg_pointer -> | | / -+ -- -+ | | \ -+ | | call saved -+ | | registers -+ | | / -+ frame ptr -> -- -+ | | \ -+ | | local -+ | | variables -+ stack ptr --> | | / -+ -- -+ | | \ -+ | | outgoing -+ | | arguments -+ | | / -+ -- -+ -+ For a given funciton some or all of these stack compomnents -+ may not be needed, giving rise to the possibility of -+ eliminating some of the registers. -+ -+ The values returned by this function must reflect the behaviour -+ of avr32_expand_prologue() and avr32_compute_save_reg_mask(). -+ -+ The sign of the number returned reflects the direction of stack -+ growth, so the values are positive for all eliminations except -+ from the soft frame pointer to the hard frame pointer. */ -+int -+avr32_initial_elimination_offset (int from, int to) -+{ -+ int i; -+ int call_saved_regs = 0; -+ unsigned long saved_reg_mask; -+ unsigned int local_vars = get_frame_size (); -+ -+ saved_reg_mask = avr32_compute_save_reg_mask (TRUE); -+ -+ for (i = 0; i < 16; ++i) -+ { -+ if (saved_reg_mask & (1 << i)) -+ call_saved_regs += 4; -+ } -+ -+ switch (from) -+ { -+ case ARG_POINTER_REGNUM: -+ switch (to) -+ { -+ case STACK_POINTER_REGNUM: -+ return call_saved_regs + local_vars; -+ case FRAME_POINTER_REGNUM: -+ return call_saved_regs; -+ default: -+ abort (); -+ } -+ case FRAME_POINTER_REGNUM: -+ switch (to) -+ { -+ case STACK_POINTER_REGNUM: -+ return local_vars; -+ default: -+ abort (); -+ } -+ default: -+ abort (); -+ } -+} -+ -+ -+/* -+ Returns a rtx used when passing the next argument to a function. -+ avr32_init_cumulative_args() and avr32_function_arg_advance() sets which -+ register to use. -+*/ -+rtx -+avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, -+ tree type, int named) -+{ -+ int index = -1; -+ //unsigned long func_type = avr32_current_func_type (); -+ //int last_reg_index = (IS_FLASHVAULT(func_type) || IS_FLASHVAULT_IMPL(func_type) || cum->flashvault_func ? LAST_CUM_REG_INDEX - 1 : LAST_CUM_REG_INDEX); -+ int last_reg_index = (cum->flashvault_func ? LAST_CUM_REG_INDEX - 1 : LAST_CUM_REG_INDEX); -+ -+ HOST_WIDE_INT arg_size, arg_rsize; -+ if (type) -+ { -+ arg_size = int_size_in_bytes (type); -+ } -+ else -+ { -+ arg_size = GET_MODE_SIZE (mode); -+ } -+ arg_rsize = PUSH_ROUNDING (arg_size); -+ -+ /* -+ The last time this macro is called, it is called with mode == VOIDmode, -+ and its result is passed to the call or call_value pattern as operands 2 -+ and 3 respectively. */ -+ if (mode == VOIDmode) -+ { -+ return gen_rtx_CONST_INT (SImode, 22); /* ToDo: fixme. */ -+ } -+ -+ if ((*targetm.calls.must_pass_in_stack) (mode, type) || !named) -+ { -+ return NULL_RTX; -+ } -+ -+ if (arg_rsize == 8) -+ { -+ /* use r11:r10 or r9:r8. */ -+ if (!(GET_USED_INDEX (cum, 1) || GET_USED_INDEX (cum, 2))) -+ index = 1; -+ else if ((last_reg_index == 4) && -+ !(GET_USED_INDEX (cum, 3) || GET_USED_INDEX (cum, 4))) -+ index = 3; -+ else -+ index = -1; -+ } -+ else if (arg_rsize == 4) -+ { /* Use first available register */ -+ index = 0; -+ while (index <= last_reg_index && GET_USED_INDEX (cum, index)) -+ index++; -+ if (index > last_reg_index) -+ index = -1; -+ } -+ -+ SET_REG_INDEX (cum, index); -+ -+ if (GET_REG_INDEX (cum) >= 0) -+ return gen_rtx_REG (mode, avr32_function_arg_reglist[GET_REG_INDEX (cum)]); -+ -+ return NULL_RTX; -+} -+ -+ -+/* Set the register used for passing the first argument to a function. */ -+void -+avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, -+ tree fntype ATTRIBUTE_UNUSED, -+ rtx libname ATTRIBUTE_UNUSED, -+ tree fndecl) -+{ -+ /* Set all registers as unused. */ -+ SET_INDEXES_UNUSED (cum); -+ -+ /* Reset uses_anonymous_args */ -+ cum->uses_anonymous_args = 0; -+ -+ /* Reset size of stack pushed arguments */ -+ cum->stack_pushed_args_size = 0; -+ -+ cum->flashvault_func = (fndecl && (has_attribute_p (fndecl,"flashvault") || has_attribute_p (fndecl,"flashvault_impl"))); -+} -+ -+ -+/* -+ Set register used for passing the next argument to a function. Only the -+ Scratch Registers are used. -+ -+ number name -+ 15 r15 PC -+ 14 r14 LR -+ 13 r13 _SP_________ -+ FIRST_CUM_REG 12 r12 _||_ -+ 10 r11 || -+ 11 r10 _||_ Scratch Registers -+ 8 r9 || -+ LAST_SCRATCH_REG 9 r8 _\/_________ -+ 6 r7 /\ -+ 7 r6 || -+ 4 r5 || -+ 5 r4 || -+ 2 r3 || -+ 3 r2 || -+ 0 r1 || -+ 1 r0 _||_________ -+ -+*/ -+void -+avr32_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode, -+ tree type, int named ATTRIBUTE_UNUSED) -+{ -+ HOST_WIDE_INT arg_size, arg_rsize; -+ -+ if (type) -+ { -+ arg_size = int_size_in_bytes (type); -+ } -+ else -+ { -+ arg_size = GET_MODE_SIZE (mode); -+ } -+ arg_rsize = PUSH_ROUNDING (arg_size); -+ -+ /* If the argument had to be passed in stack, no register is used. */ -+ if ((*targetm.calls.must_pass_in_stack) (mode, type)) -+ { -+ cum->stack_pushed_args_size += PUSH_ROUNDING (int_size_in_bytes (type)); -+ return; -+ } -+ -+ /* Mark the used registers as "used". */ -+ if (GET_REG_INDEX (cum) >= 0) -+ { -+ SET_USED_INDEX (cum, GET_REG_INDEX (cum)); -+ if (arg_rsize == 8) -+ { -+ SET_USED_INDEX (cum, (GET_REG_INDEX (cum) + 1)); -+ } -+ } -+ else -+ { -+ /* Had to use stack */ -+ cum->stack_pushed_args_size += arg_rsize; -+ } -+} -+ -+ -+/* -+ Defines witch direction to go to find the next register to use if the -+ argument is larger then one register or for arguments shorter than an -+ int which is not promoted, such as the last part of structures with -+ size not a multiple of 4. */ -+enum direction -+avr32_function_arg_padding (enum machine_mode mode ATTRIBUTE_UNUSED, -+ tree type) -+{ -+ /* Pad upward for all aggregates except byte and halfword sized aggregates -+ which can be passed in registers. */ -+ if (type -+ && AGGREGATE_TYPE_P (type) -+ && (int_size_in_bytes (type) != 1) -+ && !((int_size_in_bytes (type) == 2) -+ && TYPE_ALIGN_UNIT (type) >= 2) -+ && (int_size_in_bytes (type) & 0x3)) -+ { -+ return upward; -+ } -+ -+ return downward; -+} -+ -+ -+/* Return a rtx used for the return value from a function call. */ -+rtx -+avr32_function_value (tree type, tree func, bool outgoing ATTRIBUTE_UNUSED) -+{ -+ if (avr32_return_in_memory (type, func)) -+ return NULL_RTX; -+ -+ if (int_size_in_bytes (type) <= 4) -+ { -+ enum machine_mode mode = TYPE_MODE (type); -+ int unsignedp = 0; -+ PROMOTE_FUNCTION_MODE (mode, unsignedp, type); -+ return gen_rtx_REG (mode, RET_REGISTER); -+ } -+ else if (int_size_in_bytes (type) <= 8) -+ return gen_rtx_REG (TYPE_MODE (type), INTERNAL_REGNUM (11)); -+ -+ return NULL_RTX; -+} -+ -+ -+/* Return a rtx used for the return value from a library function call. */ -+rtx -+avr32_libcall_value (enum machine_mode mode) -+{ -+ -+ if (GET_MODE_SIZE (mode) <= 4) -+ return gen_rtx_REG (mode, RET_REGISTER); -+ else if (GET_MODE_SIZE (mode) <= 8) -+ return gen_rtx_REG (mode, INTERNAL_REGNUM (11)); -+ else -+ return NULL_RTX; -+} -+ -+ -+/* Return TRUE if X references a SYMBOL_REF. */ -+int -+symbol_mentioned_p (rtx x) -+{ -+ const char *fmt; -+ int i; -+ -+ if (GET_CODE (x) == SYMBOL_REF) -+ return 1; -+ -+ fmt = GET_RTX_FORMAT (GET_CODE (x)); -+ -+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) -+ { -+ if (fmt[i] == 'E') -+ { -+ int j; -+ -+ for (j = XVECLEN (x, i) - 1; j >= 0; j--) -+ if (symbol_mentioned_p (XVECEXP (x, i, j))) -+ return 1; -+ } -+ else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i))) -+ return 1; -+ } -+ -+ return 0; -+} -+ -+ -+/* Return TRUE if X references a LABEL_REF. */ -+int -+label_mentioned_p (rtx x) -+{ -+ const char *fmt; -+ int i; -+ -+ if (GET_CODE (x) == LABEL_REF) -+ return 1; -+ -+ fmt = GET_RTX_FORMAT (GET_CODE (x)); -+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) -+ { -+ if (fmt[i] == 'E') -+ { -+ int j; -+ -+ for (j = XVECLEN (x, i) - 1; j >= 0; j--) -+ if (label_mentioned_p (XVECEXP (x, i, j))) -+ return 1; -+ } -+ else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i))) -+ return 1; -+ } -+ -+ return 0; -+} -+ -+ -+/* Return TRUE if X contains a MEM expression. */ -+int -+mem_mentioned_p (rtx x) -+{ -+ const char *fmt; -+ int i; -+ -+ if (MEM_P (x)) -+ return 1; -+ -+ fmt = GET_RTX_FORMAT (GET_CODE (x)); -+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) -+ { -+ if (fmt[i] == 'E') -+ { -+ int j; -+ -+ for (j = XVECLEN (x, i) - 1; j >= 0; j--) -+ if (mem_mentioned_p (XVECEXP (x, i, j))) -+ return 1; -+ } -+ else if (fmt[i] == 'e' && mem_mentioned_p (XEXP (x, i))) -+ return 1; -+ } -+ -+ return 0; -+} -+ -+ -+int -+avr32_legitimate_pic_operand_p (rtx x) -+{ -+ -+ /* We can't have const, this must be broken down to a symbol. */ -+ if (GET_CODE (x) == CONST) -+ return FALSE; -+ -+ /* Can't access symbols or labels via the constant pool either */ -+ if ((GET_CODE (x) == SYMBOL_REF -+ && CONSTANT_POOL_ADDRESS_P (x) -+ && (symbol_mentioned_p (get_pool_constant (x)) -+ || label_mentioned_p (get_pool_constant (x))))) -+ return FALSE; -+ -+ return TRUE; -+} -+ -+ -+rtx -+legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED, -+ rtx reg) -+{ -+ -+ if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF) -+ { -+ int subregs = 0; -+ -+ if (reg == 0) -+ { -+ if (!can_create_pseudo_p ()) -+ abort (); -+ else -+ reg = gen_reg_rtx (Pmode); -+ -+ subregs = 1; -+ } -+ -+ emit_move_insn (reg, orig); -+ -+ /* Only set current function as using pic offset table if flag_pic is -+ set. This is because this function is also used if -+ TARGET_HAS_ASM_ADDR_PSEUDOS is set. */ -+ if (flag_pic) -+ crtl->uses_pic_offset_table = 1; -+ -+ /* Put a REG_EQUAL note on this insn, so that it can be optimized by -+ loop. */ -+ return reg; -+ } -+ else if (GET_CODE (orig) == CONST) -+ { -+ rtx base, offset; -+ -+ if (flag_pic -+ && GET_CODE (XEXP (orig, 0)) == PLUS -+ && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) -+ return orig; -+ -+ if (reg == 0) -+ { -+ if (!can_create_pseudo_p ()) -+ abort (); -+ else -+ reg = gen_reg_rtx (Pmode); -+ } -+ -+ if (GET_CODE (XEXP (orig, 0)) == PLUS) -+ { -+ base = -+ legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); -+ offset = -+ legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, -+ base == reg ? 0 : reg); -+ } -+ else -+ abort (); -+ -+ if (GET_CODE (offset) == CONST_INT) -+ { -+ /* The base register doesn't really matter, we only want to test -+ the index for the appropriate mode. */ -+ if (!avr32_const_ok_for_constraint_p (INTVAL (offset), 'I', "Is21")) -+ { -+ if (can_create_pseudo_p ()) -+ offset = force_reg (Pmode, offset); -+ else -+ abort (); -+ } -+ -+ if (GET_CODE (offset) == CONST_INT) -+ return plus_constant (base, INTVAL (offset)); -+ } -+ -+ return gen_rtx_PLUS (Pmode, base, offset); -+ } -+ -+ return orig; -+} -+ -+ -+/* Generate code to load the PIC register. */ -+void -+avr32_load_pic_register (void) -+{ -+ rtx l1, pic_tmp; -+ rtx global_offset_table; -+ -+ if ((crtl->uses_pic_offset_table == 0) || TARGET_NO_INIT_GOT) -+ return; -+ -+ if (!flag_pic) -+ abort (); -+ -+ l1 = gen_label_rtx (); -+ -+ global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); -+ pic_tmp = -+ gen_rtx_CONST (Pmode, -+ gen_rtx_MINUS (SImode, gen_rtx_LABEL_REF (Pmode, l1), -+ global_offset_table)); -+ emit_insn (gen_pic_load_addr -+ (pic_offset_table_rtx, force_const_mem (SImode, pic_tmp))); -+ emit_insn (gen_pic_compute_got_from_pc (pic_offset_table_rtx, l1)); -+ -+ /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp -+ can cause life info to screw up. */ -+ emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx)); -+} -+ -+ -+/* This hook should return true if values of type type are returned at the most -+ significant end of a register (in other words, if they are padded at the -+ least significant end). You can assume that type is returned in a register; -+ the caller is required to check this. Note that the register provided by -+ FUNCTION_VALUE must be able to hold the complete return value. For example, -+ if a 1-, 2- or 3-byte structure is returned at the most significant end of a -+ 4-byte register, FUNCTION_VALUE should provide an SImode rtx. */ -+bool -+avr32_return_in_msb (tree type ATTRIBUTE_UNUSED) -+{ -+ /* if ( AGGREGATE_TYPE_P (type) ) if ((int_size_in_bytes(type) == 1) || -+ ((int_size_in_bytes(type) == 2) && TYPE_ALIGN_UNIT(type) >= 2)) return -+ false; else return true; */ -+ -+ return false; -+} -+ -+ -+/* -+ Returns one if a certain function value is going to be returned in memory -+ and zero if it is going to be returned in a register. -+ -+ BLKmode and all other modes that is larger than 64 bits are returned in -+ memory. -+*/ -+bool -+avr32_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED) -+{ -+ if (TYPE_MODE (type) == VOIDmode) -+ return false; -+ -+ if (int_size_in_bytes (type) > (2 * UNITS_PER_WORD) -+ || int_size_in_bytes (type) == -1) -+ { -+ return true; -+ } -+ -+ /* If we have an aggregate then use the same mechanism as when checking if -+ it should be passed on the stack. */ -+ if (type -+ && AGGREGATE_TYPE_P (type) -+ && (*targetm.calls.must_pass_in_stack) (TYPE_MODE (type), type)) -+ return true; -+ -+ return false; -+} -+ -+ -+/* Output the constant part of the trampoline. -+ lddpc r0, pc[0x8:e] ; load static chain register -+ lddpc pc, pc[0x8:e] ; jump to subrutine -+ .long 0 ; Address to static chain, -+ ; filled in by avr32_initialize_trampoline() -+ .long 0 ; Address to subrutine, -+ ; filled in by avr32_initialize_trampoline() -+*/ -+void -+avr32_trampoline_template (FILE * file) -+{ -+ fprintf (file, "\tlddpc r0, pc[8]\n"); -+ fprintf (file, "\tlddpc pc, pc[8]\n"); -+ /* make room for the address of the static chain. */ -+ fprintf (file, "\t.long\t0\n"); -+ /* make room for the address to the subrutine. */ -+ fprintf (file, "\t.long\t0\n"); -+} -+ -+ -+/* Initialize the variable parts of a trampoline. */ -+void -+avr32_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain) -+{ -+ /* Store the address to the static chain. */ -+ emit_move_insn (gen_rtx_MEM -+ (SImode, plus_constant (addr, TRAMPOLINE_SIZE - 4)), -+ static_chain); -+ -+ /* Store the address to the function. */ -+ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, TRAMPOLINE_SIZE)), -+ fnaddr); -+ -+ emit_insn (gen_cache (gen_rtx_REG (SImode, 13), -+ gen_rtx_CONST_INT (SImode, -+ AVR32_CACHE_INVALIDATE_ICACHE))); -+} -+ -+ -+/* Return nonzero if X is valid as an addressing register. */ -+int -+avr32_address_register_rtx_p (rtx x, int strict_p) -+{ -+ int regno; -+ -+ if (!register_operand(x, GET_MODE(x))) -+ return 0; -+ -+ /* If strict we require the register to be a hard register. */ -+ if (strict_p -+ && !REG_P(x)) -+ return 0; -+ -+ regno = REGNO (x); -+ -+ if (strict_p) -+ return REGNO_OK_FOR_BASE_P (regno); -+ -+ return (regno <= LAST_REGNUM || regno >= FIRST_PSEUDO_REGISTER); -+} -+ -+ -+/* Return nonzero if INDEX is valid for an address index operand. */ -+int -+avr32_legitimate_index_p (enum machine_mode mode, rtx index, int strict_p) -+{ -+ enum rtx_code code = GET_CODE (index); -+ -+ if (GET_MODE_SIZE (mode) > 8) -+ return 0; -+ -+ /* Standard coprocessor addressing modes. */ -+ if (code == CONST_INT) -+ { -+ return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ks16"); -+ } -+ -+ if (avr32_address_register_rtx_p (index, strict_p)) -+ return 1; -+ -+ if (code == MULT) -+ { -+ rtx xiop0 = XEXP (index, 0); -+ rtx xiop1 = XEXP (index, 1); -+ return ((avr32_address_register_rtx_p (xiop0, strict_p) -+ && power_of_two_operand (xiop1, SImode) -+ && (INTVAL (xiop1) <= 8)) -+ || (avr32_address_register_rtx_p (xiop1, strict_p) -+ && power_of_two_operand (xiop0, SImode) -+ && (INTVAL (xiop0) <= 8))); -+ } -+ else if (code == ASHIFT) -+ { -+ rtx op = XEXP (index, 1); -+ -+ return (avr32_address_register_rtx_p (XEXP (index, 0), strict_p) -+ && GET_CODE (op) == CONST_INT -+ && INTVAL (op) > 0 && INTVAL (op) <= 3); -+ } -+ -+ return 0; -+} -+ -+ -+/* -+ Used in the GO_IF_LEGITIMATE_ADDRESS macro. Returns a nonzero value if -+ the RTX x is a legitimate memory address. -+ -+ Returns NO_REGS if the address is not legatime, GENERAL_REGS or ALL_REGS -+ if it is. -+*/ -+ -+ -+/* Forward declaration */ -+int is_minipool_label (rtx label); -+ -+int -+avr32_legitimate_address (enum machine_mode mode, rtx x, int strict) -+{ -+ -+ switch (GET_CODE (x)) -+ { -+ case REG: -+ return avr32_address_register_rtx_p (x, strict); -+ case CONST_INT: -+ return ((mode==SImode) && TARGET_RMW_ADDRESSABLE_DATA -+ && CONST_OK_FOR_CONSTRAINT_P(INTVAL(x), 'K', "Ks17")); -+ case CONST: -+ { -+ rtx label = avr32_find_symbol (x); -+ if (label -+ && -+ (/* -+ If we enable (const (plus (symbol_ref ...))) type constant -+ pool entries we must add support for it in the predicates and -+ in the minipool generation in avr32_reorg(). -+ (CONSTANT_POOL_ADDRESS_P (label) -+ && !(flag_pic -+ && (symbol_mentioned_p (get_pool_constant (label)) -+ || label_mentioned_p (get_pool_constant (label))))) -+ ||*/ -+ ((GET_CODE (label) == LABEL_REF) -+ && GET_CODE (XEXP (label, 0)) == CODE_LABEL -+ && is_minipool_label (XEXP (label, 0))) -+ /*|| ((GET_CODE (label) == SYMBOL_REF) -+ && mode == SImode -+ && SYMBOL_REF_RMW_ADDR(label))*/)) -+ { -+ return TRUE; -+ } -+ } -+ break; -+ case LABEL_REF: -+ if (GET_CODE (XEXP (x, 0)) == CODE_LABEL -+ && is_minipool_label (XEXP (x, 0))) -+ { -+ return TRUE; -+ } -+ break; -+ case SYMBOL_REF: -+ { -+ if (CONSTANT_POOL_ADDRESS_P (x) -+ && !(flag_pic -+ && (symbol_mentioned_p (get_pool_constant (x)) -+ || label_mentioned_p (get_pool_constant (x))))) -+ return TRUE; -+ else if (SYMBOL_REF_RCALL_FUNCTION_P (x) -+ || (mode == SImode -+ && SYMBOL_REF_RMW_ADDR (x))) -+ return TRUE; -+ break; -+ } -+ case PRE_DEC: /* (pre_dec (...)) */ -+ case POST_INC: /* (post_inc (...)) */ -+ return avr32_address_register_rtx_p (XEXP (x, 0), strict); -+ case PLUS: /* (plus (...) (...)) */ -+ { -+ rtx xop0 = XEXP (x, 0); -+ rtx xop1 = XEXP (x, 1); -+ -+ return ((avr32_address_register_rtx_p (xop0, strict) -+ && avr32_legitimate_index_p (mode, xop1, strict)) -+ || (avr32_address_register_rtx_p (xop1, strict) -+ && avr32_legitimate_index_p (mode, xop0, strict))); -+ } -+ default: -+ break; -+ } -+ -+ return FALSE; -+} -+ -+ -+int -+avr32_const_ok_for_move (HOST_WIDE_INT c) -+{ -+ if ( TARGET_V2_INSNS ) -+ return ( avr32_const_ok_for_constraint_p (c, 'K', "Ks21") -+ /* movh instruction */ -+ || avr32_hi16_immediate_operand (GEN_INT(c), VOIDmode) ); -+ else -+ return avr32_const_ok_for_constraint_p (c, 'K', "Ks21"); -+} -+ -+ -+int -+avr32_const_double_immediate (rtx value) -+{ -+ HOST_WIDE_INT hi, lo; -+ -+ if (GET_CODE (value) != CONST_DOUBLE) -+ return FALSE; -+ -+ if (SCALAR_FLOAT_MODE_P (GET_MODE (value))) -+ { -+ HOST_WIDE_INT target_float[2]; -+ hi = lo = 0; -+ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (value), -+ GET_MODE (value)); -+ lo = target_float[0]; -+ hi = target_float[1]; -+ } -+ else -+ { -+ hi = CONST_DOUBLE_HIGH (value); -+ lo = CONST_DOUBLE_LOW (value); -+ } -+ -+ if (avr32_const_ok_for_constraint_p (lo, 'K', "Ks21") -+ && (GET_MODE (value) == SFmode -+ || avr32_const_ok_for_constraint_p (hi, 'K', "Ks21"))) -+ { -+ return TRUE; -+ } -+ -+ return FALSE; -+} -+ -+ -+int -+avr32_legitimate_constant_p (rtx x) -+{ -+ switch (GET_CODE (x)) -+ { -+ case CONST_INT: -+ /* Check if we should put large immediate into constant pool -+ or load them directly with mov/orh.*/ -+ if (!avr32_imm_in_const_pool) -+ return 1; -+ -+ return avr32_const_ok_for_move (INTVAL (x)); -+ case CONST_DOUBLE: -+ /* Check if we should put large immediate into constant pool -+ or load them directly with mov/orh.*/ -+ if (!avr32_imm_in_const_pool) -+ return 1; -+ -+ if (GET_MODE (x) == SFmode -+ || GET_MODE (x) == DFmode || GET_MODE (x) == DImode) -+ return avr32_const_double_immediate (x); -+ else -+ return 0; -+ case LABEL_REF: -+ case SYMBOL_REF: -+ return avr32_find_symbol (x) && (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS); -+ case CONST: -+ case HIGH: -+ case CONST_VECTOR: -+ return 0; -+ default: -+ printf ("%s():\n", __FUNCTION__); -+ debug_rtx (x); -+ return 1; -+ } -+} -+ -+ -+/* Strip any special encoding from labels */ -+const char * -+avr32_strip_name_encoding (const char *name) -+{ -+ const char *stripped = name; -+ -+ while (1) -+ { -+ switch (stripped[0]) -+ { -+ case '#': -+ stripped = strchr (name + 1, '#') + 1; -+ break; -+ case '*': -+ stripped = &stripped[1]; -+ break; -+ default: -+ return stripped; -+ } -+ } -+} -+ -+ -+ -+/* Do anything needed before RTL is emitted for each function. */ -+static struct machine_function * -+avr32_init_machine_status (void) -+{ -+ struct machine_function *machine; -+ machine = -+ (machine_function *) ggc_alloc_cleared (sizeof (machine_function)); -+ -+#if AVR32_FT_UNKNOWN != 0 -+ machine->func_type = AVR32_FT_UNKNOWN; -+#endif -+ -+ machine->minipool_label_head = 0; -+ machine->minipool_label_tail = 0; -+ machine->ifcvt_after_reload = 0; -+ return machine; -+} -+ -+ -+void -+avr32_init_expanders (void) -+{ -+ /* Arrange to initialize and mark the machine per-function status. */ -+ init_machine_status = avr32_init_machine_status; -+} -+ -+ -+/* Return an RTX indicating where the return address to the -+ calling function can be found. */ -+rtx -+avr32_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) -+{ -+ if (count != 0) -+ return NULL_RTX; -+ -+ return get_hard_reg_initial_val (Pmode, LR_REGNUM); -+} -+ -+ -+void -+avr32_encode_section_info (tree decl, rtx rtl, int first) -+{ -+ default_encode_section_info(decl, rtl, first); -+ -+ if ( TREE_CODE (decl) == VAR_DECL -+ && (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF) -+ && (lookup_attribute ("rmw_addressable", DECL_ATTRIBUTES (decl)) -+ || TARGET_RMW_ADDRESSABLE_DATA) ){ -+ if ( !TARGET_RMW || flag_pic ) -+ return; -+ // { -+ // warning ("Using RMW addressable data with an arch that does not support RMW instructions."); -+ // return; -+ // } -+ // -+ //if ( flag_pic ) -+ // { -+ // warning ("Using RMW addressable data with together with -fpic switch. Can not use RMW instruction when compiling with -fpic."); -+ // return; -+ // } -+ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT); -+ } -+} -+ -+ -+void -+avr32_asm_output_label (FILE * stream, const char *name) -+{ -+ name = avr32_strip_name_encoding (name); -+ -+ /* Print the label. */ -+ assemble_name (stream, name); -+ fprintf (stream, ":\n"); -+} -+ -+ -+void -+avr32_asm_weaken_label (FILE * stream, const char *name) -+{ -+ fprintf (stream, "\t.weak "); -+ assemble_name (stream, name); -+ fprintf (stream, "\n"); -+} -+ -+ -+/* -+ Checks if a labelref is equal to a reserved word in the assembler. If it is, -+ insert a '_' before the label name. -+*/ -+void -+avr32_asm_output_labelref (FILE * stream, const char *name) -+{ -+ int verbatim = FALSE; -+ const char *stripped = name; -+ int strip_finished = FALSE; -+ -+ while (!strip_finished) -+ { -+ switch (stripped[0]) -+ { -+ case '#': -+ stripped = strchr (name + 1, '#') + 1; -+ break; -+ case '*': -+ stripped = &stripped[1]; -+ verbatim = TRUE; -+ break; -+ default: -+ strip_finished = TRUE; -+ break; -+ } -+ } -+ -+ if (verbatim) -+ fputs (stripped, stream); -+ else -+ asm_fprintf (stream, "%U%s", stripped); -+} -+ -+ -+/* -+ Check if the comparison in compare_exp is redundant -+ for the condition given in next_cond given that the -+ needed flags are already set by an earlier instruction. -+ Uses cc_prev_status to check this. -+ -+ Returns NULL_RTX if the compare is not redundant -+ or the new condition to use in the conditional -+ instruction if the compare is redundant. -+*/ -+static rtx -+is_compare_redundant (rtx compare_exp, rtx next_cond) -+{ -+ int z_flag_valid = FALSE; -+ int n_flag_valid = FALSE; -+ rtx new_cond; -+ -+ if (GET_CODE (compare_exp) != COMPARE -+ && GET_CODE (compare_exp) != AND) -+ return NULL_RTX; -+ -+ -+ if (rtx_equal_p (cc_prev_status.mdep.value, compare_exp)) -+ { -+ /* cc0 already contains the correct comparison -> delete cmp insn */ -+ return next_cond; -+ } -+ -+ if (GET_MODE (compare_exp) != SImode) -+ return NULL_RTX; -+ -+ switch (cc_prev_status.mdep.flags) -+ { -+ case CC_SET_VNCZ: -+ case CC_SET_NCZ: -+ n_flag_valid = TRUE; -+ case CC_SET_CZ: -+ case CC_SET_Z: -+ z_flag_valid = TRUE; -+ } -+ -+ if (cc_prev_status.mdep.value -+ && GET_CODE (compare_exp) == COMPARE -+ && REG_P (XEXP (compare_exp, 0)) -+ && REGNO (XEXP (compare_exp, 0)) == REGNO (cc_prev_status.mdep.value) -+ && GET_CODE (XEXP (compare_exp, 1)) == CONST_INT -+ && next_cond != NULL_RTX) -+ { -+ if (INTVAL (XEXP (compare_exp, 1)) == 0 -+ && z_flag_valid -+ && (GET_CODE (next_cond) == EQ || GET_CODE (next_cond) == NE)) -+ /* We can skip comparison Z flag is already reflecting ops[0] */ -+ return next_cond; -+ else if (n_flag_valid -+ && ((INTVAL (XEXP (compare_exp, 1)) == 0 -+ && (GET_CODE (next_cond) == GE -+ || GET_CODE (next_cond) == LT)) -+ || (INTVAL (XEXP (compare_exp, 1)) == -1 -+ && (GET_CODE (next_cond) == GT -+ || GET_CODE (next_cond) == LE)))) -+ { -+ /* We can skip comparison N flag is already reflecting ops[0], -+ which means that we can use the mi/pl conditions to check if -+ ops[0] is GE or LT 0. */ -+ if ((GET_CODE (next_cond) == GE) || (GET_CODE (next_cond) == GT)) -+ new_cond = -+ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx), -+ UNSPEC_COND_PL); -+ else -+ new_cond = -+ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx), -+ UNSPEC_COND_MI); -+ return new_cond; -+ } -+ } -+ return NULL_RTX; -+} -+ -+ -+/* Updates cc_status. */ -+void -+avr32_notice_update_cc (rtx exp, rtx insn) -+{ -+ enum attr_cc attr_cc = get_attr_cc (insn); -+ -+ if ( attr_cc == CC_SET_Z_IF_NOT_V2 ) -+ { -+ if (TARGET_V2_INSNS) -+ attr_cc = CC_NONE; -+ else -+ attr_cc = CC_SET_Z; -+ } -+ -+ switch (attr_cc) -+ { -+ case CC_CALL_SET: -+ CC_STATUS_INIT; -+ /* Check if the function call returns a value in r12 */ -+ if (REG_P (recog_data.operand[0]) -+ && REGNO (recog_data.operand[0]) == RETVAL_REGNUM) -+ { -+ cc_status.flags = 0; -+ cc_status.mdep.value = -+ gen_rtx_COMPARE (SImode, recog_data.operand[0], const0_rtx); -+ cc_status.mdep.flags = CC_SET_VNCZ; -+ cc_status.mdep.cond_exec_cmp_clobbered = 0; -+ -+ } -+ break; -+ case CC_COMPARE: -+ { -+ /* Check that compare will not be optimized away if so nothing should -+ be done */ -+ rtx compare_exp = SET_SRC (exp); -+ /* Check if we have a tst expression. If so convert it to a -+ compare with 0. */ -+ if ( REG_P (SET_SRC (exp)) ) -+ compare_exp = gen_rtx_COMPARE (GET_MODE (SET_SRC (exp)), -+ SET_SRC (exp), -+ const0_rtx); -+ -+ if (!next_insn_emits_cmp (insn) -+ && (is_compare_redundant (compare_exp, get_next_insn_cond (insn)) == NULL_RTX)) -+ { -+ -+ /* Reset the nonstandard flag */ -+ CC_STATUS_INIT; -+ cc_status.flags = 0; -+ cc_status.mdep.value = compare_exp; -+ cc_status.mdep.flags = CC_SET_VNCZ; -+ cc_status.mdep.cond_exec_cmp_clobbered = 0; -+ } -+ } -+ break; -+ case CC_CMP_COND_INSN: -+ { -+ /* Conditional insn that emit the compare itself. */ -+ rtx cmp; -+ rtx cmp_op0, cmp_op1; -+ rtx cond; -+ rtx dest; -+ rtx next_insn = next_nonnote_insn (insn); -+ -+ if ( GET_CODE (exp) == COND_EXEC ) -+ { -+ cmp_op0 = XEXP (COND_EXEC_TEST (exp), 0); -+ cmp_op1 = XEXP (COND_EXEC_TEST (exp), 1); -+ cond = COND_EXEC_TEST (exp); -+ dest = SET_DEST (COND_EXEC_CODE (exp)); -+ } -+ else -+ { -+ /* If then else conditional. compare operands are in operands -+ 4 and 5. */ -+ cmp_op0 = recog_data.operand[4]; -+ cmp_op1 = recog_data.operand[5]; -+ cond = recog_data.operand[1]; -+ dest = SET_DEST (exp); -+ } -+ -+ if ( GET_CODE (cmp_op0) == AND ) -+ cmp = cmp_op0; -+ else -+ cmp = gen_rtx_COMPARE (GET_MODE (cmp_op0), -+ cmp_op0, -+ cmp_op1); -+ -+ /* Check if the conditional insns updates a register present -+ in the comparison, if so then we must reset the cc_status. */ -+ if (REG_P (dest) -+ && (reg_mentioned_p (dest, cmp_op0) -+ || reg_mentioned_p (dest, cmp_op1)) -+ && GET_CODE (exp) != COND_EXEC ) -+ { -+ CC_STATUS_INIT; -+ } -+ else if (is_compare_redundant (cmp, cond) == NULL_RTX) -+ { -+ /* Reset the nonstandard flag */ -+ CC_STATUS_INIT; -+ if ( GET_CODE (cmp_op0) == AND ) -+ { -+ cc_status.flags = CC_INVERTED; -+ cc_status.mdep.flags = CC_SET_Z; -+ } -+ else -+ { -+ cc_status.flags = 0; -+ cc_status.mdep.flags = CC_SET_VNCZ; -+ } -+ cc_status.mdep.value = cmp; -+ cc_status.mdep.cond_exec_cmp_clobbered = 0; -+ } -+ -+ -+ /* Check if we have a COND_EXEC insn which updates one -+ of the registers in the compare status. */ -+ if (REG_P (dest) -+ && (reg_mentioned_p (dest, cmp_op0) -+ || reg_mentioned_p (dest, cmp_op1)) -+ && GET_CODE (exp) == COND_EXEC ) -+ cc_status.mdep.cond_exec_cmp_clobbered = 1; -+ -+ if ( cc_status.mdep.cond_exec_cmp_clobbered -+ && GET_CODE (exp) == COND_EXEC -+ && next_insn != NULL -+ && INSN_P (next_insn) -+ && !(GET_CODE (PATTERN (next_insn)) == COND_EXEC -+ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0), cmp_op0) -+ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1), cmp_op1) -+ && (GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == GET_CODE (cond) -+ || GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == reverse_condition (GET_CODE (cond)))) ) -+ { -+ /* We have a sequence of conditional insns where the compare status has been clobbered -+ since the compare no longer reflects the content of the values to compare. */ -+ CC_STATUS_INIT; -+ cc_status.mdep.cond_exec_cmp_clobbered = 1; -+ } -+ -+ } -+ break; -+ case CC_BLD: -+ /* Bit load is kind of like an inverted testsi, because the Z flag is -+ inverted */ -+ CC_STATUS_INIT; -+ cc_status.flags = CC_INVERTED; -+ cc_status.mdep.value = SET_SRC (exp); -+ cc_status.mdep.flags = CC_SET_Z; -+ cc_status.mdep.cond_exec_cmp_clobbered = 0; -+ break; -+ case CC_NONE: -+ /* Insn does not affect CC at all. Check if the instruction updates -+ some of the register currently reflected in cc0 */ -+ -+ if ((GET_CODE (exp) == SET) -+ && (cc_status.value1 || cc_status.value2 || cc_status.mdep.value) -+ && (reg_mentioned_p (SET_DEST (exp), cc_status.value1) -+ || reg_mentioned_p (SET_DEST (exp), cc_status.value2) -+ || reg_mentioned_p (SET_DEST (exp), cc_status.mdep.value))) -+ { -+ CC_STATUS_INIT; -+ } -+ -+ /* If this is a parallel we must step through each of the parallel -+ expressions */ -+ if (GET_CODE (exp) == PARALLEL) -+ { -+ int i; -+ for (i = 0; i < XVECLEN (exp, 0); ++i) -+ { -+ rtx vec_exp = XVECEXP (exp, 0, i); -+ if ((GET_CODE (vec_exp) == SET) -+ && (cc_status.value1 || cc_status.value2 -+ || cc_status.mdep.value) -+ && (reg_mentioned_p (SET_DEST (vec_exp), cc_status.value1) -+ || reg_mentioned_p (SET_DEST (vec_exp), -+ cc_status.value2) -+ || reg_mentioned_p (SET_DEST (vec_exp), -+ cc_status.mdep.value))) -+ { -+ CC_STATUS_INIT; -+ } -+ } -+ } -+ -+ /* Check if we have memory opartions with post_inc or pre_dec on the -+ register currently reflected in cc0 */ -+ if (GET_CODE (exp) == SET -+ && GET_CODE (SET_SRC (exp)) == MEM -+ && (GET_CODE (XEXP (SET_SRC (exp), 0)) == POST_INC -+ || GET_CODE (XEXP (SET_SRC (exp), 0)) == PRE_DEC) -+ && -+ (reg_mentioned_p -+ (XEXP (XEXP (SET_SRC (exp), 0), 0), cc_status.value1) -+ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0), -+ cc_status.value2) -+ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0), -+ cc_status.mdep.value))) -+ CC_STATUS_INIT; -+ -+ if (GET_CODE (exp) == SET -+ && GET_CODE (SET_DEST (exp)) == MEM -+ && (GET_CODE (XEXP (SET_DEST (exp), 0)) == POST_INC -+ || GET_CODE (XEXP (SET_DEST (exp), 0)) == PRE_DEC) -+ && -+ (reg_mentioned_p -+ (XEXP (XEXP (SET_DEST (exp), 0), 0), cc_status.value1) -+ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0), -+ cc_status.value2) -+ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0), -+ cc_status.mdep.value))) -+ CC_STATUS_INIT; -+ break; -+ -+ case CC_SET_VNCZ: -+ CC_STATUS_INIT; -+ cc_status.mdep.value = recog_data.operand[0]; -+ cc_status.mdep.flags = CC_SET_VNCZ; -+ cc_status.mdep.cond_exec_cmp_clobbered = 0; -+ break; -+ -+ case CC_SET_NCZ: -+ CC_STATUS_INIT; -+ cc_status.mdep.value = recog_data.operand[0]; -+ cc_status.mdep.flags = CC_SET_NCZ; -+ cc_status.mdep.cond_exec_cmp_clobbered = 0; -+ break; -+ -+ case CC_SET_CZ: -+ CC_STATUS_INIT; -+ cc_status.mdep.value = recog_data.operand[0]; -+ cc_status.mdep.flags = CC_SET_CZ; -+ cc_status.mdep.cond_exec_cmp_clobbered = 0; -+ break; -+ -+ case CC_SET_Z: -+ CC_STATUS_INIT; -+ cc_status.mdep.value = recog_data.operand[0]; -+ cc_status.mdep.flags = CC_SET_Z; -+ cc_status.mdep.cond_exec_cmp_clobbered = 0; -+ break; -+ -+ case CC_CLOBBER: -+ CC_STATUS_INIT; -+ break; -+ -+ default: -+ CC_STATUS_INIT; -+ } -+} -+ -+ -+/* -+ Outputs to stdio stream stream the assembler syntax for an instruction -+ operand x. x is an RTL expression. -+*/ -+void -+avr32_print_operand (FILE * stream, rtx x, int code) -+{ -+ int error = 0; -+ -+ if ( code == '?' ) -+ { -+ /* Predicable instruction, print condition code */ -+ -+ /* If the insn should not be conditional then do nothing. */ -+ if ( current_insn_predicate == NULL_RTX ) -+ return; -+ -+ /* Set x to the predicate to force printing -+ the condition later on. */ -+ x = current_insn_predicate; -+ -+ /* Reverse condition if useing bld insn. */ -+ if ( GET_CODE (XEXP(current_insn_predicate,0)) == AND ) -+ x = reversed_condition (current_insn_predicate); -+ } -+ else if ( code == '!' ) -+ { -+ /* Output compare for conditional insn if needed. */ -+ rtx new_cond; -+ gcc_assert ( current_insn_predicate != NULL_RTX ); -+ new_cond = avr32_output_cmp(current_insn_predicate, -+ GET_MODE(XEXP(current_insn_predicate,0)), -+ XEXP(current_insn_predicate,0), -+ XEXP(current_insn_predicate,1)); -+ -+ /* Check if the new condition is a special avr32 condition -+ specified using UNSPECs. If so we must handle it differently. */ -+ if ( GET_CODE (new_cond) == UNSPEC ) -+ { -+ current_insn_predicate = -+ gen_rtx_UNSPEC (CCmode, -+ gen_rtvec (2, -+ XEXP(current_insn_predicate,0), -+ XEXP(current_insn_predicate,1)), -+ XINT (new_cond, 1)); -+ } -+ else -+ { -+ PUT_CODE(current_insn_predicate, GET_CODE(new_cond)); -+ } -+ return; -+ } -+ -+ switch (GET_CODE (x)) -+ { -+ case UNSPEC: -+ switch (XINT (x, 1)) -+ { -+ case UNSPEC_COND_PL: -+ if (code == 'i') -+ fputs ("mi", stream); -+ else -+ fputs ("pl", stream); -+ break; -+ case UNSPEC_COND_MI: -+ if (code == 'i') -+ fputs ("pl", stream); -+ else -+ fputs ("mi", stream); -+ break; -+ default: -+ error = 1; -+ } -+ break; -+ case EQ: -+ if (code == 'i') -+ fputs ("ne", stream); -+ else -+ fputs ("eq", stream); -+ break; -+ case NE: -+ if (code == 'i') -+ fputs ("eq", stream); -+ else -+ fputs ("ne", stream); -+ break; -+ case GT: -+ if (code == 'i') -+ fputs ("le", stream); -+ else -+ fputs ("gt", stream); -+ break; -+ case GTU: -+ if (code == 'i') -+ fputs ("ls", stream); -+ else -+ fputs ("hi", stream); -+ break; -+ case LT: -+ if (code == 'i') -+ fputs ("ge", stream); -+ else -+ fputs ("lt", stream); -+ break; -+ case LTU: -+ if (code == 'i') -+ fputs ("hs", stream); -+ else -+ fputs ("lo", stream); -+ break; -+ case GE: -+ if (code == 'i') -+ fputs ("lt", stream); -+ else -+ fputs ("ge", stream); -+ break; -+ case GEU: -+ if (code == 'i') -+ fputs ("lo", stream); -+ else -+ fputs ("hs", stream); -+ break; -+ case LE: -+ if (code == 'i') -+ fputs ("gt", stream); -+ else -+ fputs ("le", stream); -+ break; -+ case LEU: -+ if (code == 'i') -+ fputs ("hi", stream); -+ else -+ fputs ("ls", stream); -+ break; -+ case CONST_INT: -+ { -+ HOST_WIDE_INT value = INTVAL (x); -+ -+ switch (code) -+ { -+ case 'm': -+ if ( HOST_BITS_PER_WIDE_INT > BITS_PER_WORD ) -+ { -+ /* A const_int can be used to represent DImode constants. */ -+ value >>= BITS_PER_WORD; -+ } -+ /* We might get a const_int immediate for setting a DI register, -+ we then must then return the correct sign extended DI. The most -+ significant word is just a sign extension. */ -+ else if (value < 0) -+ value = -1; -+ else -+ value = 0; -+ break; -+ case 'i': -+ value++; -+ break; -+ case 'p': -+ { -+ /* Set to bit position of first bit set in immediate */ -+ int i, bitpos = 32; -+ for (i = 0; i < 32; i++) -+ if (value & (1 << i)) -+ { -+ bitpos = i; -+ break; -+ } -+ value = bitpos; -+ } -+ break; -+ case 'z': -+ { -+ /* Set to bit position of first bit cleared in immediate */ -+ int i, bitpos = 32; -+ for (i = 0; i < 32; i++) -+ if (!(value & (1 << i))) -+ { -+ bitpos = i; -+ break; -+ } -+ value = bitpos; -+ } -+ break; -+ case 'r': -+ { -+ /* Reglist 8 */ -+ char op[50]; -+ op[0] = '\0'; -+ -+ if (value & 0x01) -+ strcpy (op, "r0-r3"); -+ if (value & 0x02) -+ strlen (op) ? strcat (op, ", r4-r7") : strcpy (op,"r4-r7"); -+ if (value & 0x04) -+ strlen (op) ? strcat (op, ", r8-r9") : strcpy (op,"r8-r9"); -+ if (value & 0x08) -+ strlen (op) ? strcat (op, ", r10") : strcpy (op,"r10"); -+ if (value & 0x10) -+ strlen (op) ? strcat (op, ", r11") : strcpy (op,"r11"); -+ if (value & 0x20) -+ strlen (op) ? strcat (op, ", r12") : strcpy (op,"r12"); -+ if (value & 0x40) -+ strlen (op) ? strcat (op, ", lr") : strcpy (op, "lr"); -+ if (value & 0x80) -+ strlen (op) ? strcat (op, ", pc") : strcpy (op, "pc"); -+ -+ fputs (op, stream); -+ return; -+ } -+ case 's': -+ { -+ /* Reglist 16 */ -+ char reglist16_string[100]; -+ int i; -+ bool first_reg = true; -+ reglist16_string[0] = '\0'; -+ -+ for (i = 0; i < 16; ++i) -+ { -+ if (value & (1 << i)) -+ { -+ first_reg == true ? first_reg = false : strcat(reglist16_string,", "); -+ strcat(reglist16_string,reg_names[INTERNAL_REGNUM(i)]); -+ } -+ } -+ fputs (reglist16_string, stream); -+ return; -+ } -+ case 'h': -+ /* Print halfword part of word */ -+ fputs (value ? "b" : "t", stream); -+ return; -+ } -+ -+ /* Print Value */ -+ fprintf (stream, "%d", value); -+ break; -+ } -+ case CONST_DOUBLE: -+ { -+ HOST_WIDE_INT hi, lo; -+ if (SCALAR_FLOAT_MODE_P (GET_MODE (x))) -+ { -+ HOST_WIDE_INT target_float[2]; -+ hi = lo = 0; -+ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (x), -+ GET_MODE (x)); -+ /* For doubles the most significant part starts at index 0. */ -+ if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) -+ { -+ hi = target_float[0]; -+ lo = target_float[1]; -+ } -+ else -+ { -+ lo = target_float[0]; -+ } -+ } -+ else -+ { -+ hi = CONST_DOUBLE_HIGH (x); -+ lo = CONST_DOUBLE_LOW (x); -+ } -+ -+ if (code == 'm') -+ fprintf (stream, "%ld", hi); -+ else -+ fprintf (stream, "%ld", lo); -+ -+ break; -+ } -+ case CONST: -+ output_addr_const (stream, XEXP (XEXP (x, 0), 0)); -+ fprintf (stream, "+%ld", INTVAL (XEXP (XEXP (x, 0), 1))); -+ break; -+ case REG: -+ /* Swap register name if the register is DImode or DFmode. */ -+ if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode) -+ { -+ /* Double register must have an even numbered address */ -+ gcc_assert (!(REGNO (x) % 2)); -+ if (code == 'm') -+ fputs (reg_names[true_regnum (x)], stream); -+ else -+ fputs (reg_names[true_regnum (x) + 1], stream); -+ } -+ else if (GET_MODE (x) == TImode) -+ { -+ switch (code) -+ { -+ case 'T': -+ fputs (reg_names[true_regnum (x)], stream); -+ break; -+ case 'U': -+ fputs (reg_names[true_regnum (x) + 1], stream); -+ break; -+ case 'L': -+ fputs (reg_names[true_regnum (x) + 2], stream); -+ break; -+ case 'B': -+ fputs (reg_names[true_regnum (x) + 3], stream); -+ break; -+ default: -+ fprintf (stream, "%s, %s, %s, %s", -+ reg_names[true_regnum (x) + 3], -+ reg_names[true_regnum (x) + 2], -+ reg_names[true_regnum (x) + 1], -+ reg_names[true_regnum (x)]); -+ break; -+ } -+ } -+ else -+ { -+ fputs (reg_names[true_regnum (x)], stream); -+ } -+ break; -+ case CODE_LABEL: -+ case LABEL_REF: -+ case SYMBOL_REF: -+ output_addr_const (stream, x); -+ break; -+ case MEM: -+ switch (GET_CODE (XEXP (x, 0))) -+ { -+ case LABEL_REF: -+ case SYMBOL_REF: -+ output_addr_const (stream, XEXP (x, 0)); -+ break; -+ case MEM: -+ switch (GET_CODE (XEXP (XEXP (x, 0), 0))) -+ { -+ case SYMBOL_REF: -+ output_addr_const (stream, XEXP (XEXP (x, 0), 0)); -+ break; -+ default: -+ error = 1; -+ break; -+ } -+ break; -+ case REG: -+ avr32_print_operand (stream, XEXP (x, 0), 0); -+ if (code != 'p') -+ fputs ("[0]", stream); -+ break; -+ case PRE_DEC: -+ fputs ("--", stream); -+ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0); -+ break; -+ case POST_INC: -+ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0); -+ fputs ("++", stream); -+ break; -+ case PLUS: -+ { -+ rtx op0 = XEXP (XEXP (x, 0), 0); -+ rtx op1 = XEXP (XEXP (x, 0), 1); -+ rtx base = NULL_RTX, offset = NULL_RTX; -+ -+ if (avr32_address_register_rtx_p (op0, 1)) -+ { -+ base = op0; -+ offset = op1; -+ } -+ else if (avr32_address_register_rtx_p (op1, 1)) -+ { -+ /* Operands are switched. */ -+ base = op1; -+ offset = op0; -+ } -+ -+ gcc_assert (base && offset -+ && avr32_address_register_rtx_p (base, 1) -+ && avr32_legitimate_index_p (GET_MODE (x), offset, -+ 1)); -+ -+ avr32_print_operand (stream, base, 0); -+ fputs ("[", stream); -+ avr32_print_operand (stream, offset, 0); -+ fputs ("]", stream); -+ break; -+ } -+ case CONST: -+ output_addr_const (stream, XEXP (XEXP (XEXP (x, 0), 0), 0)); -+ fprintf (stream, " + %ld", -+ INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))); -+ break; -+ case CONST_INT: -+ avr32_print_operand (stream, XEXP (x, 0), 0); -+ break; -+ default: -+ error = 1; -+ } -+ break; -+ case MULT: -+ { -+ int value = INTVAL (XEXP (x, 1)); -+ -+ /* Convert immediate in multiplication into a shift immediate */ -+ switch (value) -+ { -+ case 2: -+ value = 1; -+ break; -+ case 4: -+ value = 2; -+ break; -+ case 8: -+ value = 3; -+ break; -+ default: -+ value = 0; -+ } -+ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))], -+ value); -+ break; -+ } -+ case ASHIFT: -+ if (GET_CODE (XEXP (x, 1)) == CONST_INT) -+ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))], -+ (int) INTVAL (XEXP (x, 1))); -+ else if (REG_P (XEXP (x, 1))) -+ fprintf (stream, "%s << %s", reg_names[true_regnum (XEXP (x, 0))], -+ reg_names[true_regnum (XEXP (x, 1))]); -+ else -+ { -+ error = 1; -+ } -+ break; -+ case LSHIFTRT: -+ if (GET_CODE (XEXP (x, 1)) == CONST_INT) -+ fprintf (stream, "%s >> %i", reg_names[true_regnum (XEXP (x, 0))], -+ (int) INTVAL (XEXP (x, 1))); -+ else if (REG_P (XEXP (x, 1))) -+ fprintf (stream, "%s >> %s", reg_names[true_regnum (XEXP (x, 0))], -+ reg_names[true_regnum (XEXP (x, 1))]); -+ else -+ { -+ error = 1; -+ } -+ fprintf (stream, ">>"); -+ break; -+ case PARALLEL: -+ { -+ /* Load store multiple */ -+ int i; -+ int count = XVECLEN (x, 0); -+ int reglist16 = 0; -+ char reglist16_string[100]; -+ -+ for (i = 0; i < count; ++i) -+ { -+ rtx vec_elm = XVECEXP (x, 0, i); -+ if (GET_MODE (vec_elm) != SET) -+ { -+ debug_rtx (vec_elm); -+ internal_error ("Unknown element in parallel expression!"); -+ } -+ if (GET_MODE (XEXP (vec_elm, 0)) == REG) -+ { -+ /* Load multiple */ -+ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 0))); -+ } -+ else -+ { -+ /* Store multiple */ -+ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 1))); -+ } -+ } -+ -+ avr32_make_reglist16 (reglist16, reglist16_string); -+ fputs (reglist16_string, stream); -+ -+ break; -+ } -+ -+ case PLUS: -+ { -+ rtx op0 = XEXP (x, 0); -+ rtx op1 = XEXP (x, 1); -+ rtx base = NULL_RTX, offset = NULL_RTX; -+ -+ if (avr32_address_register_rtx_p (op0, 1)) -+ { -+ base = op0; -+ offset = op1; -+ } -+ else if (avr32_address_register_rtx_p (op1, 1)) -+ { -+ /* Operands are switched. */ -+ base = op1; -+ offset = op0; -+ } -+ -+ gcc_assert (base && offset -+ && avr32_address_register_rtx_p (base, 1) -+ && avr32_legitimate_index_p (GET_MODE (x), offset, 1)); -+ -+ avr32_print_operand (stream, base, 0); -+ fputs ("[", stream); -+ avr32_print_operand (stream, offset, 0); -+ fputs ("]", stream); -+ break; -+ } -+ -+ default: -+ error = 1; -+ } -+ -+ if (error) -+ { -+ debug_rtx (x); -+ internal_error ("Illegal expression for avr32_print_operand"); -+ } -+} -+ -+rtx -+avr32_get_note_reg_equiv (rtx insn) -+{ -+ rtx note; -+ -+ note = find_reg_note (insn, REG_EQUIV, NULL_RTX); -+ -+ if (note != NULL_RTX) -+ return XEXP (note, 0); -+ else -+ return NULL_RTX; -+} -+ -+ -+/* -+ Outputs to stdio stream stream the assembler syntax for an instruction -+ operand that is a memory reference whose address is x. x is an RTL -+ expression. -+ -+ ToDo: fixme. -+*/ -+void -+avr32_print_operand_address (FILE * stream, rtx x) -+{ -+ fprintf (stream, "(%d) /* address */", REGNO (x)); -+} -+ -+ -+/* Return true if _GLOBAL_OFFSET_TABLE_ symbol is mentioned. */ -+bool -+avr32_got_mentioned_p (rtx addr) -+{ -+ if (GET_CODE (addr) == MEM) -+ addr = XEXP (addr, 0); -+ while (GET_CODE (addr) == CONST) -+ addr = XEXP (addr, 0); -+ if (GET_CODE (addr) == SYMBOL_REF) -+ { -+ return streq (XSTR (addr, 0), "_GLOBAL_OFFSET_TABLE_"); -+ } -+ if (GET_CODE (addr) == PLUS || GET_CODE (addr) == MINUS) -+ { -+ bool l1, l2; -+ -+ l1 = avr32_got_mentioned_p (XEXP (addr, 0)); -+ l2 = avr32_got_mentioned_p (XEXP (addr, 1)); -+ return l1 || l2; -+ } -+ return false; -+} -+ -+ -+/* Find the symbol in an address expression. */ -+rtx -+avr32_find_symbol (rtx addr) -+{ -+ if (GET_CODE (addr) == MEM) -+ addr = XEXP (addr, 0); -+ -+ while (GET_CODE (addr) == CONST) -+ addr = XEXP (addr, 0); -+ -+ if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF) -+ return addr; -+ if (GET_CODE (addr) == PLUS) -+ { -+ rtx l1, l2; -+ -+ l1 = avr32_find_symbol (XEXP (addr, 0)); -+ l2 = avr32_find_symbol (XEXP (addr, 1)); -+ if (l1 != NULL_RTX && l2 == NULL_RTX) -+ return l1; -+ else if (l1 == NULL_RTX && l2 != NULL_RTX) -+ return l2; -+ } -+ -+ return NULL_RTX; -+} -+ -+ -+/* Routines for manipulation of the constant pool. */ -+ -+/* AVR32 instructions cannot load a large constant directly into a -+ register; they have to come from a pc relative load. The constant -+ must therefore be placed in the addressable range of the pc -+ relative load. Depending on the precise pc relative load -+ instruction the range is somewhere between 256 bytes and 4k. This -+ means that we often have to dump a constant inside a function, and -+ generate code to branch around it. -+ -+ It is important to minimize this, since the branches will slow -+ things down and make the code larger. -+ -+ Normally we can hide the table after an existing unconditional -+ branch so that there is no interruption of the flow, but in the -+ worst case the code looks like this: -+ -+ lddpc rn, L1 -+ ... -+ rjmp L2 -+ align -+ L1: .long value -+ L2: -+ ... -+ -+ lddpc rn, L3 -+ ... -+ rjmp L4 -+ align -+ L3: .long value -+ L4: -+ ... -+ -+ We fix this by performing a scan after scheduling, which notices -+ which instructions need to have their operands fetched from the -+ constant table and builds the table. -+ -+ The algorithm starts by building a table of all the constants that -+ need fixing up and all the natural barriers in the function (places -+ where a constant table can be dropped without breaking the flow). -+ For each fixup we note how far the pc-relative replacement will be -+ able to reach and the offset of the instruction into the function. -+ -+ Having built the table we then group the fixes together to form -+ tables that are as large as possible (subject to addressing -+ constraints) and emit each table of constants after the last -+ barrier that is within range of all the instructions in the group. -+ If a group does not contain a barrier, then we forcibly create one -+ by inserting a jump instruction into the flow. Once the table has -+ been inserted, the insns are then modified to reference the -+ relevant entry in the pool. -+ -+ Possible enhancements to the algorithm (not implemented) are: -+ -+ 1) For some processors and object formats, there may be benefit in -+ aligning the pools to the start of cache lines; this alignment -+ would need to be taken into account when calculating addressability -+ of a pool. */ -+ -+/* These typedefs are located at the start of this file, so that -+ they can be used in the prototypes there. This comment is to -+ remind readers of that fact so that the following structures -+ can be understood more easily. -+ -+ typedef struct minipool_node Mnode; -+ typedef struct minipool_fixup Mfix; */ -+ -+struct minipool_node -+{ -+ /* Doubly linked chain of entries. */ -+ Mnode *next; -+ Mnode *prev; -+ /* The maximum offset into the code that this entry can be placed. While -+ pushing fixes for forward references, all entries are sorted in order of -+ increasing max_address. */ -+ HOST_WIDE_INT max_address; -+ /* Similarly for an entry inserted for a backwards ref. */ -+ HOST_WIDE_INT min_address; -+ /* The number of fixes referencing this entry. This can become zero if we -+ "unpush" an entry. In this case we ignore the entry when we come to -+ emit the code. */ -+ int refcount; -+ /* The offset from the start of the minipool. */ -+ HOST_WIDE_INT offset; -+ /* The value in table. */ -+ rtx value; -+ /* The mode of value. */ -+ enum machine_mode mode; -+ /* The size of the value. */ -+ int fix_size; -+}; -+ -+ -+struct minipool_fixup -+{ -+ Mfix *next; -+ rtx insn; -+ HOST_WIDE_INT address; -+ rtx *loc; -+ enum machine_mode mode; -+ int fix_size; -+ rtx value; -+ Mnode *minipool; -+ HOST_WIDE_INT forwards; -+ HOST_WIDE_INT backwards; -+}; -+ -+ -+/* Fixes less than a word need padding out to a word boundary. */ -+#define MINIPOOL_FIX_SIZE(mode, value) \ -+ (IS_FORCE_MINIPOOL(value) ? 0 : \ -+ (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4)) -+ -+#define IS_FORCE_MINIPOOL(x) \ -+ (GET_CODE(x) == UNSPEC && \ -+ XINT(x, 1) == UNSPEC_FORCE_MINIPOOL) -+ -+static Mnode *minipool_vector_head; -+static Mnode *minipool_vector_tail; -+ -+/* The linked list of all minipool fixes required for this function. */ -+Mfix *minipool_fix_head; -+Mfix *minipool_fix_tail; -+/* The fix entry for the current minipool, once it has been placed. */ -+Mfix *minipool_barrier; -+ -+ -+/* Determines if INSN is the start of a jump table. Returns the end -+ of the TABLE or NULL_RTX. */ -+static rtx -+is_jump_table (rtx insn) -+{ -+ rtx table; -+ -+ if (GET_CODE (insn) == JUMP_INSN -+ && JUMP_LABEL (insn) != NULL -+ && ((table = next_real_insn (JUMP_LABEL (insn))) -+ == next_real_insn (insn)) -+ && table != NULL -+ && GET_CODE (table) == JUMP_INSN -+ && (GET_CODE (PATTERN (table)) == ADDR_VEC -+ || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC)) -+ return table; -+ -+ return NULL_RTX; -+} -+ -+ -+static HOST_WIDE_INT -+get_jump_table_size (rtx insn) -+{ -+ /* ADDR_VECs only take room if read-only data does into the text section. */ -+ if (JUMP_TABLES_IN_TEXT_SECTION -+#if !defined(READONLY_DATA_SECTION_ASM_OP) -+ || 1 -+#endif -+ ) -+ { -+ rtx body = PATTERN (insn); -+ int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0; -+ -+ return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt); -+ } -+ -+ return 0; -+} -+ -+ -+/* Move a minipool fix MP from its current location to before MAX_MP. -+ If MAX_MP is NULL, then MP doesn't need moving, but the addressing -+ constraints may need updating. */ -+static Mnode * -+move_minipool_fix_forward_ref (Mnode * mp, Mnode * max_mp, -+ HOST_WIDE_INT max_address) -+{ -+ /* This should never be true and the code below assumes these are -+ different. */ -+ if (mp == max_mp) -+ abort (); -+ -+ if (max_mp == NULL) -+ { -+ if (max_address < mp->max_address) -+ mp->max_address = max_address; -+ } -+ else -+ { -+ if (max_address > max_mp->max_address - mp->fix_size) -+ mp->max_address = max_mp->max_address - mp->fix_size; -+ else -+ mp->max_address = max_address; -+ -+ /* Unlink MP from its current position. Since max_mp is non-null, -+ mp->prev must be non-null. */ -+ mp->prev->next = mp->next; -+ if (mp->next != NULL) -+ mp->next->prev = mp->prev; -+ else -+ minipool_vector_tail = mp->prev; -+ -+ /* Re-insert it before MAX_MP. */ -+ mp->next = max_mp; -+ mp->prev = max_mp->prev; -+ max_mp->prev = mp; -+ -+ if (mp->prev != NULL) -+ mp->prev->next = mp; -+ else -+ minipool_vector_head = mp; -+ } -+ -+ /* Save the new entry. */ -+ max_mp = mp; -+ -+ /* Scan over the preceding entries and adjust their addresses as required. -+ */ -+ while (mp->prev != NULL -+ && mp->prev->max_address > mp->max_address - mp->prev->fix_size) -+ { -+ mp->prev->max_address = mp->max_address - mp->prev->fix_size; -+ mp = mp->prev; -+ } -+ -+ return max_mp; -+} -+ -+ -+/* Add a constant to the minipool for a forward reference. Returns the -+ node added or NULL if the constant will not fit in this pool. */ -+static Mnode * -+add_minipool_forward_ref (Mfix * fix) -+{ -+ /* If set, max_mp is the first pool_entry that has a lower constraint than -+ the one we are trying to add. */ -+ Mnode *max_mp = NULL; -+ HOST_WIDE_INT max_address = fix->address + fix->forwards; -+ Mnode *mp; -+ -+ /* If this fix's address is greater than the address of the first entry, -+ then we can't put the fix in this pool. We subtract the size of the -+ current fix to ensure that if the table is fully packed we still have -+ enough room to insert this value by suffling the other fixes forwards. */ -+ if (minipool_vector_head && -+ fix->address >= minipool_vector_head->max_address - fix->fix_size) -+ return NULL; -+ -+ /* Scan the pool to see if a constant with the same value has already been -+ added. While we are doing this, also note the location where we must -+ insert the constant if it doesn't already exist. */ -+ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) -+ { -+ if (GET_CODE (fix->value) == GET_CODE (mp->value) -+ && fix->mode == mp->mode -+ && (GET_CODE (fix->value) != CODE_LABEL -+ || (CODE_LABEL_NUMBER (fix->value) -+ == CODE_LABEL_NUMBER (mp->value))) -+ && rtx_equal_p (fix->value, mp->value)) -+ { -+ /* More than one fix references this entry. */ -+ mp->refcount++; -+ return move_minipool_fix_forward_ref (mp, max_mp, max_address); -+ } -+ -+ /* Note the insertion point if necessary. */ -+ if (max_mp == NULL && mp->max_address > max_address) -+ max_mp = mp; -+ -+ } -+ -+ /* The value is not currently in the minipool, so we need to create a new -+ entry for it. If MAX_MP is NULL, the entry will be put on the end of -+ the list since the placement is less constrained than any existing -+ entry. Otherwise, we insert the new fix before MAX_MP and, if -+ necessary, adjust the constraints on the other entries. */ -+ mp = xmalloc (sizeof (*mp)); -+ mp->fix_size = fix->fix_size; -+ mp->mode = fix->mode; -+ mp->value = fix->value; -+ mp->refcount = 1; -+ /* Not yet required for a backwards ref. */ -+ mp->min_address = -65536; -+ -+ if (max_mp == NULL) -+ { -+ mp->max_address = max_address; -+ mp->next = NULL; -+ mp->prev = minipool_vector_tail; -+ -+ if (mp->prev == NULL) -+ { -+ minipool_vector_head = mp; -+ minipool_vector_label = gen_label_rtx (); -+ } -+ else -+ mp->prev->next = mp; -+ -+ minipool_vector_tail = mp; -+ } -+ else -+ { -+ if (max_address > max_mp->max_address - mp->fix_size) -+ mp->max_address = max_mp->max_address - mp->fix_size; -+ else -+ mp->max_address = max_address; -+ -+ mp->next = max_mp; -+ mp->prev = max_mp->prev; -+ max_mp->prev = mp; -+ if (mp->prev != NULL) -+ mp->prev->next = mp; -+ else -+ minipool_vector_head = mp; -+ } -+ -+ /* Save the new entry. */ -+ max_mp = mp; -+ -+ /* Scan over the preceding entries and adjust their addresses as required. -+ */ -+ while (mp->prev != NULL -+ && mp->prev->max_address > mp->max_address - mp->prev->fix_size) -+ { -+ mp->prev->max_address = mp->max_address - mp->prev->fix_size; -+ mp = mp->prev; -+ } -+ -+ return max_mp; -+} -+ -+ -+static Mnode * -+move_minipool_fix_backward_ref (Mnode * mp, Mnode * min_mp, -+ HOST_WIDE_INT min_address) -+{ -+ HOST_WIDE_INT offset; -+ -+ /* This should never be true, and the code below assumes these are -+ different. */ -+ if (mp == min_mp) -+ abort (); -+ -+ if (min_mp == NULL) -+ { -+ if (min_address > mp->min_address) -+ mp->min_address = min_address; -+ } -+ else -+ { -+ /* We will adjust this below if it is too loose. */ -+ mp->min_address = min_address; -+ -+ /* Unlink MP from its current position. Since min_mp is non-null, -+ mp->next must be non-null. */ -+ mp->next->prev = mp->prev; -+ if (mp->prev != NULL) -+ mp->prev->next = mp->next; -+ else -+ minipool_vector_head = mp->next; -+ -+ /* Reinsert it after MIN_MP. */ -+ mp->prev = min_mp; -+ mp->next = min_mp->next; -+ min_mp->next = mp; -+ if (mp->next != NULL) -+ mp->next->prev = mp; -+ else -+ minipool_vector_tail = mp; -+ } -+ -+ min_mp = mp; -+ -+ offset = 0; -+ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) -+ { -+ mp->offset = offset; -+ if (mp->refcount > 0) -+ offset += mp->fix_size; -+ -+ if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size) -+ mp->next->min_address = mp->min_address + mp->fix_size; -+ } -+ -+ return min_mp; -+} -+ -+ -+/* Add a constant to the minipool for a backward reference. Returns the -+ node added or NULL if the constant will not fit in this pool. -+ -+ Note that the code for insertion for a backwards reference can be -+ somewhat confusing because the calculated offsets for each fix do -+ not take into account the size of the pool (which is still under -+ construction. */ -+static Mnode * -+add_minipool_backward_ref (Mfix * fix) -+{ -+ /* If set, min_mp is the last pool_entry that has a lower constraint than -+ the one we are trying to add. */ -+ Mnode *min_mp = NULL; -+ /* This can be negative, since it is only a constraint. */ -+ HOST_WIDE_INT min_address = fix->address - fix->backwards; -+ Mnode *mp; -+ -+ /* If we can't reach the current pool from this insn, or if we can't insert -+ this entry at the end of the pool without pushing other fixes out of -+ range, then we don't try. This ensures that we can't fail later on. */ -+ if (min_address >= minipool_barrier->address -+ || (minipool_vector_tail->min_address + fix->fix_size -+ >= minipool_barrier->address)) -+ return NULL; -+ -+ /* Scan the pool to see if a constant with the same value has already been -+ added. While we are doing this, also note the location where we must -+ insert the constant if it doesn't already exist. */ -+ for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev) -+ { -+ if (GET_CODE (fix->value) == GET_CODE (mp->value) -+ && fix->mode == mp->mode -+ && (GET_CODE (fix->value) != CODE_LABEL -+ || (CODE_LABEL_NUMBER (fix->value) -+ == CODE_LABEL_NUMBER (mp->value))) -+ && rtx_equal_p (fix->value, mp->value) -+ /* Check that there is enough slack to move this entry to the end -+ of the table (this is conservative). */ -+ && (mp->max_address -+ > (minipool_barrier->address -+ + minipool_vector_tail->offset -+ + minipool_vector_tail->fix_size))) -+ { -+ mp->refcount++; -+ return move_minipool_fix_backward_ref (mp, min_mp, min_address); -+ } -+ -+ if (min_mp != NULL) -+ mp->min_address += fix->fix_size; -+ else -+ { -+ /* Note the insertion point if necessary. */ -+ if (mp->min_address < min_address) -+ { -+ min_mp = mp; -+ } -+ else if (mp->max_address -+ < minipool_barrier->address + mp->offset + fix->fix_size) -+ { -+ /* Inserting before this entry would push the fix beyond its -+ maximum address (which can happen if we have re-located a -+ forwards fix); force the new fix to come after it. */ -+ min_mp = mp; -+ min_address = mp->min_address + fix->fix_size; -+ } -+ } -+ } -+ -+ /* We need to create a new entry. */ -+ mp = xmalloc (sizeof (*mp)); -+ mp->fix_size = fix->fix_size; -+ mp->mode = fix->mode; -+ mp->value = fix->value; -+ mp->refcount = 1; -+ mp->max_address = minipool_barrier->address + 65536; -+ -+ mp->min_address = min_address; -+ -+ if (min_mp == NULL) -+ { -+ mp->prev = NULL; -+ mp->next = minipool_vector_head; -+ -+ if (mp->next == NULL) -+ { -+ minipool_vector_tail = mp; -+ minipool_vector_label = gen_label_rtx (); -+ } -+ else -+ mp->next->prev = mp; -+ -+ minipool_vector_head = mp; -+ } -+ else -+ { -+ mp->next = min_mp->next; -+ mp->prev = min_mp; -+ min_mp->next = mp; -+ -+ if (mp->next != NULL) -+ mp->next->prev = mp; -+ else -+ minipool_vector_tail = mp; -+ } -+ -+ /* Save the new entry. */ -+ min_mp = mp; -+ -+ if (mp->prev) -+ mp = mp->prev; -+ else -+ mp->offset = 0; -+ -+ /* Scan over the following entries and adjust their offsets. */ -+ while (mp->next != NULL) -+ { -+ if (mp->next->min_address < mp->min_address + mp->fix_size) -+ mp->next->min_address = mp->min_address + mp->fix_size; -+ -+ if (mp->refcount) -+ mp->next->offset = mp->offset + mp->fix_size; -+ else -+ mp->next->offset = mp->offset; -+ -+ mp = mp->next; -+ } -+ -+ return min_mp; -+} -+ -+ -+static void -+assign_minipool_offsets (Mfix * barrier) -+{ -+ HOST_WIDE_INT offset = 0; -+ Mnode *mp; -+ -+ minipool_barrier = barrier; -+ -+ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) -+ { -+ mp->offset = offset; -+ -+ if (mp->refcount > 0) -+ offset += mp->fix_size; -+ } -+} -+ -+ -+/* Print a symbolic form of X to the debug file, F. */ -+static void -+avr32_print_value (FILE * f, rtx x) -+{ -+ switch (GET_CODE (x)) -+ { -+ case CONST_INT: -+ fprintf (f, "0x%x", (int) INTVAL (x)); -+ return; -+ -+ case CONST_DOUBLE: -+ fprintf (f, "<0x%lx,0x%lx>", (long) XWINT (x, 2), (long) XWINT (x, 3)); -+ return; -+ -+ case CONST_VECTOR: -+ { -+ int i; -+ -+ fprintf (f, "<"); -+ for (i = 0; i < CONST_VECTOR_NUNITS (x); i++) -+ { -+ fprintf (f, "0x%x", (int) INTVAL (CONST_VECTOR_ELT (x, i))); -+ if (i < (CONST_VECTOR_NUNITS (x) - 1)) -+ fputc (',', f); -+ } -+ fprintf (f, ">"); -+ } -+ return; -+ -+ case CONST_STRING: -+ fprintf (f, "\"%s\"", XSTR (x, 0)); -+ return; -+ -+ case SYMBOL_REF: -+ fprintf (f, "`%s'", XSTR (x, 0)); -+ return; -+ -+ case LABEL_REF: -+ fprintf (f, "L%d", INSN_UID (XEXP (x, 0))); -+ return; -+ -+ case CONST: -+ avr32_print_value (f, XEXP (x, 0)); -+ return; -+ -+ case PLUS: -+ avr32_print_value (f, XEXP (x, 0)); -+ fprintf (f, "+"); -+ avr32_print_value (f, XEXP (x, 1)); -+ return; -+ -+ case PC: -+ fprintf (f, "pc"); -+ return; -+ -+ default: -+ fprintf (f, "????"); -+ return; -+ } -+} -+ -+ -+int -+is_minipool_label (rtx label) -+{ -+ minipool_labels *cur_mp_label = cfun->machine->minipool_label_head; -+ -+ if (GET_CODE (label) != CODE_LABEL) -+ return FALSE; -+ -+ while (cur_mp_label) -+ { -+ if (CODE_LABEL_NUMBER (label) -+ == CODE_LABEL_NUMBER (cur_mp_label->label)) -+ return TRUE; -+ cur_mp_label = cur_mp_label->next; -+ } -+ return FALSE; -+} -+ -+ -+static void -+new_minipool_label (rtx label) -+{ -+ if (!cfun->machine->minipool_label_head) -+ { -+ cfun->machine->minipool_label_head = -+ ggc_alloc (sizeof (minipool_labels)); -+ cfun->machine->minipool_label_tail = cfun->machine->minipool_label_head; -+ cfun->machine->minipool_label_head->label = label; -+ cfun->machine->minipool_label_head->next = 0; -+ cfun->machine->minipool_label_head->prev = 0; -+ } -+ else -+ { -+ cfun->machine->minipool_label_tail->next = -+ ggc_alloc (sizeof (minipool_labels)); -+ cfun->machine->minipool_label_tail->next->label = label; -+ cfun->machine->minipool_label_tail->next->next = 0; -+ cfun->machine->minipool_label_tail->next->prev = -+ cfun->machine->minipool_label_tail; -+ cfun->machine->minipool_label_tail = -+ cfun->machine->minipool_label_tail->next; -+ } -+} -+ -+ -+/* Output the literal table */ -+static void -+dump_minipool (rtx scan) -+{ -+ Mnode *mp; -+ Mnode *nmp; -+ -+ if (dump_file) -+ fprintf (dump_file, -+ ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n", -+ INSN_UID (scan), (unsigned long) minipool_barrier->address, 4); -+ -+ scan = emit_insn_after (gen_consttable_start (), scan); -+ scan = emit_insn_after (gen_align_4 (), scan); -+ scan = emit_label_after (minipool_vector_label, scan); -+ new_minipool_label (minipool_vector_label); -+ -+ for (mp = minipool_vector_head; mp != NULL; mp = nmp) -+ { -+ if (mp->refcount > 0) -+ { -+ if (dump_file) -+ { -+ fprintf (dump_file, -+ ";; Offset %u, min %ld, max %ld ", -+ (unsigned) mp->offset, (unsigned long) mp->min_address, -+ (unsigned long) mp->max_address); -+ avr32_print_value (dump_file, mp->value); -+ fputc ('\n', dump_file); -+ } -+ -+ switch (mp->fix_size) -+ { -+#ifdef HAVE_consttable_4 -+ case 4: -+ scan = emit_insn_after (gen_consttable_4 (mp->value), scan); -+ break; -+ -+#endif -+#ifdef HAVE_consttable_8 -+ case 8: -+ scan = emit_insn_after (gen_consttable_8 (mp->value), scan); -+ break; -+ -+#endif -+#ifdef HAVE_consttable_16 -+ case 16: -+ scan = emit_insn_after (gen_consttable_16 (mp->value), scan); -+ break; -+ -+#endif -+ case 0: -+ /* This can happen for force-minipool entries which just are -+ there to force the minipool to be generate. */ -+ break; -+ default: -+ abort (); -+ break; -+ } -+ } -+ -+ nmp = mp->next; -+ free (mp); -+ } -+ -+ minipool_vector_head = minipool_vector_tail = NULL; -+ scan = emit_insn_after (gen_consttable_end (), scan); -+ scan = emit_barrier_after (scan); -+} -+ -+ -+/* Return the cost of forcibly inserting a barrier after INSN. */ -+static int -+avr32_barrier_cost (rtx insn) -+{ -+ /* Basing the location of the pool on the loop depth is preferable, but at -+ the moment, the basic block information seems to be corrupt by this -+ stage of the compilation. */ -+ int base_cost = 50; -+ rtx next = next_nonnote_insn (insn); -+ -+ if (next != NULL && GET_CODE (next) == CODE_LABEL) -+ base_cost -= 20; -+ -+ switch (GET_CODE (insn)) -+ { -+ case CODE_LABEL: -+ /* It will always be better to place the table before the label, rather -+ than after it. */ -+ return 50; -+ -+ case INSN: -+ case CALL_INSN: -+ return base_cost; -+ -+ case JUMP_INSN: -+ return base_cost - 10; -+ -+ default: -+ return base_cost + 10; -+ } -+} -+ -+ -+/* Find the best place in the insn stream in the range -+ (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier. -+ Create the barrier by inserting a jump and add a new fix entry for -+ it. */ -+static Mfix * -+create_fix_barrier (Mfix * fix, HOST_WIDE_INT max_address) -+{ -+ HOST_WIDE_INT count = 0; -+ rtx barrier; -+ rtx from = fix->insn; -+ rtx selected = from; -+ int selected_cost; -+ HOST_WIDE_INT selected_address; -+ Mfix *new_fix; -+ HOST_WIDE_INT max_count = max_address - fix->address; -+ rtx label = gen_label_rtx (); -+ -+ selected_cost = avr32_barrier_cost (from); -+ selected_address = fix->address; -+ -+ while (from && count < max_count) -+ { -+ rtx tmp; -+ int new_cost; -+ -+ /* This code shouldn't have been called if there was a natural barrier -+ within range. */ -+ if (GET_CODE (from) == BARRIER) -+ abort (); -+ -+ /* Count the length of this insn. */ -+ count += get_attr_length (from); -+ -+ /* If there is a jump table, add its length. */ -+ tmp = is_jump_table (from); -+ if (tmp != NULL) -+ { -+ count += get_jump_table_size (tmp); -+ -+ /* Jump tables aren't in a basic block, so base the cost on the -+ dispatch insn. If we select this location, we will still put -+ the pool after the table. */ -+ new_cost = avr32_barrier_cost (from); -+ -+ if (count < max_count && new_cost <= selected_cost) -+ { -+ selected = tmp; -+ selected_cost = new_cost; -+ selected_address = fix->address + count; -+ } -+ -+ /* Continue after the dispatch table. */ -+ from = NEXT_INSN (tmp); -+ continue; -+ } -+ -+ new_cost = avr32_barrier_cost (from); -+ -+ if (count < max_count && new_cost <= selected_cost) -+ { -+ selected = from; -+ selected_cost = new_cost; -+ selected_address = fix->address + count; -+ } -+ -+ from = NEXT_INSN (from); -+ } -+ -+ /* Create a new JUMP_INSN that branches around a barrier. */ -+ from = emit_jump_insn_after (gen_jump (label), selected); -+ JUMP_LABEL (from) = label; -+ barrier = emit_barrier_after (from); -+ emit_label_after (label, barrier); -+ -+ /* Create a minipool barrier entry for the new barrier. */ -+ new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*new_fix)); -+ new_fix->insn = barrier; -+ new_fix->address = selected_address; -+ new_fix->next = fix->next; -+ fix->next = new_fix; -+ -+ return new_fix; -+} -+ -+ -+/* Record that there is a natural barrier in the insn stream at -+ ADDRESS. */ -+static void -+push_minipool_barrier (rtx insn, HOST_WIDE_INT address) -+{ -+ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix)); -+ -+ fix->insn = insn; -+ fix->address = address; -+ -+ fix->next = NULL; -+ if (minipool_fix_head != NULL) -+ minipool_fix_tail->next = fix; -+ else -+ minipool_fix_head = fix; -+ -+ minipool_fix_tail = fix; -+} -+ -+ -+/* Record INSN, which will need fixing up to load a value from the -+ minipool. ADDRESS is the offset of the insn since the start of the -+ function; LOC is a pointer to the part of the insn which requires -+ fixing; VALUE is the constant that must be loaded, which is of type -+ MODE. */ -+static void -+push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx * loc, -+ enum machine_mode mode, rtx value) -+{ -+ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix)); -+ rtx body = PATTERN (insn); -+ -+ fix->insn = insn; -+ fix->address = address; -+ fix->loc = loc; -+ fix->mode = mode; -+ fix->fix_size = MINIPOOL_FIX_SIZE (mode, value); -+ fix->value = value; -+ -+ if (GET_CODE (body) == PARALLEL) -+ { -+ /* Mcall : Ks16 << 2 */ -+ fix->forwards = ((1 << 15) - 1) << 2; -+ fix->backwards = (1 << 15) << 2; -+ } -+ else if (GET_CODE (body) == SET -+ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 4) -+ { -+ if (optimize_size) -+ { -+ /* Lddpc : Ku7 << 2 */ -+ fix->forwards = ((1 << 7) - 1) << 2; -+ fix->backwards = 0; -+ } -+ else -+ { -+ /* Ld.w : Ks16 */ -+ fix->forwards = ((1 << 15) - 4); -+ fix->backwards = (1 << 15); -+ } -+ } -+ else if (GET_CODE (body) == SET -+ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 8) -+ { -+ /* Ld.d : Ks16 */ -+ fix->forwards = ((1 << 15) - 4); -+ fix->backwards = (1 << 15); -+ } -+ else if (GET_CODE (body) == UNSPEC_VOLATILE -+ && XINT (body, 1) == VUNSPEC_MVRC) -+ { -+ /* Coprocessor load */ -+ /* Ldc : Ku8 << 2 */ -+ fix->forwards = ((1 << 8) - 1) << 2; -+ fix->backwards = 0; -+ } -+ else -+ { -+ /* Assume worst case which is lddpc insn. */ -+ fix->forwards = ((1 << 7) - 1) << 2; -+ fix->backwards = 0; -+ } -+ -+ fix->minipool = NULL; -+ -+ /* If an insn doesn't have a range defined for it, then it isn't expecting -+ to be reworked by this code. Better to abort now than to generate duff -+ assembly code. */ -+ if (fix->forwards == 0 && fix->backwards == 0) -+ abort (); -+ -+ if (dump_file) -+ { -+ fprintf (dump_file, -+ ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ", -+ GET_MODE_NAME (mode), -+ INSN_UID (insn), (unsigned long) address, -+ -1 * (long) fix->backwards, (long) fix->forwards); -+ avr32_print_value (dump_file, fix->value); -+ fprintf (dump_file, "\n"); -+ } -+ -+ /* Add it to the chain of fixes. */ -+ fix->next = NULL; -+ -+ if (minipool_fix_head != NULL) -+ minipool_fix_tail->next = fix; -+ else -+ minipool_fix_head = fix; -+ -+ minipool_fix_tail = fix; -+} -+ -+ -+/* Scan INSN and note any of its operands that need fixing. -+ If DO_PUSHES is false we do not actually push any of the fixups -+ needed. The function returns TRUE is any fixups were needed/pushed. -+ This is used by avr32_memory_load_p() which needs to know about loads -+ of constants that will be converted into minipool loads. */ -+static bool -+note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes) -+{ -+ bool result = false; -+ int opno; -+ -+ extract_insn (insn); -+ -+ if (!constrain_operands (1)) -+ fatal_insn_not_found (insn); -+ -+ if (recog_data.n_alternatives == 0) -+ return false; -+ -+ /* Fill in recog_op_alt with information about the constraints of this -+ insn. */ -+ preprocess_constraints (); -+ -+ for (opno = 0; opno < recog_data.n_operands; opno++) -+ { -+ rtx op; -+ -+ /* Things we need to fix can only occur in inputs. */ -+ if (recog_data.operand_type[opno] != OP_IN) -+ continue; -+ -+ op = recog_data.operand[opno]; -+ -+ if (avr32_const_pool_ref_operand (op, GET_MODE (op))) -+ { -+ if (do_pushes) -+ { -+ rtx cop = avoid_constant_pool_reference (op); -+ -+ /* Casting the address of something to a mode narrower than a -+ word can cause avoid_constant_pool_reference() to return the -+ pool reference itself. That's no good to us here. Lets -+ just hope that we can use the constant pool value directly. -+ */ -+ if (op == cop) -+ cop = get_pool_constant (XEXP (op, 0)); -+ -+ push_minipool_fix (insn, address, -+ recog_data.operand_loc[opno], -+ recog_data.operand_mode[opno], cop); -+ } -+ -+ result = true; -+ } -+ else if (TARGET_HAS_ASM_ADDR_PSEUDOS -+ && avr32_address_operand (op, GET_MODE (op))) -+ { -+ /* Handle pseudo instructions using a direct address. These pseudo -+ instructions might need entries in the constant pool and we must -+ therefor create a constant pool for them, in case the -+ assembler/linker needs to insert entries. */ -+ if (do_pushes) -+ { -+ /* Push a dummy constant pool entry so that the .cpool -+ directive should be inserted on the appropriate place in the -+ code even if there are no real constant pool entries. This -+ is used by the assembler and linker to know where to put -+ generated constant pool entries. */ -+ push_minipool_fix (insn, address, -+ recog_data.operand_loc[opno], -+ recog_data.operand_mode[opno], -+ gen_rtx_UNSPEC (VOIDmode, -+ gen_rtvec (1, const0_rtx), -+ UNSPEC_FORCE_MINIPOOL)); -+ result = true; -+ } -+ } -+ } -+ return result; -+} -+ -+ -+static int -+avr32_insn_is_cast (rtx insn) -+{ -+ -+ if (NONJUMP_INSN_P (insn) -+ && GET_CODE (PATTERN (insn)) == SET -+ && (GET_CODE (SET_SRC (PATTERN (insn))) == ZERO_EXTEND -+ || GET_CODE (SET_SRC (PATTERN (insn))) == SIGN_EXTEND) -+ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 0)) -+ && REG_P (SET_DEST (PATTERN (insn)))) -+ return true; -+ return false; -+} -+ -+ -+/* Replace all occurances of reg FROM with reg TO in X. */ -+rtx -+avr32_replace_reg (rtx x, rtx from, rtx to) -+{ -+ int i, j; -+ const char *fmt; -+ -+ gcc_assert ( REG_P (from) && REG_P (to) ); -+ -+ /* Allow this function to make replacements in EXPR_LISTs. */ -+ if (x == 0) -+ return 0; -+ -+ if (rtx_equal_p (x, from)) -+ return to; -+ -+ if (GET_CODE (x) == SUBREG) -+ { -+ rtx new = avr32_replace_reg (SUBREG_REG (x), from, to); -+ -+ if (GET_CODE (new) == CONST_INT) -+ { -+ x = simplify_subreg (GET_MODE (x), new, -+ GET_MODE (SUBREG_REG (x)), -+ SUBREG_BYTE (x)); -+ gcc_assert (x); -+ } -+ else -+ SUBREG_REG (x) = new; -+ -+ return x; -+ } -+ else if (GET_CODE (x) == ZERO_EXTEND) -+ { -+ rtx new = avr32_replace_reg (XEXP (x, 0), from, to); -+ -+ if (GET_CODE (new) == CONST_INT) -+ { -+ x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x), -+ new, GET_MODE (XEXP (x, 0))); -+ gcc_assert (x); -+ } -+ else -+ XEXP (x, 0) = new; -+ -+ return x; -+ } -+ -+ fmt = GET_RTX_FORMAT (GET_CODE (x)); -+ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) -+ { -+ if (fmt[i] == 'e') -+ XEXP (x, i) = avr32_replace_reg (XEXP (x, i), from, to); -+ else if (fmt[i] == 'E') -+ for (j = XVECLEN (x, i) - 1; j >= 0; j--) -+ XVECEXP (x, i, j) = avr32_replace_reg (XVECEXP (x, i, j), from, to); -+ } -+ -+ return x; -+} -+ -+ -+/* FIXME: The level of nesting in this function is way too deep. It needs to be -+ torn apart. */ -+static void -+avr32_reorg_optimization (void) -+{ -+ rtx first = get_first_nonnote_insn (); -+ rtx insn; -+ -+ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) -+ { -+ -+ /* Scan through all insns looking for cast operations. */ -+ if (dump_file) -+ { -+ fprintf (dump_file, ";; Deleting redundant cast operations:\n"); -+ } -+ for (insn = first; insn; insn = NEXT_INSN (insn)) -+ { -+ rtx reg, src_reg, scan; -+ enum machine_mode mode; -+ int unused_cast; -+ rtx label_ref; -+ -+ if (avr32_insn_is_cast (insn) -+ && (GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == QImode -+ || GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == HImode)) -+ { -+ mode = GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)); -+ reg = SET_DEST (PATTERN (insn)); -+ src_reg = XEXP (SET_SRC (PATTERN (insn)), 0); -+ } -+ else -+ { -+ continue; -+ } -+ -+ unused_cast = false; -+ label_ref = NULL_RTX; -+ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) -+ { -+ /* Check if we have reached the destination of a simple -+ conditional jump which we have already scanned past. If so, -+ we can safely continue scanning. */ -+ if (LABEL_P (scan) && label_ref != NULL_RTX) -+ { -+ if (CODE_LABEL_NUMBER (scan) == -+ CODE_LABEL_NUMBER (XEXP (label_ref, 0))) -+ label_ref = NULL_RTX; -+ else -+ break; -+ } -+ -+ if (!INSN_P (scan)) -+ continue; -+ -+ /* For conditional jumps we can manage to keep on scanning if -+ we meet the destination label later on before any new jump -+ insns occure. */ -+ if (GET_CODE (scan) == JUMP_INSN) -+ { -+ if (any_condjump_p (scan) && label_ref == NULL_RTX) -+ label_ref = condjump_label (scan); -+ else -+ break; -+ } -+ -+ /* Check if we have a call and the register is used as an argument. */ -+ if (CALL_P (scan) -+ && find_reg_fusage (scan, USE, reg) ) -+ break; -+ -+ if (!reg_mentioned_p (reg, PATTERN (scan))) -+ continue; -+ -+ /* Check if casted register is used in this insn */ -+ if ((regno_use_in (REGNO (reg), PATTERN (scan)) != NULL_RTX) -+ && (GET_MODE (regno_use_in (REGNO (reg), PATTERN (scan))) == -+ GET_MODE (reg))) -+ { -+ /* If not used in the source to the set or in a memory -+ expression in the destiantion then the register is used -+ as a destination and is really dead. */ -+ if (single_set (scan) -+ && GET_CODE (PATTERN (scan)) == SET -+ && REG_P (SET_DEST (PATTERN (scan))) -+ && !regno_use_in (REGNO (reg), SET_SRC (PATTERN (scan))) -+ && label_ref == NULL_RTX) -+ { -+ unused_cast = true; -+ } -+ break; -+ } -+ -+ /* Check if register is dead or set in this insn */ -+ if (dead_or_set_p (scan, reg)) -+ { -+ unused_cast = true; -+ break; -+ } -+ } -+ -+ /* Check if we have unresolved conditional jumps */ -+ if (label_ref != NULL_RTX) -+ continue; -+ -+ if (unused_cast) -+ { -+ if (REGNO (reg) == REGNO (XEXP (SET_SRC (PATTERN (insn)), 0))) -+ { -+ /* One operand cast, safe to delete */ -+ if (dump_file) -+ { -+ fprintf (dump_file, -+ ";; INSN %i removed, casted register %i value not used.\n", -+ INSN_UID (insn), REGNO (reg)); -+ } -+ SET_INSN_DELETED (insn); -+ /* Force the instruction to be recognized again */ -+ INSN_CODE (insn) = -1; -+ } -+ else -+ { -+ /* Two operand cast, which really could be substituted with -+ a move, if the source register is dead after the cast -+ insn and then the insn which sets the source register -+ could instead directly set the destination register for -+ the cast. As long as there are no insns in between which -+ uses the register. */ -+ rtx link = NULL_RTX; -+ rtx set; -+ rtx src_reg = XEXP (SET_SRC (PATTERN (insn)), 0); -+ unused_cast = false; -+ -+ if (!find_reg_note (insn, REG_DEAD, src_reg)) -+ continue; -+ -+ /* Search for the insn which sets the source register */ -+ for (scan = PREV_INSN (insn); -+ scan && GET_CODE (scan) != CODE_LABEL; -+ scan = PREV_INSN (scan)) -+ { -+ if (! INSN_P (scan)) -+ continue; -+ -+ set = single_set (scan); -+ // Fix for bug #11763 : the following if condition -+ // has been modified and else part is included to -+ // set the link to NULL_RTX. -+ // if (set && rtx_equal_p (src_reg, SET_DEST (set))) -+ if (set && (REGNO(src_reg) == REGNO(SET_DEST(set)))) -+ { -+ if (rtx_equal_p (src_reg, SET_DEST (set))) -+ { -+ link = scan; -+ break; -+ } -+ else -+ { -+ link = NULL_RTX; -+ break; -+ } -+ } -+ } -+ -+ -+ /* Found no link or link is a call insn where we can not -+ change the destination register */ -+ if (link == NULL_RTX || CALL_P (link)) -+ continue; -+ -+ /* Scan through all insn between link and insn */ -+ for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan)) -+ { -+ /* Don't try to trace forward past a CODE_LABEL if we -+ haven't seen INSN yet. Ordinarily, we will only -+ find the setting insn in LOG_LINKS if it is in the -+ same basic block. However, cross-jumping can insert -+ code labels in between the load and the call, and -+ can result in situations where a single call insn -+ may have two targets depending on where we came -+ from. */ -+ -+ if (GET_CODE (scan) == CODE_LABEL) -+ break; -+ -+ if (!INSN_P (scan)) -+ continue; -+ -+ /* Don't try to trace forward past a JUMP. To optimize -+ safely, we would have to check that all the -+ instructions at the jump destination did not use REG. -+ */ -+ -+ if (GET_CODE (scan) == JUMP_INSN) -+ { -+ break; -+ } -+ -+ if (!reg_mentioned_p (src_reg, PATTERN (scan))) -+ continue; -+ -+ /* We have reached the cast insn */ -+ if (scan == insn) -+ { -+ /* We can remove cast and replace the destination -+ register of the link insn with the destination -+ of the cast */ -+ if (dump_file) -+ { -+ fprintf (dump_file, -+ ";; INSN %i removed, casted value unused. " -+ "Destination of removed cast operation: register %i, folded into INSN %i.\n", -+ INSN_UID (insn), REGNO (reg), -+ INSN_UID (link)); -+ } -+ /* Update link insn */ -+ SET_DEST (PATTERN (link)) = -+ gen_rtx_REG (mode, REGNO (reg)); -+ /* Force the instruction to be recognized again */ -+ INSN_CODE (link) = -1; -+ -+ /* Delete insn */ -+ SET_INSN_DELETED (insn); -+ /* Force the instruction to be recognized again */ -+ INSN_CODE (insn) = -1; -+ break; -+ } -+ } -+ } -+ } -+ } -+ } -+ -+ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) -+ { -+ -+ /* Scan through all insns looking for shifted add operations */ -+ if (dump_file) -+ { -+ fprintf (dump_file, -+ ";; Deleting redundant shifted add operations:\n"); -+ } -+ for (insn = first; insn; insn = NEXT_INSN (insn)) -+ { -+ rtx reg, mem_expr, scan, op0, op1; -+ int add_only_used_as_pointer; -+ -+ if (INSN_P (insn) -+ && GET_CODE (PATTERN (insn)) == SET -+ && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS -+ && (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == MULT -+ || GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == ASHIFT) -+ && GET_CODE (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1)) == -+ CONST_INT && REG_P (SET_DEST (PATTERN (insn))) -+ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 1)) -+ && REG_P (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0))) -+ { -+ reg = SET_DEST (PATTERN (insn)); -+ mem_expr = SET_SRC (PATTERN (insn)); -+ op0 = XEXP (XEXP (mem_expr, 0), 0); -+ op1 = XEXP (mem_expr, 1); -+ } -+ else -+ { -+ continue; -+ } -+ -+ /* Scan forward the check if the result of the shifted add -+ operation is only used as an address in memory operations and -+ that the operands to the shifted add are not clobbered. */ -+ add_only_used_as_pointer = false; -+ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) -+ { -+ if (!INSN_P (scan)) -+ continue; -+ -+ /* Don't try to trace forward past a JUMP or CALL. To optimize -+ safely, we would have to check that all the instructions at -+ the jump destination did not use REG. */ -+ -+ if (GET_CODE (scan) == JUMP_INSN) -+ { -+ break; -+ } -+ -+ /* If used in a call insn then we cannot optimize it away */ -+ if (CALL_P (scan) && find_regno_fusage (scan, USE, REGNO (reg))) -+ break; -+ -+ /* If any of the operands of the shifted add are clobbered we -+ cannot optimize the shifted adda away */ -+ if ((reg_set_p (op0, scan) && (REGNO (op0) != REGNO (reg))) -+ || (reg_set_p (op1, scan) && (REGNO (op1) != REGNO (reg)))) -+ break; -+ -+ if (!reg_mentioned_p (reg, PATTERN (scan))) -+ continue; -+ -+ /* If used any other place than as a pointer or as the -+ destination register we failed */ -+ if (!(single_set (scan) -+ && GET_CODE (PATTERN (scan)) == SET -+ && ((MEM_P (SET_DEST (PATTERN (scan))) -+ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0)) -+ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) == REGNO (reg)) -+ || (MEM_P (SET_SRC (PATTERN (scan))) -+ && REG_P (XEXP (SET_SRC (PATTERN (scan)), 0)) -+ && REGNO (XEXP -+ (SET_SRC (PATTERN (scan)), 0)) == REGNO (reg)))) -+ && !(GET_CODE (PATTERN (scan)) == SET -+ && REG_P (SET_DEST (PATTERN (scan))) -+ && !regno_use_in (REGNO (reg), -+ SET_SRC (PATTERN (scan))))) -+ break; -+ -+ /* We cannot replace the pointer in TImode insns -+ as these has a differene addressing mode than the other -+ memory insns. */ -+ if ( GET_MODE (SET_DEST (PATTERN (scan))) == TImode ) -+ break; -+ -+ /* Check if register is dead or set in this insn */ -+ if (dead_or_set_p (scan, reg)) -+ { -+ add_only_used_as_pointer = true; -+ break; -+ } -+ } -+ -+ if (add_only_used_as_pointer) -+ { -+ /* Lets delete the add insn and replace all memory references -+ which uses the pointer with the full expression. */ -+ if (dump_file) -+ { -+ fprintf (dump_file, -+ ";; Deleting INSN %i since address expression can be folded into all " -+ "memory references using this expression\n", -+ INSN_UID (insn)); -+ } -+ SET_INSN_DELETED (insn); -+ /* Force the instruction to be recognized again */ -+ INSN_CODE (insn) = -1; -+ -+ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) -+ { -+ if (!INSN_P (scan)) -+ continue; -+ -+ if (!reg_mentioned_p (reg, PATTERN (scan))) -+ continue; -+ -+ /* If used any other place than as a pointer or as the -+ destination register we failed */ -+ if ((single_set (scan) -+ && GET_CODE (PATTERN (scan)) == SET -+ && ((MEM_P (SET_DEST (PATTERN (scan))) -+ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0)) -+ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) == -+ REGNO (reg)) || (MEM_P (SET_SRC (PATTERN (scan))) -+ && -+ REG_P (XEXP -+ (SET_SRC (PATTERN (scan)), -+ 0)) -+ && -+ REGNO (XEXP -+ (SET_SRC (PATTERN (scan)), -+ 0)) == REGNO (reg))))) -+ { -+ if (dump_file) -+ { -+ fprintf (dump_file, -+ ";; Register %i replaced by indexed address in INSN %i\n", -+ REGNO (reg), INSN_UID (scan)); -+ } -+ if (MEM_P (SET_DEST (PATTERN (scan)))) -+ XEXP (SET_DEST (PATTERN (scan)), 0) = mem_expr; -+ else -+ XEXP (SET_SRC (PATTERN (scan)), 0) = mem_expr; -+ } -+ -+ /* Check if register is dead or set in this insn */ -+ if (dead_or_set_p (scan, reg)) -+ { -+ break; -+ } -+ -+ } -+ } -+ } -+ } -+ -+ -+ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) -+ { -+ -+ /* Scan through all insns looking for conditional register to -+ register move operations */ -+ if (dump_file) -+ { -+ fprintf (dump_file, -+ ";; Folding redundant conditional move operations:\n"); -+ } -+ for (insn = first; insn; insn = next_nonnote_insn (insn)) -+ { -+ rtx src_reg, dst_reg, scan, test; -+ -+ if (INSN_P (insn) -+ && GET_CODE (PATTERN (insn)) == COND_EXEC -+ && GET_CODE (COND_EXEC_CODE (PATTERN (insn))) == SET -+ && REG_P (SET_SRC (COND_EXEC_CODE (PATTERN (insn)))) -+ && REG_P (SET_DEST (COND_EXEC_CODE (PATTERN (insn)))) -+ && find_reg_note (insn, REG_DEAD, SET_SRC (COND_EXEC_CODE (PATTERN (insn))))) -+ { -+ src_reg = SET_SRC (COND_EXEC_CODE (PATTERN (insn))); -+ dst_reg = SET_DEST (COND_EXEC_CODE (PATTERN (insn))); -+ test = COND_EXEC_TEST (PATTERN (insn)); -+ } -+ else -+ { -+ continue; -+ } -+ -+ /* Scan backward through the rest of insns in this if-then or if-else -+ block and check if we can fold the move into another of the conditional -+ insns in the same block. */ -+ scan = prev_nonnote_insn (insn); -+ while (INSN_P (scan) -+ && GET_CODE (PATTERN (scan)) == COND_EXEC -+ && rtx_equal_p (COND_EXEC_TEST (PATTERN (scan)), test)) -+ { -+ rtx pattern = COND_EXEC_CODE (PATTERN (scan)); -+ if ( GET_CODE (pattern) == PARALLEL ) -+ pattern = XVECEXP (pattern, 0, 0); -+ -+ if ( reg_set_p (src_reg, pattern) ) -+ { -+ /* Fold in the destination register for the cond. move -+ into this insn. */ -+ SET_DEST (pattern) = dst_reg; -+ if (dump_file) -+ { -+ fprintf (dump_file, -+ ";; Deleting INSN %i since this operation can be folded into INSN %i\n", -+ INSN_UID (insn), INSN_UID (scan)); -+ } -+ -+ /* Scan and check if any of the insns in between uses the src_reg. We -+ must then replace it with the dst_reg. */ -+ while ( (scan = next_nonnote_insn (scan)) != insn ){ -+ avr32_replace_reg (scan, src_reg, dst_reg); -+ } -+ /* Delete the insn. */ -+ SET_INSN_DELETED (insn); -+ -+ /* Force the instruction to be recognized again */ -+ INSN_CODE (insn) = -1; -+ break; -+ } -+ -+ /* If the destination register is used but not set in this insn -+ we cannot fold. */ -+ if ( reg_mentioned_p (dst_reg, pattern) ) -+ break; -+ -+ scan = prev_nonnote_insn (scan); -+ } -+ } -+ } -+ -+} -+ -+ -+/* Exported to toplev.c. -+ -+ Do a final pass over the function, just before delayed branch -+ scheduling. */ -+static void -+avr32_reorg (void) -+{ -+ rtx insn; -+ HOST_WIDE_INT address = 0; -+ Mfix *fix; -+ -+ minipool_fix_head = minipool_fix_tail = NULL; -+ -+ /* The first insn must always be a note, or the code below won't scan it -+ properly. */ -+ insn = get_insns (); -+ if (GET_CODE (insn) != NOTE) -+ abort (); -+ -+ /* Scan all the insns and record the operands that will need fixing. */ -+ for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn)) -+ { -+ if (GET_CODE (insn) == BARRIER) -+ push_minipool_barrier (insn, address); -+ else if (INSN_P (insn)) -+ { -+ rtx table; -+ -+ note_invalid_constants (insn, address, true); -+ address += get_attr_length (insn); -+ -+ /* If the insn is a vector jump, add the size of the table and skip -+ the table. */ -+ if ((table = is_jump_table (insn)) != NULL) -+ { -+ address += get_jump_table_size (table); -+ insn = table; -+ } -+ } -+ } -+ -+ fix = minipool_fix_head; -+ -+ /* Now scan the fixups and perform the required changes. */ -+ while (fix) -+ { -+ Mfix *ftmp; -+ Mfix *fdel; -+ Mfix *last_added_fix; -+ Mfix *last_barrier = NULL; -+ Mfix *this_fix; -+ -+ /* Skip any further barriers before the next fix. */ -+ while (fix && GET_CODE (fix->insn) == BARRIER) -+ fix = fix->next; -+ -+ /* No more fixes. */ -+ if (fix == NULL) -+ break; -+ -+ last_added_fix = NULL; -+ -+ for (ftmp = fix; ftmp; ftmp = ftmp->next) -+ { -+ if (GET_CODE (ftmp->insn) == BARRIER) -+ { -+ if (ftmp->address >= minipool_vector_head->max_address) -+ break; -+ -+ last_barrier = ftmp; -+ } -+ else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL) -+ break; -+ -+ last_added_fix = ftmp; /* Keep track of the last fix added. -+ */ -+ } -+ -+ /* If we found a barrier, drop back to that; any fixes that we could -+ have reached but come after the barrier will now go in the next -+ mini-pool. */ -+ if (last_barrier != NULL) -+ { -+ /* Reduce the refcount for those fixes that won't go into this pool -+ after all. */ -+ for (fdel = last_barrier->next; -+ fdel && fdel != ftmp; fdel = fdel->next) -+ { -+ fdel->minipool->refcount--; -+ fdel->minipool = NULL; -+ } -+ -+ ftmp = last_barrier; -+ } -+ else -+ { -+ /* ftmp is first fix that we can't fit into this pool and there no -+ natural barriers that we could use. Insert a new barrier in the -+ code somewhere between the previous fix and this one, and -+ arrange to jump around it. */ -+ HOST_WIDE_INT max_address; -+ -+ /* The last item on the list of fixes must be a barrier, so we can -+ never run off the end of the list of fixes without last_barrier -+ being set. */ -+ if (ftmp == NULL) -+ abort (); -+ -+ max_address = minipool_vector_head->max_address; -+ /* Check that there isn't another fix that is in range that we -+ couldn't fit into this pool because the pool was already too -+ large: we need to put the pool before such an instruction. */ -+ if (ftmp->address < max_address) -+ max_address = ftmp->address; -+ -+ last_barrier = create_fix_barrier (last_added_fix, max_address); -+ } -+ -+ assign_minipool_offsets (last_barrier); -+ -+ while (ftmp) -+ { -+ if (GET_CODE (ftmp->insn) != BARRIER -+ && ((ftmp->minipool = add_minipool_backward_ref (ftmp)) -+ == NULL)) -+ break; -+ -+ ftmp = ftmp->next; -+ } -+ -+ /* Scan over the fixes we have identified for this pool, fixing them up -+ and adding the constants to the pool itself. */ -+ for (this_fix = fix; this_fix && ftmp != this_fix; -+ this_fix = this_fix->next) -+ if (GET_CODE (this_fix->insn) != BARRIER -+ /* Do nothing for entries present just to force the insertion of -+ a minipool. */ -+ && !IS_FORCE_MINIPOOL (this_fix->value)) -+ { -+ rtx addr = plus_constant (gen_rtx_LABEL_REF (VOIDmode, -+ minipool_vector_label), -+ this_fix->minipool->offset); -+ *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr); -+ } -+ -+ dump_minipool (last_barrier->insn); -+ fix = ftmp; -+ } -+ -+ /* Free the minipool memory. */ -+ obstack_free (&minipool_obstack, minipool_startobj); -+ -+ avr32_reorg_optimization (); -+} -+ -+ -+/* Hook for doing some final scanning of instructions. Does nothing yet...*/ -+void -+avr32_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED, -+ rtx * opvec ATTRIBUTE_UNUSED, -+ int noperands ATTRIBUTE_UNUSED) -+{ -+ return; -+} -+ -+ -+/* Function for changing the condition on the next instruction, -+ should be used when emmiting compare instructions and -+ the condition of the next instruction needs to change. -+*/ -+int -+set_next_insn_cond (rtx cur_insn, rtx new_cond) -+{ -+ rtx next_insn = next_nonnote_insn (cur_insn); -+ if ((next_insn != NULL_RTX) -+ && (INSN_P (next_insn))) -+ { -+ if ((GET_CODE (PATTERN (next_insn)) == SET) -+ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE)) -+ { -+ /* Branch instructions */ -+ XEXP (SET_SRC (PATTERN (next_insn)), 0) = new_cond; -+ /* Force the instruction to be recognized again */ -+ INSN_CODE (next_insn) = -1; -+ return TRUE; -+ } -+ else if ((GET_CODE (PATTERN (next_insn)) == SET) -+ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)), -+ GET_MODE (SET_SRC (PATTERN (next_insn))))) -+ { -+ /* scc with no compare */ -+ SET_SRC (PATTERN (next_insn)) = new_cond; -+ /* Force the instruction to be recognized again */ -+ INSN_CODE (next_insn) = -1; -+ return TRUE; -+ } -+ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC) -+ { -+ if ( GET_CODE (new_cond) == UNSPEC ) -+ { -+ COND_EXEC_TEST (PATTERN (next_insn)) = -+ gen_rtx_UNSPEC (CCmode, -+ gen_rtvec (2, -+ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0), -+ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1)), -+ XINT (new_cond, 1)); -+ } -+ else -+ { -+ PUT_CODE(COND_EXEC_TEST (PATTERN (next_insn)), GET_CODE(new_cond)); -+ } -+ } -+ } -+ -+ return FALSE; -+} -+ -+ -+/* Function for obtaining the condition for the next instruction after cur_insn. -+*/ -+rtx -+get_next_insn_cond (rtx cur_insn) -+{ -+ rtx next_insn = next_nonnote_insn (cur_insn); -+ rtx cond = NULL_RTX; -+ if (next_insn != NULL_RTX -+ && INSN_P (next_insn)) -+ { -+ if ((GET_CODE (PATTERN (next_insn)) == SET) -+ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE)) -+ { -+ /* Branch and cond if then else instructions */ -+ cond = XEXP (SET_SRC (PATTERN (next_insn)), 0); -+ } -+ else if ((GET_CODE (PATTERN (next_insn)) == SET) -+ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)), -+ GET_MODE (SET_SRC (PATTERN (next_insn))))) -+ { -+ /* scc with no compare */ -+ cond = SET_SRC (PATTERN (next_insn)); -+ } -+ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC) -+ { -+ cond = COND_EXEC_TEST (PATTERN (next_insn)); -+ } -+ } -+ return cond; -+} -+ -+ -+/* Check if the next insn is a conditional insn that will emit a compare -+ for itself. -+*/ -+rtx -+next_insn_emits_cmp (rtx cur_insn) -+{ -+ rtx next_insn = next_nonnote_insn (cur_insn); -+ rtx cond = NULL_RTX; -+ if (next_insn != NULL_RTX -+ && INSN_P (next_insn)) -+ { -+ if ( ((GET_CODE (PATTERN (next_insn)) == SET) -+ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE) -+ && (XEXP (XEXP (SET_SRC (PATTERN (next_insn)), 0),0) != cc0_rtx)) -+ || GET_CODE (PATTERN (next_insn)) == COND_EXEC ) -+ return TRUE; -+ } -+ return FALSE; -+} -+ -+ -+rtx -+avr32_output_cmp (rtx cond, enum machine_mode mode, rtx op0, rtx op1) -+{ -+ -+ rtx new_cond = NULL_RTX; -+ rtx ops[2]; -+ rtx compare_pattern; -+ ops[0] = op0; -+ ops[1] = op1; -+ -+ if ( GET_CODE (op0) == AND ) -+ compare_pattern = op0; -+ else -+ compare_pattern = gen_rtx_COMPARE (mode, op0, op1); -+ -+ new_cond = is_compare_redundant (compare_pattern, cond); -+ -+ if (new_cond != NULL_RTX) -+ return new_cond; -+ -+ /* Check if we are inserting a bit-load instead of a compare. */ -+ if ( GET_CODE (op0) == AND ) -+ { -+ ops[0] = XEXP (op0, 0); -+ ops[1] = XEXP (op0, 1); -+ output_asm_insn ("bld\t%0, %p1", ops); -+ return cond; -+ } -+ -+ /* Insert compare */ -+ switch (mode) -+ { -+ case QImode: -+ output_asm_insn ("cp.b\t%0, %1", ops); -+ break; -+ case HImode: -+ output_asm_insn ("cp.h\t%0, %1", ops); -+ break; -+ case SImode: -+ output_asm_insn ("cp.w\t%0, %1", ops); -+ break; -+ case DImode: -+ if (GET_CODE (op1) != REG) -+ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0", ops); -+ else -+ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0, %m1", ops); -+ break; -+ default: -+ internal_error ("Unknown comparison mode"); -+ break; -+ } -+ -+ return cond; -+} -+ -+ -+int -+avr32_load_multiple_operation (rtx op, -+ enum machine_mode mode ATTRIBUTE_UNUSED) -+{ -+ int count = XVECLEN (op, 0); -+ unsigned int dest_regno; -+ rtx src_addr; -+ rtx elt; -+ int i = 1, base = 0; -+ -+ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET) -+ return 0; -+ -+ /* Check to see if this might be a write-back. */ -+ if (GET_CODE (SET_SRC (elt = XVECEXP (op, 0, 0))) == PLUS) -+ { -+ i++; -+ base = 1; -+ -+ /* Now check it more carefully. */ -+ if (GET_CODE (SET_DEST (elt)) != REG -+ || GET_CODE (XEXP (SET_SRC (elt), 0)) != REG -+ || GET_CODE (XEXP (SET_SRC (elt), 1)) != CONST_INT -+ || INTVAL (XEXP (SET_SRC (elt), 1)) != (count - 1) * 4) -+ return 0; -+ } -+ -+ /* Perform a quick check so we don't blow up below. */ -+ if (count <= 1 -+ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET -+ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != REG -+ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC) -+ return 0; -+ -+ dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, i - 1))); -+ src_addr = XEXP (SET_SRC (XVECEXP (op, 0, i - 1)), 0); -+ -+ for (; i < count; i++) -+ { -+ elt = XVECEXP (op, 0, i); -+ -+ if (GET_CODE (elt) != SET -+ || GET_CODE (SET_DEST (elt)) != REG -+ || GET_MODE (SET_DEST (elt)) != SImode -+ || GET_CODE (SET_SRC (elt)) != UNSPEC) -+ return 0; -+ } -+ -+ return 1; -+} -+ -+ -+int -+avr32_store_multiple_operation (rtx op, -+ enum machine_mode mode ATTRIBUTE_UNUSED) -+{ -+ int count = XVECLEN (op, 0); -+ int src_regno; -+ rtx dest_addr; -+ rtx elt; -+ int i = 1; -+ -+ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET) -+ return 0; -+ -+ /* Perform a quick check so we don't blow up below. */ -+ if (count <= i -+ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET -+ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != MEM -+ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC) -+ return 0; -+ -+ src_regno = REGNO (SET_SRC (XVECEXP (op, 0, i - 1))); -+ dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, i - 1)), 0); -+ -+ for (; i < count; i++) -+ { -+ elt = XVECEXP (op, 0, i); -+ -+ if (GET_CODE (elt) != SET -+ || GET_CODE (SET_DEST (elt)) != MEM -+ || GET_MODE (SET_DEST (elt)) != SImode -+ || GET_CODE (SET_SRC (elt)) != UNSPEC) -+ return 0; -+ } -+ -+ return 1; -+} -+ -+ -+int -+avr32_valid_macmac_bypass (rtx insn_out, rtx insn_in) -+{ -+ /* Check if they use the same accumulator */ -+ if (rtx_equal_p -+ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) -+ { -+ return TRUE; -+ } -+ -+ return FALSE; -+} -+ -+ -+int -+avr32_valid_mulmac_bypass (rtx insn_out, rtx insn_in) -+{ -+ /* -+ Check if the mul instruction produces the accumulator for the mac -+ instruction. */ -+ if (rtx_equal_p -+ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) -+ { -+ return TRUE; -+ } -+ return FALSE; -+} -+ -+ -+int -+avr32_store_bypass (rtx insn_out, rtx insn_in) -+{ -+ /* Only valid bypass if the output result is used as an src in the store -+ instruction, NOT if used as a pointer or base. */ -+ if (rtx_equal_p -+ (SET_DEST (PATTERN (insn_out)), SET_SRC (PATTERN (insn_in)))) -+ { -+ return TRUE; -+ } -+ -+ return FALSE; -+} -+ -+ -+int -+avr32_mul_waw_bypass (rtx insn_out, rtx insn_in) -+{ -+ /* Check if the register holding the result from the mul instruction is -+ used as a result register in the input instruction. */ -+ if (rtx_equal_p -+ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) -+ { -+ return TRUE; -+ } -+ -+ return FALSE; -+} -+ -+ -+int -+avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in) -+{ -+ /* Check if the first loaded word in insn_out is used in insn_in. */ -+ rtx dst_reg; -+ rtx second_loaded_reg; -+ -+ /* If this is a double alu operation then the bypass is not valid */ -+ if ((get_attr_type (insn_in) == TYPE_ALU -+ || get_attr_type (insn_in) == TYPE_ALU2) -+ && (GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (insn_out)))) > 4)) -+ return FALSE; -+ -+ /* Get the destination register in the load */ -+ if (!REG_P (SET_DEST (PATTERN (insn_out)))) -+ return FALSE; -+ -+ dst_reg = SET_DEST (PATTERN (insn_out)); -+ second_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 1); -+ -+ if (!reg_mentioned_p (second_loaded_reg, PATTERN (insn_in))) -+ return TRUE; -+ -+ return FALSE; -+} -+ -+ -+int -+avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in) -+{ -+ /* -+ Check if the two first loaded word in insn_out are used in insn_in. */ -+ rtx dst_reg; -+ rtx third_loaded_reg, fourth_loaded_reg; -+ -+ /* Get the destination register in the load */ -+ if (!REG_P (SET_DEST (PATTERN (insn_out)))) -+ return FALSE; -+ -+ dst_reg = SET_DEST (PATTERN (insn_out)); -+ third_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 2); -+ fourth_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 3); -+ -+ if (!reg_mentioned_p (third_loaded_reg, PATTERN (insn_in)) -+ && !reg_mentioned_p (fourth_loaded_reg, PATTERN (insn_in))) -+ { -+ return TRUE; -+ } -+ -+ return FALSE; -+} -+ -+ -+rtx -+avr32_ifcvt_modify_test (ce_if_block_t *ce_info, rtx test ) -+{ -+ rtx branch_insn; -+ rtx cmp_test; -+ rtx compare_op0; -+ rtx compare_op1; -+ -+ -+ if ( !ce_info -+ || test == NULL_RTX -+ || !reg_mentioned_p (cc0_rtx, test)) -+ return test; -+ -+ branch_insn = BB_END (ce_info->test_bb); -+ cmp_test = PATTERN(prev_nonnote_insn (branch_insn)); -+ -+ if (GET_CODE(cmp_test) != SET -+ || !CC0_P(XEXP(cmp_test, 0)) ) -+ return cmp_test; -+ -+ if ( GET_CODE(SET_SRC(cmp_test)) == COMPARE ){ -+ compare_op0 = XEXP(SET_SRC(cmp_test), 0); -+ compare_op1 = XEXP(SET_SRC(cmp_test), 1); -+ } else { -+ compare_op0 = SET_SRC(cmp_test); -+ compare_op1 = const0_rtx; -+ } -+ -+ return gen_rtx_fmt_ee (GET_CODE(test), GET_MODE (compare_op0), -+ compare_op0, compare_op1); -+} -+ -+ -+rtx -+avr32_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn, -+ int *num_true_changes) -+{ -+ rtx test = COND_EXEC_TEST(pattern); -+ rtx op = COND_EXEC_CODE(pattern); -+ rtx cmp_insn; -+ rtx cond_exec_insn; -+ int inputs_set_outside_ifblock = 1; -+ basic_block current_bb = BLOCK_FOR_INSN (insn); -+ rtx bb_insn ; -+ enum machine_mode mode = GET_MODE (XEXP (op, 0)); -+ -+ if (CC0_P(XEXP(test, 0))) -+ test = avr32_ifcvt_modify_test (ce_info, -+ test ); -+ -+ /* We do not support multiple tests. */ -+ if ( ce_info -+ && ce_info->num_multiple_test_blocks > 0 ) -+ return NULL_RTX; -+ -+ pattern = gen_rtx_COND_EXEC (VOIDmode, test, op); -+ -+ if ( !reload_completed ) -+ { -+ rtx start; -+ int num_insns; -+ int max_insns = MAX_CONDITIONAL_EXECUTE; -+ -+ if ( !ce_info ) -+ return op; -+ -+ /* Check if the insn is not suitable for conditional -+ execution. */ -+ start_sequence (); -+ cond_exec_insn = emit_insn (pattern); -+ if ( recog_memoized (cond_exec_insn) < 0 -+ && can_create_pseudo_p () ) -+ { -+ /* Insn is not suitable for conditional execution, try -+ to fix it up by using an extra scratch register or -+ by pulling the operation outside the if-then-else -+ and then emiting a conditional move inside the if-then-else. */ -+ end_sequence (); -+ if ( GET_CODE (op) != SET -+ || !REG_P (SET_DEST (op)) -+ || GET_CODE (SET_SRC (op)) == IF_THEN_ELSE -+ || GET_MODE_SIZE (mode) > UNITS_PER_WORD ) -+ return NULL_RTX; -+ -+ /* Check if any of the input operands to the insn is set inside the -+ current block. */ -+ if ( current_bb->index == ce_info->then_bb->index ) -+ start = PREV_INSN (BB_HEAD (ce_info->then_bb)); -+ else -+ start = PREV_INSN (BB_HEAD (ce_info->else_bb)); -+ -+ -+ for ( bb_insn = next_nonnote_insn (start); bb_insn != insn; bb_insn = next_nonnote_insn (bb_insn) ) -+ { -+ rtx set = single_set (bb_insn); -+ -+ if ( set && reg_mentioned_p (SET_DEST (set), SET_SRC (op))) -+ { -+ inputs_set_outside_ifblock = 0; -+ break; -+ } -+ } -+ -+ cmp_insn = prev_nonnote_insn (BB_END (ce_info->test_bb)); -+ -+ -+ /* Check if we can insert more insns. */ -+ num_insns = ( ce_info->num_then_insns + -+ ce_info->num_else_insns + -+ ce_info->num_cond_clobber_insns + -+ ce_info->num_extra_move_insns ); -+ -+ if ( ce_info->num_else_insns != 0 ) -+ max_insns *=2; -+ -+ if ( num_insns >= max_insns ) -+ return NULL_RTX; -+ -+ /* Check if we have an instruction which might be converted to -+ conditional form if we give it a scratch register to clobber. */ -+ { -+ rtx clobber_insn; -+ rtx scratch_reg = gen_reg_rtx (mode); -+ rtx new_pattern = copy_rtx (pattern); -+ rtx set_src = SET_SRC (COND_EXEC_CODE (new_pattern)); -+ -+ rtx clobber = gen_rtx_CLOBBER (mode, scratch_reg); -+ rtx vec[2] = { COND_EXEC_CODE (new_pattern), clobber }; -+ COND_EXEC_CODE (new_pattern) = gen_rtx_PARALLEL (mode, gen_rtvec_v (2, vec)); -+ -+ start_sequence (); -+ clobber_insn = emit_insn (new_pattern); -+ -+ if ( recog_memoized (clobber_insn) >= 0 -+ && ( ( GET_RTX_LENGTH (GET_CODE (set_src)) == 2 -+ && CONST_INT_P (XEXP (set_src, 1)) -+ && avr32_const_ok_for_constraint_p (INTVAL (XEXP (set_src, 1)), 'K', "Ks08") ) -+ || !ce_info->else_bb -+ || current_bb->index == ce_info->else_bb->index )) -+ { -+ end_sequence (); -+ /* Force the insn to be recognized again. */ -+ INSN_CODE (insn) = -1; -+ -+ /* If this is the first change in this IF-block then -+ signal that we have made a change. */ -+ if ( ce_info->num_cond_clobber_insns == 0 -+ && ce_info->num_extra_move_insns == 0 ) -+ *num_true_changes += 1; -+ -+ ce_info->num_cond_clobber_insns++; -+ -+ if (dump_file) -+ fprintf (dump_file, -+ "\nReplacing INSN %d with an insn using a scratch register for later ifcvt passes...\n", -+ INSN_UID (insn)); -+ -+ return COND_EXEC_CODE (new_pattern); -+ } -+ end_sequence (); -+ } -+ -+ if ( inputs_set_outside_ifblock ) -+ { -+ /* Check if the insn before the cmp is an and which used -+ together with the cmp can be optimized into a bld. If -+ so then we should try to put the insn before the and -+ so that we can catch the bld peephole. */ -+ rtx set; -+ rtx insn_before_cmp_insn = prev_nonnote_insn (cmp_insn); -+ if (insn_before_cmp_insn -+ && (set = single_set (insn_before_cmp_insn)) -+ && GET_CODE (SET_SRC (set)) == AND -+ && one_bit_set_operand (XEXP (SET_SRC (set), 1), SImode) -+ /* Also make sure that the insn does not set any -+ of the input operands to the insn we are pulling out. */ -+ && !reg_mentioned_p (SET_DEST (set), SET_SRC (op)) ) -+ cmp_insn = prev_nonnote_insn (cmp_insn); -+ -+ /* We can try to put the operation outside the if-then-else -+ blocks and insert a move. */ -+ if ( !insn_invalid_p (insn) -+ /* Do not allow conditional insns to be moved outside the -+ if-then-else. */ -+ && !reg_mentioned_p (cc0_rtx, insn) -+ /* We cannot move memory loads outside of the if-then-else -+ since the memory access should not be perfomed if the -+ condition is not met. */ -+ && !mem_mentioned_p (SET_SRC (op)) ) -+ { -+ rtx scratch_reg = gen_reg_rtx (mode); -+ rtx op_pattern = copy_rtx (op); -+ rtx new_insn, seq; -+ rtx link, prev_link; -+ op = copy_rtx (op); -+ /* Emit the operation to a temp reg before the compare, -+ and emit a move inside the if-then-else, hoping that the -+ whole if-then-else can be converted to conditional -+ execution. */ -+ SET_DEST (op_pattern) = scratch_reg; -+ start_sequence (); -+ new_insn = emit_insn (op_pattern); -+ seq = get_insns(); -+ end_sequence (); -+ -+ /* Check again that the insn is valid. For some insns the insn might -+ become invalid if the destination register is changed. Ie. for mulacc -+ operations. */ -+ if ( insn_invalid_p (new_insn) ) -+ return NULL_RTX; -+ -+ emit_insn_before_setloc (seq, cmp_insn, INSN_LOCATOR (insn)); -+ -+ if (dump_file) -+ fprintf (dump_file, -+ "\nMoving INSN %d out of IF-block by adding INSN %d...\n", -+ INSN_UID (insn), INSN_UID (new_insn)); -+ -+ ce_info->extra_move_insns[ce_info->num_extra_move_insns] = insn; -+ ce_info->moved_insns[ce_info->num_extra_move_insns] = new_insn; -+ XEXP (op, 1) = scratch_reg; -+ /* Force the insn to be recognized again. */ -+ INSN_CODE (insn) = -1; -+ -+ /* Move REG_DEAD notes to the moved insn. */ -+ prev_link = NULL_RTX; -+ for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) -+ { -+ if (REG_NOTE_KIND (link) == REG_DEAD) -+ { -+ /* Add the REG_DEAD note to the new insn. */ -+ rtx dead_reg = XEXP (link, 0); -+ REG_NOTES (new_insn) = gen_rtx_EXPR_LIST (REG_DEAD, dead_reg, REG_NOTES (new_insn)); -+ /* Remove the REG_DEAD note from the insn we convert to a move. */ -+ if ( prev_link ) -+ XEXP (prev_link, 1) = XEXP (link, 1); -+ else -+ REG_NOTES (insn) = XEXP (link, 1); -+ } -+ else -+ { -+ prev_link = link; -+ } -+ } -+ /* Add a REG_DEAD note to signal that the scratch register is dead. */ -+ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, scratch_reg, REG_NOTES (insn)); -+ -+ /* If this is the first change in this IF-block then -+ signal that we have made a change. */ -+ if ( ce_info->num_cond_clobber_insns == 0 -+ && ce_info->num_extra_move_insns == 0 ) -+ *num_true_changes += 1; -+ -+ ce_info->num_extra_move_insns++; -+ return op; -+ } -+ } -+ -+ /* We failed to fixup the insns, so this if-then-else can not be made -+ conditional. Just return NULL_RTX so that the if-then-else conversion -+ for this if-then-else will be cancelled. */ -+ return NULL_RTX; -+ } -+ end_sequence (); -+ return op; -+ } -+ -+ /* Signal that we have started if conversion after reload, which means -+ that it should be safe to split all the predicable clobber insns which -+ did not become cond_exec back into a simpler form if possible. */ -+ cfun->machine->ifcvt_after_reload = 1; -+ -+ return pattern; -+} -+ -+ -+void -+avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info, int *num_true_changes) -+{ -+ int n; -+ -+ if ( ce_info->num_extra_move_insns > 0 -+ && ce_info->num_cond_clobber_insns == 0) -+ /* Signal that we did not do any changes after all. */ -+ *num_true_changes -= 1; -+ -+ /* Remove any inserted move insns. */ -+ for ( n = 0; n < ce_info->num_extra_move_insns; n++ ) -+ { -+ rtx link, prev_link; -+ -+ /* Remove REG_DEAD note since we are not needing the scratch register anyway. */ -+ prev_link = NULL_RTX; -+ for (link = REG_NOTES (ce_info->extra_move_insns[n]); link; link = XEXP (link, 1)) -+ { -+ if (REG_NOTE_KIND (link) == REG_DEAD) -+ { -+ if ( prev_link ) -+ XEXP (prev_link, 1) = XEXP (link, 1); -+ else -+ REG_NOTES (ce_info->extra_move_insns[n]) = XEXP (link, 1); -+ } -+ else -+ { -+ prev_link = link; -+ } -+ } -+ -+ /* Revert all reg_notes for the moved insn. */ -+ for (link = REG_NOTES (ce_info->moved_insns[n]); link; link = XEXP (link, 1)) -+ { -+ REG_NOTES (ce_info->extra_move_insns[n]) = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link), -+ XEXP (link, 0), -+ REG_NOTES (ce_info->extra_move_insns[n])); -+ } -+ -+ /* Remove the moved insn. */ -+ remove_insn ( ce_info->moved_insns[n] ); -+ } -+} -+ -+ -+/* Function returning TRUE if INSN with OPERANDS is a splittable -+ conditional immediate clobber insn. We assume that the insn is -+ already a conditional immediate clobber insns and do not check -+ for that. */ -+int -+avr32_cond_imm_clobber_splittable (rtx insn, rtx operands[]) -+{ -+ if ( REGNO (operands[0]) == REGNO (operands[1]) ) -+ { -+ if ( (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS -+ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is21")) -+ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS -+ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21"))) -+ return FALSE; -+ } -+ else if ( (logical_binary_operator (SET_SRC (XVECEXP (PATTERN (insn),0,0)), VOIDmode) -+ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS -+ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is16")) -+ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS -+ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks16"))) ) -+ return FALSE; -+ -+ return TRUE; -+} -+ -+ -+/* Function for getting an integer value from a const_int or const_double -+ expression regardless of the HOST_WIDE_INT size. Each target cpu word -+ will be put into the val array where the LSW will be stored at the lowest -+ address and so forth. Assumes that const_expr is either a const_int or -+ const_double. Only valid for modes which have sizes that are a multiple -+ of the word size. -+*/ -+void -+avr32_get_intval (enum machine_mode mode, rtx const_expr, HOST_WIDE_INT *val) -+{ -+ int words_in_mode = GET_MODE_SIZE (mode)/UNITS_PER_WORD; -+ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD; -+ -+ if ( GET_CODE(const_expr) == CONST_DOUBLE ){ -+ HOST_WIDE_INT hi = CONST_DOUBLE_HIGH(const_expr); -+ HOST_WIDE_INT lo = CONST_DOUBLE_LOW(const_expr); -+ /* Evaluate hi and lo values of const_double. */ -+ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0), -+ GEN_INT (lo), -+ &val[0]); -+ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0), -+ GEN_INT (hi), -+ &val[words_in_const_int]); -+ } else if ( GET_CODE(const_expr) == CONST_INT ){ -+ HOST_WIDE_INT value = INTVAL(const_expr); -+ int word; -+ for ( word = 0; (word < words_in_mode) && (word < words_in_const_int); word++ ){ -+ /* Shift word up to the MSW and shift down again to extract the -+ word and sign-extend. */ -+ int lshift = (words_in_const_int - word - 1) * BITS_PER_WORD; -+ int rshift = (words_in_const_int-1) * BITS_PER_WORD; -+ val[word] = (value << lshift) >> rshift; -+ } -+ -+ for ( ; word < words_in_mode; word++ ){ -+ /* Just put the sign bits in the remaining words. */ -+ val[word] = value < 0 ? -1 : 0; -+ } -+ } -+} -+ -+ -+void -+avr32_split_const_expr (enum machine_mode mode, enum machine_mode new_mode, -+ rtx expr, rtx *split_expr) -+{ -+ int i, word; -+ int words_in_intval = GET_MODE_SIZE (mode)/UNITS_PER_WORD; -+ int words_in_split_values = GET_MODE_SIZE (new_mode)/UNITS_PER_WORD; -+ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD; -+ HOST_WIDE_INT *val = alloca (words_in_intval * UNITS_PER_WORD); -+ -+ avr32_get_intval (mode, expr, val); -+ -+ for ( i=0; i < (words_in_intval/words_in_split_values); i++ ) -+ { -+ HOST_WIDE_INT value_lo = 0, value_hi = 0; -+ for ( word = 0; word < words_in_split_values; word++ ) -+ { -+ if ( word >= words_in_const_int ) -+ value_hi |= ((val[i * words_in_split_values + word] & -+ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1)) -+ << (BITS_PER_WORD * (word - words_in_const_int))); -+ else -+ value_lo |= ((val[i * words_in_split_values + word] & -+ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1)) -+ << (BITS_PER_WORD * word)); -+ } -+ split_expr[i] = immed_double_const(value_lo, value_hi, new_mode); -+ } -+} -+ -+ -+/* Set up library functions to comply to AVR32 ABI */ -+static void -+avr32_init_libfuncs (void) -+{ -+ /* Convert gcc run-time function names to AVR32 ABI names */ -+ -+ /* Double-precision floating-point arithmetic. */ -+ set_optab_libfunc (neg_optab, DFmode, NULL); -+ -+ /* Double-precision comparisons. */ -+ set_optab_libfunc (eq_optab, DFmode, "__avr32_f64_cmp_eq"); -+ set_optab_libfunc (ne_optab, DFmode, NULL); -+ set_optab_libfunc (lt_optab, DFmode, "__avr32_f64_cmp_lt"); -+ set_optab_libfunc (le_optab, DFmode, NULL); -+ set_optab_libfunc (ge_optab, DFmode, "__avr32_f64_cmp_ge"); -+ set_optab_libfunc (gt_optab, DFmode, NULL); -+ -+ /* Single-precision floating-point arithmetic. */ -+ set_optab_libfunc (smul_optab, SFmode, "__avr32_f32_mul"); -+ set_optab_libfunc (neg_optab, SFmode, NULL); -+ -+ /* Single-precision comparisons. */ -+ set_optab_libfunc (eq_optab, SFmode, "__avr32_f32_cmp_eq"); -+ set_optab_libfunc (ne_optab, SFmode, NULL); -+ set_optab_libfunc (lt_optab, SFmode, "__avr32_f32_cmp_lt"); -+ set_optab_libfunc (le_optab, SFmode, NULL); -+ set_optab_libfunc (ge_optab, SFmode, "__avr32_f32_cmp_ge"); -+ set_optab_libfunc (gt_optab, SFmode, NULL); -+ -+ /* Floating-point to integer conversions. */ -+ set_conv_libfunc (sfix_optab, SImode, DFmode, "__avr32_f64_to_s32"); -+ set_conv_libfunc (ufix_optab, SImode, DFmode, "__avr32_f64_to_u32"); -+ set_conv_libfunc (sfix_optab, DImode, DFmode, "__avr32_f64_to_s64"); -+ set_conv_libfunc (ufix_optab, DImode, DFmode, "__avr32_f64_to_u64"); -+ set_conv_libfunc (sfix_optab, SImode, SFmode, "__avr32_f32_to_s32"); -+ set_conv_libfunc (ufix_optab, SImode, SFmode, "__avr32_f32_to_u32"); -+ set_conv_libfunc (sfix_optab, DImode, SFmode, "__avr32_f32_to_s64"); -+ set_conv_libfunc (ufix_optab, DImode, SFmode, "__avr32_f32_to_u64"); -+ -+ /* Conversions between floating types. */ -+ set_conv_libfunc (trunc_optab, SFmode, DFmode, "__avr32_f64_to_f32"); -+ set_conv_libfunc (sext_optab, DFmode, SFmode, "__avr32_f32_to_f64"); -+ -+ /* Integer to floating-point conversions. Table 8. */ -+ set_conv_libfunc (sfloat_optab, DFmode, SImode, "__avr32_s32_to_f64"); -+ set_conv_libfunc (sfloat_optab, DFmode, DImode, "__avr32_s64_to_f64"); -+ set_conv_libfunc (sfloat_optab, SFmode, SImode, "__avr32_s32_to_f32"); -+ set_conv_libfunc (sfloat_optab, SFmode, DImode, "__avr32_s64_to_f32"); -+ set_conv_libfunc (ufloat_optab, DFmode, SImode, "__avr32_u32_to_f64"); -+ set_conv_libfunc (ufloat_optab, SFmode, SImode, "__avr32_u32_to_f32"); -+ /* TODO: Add these to gcc library functions */ -+ //set_conv_libfunc (ufloat_optab, DFmode, DImode, NULL); -+ //set_conv_libfunc (ufloat_optab, SFmode, DImode, NULL); -+ -+ /* Long long. Table 9. */ -+ set_optab_libfunc (smul_optab, DImode, "__avr32_mul64"); -+ set_optab_libfunc (sdiv_optab, DImode, "__avr32_sdiv64"); -+ set_optab_libfunc (udiv_optab, DImode, "__avr32_udiv64"); -+ set_optab_libfunc (smod_optab, DImode, "__avr32_smod64"); -+ set_optab_libfunc (umod_optab, DImode, "__avr32_umod64"); -+ set_optab_libfunc (ashl_optab, DImode, "__avr32_lsl64"); -+ set_optab_libfunc (lshr_optab, DImode, "__avr32_lsr64"); -+ set_optab_libfunc (ashr_optab, DImode, "__avr32_asr64"); -+ -+ /* Floating point library functions which have fast versions. */ -+ if ( TARGET_FAST_FLOAT ) -+ { -+ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div_fast"); -+ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul_fast"); -+ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add_fast"); -+ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub_fast"); -+ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add_fast"); -+ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub_fast"); -+ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div_fast"); -+ } -+ else -+ { -+ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div"); -+ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul"); -+ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add"); -+ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub"); -+ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add"); -+ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub"); -+ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div"); -+ } -+} -+ -+ -+/* Record a flashvault declaration. */ -+static void -+flashvault_decl_list_add (unsigned int vector_num, const char *name) -+{ -+ struct flashvault_decl_list *p; -+ -+ p = (struct flashvault_decl_list *) -+ xmalloc (sizeof (struct flashvault_decl_list)); -+ p->next = flashvault_decl_list_head; -+ p->name = name; -+ p->vector_num = vector_num; -+ flashvault_decl_list_head = p; -+} -+ -+ -+static void -+avr32_file_end (void) -+{ -+ struct flashvault_decl_list *p; -+ unsigned int num_entries = 0; -+ -+ /* Check if a list of flashvault declarations exists. */ -+ if (flashvault_decl_list_head != NULL) -+ { -+ /* Calculate the number of entries in the table. */ -+ for (p = flashvault_decl_list_head; p != NULL; p = p->next) -+ { -+ num_entries++; -+ } -+ -+ /* Generate the beginning of the flashvault data table. */ -+ fputs ("\t.global __fv_table\n" -+ "\t.data\n" -+ "\t.align 2\n" -+ "\t.set .LFVTABLE, . + 0\n" -+ "\t.type __fv_table, @object\n", asm_out_file); -+ /* Each table entry is 8 bytes. */ -+ fprintf (asm_out_file, "\t.size __fv_table, %u\n", (num_entries * 8)); -+ -+ fputs("__fv_table:\n", asm_out_file); -+ -+ for (p = flashvault_decl_list_head; p != NULL; p = p->next) -+ { -+ /* Output table entry. */ -+ fprintf (asm_out_file, -+ "\t.align 2\n" -+ "\t.int %u\n", p->vector_num); -+ fprintf (asm_out_file, -+ "\t.align 2\n" -+ "\t.int %s\n", p->name); -+ } -+ } -+} ---- /dev/null -+++ b/gcc/config/avr32/avr32-elf.h -@@ -0,0 +1,91 @@ -+/* -+ Elf specific definitions. -+ Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. -+ -+ This file is part of GCC. -+ -+ This program is free software; you can redistribute it and/or modify -+ it under the terms of the GNU General Public License as published by -+ the Free Software Foundation; either version 2 of the License, or -+ (at your option) any later version. -+ -+ This program is distributed in the hope that it will be useful, -+ but WITHOUT ANY WARRANTY; without even the implied warranty of -+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+ GNU General Public License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with this program; if not, write to the Free Software -+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ -+ -+ -+/***************************************************************************** -+ * Controlling the Compiler Driver, 'gcc' -+ *****************************************************************************/ -+ -+/* Run-time Target Specification. */ -+#undef TARGET_VERSION -+#define TARGET_VERSION fputs (" (AVR32 GNU with ELF)", stderr); -+ -+/* -+Another C string constant used much like LINK_SPEC. The -+difference between the two is that STARTFILE_SPEC is used at -+the very beginning of the command given to the linker. -+ -+If this macro is not defined, a default is provided that loads the -+standard C startup file from the usual place. See gcc.c. -+*/ -+#if 0 -+#undef STARTFILE_SPEC -+#define STARTFILE_SPEC "crt0%O%s crti%O%s crtbegin%O%s" -+#endif -+#undef STARTFILE_SPEC -+#define STARTFILE_SPEC "%{mflashvault: crtfv.o%s} %{!mflashvault: crt0.o%s} \ -+ crti.o%s crtbegin.o%s" -+ -+#undef LINK_SPEC -+#define LINK_SPEC "%{muse-oscall:--defsym __do_not_use_oscall_coproc__=0} %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}} %{mpart=uc3a3revd:-mavr32elf_uc3a3256s;:%{mpart=*:-mavr32elf_%*}} %{mcpu=*:-mavr32elf_%*}" -+ -+ -+/* -+Another C string constant used much like LINK_SPEC. The -+difference between the two is that ENDFILE_SPEC is used at -+the very end of the command given to the linker. -+ -+Do not define this macro if it does not need to do anything. -+*/ -+#undef ENDFILE_SPEC -+#define ENDFILE_SPEC "crtend%O%s crtn%O%s" -+ -+ -+/* Target CPU builtins. */ -+#define TARGET_CPU_CPP_BUILTINS() \ -+ do \ -+ { \ -+ builtin_define ("__avr32__"); \ -+ builtin_define ("__AVR32__"); \ -+ builtin_define ("__AVR32_ELF__"); \ -+ builtin_define (avr32_part->macro); \ -+ builtin_define (avr32_arch->macro); \ -+ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \ -+ builtin_define ("__AVR32_AVR32A__"); \ -+ else \ -+ builtin_define ("__AVR32_AVR32B__"); \ -+ if (TARGET_UNALIGNED_WORD) \ -+ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \ -+ if (TARGET_SIMD) \ -+ builtin_define ("__AVR32_HAS_SIMD__"); \ -+ if (TARGET_DSP) \ -+ builtin_define ("__AVR32_HAS_DSP__"); \ -+ if (TARGET_RMW) \ -+ builtin_define ("__AVR32_HAS_RMW__"); \ -+ if (TARGET_BRANCH_PRED) \ -+ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \ -+ if (TARGET_FAST_FLOAT) \ -+ builtin_define ("__AVR32_FAST_FLOAT__"); \ -+ if (TARGET_FLASHVAULT) \ -+ builtin_define ("__AVR32_FLASHVAULT__"); \ -+ if (TARGET_NO_MUL_INSNS) \ -+ builtin_define ("__AVR32_NO_MUL__"); \ -+ } \ -+ while (0) ---- /dev/null -+++ b/gcc/config/avr32/avr32.h -@@ -0,0 +1,3316 @@ -+/* -+ Definitions of target machine for AVR32. -+ Copyright 2003,2004,2005,2006,2007,2008,2009,2010 Atmel Corporation. -+ -+ This file is part of GCC. -+ -+ This program is free software; you can redistribute it and/or modify -+ it under the terms of the GNU General Public License as published by -+ the Free Software Foundation; either version 2 of the License, or -+ (at your option) any later version. -+ -+ This program is distributed in the hope that it will be useful, -+ but WITHOUT ANY WARRANTY; without even the implied warranty of -+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+ GNU General Public License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with this program; if not, write to the Free Software -+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ -+ -+#ifndef GCC_AVR32_H -+#define GCC_AVR32_H -+ -+ -+#ifndef OBJECT_FORMAT_ELF -+#error avr32.h included before elfos.h -+#endif -+ -+#ifndef LOCAL_LABEL_PREFIX -+#define LOCAL_LABEL_PREFIX "." -+#endif -+ -+#ifndef SUBTARGET_CPP_SPEC -+#define SUBTARGET_CPP_SPEC "-D__ELF__" -+#endif -+ -+ -+extern struct rtx_def *avr32_compare_op0; -+extern struct rtx_def *avr32_compare_op1; -+ -+/* comparison type */ -+enum avr32_cmp_type { -+ CMP_QI, /* 1 byte ->char */ -+ CMP_HI, /* 2 byte->half word */ -+ CMP_SI, /* four byte->word*/ -+ CMP_DI, /* eight byte->double word */ -+ CMP_SF, /* single precision floats */ -+ CMP_MAX /* max comparison type */ -+}; -+ -+extern enum avr32_cmp_type avr32_branch_type; /* type of branch to use */ -+ -+ -+extern struct rtx_def *avr32_acc_cache; -+ -+/* cache instruction op5 codes */ -+#define AVR32_CACHE_INVALIDATE_ICACHE 1 -+ -+/* -+These bits describe the different types of function supported by the AVR32 -+backend. They are exclusive, e.g. a function cannot be both a normal function -+and an interworked function. Knowing the type of a function is important for -+determining its prologue and epilogue sequences. Note value 7 is currently -+unassigned. Also note that the interrupt function types all have bit 2 set, -+so that they can be tested for easily. Note that 0 is deliberately chosen for -+AVR32_FT_UNKNOWN so that when the machine_function structure is initialized -+(to zero) func_type will default to unknown. This will force the first use of -+avr32_current_func_type to call avr32_compute_func_type. -+*/ -+#define AVR32_FT_UNKNOWN 0 /* Type has not yet been determined. */ -+#define AVR32_FT_NORMAL 1 /* Normal function. */ -+#define AVR32_FT_ACALL 2 /* An acall function. */ -+#define AVR32_FT_EXCEPTION_HANDLER 3 /* A C++ exception handler. */ -+#define AVR32_FT_ISR_FULL 4 /* A fully shadowed interrupt mode. */ -+#define AVR32_FT_ISR_HALF 5 /* A half shadowed interrupt mode. */ -+#define AVR32_FT_ISR_NONE 6 /* No shadow registers. */ -+ -+#define AVR32_FT_TYPE_MASK ((1 << 3) - 1) -+ -+/* In addition functions can have several type modifiers, outlined by these bit masks: */ -+#define AVR32_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */ -+#define AVR32_FT_NAKED (1 << 3) /* No prologue or epilogue. */ -+#define AVR32_FT_VOLATILE (1 << 4) /* Does not return. */ -+#define AVR32_FT_NESTED (1 << 5) /* Embedded inside another func. */ -+#define AVR32_FT_FLASHVAULT (1 << 6) /* Flashvault function call. */ -+#define AVR32_FT_FLASHVAULT_IMPL (1 << 7) /* Function definition in FlashVault. */ -+ -+ -+/* Some macros to test these flags. */ -+#define AVR32_FUNC_TYPE(t) (t & AVR32_FT_TYPE_MASK) -+#define IS_INTERRUPT(t) (t & AVR32_FT_INTERRUPT) -+#define IS_NAKED(t) (t & AVR32_FT_NAKED) -+#define IS_VOLATILE(t) (t & AVR32_FT_VOLATILE) -+#define IS_NESTED(t) (t & AVR32_FT_NESTED) -+#define IS_FLASHVAULT(t) (t & AVR32_FT_FLASHVAULT) -+#define IS_FLASHVAULT_IMPL(t) (t & AVR32_FT_FLASHVAULT_IMPL) -+ -+#define SYMBOL_FLAG_RMW_ADDR_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT -+#define SYMBOL_REF_RMW_ADDR(RTX) \ -+ ((SYMBOL_REF_FLAGS (RTX) & (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT)) != 0) -+ -+ -+typedef struct minipool_labels -+GTY ((chain_next ("%h.next"), chain_prev ("%h.prev"))) -+{ -+ rtx label; -+ struct minipool_labels *prev; -+ struct minipool_labels *next; -+} minipool_labels; -+ -+/* A C structure for machine-specific, per-function data. -+ This is added to the cfun structure. */ -+ -+typedef struct machine_function -+GTY (()) -+{ -+ /* Records the type of the current function. */ -+ unsigned long func_type; -+ /* List of minipool labels, use for checking if code label is valid in a -+ memory expression */ -+ minipool_labels *minipool_label_head; -+ minipool_labels *minipool_label_tail; -+ int ifcvt_after_reload; -+} machine_function; -+ -+/* Initialize data used by insn expanders. This is called from insn_emit, -+ once for every function before code is generated. */ -+#define INIT_EXPANDERS avr32_init_expanders () -+ -+/****************************************************************************** -+ * SPECS -+ *****************************************************************************/ -+ -+#ifndef ASM_SPEC -+#define ASM_SPEC "%{fpic:--pic} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{march=ucr2nomul:-march=ucr2;:%{march=*:-march=%*}} %{mpart=uc3a3revd:-mpart=uc3a3256s;:%{mpart=*:-mpart=%*}}" -+#endif -+ -+#ifndef MULTILIB_DEFAULTS -+#define MULTILIB_DEFAULTS { "march=ap", "" } -+#endif -+ -+/****************************************************************************** -+ * Run-time Target Specification -+ *****************************************************************************/ -+#ifndef TARGET_VERSION -+#define TARGET_VERSION fprintf(stderr, " (AVR32, GNU assembler syntax)"); -+#endif -+ -+ -+/* Part types. Keep this in sync with the order of avr32_part_types in avr32.c*/ -+enum part_type -+{ -+ PART_TYPE_AVR32_NONE, -+ PART_TYPE_AVR32_AP7000, -+ PART_TYPE_AVR32_AP7001, -+ PART_TYPE_AVR32_AP7002, -+ PART_TYPE_AVR32_AP7200, -+ PART_TYPE_AVR32_UC3A0128, -+ PART_TYPE_AVR32_UC3A0256, -+ PART_TYPE_AVR32_UC3A0512, -+ PART_TYPE_AVR32_UC3A0512ES, -+ PART_TYPE_AVR32_UC3A1128, -+ PART_TYPE_AVR32_UC3A1256, -+ PART_TYPE_AVR32_UC3A1512, -+ PART_TYPE_AVR32_UC3A1512ES, -+ PART_TYPE_AVR32_UC3A3REVD, -+ PART_TYPE_AVR32_UC3A364, -+ PART_TYPE_AVR32_UC3A364S, -+ PART_TYPE_AVR32_UC3A3128, -+ PART_TYPE_AVR32_UC3A3128S, -+ PART_TYPE_AVR32_UC3A3256, -+ PART_TYPE_AVR32_UC3A3256S, -+ PART_TYPE_AVR32_UC3A464, -+ PART_TYPE_AVR32_UC3A464S, -+ PART_TYPE_AVR32_UC3A4128, -+ PART_TYPE_AVR32_UC3A4128S, -+ PART_TYPE_AVR32_UC3A4256, -+ PART_TYPE_AVR32_UC3A4256S, -+ PART_TYPE_AVR32_UC3B064, -+ PART_TYPE_AVR32_UC3B0128, -+ PART_TYPE_AVR32_UC3B0256, -+ PART_TYPE_AVR32_UC3B0256ES, -+ PART_TYPE_AVR32_UC3B0512, -+ PART_TYPE_AVR32_UC3B0512REVC, -+ PART_TYPE_AVR32_UC3B164, -+ PART_TYPE_AVR32_UC3B1128, -+ PART_TYPE_AVR32_UC3B1256, -+ PART_TYPE_AVR32_UC3B1256ES, -+ PART_TYPE_AVR32_UC3B1512, -+ PART_TYPE_AVR32_UC3B1512REVC, -+ PART_TYPE_AVR32_UC64D3, -+ PART_TYPE_AVR32_UC128D3, -+ PART_TYPE_AVR32_UC64D4, -+ PART_TYPE_AVR32_UC128D4, -+ PART_TYPE_AVR32_UC3C0512CREVC, -+ PART_TYPE_AVR32_UC3C1512CREVC, -+ PART_TYPE_AVR32_UC3C2512CREVC, -+ PART_TYPE_AVR32_UC3L0256, -+ PART_TYPE_AVR32_UC3L0128, -+ PART_TYPE_AVR32_UC3L064, -+ PART_TYPE_AVR32_UC3L032, -+ PART_TYPE_AVR32_UC3L016, -+ PART_TYPE_AVR32_UC3L064REVB, -+ PART_TYPE_AVR32_UC64L3U, -+ PART_TYPE_AVR32_UC128L3U, -+ PART_TYPE_AVR32_UC256L3U, -+ PART_TYPE_AVR32_UC64L4U, -+ PART_TYPE_AVR32_UC128L4U, -+ PART_TYPE_AVR32_UC256L4U, -+ PART_TYPE_AVR32_UC3C064C, -+ PART_TYPE_AVR32_UC3C0128C, -+ PART_TYPE_AVR32_UC3C0256C, -+ PART_TYPE_AVR32_UC3C0512C, -+ PART_TYPE_AVR32_UC3C164C, -+ PART_TYPE_AVR32_UC3C1128C, -+ PART_TYPE_AVR32_UC3C1256C, -+ PART_TYPE_AVR32_UC3C1512C, -+ PART_TYPE_AVR32_UC3C264C, -+ PART_TYPE_AVR32_UC3C2128C, -+ PART_TYPE_AVR32_UC3C2256C, -+ PART_TYPE_AVR32_UC3C2512C, -+ PART_TYPE_AVR32_MXT768E -+}; -+ -+/* Microarchitectures. */ -+enum microarchitecture_type -+{ -+ UARCH_TYPE_AVR32A, -+ UARCH_TYPE_AVR32B, -+ UARCH_TYPE_NONE -+}; -+ -+/* Architectures types which specifies the pipeline. -+ Keep this in sync with avr32_arch_types in avr32.c -+ and the pipeline attribute in avr32.md */ -+enum architecture_type -+{ -+ ARCH_TYPE_AVR32_AP, -+ ARCH_TYPE_AVR32_UCR1, -+ ARCH_TYPE_AVR32_UCR2, -+ ARCH_TYPE_AVR32_UCR2NOMUL, -+ ARCH_TYPE_AVR32_UCR3, -+ ARCH_TYPE_AVR32_UCR3FP, -+ ARCH_TYPE_AVR32_NONE -+}; -+ -+/* Flag specifying if the cpu has support for DSP instructions.*/ -+#define FLAG_AVR32_HAS_DSP (1 << 0) -+/* Flag specifying if the cpu has support for Read-Modify-Write -+ instructions.*/ -+#define FLAG_AVR32_HAS_RMW (1 << 1) -+/* Flag specifying if the cpu has support for SIMD instructions. */ -+#define FLAG_AVR32_HAS_SIMD (1 << 2) -+/* Flag specifying if the cpu has support for unaligned memory word access. */ -+#define FLAG_AVR32_HAS_UNALIGNED_WORD (1 << 3) -+/* Flag specifying if the cpu has support for branch prediction. */ -+#define FLAG_AVR32_HAS_BRANCH_PRED (1 << 4) -+/* Flag specifying if the cpu has support for a return stack. */ -+#define FLAG_AVR32_HAS_RETURN_STACK (1 << 5) -+/* Flag specifying if the cpu has caches. */ -+#define FLAG_AVR32_HAS_CACHES (1 << 6) -+/* Flag specifying if the cpu has support for v2 insns. */ -+#define FLAG_AVR32_HAS_V2_INSNS (1 << 7) -+/* Flag specifying that the cpu has buggy mul insns. */ -+#define FLAG_AVR32_HAS_NO_MUL_INSNS (1 << 8) -+/* Flag specifying that the device has FPU instructions according -+ to AVR32002 specifications*/ -+#define FLAG_AVR32_HAS_FPU (1 << 9) -+ -+/* Structure for holding information about different avr32 CPUs/parts */ -+struct part_type_s -+{ -+ const char *const name; -+ enum part_type part_type; -+ enum architecture_type arch_type; -+ /* Must lie outside user's namespace. NULL == no macro. */ -+ const char *const macro; -+}; -+ -+/* Structure for holding information about different avr32 pipeline -+ architectures. */ -+struct arch_type_s -+{ -+ const char *const name; -+ enum architecture_type arch_type; -+ enum microarchitecture_type uarch_type; -+ const unsigned long feature_flags; -+ /* Must lie outside user's namespace. NULL == no macro. */ -+ const char *const macro; -+}; -+ -+extern const struct part_type_s *avr32_part; -+extern const struct arch_type_s *avr32_arch; -+ -+#define TARGET_SIMD (avr32_arch->feature_flags & FLAG_AVR32_HAS_SIMD) -+#define TARGET_DSP (avr32_arch->feature_flags & FLAG_AVR32_HAS_DSP) -+#define TARGET_RMW (avr32_arch->feature_flags & FLAG_AVR32_HAS_RMW) -+#define TARGET_UNALIGNED_WORD (avr32_arch->feature_flags & FLAG_AVR32_HAS_UNALIGNED_WORD) -+#define TARGET_BRANCH_PRED (avr32_arch->feature_flags & FLAG_AVR32_HAS_BRANCH_PRED) -+#define TARGET_RETURN_STACK (avr32_arch->feature_flags & FLAG_AVR32_HAS_RETURN_STACK) -+#define TARGET_V2_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_V2_INSNS) -+#define TARGET_CACHES (avr32_arch->feature_flags & FLAG_AVR32_HAS_CACHES) -+#define TARGET_NO_MUL_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_NO_MUL_INSNS) -+#define TARGET_ARCH_AP (avr32_arch->arch_type == ARCH_TYPE_AVR32_AP) -+#define TARGET_ARCH_UCR1 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR1) -+#define TARGET_ARCH_UCR2 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR2) -+#define TARGET_ARCH_UC (TARGET_ARCH_UCR1 || TARGET_ARCH_UCR2) -+#define TARGET_UARCH_AVR32A (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) -+#define TARGET_UARCH_AVR32B (avr32_arch->uarch_type == UARCH_TYPE_AVR32B) -+#define TARGET_ARCH_FPU (avr32_arch->feature_flags & FLAG_AVR32_HAS_FPU) -+ -+#define CAN_DEBUG_WITHOUT_FP -+ -+ -+ -+ -+/****************************************************************************** -+ * Storage Layout -+ *****************************************************************************/ -+ -+/* -+Define this macro to have the value 1 if the most significant bit in a -+byte has the lowest number; otherwise define it to have the value zero. -+This means that bit-field instructions count from the most significant -+bit. If the machine has no bit-field instructions, then this must still -+be defined, but it doesn't matter which value it is defined to. This -+macro need not be a constant. -+ -+This macro does not affect the way structure fields are packed into -+bytes or words; that is controlled by BYTES_BIG_ENDIAN. -+*/ -+#define BITS_BIG_ENDIAN 0 -+ -+/* -+Define this macro to have the value 1 if the most significant byte in a -+word has the lowest number. This macro need not be a constant. -+*/ -+/* -+ Data is stored in an big-endian way. -+*/ -+#define BYTES_BIG_ENDIAN 1 -+ -+/* -+Define this macro to have the value 1 if, in a multiword object, the -+most significant word has the lowest number. This applies to both -+memory locations and registers; GCC fundamentally assumes that the -+order of words in memory is the same as the order in registers. This -+macro need not be a constant. -+*/ -+/* -+ Data is stored in an bin-endian way. -+*/ -+#define WORDS_BIG_ENDIAN 1 -+ -+/* -+Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a -+constant value with the same meaning as WORDS_BIG_ENDIAN, which will be -+used only when compiling libgcc2.c. Typically the value will be set -+based on preprocessor defines. -+*/ -+#define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN -+ -+/* -+Define this macro to have the value 1 if DFmode, XFmode or -+TFmode floating point numbers are stored in memory with the word -+containing the sign bit at the lowest address; otherwise define it to -+have the value 0. This macro need not be a constant. -+ -+You need not define this macro if the ordering is the same as for -+multi-word integers. -+*/ -+/* #define FLOAT_WORDS_BIG_ENDIAN 1 */ -+ -+/* -+Define this macro to be the number of bits in an addressable storage -+unit (byte); normally 8. -+*/ -+#define BITS_PER_UNIT 8 -+ -+/* -+Number of bits in a word; normally 32. -+*/ -+#define BITS_PER_WORD 32 -+ -+/* -+Maximum number of bits in a word. If this is undefined, the default is -+BITS_PER_WORD. Otherwise, it is the constant value that is the -+largest value that BITS_PER_WORD can have at run-time. -+*/ -+/* MAX_BITS_PER_WORD not defined*/ -+ -+/* -+Number of storage units in a word; normally 4. -+*/ -+#define UNITS_PER_WORD 4 -+ -+/* -+Minimum number of units in a word. If this is undefined, the default is -+UNITS_PER_WORD. Otherwise, it is the constant value that is the -+smallest value that UNITS_PER_WORD can have at run-time. -+*/ -+/* MIN_UNITS_PER_WORD not defined */ -+ -+/* -+Width of a pointer, in bits. You must specify a value no wider than the -+width of Pmode. If it is not equal to the width of Pmode, -+you must define POINTERS_EXTEND_UNSIGNED. -+*/ -+#define POINTER_SIZE 32 -+ -+/* -+A C expression whose value is greater than zero if pointers that need to be -+extended from being POINTER_SIZE bits wide to Pmode are to -+be zero-extended and zero if they are to be sign-extended. If the value -+is less then zero then there must be an "ptr_extend" instruction that -+extends a pointer from POINTER_SIZE to Pmode. -+ -+You need not define this macro if the POINTER_SIZE is equal -+to the width of Pmode. -+*/ -+/* #define POINTERS_EXTEND_UNSIGNED */ -+ -+/* -+A Macro to update M and UNSIGNEDP when an object whose type -+is TYPE and which has the specified mode and signedness is to be -+stored in a register. This macro is only called when TYPE is a -+scalar type. -+ -+On most RISC machines, which only have operations that operate on a full -+register, define this macro to set M to word_mode if -+M is an integer mode narrower than BITS_PER_WORD. In most -+cases, only integer modes should be widened because wider-precision -+floating-point operations are usually more expensive than their narrower -+counterparts. -+ -+For most machines, the macro definition does not change UNSIGNEDP. -+However, some machines, have instructions that preferentially handle -+either signed or unsigned quantities of certain modes. For example, on -+the DEC Alpha, 32-bit loads from memory and 32-bit add instructions -+sign-extend the result to 64 bits. On such machines, set -+UNSIGNEDP according to which kind of extension is more efficient. -+ -+Do not define this macro if it would never modify M. -+*/ -+#define PROMOTE_MODE(M, UNSIGNEDP, TYPE) \ -+ { \ -+ if (!AGGREGATE_TYPE_P (TYPE) \ -+ && GET_MODE_CLASS (mode) == MODE_INT \ -+ && GET_MODE_SIZE (mode) < 4) \ -+ { \ -+ if (M == QImode) \ -+ (UNSIGNEDP) = 1; \ -+ else if (M == HImode) \ -+ (UNSIGNEDP) = 0; \ -+ (M) = SImode; \ -+ } \ -+ } -+ -+#define PROMOTE_FUNCTION_MODE(M, UNSIGNEDP, TYPE) \ -+ PROMOTE_MODE(M, UNSIGNEDP, TYPE) -+ -+/* Define if operations between registers always perform the operation -+ on the full register even if a narrower mode is specified. */ -+#define WORD_REGISTER_OPERATIONS -+ -+/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD -+ will either zero-extend or sign-extend. The value of this macro should -+ be the code that says which one of the two operations is implicitly -+ done, UNKNOWN if not known. */ -+#define LOAD_EXTEND_OP(MODE) \ -+ (((MODE) == QImode) ? ZERO_EXTEND \ -+ : ((MODE) == HImode) ? SIGN_EXTEND : UNKNOWN) -+ -+ -+/* -+Normal alignment required for function parameters on the stack, in -+bits. All stack parameters receive at least this much alignment -+regardless of data type. On most machines, this is the same as the -+size of an integer. -+*/ -+#define PARM_BOUNDARY 32 -+ -+/* -+Define this macro to the minimum alignment enforced by hardware for the -+stack pointer on this machine. The definition is a C expression for the -+desired alignment (measured in bits). This value is used as a default -+if PREFERRED_STACK_BOUNDARY is not defined. On most machines, -+this should be the same as PARM_BOUNDARY. -+*/ -+#define STACK_BOUNDARY 32 -+ -+/* -+Define this macro if you wish to preserve a certain alignment for the -+stack pointer, greater than what the hardware enforces. The definition -+is a C expression for the desired alignment (measured in bits). This -+macro must evaluate to a value equal to or larger than -+STACK_BOUNDARY. -+*/ -+#define PREFERRED_STACK_BOUNDARY (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 ) -+ -+/* -+Alignment required for a function entry point, in bits. -+*/ -+#define FUNCTION_BOUNDARY 16 -+ -+/* -+Biggest alignment that any data type can require on this machine, in bits. -+*/ -+#define BIGGEST_ALIGNMENT (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 ) -+ -+/* -+If defined, the smallest alignment, in bits, that can be given to an -+object that can be referenced in one operation, without disturbing any -+nearby object. Normally, this is BITS_PER_UNIT, but may be larger -+on machines that don't have byte or half-word store operations. -+*/ -+#define MINIMUM_ATOMIC_ALIGNMENT BITS_PER_UNIT -+ -+ -+/* -+An integer expression for the size in bits of the largest integer machine mode that -+should actually be used. All integer machine modes of this size or smaller can be -+used for structures and unions with the appropriate sizes. If this macro is undefined, -+GET_MODE_BITSIZE (DImode) is assumed.*/ -+#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode) -+ -+ -+/* -+If defined, a C expression to compute the alignment given to a constant -+that is being placed in memory. CONSTANT is the constant and -+BASIC_ALIGN is the alignment that the object would ordinarily -+have. The value of this macro is used instead of that alignment to -+align the object. -+ -+If this macro is not defined, then BASIC_ALIGN is used. -+ -+The typical use of this macro is to increase alignment for string -+constants to be word aligned so that strcpy calls that copy -+constants can be done inline. -+*/ -+#define CONSTANT_ALIGNMENT(CONSTANT, BASIC_ALIGN) \ -+ ((TREE_CODE(CONSTANT) == STRING_CST) ? BITS_PER_WORD : BASIC_ALIGN) -+ -+/* Try to align string to a word. */ -+#define DATA_ALIGNMENT(TYPE, ALIGN) \ -+ ({(TREE_CODE (TYPE) == ARRAY_TYPE \ -+ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ -+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));}) -+ -+/* Try to align local store strings to a word. */ -+#define LOCAL_ALIGNMENT(TYPE, ALIGN) \ -+ ({(TREE_CODE (TYPE) == ARRAY_TYPE \ -+ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ -+ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));}) -+ -+/* -+Define this macro to be the value 1 if instructions will fail to work -+if given data not on the nominal alignment. If instructions will merely -+go slower in that case, define this macro as 0. -+*/ -+#define STRICT_ALIGNMENT 1 -+ -+/* -+Define this if you wish to imitate the way many other C compilers handle -+alignment of bit-fields and the structures that contain them. -+ -+The behavior is that the type written for a bit-field (int, -+short, or other integer type) imposes an alignment for the -+entire structure, as if the structure really did contain an ordinary -+field of that type. In addition, the bit-field is placed within the -+structure so that it would fit within such a field, not crossing a -+boundary for it. -+ -+Thus, on most machines, a bit-field whose type is written as int -+would not cross a four-byte boundary, and would force four-byte -+alignment for the whole structure. (The alignment used may not be four -+bytes; it is controlled by the other alignment parameters.) -+ -+If the macro is defined, its definition should be a C expression; -+a nonzero value for the expression enables this behavior. -+ -+Note that if this macro is not defined, or its value is zero, some -+bit-fields may cross more than one alignment boundary. The compiler can -+support such references if there are insv, extv, and -+extzv insns that can directly reference memory. -+ -+The other known way of making bit-fields work is to define -+STRUCTURE_SIZE_BOUNDARY as large as BIGGEST_ALIGNMENT. -+Then every structure can be accessed with fullwords. -+ -+Unless the machine has bit-field instructions or you define -+STRUCTURE_SIZE_BOUNDARY that way, you must define -+PCC_BITFIELD_TYPE_MATTERS to have a nonzero value. -+ -+If your aim is to make GCC use the same conventions for laying out -+bit-fields as are used by another compiler, here is how to investigate -+what the other compiler does. Compile and run this program: -+ -+struct foo1 -+{ -+ char x; -+ char :0; -+ char y; -+}; -+ -+struct foo2 -+{ -+ char x; -+ int :0; -+ char y; -+}; -+ -+main () -+{ -+ printf ("Size of foo1 is %d\n", -+ sizeof (struct foo1)); -+ printf ("Size of foo2 is %d\n", -+ sizeof (struct foo2)); -+ exit (0); -+} -+ -+If this prints 2 and 5, then the compiler's behavior is what you would -+get from PCC_BITFIELD_TYPE_MATTERS. -+*/ -+#define PCC_BITFIELD_TYPE_MATTERS 1 -+ -+ -+/****************************************************************************** -+ * Layout of Source Language Data Types -+ *****************************************************************************/ -+ -+/* -+A C expression for the size in bits of the type int on the -+target machine. If you don't define this, the default is one word. -+*/ -+#define INT_TYPE_SIZE 32 -+ -+/* -+A C expression for the size in bits of the type short on the -+target machine. If you don't define this, the default is half a word. (If -+this would be less than one storage unit, it is rounded up to one unit.) -+*/ -+#define SHORT_TYPE_SIZE 16 -+ -+/* -+A C expression for the size in bits of the type long on the -+target machine. If you don't define this, the default is one word. -+*/ -+#define LONG_TYPE_SIZE 32 -+ -+ -+/* -+A C expression for the size in bits of the type long long on the -+target machine. If you don't define this, the default is two -+words. If you want to support GNU Ada on your machine, the value of this -+macro must be at least 64. -+*/ -+#define LONG_LONG_TYPE_SIZE 64 -+ -+/* -+A C expression for the size in bits of the type char on the -+target machine. If you don't define this, the default is -+BITS_PER_UNIT. -+*/ -+#define CHAR_TYPE_SIZE 8 -+ -+ -+/* -+A C expression for the size in bits of the C++ type bool and -+C99 type _Bool on the target machine. If you don't define -+this, and you probably shouldn't, the default is CHAR_TYPE_SIZE. -+*/ -+#define BOOL_TYPE_SIZE 8 -+ -+ -+/* -+An expression whose value is 1 or 0, according to whether the type -+char should be signed or unsigned by default. The user can -+always override this default with the options -fsigned-char -+and -funsigned-char. -+*/ -+/* We are using unsigned char */ -+#define DEFAULT_SIGNED_CHAR 0 -+ -+ -+/* -+A C expression for a string describing the name of the data type to use -+for size values. The typedef name size_t is defined using the -+contents of the string. -+ -+The string can contain more than one keyword. If so, separate them with -+spaces, and write first any length keyword, then unsigned if -+appropriate, and finally int. The string must exactly match one -+of the data type names defined in the function -+init_decl_processing in the file c-decl.c. You may not -+omit int or change the order - that would cause the compiler to -+crash on startup. -+ -+If you don't define this macro, the default is "long unsigned int". -+*/ -+#define SIZE_TYPE "long unsigned int" -+ -+/* -+A C expression for a string describing the name of the data type to use -+for the result of subtracting two pointers. The typedef name -+ptrdiff_t is defined using the contents of the string. See -+SIZE_TYPE above for more information. -+ -+If you don't define this macro, the default is "long int". -+*/ -+#define PTRDIFF_TYPE "long int" -+ -+ -+/* -+A C expression for the size in bits of the data type for wide -+characters. This is used in cpp, which cannot make use of -+WCHAR_TYPE. -+*/ -+#define WCHAR_TYPE_SIZE 32 -+ -+ -+/* -+A C expression for a string describing the name of the data type to -+use for wide characters passed to printf and returned from -+getwc. The typedef name wint_t is defined using the -+contents of the string. See SIZE_TYPE above for more -+information. -+ -+If you don't define this macro, the default is "unsigned int". -+*/ -+#define WINT_TYPE "unsigned int" -+ -+/* -+A C expression for a string describing the name of the data type that -+can represent any value of any standard or extended signed integer type. -+The typedef name intmax_t is defined using the contents of the -+string. See SIZE_TYPE above for more information. -+ -+If you don't define this macro, the default is the first of -+"int", "long int", or "long long int" that has as -+much precision as long long int. -+*/ -+#define INTMAX_TYPE "long long int" -+ -+/* -+A C expression for a string describing the name of the data type that -+can represent any value of any standard or extended unsigned integer -+type. The typedef name uintmax_t is defined using the contents -+of the string. See SIZE_TYPE above for more information. -+ -+If you don't define this macro, the default is the first of -+"unsigned int", "long unsigned int", or "long long unsigned int" -+that has as much precision as long long unsigned int. -+*/ -+#define UINTMAX_TYPE "long long unsigned int" -+ -+ -+/****************************************************************************** -+ * Register Usage -+ *****************************************************************************/ -+ -+/* Convert from gcc internal register number to register number -+ used in assembly code */ -+#define ASM_REGNUM(reg) (LAST_REGNUM - (reg)) -+ -+/* Convert between register number used in assembly to gcc -+ internal register number */ -+#define INTERNAL_REGNUM(reg) (LAST_REGNUM - (reg)) -+ -+/** Basic Characteristics of Registers **/ -+ -+/* -+Number of hardware registers known to the compiler. They receive -+numbers 0 through FIRST_PSEUDO_REGISTER-1; thus, the first -+pseudo register's number really is assigned the number -+FIRST_PSEUDO_REGISTER. -+*/ -+#define FIRST_PSEUDO_REGISTER (LAST_REGNUM + 1) -+ -+#define FIRST_REGNUM 0 -+#define LAST_REGNUM 15 -+ -+/* -+An initializer that says which registers are used for fixed purposes -+all throughout the compiled code and are therefore not available for -+general allocation. These would include the stack pointer, the frame -+pointer (except on machines where that can be used as a general -+register when no frame pointer is needed), the program counter on -+machines where that is considered one of the addressable registers, -+and any other numbered register with a standard use. -+ -+This information is expressed as a sequence of numbers, separated by -+commas and surrounded by braces. The nth number is 1 if -+register n is fixed, 0 otherwise. -+ -+The table initialized from this macro, and the table initialized by -+the following one, may be overridden at run time either automatically, -+by the actions of the macro CONDITIONAL_REGISTER_USAGE, or by -+the user with the command options -ffixed-[reg], -+-fcall-used-[reg] and -fcall-saved-[reg]. -+*/ -+ -+/* The internal gcc register numbers are reversed -+ compared to the real register numbers since -+ gcc expects data types stored over multiple -+ registers in the register file to be big endian -+ if the memory layout is big endian. But this -+ is not the case for avr32 so we fake a big -+ endian register file. */ -+ -+#define FIXED_REGISTERS { \ -+ 1, /* Program Counter */ \ -+ 0, /* Link Register */ \ -+ 1, /* Stack Pointer */ \ -+ 0, /* r12 */ \ -+ 0, /* r11 */ \ -+ 0, /* r10 */ \ -+ 0, /* r9 */ \ -+ 0, /* r8 */ \ -+ 0, /* r7 */ \ -+ 0, /* r6 */ \ -+ 0, /* r5 */ \ -+ 0, /* r4 */ \ -+ 0, /* r3 */ \ -+ 0, /* r2 */ \ -+ 0, /* r1 */ \ -+ 0, /* r0 */ \ -+} -+ -+/* -+Like FIXED_REGISTERS but has 1 for each register that is -+clobbered (in general) by function calls as well as for fixed -+registers. This macro therefore identifies the registers that are not -+available for general allocation of values that must live across -+function calls. -+ -+If a register has 0 in CALL_USED_REGISTERS, the compiler -+automatically saves it on function entry and restores it on function -+exit, if the register is used within the function. -+*/ -+#define CALL_USED_REGISTERS { \ -+ 1, /* Program Counter */ \ -+ 0, /* Link Register */ \ -+ 1, /* Stack Pointer */ \ -+ 1, /* r12 */ \ -+ 1, /* r11 */ \ -+ 1, /* r10 */ \ -+ 1, /* r9 */ \ -+ 1, /* r8 */ \ -+ 0, /* r7 */ \ -+ 0, /* r6 */ \ -+ 0, /* r5 */ \ -+ 0, /* r4 */ \ -+ 0, /* r3 */ \ -+ 0, /* r2 */ \ -+ 0, /* r1 */ \ -+ 0, /* r0 */ \ -+} -+ -+/* Interrupt functions can only use registers that have already been -+ saved by the prologue, even if they would normally be -+ call-clobbered. */ -+#define HARD_REGNO_RENAME_OK(SRC, DST) \ -+ (! IS_INTERRUPT (cfun->machine->func_type) || \ -+ df_regs_ever_live_p (DST)) -+ -+ -+/* -+Zero or more C statements that may conditionally modify five variables -+fixed_regs, call_used_regs, global_regs, -+reg_names, and reg_class_contents, to take into account -+any dependence of these register sets on target flags. The first three -+of these are of type char [] (interpreted as Boolean vectors). -+global_regs is a const char *[], and -+reg_class_contents is a HARD_REG_SET. Before the macro is -+called, fixed_regs, call_used_regs, -+reg_class_contents, and reg_names have been initialized -+from FIXED_REGISTERS, CALL_USED_REGISTERS, -+REG_CLASS_CONTENTS, and REGISTER_NAMES, respectively. -+global_regs has been cleared, and any -ffixed-[reg], -+-fcall-used-[reg] and -fcall-saved-[reg] -+command options have been applied. -+ -+You need not define this macro if it has no work to do. -+ -+If the usage of an entire class of registers depends on the target -+flags, you may indicate this to GCC by using this macro to modify -+fixed_regs and call_used_regs to 1 for each of the -+registers in the classes which should not be used by GCC. Also define -+the macro REG_CLASS_FROM_LETTER to return NO_REGS if it -+is called with a letter for a class that shouldn't be used. -+ -+ (However, if this class is not included in GENERAL_REGS and all -+of the insn patterns whose constraints permit this class are -+controlled by target switches, then GCC will automatically avoid using -+these registers when the target switches are opposed to them.) -+*/ -+#define CONDITIONAL_REGISTER_USAGE \ -+ do \ -+ { \ -+ if (flag_pic) \ -+ { \ -+ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ -+ call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ -+ } \ -+ } \ -+ while (0) -+ -+ -+/* -+If the program counter has a register number, define this as that -+register number. Otherwise, do not define it. -+*/ -+ -+#define LAST_AVR32_REGNUM 16 -+ -+ -+/** Order of Allocation of Registers **/ -+ -+/* -+If defined, an initializer for a vector of integers, containing the -+numbers of hard registers in the order in which GCC should prefer -+to use them (from most preferred to least). -+ -+If this macro is not defined, registers are used lowest numbered first -+(all else being equal). -+ -+One use of this macro is on machines where the highest numbered -+registers must always be saved and the save-multiple-registers -+instruction supports only sequences of consecutive registers. On such -+machines, define REG_ALLOC_ORDER to be an initializer that lists -+the highest numbered allocable register first. -+*/ -+#define REG_ALLOC_ORDER \ -+{ \ -+ INTERNAL_REGNUM(8), \ -+ INTERNAL_REGNUM(9), \ -+ INTERNAL_REGNUM(10), \ -+ INTERNAL_REGNUM(11), \ -+ INTERNAL_REGNUM(12), \ -+ LR_REGNUM, \ -+ INTERNAL_REGNUM(7), \ -+ INTERNAL_REGNUM(6), \ -+ INTERNAL_REGNUM(5), \ -+ INTERNAL_REGNUM(4), \ -+ INTERNAL_REGNUM(3), \ -+ INTERNAL_REGNUM(2), \ -+ INTERNAL_REGNUM(1), \ -+ INTERNAL_REGNUM(0), \ -+ SP_REGNUM, \ -+ PC_REGNUM \ -+} -+ -+ -+/** How Values Fit in Registers **/ -+ -+/* -+A C expression for the number of consecutive hard registers, starting -+at register number REGNO, required to hold a value of mode -+MODE. -+ -+On a machine where all registers are exactly one word, a suitable -+definition of this macro is -+ -+#define HARD_REGNO_NREGS(REGNO, MODE) \ -+ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \ -+ / UNITS_PER_WORD) -+*/ -+#define HARD_REGNO_NREGS(REGNO, MODE) \ -+ ((unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD -1 ) / UNITS_PER_WORD)) -+ -+/* -+A C expression that is nonzero if it is permissible to store a value -+of mode MODE in hard register number REGNO (or in several -+registers starting with that one). For a machine where all registers -+are equivalent, a suitable definition is -+ -+ #define HARD_REGNO_MODE_OK(REGNO, MODE) 1 -+ -+You need not include code to check for the numbers of fixed registers, -+because the allocation mechanism considers them to be always occupied. -+ -+On some machines, double-precision values must be kept in even/odd -+register pairs. You can implement that by defining this macro to reject -+odd register numbers for such modes. -+ -+The minimum requirement for a mode to be OK in a register is that the -+mov[mode] instruction pattern support moves between the -+register and other hard register in the same class and that moving a -+value into the register and back out not alter it. -+ -+Since the same instruction used to move word_mode will work for -+all narrower integer modes, it is not necessary on any machine for -+HARD_REGNO_MODE_OK to distinguish between these modes, provided -+you define patterns movhi, etc., to take advantage of this. This -+is useful because of the interaction between HARD_REGNO_MODE_OK -+and MODES_TIEABLE_P; it is very desirable for all integer modes -+to be tieable. -+ -+Many machines have special registers for floating point arithmetic. -+Often people assume that floating point machine modes are allowed only -+in floating point registers. This is not true. Any registers that -+can hold integers can safely hold a floating point machine -+mode, whether or not floating arithmetic can be done on it in those -+registers. Integer move instructions can be used to move the values. -+ -+On some machines, though, the converse is true: fixed-point machine -+modes may not go in floating registers. This is true if the floating -+registers normalize any value stored in them, because storing a -+non-floating value there would garble it. In this case, -+HARD_REGNO_MODE_OK should reject fixed-point machine modes in -+floating registers. But if the floating registers do not automatically -+normalize, if you can store any bit pattern in one and retrieve it -+unchanged without a trap, then any machine mode may go in a floating -+register, so you can define this macro to say so. -+ -+The primary significance of special floating registers is rather that -+they are the registers acceptable in floating point arithmetic -+instructions. However, this is of no concern to -+HARD_REGNO_MODE_OK. You handle it by writing the proper -+constraints for those instructions. -+ -+On some machines, the floating registers are especially slow to access, -+so that it is better to store a value in a stack frame than in such a -+register if floating point arithmetic is not being done. As long as the -+floating registers are not in class GENERAL_REGS, they will not -+be used unless some pattern's constraint asks for one. -+*/ -+#define HARD_REGNO_MODE_OK(REGNO, MODE) avr32_hard_regno_mode_ok(REGNO, MODE) -+ -+/* -+A C expression that is nonzero if a value of mode -+MODE1 is accessible in mode MODE2 without copying. -+ -+If HARD_REGNO_MODE_OK(R, MODE1) and -+HARD_REGNO_MODE_OK(R, MODE2) are always the same for -+any R, then MODES_TIEABLE_P(MODE1, MODE2) -+should be nonzero. If they differ for any R, you should define -+this macro to return zero unless some other mechanism ensures the -+accessibility of the value in a narrower mode. -+ -+You should define this macro to return nonzero in as many cases as -+possible since doing so will allow GCC to perform better register -+allocation. -+*/ -+#define MODES_TIEABLE_P(MODE1, MODE2) \ -+ (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)) -+ -+ -+ -+/****************************************************************************** -+ * Register Classes -+ *****************************************************************************/ -+ -+/* -+An enumeral type that must be defined with all the register class names -+as enumeral values. NO_REGS must be first. ALL_REGS -+must be the last register class, followed by one more enumeral value, -+LIM_REG_CLASSES, which is not a register class but rather -+tells how many classes there are. -+ -+Each register class has a number, which is the value of casting -+the class name to type int. The number serves as an index -+in many of the tables described below. -+*/ -+enum reg_class -+{ -+ NO_REGS, -+ GENERAL_REGS, -+ ALL_REGS, -+ LIM_REG_CLASSES -+}; -+ -+/* -+The number of distinct register classes, defined as follows: -+ #define N_REG_CLASSES (int) LIM_REG_CLASSES -+*/ -+#define N_REG_CLASSES (int)LIM_REG_CLASSES -+ -+/* -+An initializer containing the names of the register classes as C string -+constants. These names are used in writing some of the debugging dumps. -+*/ -+#define REG_CLASS_NAMES \ -+{ \ -+ "NO_REGS", \ -+ "GENERAL_REGS", \ -+ "ALL_REGS" \ -+} -+ -+/* -+An initializer containing the contents of the register classes, as integers -+which are bit masks. The nth integer specifies the contents of class -+n. The way the integer mask is interpreted is that -+register r is in the class if mask & (1 << r) is 1. -+ -+When the machine has more than 32 registers, an integer does not suffice. -+Then the integers are replaced by sub-initializers, braced groupings containing -+several integers. Each sub-initializer must be suitable as an initializer -+for the type HARD_REG_SET which is defined in hard-reg-set.h. -+In this situation, the first integer in each sub-initializer corresponds to -+registers 0 through 31, the second integer to registers 32 through 63, and -+so on. -+*/ -+#define REG_CLASS_CONTENTS { \ -+ {0x00000000}, /* NO_REGS */ \ -+ {0x0000FFFF}, /* GENERAL_REGS */ \ -+ {0x7FFFFFFF}, /* ALL_REGS */ \ -+} -+ -+ -+/* -+A C expression whose value is a register class containing hard register -+REGNO. In general there is more than one such class; choose a class -+which is minimal, meaning that no smaller class also contains the -+register. -+*/ -+#define REGNO_REG_CLASS(REGNO) (GENERAL_REGS) -+ -+/* -+A macro whose definition is the name of the class to which a valid -+base register must belong. A base register is one used in an address -+which is the register value plus a displacement. -+*/ -+#define BASE_REG_CLASS GENERAL_REGS -+ -+/* -+This is a variation of the BASE_REG_CLASS macro which allows -+the selection of a base register in a mode depenedent manner. If -+mode is VOIDmode then it should return the same value as -+BASE_REG_CLASS. -+*/ -+#define MODE_BASE_REG_CLASS(MODE) BASE_REG_CLASS -+ -+/* -+A macro whose definition is the name of the class to which a valid -+index register must belong. An index register is one used in an -+address where its value is either multiplied by a scale factor or -+added to another register (as well as added to a displacement). -+*/ -+#define INDEX_REG_CLASS BASE_REG_CLASS -+ -+/* -+A C expression which defines the machine-dependent operand constraint -+letters for register classes. If CHAR is such a letter, the -+value should be the register class corresponding to it. Otherwise, -+the value should be NO_REGS. The register letter r, -+corresponding to class GENERAL_REGS, will not be passed -+to this macro; you do not need to handle it. -+*/ -+#define REG_CLASS_FROM_LETTER(CHAR) NO_REGS -+ -+/* These assume that REGNO is a hard or pseudo reg number. -+ They give nonzero only if REGNO is a hard reg of the suitable class -+ or a pseudo reg currently allocated to a suitable hard reg. -+ Since they use reg_renumber, they are safe only once reg_renumber -+ has been allocated, which happens in local-alloc.c. */ -+#define TEST_REGNO(R, TEST, VALUE) \ -+ ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE)) -+ -+/* -+A C expression which is nonzero if register number num is suitable for use as a base -+register in operand addresses. It may be either a suitable hard register or a pseudo -+register that has been allocated such a hard register. -+*/ -+#define REGNO_OK_FOR_BASE_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM) -+ -+/* The following macro defines cover classes for Integrated Register -+ Allocator. Cover classes is a set of non-intersected register -+ classes covering all hard registers used for register allocation -+ purpose. Any move between two registers of a cover class should be -+ cheaper than load or store of the registers. The macro value is -+ array of register classes with LIM_REG_CLASSES used as the end -+ marker. */ -+ -+#define IRA_COVER_CLASSES \ -+{ \ -+ GENERAL_REGS, LIM_REG_CLASSES \ -+} -+ -+/* -+A C expression which is nonzero if register number NUM is -+suitable for use as an index register in operand addresses. It may be -+either a suitable hard register or a pseudo register that has been -+allocated such a hard register. -+ -+The difference between an index register and a base register is that -+the index register may be scaled. If an address involves the sum of -+two registers, neither one of them scaled, then either one may be -+labeled the ``base'' and the other the ``index''; but whichever -+labeling is used must fit the machine's constraints of which registers -+may serve in each capacity. The compiler will try both labelings, -+looking for one that is valid, and will reload one or both registers -+only if neither labeling works. -+*/ -+#define REGNO_OK_FOR_INDEX_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM) -+ -+/* -+A C expression that places additional restrictions on the register class -+to use when it is necessary to copy value X into a register in class -+CLASS. The value is a register class; perhaps CLASS, or perhaps -+another, smaller class. On many machines, the following definition is -+safe: #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS -+ -+Sometimes returning a more restrictive class makes better code. For -+example, on the 68000, when X is an integer constant that is in range -+for a 'moveq' instruction, the value of this macro is always -+DATA_REGS as long as CLASS includes the data registers. -+Requiring a data register guarantees that a 'moveq' will be used. -+ -+If X is a const_double, by returning NO_REGS -+you can force X into a memory constant. This is useful on -+certain machines where immediate floating values cannot be loaded into -+certain kinds of registers. -+*/ -+#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS -+ -+ -+ -+/* -+A C expression for the maximum number of consecutive registers -+of class CLASS needed to hold a value of mode MODE. -+ -+This is closely related to the macro HARD_REGNO_NREGS. In fact, -+the value of the macro CLASS_MAX_NREGS(CLASS, MODE) -+should be the maximum value of HARD_REGNO_NREGS(REGNO, MODE) -+for all REGNO values in the class CLASS. -+ -+This macro helps control the handling of multiple-word values -+in the reload pass. -+*/ -+#define CLASS_MAX_NREGS(CLASS, MODE) /* ToDo:fixme */ \ -+ (unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) -+ -+ -+/* -+ Using CONST_OK_FOR_CONSTRAINT_P instead of CONS_OK_FOR_LETTER_P -+ in order to support constraints with more than one letter. -+ Only two letters are then used for constant constraints, -+ the letter 'K' and the letter 'I'. The constraint starting with -+ these letters must consist of four characters. The character following -+ 'K' or 'I' must be either 'u' (unsigned) or 's' (signed) to specify -+ if the constant is zero or sign extended. The last two characters specify -+ the length in bits of the constant. The base constraint letter 'I' means -+ that this is an negated constant, meaning that actually -VAL should be -+ checked to lie withing the valid range instead of VAL which is used when -+ 'K' is the base constraint letter. -+ -+*/ -+ -+#define CONSTRAINT_LEN(C, STR) \ -+ ( ((C) == 'K' || (C) == 'I') ? 4 : \ -+ ((C) == 'R') ? 5 : \ -+ ((C) == 'P') ? -1 : \ -+ DEFAULT_CONSTRAINT_LEN((C), (STR)) ) -+ -+#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \ -+ avr32_const_ok_for_constraint_p(VALUE, C, STR) -+ -+/* -+A C expression that defines the machine-dependent operand constraint -+letters that specify particular ranges of const_double values ('G' or 'H'). -+ -+If C is one of those letters, the expression should check that -+VALUE, an RTX of code const_double, is in the appropriate -+range and return 1 if so, 0 otherwise. If C is not one of those -+letters, the value should be 0 regardless of VALUE. -+ -+const_double is used for all floating-point constants and for -+DImode fixed-point constants. A given letter can accept either -+or both kinds of values. It can use GET_MODE to distinguish -+between these kinds. -+*/ -+#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \ -+ ((C) == 'G' ? avr32_const_double_immediate(OP) : 0) -+ -+/* -+A C expression that defines the optional machine-dependent constraint -+letters that can be used to segregate specific types of operands, usually -+memory references, for the target machine. Any letter that is not -+elsewhere defined and not matched by REG_CLASS_FROM_LETTER -+may be used. Normally this macro will not be defined. -+ -+If it is required for a particular target machine, it should return 1 -+if VALUE corresponds to the operand type represented by the -+constraint letter C. If C is not defined as an extra -+constraint, the value returned should be 0 regardless of VALUE. -+ -+For example, on the ROMP, load instructions cannot have their output -+in r0 if the memory reference contains a symbolic address. Constraint -+letter 'Q' is defined as representing a memory address that does -+not contain a symbolic address. An alternative is specified with -+a 'Q' constraint on the input and 'r' on the output. The next -+alternative specifies 'm' on the input and a register class that -+does not include r0 on the output. -+*/ -+#define EXTRA_CONSTRAINT_STR(OP, C, STR) \ -+ ((C) == 'W' ? avr32_address_operand(OP, GET_MODE(OP)) : \ -+ (C) == 'R' ? (avr32_indirect_register_operand(OP, GET_MODE(OP)) || \ -+ (avr32_imm_disp_memory_operand(OP, GET_MODE(OP)) \ -+ && avr32_const_ok_for_constraint_p( \ -+ INTVAL(XEXP(XEXP(OP, 0), 1)), \ -+ (STR)[1], &(STR)[1]))) : \ -+ (C) == 'S' ? avr32_indexed_memory_operand(OP, GET_MODE(OP)) : \ -+ (C) == 'T' ? avr32_const_pool_ref_operand(OP, GET_MODE(OP)) : \ -+ (C) == 'U' ? SYMBOL_REF_RCALL_FUNCTION_P(OP) : \ -+ (C) == 'Z' ? avr32_cop_memory_operand(OP, GET_MODE(OP)) : \ -+ (C) == 'Q' ? avr32_non_rmw_memory_operand(OP, GET_MODE(OP)) : \ -+ (C) == 'Y' ? avr32_rmw_memory_operand(OP, GET_MODE(OP)) : \ -+ 0) -+ -+ -+#define EXTRA_MEMORY_CONSTRAINT(C, STR) ( ((C) == 'R') || \ -+ ((C) == 'Q') || \ -+ ((C) == 'S') || \ -+ ((C) == 'Y') || \ -+ ((C) == 'Z') ) -+ -+ -+/* Returns nonzero if op is a function SYMBOL_REF which -+ can be called using an rcall instruction */ -+#define SYMBOL_REF_RCALL_FUNCTION_P(op) \ -+ ( GET_CODE(op) == SYMBOL_REF \ -+ && SYMBOL_REF_FUNCTION_P(op) \ -+ && SYMBOL_REF_LOCAL_P(op) \ -+ && !SYMBOL_REF_EXTERNAL_P(op) \ -+ && !TARGET_HAS_ASM_ADDR_PSEUDOS ) -+ -+/****************************************************************************** -+ * Stack Layout and Calling Conventions -+ *****************************************************************************/ -+ -+/** Basic Stack Layout **/ -+ -+/* -+Define this macro if pushing a word onto the stack moves the stack -+pointer to a smaller address. -+ -+When we say, ``define this macro if ...,'' it means that the -+compiler checks this macro only with #ifdef so the precise -+definition used does not matter. -+*/ -+/* pushm decrece SP: *(--SP) <-- Rx */ -+#define STACK_GROWS_DOWNWARD -+ -+/* -+This macro defines the operation used when something is pushed -+on the stack. In RTL, a push operation will be -+(set (mem (STACK_PUSH_CODE (reg sp))) ...) -+ -+The choices are PRE_DEC, POST_DEC, PRE_INC, -+and POST_INC. Which of these is correct depends on -+the stack direction and on whether the stack pointer points -+to the last item on the stack or whether it points to the -+space for the next item on the stack. -+ -+The default is PRE_DEC when STACK_GROWS_DOWNWARD is -+defined, which is almost always right, and PRE_INC otherwise, -+which is often wrong. -+*/ -+/* pushm: *(--SP) <-- Rx */ -+#define STACK_PUSH_CODE PRE_DEC -+ -+/* Define this to nonzero if the nominal address of the stack frame -+ is at the high-address end of the local variables; -+ that is, each additional local variable allocated -+ goes at a more negative offset in the frame. */ -+#define FRAME_GROWS_DOWNWARD 1 -+ -+ -+/* -+Offset from the frame pointer to the first local variable slot to be allocated. -+ -+If FRAME_GROWS_DOWNWARD, find the next slot's offset by -+subtracting the first slot's length from STARTING_FRAME_OFFSET. -+Otherwise, it is found by adding the length of the first slot to the -+value STARTING_FRAME_OFFSET. -+ (i'm not sure if the above is still correct.. had to change it to get -+ rid of an overfull. --mew 2feb93 ) -+*/ -+#define STARTING_FRAME_OFFSET 0 -+ -+/* -+Offset from the stack pointer register to the first location at which -+outgoing arguments are placed. If not specified, the default value of -+zero is used. This is the proper value for most machines. -+ -+If ARGS_GROW_DOWNWARD, this is the offset to the location above -+the first location at which outgoing arguments are placed. -+*/ -+#define STACK_POINTER_OFFSET 0 -+ -+/* -+Offset from the argument pointer register to the first argument's -+address. On some machines it may depend on the data type of the -+function. -+ -+If ARGS_GROW_DOWNWARD, this is the offset to the location above -+the first argument's address. -+*/ -+#define FIRST_PARM_OFFSET(FUNDECL) 0 -+ -+ -+/* -+A C expression whose value is RTL representing the address in a stack -+frame where the pointer to the caller's frame is stored. Assume that -+FRAMEADDR is an RTL expression for the address of the stack frame -+itself. -+ -+If you don't define this macro, the default is to return the value -+of FRAMEADDR - that is, the stack frame address is also the -+address of the stack word that points to the previous frame. -+*/ -+#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) plus_constant ((FRAMEADDR), 4) -+ -+ -+/* -+A C expression whose value is RTL representing the value of the return -+address for the frame COUNT steps up from the current frame, after -+the prologue. FRAMEADDR is the frame pointer of the COUNT -+frame, or the frame pointer of the COUNT - 1 frame if -+RETURN_ADDR_IN_PREVIOUS_FRAME is defined. -+ -+The value of the expression must always be the correct address when -+COUNT is zero, but may be NULL_RTX if there is not way to -+determine the return address of other frames. -+*/ -+#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) avr32_return_addr(COUNT, FRAMEADDR) -+ -+ -+/* -+A C expression whose value is RTL representing the location of the -+incoming return address at the beginning of any function, before the -+prologue. This RTL is either a REG, indicating that the return -+value is saved in 'REG', or a MEM representing a location in -+the stack. -+ -+You only need to define this macro if you want to support call frame -+debugging information like that provided by DWARF 2. -+ -+If this RTL is a REG, you should also define -+DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). -+*/ -+#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM) -+ -+/* -+A C expression whose value is an integer giving the offset, in bytes, -+from the value of the stack pointer register to the top of the stack -+frame at the beginning of any function, before the prologue. The top of -+the frame is defined to be the value of the stack pointer in the -+previous frame, just before the call instruction. -+ -+You only need to define this macro if you want to support call frame -+debugging information like that provided by DWARF 2. -+*/ -+#define INCOMING_FRAME_SP_OFFSET 0 -+ -+ -+/** Exception Handling Support **/ -+ -+/* Use setjump/longjump for exception handling. */ -+#define DWARF2_UNWIND_INFO 0 -+#define MUST_USE_SJLJ_EXCEPTIONS 1 -+ -+/* -+A C expression whose value is the Nth register number used for -+data by exception handlers, or INVALID_REGNUM if fewer than -+N registers are usable. -+ -+The exception handling library routines communicate with the exception -+handlers via a set of agreed upon registers. Ideally these registers -+should be call-clobbered; it is possible to use call-saved registers, -+but may negatively impact code size. The target must support at least -+2 data registers, but should define 4 if there are enough free registers. -+ -+You must define this macro if you want to support call frame exception -+handling like that provided by DWARF 2. -+*/ -+/* -+ Use r9-r11 -+*/ -+#define EH_RETURN_DATA_REGNO(N) \ -+ ((N<3) ? INTERNAL_REGNUM(N+9) : INVALID_REGNUM) -+ -+/* -+A C expression whose value is RTL representing a location in which -+to store a stack adjustment to be applied before function return. -+This is used to unwind the stack to an exception handler's call frame. -+It will be assigned zero on code paths that return normally. -+ -+Typically this is a call-clobbered hard register that is otherwise -+untouched by the epilogue, but could also be a stack slot. -+ -+You must define this macro if you want to support call frame exception -+handling like that provided by DWARF 2. -+*/ -+/* -+ Use r8 -+*/ -+#define EH_RETURN_STACKADJ_REGNO INTERNAL_REGNUM(8) -+#define EH_RETURN_STACKADJ_RTX gen_rtx_REG(SImode, EH_RETURN_STACKADJ_REGNO) -+ -+/* -+A C expression whose value is RTL representing a location in which -+to store the address of an exception handler to which we should -+return. It will not be assigned on code paths that return normally. -+ -+Typically this is the location in the call frame at which the normal -+return address is stored. For targets that return by popping an -+address off the stack, this might be a memory address just below -+the target call frame rather than inside the current call -+frame. EH_RETURN_STACKADJ_RTX will have already been assigned, -+so it may be used to calculate the location of the target call frame. -+ -+Some targets have more complex requirements than storing to an -+address calculable during initial code generation. In that case -+the eh_return instruction pattern should be used instead. -+ -+If you want to support call frame exception handling, you must -+define either this macro or the eh_return instruction pattern. -+*/ -+/* -+ We define the eh_return instruction pattern, so this isn't needed. -+*/ -+/* #define EH_RETURN_HANDLER_RTX gen_rtx_REG(Pmode, RET_REGISTER) */ -+ -+/* -+ This macro chooses the encoding of pointers embedded in the -+ exception handling sections. If at all possible, this should be -+ defined such that the exception handling section will not require -+ dynamic relocations, and so may be read-only. -+ -+ code is 0 for data, 1 for code labels, 2 for function -+ pointers. global is true if the symbol may be affected by dynamic -+ relocations. The macro should return a combination of the DW_EH_PE_* -+ defines as found in dwarf2.h. -+ -+ If this macro is not defined, pointers will not be encoded but -+ represented directly. -+*/ -+#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ -+ ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \ -+ | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \ -+ | DW_EH_PE_sdata4) -+ -+/* ToDo: The rest of this subsection */ -+ -+/** Specifying How Stack Checking is Done **/ -+/* ToDo: All in this subsection */ -+ -+/** Registers That Address the Stack Frame **/ -+ -+/* -+The register number of the stack pointer register, which must also be a -+fixed register according to FIXED_REGISTERS. On most machines, -+the hardware determines which register this is. -+*/ -+/* Using r13 as stack pointer. */ -+#define STACK_POINTER_REGNUM INTERNAL_REGNUM(13) -+ -+/* -+The register number of the frame pointer register, which is used to -+access automatic variables in the stack frame. On some machines, the -+hardware determines which register this is. On other machines, you can -+choose any register you wish for this purpose. -+*/ -+/* Use r7 */ -+#define FRAME_POINTER_REGNUM INTERNAL_REGNUM(7) -+ -+/* -+The register number of the arg pointer register, which is used to access -+the function's argument list. On some machines, this is the same as the -+frame pointer register. On some machines, the hardware determines which -+register this is. On other machines, you can choose any register you -+wish for this purpose. If this is not the same register as the frame -+pointer register, then you must mark it as a fixed register according to -+FIXED_REGISTERS, or arrange to be able to eliminate it (see Section -+10.10.5 [Elimination], page 224). -+*/ -+/* Using r5 */ -+#define ARG_POINTER_REGNUM INTERNAL_REGNUM(4) -+ -+ -+/* -+Register numbers used for passing a function's static chain pointer. If -+register windows are used, the register number as seen by the called -+function is STATIC_CHAIN_INCOMING_REGNUM, while the register -+number as seen by the calling function is STATIC_CHAIN_REGNUM. If -+these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need -+not be defined. -+ -+The static chain register need not be a fixed register. -+ -+If the static chain is passed in memory, these macros should not be -+defined; instead, the next two macros should be defined. -+*/ -+/* Using r0 */ -+#define STATIC_CHAIN_REGNUM INTERNAL_REGNUM(0) -+ -+/** Eliminating Frame Pointer and Arg Pointer **/ -+ -+/* -+A C expression which is nonzero if a function must have and use a frame -+pointer. This expression is evaluated in the reload pass. If its value is -+nonzero the function will have a frame pointer. -+ -+The expression can in principle examine the current function and decide -+according to the facts, but on most machines the constant 0 or the -+constant 1 suffices. Use 0 when the machine allows code to be generated -+with no frame pointer, and doing so saves some time or space. Use 1 -+when there is no possible advantage to avoiding a frame pointer. -+ -+In certain cases, the compiler does not know how to produce valid code -+without a frame pointer. The compiler recognizes those cases and -+automatically gives the function a frame pointer regardless of what -+FRAME_POINTER_REQUIRED says. You don't need to worry about -+them. -+ -+In a function that does not require a frame pointer, the frame pointer -+register can be allocated for ordinary usage, unless you mark it as a -+fixed register. See FIXED_REGISTERS for more information. -+*/ -+/* We need the frame pointer when compiling for profiling */ -+#define FRAME_POINTER_REQUIRED (crtl->profile) -+ -+/* -+A C statement to store in the variable DEPTH_VAR the difference -+between the frame pointer and the stack pointer values immediately after -+the function prologue. The value would be computed from information -+such as the result of get_frame_size () and the tables of -+registers regs_ever_live and call_used_regs. -+ -+If ELIMINABLE_REGS is defined, this macro will be not be used and -+need not be defined. Otherwise, it must be defined even if -+FRAME_POINTER_REQUIRED is defined to always be true; in that -+case, you may set DEPTH_VAR to anything. -+*/ -+#define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) ((DEPTH_VAR) = get_frame_size()) -+ -+/* -+If defined, this macro specifies a table of register pairs used to -+eliminate unneeded registers that point into the stack frame. If it is not -+defined, the only elimination attempted by the compiler is to replace -+references to the frame pointer with references to the stack pointer. -+ -+The definition of this macro is a list of structure initializations, each -+of which specifies an original and replacement register. -+ -+On some machines, the position of the argument pointer is not known until -+the compilation is completed. In such a case, a separate hard register -+must be used for the argument pointer. This register can be eliminated by -+replacing it with either the frame pointer or the argument pointer, -+depending on whether or not the frame pointer has been eliminated. -+ -+In this case, you might specify: -+ #define ELIMINABLE_REGS \ -+ {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ -+ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ -+ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} -+ -+Note that the elimination of the argument pointer with the stack pointer is -+specified first since that is the preferred elimination. -+*/ -+#define ELIMINABLE_REGS \ -+{ \ -+ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ -+ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ -+ { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM } \ -+} -+ -+/* -+A C expression that returns nonzero if the compiler is allowed to try -+to replace register number FROM with register number -+TO. This macro need only be defined if ELIMINABLE_REGS -+is defined, and will usually be the constant 1, since most of the cases -+preventing register elimination are things that the compiler already -+knows about. -+*/ -+#define CAN_ELIMINATE(FROM, TO) 1 -+ -+/* -+This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It -+specifies the initial difference between the specified pair of -+registers. This macro must be defined if ELIMINABLE_REGS is -+defined. -+*/ -+#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ -+ ((OFFSET) = avr32_initial_elimination_offset(FROM, TO)) -+ -+/** Passing Function Arguments on the Stack **/ -+ -+ -+/* -+A C expression. If nonzero, push insns will be used to pass -+outgoing arguments. -+If the target machine does not have a push instruction, set it to zero. -+That directs GCC to use an alternate strategy: to -+allocate the entire argument block and then store the arguments into -+it. When PUSH_ARGS is nonzero, PUSH_ROUNDING must be defined too. -+*/ -+#define PUSH_ARGS 1 -+ -+/* -+A C expression that is the number of bytes actually pushed onto the -+stack when an instruction attempts to push NPUSHED bytes. -+ -+On some machines, the definition -+ -+ #define PUSH_ROUNDING(BYTES) (BYTES) -+ -+will suffice. But on other machines, instructions that appear -+to push one byte actually push two bytes in an attempt to maintain -+alignment. Then the definition should be -+ -+ #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1) -+*/ -+/* Push 4 bytes at the time. */ -+#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3) -+ -+/* -+A C expression. If nonzero, the maximum amount of space required for -+outgoing arguments will be computed and placed into the variable -+current_function_outgoing_args_size. No space will be pushed -+onto the stack for each call; instead, the function prologue should -+increase the stack frame size by this amount. -+ -+Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper. -+*/ -+#define ACCUMULATE_OUTGOING_ARGS 0 -+ -+/* -+A C expression that should indicate the number of bytes of its own -+arguments that a function pops on returning, or 0 if the -+function pops no arguments and the caller must therefore pop them all -+after the function returns. -+ -+FUNDECL is a C variable whose value is a tree node that describes -+the function in question. Normally it is a node of type -+FUNCTION_DECL that describes the declaration of the function. -+From this you can obtain the DECL_ATTRIBUTES of the function. -+ -+FUNTYPE is a C variable whose value is a tree node that -+describes the function in question. Normally it is a node of type -+FUNCTION_TYPE that describes the data type of the function. -+From this it is possible to obtain the data types of the value and -+arguments (if known). -+ -+When a call to a library function is being considered, FUNDECL -+will contain an identifier node for the library function. Thus, if -+you need to distinguish among various library functions, you can do so -+by their names. Note that ``library function'' in this context means -+a function used to perform arithmetic, whose name is known specially -+in the compiler and was not mentioned in the C code being compiled. -+ -+STACK_SIZE is the number of bytes of arguments passed on the -+stack. If a variable number of bytes is passed, it is zero, and -+argument popping will always be the responsibility of the calling function. -+ -+On the VAX, all functions always pop their arguments, so the definition -+of this macro is STACK_SIZE. On the 68000, using the standard -+calling convention, no functions pop their arguments, so the value of -+the macro is always 0 in this case. But an alternative calling -+convention is available in which functions that take a fixed number of -+arguments pop them but other functions (such as printf) pop -+nothing (the caller pops all). When this convention is in use, -+FUNTYPE is examined to determine whether a function takes a fixed -+number of arguments. -+*/ -+#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0 -+ -+ -+/*Return true if this function can we use a single return instruction*/ -+#define USE_RETURN_INSN(ISCOND) avr32_use_return_insn(ISCOND) -+ -+/* -+A C expression that should indicate the number of bytes a call sequence -+pops off the stack. It is added to the value of RETURN_POPS_ARGS -+when compiling a function call. -+ -+CUM is the variable in which all arguments to the called function -+have been accumulated. -+ -+On certain architectures, such as the SH5, a call trampoline is used -+that pops certain registers off the stack, depending on the arguments -+that have been passed to the function. Since this is a property of the -+call site, not of the called function, RETURN_POPS_ARGS is not -+appropriate. -+*/ -+#define CALL_POPS_ARGS(CUM) 0 -+ -+/* Passing Arguments in Registers */ -+ -+/* -+A C expression that controls whether a function argument is passed -+in a register, and which register. -+ -+The arguments are CUM, which summarizes all the previous -+arguments; MODE, the machine mode of the argument; TYPE, -+the data type of the argument as a tree node or 0 if that is not known -+(which happens for C support library functions); and NAMED, -+which is 1 for an ordinary argument and 0 for nameless arguments that -+correspond to '...' in the called function's prototype. -+TYPE can be an incomplete type if a syntax error has previously -+occurred. -+ -+The value of the expression is usually either a reg RTX for the -+hard register in which to pass the argument, or zero to pass the -+argument on the stack. -+ -+For machines like the VAX and 68000, where normally all arguments are -+pushed, zero suffices as a definition. -+ -+The value of the expression can also be a parallel RTX. This is -+used when an argument is passed in multiple locations. The mode of the -+of the parallel should be the mode of the entire argument. The -+parallel holds any number of expr_list pairs; each one -+describes where part of the argument is passed. In each -+expr_list the first operand must be a reg RTX for the hard -+register in which to pass this part of the argument, and the mode of the -+register RTX indicates how large this part of the argument is. The -+second operand of the expr_list is a const_int which gives -+the offset in bytes into the entire argument of where this part starts. -+As a special exception the first expr_list in the parallel -+RTX may have a first operand of zero. This indicates that the entire -+argument is also stored on the stack. -+ -+The last time this macro is called, it is called with MODE == VOIDmode, -+and its result is passed to the call or call_value -+pattern as operands 2 and 3 respectively. -+ -+The usual way to make the ISO library 'stdarg.h' work on a machine -+where some arguments are usually passed in registers, is to cause -+nameless arguments to be passed on the stack instead. This is done -+by making FUNCTION_ARG return 0 whenever NAMED is 0. -+ -+You may use the macro MUST_PASS_IN_STACK (MODE, TYPE) -+in the definition of this macro to determine if this argument is of a -+type that must be passed in the stack. If REG_PARM_STACK_SPACE -+is not defined and FUNCTION_ARG returns nonzero for such an -+argument, the compiler will abort. If REG_PARM_STACK_SPACE is -+defined, the argument will be computed in the stack and then loaded into -+a register. */ -+ -+#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ -+ avr32_function_arg(&(CUM), MODE, TYPE, NAMED) -+ -+/* -+A C type for declaring a variable that is used as the first argument of -+FUNCTION_ARG and other related values. For some target machines, -+the type int suffices and can hold the number of bytes of -+argument so far. -+ -+There is no need to record in CUMULATIVE_ARGS anything about the -+arguments that have been passed on the stack. The compiler has other -+variables to keep track of that. For target machines on which all -+arguments are passed on the stack, there is no need to store anything in -+CUMULATIVE_ARGS; however, the data structure must exist and -+should not be empty, so use int. -+*/ -+typedef struct avr32_args -+{ -+ /* Index representing the argument register the current function argument -+ will occupy */ -+ int index; -+ /* A mask with bits representing the argument registers: if a bit is set -+ then this register is used for an argument */ -+ int used_index; -+ /* TRUE if this function has anonymous arguments */ -+ int uses_anonymous_args; -+ /* The size in bytes of the named arguments pushed on the stack */ -+ int stack_pushed_args_size; -+ /* Set to true if this function needs a Return Value Pointer */ -+ int use_rvp; -+ /* Set to true if function is a flashvault function. */ -+ int flashvault_func; -+ -+} CUMULATIVE_ARGS; -+ -+ -+#define FIRST_CUM_REG_INDEX 0 -+#define LAST_CUM_REG_INDEX 4 -+#define GET_REG_INDEX(CUM) ((CUM)->index) -+#define SET_REG_INDEX(CUM, INDEX) ((CUM)->index = (INDEX)); -+#define GET_USED_INDEX(CUM, INDEX) ((CUM)->used_index & (1 << (INDEX))) -+#define SET_USED_INDEX(CUM, INDEX) \ -+ do \ -+ { \ -+ if (INDEX >= 0) \ -+ (CUM)->used_index |= (1 << (INDEX)); \ -+ } \ -+ while (0) -+#define SET_INDEXES_UNUSED(CUM) ((CUM)->used_index = 0) -+ -+/* -+ A C statement (sans semicolon) for initializing the variable cum for the -+ state at the beginning of the argument list. The variable has type -+ CUMULATIVE_ARGS. The value of FNTYPE is the tree node for the data type of -+ the function which will receive the args, or 0 if the args are to a compiler -+ support library function. For direct calls that are not libcalls, FNDECL -+ contain the declaration node of the function. FNDECL is also set when -+ INIT_CUMULATIVE_ARGS is used to find arguments for the function being -+ compiled. N_NAMED_ARGS is set to the number of named arguments, including a -+ structure return address if it is passed as a parameter, when making a call. -+ When processing incoming arguments, N_NAMED_ARGS is set to -1. -+ -+ When processing a call to a compiler support library function, LIBNAME -+ identifies which one. It is a symbol_ref rtx which contains the name of the -+ function, as a string. LIBNAME is 0 when an ordinary C function call is -+ being processed. Thus, each time this macro is called, either LIBNAME or -+ FNTYPE is nonzero, but never both of them at once. -+*/ -+#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ -+ avr32_init_cumulative_args(&(CUM), FNTYPE, LIBNAME, FNDECL) -+ -+/* -+A C statement (sans semicolon) to update the summarizer variable -+CUM to advance past an argument in the argument list. The -+values MODE, TYPE and NAMED describe that argument. -+Once this is done, the variable CUM is suitable for analyzing -+the following argument with FUNCTION_ARG, etc. -+ -+This macro need not do anything if the argument in question was passed -+on the stack. The compiler knows how to track the amount of stack space -+used for arguments without any special help. -+*/ -+#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ -+ avr32_function_arg_advance(&(CUM), MODE, TYPE, NAMED) -+ -+/* -+If defined, a C expression which determines whether, and in which direction, -+to pad out an argument with extra space. The value should be of type -+enum direction: either 'upward' to pad above the argument, -+'downward' to pad below, or 'none' to inhibit padding. -+ -+The amount of padding is always just enough to reach the next -+multiple of FUNCTION_ARG_BOUNDARY; this macro does not control -+it. -+ -+This macro has a default definition which is right for most systems. -+For little-endian machines, the default is to pad upward. For -+big-endian machines, the default is to pad downward for an argument of -+constant size shorter than an int, and upward otherwise. -+*/ -+#define FUNCTION_ARG_PADDING(MODE, TYPE) \ -+ avr32_function_arg_padding(MODE, TYPE) -+ -+/* -+ Specify padding for the last element of a block move between registers -+ and memory. First is nonzero if this is the only element. Defining -+ this macro allows better control of register function parameters on -+ big-endian machines, without using PARALLEL rtl. In particular, -+ MUST_PASS_IN_STACK need not test padding and mode of types in registers, -+ as there is no longer a "wrong" part of a register; For example, a three -+ byte aggregate may be passed in the high part of a register if so required. -+*/ -+#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ -+ avr32_function_arg_padding(MODE, TYPE) -+ -+/* -+If defined, a C expression which determines whether the default -+implementation of va_arg will attempt to pad down before reading the -+next argument, if that argument is smaller than its aligned space as -+controlled by PARM_BOUNDARY. If this macro is not defined, all such -+arguments are padded down if BYTES_BIG_ENDIAN is true. -+*/ -+#define PAD_VARARGS_DOWN \ -+ (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward) -+ -+/* -+A C expression that is nonzero if REGNO is the number of a hard -+register in which function arguments are sometimes passed. This does -+not include implicit arguments such as the static chain and -+the structure-value address. On many machines, no registers can be -+used for this purpose since all function arguments are pushed on the -+stack. -+*/ -+/* -+ Use r8 - r12 for function arguments. -+*/ -+#define FUNCTION_ARG_REGNO_P(REGNO) \ -+ (REGNO >= 3 && REGNO <= 7) -+ -+/* Number of registers used for passing function arguments */ -+#define NUM_ARG_REGS 5 -+ -+/* -+If defined, the order in which arguments are loaded into their -+respective argument registers is reversed so that the last -+argument is loaded first. This macro only affects arguments -+passed in registers. -+*/ -+/* #define LOAD_ARGS_REVERSED */ -+ -+/** How Scalar Function Values Are Returned **/ -+ -+/* AVR32 is using r12 as return register. */ -+#define RET_REGISTER (15 - 12) -+ -+/* -+A C expression to create an RTX representing the place where a library -+function returns a value of mode MODE. If the precise function -+being called is known, FUNC is a tree node -+(FUNCTION_DECL) for it; otherwise, func is a null -+pointer. This makes it possible to use a different value-returning -+convention for specific functions when all their calls are -+known. -+ -+Note that "library function" in this context means a compiler -+support routine, used to perform arithmetic, whose name is known -+specially by the compiler and was not mentioned in the C code being -+compiled. -+ -+The definition of LIBRARY_VALUE need not be concerned aggregate -+data types, because none of the library functions returns such types. -+*/ -+#define LIBCALL_VALUE(MODE) avr32_libcall_value(MODE) -+ -+/* -+A C expression that is nonzero if REGNO is the number of a hard -+register in which the values of called function may come back. -+ -+A register whose use for returning values is limited to serving as the -+second of a pair (for a value of type double, say) need not be -+recognized by this macro. So for most machines, this definition -+suffices: -+ #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0) -+ -+If the machine has register windows, so that the caller and the called -+function use different registers for the return value, this macro -+should recognize only the caller's register numbers. -+*/ -+/* -+ When returning a value of mode DImode, r11:r10 is used, else r12 is used. -+*/ -+#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RET_REGISTER \ -+ || (REGNO) == INTERNAL_REGNUM(11)) -+ -+ -+/** How Large Values Are Returned **/ -+ -+ -+/* -+Define this macro to be 1 if all structure and union return values must be -+in memory. Since this results in slower code, this should be defined -+only if needed for compatibility with other compilers or with an ABI. -+If you define this macro to be 0, then the conventions used for structure -+and union return values are decided by the RETURN_IN_MEMORY macro. -+ -+If not defined, this defaults to the value 1. -+*/ -+#define DEFAULT_PCC_STRUCT_RETURN 0 -+ -+ -+ -+ -+/** Generating Code for Profiling **/ -+ -+/* -+A C statement or compound statement to output to FILE some -+assembler code to call the profiling subroutine mcount. -+ -+The details of how mcount expects to be called are determined by -+your operating system environment, not by GCC. To figure them out, -+compile a small program for profiling using the system's installed C -+compiler and look at the assembler code that results. -+ -+Older implementations of mcount expect the address of a counter -+variable to be loaded into some register. The name of this variable is -+'LP' followed by the number LABELNO, so you would generate -+the name using 'LP%d' in a fprintf. -+*/ -+/* ToDo: fixme */ -+#ifndef FUNCTION_PROFILER -+#define FUNCTION_PROFILER(FILE, LABELNO) \ -+ fprintf((FILE), "/* profiler %d */", (LABELNO)) -+#endif -+ -+ -+/***************************************************************************** -+ * Trampolines for Nested Functions * -+ *****************************************************************************/ -+ -+/* -+A C statement to output, on the stream FILE, assembler code for a -+block of data that contains the constant parts of a trampoline. This -+code should not include a label - the label is taken care of -+automatically. -+ -+If you do not define this macro, it means no template is needed -+for the target. Do not define this macro on systems where the block move -+code to copy the trampoline into place would be larger than the code -+to generate it on the spot. -+*/ -+/* ToDo: correct? */ -+#define TRAMPOLINE_TEMPLATE(FILE) avr32_trampoline_template(FILE); -+ -+ -+/* -+A C expression for the size in bytes of the trampoline, as an integer. -+*/ -+/* ToDo: fixme */ -+#define TRAMPOLINE_SIZE 0x0C -+ -+/* -+Alignment required for trampolines, in bits. -+ -+If you don't define this macro, the value of BIGGEST_ALIGNMENT -+is used for aligning trampolines. -+*/ -+#define TRAMPOLINE_ALIGNMENT 16 -+ -+/* -+A C statement to initialize the variable parts of a trampoline. -+ADDR is an RTX for the address of the trampoline; FNADDR is -+an RTX for the address of the nested function; STATIC_CHAIN is an -+RTX for the static chain value that should be passed to the function -+when it is called. -+*/ -+#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \ -+ avr32_initialize_trampoline(ADDR, FNADDR, STATIC_CHAIN) -+ -+ -+/****************************************************************************** -+ * Implicit Calls to Library Routines -+ *****************************************************************************/ -+ -+/* Tail calling. */ -+ -+/* A C expression that evaluates to true if it is ok to perform a sibling -+ call to DECL. */ -+#define FUNCTION_OK_FOR_SIBCALL(DECL) 0 -+ -+#define OVERRIDE_OPTIONS avr32_override_options () -+ -+#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) avr32_optimization_options (LEVEL, SIZE) -+ -+/****************************************************************************** -+ * Addressing Modes -+ *****************************************************************************/ -+ -+/* -+A C expression that is nonzero if the machine supports pre-increment, -+pre-decrement, post-increment, or post-decrement addressing respectively. -+*/ -+/* -+ AVR32 supports Rp++ and --Rp -+*/ -+#define HAVE_PRE_INCREMENT 0 -+#define HAVE_PRE_DECREMENT 1 -+#define HAVE_POST_INCREMENT 1 -+#define HAVE_POST_DECREMENT 0 -+ -+/* -+A C expression that is nonzero if the machine supports pre- or -+post-address side-effect generation involving constants other than -+the size of the memory operand. -+*/ -+#define HAVE_PRE_MODIFY_DISP 0 -+#define HAVE_POST_MODIFY_DISP 0 -+ -+/* -+A C expression that is nonzero if the machine supports pre- or -+post-address side-effect generation involving a register displacement. -+*/ -+#define HAVE_PRE_MODIFY_REG 0 -+#define HAVE_POST_MODIFY_REG 0 -+ -+/* -+A C expression that is 1 if the RTX X is a constant which -+is a valid address. On most machines, this can be defined as -+CONSTANT_P (X), but a few machines are more restrictive -+in which constant addresses are supported. -+ -+CONSTANT_P accepts integer-values expressions whose values are -+not explicitly known, such as symbol_ref, label_ref, and -+high expressions and const arithmetic expressions, in -+addition to const_int and const_double expressions. -+*/ -+#define CONSTANT_ADDRESS_P(X) CONSTANT_P(X) -+ -+/* -+A number, the maximum number of registers that can appear in a valid -+memory address. Note that it is up to you to specify a value equal to -+the maximum number that GO_IF_LEGITIMATE_ADDRESS would ever -+accept. -+*/ -+#define MAX_REGS_PER_ADDRESS 2 -+ -+/* -+A C compound statement with a conditional goto LABEL; -+executed if X (an RTX) is a legitimate memory address on the -+target machine for a memory operand of mode MODE. -+ -+It usually pays to define several simpler macros to serve as -+subroutines for this one. Otherwise it may be too complicated to -+understand. -+ -+This macro must exist in two variants: a strict variant and a -+non-strict one. The strict variant is used in the reload pass. It -+must be defined so that any pseudo-register that has not been -+allocated a hard register is considered a memory reference. In -+contexts where some kind of register is required, a pseudo-register -+with no hard register must be rejected. -+ -+The non-strict variant is used in other passes. It must be defined to -+accept all pseudo-registers in every context where some kind of -+register is required. -+ -+Compiler source files that want to use the strict variant of this -+macro define the macro REG_OK_STRICT. You should use an -+#ifdef REG_OK_STRICT conditional to define the strict variant -+in that case and the non-strict variant otherwise. -+ -+Subroutines to check for acceptable registers for various purposes (one -+for base registers, one for index registers, and so on) are typically -+among the subroutines used to define GO_IF_LEGITIMATE_ADDRESS. -+Then only these subroutine macros need have two variants; the higher -+levels of macros may be the same whether strict or not. -+ -+Normally, constant addresses which are the sum of a symbol_ref -+and an integer are stored inside a const RTX to mark them as -+constant. Therefore, there is no need to recognize such sums -+specifically as legitimate addresses. Normally you would simply -+recognize any const as legitimate. -+ -+Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant -+sums that are not marked with const. It assumes that a naked -+plus indicates indexing. If so, then you must reject such -+naked constant sums as illegitimate addresses, so that none of them will -+be given to PRINT_OPERAND_ADDRESS. -+ -+On some machines, whether a symbolic address is legitimate depends on -+the section that the address refers to. On these machines, define the -+macro ENCODE_SECTION_INFO to store the information into the -+symbol_ref, and then check for it here. When you see a -+const, you will have to look inside it to find the -+symbol_ref in order to determine the section. -+ -+The best way to modify the name string is by adding text to the -+beginning, with suitable punctuation to prevent any ambiguity. Allocate -+the new name in saveable_obstack. You will have to modify -+ASM_OUTPUT_LABELREF to remove and decode the added text and -+output the name accordingly, and define STRIP_NAME_ENCODING to -+access the original name string. -+ -+You can check the information stored here into the symbol_ref in -+the definitions of the macros GO_IF_LEGITIMATE_ADDRESS and -+PRINT_OPERAND_ADDRESS. -+*/ -+#ifdef REG_OK_STRICT -+# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \ -+ do \ -+ { \ -+ if (avr32_legitimate_address(MODE, X, 1)) \ -+ goto LABEL; \ -+ } \ -+ while (0) -+#else -+# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \ -+ do \ -+ { \ -+ if (avr32_legitimate_address(MODE, X, 0)) \ -+ goto LABEL; \ -+ } \ -+ while (0) -+#endif -+ -+ -+ -+/* -+A C compound statement that attempts to replace X with a valid -+memory address for an operand of mode MODE. win will be a -+C statement label elsewhere in the code; the macro definition may use -+ -+ GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); -+ -+to avoid further processing if the address has become legitimate. -+ -+X will always be the result of a call to break_out_memory_refs, -+and OLDX will be the operand that was given to that function to produce -+X. -+ -+The code generated by this macro should not alter the substructure of -+X. If it transforms X into a more legitimate form, it -+should assign X (which will always be a C variable) a new value. -+ -+It is not necessary for this macro to come up with a legitimate -+address. The compiler has standard ways of doing so in all cases. In -+fact, it is safe for this macro to do nothing. But often a -+machine-dependent strategy can generate better code. -+*/ -+#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ -+ do \ -+ { \ -+ if (GET_CODE(X) == PLUS \ -+ && GET_CODE(XEXP(X, 0)) == REG \ -+ && GET_CODE(XEXP(X, 1)) == CONST_INT \ -+ && !CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(X, 1)), \ -+ 'K', "Ks16")) \ -+ { \ -+ rtx index = force_reg(SImode, XEXP(X, 1)); \ -+ X = gen_rtx_PLUS( SImode, XEXP(X, 0), index); \ -+ } \ -+ GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN); \ -+ } \ -+ while(0) -+ -+ -+/* -+A C statement or compound statement with a conditional -+goto LABEL; executed if memory address X (an RTX) can have -+different meanings depending on the machine mode of the memory -+reference it is used for or if the address is valid for some modes -+but not others. -+ -+Autoincrement and autodecrement addresses typically have mode-dependent -+effects because the amount of the increment or decrement is the size -+of the operand being addressed. Some machines have other mode-dependent -+addresses. Many RISC machines have no mode-dependent addresses. -+ -+You may assume that ADDR is a valid address for the machine. -+*/ -+#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ -+ do \ -+ { \ -+ if (GET_CODE (ADDR) == POST_INC \ -+ || GET_CODE (ADDR) == PRE_DEC) \ -+ goto LABEL; \ -+ } \ -+ while (0) -+ -+/* -+A C expression that is nonzero if X is a legitimate constant for -+an immediate operand on the target machine. You can assume that -+X satisfies CONSTANT_P, so you need not check this. In fact, -+'1' is a suitable definition for this macro on machines where -+anything CONSTANT_P is valid. -+*/ -+#define LEGITIMATE_CONSTANT_P(X) avr32_legitimate_constant_p(X) -+ -+ -+/****************************************************************************** -+ * Condition Code Status -+ *****************************************************************************/ -+ -+/* -+C code for a data type which is used for declaring the mdep -+component of cc_status. It defaults to int. -+ -+This macro is not used on machines that do not use cc0. -+*/ -+ -+typedef struct -+{ -+ int flags; -+ rtx value; -+ int cond_exec_cmp_clobbered; -+} avr32_status_reg; -+ -+ -+#define CC_STATUS_MDEP avr32_status_reg -+ -+/* -+A C expression to initialize the mdep field to "empty". -+The default definition does nothing, since most machines don't use -+the field anyway. If you want to use the field, you should probably -+define this macro to initialize it. -+ -+This macro is not used on machines that do not use cc0. -+*/ -+ -+#define CC_STATUS_MDEP_INIT \ -+ (cc_status.mdep.flags = CC_NONE , cc_status.mdep.cond_exec_cmp_clobbered = 0, cc_status.mdep.value = 0) -+ -+/* -+A C compound statement to set the components of cc_status -+appropriately for an insn INSN whose body is EXP. It is -+this macro's responsibility to recognize insns that set the condition -+code as a byproduct of other activity as well as those that explicitly -+set (cc0). -+ -+This macro is not used on machines that do not use cc0. -+ -+If there are insns that do not set the condition code but do alter -+other machine registers, this macro must check to see whether they -+invalidate the expressions that the condition code is recorded as -+reflecting. For example, on the 68000, insns that store in address -+registers do not set the condition code, which means that usually -+NOTICE_UPDATE_CC can leave cc_status unaltered for such -+insns. But suppose that the previous insn set the condition code -+based on location 'a4@@(102)' and the current insn stores a new -+value in 'a4'. Although the condition code is not changed by -+this, it will no longer be true that it reflects the contents of -+'a4@@(102)'. Therefore, NOTICE_UPDATE_CC must alter -+cc_status in this case to say that nothing is known about the -+condition code value. -+ -+The definition of NOTICE_UPDATE_CC must be prepared to deal -+with the results of peephole optimization: insns whose patterns are -+parallel RTXs containing various reg, mem or -+constants which are just the operands. The RTL structure of these -+insns is not sufficient to indicate what the insns actually do. What -+NOTICE_UPDATE_CC should do when it sees one is just to run -+CC_STATUS_INIT. -+ -+A possible definition of NOTICE_UPDATE_CC is to call a function -+that looks at an attribute (see Insn Attributes) named, for example, -+'cc'. This avoids having detailed information about patterns in -+two places, the 'md' file and in NOTICE_UPDATE_CC. -+*/ -+ -+#define NOTICE_UPDATE_CC(EXP, INSN) avr32_notice_update_cc(EXP, INSN) -+ -+ -+ -+ -+/****************************************************************************** -+ * Describing Relative Costs of Operations -+ *****************************************************************************/ -+ -+ -+ -+/* -+A C expression for the cost of moving data of mode MODE from a -+register in class FROM to one in class TO. The classes are -+expressed using the enumeration values such as GENERAL_REGS. A -+value of 2 is the default; other values are interpreted relative to -+that. -+ -+It is not required that the cost always equal 2 when FROM is the -+same as TO; on some machines it is expensive to move between -+registers if they are not general registers. -+ -+If reload sees an insn consisting of a single set between two -+hard registers, and if REGISTER_MOVE_COST applied to their -+classes returns a value of 2, reload does not check to ensure that the -+constraints of the insn are met. Setting a cost of other than 2 will -+allow reload to verify that the constraints are met. You should do this -+if the movm pattern's constraints do not allow such copying. -+*/ -+#define REGISTER_MOVE_COST(MODE, FROM, TO) \ -+ ((GET_MODE_SIZE(MODE) <= 4) ? 2: \ -+ (GET_MODE_SIZE(MODE) <= 8) ? 3: \ -+ 4) -+ -+/* -+A C expression for the cost of moving data of mode MODE between a -+register of class CLASS and memory; IN is zero if the value -+is to be written to memory, nonzero if it is to be read in. This cost -+is relative to those in REGISTER_MOVE_COST. If moving between -+registers and memory is more expensive than between two registers, you -+should define this macro to express the relative cost. -+ -+If you do not define this macro, GCC uses a default cost of 4 plus -+the cost of copying via a secondary reload register, if one is -+needed. If your machine requires a secondary reload register to copy -+between memory and a register of CLASS but the reload mechanism is -+more complex than copying via an intermediate, define this macro to -+reflect the actual cost of the move. -+ -+GCC defines the function memory_move_secondary_cost if -+secondary reloads are needed. It computes the costs due to copying via -+a secondary register. If your machine copies from memory using a -+secondary register in the conventional way but the default base value of -+4 is not correct for your machine, define this macro to add some other -+value to the result of that function. The arguments to that function -+are the same as to this macro. -+*/ -+/* -+ Memory moves are costly -+*/ -+#define MEMORY_MOVE_COST(MODE, CLASS, IN) \ -+ (((IN) ? ((GET_MODE_SIZE(MODE) < 4) ? 4 : \ -+ (GET_MODE_SIZE(MODE) > 8) ? 6 : \ -+ 3) \ -+ : ((GET_MODE_SIZE(MODE) > 8) ? 6 : 3))) -+ -+/* -+A C expression for the cost of a branch instruction. A value of 1 is -+the default; other values are interpreted relative to that. -+*/ -+ /* Try to use conditionals as much as possible */ -+#define BRANCH_COST(speed_p, predictable_p) (TARGET_BRANCH_PRED ? 3 : 4) -+ -+/*A C expression for the maximum number of instructions to execute via conditional -+ execution instructions instead of a branch. A value of BRANCH_COST+1 is the default -+ if the machine does not use cc0, and 1 if it does use cc0.*/ -+#define MAX_CONDITIONAL_EXECUTE 4 -+ -+/* -+Define this macro as a C expression which is nonzero if accessing less -+than a word of memory (i.e.: a char or a short) is no -+faster than accessing a word of memory, i.e., if such access -+require more than one instruction or if there is no difference in cost -+between byte and (aligned) word loads. -+ -+When this macro is not defined, the compiler will access a field by -+finding the smallest containing object; when it is defined, a fullword -+load will be used if alignment permits. Unless bytes accesses are -+faster than word accesses, using word accesses is preferable since it -+may eliminate subsequent memory access if subsequent accesses occur to -+other fields in the same word of the structure, but to different bytes. -+*/ -+#define SLOW_BYTE_ACCESS 1 -+ -+ -+/* -+Define this macro if it is as good or better to call a constant -+function address than to call an address kept in a register. -+*/ -+#define NO_FUNCTION_CSE -+ -+ -+/****************************************************************************** -+ * Adjusting the Instruction Scheduler -+ *****************************************************************************/ -+ -+/***************************************************************************** -+ * Dividing the Output into Sections (Texts, Data, ...) * -+ *****************************************************************************/ -+ -+/* -+A C expression whose value is a string, including spacing, containing the -+assembler operation that should precede instructions and read-only data. -+Normally "\t.text" is right. -+*/ -+#define TEXT_SECTION_ASM_OP "\t.text" -+/* -+A C statement that switches to the default section containing instructions. -+Normally this is not needed, as simply defining TEXT_SECTION_ASM_OP -+is enough. The MIPS port uses this to sort all functions after all data -+declarations. -+*/ -+/* #define TEXT_SECTION */ -+ -+/* -+A C expression whose value is a string, including spacing, containing the -+assembler operation to identify the following data as writable initialized -+data. Normally "\t.data" is right. -+*/ -+#define DATA_SECTION_ASM_OP "\t.data" -+ -+/* -+If defined, a C expression whose value is a string, including spacing, -+containing the assembler operation to identify the following data as -+shared data. If not defined, DATA_SECTION_ASM_OP will be used. -+*/ -+ -+/* -+A C expression whose value is a string, including spacing, containing -+the assembler operation to identify the following data as read-only -+initialized data. -+*/ -+#undef READONLY_DATA_SECTION_ASM_OP -+#define READONLY_DATA_SECTION_ASM_OP \ -+ ((TARGET_USE_RODATA_SECTION) ? \ -+ "\t.section\t.rodata" : \ -+ TEXT_SECTION_ASM_OP ) -+ -+ -+/* -+If defined, a C expression whose value is a string, including spacing, -+containing the assembler operation to identify the following data as -+uninitialized global data. If not defined, and neither -+ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_BSS are defined, -+uninitialized global data will be output in the data section if -+-fno-common is passed, otherwise ASM_OUTPUT_COMMON will be -+used. -+*/ -+#define BSS_SECTION_ASM_OP "\t.section\t.bss" -+ -+/* -+If defined, a C expression whose value is a string, including spacing, -+containing the assembler operation to identify the following data as -+uninitialized global shared data. If not defined, and -+BSS_SECTION_ASM_OP is, the latter will be used. -+*/ -+/*#define SHARED_BSS_SECTION_ASM_OP "\trseg\tshared_bbs_section:data:noroot(0)\n"*/ -+/* -+If defined, a C expression whose value is a string, including spacing, -+containing the assembler operation to identify the following data as -+initialization code. If not defined, GCC will assume such a section does -+not exist. -+*/ -+#undef INIT_SECTION_ASM_OP -+#define INIT_SECTION_ASM_OP "\t.section\t.init" -+ -+/* -+If defined, a C expression whose value is a string, including spacing, -+containing the assembler operation to identify the following data as -+finalization code. If not defined, GCC will assume such a section does -+not exist. -+*/ -+#undef FINI_SECTION_ASM_OP -+#define FINI_SECTION_ASM_OP "\t.section\t.fini" -+ -+/* -+If defined, an ASM statement that switches to a different section -+via SECTION_OP, calls FUNCTION, and switches back to -+the text section. This is used in crtstuff.c if -+INIT_SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls -+to initialization and finalization functions from the init and fini -+sections. By default, this macro uses a simple function call. Some -+ports need hand-crafted assembly code to avoid dependencies on -+registers initialized in the function prologue or to ensure that -+constant pools don't end up too far way in the text section. -+*/ -+#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ -+ asm ( SECTION_OP "\n" \ -+ "mcall r6[" USER_LABEL_PREFIX #FUNC "@got]\n" \ -+ TEXT_SECTION_ASM_OP); -+ -+ -+/* -+Define this macro to be an expression with a nonzero value if jump -+tables (for tablejump insns) should be output in the text -+section, along with the assembler instructions. Otherwise, the -+readonly data section is used. -+ -+This macro is irrelevant if there is no separate readonly data section. -+*/ -+/* Put jump tables in text section if we have caches. Otherwise assume that -+ loading data from code memory is slow. */ -+#define JUMP_TABLES_IN_TEXT_SECTION \ -+ (TARGET_CACHES ? 1 : 0) -+ -+ -+/****************************************************************************** -+ * Position Independent Code (PIC) -+ *****************************************************************************/ -+ -+#ifndef AVR32_ALWAYS_PIC -+#define AVR32_ALWAYS_PIC 0 -+#endif -+ -+/* GOT is set to r6 */ -+#define PIC_OFFSET_TABLE_REGNUM INTERNAL_REGNUM(6) -+ -+/* -+A C expression that is nonzero if X is a legitimate immediate -+operand on the target machine when generating position independent code. -+You can assume that X satisfies CONSTANT_P, so you need not -+check this. You can also assume flag_pic is true, so you need not -+check it either. You need not define this macro if all constants -+(including SYMBOL_REF) can be immediate operands when generating -+position independent code. -+*/ -+/* We can't directly access anything that contains a symbol, -+ nor can we indirect via the constant pool. */ -+#define LEGITIMATE_PIC_OPERAND_P(X) avr32_legitimate_pic_operand_p(X) -+ -+ -+/* We need to know when we are making a constant pool; this determines -+ whether data needs to be in the GOT or can be referenced via a GOT -+ offset. */ -+extern int making_const_table; -+ -+/****************************************************************************** -+ * Defining the Output Assembler Language -+ *****************************************************************************/ -+ -+ -+/* -+A C string constant describing how to begin a comment in the target -+assembler language. The compiler assumes that the comment will end at -+the end of the line. -+*/ -+#define ASM_COMMENT_START "# " -+ -+/* -+A C string constant for text to be output before each asm -+statement or group of consecutive ones. Normally this is -+"#APP", which is a comment that has no effect on most -+assemblers but tells the GNU assembler that it must check the lines -+that follow for all valid assembler constructs. -+*/ -+#undef ASM_APP_ON -+#define ASM_APP_ON "#APP\n" -+ -+/* -+A C string constant for text to be output after each asm -+statement or group of consecutive ones. Normally this is -+"#NO_APP", which tells the GNU assembler to resume making the -+time-saving assumptions that are valid for ordinary compiler output. -+*/ -+#undef ASM_APP_OFF -+#define ASM_APP_OFF "#NO_APP\n" -+ -+ -+ -+#define FILE_ASM_OP "\t.file\n" -+#define IDENT_ASM_OP "\t.ident\t" -+#define SET_ASM_OP "\t.set\t" -+ -+ -+/* -+ * Output assembly directives to switch to section name. The section -+ * should have attributes as specified by flags, which is a bit mask -+ * of the SECTION_* flags defined in 'output.h'. If align is nonzero, -+ * it contains an alignment in bytes to be used for the section, -+ * otherwise some target default should be used. Only targets that -+ * must specify an alignment within the section directive need pay -+ * attention to align -- we will still use ASM_OUTPUT_ALIGN. -+ * -+ * NOTE: This one must not be moved to avr32.c -+ */ -+#undef TARGET_ASM_NAMED_SECTION -+#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section -+ -+ -+/* -+You may define this macro as a C expression. You should define the -+expression to have a nonzero value if GCC should output the constant -+pool for a function before the code for the function, or a zero value if -+GCC should output the constant pool after the function. If you do -+not define this macro, the usual case, GCC will output the constant -+pool before the function. -+*/ -+#define CONSTANT_POOL_BEFORE_FUNCTION 0 -+ -+ -+/* -+Define this macro as a C expression which is nonzero if the constant -+EXP, of type tree, should be output after the code for a -+function. The compiler will normally output all constants before the -+function; you need not define this macro if this is OK. -+*/ -+#define CONSTANT_AFTER_FUNCTION_P(EXP) 1 -+ -+ -+/* -+Define this macro as a C expression which is nonzero if C is -+as a logical line separator by the assembler. STR points to the -+position in the string where C was found; this can be used if a -+line separator uses multiple characters. -+ -+If you do not define this macro, the default is that only -+the character ';' is treated as a logical line separator. -+*/ -+#define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) (((C) == '\n') || ((C) == ';')) -+ -+ -+/** Output of Uninitialized Variables **/ -+ -+/* -+A C statement (sans semicolon) to output to the stdio stream -+STREAM the assembler definition of a common-label named -+NAME whose size is SIZE bytes. The variable ROUNDED -+is the size rounded up to whatever alignment the caller wants. -+ -+Use the expression assemble_name(STREAM, NAME) to -+output the name itself; before and after that, output the additional -+assembler syntax for defining the name, and a newline. -+ -+This macro controls how the assembler definitions of uninitialized -+common global variables are output. -+*/ -+/* -+#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \ -+ avr32_asm_output_common(STREAM, NAME, SIZE, ROUNDED) -+*/ -+ -+#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ -+ do \ -+ { \ -+ fputs ("\t.comm ", (FILE)); \ -+ assemble_name ((FILE), (NAME)); \ -+ fprintf ((FILE), ",%d\n", (SIZE)); \ -+ } \ -+ while (0) -+ -+/* -+ * Like ASM_OUTPUT_BSS except takes the required alignment as a -+ * separate, explicit argument. If you define this macro, it is used -+ * in place of ASM_OUTPUT_BSS, and gives you more flexibility in -+ * handling the required alignment of the variable. The alignment is -+ * specified as the number of bits. -+ * -+ * Try to use function asm_output_aligned_bss defined in file varasm.c -+ * when defining this macro. -+ */ -+#define ASM_OUTPUT_ALIGNED_BSS(STREAM, DECL, NAME, SIZE, ALIGNMENT) \ -+ asm_output_aligned_bss (STREAM, DECL, NAME, SIZE, ALIGNMENT) -+ -+/* -+A C statement (sans semicolon) to output to the stdio stream -+STREAM the assembler definition of a local-common-label named -+NAME whose size is SIZE bytes. The variable ROUNDED -+is the size rounded up to whatever alignment the caller wants. -+ -+Use the expression assemble_name(STREAM, NAME) to -+output the name itself; before and after that, output the additional -+assembler syntax for defining the name, and a newline. -+ -+This macro controls how the assembler definitions of uninitialized -+static variables are output. -+*/ -+#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ -+ do \ -+ { \ -+ fputs ("\t.lcomm ", (FILE)); \ -+ assemble_name ((FILE), (NAME)); \ -+ fprintf ((FILE), ",%d, %d\n", (SIZE), 2); \ -+ } \ -+ while (0) -+ -+ -+/* -+A C statement (sans semicolon) to output to the stdio stream -+STREAM the assembler definition of a label named NAME. -+Use the expression assemble_name(STREAM, NAME) to -+output the name itself; before and after that, output the additional -+assembler syntax for defining the name, and a newline. -+*/ -+#define ASM_OUTPUT_LABEL(STREAM, NAME) avr32_asm_output_label(STREAM, NAME) -+ -+/* A C string containing the appropriate assembler directive to -+ * specify the size of a symbol, without any arguments. On systems -+ * that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"'; -+ * on other systems, the default is not to define this macro. -+ * -+ * Define this macro only if it is correct to use the default -+ * definitions of ASM_ OUTPUT_SIZE_DIRECTIVE and -+ * ASM_OUTPUT_MEASURED_SIZE for your system. If you need your own -+ * custom definitions of those macros, or if you do not need explicit -+ * symbol sizes at all, do not define this macro. -+ */ -+#define SIZE_ASM_OP "\t.size\t" -+ -+ -+/* -+A C statement (sans semicolon) to output to the stdio stream -+STREAM some commands that will make the label NAME global; -+that is, available for reference from other files. Use the expression -+assemble_name(STREAM, NAME) to output the name -+itself; before and after that, output the additional assembler syntax -+for making that name global, and a newline. -+*/ -+#define GLOBAL_ASM_OP "\t.global\t" -+ -+ -+ -+/* -+A C expression which evaluates to true if the target supports weak symbols. -+ -+If you don't define this macro, defaults.h provides a default -+definition. If either ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL -+is defined, the default definition is '1'; otherwise, it is -+'0'. Define this macro if you want to control weak symbol support -+with a compiler flag such as -melf. -+*/ -+#define SUPPORTS_WEAK 1 -+ -+/* -+A C statement (sans semicolon) to output to the stdio stream -+STREAM a reference in assembler syntax to a label named -+NAME. This should add '_' to the front of the name, if that -+is customary on your operating system, as it is in most Berkeley Unix -+systems. This macro is used in assemble_name. -+*/ -+#define ASM_OUTPUT_LABELREF(STREAM, NAME) \ -+ avr32_asm_output_labelref(STREAM, NAME) -+ -+ -+ -+/* -+A C expression to assign to OUTVAR (which is a variable of type -+char *) a newly allocated string made from the string -+NAME and the number NUMBER, with some suitable punctuation -+added. Use alloca to get space for the string. -+ -+The string will be used as an argument to ASM_OUTPUT_LABELREF to -+produce an assembler label for an internal static variable whose name is -+NAME. Therefore, the string must be such as to result in valid -+assembler code. The argument NUMBER is different each time this -+macro is executed; it prevents conflicts between similarly-named -+internal static variables in different scopes. -+ -+Ideally this string should not be a valid C identifier, to prevent any -+conflict with the user's own symbols. Most assemblers allow periods -+or percent signs in assembler symbols; putting at least one of these -+between the name and the number will suffice. -+*/ -+#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \ -+ do \ -+ { \ -+ (OUTVAR) = (char *) alloca (strlen ((NAME)) + 10); \ -+ sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)); \ -+ } \ -+ while (0) -+ -+ -+/** Macros Controlling Initialization Routines **/ -+ -+ -+/* -+If defined, main will not call __main as described above. -+This macro should be defined for systems that control start-up code -+on a symbol-by-symbol basis, such as OSF/1, and should not -+be defined explicitly for systems that support INIT_SECTION_ASM_OP. -+*/ -+/* -+ __main is not defined when debugging. -+*/ -+#define HAS_INIT_SECTION -+ -+ -+/** Output of Assembler Instructions **/ -+ -+/* -+A C initializer containing the assembler's names for the machine -+registers, each one as a C string constant. This is what translates -+register numbers in the compiler into assembler language. -+*/ -+ -+#define REGISTER_NAMES \ -+{ \ -+ "pc", "lr", \ -+ "sp", "r12", \ -+ "r11", "r10", \ -+ "r9", "r8", \ -+ "r7", "r6", \ -+ "r5", "r4", \ -+ "r3", "r2", \ -+ "r1", "r0", \ -+} -+ -+/* -+A C compound statement to output to stdio stream STREAM the -+assembler syntax for an instruction operand X. X is an -+RTL expression. -+ -+CODE is a value that can be used to specify one of several ways -+of printing the operand. It is used when identical operands must be -+printed differently depending on the context. CODE comes from -+the '%' specification that was used to request printing of the -+operand. If the specification was just '%digit' then -+CODE is 0; if the specification was '%ltr digit' -+then CODE is the ASCII code for ltr. -+ -+If X is a register, this macro should print the register's name. -+The names can be found in an array reg_names whose type is -+char *[]. reg_names is initialized from REGISTER_NAMES. -+ -+When the machine description has a specification '%punct' -+(a '%' followed by a punctuation character), this macro is called -+with a null pointer for X and the punctuation character for -+CODE. -+*/ -+#define PRINT_OPERAND(STREAM, X, CODE) avr32_print_operand(STREAM, X, CODE) -+ -+/* A C statement to be executed just prior to the output of -+ assembler code for INSN, to modify the extracted operands so -+ they will be output differently. -+ -+ Here the argument OPVEC is the vector containing the operands -+ extracted from INSN, and NOPERANDS is the number of elements of -+ the vector which contain meaningful data for this insn. -+ The contents of this vector are what will be used to convert the insn -+ template into assembler code, so you can change the assembler output -+ by changing the contents of the vector. */ -+#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \ -+ avr32_final_prescan_insn ((INSN), (OPVEC), (NOPERANDS)) -+ -+/* -+A C expression which evaluates to true if CODE is a valid -+punctuation character for use in the PRINT_OPERAND macro. If -+PRINT_OPERAND_PUNCT_VALID_P is not defined, it means that no -+punctuation characters (except for the standard one, '%') are used -+in this way. -+*/ -+#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ -+ (((CODE) == '?') \ -+ || ((CODE) == '!')) -+ -+/* -+A C compound statement to output to stdio stream STREAM the -+assembler syntax for an instruction operand that is a memory reference -+whose address is X. X is an RTL expression. -+ -+On some machines, the syntax for a symbolic address depends on the -+section that the address refers to. On these machines, define the macro -+ENCODE_SECTION_INFO to store the information into the -+symbol_ref, and then check for it here. (see Assembler Format.) -+*/ -+#define PRINT_OPERAND_ADDRESS(STREAM, X) avr32_print_operand_address(STREAM, X) -+ -+ -+/** Output of Dispatch Tables **/ -+ -+/* -+ * A C statement to output to the stdio stream stream an assembler -+ * pseudo-instruction to generate a difference between two -+ * labels. value and rel are the numbers of two internal labels. The -+ * definitions of these labels are output using -+ * (*targetm.asm_out.internal_label), and they must be printed in the -+ * same way here. For example, -+ * -+ * fprintf (stream, "\t.word L%d-L%d\n", -+ * value, rel) -+ * -+ * You must provide this macro on machines where the addresses in a -+ * dispatch table are relative to the table's own address. If defined, -+ * GCC will also use this macro on all machines when producing -+ * PIC. body is the body of the ADDR_DIFF_VEC; it is provided so that -+ * the mode and flags can be read. -+ */ -+#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \ -+ fprintf(STREAM, "\tbral\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE) -+ -+/* -+This macro should be provided on machines where the addresses -+in a dispatch table are absolute. -+ -+The definition should be a C statement to output to the stdio stream -+STREAM an assembler pseudo-instruction to generate a reference to -+a label. VALUE is the number of an internal label whose -+definition is output using ASM_OUTPUT_INTERNAL_LABEL. -+For example, -+ -+fprintf(STREAM, "\t.word L%d\n", VALUE) -+*/ -+ -+#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ -+ fprintf(STREAM, "\t.long %sL%d\n", LOCAL_LABEL_PREFIX, VALUE) -+ -+/** Assembler Commands for Exception Regions */ -+ -+/* ToDo: All of this subsection */ -+ -+/** Assembler Commands for Alignment */ -+ -+ -+/* -+A C statement to output to the stdio stream STREAM an assembler -+command to advance the location counter to a multiple of 2 to the -+POWER bytes. POWER will be a C expression of type int. -+*/ -+#define ASM_OUTPUT_ALIGN(STREAM, POWER) \ -+ do \ -+ { \ -+ if ((POWER) != 0) \ -+ fprintf(STREAM, "\t.align\t%d\n", POWER); \ -+ } \ -+ while (0) -+ -+/* -+Like ASM_OUTPUT_ALIGN, except that the \nop" instruction is used for padding, if -+necessary. -+*/ -+#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \ -+ fprintf(STREAM, "\t.balignw\t%d, 0xd703\n", (1 << POWER)) -+ -+ -+ -+/****************************************************************************** -+ * Controlling Debugging Information Format -+ *****************************************************************************/ -+ -+/* How to renumber registers for dbx and gdb. */ -+#define DBX_REGISTER_NUMBER(REGNO) ASM_REGNUM (REGNO) -+ -+/* The DWARF 2 CFA column which tracks the return address. */ -+#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM(LR_REGNUM) -+ -+/* -+Define this macro if GCC should produce dwarf version 2 format -+debugging output in response to the -g option. -+ -+To support optional call frame debugging information, you must also -+define INCOMING_RETURN_ADDR_RTX and either set -+RTX_FRAME_RELATED_P on the prologue insns if you use RTL for the -+prologue, or call dwarf2out_def_cfa and dwarf2out_reg_save -+as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you don't. -+*/ -+#define DWARF2_DEBUGGING_INFO 1 -+ -+ -+#define DWARF2_ASM_LINE_DEBUG_INFO 1 -+#define DWARF2_FRAME_INFO 1 -+ -+ -+/****************************************************************************** -+ * Miscellaneous Parameters -+ *****************************************************************************/ -+ -+/* ToDo: a lot */ -+ -+/* -+An alias for a machine mode name. This is the machine mode that -+elements of a jump-table should have. -+*/ -+#define CASE_VECTOR_MODE SImode -+ -+/* -+Define this macro to be a C expression to indicate when jump-tables -+should contain relative addresses. If jump-tables never contain -+relative addresses, then you need not define this macro. -+*/ -+#define CASE_VECTOR_PC_RELATIVE 0 -+ -+/* Increase the threshold for using table jumps on the UC arch. */ -+#define CASE_VALUES_THRESHOLD (TARGET_BRANCH_PRED ? 4 : 7) -+ -+/* -+The maximum number of bytes that a single instruction can move quickly -+between memory and registers or between two memory locations. -+*/ -+#define MOVE_MAX (2*UNITS_PER_WORD) -+ -+ -+/* A C expression that is nonzero if on this machine the number of bits actually used -+ for the count of a shift operation is equal to the number of bits needed to represent -+ the size of the object being shifted. When this macro is nonzero, the compiler will -+ assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise 'and' -+ instructions that truncates the count of a shift operation. On machines that have -+ instructions that act on bit-fields at variable positions, which may include 'bit test' -+ 378 GNU Compiler Collection (GCC) Internals -+ instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations -+ of the values that serve as arguments to bit-field instructions. -+ If both types of instructions truncate the count (for shifts) and position (for bit-field -+ operations), or if no variable-position bit-field instructions exist, you should define -+ this macro. -+ However, on some machines, such as the 80386 and the 680x0, truncation only applies -+ to shift operations and not the (real or pretended) bit-field operations. Define SHIFT_ -+ COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the 'md' file -+ that include the implied truncation of the shift instructions. -+ You need not de ne this macro if it would always have the value of zero. */ -+#define SHIFT_COUNT_TRUNCATED 1 -+ -+/* -+A C expression which is nonzero if on this machine it is safe to -+convert an integer of INPREC bits to one of OUTPREC -+bits (where OUTPREC is smaller than INPREC) by merely -+operating on it as if it had only OUTPREC bits. -+ -+On many machines, this expression can be 1. -+ -+When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for -+modes for which MODES_TIEABLE_P is 0, suboptimal code can result. -+If this is the case, making TRULY_NOOP_TRUNCATION return 0 in -+such cases may improve things. -+*/ -+#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 -+ -+/* -+An alias for the machine mode for pointers. On most machines, define -+this to be the integer mode corresponding to the width of a hardware -+pointer; SImode on 32-bit machine or DImode on 64-bit machines. -+On some machines you must define this to be one of the partial integer -+modes, such as PSImode. -+ -+The width of Pmode must be at least as large as the value of -+POINTER_SIZE. If it is not equal, you must define the macro -+POINTERS_EXTEND_UNSIGNED to specify how pointers are extended -+to Pmode. -+*/ -+#define Pmode SImode -+ -+/* -+An alias for the machine mode used for memory references to functions -+being called, in call RTL expressions. On most machines this -+should be QImode. -+*/ -+#define FUNCTION_MODE SImode -+ -+ -+#define REG_S_P(x) \ -+ (REG_P (x) || (GET_CODE (x) == SUBREG && REG_P (XEXP (x, 0)))) -+ -+ -+/* If defined, modifies the length assigned to instruction INSN as a -+ function of the context in which it is used. LENGTH is an lvalue -+ that contains the initially computed length of the insn and should -+ be updated with the correct length of the insn. */ -+#define ADJUST_INSN_LENGTH(INSN, LENGTH) \ -+ ((LENGTH) = avr32_adjust_insn_length ((INSN), (LENGTH))) -+ -+ -+#define CLZ_DEFINED_VALUE_AT_ZERO(mode, value) \ -+ (value = 32, (mode == SImode)) -+ -+#define CTZ_DEFINED_VALUE_AT_ZERO(mode, value) \ -+ (value = 32, (mode == SImode)) -+ -+#define UNITS_PER_SIMD_WORD(mode) UNITS_PER_WORD -+ -+#define STORE_FLAG_VALUE 1 -+ -+ -+/* IF-conversion macros. */ -+#define IFCVT_MODIFY_INSN( CE_INFO, PATTERN, INSN ) \ -+ { \ -+ (PATTERN) = avr32_ifcvt_modify_insn (CE_INFO, PATTERN, INSN, &num_true_changes); \ -+ } -+ -+#define IFCVT_EXTRA_FIELDS \ -+ int num_cond_clobber_insns; \ -+ int num_extra_move_insns; \ -+ rtx extra_move_insns[MAX_CONDITIONAL_EXECUTE]; \ -+ rtx moved_insns[MAX_CONDITIONAL_EXECUTE]; -+ -+#define IFCVT_INIT_EXTRA_FIELDS( CE_INFO ) \ -+ { \ -+ (CE_INFO)->num_cond_clobber_insns = 0; \ -+ (CE_INFO)->num_extra_move_insns = 0; \ -+ } -+ -+ -+#define IFCVT_MODIFY_CANCEL( CE_INFO ) avr32_ifcvt_modify_cancel (CE_INFO, &num_true_changes) -+ -+#define IFCVT_ALLOW_MODIFY_TEST_IN_INSN 1 -+#define IFCVT_COND_EXEC_BEFORE_RELOAD (TARGET_COND_EXEC_BEFORE_RELOAD) -+ -+enum avr32_builtins -+{ -+ AVR32_BUILTIN_MTSR, -+ AVR32_BUILTIN_MFSR, -+ AVR32_BUILTIN_MTDR, -+ AVR32_BUILTIN_MFDR, -+ AVR32_BUILTIN_CACHE, -+ AVR32_BUILTIN_SYNC, -+ AVR32_BUILTIN_SSRF, -+ AVR32_BUILTIN_CSRF, -+ AVR32_BUILTIN_TLBR, -+ AVR32_BUILTIN_TLBS, -+ AVR32_BUILTIN_TLBW, -+ AVR32_BUILTIN_BREAKPOINT, -+ AVR32_BUILTIN_XCHG, -+ AVR32_BUILTIN_LDXI, -+ AVR32_BUILTIN_BSWAP16, -+ AVR32_BUILTIN_BSWAP32, -+ AVR32_BUILTIN_COP, -+ AVR32_BUILTIN_MVCR_W, -+ AVR32_BUILTIN_MVRC_W, -+ AVR32_BUILTIN_MVCR_D, -+ AVR32_BUILTIN_MVRC_D, -+ AVR32_BUILTIN_MULSATHH_H, -+ AVR32_BUILTIN_MULSATHH_W, -+ AVR32_BUILTIN_MULSATRNDHH_H, -+ AVR32_BUILTIN_MULSATRNDWH_W, -+ AVR32_BUILTIN_MULSATWH_W, -+ AVR32_BUILTIN_MACSATHH_W, -+ AVR32_BUILTIN_SATADD_H, -+ AVR32_BUILTIN_SATSUB_H, -+ AVR32_BUILTIN_SATADD_W, -+ AVR32_BUILTIN_SATSUB_W, -+ AVR32_BUILTIN_MULWH_D, -+ AVR32_BUILTIN_MULNWH_D, -+ AVR32_BUILTIN_MACWH_D, -+ AVR32_BUILTIN_MACHH_D, -+ AVR32_BUILTIN_MUSFR, -+ AVR32_BUILTIN_MUSTR, -+ AVR32_BUILTIN_SATS, -+ AVR32_BUILTIN_SATU, -+ AVR32_BUILTIN_SATRNDS, -+ AVR32_BUILTIN_SATRNDU, -+ AVR32_BUILTIN_MEMS, -+ AVR32_BUILTIN_MEMC, -+ AVR32_BUILTIN_MEMT, -+ AVR32_BUILTIN_SLEEP, -+ AVR32_BUILTIN_DELAY_CYCLES -+}; -+ -+ -+#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) \ -+ ((MODE == SFmode) || (MODE == DFmode)) -+ -+#define RENAME_LIBRARY_SET ".set" -+ -+/* Make ABI_NAME an alias for __GCC_NAME. */ -+#define RENAME_LIBRARY(GCC_NAME, ABI_NAME) \ -+ __asm__ (".globl\t__avr32_" #ABI_NAME "\n" \ -+ ".set\t__avr32_" #ABI_NAME \ -+ ", __" #GCC_NAME "\n"); -+ -+/* Give libgcc functions avr32 ABI name. */ -+#ifdef L_muldi3 -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (muldi3, mul64) -+#endif -+#ifdef L_divdi3 -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (divdi3, sdiv64) -+#endif -+#ifdef L_udivdi3 -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (udivdi3, udiv64) -+#endif -+#ifdef L_moddi3 -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (moddi3, smod64) -+#endif -+#ifdef L_umoddi3 -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (umoddi3, umod64) -+#endif -+#ifdef L_ashldi3 -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashldi3, lsl64) -+#endif -+#ifdef L_lshrdi3 -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (lshrdi3, lsr64) -+#endif -+#ifdef L_ashrdi3 -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashrdi3, asr64) -+#endif -+ -+#ifdef L_fixsfdi -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixsfdi, f32_to_s64) -+#endif -+#ifdef L_fixunssfdi -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixunssfdi, f32_to_u64) -+#endif -+#ifdef L_floatdidf -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdidf, s64_to_f64) -+#endif -+#ifdef L_floatdisf -+#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdisf, s64_to_f32) -+#endif -+ -+#endif ---- /dev/null -+++ b/gcc/config/avr32/avr32.md -@@ -0,0 +1,5198 @@ -+;; AVR32 machine description file. -+;; Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. -+;; -+;; This file is part of GCC. -+;; -+;; This program is free software; you can redistribute it and/or modify -+;; it under the terms of the GNU General Public License as published by -+;; the Free Software Foundation; either version 2 of the License, or -+;; (at your option) any later version. -+;; -+;; This program is distributed in the hope that it will be useful, -+;; but WITHOUT ANY WARRANTY; without even the implied warranty of -+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+;; GNU General Public License for more details. -+;; -+;; You should have received a copy of the GNU General Public License -+;; along with this program; if not, write to the Free Software -+;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. -+ -+;; -*- Mode: Scheme -*- -+ -+(define_attr "type" "alu,alu2,alu_sat,mulhh,mulwh,mulww_w,mulww_d,div,machh_w,macww_w,macww_d,branch,call,load,load_rm,store,load2,load4,store2,store4,fmul,fcmps,fcmpd,fcast,fmv,fmvcpu,fldd,fstd,flds,fsts,fstm" -+ (const_string "alu")) -+ -+ -+(define_attr "cc" "none,set_vncz,set_ncz,set_cz,set_z,set_z_if_not_v2,bld,compare,cmp_cond_insn,clobber,call_set,fpcompare,from_fpcc" -+ (const_string "none")) -+ -+ -+; NB! Keep this in sync with enum architecture_type in avr32.h -+(define_attr "pipeline" "ap,ucr1,ucr2,ucr2nomul,ucr3,ucr3fp" -+ (const (symbol_ref "avr32_arch->arch_type"))) -+ -+; Insn length in bytes -+(define_attr "length" "" -+ (const_int 4)) -+ -+; Signal if an insn is predicable and hence can be conditionally executed. -+(define_attr "predicable" "no,yes" (const_string "no")) -+ -+;; Uses of UNSPEC in this file: -+(define_constants -+ [(UNSPEC_PUSHM 0) -+ (UNSPEC_POPM 1) -+ (UNSPEC_UDIVMODSI4_INTERNAL 2) -+ (UNSPEC_DIVMODSI4_INTERNAL 3) -+ (UNSPEC_STM 4) -+ (UNSPEC_LDM 5) -+ (UNSPEC_MOVSICC 6) -+ (UNSPEC_ADDSICC 7) -+ (UNSPEC_COND_MI 8) -+ (UNSPEC_COND_PL 9) -+ (UNSPEC_PIC_SYM 10) -+ (UNSPEC_PIC_BASE 11) -+ (UNSPEC_STORE_MULTIPLE 12) -+ (UNSPEC_STMFP 13) -+ (UNSPEC_FRCPA 14) -+ (UNSPEC_REG_TO_CC 15) -+ (UNSPEC_FORCE_MINIPOOL 16) -+ (UNSPEC_SATS 17) -+ (UNSPEC_SATU 18) -+ (UNSPEC_SATRNDS 19) -+ (UNSPEC_SATRNDU 20) -+ ]) -+ -+(define_constants -+ [(VUNSPEC_EPILOGUE 0) -+ (VUNSPEC_CACHE 1) -+ (VUNSPEC_MTSR 2) -+ (VUNSPEC_MFSR 3) -+ (VUNSPEC_BLOCKAGE 4) -+ (VUNSPEC_SYNC 5) -+ (VUNSPEC_TLBR 6) -+ (VUNSPEC_TLBW 7) -+ (VUNSPEC_TLBS 8) -+ (VUNSPEC_BREAKPOINT 9) -+ (VUNSPEC_MTDR 10) -+ (VUNSPEC_MFDR 11) -+ (VUNSPEC_MVCR 12) -+ (VUNSPEC_MVRC 13) -+ (VUNSPEC_COP 14) -+ (VUNSPEC_ALIGN 15) -+ (VUNSPEC_POOL_START 16) -+ (VUNSPEC_POOL_END 17) -+ (VUNSPEC_POOL_4 18) -+ (VUNSPEC_POOL_8 19) -+ (VUNSPEC_POOL_16 20) -+ (VUNSPEC_MUSFR 21) -+ (VUNSPEC_MUSTR 22) -+ (VUNSPEC_SYNC_CMPXCHG 23) -+ (VUNSPEC_SYNC_SET_LOCK_AND_LOAD 24) -+ (VUNSPEC_SYNC_STORE_IF_LOCK 25) -+ (VUNSPEC_EH_RETURN 26) -+ (VUNSPEC_FRS 27) -+ (VUNSPEC_CSRF 28) -+ (VUNSPEC_SSRF 29) -+ (VUNSPEC_SLEEP 30) -+ (VUNSPEC_DELAY_CYCLES 31) -+ (VUNSPEC_DELAY_CYCLES_1 32) -+ (VUNSPEC_DELAY_CYCLES_2 33) -+ (VUNSPEC_NOP 34) -+ (VUNSPEC_NOP3 35) -+ ]) -+ -+(define_constants -+ [ -+ ;; R7 = 15-7 = 8 -+ (FP_REGNUM 8) -+ ;; Return Register = R12 = 15 - 12 = 3 -+ (RETVAL_REGNUM 3) -+ ;; SP = R13 = 15 - 13 = 2 -+ (SP_REGNUM 2) -+ ;; LR = R14 = 15 - 14 = 1 -+ (LR_REGNUM 1) -+ ;; PC = R15 = 15 - 15 = 0 -+ (PC_REGNUM 0) -+ ;; FPSR = GENERAL_REGS + 1 = 17 -+ (FPCC_REGNUM 17) -+ ]) -+ -+ -+ -+ -+;;****************************************************************************** -+;; Macros -+;;****************************************************************************** -+ -+;; Integer Modes for basic alu insns -+(define_mode_iterator INTM [SI HI QI]) -+(define_mode_attr alu_cc_attr [(SI "set_vncz") (HI "clobber") (QI "clobber")]) -+ -+;; Move word modes -+(define_mode_iterator MOVM [SI V2HI V4QI]) -+ -+;; For mov/addcc insns -+(define_mode_iterator ADDCC [SI HI QI]) -+(define_mode_iterator MOVCC [SF SI HI QI]) -+(define_mode_iterator CMP [DI SI HI QI]) -+(define_mode_attr store_postfix [(SF ".w") (SI ".w") (HI ".h") (QI ".b")]) -+(define_mode_attr load_postfix [(SF ".w") (SI ".w") (HI ".sh") (QI ".ub")]) -+(define_mode_attr load_postfix_s [(SI ".w") (HI ".sh") (QI ".sb")]) -+(define_mode_attr load_postfix_u [(SI ".w") (HI ".uh") (QI ".ub")]) -+(define_mode_attr pred_mem_constraint [(SF "RKu11") (SI "RKu11") (HI "RKu10") (QI "RKu09")]) -+(define_mode_attr cmp_constraint [(DI "rKu20") (SI "rKs21") (HI "r") (QI "r")]) -+(define_mode_attr cmp_predicate [(DI "register_immediate_operand") -+ (SI "register_const_int_operand") -+ (HI "register_operand") -+ (QI "register_operand")]) -+(define_mode_attr cmp_length [(DI "6") -+ (SI "4") -+ (HI "4") -+ (QI "4")]) -+ -+;; For all conditional insns -+(define_code_iterator any_cond_b [ge lt geu ltu]) -+(define_code_iterator any_cond [gt ge lt le gtu geu ltu leu]) -+(define_code_iterator any_cond4 [gt le gtu leu]) -+(define_code_attr cond [(eq "eq") (ne "ne") (gt "gt") (ge "ge") (lt "lt") (le "le") -+ (gtu "hi") (geu "hs") (ltu "lo") (leu "ls")]) -+(define_code_attr invcond [(eq "ne") (ne "eq") (gt "le") (ge "lt") (lt "ge") (le "gt") -+ (gtu "ls") (geu "lo") (ltu "hs") (leu "hi")]) -+ -+;; For logical operations -+(define_code_iterator logical [and ior xor]) -+(define_code_attr logical_insn [(and "and") (ior "or") (xor "eor")]) -+ -+;; Predicable operations with three register operands -+(define_code_iterator predicable_op3 [and ior xor plus minus]) -+(define_code_attr predicable_insn3 [(and "and") (ior "or") (xor "eor") (plus "add") (minus "sub")]) -+(define_code_attr predicable_commutative3 [(and "%") (ior "%") (xor "%") (plus "%") (minus "")]) -+ -+;; Load the predicates -+(include "predicates.md") -+ -+ -+;;****************************************************************************** -+;; Automaton pipeline description for avr32 -+;;****************************************************************************** -+ -+(define_automaton "avr32_ap") -+ -+ -+(define_cpu_unit "is" "avr32_ap") -+(define_cpu_unit "a1,m1,da" "avr32_ap") -+(define_cpu_unit "a2,m2,d" "avr32_ap") -+ -+;;Alu instructions -+(define_insn_reservation "alu_op" 1 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "alu")) -+ "is,a1,a2") -+ -+(define_insn_reservation "alu2_op" 2 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "alu2")) -+ "is,is+a1,a1+a2,a2") -+ -+(define_insn_reservation "alu_sat_op" 2 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "alu_sat")) -+ "is,a1,a2") -+ -+ -+;;Mul instructions -+(define_insn_reservation "mulhh_op" 2 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "mulhh,mulwh")) -+ "is,m1,m2") -+ -+(define_insn_reservation "mulww_w_op" 3 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "mulww_w")) -+ "is,m1,m1+m2,m2") -+ -+(define_insn_reservation "mulww_d_op" 5 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "mulww_d")) -+ "is,m1,m1+m2,m1+m2,m2,m2") -+ -+(define_insn_reservation "div_op" 33 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "div")) -+ "is,m1,m1*31 + m2*31,m2") -+ -+(define_insn_reservation "machh_w_op" 3 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "machh_w")) -+ "is*2,m1,m2") -+ -+ -+(define_insn_reservation "macww_w_op" 4 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "macww_w")) -+ "is*2,m1,m1,m2") -+ -+ -+(define_insn_reservation "macww_d_op" 6 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "macww_d")) -+ "is*2,m1,m1+m2,m1+m2,m2") -+ -+;;Bypasses for Mac instructions, because of accumulator cache. -+;;Set latency as low as possible in order to let the compiler let -+;;mul -> mac and mac -> mac combinations which use the same -+;;accumulator cache be placed close together to avoid any -+;;instructions which can ruin the accumulator cache come inbetween. -+(define_bypass 4 "machh_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") -+(define_bypass 5 "macww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") -+(define_bypass 7 "macww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") -+ -+(define_bypass 3 "mulhh_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") -+(define_bypass 4 "mulww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") -+(define_bypass 6 "mulww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") -+ -+ -+;;Bypasses for all mul/mac instructions followed by an instruction -+;;which reads the output AND writes the result to the same register. -+;;This will generate an Write After Write hazard which gives an -+;;extra cycle before the result is ready. -+(define_bypass 0 "machh_w_op" "machh_w_op" "avr32_valid_macmac_bypass") -+(define_bypass 0 "macww_w_op" "macww_w_op" "avr32_valid_macmac_bypass") -+(define_bypass 0 "macww_d_op" "macww_d_op" "avr32_valid_macmac_bypass") -+ -+(define_bypass 0 "mulhh_op" "machh_w_op" "avr32_valid_mulmac_bypass") -+(define_bypass 0 "mulww_w_op" "macww_w_op" "avr32_valid_mulmac_bypass") -+(define_bypass 0 "mulww_d_op" "macww_d_op" "avr32_valid_mulmac_bypass") -+ -+;;Branch and call instructions -+;;We assume that all branches and rcalls are predicted correctly :-) -+;;while calls use a lot of cycles. -+(define_insn_reservation "branch_op" 0 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "branch")) -+ "nothing") -+ -+(define_insn_reservation "call_op" 10 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "call")) -+ "nothing") -+ -+ -+;;Load store instructions -+(define_insn_reservation "load_op" 2 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "load")) -+ "is,da,d") -+ -+(define_insn_reservation "load_rm_op" 3 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "load_rm")) -+ "is,da,d") -+ -+ -+(define_insn_reservation "store_op" 0 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "store")) -+ "is,da,d") -+ -+ -+(define_insn_reservation "load_double_op" 3 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "load2")) -+ "is,da,da+d,d") -+ -+(define_insn_reservation "load_quad_op" 4 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "load4")) -+ "is,da,da+d,da+d,d") -+ -+(define_insn_reservation "store_double_op" 0 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "store2")) -+ "is,da,da+d,d") -+ -+ -+(define_insn_reservation "store_quad_op" 0 -+ (and (eq_attr "pipeline" "ap") -+ (eq_attr "type" "store4")) -+ "is,da,da+d,da+d,d") -+ -+;;For store the operand to write to memory is read in d and -+;;the real latency between any instruction and a store is therefore -+;;one less than for the instructions which reads the operands in the first -+;;excecution stage -+(define_bypass 2 "load_double_op" "store_double_op" "avr32_store_bypass") -+(define_bypass 3 "load_quad_op" "store_quad_op" "avr32_store_bypass") -+(define_bypass 1 "load_op" "store_op" "avr32_store_bypass") -+(define_bypass 2 "load_rm_op" "store_op" "avr32_store_bypass") -+(define_bypass 1 "alu_sat_op" "store_op" "avr32_store_bypass") -+(define_bypass 1 "alu2_op" "store_op" "avr32_store_bypass") -+(define_bypass 1 "mulhh_op" "store_op" "avr32_store_bypass") -+(define_bypass 2 "mulww_w_op" "store_op" "avr32_store_bypass") -+(define_bypass 4 "mulww_d_op" "store_op" "avr32_store_bypass" ) -+(define_bypass 2 "machh_w_op" "store_op" "avr32_store_bypass") -+(define_bypass 3 "macww_w_op" "store_op" "avr32_store_bypass") -+(define_bypass 5 "macww_d_op" "store_op" "avr32_store_bypass") -+ -+ -+; Bypass for load double operation. If only the first loaded word is needed -+; then the latency is 2 -+(define_bypass 2 "load_double_op" -+ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op, -+ mulww_d_op, machh_w_op, macww_w_op, macww_d_op" -+ "avr32_valid_load_double_bypass") -+ -+; Bypass for load quad operation. If only the first or second loaded word is needed -+; we set the latency to 2 -+(define_bypass 2 "load_quad_op" -+ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op, -+ mulww_d_op, machh_w_op, macww_w_op, macww_d_op" -+ "avr32_valid_load_quad_bypass") -+ -+ -+;;****************************************************************************** -+;; End of Automaton pipeline description for avr32 -+;;****************************************************************************** -+ -+(define_cond_exec -+ [(match_operator 0 "avr32_comparison_operator" -+ [(match_operand:CMP 1 "register_operand" "r") -+ (match_operand:CMP 2 "" "")])] -+ "TARGET_V2_INSNS" -+ "%!" -+) -+ -+(define_cond_exec -+ [(match_operator 0 "avr32_comparison_operator" -+ [(and:SI (match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "one_bit_set_operand" "i")) -+ (const_int 0)])] -+ "TARGET_V2_INSNS" -+ "%!" -+ ) -+ -+;;============================================================================= -+;; move -+;;----------------------------------------------------------------------------- -+ -+ -+;;== char - 8 bits ============================================================ -+(define_expand "movqi" -+ [(set (match_operand:QI 0 "nonimmediate_operand" "") -+ (match_operand:QI 1 "general_operand" ""))] -+ "" -+ { -+ if ( can_create_pseudo_p () ){ -+ if (GET_CODE (operands[1]) == MEM && optimize){ -+ rtx reg = gen_reg_rtx (SImode); -+ -+ emit_insn (gen_zero_extendqisi2 (reg, operands[1])); -+ operands[1] = gen_lowpart (QImode, reg); -+ } -+ -+ /* One of the ops has to be in a register. */ -+ if (GET_CODE (operands[0]) == MEM) -+ operands[1] = force_reg (QImode, operands[1]); -+ } -+ -+ }) -+ -+(define_insn "*movqi_internal" -+ [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m,r") -+ (match_operand:QI 1 "general_operand" "rKs08,m,r,i"))] -+ "register_operand (operands[0], QImode) -+ || register_operand (operands[1], QImode)" -+ "@ -+ mov\t%0, %1 -+ ld.ub\t%0, %1 -+ st.b\t%0, %1 -+ mov\t%0, %1" -+ [(set_attr "length" "2,4,4,4") -+ (set_attr "type" "alu,load_rm,store,alu")]) -+ -+ -+ -+;;== short - 16 bits ========================================================== -+(define_expand "movhi" -+ [(set (match_operand:HI 0 "nonimmediate_operand" "") -+ (match_operand:HI 1 "general_operand" ""))] -+ "" -+ { -+ if ( can_create_pseudo_p () ){ -+ if (GET_CODE (operands[1]) == MEM && optimize){ -+ rtx reg = gen_reg_rtx (SImode); -+ -+ emit_insn (gen_extendhisi2 (reg, operands[1])); -+ operands[1] = gen_lowpart (HImode, reg); -+ } -+ -+ /* One of the ops has to be in a register. */ -+ if (GET_CODE (operands[0]) == MEM) -+ operands[1] = force_reg (HImode, operands[1]); -+ } -+ -+ }) -+ -+ -+(define_insn "*movhi_internal" -+ [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,m,r") -+ (match_operand:HI 1 "general_operand" "rKs08,m,r,i"))] -+ "register_operand (operands[0], HImode) -+ || register_operand (operands[1], HImode)" -+ "@ -+ mov\t%0, %1 -+ ld.sh\t%0, %1 -+ st.h\t%0, %1 -+ mov\t%0, %1" -+ [(set_attr "length" "2,4,4,4") -+ (set_attr "type" "alu,load_rm,store,alu")]) -+ -+ -+;;== int - 32 bits ============================================================ -+ -+(define_expand "movmisalignsi" -+ [(set (match_operand:SI 0 "nonimmediate_operand" "") -+ (match_operand:SI 1 "nonimmediate_operand" ""))] -+ "TARGET_UNALIGNED_WORD" -+ { -+ } -+) -+ -+(define_expand "mov" -+ [(set (match_operand:MOVM 0 "avr32_non_rmw_nonimmediate_operand" "") -+ (match_operand:MOVM 1 "avr32_non_rmw_general_operand" ""))] -+ "" -+ { -+ -+ /* One of the ops has to be in a register. */ -+ if (GET_CODE (operands[0]) == MEM) -+ operands[1] = force_reg (mode, operands[1]); -+ -+ /* Check for out of range immediate constants as these may -+ occur during reloading, since it seems like reload does -+ not check if the immediate is legitimate. Don't know if -+ this is a bug? */ -+ if ( reload_in_progress -+ && avr32_imm_in_const_pool -+ && GET_CODE(operands[1]) == CONST_INT -+ && !avr32_const_ok_for_constraint_p(INTVAL(operands[1]), 'K', "Ks21") ){ -+ operands[1] = force_const_mem(SImode, operands[1]); -+ } -+ /* Check for RMW memory operands. They are not allowed for mov operations -+ only the atomic memc/s/t operations */ -+ if ( !reload_in_progress -+ && avr32_rmw_memory_operand (operands[0], mode) ){ -+ operands[0] = copy_rtx (operands[0]); -+ XEXP(operands[0], 0) = force_reg (mode, XEXP(operands[0], 0)); -+ } -+ -+ if ( !reload_in_progress -+ && avr32_rmw_memory_operand (operands[1], mode) ){ -+ operands[1] = copy_rtx (operands[1]); -+ XEXP(operands[1], 0) = force_reg (mode, XEXP(operands[1], 0)); -+ } -+ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS) -+ && !avr32_legitimate_pic_operand_p(operands[1]) ) -+ operands[1] = legitimize_pic_address (operands[1], mode, -+ (can_create_pseudo_p () ? 0: operands[0])); -+ else if ( flag_pic && avr32_address_operand(operands[1], GET_MODE(operands[1])) ) -+ /* If we have an address operand then this function uses the pic register. */ -+ crtl->uses_pic_offset_table = 1; -+ }) -+ -+ -+(define_insn "mov_internal" -+ [(set (match_operand:MOVM 0 "avr32_non_rmw_nonimmediate_operand" "=r, r, r,r,r,Q,r") -+ (match_operand:MOVM 1 "avr32_non_rmw_general_operand" "rKs08,Ks21,J,n,Q,r,W"))] -+ "(register_operand (operands[0], mode) -+ || register_operand (operands[1], mode)) -+ && !avr32_rmw_memory_operand (operands[0], mode) -+ && !avr32_rmw_memory_operand (operands[1], mode)" -+ { -+ switch (which_alternative) { -+ case 0: -+ case 1: return "mov\t%0, %1"; -+ case 2: -+ if ( TARGET_V2_INSNS ) -+ return "movh\t%0, hi(%1)"; -+ /* Fallthrough */ -+ case 3: return "mov\t%0, lo(%1)\;orh\t%0,hi(%1)"; -+ case 4: -+ if ( (REG_P(XEXP(operands[1], 0)) -+ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM) -+ || (GET_CODE(XEXP(operands[1], 0)) == PLUS -+ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM -+ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT -+ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0 -+ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) ) -+ return "lddsp\t%0, %1"; -+ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) ) -+ return "lddpc\t%0, %1"; -+ else -+ return "ld.w\t%0, %1"; -+ case 5: -+ if ( (REG_P(XEXP(operands[0], 0)) -+ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM) -+ || (GET_CODE(XEXP(operands[0], 0)) == PLUS -+ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM -+ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT -+ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0 -+ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) ) -+ return "stdsp\t%0, %1"; -+ else -+ return "st.w\t%0, %1"; -+ case 6: -+ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ) -+ return "lda.w\t%0, %1"; -+ else -+ return "ld.w\t%0, r6[%1@got]"; -+ default: -+ abort(); -+ } -+ } -+ -+ [(set_attr "length" "2,4,4,8,4,4,8") -+ (set_attr "type" "alu,alu,alu,alu2,load,store,load") -+ (set_attr "cc" "none,none,set_z_if_not_v2,set_z,none,none,clobber")]) -+ -+ -+(define_expand "reload_out_rmw_memory_operand" -+ [(set (match_operand:SI 2 "register_operand" "=r") -+ (match_operand:SI 0 "address_operand" "")) -+ (set (mem:SI (match_dup 2)) -+ (match_operand:SI 1 "register_operand" ""))] -+ "" -+ { -+ operands[0] = XEXP(operands[0], 0); -+ } -+) -+ -+(define_expand "reload_in_rmw_memory_operand" -+ [(set (match_operand:SI 2 "register_operand" "=r") -+ (match_operand:SI 1 "address_operand" "")) -+ (set (match_operand:SI 0 "register_operand" "") -+ (mem:SI (match_dup 2)))] -+ "" -+ { -+ operands[1] = XEXP(operands[1], 0); -+ } -+) -+ -+ -+;; These instructions are for loading constants which cannot be loaded -+;; directly from the constant pool because the offset is too large -+;; high and lo_sum are used even tough for our case it should be -+;; low and high sum :-) -+(define_insn "mov_symbol_lo" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (high:SI (match_operand:SI 1 "immediate_operand" "i" )))] -+ "" -+ "mov\t%0, lo(%1)" -+ [(set_attr "type" "alu") -+ (set_attr "length" "4")] -+) -+ -+(define_insn "add_symbol_hi" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (lo_sum:SI (match_dup 0) -+ (match_operand:SI 1 "immediate_operand" "i" )))] -+ "" -+ "orh\t%0, hi(%1)" -+ [(set_attr "type" "alu") -+ (set_attr "length" "4")] -+) -+ -+ -+ -+;; When generating pic, we need to load the symbol offset into a register. -+;; So that the optimizer does not confuse this with a normal symbol load -+;; we use an unspec. The offset will be loaded from a constant pool entry, -+;; since that is the only type of relocation we can use. -+(define_insn "pic_load_addr" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (unspec:SI [(match_operand:SI 1 "" "")] UNSPEC_PIC_SYM))] -+ "flag_pic && CONSTANT_POOL_ADDRESS_P(XEXP(operands[1], 0))" -+ "lddpc\t%0, %1" -+ [(set_attr "type" "load") -+ (set_attr "length" "4")] -+) -+ -+(define_insn "pic_compute_got_from_pc" -+ [(set (match_operand:SI 0 "register_operand" "+r") -+ (unspec:SI [(minus:SI (pc) -+ (match_dup 0))] UNSPEC_PIC_BASE)) -+ (use (label_ref (match_operand 1 "" "")))] -+ "flag_pic" -+ { -+ (*targetm.asm_out.internal_label) (asm_out_file, "L", -+ CODE_LABEL_NUMBER (operands[1])); -+ return \"rsub\t%0, pc\"; -+ } -+ [(set_attr "cc" "clobber") -+ (set_attr "length" "2")] -+) -+ -+;;== long long int - 64 bits ================================================== -+ -+(define_expand "movdi" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "") -+ (match_operand:DI 1 "general_operand" ""))] -+ "" -+ { -+ -+ /* One of the ops has to be in a register. */ -+ if (GET_CODE (operands[0]) != REG) -+ operands[1] = force_reg (DImode, operands[1]); -+ -+ }) -+ -+ -+(define_insn_and_split "*movdi_internal" -+ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r, r, r,r,r,m") -+ (match_operand:DI 1 "general_operand" "r, Ks08,Ks21,G,n,m,r"))] -+ "register_operand (operands[0], DImode) -+ || register_operand (operands[1], DImode)" -+ { -+ switch (which_alternative ){ -+ case 0: -+ case 1: -+ case 2: -+ case 3: -+ case 4: -+ return "#"; -+ case 5: -+ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1]))) -+ return "ld.d\t%0, pc[%1 - .]"; -+ else -+ return "ld.d\t%0, %1"; -+ case 6: -+ return "st.d\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+;; Lets split all reg->reg or imm->reg transfers into two SImode transfers -+ "reload_completed && -+ (REG_P (operands[0]) && -+ (REG_P (operands[1]) -+ || GET_CODE (operands[1]) == CONST_INT -+ || GET_CODE (operands[1]) == CONST_DOUBLE))" -+ [(set (match_dup 0) (match_dup 1)) -+ (set (match_dup 2) (match_dup 3))] -+ { -+ operands[2] = gen_highpart (SImode, operands[0]); -+ operands[0] = gen_lowpart (SImode, operands[0]); -+ if ( REG_P(operands[1]) ){ -+ operands[3] = gen_highpart(SImode, operands[1]); -+ operands[1] = gen_lowpart(SImode, operands[1]); -+ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE -+ || GET_CODE(operands[1]) == CONST_INT ){ -+ rtx split_const[2]; -+ avr32_split_const_expr (DImode, SImode, operands[1], split_const); -+ operands[3] = split_const[1]; -+ operands[1] = split_const[0]; -+ } else { -+ internal_error("Illegal operand[1] for movdi split!"); -+ } -+ } -+ -+ [(set_attr "length" "*,*,*,*,*,4,4") -+ (set_attr "type" "*,*,*,*,*,load2,store2") -+ (set_attr "cc" "*,*,*,*,*,none,none")]) -+ -+ -+;;== 128 bits ================================================== -+(define_expand "movti" -+ [(set (match_operand:TI 0 "nonimmediate_operand" "") -+ (match_operand:TI 1 "nonimmediate_operand" ""))] -+ "TARGET_ARCH_AP" -+ { -+ -+ /* One of the ops has to be in a register. */ -+ if (GET_CODE (operands[0]) != REG) -+ operands[1] = force_reg (TImode, operands[1]); -+ -+ /* We must fix any pre_dec for loads and post_inc stores */ -+ if ( GET_CODE (operands[0]) == MEM -+ && GET_CODE (XEXP(operands[0],0)) == POST_INC ){ -+ emit_move_insn(gen_rtx_MEM(TImode, XEXP(XEXP(operands[0],0),0)), operands[1]); -+ emit_insn(gen_addsi3(XEXP(XEXP(operands[0],0),0), XEXP(XEXP(operands[0],0),0), GEN_INT(GET_MODE_SIZE(TImode)))); -+ DONE; -+ } -+ -+ if ( GET_CODE (operands[1]) == MEM -+ && GET_CODE (XEXP(operands[1],0)) == PRE_DEC ){ -+ emit_insn(gen_addsi3(XEXP(XEXP(operands[1],0),0), XEXP(XEXP(operands[1],0),0), GEN_INT(-GET_MODE_SIZE(TImode)))); -+ emit_move_insn(operands[0], gen_rtx_MEM(TImode, XEXP(XEXP(operands[1],0),0))); -+ DONE; -+ } -+ }) -+ -+ -+(define_insn_and_split "*movti_internal" -+ [(set (match_operand:TI 0 "avr32_movti_dst_operand" "=r,&r, r, ,RKu00,r, n,T"))] -+ "(register_operand (operands[0], TImode) -+ || register_operand (operands[1], TImode))" -+ { -+ switch (which_alternative ){ -+ case 0: -+ case 2: -+ case 4: -+ return "#"; -+ case 1: -+ return "ldm\t%p1, %0"; -+ case 3: -+ return "stm\t%p0, %1"; -+ case 5: -+ return "ld.d\t%U0, pc[%1 - .]\;ld.d\t%B0, pc[%1 - . + 8]"; -+ } -+ } -+ -+ "reload_completed && -+ (REG_P (operands[0]) && -+ (REG_P (operands[1]) -+ /* If this is a load from the constant pool we split it into -+ two double loads. */ -+ || (GET_CODE (operands[1]) == MEM -+ && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF -+ && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0))) -+ /* If this is a load where the pointer register is a part -+ of the register list, we must split it into two double -+ loads in order for it to be exception safe. */ -+ || (GET_CODE (operands[1]) == MEM -+ && register_operand (XEXP (operands[1], 0), SImode) -+ && reg_overlap_mentioned_p (operands[0], XEXP (operands[1], 0))) -+ || GET_CODE (operands[1]) == CONST_INT -+ || GET_CODE (operands[1]) == CONST_DOUBLE))" -+ [(set (match_dup 0) (match_dup 1)) -+ (set (match_dup 2) (match_dup 3))] -+ { -+ operands[2] = simplify_gen_subreg ( DImode, operands[0], -+ TImode, 0 ); -+ operands[0] = simplify_gen_subreg ( DImode, operands[0], -+ TImode, 8 ); -+ if ( REG_P(operands[1]) ){ -+ operands[3] = simplify_gen_subreg ( DImode, operands[1], -+ TImode, 0 ); -+ operands[1] = simplify_gen_subreg ( DImode, operands[1], -+ TImode, 8 ); -+ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE -+ || GET_CODE(operands[1]) == CONST_INT ){ -+ rtx split_const[2]; -+ avr32_split_const_expr (TImode, DImode, operands[1], split_const); -+ operands[3] = split_const[1]; -+ operands[1] = split_const[0]; -+ } else if (avr32_const_pool_ref_operand (operands[1], GET_MODE(operands[1]))){ -+ rtx split_const[2]; -+ rtx cop = avoid_constant_pool_reference (operands[1]); -+ if (operands[1] == cop) -+ cop = get_pool_constant (XEXP (operands[1], 0)); -+ avr32_split_const_expr (TImode, DImode, cop, split_const); -+ operands[3] = force_const_mem (DImode, split_const[1]); -+ operands[1] = force_const_mem (DImode, split_const[0]); -+ } else { -+ rtx ptr_reg = XEXP (operands[1], 0); -+ operands[1] = gen_rtx_MEM (DImode, -+ gen_rtx_PLUS ( SImode, -+ ptr_reg, -+ GEN_INT (8) )); -+ operands[3] = gen_rtx_MEM (DImode, -+ ptr_reg); -+ -+ /* Check if the first load will clobber the pointer. -+ If so, we must switch the order of the operations. */ -+ if ( reg_overlap_mentioned_p (operands[0], ptr_reg) ) -+ { -+ /* We need to switch the order of the operations -+ so that the pointer register does not get clobbered -+ after the first double word load. */ -+ rtx tmp; -+ tmp = operands[0]; -+ operands[0] = operands[2]; -+ operands[2] = tmp; -+ tmp = operands[1]; -+ operands[1] = operands[3]; -+ operands[3] = tmp; -+ } -+ -+ -+ } -+ } -+ [(set_attr "length" "*,*,4,4,*,8") -+ (set_attr "type" "*,*,load4,store4,*,load4")]) -+ -+ -+;;== float - 32 bits ========================================================== -+(define_expand "movsf" -+ [(set (match_operand:SF 0 "nonimmediate_operand" "") -+ (match_operand:SF 1 "general_operand" ""))] -+ "" -+ { -+ -+ -+ /* One of the ops has to be in a register. */ -+ if (GET_CODE (operands[0]) != REG) -+ operands[1] = force_reg (SFmode, operands[1]); -+ -+ }) -+ -+(define_insn "*movsf_internal" -+ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,r,m") -+ (match_operand:SF 1 "general_operand" "r, G,F,m,r"))] -+ "(register_operand (operands[0], SFmode) -+ || register_operand (operands[1], SFmode))" -+ { -+ switch (which_alternative) { -+ case 0: -+ case 1: return "mov\t%0, %1"; -+ case 2: -+ { -+ HOST_WIDE_INT target_float[2]; -+ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (operands[1]), SFmode); -+ if ( TARGET_V2_INSNS -+ && avr32_hi16_immediate_operand (GEN_INT (target_float[0]), VOIDmode) ) -+ return "movh\t%0, hi(%1)"; -+ else -+ return "mov\t%0, lo(%1)\;orh\t%0, hi(%1)"; -+ } -+ case 3: -+ if ( (REG_P(XEXP(operands[1], 0)) -+ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM) -+ || (GET_CODE(XEXP(operands[1], 0)) == PLUS -+ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM -+ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT -+ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0 -+ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) ) -+ return "lddsp\t%0, %1"; -+ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) ) -+ return "lddpc\t%0, %1"; -+ else -+ return "ld.w\t%0, %1"; -+ case 4: -+ if ( (REG_P(XEXP(operands[0], 0)) -+ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM) -+ || (GET_CODE(XEXP(operands[0], 0)) == PLUS -+ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM -+ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT -+ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0 -+ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) ) -+ return "stdsp\t%0, %1"; -+ else -+ return "st.w\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+ -+ [(set_attr "length" "2,4,8,4,4") -+ (set_attr "type" "alu,alu,alu2,load,store") -+ (set_attr "cc" "none,none,clobber,none,none")]) -+ -+ -+ -+;;== double - 64 bits ========================================================= -+(define_expand "movdf" -+ [(set (match_operand:DF 0 "nonimmediate_operand" "") -+ (match_operand:DF 1 "general_operand" ""))] -+ "" -+ { -+ /* One of the ops has to be in a register. */ -+ if (GET_CODE (operands[0]) != REG){ -+ operands[1] = force_reg (DFmode, operands[1]); -+ } -+ }) -+ -+ -+(define_insn_and_split "*movdf_internal" -+ [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,r,r,m") -+ (match_operand:DF 1 "general_operand" " r,G,F,m,r"))] -+ "(register_operand (operands[0], DFmode) -+ || register_operand (operands[1], DFmode))" -+ { -+ switch (which_alternative ){ -+ case 0: -+ case 1: -+ case 2: -+ return "#"; -+ case 3: -+ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1]))) -+ return "ld.d\t%0, pc[%1 - .]"; -+ else -+ return "ld.d\t%0, %1"; -+ case 4: -+ return "st.d\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+ "reload_completed -+ && (REG_P (operands[0]) -+ && (REG_P (operands[1]) -+ || GET_CODE (operands[1]) == CONST_DOUBLE))" -+ [(set (match_dup 0) (match_dup 1)) -+ (set (match_dup 2) (match_dup 3))] -+ " -+ { -+ operands[2] = gen_highpart (SImode, operands[0]); -+ operands[0] = gen_lowpart (SImode, operands[0]); -+ operands[3] = gen_highpart(SImode, operands[1]); -+ operands[1] = gen_lowpart(SImode, operands[1]); -+ } -+ " -+ -+ [(set_attr "length" "*,*,*,4,4") -+ (set_attr "type" "*,*,*,load2,store2") -+ (set_attr "cc" "*,*,*,none,none")]) -+ -+ -+;;============================================================================= -+;; Conditional Moves -+;;============================================================================= -+(define_insn "ld_predicable" -+ [(set (match_operand:MOVCC 0 "register_operand" "=r") -+ (match_operand:MOVCC 1 "avr32_non_rmw_memory_operand" ""))] -+ "TARGET_V2_INSNS" -+ "ld%?\t%0, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "type" "load") -+ (set_attr "predicable" "yes")] -+) -+ -+ -+(define_insn "st_predicable" -+ [(set (match_operand:MOVCC 0 "avr32_non_rmw_memory_operand" "=") -+ (match_operand:MOVCC 1 "register_operand" "r"))] -+ "TARGET_V2_INSNS" -+ "st%?\t%0, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "type" "store") -+ (set_attr "predicable" "yes")] -+) -+ -+(define_insn "mov_predicable" -+ [(set (match_operand:MOVCC 0 "register_operand" "=r") -+ (match_operand:MOVCC 1 "avr32_cond_register_immediate_operand" "rKs08"))] -+ "" -+ "mov%?\t%0, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "type" "alu") -+ (set_attr "predicable" "yes")] -+) -+ -+ -+;;============================================================================= -+;; Move chunks of memory -+;;============================================================================= -+ -+(define_expand "movmemsi" -+ [(match_operand:BLK 0 "general_operand" "") -+ (match_operand:BLK 1 "general_operand" "") -+ (match_operand:SI 2 "const_int_operand" "") -+ (match_operand:SI 3 "const_int_operand" "")] -+ "" -+ " -+ if (avr32_gen_movmemsi (operands)) -+ DONE; -+ FAIL; -+ " -+ ) -+ -+ -+ -+ -+;;============================================================================= -+;; Bit field instructions -+;;----------------------------------------------------------------------------- -+;; Instructions to insert or extract bit-fields -+;;============================================================================= -+ -+(define_insn "insv" -+ [ (set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r") -+ (match_operand:SI 1 "immediate_operand" "Ku05") -+ (match_operand:SI 2 "immediate_operand" "Ku05")) -+ (match_operand 3 "register_operand" "r"))] -+ "" -+ "bfins\t%0, %3, %2, %1" -+ [(set_attr "type" "alu") -+ (set_attr "length" "4") -+ (set_attr "cc" "set_ncz")]) -+ -+ -+ -+(define_expand "extv" -+ [ (set (match_operand:SI 0 "register_operand" "") -+ (sign_extract:SI (match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "immediate_operand" "") -+ (match_operand:SI 3 "immediate_operand" "")))] -+ "" -+ { -+ if ( INTVAL(operands[2]) >= 32 ) -+ FAIL; -+ } -+) -+ -+(define_expand "extzv" -+ [ (set (match_operand:SI 0 "register_operand" "") -+ (zero_extract:SI (match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "immediate_operand" "") -+ (match_operand:SI 3 "immediate_operand" "")))] -+ "" -+ { -+ if ( INTVAL(operands[2]) >= 32 ) -+ FAIL; -+ } -+) -+ -+(define_insn "extv_internal" -+ [ (set (match_operand:SI 0 "register_operand" "=r") -+ (sign_extract:SI (match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "immediate_operand" "Ku05") -+ (match_operand:SI 3 "immediate_operand" "Ku05")))] -+ "INTVAL(operands[2]) < 32" -+ "bfexts\t%0, %1, %3, %2" -+ [(set_attr "type" "alu") -+ (set_attr "length" "4") -+ (set_attr "cc" "set_ncz")]) -+ -+ -+(define_insn "extzv_internal" -+ [ (set (match_operand:SI 0 "register_operand" "=r") -+ (zero_extract:SI (match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "immediate_operand" "Ku05") -+ (match_operand:SI 3 "immediate_operand" "Ku05")))] -+ "INTVAL(operands[2]) < 32" -+ "bfextu\t%0, %1, %3, %2" -+ [(set_attr "type" "alu") -+ (set_attr "length" "4") -+ (set_attr "cc" "set_ncz")]) -+ -+ -+ -+;;============================================================================= -+;; Some peepholes for avoiding unnecessary cast instructions -+;; followed by bfins. -+;;----------------------------------------------------------------------------- -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (zero_extend:SI (match_operand:QI 1 "register_operand" ""))) -+ (set (zero_extract:SI (match_operand 2 "register_operand" "") -+ (match_operand:SI 3 "immediate_operand" "") -+ (match_operand:SI 4 "immediate_operand" "")) -+ (match_dup 0))] -+ "((peep2_reg_dead_p(2, operands[0]) && -+ (INTVAL(operands[3]) <= 8)))" -+ [(set (zero_extract:SI (match_dup 2) -+ (match_dup 3) -+ (match_dup 4)) -+ (match_dup 1))] -+ ) -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (zero_extend:SI (match_operand:HI 1 "register_operand" ""))) -+ (set (zero_extract:SI (match_operand 2 "register_operand" "") -+ (match_operand:SI 3 "immediate_operand" "") -+ (match_operand:SI 4 "immediate_operand" "")) -+ (match_dup 0))] -+ "((peep2_reg_dead_p(2, operands[0]) && -+ (INTVAL(operands[3]) <= 16)))" -+ [(set (zero_extract:SI (match_dup 2) -+ (match_dup 3) -+ (match_dup 4)) -+ (match_dup 1))] -+ ) -+ -+;;============================================================================= -+;; push bytes -+;;----------------------------------------------------------------------------- -+;; Implements the push instruction -+;;============================================================================= -+(define_insn "pushm" -+ [(set (mem:BLK (pre_dec:BLK (reg:SI SP_REGNUM))) -+ (unspec:BLK [(match_operand 0 "const_int_operand" "")] -+ UNSPEC_PUSHM))] -+ "" -+ { -+ if (INTVAL(operands[0])) { -+ return "pushm\t%r0"; -+ } else { -+ return ""; -+ } -+ } -+ [(set_attr "type" "store") -+ (set_attr "length" "2") -+ (set_attr "cc" "none")]) -+ -+(define_insn "stm" -+ [(unspec [(match_operand 0 "register_operand" "r") -+ (match_operand 1 "const_int_operand" "") -+ (match_operand 2 "const_int_operand" "")] -+ UNSPEC_STM)] -+ "" -+ { -+ if (INTVAL(operands[1])) { -+ if (INTVAL(operands[2]) != 0) -+ return "stm\t--%0, %s1"; -+ else -+ return "stm\t%0, %s1"; -+ } else { -+ return ""; -+ } -+ } -+ [(set_attr "type" "store") -+ (set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+ -+ -+(define_insn "popm" -+ [(unspec [(match_operand 0 "const_int_operand" "")] -+ UNSPEC_POPM)] -+ "" -+ { -+ if (INTVAL(operands[0])) { -+ return "popm %r0"; -+ } else { -+ return ""; -+ } -+ } -+ [(set_attr "type" "load") -+ (set_attr "length" "2")]) -+ -+ -+ -+;;============================================================================= -+;; add -+;;----------------------------------------------------------------------------- -+;; Adds reg1 with reg2 and puts the result in reg0. -+;;============================================================================= -+(define_insn "add3" -+ [(set (match_operand:INTM 0 "register_operand" "=r,r,r,r,r") -+ (plus:INTM (match_operand:INTM 1 "register_operand" "%0,r,0,r,0") -+ (match_operand:INTM 2 "avr32_add_operand" "r,r,Is08,Is16,Is21")))] -+ "" -+ "@ -+ add %0, %2 -+ add %0, %1, %2 -+ sub %0, %n2 -+ sub %0, %1, %n2 -+ sub %0, %n2" -+ -+ [(set_attr "length" "2,4,2,4,4") -+ (set_attr "cc" "")]) -+ -+(define_insn "add3_lsl" -+ [(set (match_operand:INTM 0 "register_operand" "=r") -+ (plus:INTM (ashift:INTM (match_operand:INTM 1 "register_operand" "r") -+ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02")) -+ (match_operand:INTM 2 "register_operand" "r")))] -+ "" -+ "add %0, %2, %1 << %3" -+ [(set_attr "length" "4") -+ (set_attr "cc" "")]) -+ -+(define_insn "add3_lsl2" -+ [(set (match_operand:INTM 0 "register_operand" "=r") -+ (plus:INTM (match_operand:INTM 1 "register_operand" "r") -+ (ashift:INTM (match_operand:INTM 2 "register_operand" "r") -+ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02"))))] -+ "" -+ "add %0, %1, %2 << %3" -+ [(set_attr "length" "4") -+ (set_attr "cc" "")]) -+ -+ -+(define_insn "add3_mul" -+ [(set (match_operand:INTM 0 "register_operand" "=r") -+ (plus:INTM (mult:INTM (match_operand:INTM 1 "register_operand" "r") -+ (match_operand:INTM 3 "immediate_operand" "Ku04" )) -+ (match_operand:INTM 2 "register_operand" "r")))] -+ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || -+ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" -+ "add %0, %2, %1 << %p3" -+ [(set_attr "length" "4") -+ (set_attr "cc" "")]) -+ -+(define_insn "add3_mul2" -+ [(set (match_operand:INTM 0 "register_operand" "=r") -+ (plus:INTM (match_operand:INTM 1 "register_operand" "r") -+ (mult:INTM (match_operand:INTM 2 "register_operand" "r") -+ (match_operand:INTM 3 "immediate_operand" "Ku04" ))))] -+ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || -+ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" -+ "add %0, %1, %2 << %p3" -+ [(set_attr "length" "4") -+ (set_attr "cc" "")]) -+ -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (ashift:SI (match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "immediate_operand" ""))) -+ (set (match_operand:SI 3 "register_operand" "") -+ (plus:SI (match_dup 0) -+ (match_operand:SI 4 "register_operand" "")))] -+ "(peep2_reg_dead_p(2, operands[0]) && -+ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))" -+ [(set (match_dup 3) -+ (plus:SI (ashift:SI (match_dup 1) -+ (match_dup 2)) -+ (match_dup 4)))] -+ ) -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (ashift:SI (match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "immediate_operand" ""))) -+ (set (match_operand:SI 3 "register_operand" "") -+ (plus:SI (match_operand:SI 4 "register_operand" "") -+ (match_dup 0)))] -+ "(peep2_reg_dead_p(2, operands[0]) && -+ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))" -+ [(set (match_dup 3) -+ (plus:SI (ashift:SI (match_dup 1) -+ (match_dup 2)) -+ (match_dup 4)))] -+ ) -+ -+(define_insn "adddi3" -+ [(set (match_operand:DI 0 "register_operand" "=r,r") -+ (plus:DI (match_operand:DI 1 "register_operand" "%0,r") -+ (match_operand:DI 2 "register_operand" "r,r")))] -+ "" -+ "@ -+ add %0, %2\;adc %m0, %m0, %m2 -+ add %0, %1, %2\;adc %m0, %m1, %m2" -+ [(set_attr "length" "6,8") -+ (set_attr "type" "alu2") -+ (set_attr "cc" "set_vncz")]) -+ -+ -+(define_insn "add_imm_predicable" -+ [(set (match_operand:INTM 0 "register_operand" "+r") -+ (plus:INTM (match_dup 0) -+ (match_operand:INTM 1 "avr32_cond_immediate_operand" "%Is08")))] -+ "" -+ "sub%?\t%0, -%1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "predicable" "yes")] -+) -+ -+;;============================================================================= -+;; subtract -+;;----------------------------------------------------------------------------- -+;; Subtract reg2 or immediate value from reg0 and puts the result in reg0. -+;;============================================================================= -+ -+(define_insn "sub3" -+ [(set (match_operand:INTM 0 "general_operand" "=r,r,r,r,r,r,r") -+ (minus:INTM (match_operand:INTM 1 "register_const_int_operand" "0,r,0,r,0,r,Ks08") -+ (match_operand:INTM 2 "register_const_int_operand" "r,r,Ks08,Ks16,Ks21,0,r")))] -+ "" -+ "@ -+ sub %0, %2 -+ sub %0, %1, %2 -+ sub %0, %2 -+ sub %0, %1, %2 -+ sub %0, %2 -+ rsub %0, %1 -+ rsub %0, %2, %1" -+ [(set_attr "length" "2,4,2,4,4,2,4") -+ (set_attr "cc" "")]) -+ -+(define_insn "*sub3_mul" -+ [(set (match_operand:INTM 0 "register_operand" "=r") -+ (minus:INTM (match_operand:INTM 1 "register_operand" "r") -+ (mult:INTM (match_operand:INTM 2 "register_operand" "r") -+ (match_operand:SI 3 "immediate_operand" "Ku04" ))))] -+ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || -+ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" -+ "sub %0, %1, %2 << %p3" -+ [(set_attr "length" "4") -+ (set_attr "cc" "")]) -+ -+(define_insn "*sub3_lsl" -+ [(set (match_operand:INTM 0 "register_operand" "=r") -+ (minus:INTM (match_operand:INTM 1 "register_operand" "r") -+ (ashift:INTM (match_operand:INTM 2 "register_operand" "r") -+ (match_operand:SI 3 "avr32_add_shift_immediate_operand" "Ku02"))))] -+ "" -+ "sub %0, %1, %2 << %3" -+ [(set_attr "length" "4") -+ (set_attr "cc" "")]) -+ -+ -+(define_insn "subdi3" -+ [(set (match_operand:DI 0 "register_operand" "=r,r") -+ (minus:DI (match_operand:DI 1 "register_operand" "%0,r") -+ (match_operand:DI 2 "register_operand" "r,r")))] -+ "" -+ "@ -+ sub %0, %2\;sbc %m0, %m0, %m2 -+ sub %0, %1, %2\;sbc %m0, %m1, %m2" -+ [(set_attr "length" "6,8") -+ (set_attr "type" "alu2") -+ (set_attr "cc" "set_vncz")]) -+ -+ -+(define_insn "sub_imm_predicable" -+ [(set (match_operand:INTM 0 "register_operand" "+r") -+ (minus:INTM (match_dup 0) -+ (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08")))] -+ "" -+ "sub%?\t%0, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "predicable" "yes")]) -+ -+(define_insn "rsub_imm_predicable" -+ [(set (match_operand:INTM 0 "register_operand" "+r") -+ (minus:INTM (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08") -+ (match_dup 0)))] -+ "" -+ "rsub%?\t%0, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "predicable" "yes")]) -+ -+;;============================================================================= -+;; multiply -+;;----------------------------------------------------------------------------- -+;; Multiply op1 and op2 and put the value in op0. -+;;============================================================================= -+ -+ -+(define_insn "mulqi3" -+ [(set (match_operand:QI 0 "register_operand" "=r,r,r") -+ (mult:QI (match_operand:QI 1 "register_operand" "%0,r,r") -+ (match_operand:QI 2 "avr32_mul_operand" "r,r,Ks08")))] -+ "!TARGET_NO_MUL_INSNS" -+ { -+ switch (which_alternative){ -+ case 0: -+ return "mul %0, %2"; -+ case 1: -+ return "mul %0, %1, %2"; -+ case 2: -+ return "mul %0, %1, %2"; -+ default: -+ gcc_unreachable(); -+ } -+ } -+ [(set_attr "type" "mulww_w,mulww_w,mulwh") -+ (set_attr "length" "2,4,4") -+ (set_attr "cc" "none")]) -+ -+(define_insn "mulsi3" -+ [(set (match_operand:SI 0 "register_operand" "=r,r,r") -+ (mult:SI (match_operand:SI 1 "register_operand" "%0,r,r") -+ (match_operand:SI 2 "avr32_mul_operand" "r,r,Ks08")))] -+ "!TARGET_NO_MUL_INSNS" -+ { -+ switch (which_alternative){ -+ case 0: -+ return "mul %0, %2"; -+ case 1: -+ return "mul %0, %1, %2"; -+ case 2: -+ return "mul %0, %1, %2"; -+ default: -+ gcc_unreachable(); -+ } -+ } -+ [(set_attr "type" "mulww_w,mulww_w,mulwh") -+ (set_attr "length" "2,4,4") -+ (set_attr "cc" "none")]) -+ -+ -+(define_insn "mulhisi3" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (mult:SI -+ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) -+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "mulhh.w %0, %1:b, %2:b" -+ [(set_attr "type" "mulhh") -+ (set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+(define_peephole2 -+ [(match_scratch:DI 6 "r") -+ (set (match_operand:SI 0 "register_operand" "") -+ (mult:SI -+ (sign_extend:SI (match_operand:HI 1 "register_operand" "")) -+ (sign_extend:SI (match_operand:HI 2 "register_operand" "")))) -+ (set (match_operand:SI 3 "register_operand" "") -+ (ashiftrt:SI (match_dup 0) -+ (const_int 16)))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP -+ && (peep2_reg_dead_p(1, operands[0]) || (REGNO(operands[0]) == REGNO(operands[3])))" -+ [(set (match_dup 4) (sign_extend:SI (match_dup 1))) -+ (set (match_dup 6) -+ (ashift:DI (mult:DI (sign_extend:DI (match_dup 4)) -+ (sign_extend:DI (match_dup 2))) -+ (const_int 16))) -+ (set (match_dup 3) (match_dup 5))] -+ -+ "{ -+ operands[4] = gen_rtx_REG(SImode, REGNO(operands[1])); -+ operands[5] = gen_highpart (SImode, operands[4]); -+ }" -+ ) -+ -+(define_insn "mulnhisi3" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (mult:SI -+ (sign_extend:SI (neg:HI (match_operand:HI 1 "register_operand" "r"))) -+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "mulnhh.w %0, %1:b, %2:b" -+ [(set_attr "type" "mulhh") -+ (set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+(define_insn "machisi3" -+ [(set (match_operand:SI 0 "register_operand" "+r") -+ (plus:SI (mult:SI -+ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) -+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) -+ (match_dup 0)))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "machh.w %0, %1:b, %2:b" -+ [(set_attr "type" "machh_w") -+ (set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+ -+ -+(define_insn "mulsidi3" -+ [(set (match_operand:DI 0 "register_operand" "=r") -+ (mult:DI -+ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) -+ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] -+ "!TARGET_NO_MUL_INSNS" -+ "muls.d %0, %1, %2" -+ [(set_attr "type" "mulww_d") -+ (set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+(define_insn "umulsidi3" -+ [(set (match_operand:DI 0 "register_operand" "=r") -+ (mult:DI -+ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r")) -+ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] -+ "!TARGET_NO_MUL_INSNS" -+ "mulu.d %0, %1, %2" -+ [(set_attr "type" "mulww_d") -+ (set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+(define_insn "*mulaccsi3" -+ [(set (match_operand:SI 0 "register_operand" "+r") -+ (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r") -+ (match_operand:SI 2 "register_operand" "r")) -+ (match_dup 0)))] -+ "!TARGET_NO_MUL_INSNS" -+ "mac %0, %1, %2" -+ [(set_attr "type" "macww_w") -+ (set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+(define_insn "*mulaccsidi3" -+ [(set (match_operand:DI 0 "register_operand" "+r") -+ (plus:DI (mult:DI -+ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) -+ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))) -+ (match_dup 0)))] -+ "!TARGET_NO_MUL_INSNS" -+ "macs.d %0, %1, %2" -+ [(set_attr "type" "macww_d") -+ (set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+(define_insn "*umulaccsidi3" -+ [(set (match_operand:DI 0 "register_operand" "+r") -+ (plus:DI (mult:DI -+ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r")) -+ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))) -+ (match_dup 0)))] -+ "!TARGET_NO_MUL_INSNS" -+ "macu.d %0, %1, %2" -+ [(set_attr "type" "macww_d") -+ (set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+ -+ -+;; Try to avoid Write-After-Write hazards for mul operations -+;; if it can be done -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (mult:SI -+ (sign_extend:SI (match_operand 1 "general_operand" "")) -+ (sign_extend:SI (match_operand 2 "general_operand" "")))) -+ (set (match_dup 0) -+ (match_operator:SI 3 "alu_operator" [(match_dup 0) -+ (match_operand 4 "general_operand" "")]))] -+ "peep2_reg_dead_p(1, operands[2])" -+ [(set (match_dup 5) -+ (mult:SI -+ (sign_extend:SI (match_dup 1)) -+ (sign_extend:SI (match_dup 2)))) -+ (set (match_dup 0) -+ (match_op_dup 3 [(match_dup 5) -+ (match_dup 4)]))] -+ "{operands[5] = gen_rtx_REG(SImode, REGNO(operands[2]));}" -+ ) -+ -+ -+ -+;;============================================================================= -+;; DSP instructions -+;;============================================================================= -+(define_insn "mulsathh_h" -+ [(set (match_operand:HI 0 "register_operand" "=r") -+ (ss_truncate:HI (ashiftrt:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) -+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) -+ (const_int 15))))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "mulsathh.h\t%0, %1:b, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "mulhh")]) -+ -+(define_insn "mulsatrndhh_h" -+ [(set (match_operand:HI 0 "register_operand" "=r") -+ (ss_truncate:HI (ashiftrt:SI -+ (plus:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) -+ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) -+ (const_int 1073741824)) -+ (const_int 15))))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "mulsatrndhh.h\t%0, %1:b, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "mulhh")]) -+ -+(define_insn "mulsathh_w" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) -+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) -+ (const_int 1))))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "mulsathh.w\t%0, %1:b, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "mulhh")]) -+ -+(define_insn "mulsatwh_w" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (ss_truncate:SI (ashiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) -+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) -+ (const_int 15))))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "mulsatwh.w\t%0, %1, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "mulwh")]) -+ -+(define_insn "mulsatrndwh_w" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (ss_truncate:SI (ashiftrt:DI (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) -+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) -+ (const_int 1073741824)) -+ (const_int 15))))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "mulsatrndwh.w\t%0, %1, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "mulwh")]) -+ -+(define_insn "macsathh_w" -+ [(set (match_operand:SI 0 "register_operand" "+r") -+ (plus:SI (match_dup 0) -+ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) -+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) -+ (const_int 1)))))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "macsathh.w\t%0, %1:b, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "mulhh")]) -+ -+ -+(define_insn "mulwh_d" -+ [(set (match_operand:DI 0 "register_operand" "=r") -+ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) -+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) -+ (const_int 16)))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "mulwh.d\t%0, %1, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "mulwh")]) -+ -+ -+(define_insn "mulnwh_d" -+ [(set (match_operand:DI 0 "register_operand" "=r") -+ (ashift:DI (mult:DI (not:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))) -+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) -+ (const_int 16)))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "mulnwh.d\t%0, %1, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "mulwh")]) -+ -+(define_insn "macwh_d" -+ [(set (match_operand:DI 0 "register_operand" "+r") -+ (plus:DI (match_dup 0) -+ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) -+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) -+ (const_int 16))))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "macwh.d\t%0, %1, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "mulwh")]) -+ -+(define_insn "machh_d" -+ [(set (match_operand:DI 0 "register_operand" "+r") -+ (plus:DI (match_dup 0) -+ (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) -+ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))))] -+ "!TARGET_NO_MUL_INSNS && TARGET_DSP" -+ "machh.d\t%0, %1:b, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "mulwh")]) -+ -+(define_insn "satadd_w" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (ss_plus:SI (match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "register_operand" "r")))] -+ "TARGET_DSP" -+ "satadd.w\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "alu_sat")]) -+ -+(define_insn "satsub_w" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (ss_minus:SI (match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "register_operand" "r")))] -+ "TARGET_DSP" -+ "satsub.w\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "alu_sat")]) -+ -+(define_insn "satadd_h" -+ [(set (match_operand:HI 0 "register_operand" "=r") -+ (ss_plus:HI (match_operand:HI 1 "register_operand" "r") -+ (match_operand:HI 2 "register_operand" "r")))] -+ "TARGET_DSP" -+ "satadd.h\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "alu_sat")]) -+ -+(define_insn "satsub_h" -+ [(set (match_operand:HI 0 "register_operand" "=r") -+ (ss_minus:HI (match_operand:HI 1 "register_operand" "r") -+ (match_operand:HI 2 "register_operand" "r")))] -+ "TARGET_DSP" -+ "satsub.h\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none") -+ (set_attr "type" "alu_sat")]) -+ -+ -+;;============================================================================= -+;; smin -+;;----------------------------------------------------------------------------- -+;; Set reg0 to the smallest value of reg1 and reg2. It is used for signed -+;; values in the registers. -+;;============================================================================= -+(define_insn "sminsi3" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (smin:SI (match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "register_operand" "r")))] -+ "" -+ "min %0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+;;============================================================================= -+;; smax -+;;----------------------------------------------------------------------------- -+;; Set reg0 to the largest value of reg1 and reg2. It is used for signed -+;; values in the registers. -+;;============================================================================= -+(define_insn "smaxsi3" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (smax:SI (match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "register_operand" "r")))] -+ "" -+ "max %0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+ -+ -+;;============================================================================= -+;; Logical operations -+;;----------------------------------------------------------------------------- -+ -+ -+;; Split up simple DImode logical operations. Simply perform the logical -+;; operation on the upper and lower halves of the registers. -+(define_split -+ [(set (match_operand:DI 0 "register_operand" "") -+ (match_operator:DI 6 "logical_binary_operator" -+ [(match_operand:DI 1 "register_operand" "") -+ (match_operand:DI 2 "register_operand" "")]))] -+ "reload_completed" -+ [(set (match_dup 0) (match_op_dup:SI 6 [(match_dup 1) (match_dup 2)])) -+ (set (match_dup 3) (match_op_dup:SI 6 [(match_dup 4) (match_dup 5)]))] -+ " -+ { -+ operands[3] = gen_highpart (SImode, operands[0]); -+ operands[0] = gen_lowpart (SImode, operands[0]); -+ operands[4] = gen_highpart (SImode, operands[1]); -+ operands[1] = gen_lowpart (SImode, operands[1]); -+ operands[5] = gen_highpart (SImode, operands[2]); -+ operands[2] = gen_lowpart (SImode, operands[2]); -+ }" -+) -+ -+;;============================================================================= -+;; Logical operations with shifted operand -+;;============================================================================= -+(define_insn "si_lshift" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (logical:SI (match_operator:SI 4 "logical_shift_operator" -+ [(match_operand:SI 2 "register_operand" "r") -+ (match_operand:SI 3 "immediate_operand" "Ku05")]) -+ (match_operand:SI 1 "register_operand" "r")))] -+ "" -+ { -+ if ( GET_CODE(operands[4]) == ASHIFT ) -+ return "\t%0, %1, %2 << %3"; -+ else -+ return "\t%0, %1, %2 >> %3"; -+ } -+ -+ [(set_attr "cc" "set_z")] -+) -+ -+ -+;;************************************************ -+;; Peepholes for detecting logical operantions -+;; with shifted operands -+;;************************************************ -+ -+(define_peephole -+ [(set (match_operand:SI 3 "register_operand" "") -+ (match_operator:SI 5 "logical_shift_operator" -+ [(match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "immediate_operand" "")])) -+ (set (match_operand:SI 0 "register_operand" "") -+ (logical:SI (match_operand:SI 4 "register_operand" "") -+ (match_dup 3)))] -+ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))" -+ { -+ if ( GET_CODE(operands[5]) == ASHIFT ) -+ return "\t%0, %4, %1 << %2"; -+ else -+ return "\t%0, %4, %1 >> %2"; -+ } -+ [(set_attr "cc" "set_z")] -+ ) -+ -+(define_peephole -+ [(set (match_operand:SI 3 "register_operand" "") -+ (match_operator:SI 5 "logical_shift_operator" -+ [(match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "immediate_operand" "")])) -+ (set (match_operand:SI 0 "register_operand" "") -+ (logical:SI (match_dup 3) -+ (match_operand:SI 4 "register_operand" "")))] -+ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))" -+ { -+ if ( GET_CODE(operands[5]) == ASHIFT ) -+ return "\t%0, %4, %1 << %2"; -+ else -+ return "\t%0, %4, %1 >> %2"; -+ } -+ [(set_attr "cc" "set_z")] -+ ) -+ -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operator:SI 5 "logical_shift_operator" -+ [(match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "immediate_operand" "")])) -+ (set (match_operand:SI 3 "register_operand" "") -+ (logical:SI (match_operand:SI 4 "register_operand" "") -+ (match_dup 0)))] -+ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))" -+ -+ [(set (match_dup 3) -+ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)]) -+ (match_dup 4)))] -+ -+ "" -+) -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operator:SI 5 "logical_shift_operator" -+ [(match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "immediate_operand" "")])) -+ (set (match_operand:SI 3 "register_operand" "") -+ (logical:SI (match_dup 0) -+ (match_operand:SI 4 "register_operand" "")))] -+ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))" -+ -+ [(set (match_dup 3) -+ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)]) -+ (match_dup 4)))] -+ -+ "" -+) -+ -+ -+;;============================================================================= -+;; and -+;;----------------------------------------------------------------------------- -+;; Store the result after a bitwise logical-and between reg0 and reg2 in reg0. -+;;============================================================================= -+ -+(define_insn "andnsi" -+ [(set (match_operand:SI 0 "register_operand" "+r") -+ (and:SI (match_dup 0) -+ (not:SI (match_operand:SI 1 "register_operand" "r"))))] -+ "" -+ "andn %0, %1" -+ [(set_attr "cc" "set_z") -+ (set_attr "length" "2")] -+) -+ -+ -+(define_insn "andsi3" -+ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r,r,r, r, r,r,r,r,r") -+ (and:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,r,0,0, 0, 0,0,0,0,r" ) -+ (match_operand:SI 2 "nonmemory_operand" " N,M,N,Ku16,Ks17,J,L,r,i,r")))] -+ "" -+ "@ -+ memc\t%0, %z2 -+ bfextu\t%0, %1, 0, %z2 -+ cbr\t%0, %z2 -+ andl\t%0, %2, COH -+ andl\t%0, lo(%2) -+ andh\t%0, hi(%2), COH -+ andh\t%0, hi(%2) -+ and\t%0, %2 -+ andh\t%0, hi(%2)\;andl\t%0, lo(%2) -+ and\t%0, %1, %2" -+ -+ [(set_attr "length" "4,4,2,4,4,4,4,2,8,4") -+ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z,set_z,set_z,set_z,set_z")]) -+ -+ -+ -+(define_insn "anddi3" -+ [(set (match_operand:DI 0 "register_operand" "=&r,&r") -+ (and:DI (match_operand:DI 1 "register_operand" "%0,r") -+ (match_operand:DI 2 "register_operand" "r,r")))] -+ "" -+ "#" -+ [(set_attr "length" "8") -+ (set_attr "cc" "clobber")] -+) -+ -+;;============================================================================= -+;; or -+;;----------------------------------------------------------------------------- -+;; Store the result after a bitwise inclusive-or between reg0 and reg2 in reg0. -+;;============================================================================= -+ -+(define_insn "iorsi3" -+ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r,r, r,r,r,r") -+ (ior:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,0,0, 0,0,0,r" ) -+ (match_operand:SI 2 "nonmemory_operand" " O,O,Ku16,J,r,i,r")))] -+ "" -+ "@ -+ mems\t%0, %p2 -+ sbr\t%0, %p2 -+ orl\t%0, %2 -+ orh\t%0, hi(%2) -+ or\t%0, %2 -+ orh\t%0, hi(%2)\;orl\t%0, lo(%2) -+ or\t%0, %1, %2" -+ -+ [(set_attr "length" "4,2,4,4,2,8,4") -+ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z,set_z")]) -+ -+ -+(define_insn "iordi3" -+ [(set (match_operand:DI 0 "register_operand" "=&r,&r") -+ (ior:DI (match_operand:DI 1 "register_operand" "%0,r") -+ (match_operand:DI 2 "register_operand" "r,r")))] -+ "" -+ "#" -+ [(set_attr "length" "8") -+ (set_attr "cc" "clobber")] -+) -+ -+;;============================================================================= -+;; xor bytes -+;;----------------------------------------------------------------------------- -+;; Store the result after a bitwise exclusive-or between reg0 and reg2 in reg0. -+;;============================================================================= -+ -+(define_insn "xorsi3" -+ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r, r,r,r,r") -+ (xor:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,0, 0,0,0,r" ) -+ (match_operand:SI 2 "nonmemory_operand" " O,Ku16,J,r,i,r")))] -+ "" -+ "@ -+ memt\t%0, %p2 -+ eorl\t%0, %2 -+ eorh\t%0, hi(%2) -+ eor\t%0, %2 -+ eorh\t%0, hi(%2)\;eorl\t%0, lo(%2) -+ eor\t%0, %1, %2" -+ -+ [(set_attr "length" "4,4,4,2,8,4") -+ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z")]) -+ -+(define_insn "xordi3" -+ [(set (match_operand:DI 0 "register_operand" "=&r,&r") -+ (xor:DI (match_operand:DI 1 "register_operand" "%0,r") -+ (match_operand:DI 2 "register_operand" "r,r")))] -+ "" -+ "#" -+ [(set_attr "length" "8") -+ (set_attr "cc" "clobber")] -+) -+ -+;;============================================================================= -+;; Three operand predicable insns -+;;============================================================================= -+ -+(define_insn "_predicable" -+ [(set (match_operand:INTM 0 "register_operand" "=r") -+ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "r") -+ (match_operand:INTM 2 "register_operand" "r")))] -+ "TARGET_V2_INSNS" -+ "%?\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "predicable" "yes")] -+) -+ -+(define_insn_and_split "_imm_clobber_predicable" -+ [(parallel -+ [(set (match_operand:INTM 0 "register_operand" "=r") -+ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "r") -+ (match_operand:INTM 2 "avr32_mov_immediate_operand" "JKs21"))) -+ (clobber (match_operand:INTM 3 "register_operand" "=&r"))])] -+ "TARGET_V2_INSNS" -+ { -+ if ( current_insn_predicate != NULL_RTX ) -+ { -+ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") ) -+ return "%! mov%?\t%3, %2\;%?\t%0, %1, %3"; -+ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") ) -+ return "%! mov\t%3, %2\;%?\t%0, %1, %3"; -+ else -+ return "%! movh\t%3, hi(%2)\;%?\t%0, %1, %3"; -+ } -+ else -+ { -+ if ( !avr32_cond_imm_clobber_splittable (insn, operands) ) -+ { -+ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") ) -+ return "mov%?\t%3, %2\;%?\t%0, %1, %3"; -+ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") ) -+ return "mov\t%3, %2\;%?\t%0, %1, %3"; -+ else -+ return "movh\t%3, hi(%2)\;%?\t%0, %1, %3"; -+ } -+ return "#"; -+ } -+ -+ } -+ ;; If we find out that we could not actually do if-conversion on the block -+ ;; containing this insn we convert it back to normal immediate format -+ ;; to avoid outputing a redundant move insn -+ ;; Do not split until after we have checked if we can make the insn -+ ;; conditional. -+ "(GET_CODE (PATTERN (insn)) != COND_EXEC -+ && cfun->machine->ifcvt_after_reload -+ && avr32_cond_imm_clobber_splittable (insn, operands))" -+ [(set (match_dup 0) -+ (predicable_op3:INTM (match_dup 1) -+ (match_dup 2)))] -+ "" -+ [(set_attr "length" "8") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "predicable" "yes")] -+ ) -+ -+ -+;;============================================================================= -+;; Zero extend predicable insns -+;;============================================================================= -+(define_insn_and_split "zero_extendhisi_clobber_predicable" -+ [(parallel -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))) -+ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] -+ "TARGET_V2_INSNS" -+ { -+ if ( current_insn_predicate != NULL_RTX ) -+ { -+ return "%! mov\t%2, 0xffff\;and%?\t%0, %1, %2"; -+ } -+ else -+ { -+ return "#"; -+ } -+ -+ } -+ ;; If we find out that we could not actually do if-conversion on the block -+ ;; containing this insn we convert it back to normal immediate format -+ ;; to avoid outputing a redundant move insn -+ ;; Do not split until after we have checked if we can make the insn -+ ;; conditional. -+ "(GET_CODE (PATTERN (insn)) != COND_EXEC -+ && cfun->machine->ifcvt_after_reload)" -+ [(set (match_dup 0) -+ (zero_extend:SI (match_dup 1)))] -+ "" -+ [(set_attr "length" "8") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "predicable" "yes")] -+ ) -+ -+(define_insn_and_split "zero_extendqisi_clobber_predicable" -+ [(parallel -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (zero_extend:SI (match_operand:QI 1 "register_operand" "r"))) -+ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] -+ "TARGET_V2_INSNS" -+ { -+ if ( current_insn_predicate != NULL_RTX ) -+ { -+ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2"; -+ } -+ else -+ { -+ return "#"; -+ } -+ -+ } -+ ;; If we find out that we could not actually do if-conversion on the block -+ ;; containing this insn we convert it back to normal immediate format -+ ;; to avoid outputing a redundant move insn -+ ;; Do not split until after we have checked if we can make the insn -+ ;; conditional. -+ "(GET_CODE (PATTERN (insn)) != COND_EXEC -+ && cfun->machine->ifcvt_after_reload)" -+ [(set (match_dup 0) -+ (zero_extend:SI (match_dup 1)))] -+ "" -+ [(set_attr "length" "8") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "predicable" "yes")] -+ ) -+ -+(define_insn_and_split "zero_extendqihi_clobber_predicable" -+ [(parallel -+ [(set (match_operand:HI 0 "register_operand" "=r") -+ (zero_extend:HI (match_operand:QI 1 "register_operand" "r"))) -+ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] -+ "TARGET_V2_INSNS" -+ { -+ if ( current_insn_predicate != NULL_RTX ) -+ { -+ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2"; -+ } -+ else -+ { -+ return "#"; -+ } -+ -+ } -+ ;; If we find out that we could not actually do if-conversion on the block -+ ;; containing this insn we convert it back to normal immediate format -+ ;; to avoid outputing a redundant move insn -+ ;; Do not split until after we have checked if we can make the insn -+ ;; conditional. -+ "(GET_CODE (PATTERN (insn)) != COND_EXEC -+ && cfun->machine->ifcvt_after_reload)" -+ [(set (match_dup 0) -+ (zero_extend:HI (match_dup 1)))] -+ "" -+ [(set_attr "length" "8") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "predicable" "yes")] -+ ) -+;;============================================================================= -+;; divmod -+;;----------------------------------------------------------------------------- -+;; Signed division that produces both a quotient and a remainder. -+;;============================================================================= -+ -+(define_expand "divmodsi4" -+ [(parallel [ -+ (parallel [ -+ (set (match_operand:SI 0 "register_operand" "=r") -+ (div:SI (match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "register_operand" "r"))) -+ (set (match_operand:SI 3 "register_operand" "=r") -+ (mod:SI (match_dup 1) -+ (match_dup 2)))]) -+ (use (match_dup 4))])] -+ "" -+ { -+ if (can_create_pseudo_p ()) { -+ operands[4] = gen_reg_rtx (DImode); -+ emit_insn(gen_divmodsi4_internal(operands[4],operands[1],operands[2])); -+ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4)); -+ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0)); -+ DONE; -+ } else { -+ FAIL; -+ } -+ }) -+ -+ -+(define_insn "divmodsi4_internal" -+ [(set (match_operand:DI 0 "register_operand" "=r") -+ (unspec:DI [(match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "register_operand" "r")] -+ UNSPEC_DIVMODSI4_INTERNAL))] -+ "" -+ "divs %0, %1, %2" -+ [(set_attr "type" "div") -+ (set_attr "cc" "none")]) -+ -+ -+;;============================================================================= -+;; udivmod -+;;----------------------------------------------------------------------------- -+;; Unsigned division that produces both a quotient and a remainder. -+;;============================================================================= -+(define_expand "udivmodsi4" -+ [(parallel [ -+ (parallel [ -+ (set (match_operand:SI 0 "register_operand" "=r") -+ (udiv:SI (match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "register_operand" "r"))) -+ (set (match_operand:SI 3 "register_operand" "=r") -+ (umod:SI (match_dup 1) -+ (match_dup 2)))]) -+ (use (match_dup 4))])] -+ "" -+ { -+ if (can_create_pseudo_p ()) { -+ operands[4] = gen_reg_rtx (DImode); -+ -+ emit_insn(gen_udivmodsi4_internal(operands[4],operands[1],operands[2])); -+ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4)); -+ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0)); -+ -+ DONE; -+ } else { -+ FAIL; -+ } -+ }) -+ -+(define_insn "udivmodsi4_internal" -+ [(set (match_operand:DI 0 "register_operand" "=r") -+ (unspec:DI [(match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "register_operand" "r")] -+ UNSPEC_UDIVMODSI4_INTERNAL))] -+ "" -+ "divu %0, %1, %2" -+ [(set_attr "type" "div") -+ (set_attr "cc" "none")]) -+ -+ -+;;============================================================================= -+;; Arithmetic-shift left -+;;----------------------------------------------------------------------------- -+;; Arithmetic-shift reg0 left by reg2 or immediate value. -+;;============================================================================= -+ -+(define_insn "ashlsi3" -+ [(set (match_operand:SI 0 "register_operand" "=r,r,r") -+ (ashift:SI (match_operand:SI 1 "register_operand" "r,0,r") -+ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] -+ "" -+ "@ -+ lsl %0, %1, %2 -+ lsl %0, %2 -+ lsl %0, %1, %2" -+ [(set_attr "length" "4,2,4") -+ (set_attr "cc" "set_ncz")]) -+ -+;;============================================================================= -+;; Arithmetic-shift right -+;;----------------------------------------------------------------------------- -+;; Arithmetic-shift reg0 right by an immediate value. -+;;============================================================================= -+ -+(define_insn "ashrsi3" -+ [(set (match_operand:SI 0 "register_operand" "=r,r,r") -+ (ashiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r") -+ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] -+ "" -+ "@ -+ asr %0, %1, %2 -+ asr %0, %2 -+ asr %0, %1, %2" -+ [(set_attr "length" "4,2,4") -+ (set_attr "cc" "set_ncz")]) -+ -+;;============================================================================= -+;; Logical shift right -+;;----------------------------------------------------------------------------- -+;; Logical shift reg0 right by an immediate value. -+;;============================================================================= -+ -+(define_insn "lshrsi3" -+ [(set (match_operand:SI 0 "register_operand" "=r,r,r") -+ (lshiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r") -+ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] -+ "" -+ "@ -+ lsr %0, %1, %2 -+ lsr %0, %2 -+ lsr %0, %1, %2" -+ [(set_attr "length" "4,2,4") -+ (set_attr "cc" "set_ncz")]) -+ -+ -+;;============================================================================= -+;; neg -+;;----------------------------------------------------------------------------- -+;; Negate operand 1 and store the result in operand 0. -+;;============================================================================= -+(define_insn "negsi2" -+ [(set (match_operand:SI 0 "register_operand" "=r,r") -+ (neg:SI (match_operand:SI 1 "register_operand" "0,r")))] -+ "" -+ "@ -+ neg\t%0 -+ rsub\t%0, %1, 0" -+ [(set_attr "length" "2,4") -+ (set_attr "cc" "set_vncz")]) -+ -+(define_insn "negsi2_predicable" -+ [(set (match_operand:SI 0 "register_operand" "+r") -+ (neg:SI (match_dup 0)))] -+ "TARGET_V2_INSNS" -+ "rsub%?\t%0, 0" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "predicable" "yes")]) -+ -+;;============================================================================= -+;; abs -+;;----------------------------------------------------------------------------- -+;; Store the absolute value of operand 1 into operand 0. -+;;============================================================================= -+(define_insn "abssi2" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (abs:SI (match_operand:SI 1 "register_operand" "0")))] -+ "" -+ "abs\t%0" -+ [(set_attr "length" "2") -+ (set_attr "cc" "set_z")]) -+ -+ -+;;============================================================================= -+;; one_cmpl -+;;----------------------------------------------------------------------------- -+;; Store the bitwise-complement of operand 1 into operand 0. -+;;============================================================================= -+ -+(define_insn "one_cmplsi2" -+ [(set (match_operand:SI 0 "register_operand" "=r,r") -+ (not:SI (match_operand:SI 1 "register_operand" "0,r")))] -+ "" -+ "@ -+ com\t%0 -+ rsub\t%0, %1, -1" -+ [(set_attr "length" "2,4") -+ (set_attr "cc" "set_z")]) -+ -+ -+(define_insn "one_cmplsi2_predicable" -+ [(set (match_operand:SI 0 "register_operand" "+r") -+ (not:SI (match_dup 0)))] -+ "TARGET_V2_INSNS" -+ "rsub%?\t%0, -1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "predicable" "yes")]) -+ -+ -+;;============================================================================= -+;; Bit load -+;;----------------------------------------------------------------------------- -+;; Load a bit into Z and C flags -+;;============================================================================= -+(define_insn "bldsi" -+ [(set (cc0) -+ (and:SI (match_operand:SI 0 "register_operand" "r") -+ (match_operand:SI 1 "one_bit_set_operand" "i")))] -+ "" -+ "bld\t%0, %p1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "bld")] -+ ) -+ -+ -+;;============================================================================= -+;; Compare -+;;----------------------------------------------------------------------------- -+;; Compare reg0 with reg1 or an immediate value. -+;;============================================================================= -+ -+(define_expand "cmp" -+ [(set (cc0) -+ (compare:CMP -+ (match_operand:CMP 0 "register_operand" "") -+ (match_operand:CMP 1 "" "")))] -+ "" -+ "{ -+ avr32_compare_op0 = operands[0]; -+ avr32_compare_op1 = operands[1]; -+ }" -+) -+ -+(define_insn "cmp_internal" -+ [(set (cc0) -+ (compare:CMP -+ (match_operand:CMP 0 "register_operand" "r") -+ (match_operand:CMP 1 "" "")))] -+ "" -+ { -+switch(GET_MODE(operands[0])) -+ { -+ case QImode: -+ avr32_branch_type = CMP_QI; -+ break; -+ case HImode: -+ avr32_branch_type = CMP_HI; -+ break; -+ case SImode: -+ avr32_branch_type = CMP_SI; -+ break; -+ case DImode: -+ avr32_branch_type = CMP_DI; -+ break; -+ default: -+ abort(); -+ } -+ /* Check if the next insn already will output a compare. */ -+ if (!next_insn_emits_cmp (insn)) -+ set_next_insn_cond(insn, -+ avr32_output_cmp(get_next_insn_cond(insn), GET_MODE (operands[0]), operands[0], operands[1])); -+ return ""; -+ } -+ [(set_attr "length" "4") -+ (set_attr "cc" "compare")]) -+ -+(define_expand "cmpsf" -+ [(set (cc0) -+ (compare:SF -+ (match_operand:SF 0 "general_operand" "") -+ (match_operand:SF 1 "general_operand" "")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "{ -+ if ( !REG_P(operands[0]) ) -+ operands[0] = force_reg(SFmode, operands[0]); -+ -+ if ( !REG_P(operands[1]) ) -+ operands[1] = force_reg(SFmode, operands[1]); -+ -+ avr32_compare_op0 = operands[0]; -+ avr32_compare_op1 = operands[1]; -+ emit_insn(gen_cmpsf_internal_uc3fp(operands[0], operands[1])); -+ DONE; -+ }" -+) -+ -+;;;============================================================================= -+;; Test if zero -+;;----------------------------------------------------------------------------- -+;; Compare reg against zero and set the condition codes. -+;;============================================================================= -+ -+ -+(define_expand "tstsi" -+ [(set (cc0) -+ (match_operand:SI 0 "register_operand" ""))] -+ "" -+ { -+ avr32_compare_op0 = operands[0]; -+ avr32_compare_op1 = const0_rtx; -+ } -+) -+ -+(define_insn "tstsi_internal" -+ [(set (cc0) -+ (match_operand:SI 0 "register_operand" "r"))] -+ "" -+ { -+ /* Check if the next insn already will output a compare. */ -+ if (!next_insn_emits_cmp (insn)) -+ set_next_insn_cond(insn, -+ avr32_output_cmp(get_next_insn_cond(insn), SImode, operands[0], const0_rtx)); -+ -+ return ""; -+ } -+ [(set_attr "length" "2") -+ (set_attr "cc" "compare")]) -+ -+ -+(define_expand "tstdi" -+ [(set (cc0) -+ (match_operand:DI 0 "register_operand" ""))] -+ "" -+ { -+ avr32_compare_op0 = operands[0]; -+ avr32_compare_op1 = const0_rtx; -+ } -+) -+ -+(define_insn "tstdi_internal" -+ [(set (cc0) -+ (match_operand:DI 0 "register_operand" "r"))] -+ "" -+ { -+ /* Check if the next insn already will output a compare. */ -+ if (!next_insn_emits_cmp (insn)) -+ set_next_insn_cond(insn, -+ avr32_output_cmp(get_next_insn_cond(insn), DImode, operands[0], const0_rtx)); -+ return ""; -+ } -+ [(set_attr "length" "4") -+ (set_attr "type" "alu2") -+ (set_attr "cc" "compare")]) -+ -+ -+ -+;;============================================================================= -+;; Convert operands -+;;----------------------------------------------------------------------------- -+;; -+;;============================================================================= -+(define_insn "truncdisi2" -+ [(set (match_operand:SI 0 "general_operand" "") -+ (truncate:SI (match_operand:DI 1 "general_operand" "")))] -+ "" -+ "truncdisi2") -+ -+;;============================================================================= -+;; Extend -+;;----------------------------------------------------------------------------- -+;; -+;;============================================================================= -+ -+ -+(define_insn "extendhisi2" -+ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") -+ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,,m")))] -+ "" -+ { -+ switch ( which_alternative ){ -+ case 0: -+ return "casts.h\t%0"; -+ case 1: -+ return "bfexts\t%0, %1, 0, 16"; -+ case 2: -+ case 3: -+ return "ld.sh\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "length" "2,4,2,4") -+ (set_attr "cc" "set_ncz,set_ncz,none,none") -+ (set_attr "type" "alu,alu,load_rm,load_rm")]) -+ -+(define_insn "extendqisi2" -+ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") -+ (sign_extend:SI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))] -+ "" -+ { -+ switch ( which_alternative ){ -+ case 0: -+ return "casts.b\t%0"; -+ case 1: -+ return "bfexts\t%0, %1, 0, 8"; -+ case 2: -+ case 3: -+ return "ld.sb\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "length" "2,4,2,4") -+ (set_attr "cc" "set_ncz,set_ncz,none,none") -+ (set_attr "type" "alu,alu,load_rm,load_rm")]) -+ -+(define_insn "extendqihi2" -+ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r") -+ (sign_extend:HI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))] -+ "" -+ { -+ switch ( which_alternative ){ -+ case 0: -+ return "casts.b\t%0"; -+ case 1: -+ return "bfexts\t%0, %1, 0, 8"; -+ case 2: -+ case 3: -+ return "ld.sb\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "length" "2,4,2,4") -+ (set_attr "cc" "set_ncz,set_ncz,none,none") -+ (set_attr "type" "alu,alu,load_rm,load_rm")]) -+ -+ -+;;============================================================================= -+;; Zero-extend -+;;----------------------------------------------------------------------------- -+;; -+;;============================================================================= -+ -+(define_insn "zero_extendhisi2" -+ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") -+ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,,m")))] -+ "" -+ { -+ switch ( which_alternative ){ -+ case 0: -+ return "castu.h\t%0"; -+ case 1: -+ return "bfextu\t%0, %1, 0, 16"; -+ case 2: -+ case 3: -+ return "ld.uh\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+ -+ [(set_attr "length" "2,4,2,4") -+ (set_attr "cc" "set_ncz,set_ncz,none,none") -+ (set_attr "type" "alu,alu,load_rm,load_rm")]) -+ -+(define_insn "zero_extendqisi2" -+ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") -+ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "0,r,,m")))] -+ "" -+ { -+ switch ( which_alternative ){ -+ case 0: -+ return "castu.b\t%0"; -+ case 1: -+ return "bfextu\t%0, %1, 0, 8"; -+ case 2: -+ case 3: -+ return "ld.ub\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "length" "2,4,2,4") -+ (set_attr "cc" "set_ncz, set_ncz, none, none") -+ (set_attr "type" "alu, alu, load_rm, load_rm")]) -+ -+(define_insn "zero_extendqihi2" -+ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r") -+ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,r,,m")))] -+ "" -+ { -+ switch ( which_alternative ){ -+ case 0: -+ return "castu.b\t%0"; -+ case 1: -+ return "bfextu\t%0, %1, 0, 8"; -+ case 2: -+ case 3: -+ return "ld.ub\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "length" "2,4,2,4") -+ (set_attr "cc" "set_ncz, set_ncz, none, none") -+ (set_attr "type" "alu, alu, load_rm, load_rm")]) -+ -+ -+;;============================================================================= -+;; Conditional load and extend insns -+;;============================================================================= -+(define_insn "ldsi_predicable_se" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (sign_extend:SI -+ (match_operand:INTM 1 "memory_operand" "")))] -+ "TARGET_V2_INSNS" -+ "ld%?\t%0, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "type" "load") -+ (set_attr "predicable" "yes")] -+) -+ -+(define_insn "ldsi_predicable_ze" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (zero_extend:SI -+ (match_operand:INTM 1 "memory_operand" "")))] -+ "TARGET_V2_INSNS" -+ "ld%?\t%0, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "type" "load") -+ (set_attr "predicable" "yes")] -+) -+ -+(define_insn "ldhi_predicable_ze" -+ [(set (match_operand:HI 0 "register_operand" "=r") -+ (zero_extend:HI -+ (match_operand:QI 1 "memory_operand" "RKs10")))] -+ "TARGET_V2_INSNS" -+ "ld.ub%?\t%0, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "type" "load") -+ (set_attr "predicable" "yes")] -+) -+ -+(define_insn "ldhi_predicable_se" -+ [(set (match_operand:HI 0 "register_operand" "=r") -+ (sign_extend:HI -+ (match_operand:QI 1 "memory_operand" "RKs10")))] -+ "TARGET_V2_INSNS" -+ "ld.sb%?\t%0, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "cmp_cond_insn") -+ (set_attr "type" "load") -+ (set_attr "predicable" "yes")] -+) -+ -+;;============================================================================= -+;; Conditional set register -+;; sr{cond4} rd -+;;----------------------------------------------------------------------------- -+ -+;;Because of the same issue as with conditional moves and adds we must -+;;not separate the compare instrcution from the scc instruction as -+;;they might be sheduled "badly". -+ -+(define_expand "s" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (any_cond:SI (cc0) -+ (const_int 0)))] -+"" -+{ -+ if(TARGET_HARD_FLOAT && TARGET_ARCH_FPU) -+ FAIL; -+}) -+ -+(define_insn "*s" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (any_cond:SI (cc0) -+ (const_int 0)))] -+ "" -+{ -+ return "sr\t%0"; -+} -+[(set_attr "length" "2") -+(set_attr "cc" "none")]) -+ -+(define_insn "seq" -+[(set (match_operand:SI 0 "register_operand" "=r") -+(eq:SI (cc0) -+ (const_int 0)))] -+ "" -+"sreq\t%0" -+[(set_attr "length" "2") -+(set_attr "cc" "none")]) -+ -+(define_insn "sne" -+[(set (match_operand:SI 0 "register_operand" "=r") -+(ne:SI (cc0) -+ (const_int 0)))] -+ "" -+"srne\t%0" -+ [(set_attr "length" "2") -+ (set_attr "cc" "none")]) -+ -+(define_insn "smi" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (unspec:SI [(cc0) -+ (const_int 0)] UNSPEC_COND_MI))] -+ "" -+ "srmi\t%0" -+ [(set_attr "length" "2") -+ (set_attr "cc" "none")]) -+ -+(define_insn "spl" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (unspec:SI [(cc0) -+ (const_int 0)] UNSPEC_COND_PL))] -+ "" -+ "srpl\t%0" -+ [(set_attr "length" "2") -+ (set_attr "cc" "none")]) -+ -+ -+;;============================================================================= -+;; Conditional branch -+;;----------------------------------------------------------------------------- -+;; Branch to label if the specified condition codes are set. -+;;============================================================================= -+; branch if negative -+(define_insn "bmi" -+ [(set (pc) -+ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "brmi %0" -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 2)] ; use compact branch -+ (const_int 4))) ; use extended branch -+ (set_attr "cc" "none")]) -+ -+(define_insn "*bmi-reverse" -+ [(set (pc) -+ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI) -+ (pc) -+ (label_ref (match_operand 0 "" ""))))] -+ "" -+ "brpl %0" -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 2)] ; use compact branch -+ (const_int 4))) ; use extended branch -+ (set_attr "cc" "none")]) -+ -+; branch if positive -+(define_insn "bpl" -+ [(set (pc) -+ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "brpl %0" -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 2)] ; use compact branch -+ (const_int 4))) ; use extended branch -+ (set_attr "cc" "none")]) -+ -+(define_insn "*bpl-reverse" -+ [(set (pc) -+ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL) -+ (pc) -+ (label_ref (match_operand 0 "" ""))))] -+ "" -+ "brmi %0" -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 2)] ; use compact branch -+ (const_int 4))) ; use extended branch -+ (set_attr "cc" "none")]) -+ -+; branch if equal -+(define_insn "b" -+ [(set (pc) -+ (if_then_else (any_cond_b:CC (cc0) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ { -+ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) -+ return get_attr_length(insn) == 6 ? "brvs .+6\;br %0" : "brvs .+8\;br %0"; -+ else -+ return "br %0"; -+ } -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (if_then_else (eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) -+ (if_then_else -+ (and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 6) -+ (const_int 8)) -+ (if_then_else -+ (and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 2) -+ (const_int 4)))) -+ (set_attr "cc" "none")]) -+ -+(define_insn "beq" -+ [(set (pc) -+ (if_then_else (eq:CC (cc0) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "breq %0"; -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 2)] ; use compact branch -+ (const_int 4))) ; use extended branch -+ (set_attr "cc" "none")]) -+ -+(define_insn "bne" -+ [(set (pc) -+ (if_then_else (ne:CC (cc0) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ "brne %0"; -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 2)] ; use compact branch -+ (const_int 4))) ; use extended branch -+ (set_attr "cc" "none")]) -+ -+(define_insn "b" -+ [(set (pc) -+ (if_then_else (any_cond4:CC (cc0) -+ (const_int 0)) -+ (label_ref (match_operand 0 "" "")) -+ (pc)))] -+ "" -+ { -+ if(TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) -+ return "brvs .+8\;br %l0"; -+ else -+ return "br %l0"; -+ } -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) -+ (const_int 8)] -+ (const_int 4))) -+ (set_attr "cc" "none")]) -+ -+(define_insn "*b-reverse" -+ [(set (pc) -+ (if_then_else (any_cond_b:CC (cc0) -+ (const_int 0)) -+ (pc) -+ (label_ref (match_operand 0 "" ""))))] -+ "" -+ { -+ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) -+ return "brvs %0\;br %0"; -+ else -+ return "br %0"; -+ } -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (if_then_else (eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) -+ (if_then_else -+ (and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 6) -+ (const_int 8)) -+ (if_then_else -+ (and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 2) -+ (const_int 4)))) -+ (set_attr "cc" "none")]) -+ -+(define_insn "*beq-reverse" -+ [(set (pc) -+ (if_then_else (eq:CC (cc0) -+ (const_int 0)) -+ (pc) -+ (label_ref (match_operand 0 "" ""))))] -+ "" -+ "brne %0"; -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 2)] ; use compact branch -+ (const_int 4))) ; use extended branch -+ (set_attr "cc" "none")]) -+ -+(define_insn "*bne-reverse" -+ [(set (pc) -+ (if_then_else (ne:CC (cc0) -+ (const_int 0)) -+ (pc) -+ (label_ref (match_operand 0 "" ""))))] -+ "" -+ "breq %0"; -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) -+ (le (minus (pc) (match_dup 0)) (const_int 256))) -+ (const_int 2)] ; use compact branch -+ (const_int 4))) ; use extended branch -+ (set_attr "cc" "none")]) -+ -+(define_insn "*b-reverse" -+ [(set (pc) -+ (if_then_else (any_cond4:CC (cc0) -+ (const_int 0)) -+ (pc) -+ (label_ref (match_operand 0 "" ""))))] -+ "" -+ { -+ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) -+ return "brvs %l0\;br %l0"; -+ else -+ return "br %0"; -+ } -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) -+ (const_int 8)] -+ (const_int 4))) -+ (set_attr "cc" "none")]) -+ -+;============================================================================= -+; Conditional Add/Subtract -+;----------------------------------------------------------------------------- -+; sub{cond4} Rd, imm -+;============================================================================= -+ -+ -+(define_expand "addcc" -+ [(set (match_operand:ADDCC 0 "register_operand" "") -+ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" -+ [(match_dup 4) -+ (match_dup 5)]) -+ (match_operand:ADDCC 2 "register_operand" "") -+ (plus:ADDCC -+ (match_dup 2) -+ (match_operand:ADDCC 3 "" ""))))] -+ "" -+ { -+ if ( !(GET_CODE (operands[3]) == CONST_INT -+ || (TARGET_V2_INSNS && REG_P(operands[3]))) ){ -+ FAIL; -+ } -+ -+ /* Delete compare instruction as it is merged into this instruction */ -+ remove_insn (get_last_insn_anywhere ()); -+ -+ operands[4] = avr32_compare_op0; -+ operands[5] = avr32_compare_op1; -+ -+ if ( TARGET_V2_INSNS -+ && REG_P(operands[3]) -+ && REGNO(operands[0]) != REGNO(operands[2]) ){ -+ emit_move_insn (operands[0], operands[2]); -+ operands[2] = operands[0]; -+ } -+ } -+ ) -+ -+(define_insn "addcc_cmp_reg" -+ [(set (match_operand:ADDCC 0 "register_operand" "=r") -+ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" -+ [(match_operand:CMP 4 "register_operand" "r") -+ (match_operand:CMP 5 "" "")]) -+ (match_dup 0) -+ (plus:ADDCC -+ (match_operand:ADDCC 2 "register_operand" "r") -+ (match_operand:ADDCC 3 "register_operand" "r"))))] -+ "TARGET_V2_INSNS" -+ { -+ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); -+ return "add%i1\t%0, %2, %3"; -+ } -+ [(set_attr "length" "8") -+ (set_attr "cc" "cmp_cond_insn")]) -+ -+(define_insn "addcc_cmp" -+ [(set (match_operand:ADDCC 0 "register_operand" "=r") -+ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" -+ [(match_operand:CMP 4 "register_operand" "r") -+ (match_operand:CMP 5 "" "")]) -+ (match_operand:ADDCC 2 "register_operand" "0") -+ (plus:ADDCC -+ (match_dup 2) -+ (match_operand:ADDCC 3 "avr32_cond_immediate_operand" "Is08"))))] -+ "" -+ { -+ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); -+ return "sub%i1\t%0, -%3"; -+ } -+ [(set_attr "length" "8") -+ (set_attr "cc" "cmp_cond_insn")]) -+ -+;============================================================================= -+; Conditional Move -+;----------------------------------------------------------------------------- -+; mov{cond4} Rd, (Rs/imm) -+;============================================================================= -+(define_expand "movcc" -+ [(set (match_operand:MOVCC 0 "register_operand" "") -+ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator" -+ [(match_dup 4) -+ (match_dup 5)]) -+ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "") -+ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "")))] -+ "" -+ { -+ /* Delete compare instruction as it is merged into this instruction */ -+ remove_insn (get_last_insn_anywhere ()); -+ -+ operands[4] = avr32_compare_op0; -+ operands[5] = avr32_compare_op1; -+ } -+ ) -+ -+ -+(define_insn "movcc_cmp" -+ [(set (match_operand:MOVCC 0 "register_operand" "=r,r,r") -+ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator" -+ [(match_operand:CMP 4 "register_operand" "r,r,r") -+ (match_operand:CMP 5 "" ",,")]) -+ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "0, rKs08,rKs08") -+ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "rKs08,0,rKs08")))] -+ "" -+ { -+ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); -+ -+ switch( which_alternative ){ -+ case 0: -+ return "mov%i1 %0, %3"; -+ case 1: -+ return "mov%1 %0, %2"; -+ case 2: -+ return "mov%1 %0, %2\;mov%i1 %0, %3"; -+ default: -+ abort(); -+ } -+ -+ } -+ [(set_attr "length" "8,8,12") -+ (set_attr "cc" "cmp_cond_insn")]) -+ -+ -+ -+ -+;;============================================================================= -+;; jump -+;;----------------------------------------------------------------------------- -+;; Jump inside a function; an unconditional branch to a label. -+;;============================================================================= -+(define_insn "jump" -+ [(set (pc) -+ (label_ref (match_operand 0 "" "")))] -+ "" -+ { -+ if (get_attr_length(insn) > 4) -+ return "Can't jump this far"; -+ return (get_attr_length(insn) == 2 ? -+ "rjmp %0" : "bral %0"); -+ } -+ [(set_attr "type" "branch") -+ (set (attr "length") -+ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 1022)) -+ (le (minus (pc) (match_dup 0)) (const_int 1024))) -+ (const_int 2) ; use rjmp -+ (le (match_dup 0) (const_int 1048575)) -+ (const_int 4)] ; use bral -+ (const_int 8))) ; do something else -+ (set_attr "cc" "none")]) -+ -+;;============================================================================= -+;; call -+;;----------------------------------------------------------------------------- -+;; Subroutine call instruction returning no value. -+;;============================================================================= -+(define_insn "call_internal" -+ [(parallel [(call (mem:SI (match_operand:SI 0 "avr32_call_operand" "r,U,T,W")) -+ (match_operand 1 "" "")) -+ (clobber (reg:SI LR_REGNUM))])] -+ "" -+ { -+ -+ /* Check for a flashvault call. */ -+ if (avr32_flashvault_call (SYMBOL_REF_DECL (operands[0]))) -+ { -+ /* Assembly is already emitted. */ -+ return ""; -+ } -+ -+ switch (which_alternative) { -+ case 0: -+ return "icall\t%0"; -+ case 1: -+ return "rcall\t%0"; -+ case 2: -+ return "mcall\t%0"; -+ case 3: -+ if (TARGET_HAS_ASM_ADDR_PSEUDOS) -+ return "call\t%0"; -+ else -+ return "mcall\tr6[%0@got]"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "type" "call") -+ (set_attr "length" "2,4,4,10") -+ (set_attr "cc" "clobber")]) -+ -+ -+(define_expand "call" -+ [(parallel [(call (match_operand:SI 0 "" "") -+ (match_operand 1 "" "")) -+ (clobber (reg:SI LR_REGNUM))])] -+ "" -+ { -+ rtx call_address; -+ if ( GET_CODE(operands[0]) != MEM ) -+ FAIL; -+ -+ call_address = XEXP(operands[0], 0); -+ -+ /* If assembler supports call pseudo insn and the call address is a symbol then nothing special needs to be done. */ -+ if (TARGET_HAS_ASM_ADDR_PSEUDOS && (GET_CODE(call_address) == SYMBOL_REF) ) -+ { -+ /* We must however mark the function as using the GOT if flag_pic is set, since the call insn might turn into a mcall using the GOT ptr register. */ -+ if (flag_pic) -+ { -+ crtl->uses_pic_offset_table = 1; -+ emit_call_insn(gen_call_internal(call_address, operands[1])); -+ DONE; -+ } -+ } -+ else -+ { -+ if (flag_pic && GET_CODE(call_address) == SYMBOL_REF ) -+ { -+ crtl->uses_pic_offset_table = 1; -+ emit_call_insn(gen_call_internal(call_address, operands[1])); -+ DONE; -+ } -+ -+ if (!SYMBOL_REF_RCALL_FUNCTION_P(operands[0]) ) -+ { -+ if (optimize_size && GET_CODE(call_address) == SYMBOL_REF ) -+ { -+ call_address = force_const_mem(SImode, call_address); -+ } -+ else -+ { -+ call_address = force_reg(SImode, call_address); -+ } -+ } -+ } -+ emit_call_insn(gen_call_internal(call_address, operands[1])); -+ DONE; -+ -+ } -+) -+ -+;;============================================================================= -+;; call_value -+;;----------------------------------------------------------------------------- -+;; Subroutine call instruction returning a value. -+;;============================================================================= -+(define_expand "call_value" -+ [(parallel [(set (match_operand:SI 0 "" "") -+ (call (match_operand:SI 1 "" "") -+ (match_operand 2 "" ""))) -+ (clobber (reg:SI LR_REGNUM))])] -+ "" -+ { -+ rtx call_address; -+ if ( GET_CODE(operands[1]) != MEM ) -+ FAIL; -+ -+ call_address = XEXP(operands[1], 0); -+ -+ /* Check for a flashvault call. -+ if (GET_CODE (call_address) == SYMBOL_REF -+ && avr32_flashvault_call (SYMBOL_REF_DECL (call_address))) -+ DONE; -+ -+ */ -+ -+ /* If assembler supports call pseudo insn and the call -+ address is a symbol then nothing special needs to be done. */ -+ if ( TARGET_HAS_ASM_ADDR_PSEUDOS -+ && (GET_CODE(call_address) == SYMBOL_REF) ){ -+ /* We must however mark the function as using the GOT if -+ flag_pic is set, since the call insn might turn into -+ a mcall using the GOT ptr register. */ -+ if ( flag_pic ) { -+ crtl->uses_pic_offset_table = 1; -+ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2])); -+ DONE; -+ } -+ } else { -+ if ( flag_pic && -+ GET_CODE(call_address) == SYMBOL_REF ){ -+ crtl->uses_pic_offset_table = 1; -+ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2])); -+ DONE; -+ } -+ -+ if ( !SYMBOL_REF_RCALL_FUNCTION_P(operands[1]) ){ -+ if ( optimize_size && -+ GET_CODE(call_address) == SYMBOL_REF){ -+ call_address = force_const_mem(SImode, call_address); -+ } else { -+ call_address = force_reg(SImode, call_address); -+ } -+ } -+ } -+ emit_call_insn(gen_call_value_internal(operands[0], call_address, -+ operands[2])); -+ DONE; -+ -+ }) -+ -+(define_insn "call_value_internal" -+ [(parallel [(set (match_operand 0 "register_operand" "=r,r,r,r") -+ (call (mem:SI (match_operand:SI 1 "avr32_call_operand" "r,U,T,W")) -+ (match_operand 2 "" ""))) -+ (clobber (reg:SI LR_REGNUM))])] -+ ;; Operand 2 not used on the AVR32. -+ "" -+ { -+ /* Check for a flashvault call. */ -+ if (avr32_flashvault_call (SYMBOL_REF_DECL (operands[1]))) -+ { -+ /* Assembly is already emitted. */ -+ return ""; -+ } -+ -+ -+ switch (which_alternative) { -+ case 0: -+ return "icall\t%1"; -+ case 1: -+ return "rcall\t%1"; -+ case 2: -+ return "mcall\t%1"; -+ case 3: -+ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ) -+ return "call\t%1"; -+ else -+ return "mcall\tr6[%1@got]"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "type" "call") -+ (set_attr "length" "2,4,4,10") -+ (set_attr "cc" "call_set")]) -+ -+ -+;;============================================================================= -+;; untyped_call -+;;----------------------------------------------------------------------------- -+;; Subrutine call instruction returning a value of any type. -+;; The code is copied from m68k.md (except gen_blockage is removed) -+;; Fixme! -+;;============================================================================= -+(define_expand "untyped_call" -+ [(parallel [(call (match_operand 0 "avr32_call_operand" "") -+ (const_int 0)) -+ (match_operand 1 "" "") -+ (match_operand 2 "" "")])] -+ "" -+ { -+ int i; -+ -+ emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx)); -+ -+ for (i = 0; i < XVECLEN (operands[2], 0); i++) { -+ rtx set = XVECEXP (operands[2], 0, i); -+ emit_move_insn (SET_DEST (set), SET_SRC (set)); -+ } -+ -+ /* The optimizer does not know that the call sets the function value -+ registers we stored in the result block. We avoid problems by -+ claiming that all hard registers are used and clobbered at this -+ point. */ -+ emit_insn (gen_blockage ()); -+ -+ DONE; -+ }) -+ -+ -+;;============================================================================= -+;; return -+;;============================================================================= -+ -+(define_insn "return" -+ [(return)] -+ "USE_RETURN_INSN (FALSE)" -+ { -+ avr32_output_return_instruction(TRUE, FALSE, NULL, NULL); -+ return ""; -+ } -+ [(set_attr "length" "4") -+ (set_attr "type" "call")] -+ ) -+ -+ -+(define_insn "return_cond" -+ [(set (pc) -+ (if_then_else (match_operand 0 "avr32_comparison_operand" "") -+ (return) -+ (pc)))] -+ "USE_RETURN_INSN (TRUE)" -+ "ret%0\tr12"; -+ [(set_attr "type" "call")]) -+ -+(define_insn "return_cond_predicable" -+ [(return)] -+ "USE_RETURN_INSN (TRUE)" -+ "ret%?\tr12"; -+ [(set_attr "type" "call") -+ (set_attr "predicable" "yes")]) -+ -+ -+(define_insn "return_imm" -+ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) -+ (use (reg RETVAL_REGNUM)) -+ (return)])] -+ "USE_RETURN_INSN (FALSE) && -+ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" -+ { -+ avr32_output_return_instruction(TRUE, FALSE, NULL, operands[0]); -+ return ""; -+ } -+ [(set_attr "length" "4") -+ (set_attr "type" "call")] -+ ) -+ -+(define_insn "return_imm_cond" -+ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) -+ (use (reg RETVAL_REGNUM)) -+ (set (pc) -+ (if_then_else (match_operand 1 "avr32_comparison_operand" "") -+ (return) -+ (pc)))])] -+ "USE_RETURN_INSN (TRUE) && -+ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" -+ "ret%1\t%0"; -+ [(set_attr "type" "call")] -+ ) -+ -+(define_insn "return_imm_predicable" -+ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) -+ (use (reg RETVAL_REGNUM)) -+ (return)])] -+ "USE_RETURN_INSN (TRUE) && -+ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" -+ "ret%?\t%0"; -+ [(set_attr "type" "call") -+ (set_attr "predicable" "yes")]) -+ -+(define_insn "return_reg" -+ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r")) -+ (use (reg RETVAL_REGNUM)) -+ (return)] -+ "USE_RETURN_INSN (TRUE)" -+ "ret%?\t%0"; -+ [(set_attr "type" "call") -+ (set_attr "predicable" "yes")]) -+ -+(define_insn "return_reg_cond" -+ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r")) -+ (use (reg RETVAL_REGNUM)) -+ (set (pc) -+ (if_then_else (match_operator 1 "avr32_comparison_operator" -+ [(cc0) (const_int 0)]) -+ (return) -+ (pc)))] -+ "USE_RETURN_INSN (TRUE)" -+ "ret%1\t%0"; -+ [(set_attr "type" "call")]) -+ -+;;============================================================================= -+;; nonlocal_goto_receiver -+;;----------------------------------------------------------------------------- -+;; For targets with a return stack we must make sure to flush the return stack -+;; since it will be corrupt after a nonlocal goto. -+;;============================================================================= -+(define_expand "nonlocal_goto_receiver" -+ [(const_int 0)] -+ "TARGET_RETURN_STACK" -+ " -+ { -+ emit_insn ( gen_frs() ); -+ DONE; -+ } -+ " -+ ) -+ -+ -+;;============================================================================= -+;; builtin_setjmp_receiver -+;;----------------------------------------------------------------------------- -+;; For pic code we need to reload the pic register. -+;; For targets with a return stack we must make sure to flush the return stack -+;; since it will probably be corrupted. -+;;============================================================================= -+(define_expand "builtin_setjmp_receiver" -+ [(label_ref (match_operand 0 "" ""))] -+ "flag_pic" -+ " -+ { -+ if ( TARGET_RETURN_STACK ) -+ emit_insn ( gen_frs() ); -+ -+ avr32_load_pic_register (); -+ DONE; -+ } -+ " -+) -+ -+ -+;;============================================================================= -+;; indirect_jump -+;;----------------------------------------------------------------------------- -+;; Jump to an address in reg or memory. -+;;============================================================================= -+(define_expand "indirect_jump" -+ [(set (pc) -+ (match_operand:SI 0 "general_operand" ""))] -+ "" -+ { -+ /* One of the ops has to be in a register. */ -+ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS ) -+ && !avr32_legitimate_pic_operand_p(operands[0]) ) -+ operands[0] = legitimize_pic_address (operands[0], SImode, 0); -+ else if ( flag_pic && avr32_address_operand(operands[0], GET_MODE(operands[0])) ) -+ /* If we have an address operand then this function uses the pic register. */ -+ crtl->uses_pic_offset_table = 1; -+ }) -+ -+ -+(define_insn "indirect_jump_internal" -+ [(set (pc) -+ (match_operand:SI 0 "avr32_non_rmw_general_operand" "r,m,W"))] -+ "" -+ { -+ switch( which_alternative ){ -+ case 0: -+ return "mov\tpc, %0"; -+ case 1: -+ if ( avr32_const_pool_ref_operand(operands[0], GET_MODE(operands[0])) ) -+ return "lddpc\tpc, %0"; -+ else -+ return "ld.w\tpc, %0"; -+ case 2: -+ if ( flag_pic ) -+ return "ld.w\tpc, r6[%0@got]"; -+ else -+ return "lda.w\tpc, %0"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "length" "2,4,8") -+ (set_attr "type" "call,call,call") -+ (set_attr "cc" "none,none,clobber")]) -+ -+ -+ -+;;============================================================================= -+;; casesi and tablejump -+;;============================================================================= -+(define_insn "tablejump_add" -+ [(set (pc) -+ (plus:SI (match_operand:SI 0 "register_operand" "r") -+ (mult:SI (match_operand:SI 1 "register_operand" "r") -+ (match_operand:SI 2 "immediate_operand" "Ku04" )))) -+ (use (label_ref (match_operand 3 "" "")))] -+ "flag_pic && -+ ((INTVAL(operands[2]) == 0) || (INTVAL(operands[2]) == 2) || -+ (INTVAL(operands[2]) == 4) || (INTVAL(operands[2]) == 8))" -+ "add\tpc, %0, %1 << %p2" -+ [(set_attr "length" "4") -+ (set_attr "cc" "clobber")]) -+ -+(define_insn "tablejump_insn" -+ [(set (pc) (match_operand:SI 0 "memory_operand" "m")) -+ (use (label_ref (match_operand 1 "" "")))] -+ "!flag_pic" -+ "ld.w\tpc, %0" -+ [(set_attr "length" "4") -+ (set_attr "type" "call") -+ (set_attr "cc" "none")]) -+ -+(define_expand "casesi" -+ [(match_operand:SI 0 "register_operand" "") ; index to jump on -+ (match_operand:SI 1 "const_int_operand" "") ; lower bound -+ (match_operand:SI 2 "const_int_operand" "") ; total range -+ (match_operand:SI 3 "" "") ; table label -+ (match_operand:SI 4 "" "")] ; Out of range label -+ "" -+ " -+ { -+ rtx reg; -+ rtx index = operands[0]; -+ rtx low_bound = operands[1]; -+ rtx range = operands[2]; -+ rtx table_label = operands[3]; -+ rtx oor_label = operands[4]; -+ -+ index = force_reg ( SImode, index ); -+ if (low_bound != const0_rtx) -+ { -+ if (!avr32_const_ok_for_constraint_p(INTVAL (low_bound), 'I', \"Is21\")){ -+ reg = force_reg(SImode, GEN_INT (INTVAL (low_bound))); -+ emit_insn (gen_subsi3 (reg, index, -+ reg)); -+ } else { -+ reg = gen_reg_rtx (SImode); -+ emit_insn (gen_addsi3 (reg, index, -+ GEN_INT (-INTVAL (low_bound)))); -+ } -+ index = reg; -+ } -+ -+ if (!avr32_const_ok_for_constraint_p (INTVAL (range), 'K', \"Ks21\")) -+ range = force_reg (SImode, range); -+ -+ emit_cmp_and_jump_insns ( index, range, GTU, NULL_RTX, SImode, 1, oor_label ); -+ reg = gen_reg_rtx (SImode); -+ emit_move_insn ( reg, gen_rtx_LABEL_REF (VOIDmode, table_label)); -+ -+ if ( flag_pic ) -+ emit_jump_insn ( gen_tablejump_add ( reg, index, GEN_INT(4), table_label)); -+ else -+ emit_jump_insn ( -+ gen_tablejump_insn ( gen_rtx_MEM ( SImode, -+ gen_rtx_PLUS ( SImode, -+ reg, -+ gen_rtx_MULT ( SImode, -+ index, -+ GEN_INT(4)))), -+ table_label)); -+ DONE; -+ }" -+) -+ -+ -+ -+(define_insn "prefetch" -+ [(prefetch (match_operand:SI 0 "avr32_ks16_address_operand" "p") -+ (match_operand 1 "const_int_operand" "") -+ (match_operand 2 "const_int_operand" ""))] -+ "" -+ { -+ return "pref\t%0"; -+ } -+ -+ [(set_attr "length" "4") -+ (set_attr "type" "load") -+ (set_attr "cc" "none")]) -+ -+ -+ -+;;============================================================================= -+;; prologue -+;;----------------------------------------------------------------------------- -+;; This pattern, if defined, emits RTL for entry to a function. The function -+;; entry i responsible for setting up the stack frame, initializing the frame -+;; pointer register, saving callee saved registers, etc. -+;;============================================================================= -+(define_expand "prologue" -+ [(clobber (const_int 0))] -+ "" -+ " -+ avr32_expand_prologue(); -+ DONE; -+ " -+ ) -+ -+;;============================================================================= -+;; eh_return -+;;----------------------------------------------------------------------------- -+;; This pattern, if defined, affects the way __builtin_eh_return, and -+;; thence the call frame exception handling library routines, are -+;; built. It is intended to handle non-trivial actions needed along -+;; the abnormal return path. -+;; -+;; The address of the exception handler to which the function should -+;; return is passed as operand to this pattern. It will normally need -+;; to copied by the pattern to some special register or memory -+;; location. If the pattern needs to determine the location of the -+;; target call frame in order to do so, it may use -+;; EH_RETURN_STACKADJ_RTX, if defined; it will have already been -+;; assigned. -+;; -+;; If this pattern is not defined, the default action will be to -+;; simply copy the return address to EH_RETURN_HANDLER_RTX. Either -+;; that macro or this pattern needs to be defined if call frame -+;; exception handling is to be used. -+ -+;; We can't expand this before we know where the link register is stored. -+(define_insn_and_split "eh_return" -+ [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")] -+ VUNSPEC_EH_RETURN) -+ (clobber (match_scratch:SI 1 "=&r"))] -+ "" -+ "#" -+ "reload_completed" -+ [(const_int 0)] -+ " -+ { -+ avr32_set_return_address (operands[0], operands[1]); -+ DONE; -+ }" -+ ) -+ -+ -+;;============================================================================= -+;; ffssi2 -+;;----------------------------------------------------------------------------- -+(define_insn "ffssi2" -+ [ (set (match_operand:SI 0 "register_operand" "=r") -+ (ffs:SI (match_operand:SI 1 "register_operand" "r"))) ] -+ "" -+ "mov %0, %1 -+ brev %0 -+ clz %0, %0 -+ sub %0, -1 -+ cp %0, 33 -+ moveq %0, 0" -+ [(set_attr "length" "18") -+ (set_attr "cc" "clobber")] -+ ) -+ -+ -+ -+;;============================================================================= -+;; swap_h -+;;----------------------------------------------------------------------------- -+(define_insn "*swap_h" -+ [ (set (match_operand:SI 0 "register_operand" "=r") -+ (ior:SI (ashift:SI (match_dup 0) (const_int 16)) -+ (lshiftrt:SI (match_dup 0) (const_int 16))))] -+ "" -+ "swap.h %0" -+ [(set_attr "length" "2")] -+ ) -+ -+(define_insn_and_split "bswap_16" -+ [ (set (match_operand:HI 0 "avr32_bswap_operand" "=r,RKs13,r") -+ (ior:HI (and:HI (lshiftrt:HI (match_operand:HI 1 "avr32_bswap_operand" "r,r,RKs13") -+ (const_int 8)) -+ (const_int 255)) -+ (ashift:HI (and:HI (match_dup 1) -+ (const_int 255)) -+ (const_int 8))))] -+ "" -+ { -+ switch ( which_alternative ){ -+ case 0: -+ if ( REGNO(operands[0]) == REGNO(operands[1])) -+ return "swap.bh\t%0"; -+ else -+ return "mov\t%0, %1\;swap.bh\t%0"; -+ case 1: -+ return "stswp.h\t%0, %1"; -+ case 2: -+ return "ldswp.sh\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+ -+ "(reload_completed && -+ REG_P(operands[0]) && REG_P(operands[1]) -+ && (REGNO(operands[0]) != REGNO(operands[1])))" -+ [(set (match_dup 0) (match_dup 1)) -+ (set (match_dup 0) -+ (ior:HI (and:HI (lshiftrt:HI (match_dup 0) -+ (const_int 8)) -+ (const_int 255)) -+ (ashift:HI (and:HI (match_dup 0) -+ (const_int 255)) -+ (const_int 8))))] -+ "" -+ -+ [(set_attr "length" "4,4,4") -+ (set_attr "type" "alu,store,load_rm")] -+ ) -+ -+(define_insn_and_split "bswap_32" -+ [ (set (match_operand:SI 0 "avr32_bswap_operand" "=r,RKs14,r") -+ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_operand:SI 1 "avr32_bswap_operand" "r,r,RKs14") -+ (const_int -16777216)) -+ (const_int 24)) -+ (lshiftrt:SI (and:SI (match_dup 1) -+ (const_int 16711680)) -+ (const_int 8))) -+ (ior:SI (ashift:SI (and:SI (match_dup 1) -+ (const_int 65280)) -+ (const_int 8)) -+ (ashift:SI (and:SI (match_dup 1) -+ (const_int 255)) -+ (const_int 24)))))] -+ "" -+ { -+ switch ( which_alternative ){ -+ case 0: -+ if ( REGNO(operands[0]) == REGNO(operands[1])) -+ return "swap.b\t%0"; -+ else -+ return "#"; -+ case 1: -+ return "stswp.w\t%0, %1"; -+ case 2: -+ return "ldswp.w\t%0, %1"; -+ default: -+ abort(); -+ } -+ } -+ "(reload_completed && -+ REG_P(operands[0]) && REG_P(operands[1]) -+ && (REGNO(operands[0]) != REGNO(operands[1])))" -+ [(set (match_dup 0) (match_dup 1)) -+ (set (match_dup 0) -+ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_dup 0) -+ (const_int -16777216)) -+ (const_int 24)) -+ (lshiftrt:SI (and:SI (match_dup 0) -+ (const_int 16711680)) -+ (const_int 8))) -+ (ior:SI (ashift:SI (and:SI (match_dup 0) -+ (const_int 65280)) -+ (const_int 8)) -+ (ashift:SI (and:SI (match_dup 0) -+ (const_int 255)) -+ (const_int 24)))))] -+ "" -+ -+ [(set_attr "length" "4,4,4") -+ (set_attr "type" "alu,store,load_rm")] -+ ) -+ -+ -+;;============================================================================= -+;; blockage -+;;----------------------------------------------------------------------------- -+;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and -+;; all of memory. This blocks insns from being moved across this point. -+ -+(define_insn "blockage" -+ [(unspec_volatile [(const_int 0)] VUNSPEC_BLOCKAGE)] -+ "" -+ "" -+ [(set_attr "length" "0")] -+) -+ -+;;============================================================================= -+;; clzsi2 -+;;----------------------------------------------------------------------------- -+(define_insn "clzsi2" -+ [ (set (match_operand:SI 0 "register_operand" "=r") -+ (clz:SI (match_operand:SI 1 "register_operand" "r"))) ] -+ "" -+ "clz %0, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "set_z")] -+ ) -+ -+;;============================================================================= -+;; ctzsi2 -+;;----------------------------------------------------------------------------- -+(define_insn "ctzsi2" -+ [ (set (match_operand:SI 0 "register_operand" "=r,r") -+ (ctz:SI (match_operand:SI 1 "register_operand" "0,r"))) ] -+ "" -+ "@ -+ brev\t%0\;clz\t%0, %0 -+ mov\t%0, %1\;brev\t%0\;clz\t%0, %0" -+ [(set_attr "length" "8") -+ (set_attr "cc" "set_z")] -+ ) -+ -+;;============================================================================= -+;; cache instructions -+;;----------------------------------------------------------------------------- -+(define_insn "cache" -+ [ (unspec_volatile [(match_operand:SI 0 "avr32_ks11_address_operand" "p") -+ (match_operand:SI 1 "immediate_operand" "Ku05")] VUNSPEC_CACHE)] -+ "" -+ "cache %0, %1" -+ [(set_attr "length" "4")] -+ ) -+ -+(define_insn "sync" -+ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku08")] VUNSPEC_SYNC)] -+ "" -+ "sync %0" -+ [(set_attr "length" "4")] -+ ) -+ -+;;============================================================================= -+;; TLB instructions -+;;----------------------------------------------------------------------------- -+(define_insn "tlbr" -+ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBR)] -+ "" -+ "tlbr" -+ [(set_attr "length" "2")] -+ ) -+ -+(define_insn "tlbw" -+ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBW)] -+ "" -+ "tlbw" -+ [(set_attr "length" "2")] -+ ) -+ -+(define_insn "tlbs" -+ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBS)] -+ "" -+ "tlbs" -+ [(set_attr "length" "2")] -+ ) -+ -+;;============================================================================= -+;; Breakpoint instruction -+;;----------------------------------------------------------------------------- -+(define_insn "breakpoint" -+ [ (unspec_volatile [(const_int 0)] VUNSPEC_BREAKPOINT)] -+ "" -+ "breakpoint" -+ [(set_attr "length" "2")] -+ ) -+ -+ -+;;============================================================================= -+;; mtsr/mfsr instruction -+;;----------------------------------------------------------------------------- -+(define_insn "mtsr" -+ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i") -+ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTSR)] -+ "" -+ "mtsr\t%0, %1" -+ [(set_attr "length" "4")] -+ ) -+ -+(define_insn "mfsr" -+ [ (set (match_operand:SI 0 "register_operand" "=r") -+ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFSR)) ] -+ "" -+ "mfsr\t%0, %1" -+ [(set_attr "length" "4")] -+ ) -+ -+;;============================================================================= -+;; mtdr/mfdr instruction -+;;----------------------------------------------------------------------------- -+(define_insn "mtdr" -+ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i") -+ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTDR)] -+ "" -+ "mtdr\t%0, %1" -+ [(set_attr "length" "4")] -+ ) -+ -+(define_insn "mfdr" -+ [ (set (match_operand:SI 0 "register_operand" "=r") -+ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFDR)) ] -+ "" -+ "mfdr\t%0, %1" -+ [(set_attr "length" "4")] -+ ) -+ -+;;============================================================================= -+;; musfr -+;;----------------------------------------------------------------------------- -+(define_insn "musfr" -+ [ (unspec_volatile [(match_operand:SI 0 "register_operand" "r")] VUNSPEC_MUSFR)] -+ "" -+ "musfr\t%0" -+ [(set_attr "length" "2") -+ (set_attr "cc" "clobber")] -+ ) -+ -+(define_insn "mustr" -+ [ (set (match_operand:SI 0 "register_operand" "=r") -+ (unspec_volatile:SI [(const_int 0)] VUNSPEC_MUSTR)) ] -+ "" -+ "mustr\t%0" -+ [(set_attr "length" "2")] -+ ) -+ -+(define_insn "ssrf" -+ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_SSRF)] -+ "" -+ "ssrf %0" -+ [(set_attr "length" "2") -+ (set_attr "cc" "clobber")] -+ ) -+ -+(define_insn "csrf" -+ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_CSRF)] -+ "" -+ "csrf %0" -+ [(set_attr "length" "2") -+ (set_attr "cc" "clobber")] -+ ) -+ -+;;============================================================================= -+;; Flush Return Stack instruction -+;;----------------------------------------------------------------------------- -+(define_insn "frs" -+ [ (unspec_volatile [(const_int 0)] VUNSPEC_FRS)] -+ "" -+ "frs" -+ [(set_attr "length" "2") -+ (set_attr "cc" "none")] -+ ) -+ -+ -+;;============================================================================= -+;; Saturation Round Scale instruction -+;;----------------------------------------------------------------------------- -+(define_insn "sats" -+ [ (set (match_operand:SI 0 "register_operand" "+r") -+ (unspec:SI [(match_dup 0) -+ (match_operand 1 "immediate_operand" "Ku05") -+ (match_operand 2 "immediate_operand" "Ku05")] -+ UNSPEC_SATS)) ] -+ "TARGET_DSP" -+ "sats\t%0 >> %1, %2" -+ [(set_attr "type" "alu_sat") -+ (set_attr "length" "4")] -+ ) -+ -+(define_insn "satu" -+ [ (set (match_operand:SI 0 "register_operand" "+r") -+ (unspec:SI [(match_dup 0) -+ (match_operand 1 "immediate_operand" "Ku05") -+ (match_operand 2 "immediate_operand" "Ku05")] -+ UNSPEC_SATU)) ] -+ "TARGET_DSP" -+ "satu\t%0 >> %1, %2" -+ [(set_attr "type" "alu_sat") -+ (set_attr "length" "4")] -+ ) -+ -+(define_insn "satrnds" -+ [ (set (match_operand:SI 0 "register_operand" "+r") -+ (unspec:SI [(match_dup 0) -+ (match_operand 1 "immediate_operand" "Ku05") -+ (match_operand 2 "immediate_operand" "Ku05")] -+ UNSPEC_SATRNDS)) ] -+ "TARGET_DSP" -+ "satrnds\t%0 >> %1, %2" -+ [(set_attr "type" "alu_sat") -+ (set_attr "length" "4")] -+ ) -+ -+(define_insn "satrndu" -+ [ (set (match_operand:SI 0 "register_operand" "+r") -+ (unspec:SI [(match_dup 0) -+ (match_operand 1 "immediate_operand" "Ku05") -+ (match_operand 2 "immediate_operand" "Ku05")] -+ UNSPEC_SATRNDU)) ] -+ "TARGET_DSP" -+ "sats\t%0 >> %1, %2" -+ [(set_attr "type" "alu_sat") -+ (set_attr "length" "4")] -+ ) -+ -+(define_insn "sleep" -+ [(unspec_volatile [(const_int 0)] VUNSPEC_SLEEP) -+ (match_operand:SI 0 "const_int_operand" "")] -+ "" -+ "sleep %0" -+ [(set_attr "length" "1") -+ (set_attr "cc" "none") -+ ]) -+ -+(define_expand "delay_cycles" -+ [(unspec_volatile [(match_operand:SI 0 "const_int_operand" "i")] -+ VUNSPEC_DELAY_CYCLES)] -+ "" -+ " -+ unsigned int cycles = UINTVAL (operands[0]); -+ if (IN_RANGE(cycles,0x10000 ,0xFFFFFFFF)) -+ { -+ unsigned int msb = (cycles & 0xFFFF0000); -+ unsigned int shift = 16; -+ msb = (msb >> shift); -+ unsigned int cycles_used = (msb*0x10000); -+ emit_insn (gen_delay_cycles_2 (gen_int_mode (msb, SImode))); -+ cycles -= cycles_used; -+ } -+ if (IN_RANGE(cycles, 4, 0xFFFF)) -+ { -+ unsigned int loop_count = (cycles/ 4); -+ unsigned int cycles_used = (loop_count*4); -+ emit_insn (gen_delay_cycles_1 (gen_int_mode (loop_count, SImode))); -+ cycles -= cycles_used; -+ } -+ while (cycles >= 3) -+ { -+ emit_insn (gen_nop3 ()); -+ cycles -= 3; -+ } -+ if (cycles == 1 || cycles == 2) -+ { -+ while (cycles--) -+ emit_insn (gen_nop ()); -+ } -+ DONE; -+ ") -+ -+(define_insn "delay_cycles_1" -+[(unspec_volatile [(const_int 0)] VUNSPEC_DELAY_CYCLES_1) -+ (match_operand:SI 0 "immediate_operand" "") -+ (clobber (match_scratch:SI 1 "=&r"))] -+ "" -+ "mov\t%1, %0 -+ 1: sub\t%1, 1 -+ brne\t1b -+ nop" -+) -+ -+(define_insn "delay_cycles_2" -+[(unspec_volatile [(const_int 0)] VUNSPEC_DELAY_CYCLES_2) -+ (match_operand:SI 0 "immediate_operand" "") -+ (clobber (match_scratch:SI 1 "=&r")) -+ (clobber (match_scratch:SI 2 "=&r"))] -+ "" -+ "mov\t%1, %0 -+ 1: mov\t%2, 16383 -+ 2: sub\t%2, 1 -+ brne\t2b -+ nop -+ sub\t%1, 1 -+ brne\t1b -+ nop" -+) -+ -+;; CPU instructions -+ -+;;============================================================================= -+;; nop -+;;----------------------------------------------------------------------------- -+;; No-op instruction. -+;;============================================================================= -+(define_insn "nop" -+ [(unspec_volatile [(const_int 0)] VUNSPEC_NOP)] -+ "" -+ "nop" -+ [(set_attr "length" "1") -+ (set_attr "type" "alu") -+ (set_attr "cc" "none")]) -+ -+;; NOP3 -+(define_insn "nop3" -+ [(unspec_volatile [(const_int 0)] VUNSPEC_NOP3)] -+ "" -+ "rjmp\t2" -+ [(set_attr "length" "3") -+ (set_attr "type" "alu") -+ (set_attr "cc" "none")]) -+ -+;; Special patterns for dealing with the constant pool -+ -+(define_insn "align_4" -+ [(unspec_volatile [(const_int 0)] VUNSPEC_ALIGN)] -+ "" -+ { -+ assemble_align (32); -+ return ""; -+ } -+ [(set_attr "length" "2")] -+) -+ -+ -+(define_insn "consttable_start" -+ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_START)] -+ "" -+ { -+ return ".cpool"; -+ } -+ [(set_attr "length" "0")] -+ ) -+ -+(define_insn "consttable_end" -+ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_END)] -+ "" -+ { -+ making_const_table = FALSE; -+ return ""; -+ } -+ [(set_attr "length" "0")] -+) -+ -+ -+(define_insn "consttable_4" -+ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_4)] -+ "" -+ { -+ making_const_table = TRUE; -+ switch (GET_MODE_CLASS (GET_MODE (operands[0]))) -+ { -+ case MODE_FLOAT: -+ { -+ REAL_VALUE_TYPE r; -+ char real_string[1024]; -+ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]); -+ real_to_decimal(real_string, &r, 1024, 0, 1); -+ asm_fprintf (asm_out_file, "\t.float\t%s\n", real_string); -+ break; -+ } -+ default: -+ assemble_integer (operands[0], 4, 0, 1); -+ break; -+ } -+ return ""; -+ } -+ [(set_attr "length" "4")] -+) -+ -+(define_insn "consttable_8" -+ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_8)] -+ "" -+ { -+ making_const_table = TRUE; -+ switch (GET_MODE_CLASS (GET_MODE (operands[0]))) -+ { -+ case MODE_FLOAT: -+ { -+ REAL_VALUE_TYPE r; -+ char real_string[1024]; -+ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]); -+ real_to_decimal(real_string, &r, 1024, 0, 1); -+ asm_fprintf (asm_out_file, "\t.double\t%s\n", real_string); -+ break; -+ } -+ default: -+ assemble_integer(operands[0], 8, 0, 1); -+ break; -+ } -+ return ""; -+ } -+ [(set_attr "length" "8")] -+) -+ -+(define_insn "consttable_16" -+ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_16)] -+ "" -+ { -+ making_const_table = TRUE; -+ assemble_integer(operands[0], 16, 0, 1); -+ return ""; -+ } -+ [(set_attr "length" "16")] -+) -+ -+;;============================================================================= -+;; coprocessor instructions -+;;----------------------------------------------------------------------------- -+(define_insn "cop" -+ [ (unspec_volatile [(match_operand 0 "immediate_operand" "Ku03") -+ (match_operand 1 "immediate_operand" "Ku04") -+ (match_operand 2 "immediate_operand" "Ku04") -+ (match_operand 3 "immediate_operand" "Ku04") -+ (match_operand 4 "immediate_operand" "Ku07")] VUNSPEC_COP)] -+ "" -+ "cop\tcp%0, cr%1, cr%2, cr%3, %4" -+ [(set_attr "length" "4")] -+ ) -+ -+(define_insn "mvcrsi" -+ [ (set (match_operand:SI 0 "avr32_cop_move_operand" "=r,<,Z") -+ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03") -+ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")] -+ VUNSPEC_MVCR)) ] -+ "" -+ "@ -+ mvcr.w\tcp%1, %0, cr%2 -+ stcm.w\tcp%1, %0, cr%2 -+ stc.w\tcp%1, %0, cr%2" -+ [(set_attr "length" "4")] -+ ) -+ -+(define_insn "mvcrdi" -+ [ (set (match_operand:DI 0 "avr32_cop_move_operand" "=r,<,Z") -+ (unspec_volatile:DI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03") -+ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")] -+ VUNSPEC_MVCR)) ] -+ "" -+ "@ -+ mvcr.d\tcp%1, %0, cr%2 -+ stcm.d\tcp%1, %0, cr%2-cr%i2 -+ stc.d\tcp%1, %0, cr%2" -+ [(set_attr "length" "4")] -+ ) -+ -+(define_insn "mvrcsi" -+ [ (unspec_volatile:SI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03") -+ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04") -+ (match_operand:SI 2 "avr32_cop_move_operand" "r,>,Z")] -+ VUNSPEC_MVRC)] -+ "" -+ { -+ switch (which_alternative){ -+ case 0: -+ return "mvrc.w\tcp%0, cr%1, %2"; -+ case 1: -+ return "ldcm.w\tcp%0, %2, cr%1"; -+ case 2: -+ return "ldc.w\tcp%0, cr%1, %2"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "length" "4")] -+ ) -+ -+(define_insn "mvrcdi" -+ [ (unspec_volatile:DI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03") -+ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04") -+ (match_operand:DI 2 "avr32_cop_move_operand" "r,>,Z")] -+ VUNSPEC_MVRC)] -+ "" -+ { -+ switch (which_alternative){ -+ case 0: -+ return "mvrc.d\tcp%0, cr%1, %2"; -+ case 1: -+ return "ldcm.d\tcp%0, %2, cr%1-cr%i1"; -+ case 2: -+ return "ldc.d\tcp%0, cr%1, %2"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "length" "4")] -+ ) -+ -+;;============================================================================= -+;; epilogue -+;;----------------------------------------------------------------------------- -+;; This pattern emits RTL for exit from a function. The function exit is -+;; responsible for deallocating the stack frame, restoring callee saved -+;; registers and emitting the return instruction. -+;; ToDo: using TARGET_ASM_FUNCTION_PROLOGUE instead. -+;;============================================================================= -+(define_expand "epilogue" -+ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)] -+ "" -+ " -+ if (USE_RETURN_INSN (FALSE)){ -+ emit_jump_insn (gen_return ()); -+ DONE; -+ } -+ emit_jump_insn (gen_rtx_UNSPEC_VOLATILE (VOIDmode, -+ gen_rtvec (1, -+ gen_rtx_RETURN (VOIDmode)), -+ VUNSPEC_EPILOGUE)); -+ DONE; -+ " -+ ) -+ -+(define_insn "*epilogue_insns" -+ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)] -+ "" -+ { -+ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL); -+ return ""; -+ } -+ ; Length is absolute worst case -+ [(set_attr "type" "branch") -+ (set_attr "length" "12")] -+ ) -+ -+(define_insn "*epilogue_insns_ret_imm" -+ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) -+ (use (reg RETVAL_REGNUM)) -+ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)])] -+ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" -+ { -+ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]); -+ return ""; -+ } -+ ; Length is absolute worst case -+ [(set_attr "type" "branch") -+ (set_attr "length" "12")] -+ ) -+ -+(define_insn "sibcall_epilogue" -+ [(unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)] -+ "" -+ { -+ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL); -+ return ""; -+ } -+;; Length is absolute worst case -+ [(set_attr "type" "branch") -+ (set_attr "length" "12")] -+ ) -+ -+(define_insn "*sibcall_epilogue_insns_ret_imm" -+ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) -+ (use (reg RETVAL_REGNUM)) -+ (unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)])] -+ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" -+ { -+ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]); -+ return ""; -+ } -+ ; Length is absolute worst case -+ [(set_attr "type" "branch") -+ (set_attr "length" "12")] -+ ) -+ -+(define_insn "ldxi" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (mem:SI (plus:SI -+ (match_operand:SI 1 "register_operand" "r") -+ (mult:SI (zero_extract:SI (match_operand:SI 2 "register_operand" "r") -+ (const_int 8) -+ (match_operand:SI 3 "immediate_operand" "Ku05")) -+ (const_int 4)))))] -+ "(INTVAL(operands[3]) == 24 || INTVAL(operands[3]) == 16 || INTVAL(operands[3]) == 8 -+ || INTVAL(operands[3]) == 0)" -+ { -+ switch ( INTVAL(operands[3]) ){ -+ case 0: -+ return "ld.w %0, %1[%2:b << 2]"; -+ case 8: -+ return "ld.w %0, %1[%2:l << 2]"; -+ case 16: -+ return "ld.w %0, %1[%2:u << 2]"; -+ case 24: -+ return "ld.w %0, %1[%2:t << 2]"; -+ default: -+ internal_error("illegal operand for ldxi"); -+ } -+ } -+ [(set_attr "type" "load") -+ (set_attr "length" "4") -+ (set_attr "cc" "none")]) -+ -+ -+ -+ -+ -+ -+;;============================================================================= -+;; Peephole optimizing -+;;----------------------------------------------------------------------------- -+;; Changing -+;; sub r8, r7, 8 -+;; st.w r8[0x0], r12 -+;; to -+;; sub r8, r7, 8 -+;; st.w r7[-0x8], r12 -+;;============================================================================= -+; (set (reg:SI 9 r8) -+; (plus:SI (reg/f:SI 6 r7) -+; (const_int ...))) -+; (set (mem:SI (reg:SI 9 r8)) -+; (reg:SI 12 r12)) -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (plus:SI (match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "immediate_operand" ""))) -+ (set (mem:SI (match_dup 0)) -+ (match_operand:SI 3 "register_operand" ""))] -+ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")" -+ [(set (match_dup 0) -+ (plus:SI (match_dup 1) -+ (match_dup 2))) -+ (set (mem:SI (plus:SI (match_dup 1) -+ (match_dup 2))) -+ (match_dup 3))] -+ "") -+ -+;;============================================================================= -+;; Peephole optimizing -+;;----------------------------------------------------------------------------- -+;; Changing -+;; sub r6, r7, 4 -+;; ld.w r6, r6[0x0] -+;; to -+;; sub r6, r7, 4 -+;; ld.w r6, r7[-0x4] -+;;============================================================================= -+; (set (reg:SI 7 r6) -+; (plus:SI (reg/f:SI 6 r7) -+; (const_int -4 [0xfffffffc]))) -+; (set (reg:SI 7 r6) -+; (mem:SI (reg:SI 7 r6))) -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (plus:SI (match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "immediate_operand" ""))) -+ (set (match_operand:SI 3 "register_operand" "") -+ (mem:SI (match_dup 0)))] -+ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")" -+ [(set (match_dup 0) -+ (plus:SI (match_dup 1) -+ (match_dup 2))) -+ (set (match_dup 3) -+ (mem:SI (plus:SI (match_dup 1) -+ (match_dup 2))))] -+ "") -+ -+;;============================================================================= -+;; Peephole optimizing -+;;----------------------------------------------------------------------------- -+;; Changing -+;; ld.sb r0, r7[-0x6] -+;; cashs.b r0 -+;; to -+;; ld.sb r0, r7[-0x6] -+;;============================================================================= -+(define_peephole2 -+ [(set (match_operand:QI 0 "register_operand" "") -+ (match_operand:QI 1 "load_sb_memory_operand" "")) -+ (set (match_operand:SI 2 "register_operand" "") -+ (sign_extend:SI (match_dup 0)))] -+ "(REGNO(operands[0]) == REGNO(operands[2]) || peep2_reg_dead_p(2, operands[0]))" -+ [(set (match_dup 2) -+ (sign_extend:SI (match_dup 1)))] -+ "") -+ -+;;============================================================================= -+;; Peephole optimizing -+;;----------------------------------------------------------------------------- -+;; Changing -+;; ld.ub r0, r7[-0x6] -+;; cashu.b r0 -+;; to -+;; ld.ub r0, r7[-0x6] -+;;============================================================================= -+(define_peephole2 -+ [(set (match_operand:QI 0 "register_operand" "") -+ (match_operand:QI 1 "memory_operand" "")) -+ (set (match_operand:SI 2 "register_operand" "") -+ (zero_extend:SI (match_dup 0)))] -+ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" -+ [(set (match_dup 2) -+ (zero_extend:SI (match_dup 1)))] -+ "") -+ -+;;============================================================================= -+;; Peephole optimizing -+;;----------------------------------------------------------------------------- -+;; Changing -+;; ld.sh r0, r7[-0x6] -+;; casts.h r0 -+;; to -+;; ld.sh r0, r7[-0x6] -+;;============================================================================= -+(define_peephole2 -+ [(set (match_operand:HI 0 "register_operand" "") -+ (match_operand:HI 1 "memory_operand" "")) -+ (set (match_operand:SI 2 "register_operand" "") -+ (sign_extend:SI (match_dup 0)))] -+ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" -+ [(set (match_dup 2) -+ (sign_extend:SI (match_dup 1)))] -+ "") -+ -+;;============================================================================= -+;; Peephole optimizing -+;;----------------------------------------------------------------------------- -+;; Changing -+;; ld.uh r0, r7[-0x6] -+;; castu.h r0 -+;; to -+;; ld.uh r0, r7[-0x6] -+;;============================================================================= -+(define_peephole2 -+ [(set (match_operand:HI 0 "register_operand" "") -+ (match_operand:HI 1 "memory_operand" "")) -+ (set (match_operand:SI 2 "register_operand" "") -+ (zero_extend:SI (match_dup 0)))] -+ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" -+ [(set (match_dup 2) -+ (zero_extend:SI (match_dup 1)))] -+ "") -+ -+;;============================================================================= -+;; Peephole optimizing -+;;----------------------------------------------------------------------------- -+;; Changing -+;; mul rd, rx, ry -+;; add rd2, rd -+;; or -+;; add rd2, rd, rd2 -+;; to -+;; mac rd2, rx, ry -+;;============================================================================= -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (mult:SI (match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "register_operand" ""))) -+ (set (match_operand:SI 3 "register_operand" "") -+ (plus:SI (match_dup 3) -+ (match_dup 0)))] -+ "peep2_reg_dead_p(2, operands[0])" -+ [(set (match_dup 3) -+ (plus:SI (mult:SI (match_dup 1) -+ (match_dup 2)) -+ (match_dup 3)))] -+ "") -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (mult:SI (match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "register_operand" ""))) -+ (set (match_operand:SI 3 "register_operand" "") -+ (plus:SI (match_dup 0) -+ (match_dup 3)))] -+ "peep2_reg_dead_p(2, operands[0])" -+ [(set (match_dup 3) -+ (plus:SI (mult:SI (match_dup 1) -+ (match_dup 2)) -+ (match_dup 3)))] -+ "") -+ -+ -+;;============================================================================= -+;; Peephole optimizing -+;;----------------------------------------------------------------------------- -+;; Changing -+;; bfextu rd, rs, k5, 1 or and(h/l) rd, one_bit_set_mask -+;; to -+;; bld rs, k5 -+;; -+;; If rd is dead after the operation. -+;;============================================================================= -+(define_peephole2 -+ [ (set (match_operand:SI 0 "register_operand" "") -+ (zero_extract:SI (match_operand:SI 1 "register_operand" "") -+ (const_int 1) -+ (match_operand:SI 2 "immediate_operand" ""))) -+ (set (cc0) -+ (match_dup 0))] -+ "peep2_reg_dead_p(2, operands[0])" -+ [(set (cc0) -+ (and:SI (match_dup 1) -+ (match_dup 2)))] -+ "operands[2] = GEN_INT(1 << INTVAL(operands[2]));") -+ -+(define_peephole2 -+ [ (set (match_operand:SI 0 "register_operand" "") -+ (and:SI (match_operand:SI 1 "register_operand" "") -+ (match_operand:SI 2 "one_bit_set_operand" ""))) -+ (set (cc0) -+ (match_dup 0))] -+ "peep2_reg_dead_p(2, operands[0])" -+ [(set (cc0) -+ (and:SI (match_dup 1) -+ (match_dup 2)))] -+ "") -+ -+;;============================================================================= -+;; Peephole optimizing -+;;----------------------------------------------------------------------------- -+;; Load with extracted index: ld.w Rd, Rb[Ri:{t/u/b/l} << 2] -+;; -+;;============================================================================= -+ -+ -+(define_peephole -+ [(set (match_operand:SI 0 "register_operand" "") -+ (zero_extract:SI (match_operand:SI 1 "register_operand" "") -+ (const_int 8) -+ (match_operand:SI 2 "avr32_extract_shift_operand" ""))) -+ (set (match_operand:SI 3 "register_operand" "") -+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) -+ (match_operand:SI 4 "register_operand" ""))))] -+ -+ "(dead_or_set_p(insn, operands[0]))" -+ { -+ switch ( INTVAL(operands[2]) ){ -+ case 0: -+ return "ld.w %3, %4[%1:b << 2]"; -+ case 8: -+ return "ld.w %3, %4[%1:l << 2]"; -+ case 16: -+ return "ld.w %3, %4[%1:u << 2]"; -+ case 24: -+ return "ld.w %3, %4[%1:t << 2]"; -+ default: -+ internal_error("illegal operand for ldxi"); -+ } -+ } -+ [(set_attr "type" "load") -+ (set_attr "length" "4") -+ (set_attr "cc" "clobber")] -+ ) -+ -+ -+ -+(define_peephole -+ [(set (match_operand:SI 0 "register_operand" "") -+ (and:SI (match_operand:SI 1 "register_operand" "") (const_int 255))) -+ (set (match_operand:SI 2 "register_operand" "") -+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) -+ (match_operand:SI 3 "register_operand" ""))))] -+ -+ "(dead_or_set_p(insn, operands[0]))" -+ -+ "ld.w %2, %3[%1:b << 2]" -+ [(set_attr "type" "load") -+ (set_attr "length" "4") -+ (set_attr "cc" "clobber")] -+ ) -+ -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (zero_extract:SI (match_operand:SI 1 "register_operand" "") -+ (const_int 8) -+ (match_operand:SI 2 "avr32_extract_shift_operand" ""))) -+ (set (match_operand:SI 3 "register_operand" "") -+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) -+ (match_operand:SI 4 "register_operand" ""))))] -+ -+ "(peep2_reg_dead_p(2, operands[0])) -+ || (REGNO(operands[0]) == REGNO(operands[3]))" -+ [(set (match_dup 3) -+ (mem:SI (plus:SI -+ (match_dup 4) -+ (mult:SI (zero_extract:SI (match_dup 1) -+ (const_int 8) -+ (match_dup 2)) -+ (const_int 4)))))] -+ ) -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (zero_extend:SI (match_operand:QI 1 "register_operand" ""))) -+ (set (match_operand:SI 2 "register_operand" "") -+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) -+ (match_operand:SI 3 "register_operand" ""))))] -+ -+ "(peep2_reg_dead_p(2, operands[0])) -+ || (REGNO(operands[0]) == REGNO(operands[2]))" -+ [(set (match_dup 2) -+ (mem:SI (plus:SI -+ (match_dup 3) -+ (mult:SI (zero_extract:SI (match_dup 1) -+ (const_int 8) -+ (const_int 0)) -+ (const_int 4)))))] -+ "operands[1] = gen_rtx_REG(SImode, REGNO(operands[1]));" -+ ) -+ -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (and:SI (match_operand:SI 1 "register_operand" "") -+ (const_int 255))) -+ (set (match_operand:SI 2 "register_operand" "") -+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) -+ (match_operand:SI 3 "register_operand" ""))))] -+ -+ "(peep2_reg_dead_p(2, operands[0])) -+ || (REGNO(operands[0]) == REGNO(operands[2]))" -+ [(set (match_dup 2) -+ (mem:SI (plus:SI -+ (match_dup 3) -+ (mult:SI (zero_extract:SI (match_dup 1) -+ (const_int 8) -+ (const_int 0)) -+ (const_int 4)))))] -+ "" -+ ) -+ -+ -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (lshiftrt:SI (match_operand:SI 1 "register_operand" "") -+ (const_int 24))) -+ (set (match_operand:SI 2 "register_operand" "") -+ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) -+ (match_operand:SI 3 "register_operand" ""))))] -+ -+ "(peep2_reg_dead_p(2, operands[0])) -+ || (REGNO(operands[0]) == REGNO(operands[2]))" -+ [(set (match_dup 2) -+ (mem:SI (plus:SI -+ (match_dup 3) -+ (mult:SI (zero_extract:SI (match_dup 1) -+ (const_int 8) -+ (const_int 24)) -+ (const_int 4)))))] -+ "" -+ ) -+ -+ -+;;************************************************ -+;; ANDN -+;; -+;;************************************************ -+ -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (not:SI (match_operand:SI 1 "register_operand" ""))) -+ (set (match_operand:SI 2 "register_operand" "") -+ (and:SI (match_dup 2) -+ (match_dup 0)))] -+ "peep2_reg_dead_p(2, operands[0])" -+ -+ [(set (match_dup 2) -+ (and:SI (match_dup 2) -+ (not:SI (match_dup 1)) -+ ))] -+ "" -+) -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (not:SI (match_operand:SI 1 "register_operand" ""))) -+ (set (match_operand:SI 2 "register_operand" "") -+ (and:SI (match_dup 0) -+ (match_dup 2) -+ ))] -+ "peep2_reg_dead_p(2, operands[0])" -+ -+ [(set (match_dup 2) -+ (and:SI (match_dup 2) -+ (not:SI (match_dup 1)) -+ ))] -+ -+ "" -+) -+ -+ -+;;================================================================= -+;; Addabs peephole -+;;================================================================= -+ -+(define_peephole -+ [(set (match_operand:SI 2 "register_operand" "=r") -+ (abs:SI (match_operand:SI 1 "register_operand" "r"))) -+ (set (match_operand:SI 0 "register_operand" "=r") -+ (plus:SI (match_operand:SI 3 "register_operand" "r") -+ (match_dup 2)))] -+ "dead_or_set_p(insn, operands[2])" -+ "addabs %0, %3, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "set_z")]) -+ -+(define_peephole -+ [(set (match_operand:SI 2 "register_operand" "=r") -+ (abs:SI (match_operand:SI 1 "register_operand" "r"))) -+ (set (match_operand:SI 0 "register_operand" "=r") -+ (plus:SI (match_dup 2) -+ (match_operand:SI 3 "register_operand" "r")))] -+ "dead_or_set_p(insn, operands[2])" -+ "addabs %0, %3, %1" -+ [(set_attr "length" "4") -+ (set_attr "cc" "set_z")]) -+ -+ -+;;================================================================= -+;; Detect roundings -+;;================================================================= -+ -+(define_insn "*round" -+ [(set (match_operand:SI 0 "register_operand" "+r") -+ (ashiftrt:SI (plus:SI (match_dup 0) -+ (match_operand:SI 1 "immediate_operand" "i")) -+ (match_operand:SI 2 "immediate_operand" "i")))] -+ "avr32_rnd_operands(operands[1], operands[2])" -+ -+ "satrnds %0 >> %2, 31" -+ -+ [(set_attr "type" "alu_sat") -+ (set_attr "length" "4")] -+ -+ ) -+ -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (plus:SI (match_dup 0) -+ (match_operand:SI 1 "immediate_operand" ""))) -+ (set (match_dup 0) -+ (ashiftrt:SI (match_dup 0) -+ (match_operand:SI 2 "immediate_operand" "")))] -+ "avr32_rnd_operands(operands[1], operands[2])" -+ -+ [(set (match_dup 0) -+ (ashiftrt:SI (plus:SI (match_dup 0) -+ (match_dup 1)) -+ (match_dup 2)))] -+ ) -+ -+(define_peephole -+ [(set (match_operand:SI 0 "register_operand" "r") -+ (plus:SI (match_dup 0) -+ (match_operand:SI 1 "immediate_operand" "i"))) -+ (set (match_dup 0) -+ (ashiftrt:SI (match_dup 0) -+ (match_operand:SI 2 "immediate_operand" "i")))] -+ "avr32_rnd_operands(operands[1], operands[2])" -+ -+ "satrnds %0 >> %2, 31" -+ -+ [(set_attr "type" "alu_sat") -+ (set_attr "length" "4") -+ (set_attr "cc" "clobber")] -+ -+ ) -+ -+ -+;;================================================================= -+;; mcall -+;;================================================================= -+(define_peephole -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand 1 "avr32_const_pool_ref_operand" "")) -+ (parallel [(call (mem:SI (match_dup 0)) -+ (match_operand 2 "" "")) -+ (clobber (reg:SI LR_REGNUM))])] -+ "dead_or_set_p(insn, operands[0])" -+ "mcall %1" -+ [(set_attr "type" "call") -+ (set_attr "length" "4") -+ (set_attr "cc" "clobber")] -+) -+ -+(define_peephole -+ [(set (match_operand:SI 2 "register_operand" "") -+ (match_operand 1 "avr32_const_pool_ref_operand" "")) -+ (parallel [(set (match_operand 0 "register_operand" "") -+ (call (mem:SI (match_dup 2)) -+ (match_operand 3 "" ""))) -+ (clobber (reg:SI LR_REGNUM))])] -+ "dead_or_set_p(insn, operands[2])" -+ "mcall %1" -+ [(set_attr "type" "call") -+ (set_attr "length" "4") -+ (set_attr "cc" "call_set")] -+) -+ -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand 1 "avr32_const_pool_ref_operand" "")) -+ (parallel [(call (mem:SI (match_dup 0)) -+ (match_operand 2 "" "")) -+ (clobber (reg:SI LR_REGNUM))])] -+ "peep2_reg_dead_p(2, operands[0])" -+ [(parallel [(call (mem:SI (match_dup 1)) -+ (match_dup 2)) -+ (clobber (reg:SI LR_REGNUM))])] -+ "" -+) -+ -+(define_peephole2 -+ [(set (match_operand:SI 0 "register_operand" "") -+ (match_operand 1 "avr32_const_pool_ref_operand" "")) -+ (parallel [(set (match_operand 2 "register_operand" "") -+ (call (mem:SI (match_dup 0)) -+ (match_operand 3 "" ""))) -+ (clobber (reg:SI LR_REGNUM))])] -+ "(peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[2]) == REGNO(operands[0])))" -+ [(parallel [(set (match_dup 2) -+ (call (mem:SI (match_dup 1)) -+ (match_dup 3))) -+ (clobber (reg:SI LR_REGNUM))])] -+ "" -+) -+ -+;;================================================================= -+;; Returning a value -+;;================================================================= -+ -+ -+(define_peephole -+ [(set (match_operand 0 "register_operand" "") -+ (match_operand 1 "register_operand" "")) -+ (return)] -+ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM) -+ && (REGNO(operands[1]) != LR_REGNUM) -+ && (REGNO_REG_CLASS(REGNO(operands[1])) == GENERAL_REGS)" -+ "retal %1" -+ [(set_attr "type" "call") -+ (set_attr "length" "2")] -+ ) -+ -+ -+(define_peephole -+ [(set (match_operand 0 "register_operand" "r") -+ (match_operand 1 "immediate_operand" "i")) -+ (return)] -+ "(USE_RETURN_INSN (FALSE) && (REGNO(operands[0]) == RETVAL_REGNUM) && -+ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1)))" -+ { -+ avr32_output_return_instruction (TRUE, FALSE, NULL, operands[1]); -+ return ""; -+ } -+ [(set_attr "type" "call") -+ (set_attr "length" "4")] -+ ) -+ -+(define_peephole -+ [(set (match_operand 0 "register_operand" "r") -+ (match_operand 1 "immediate_operand" "i")) -+ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)] -+ "(REGNO(operands[0]) == RETVAL_REGNUM) && -+ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1))" -+ { -+ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[1]); -+ return ""; -+ } -+ ; Length is absolute worst case -+ [(set_attr "type" "branch") -+ (set_attr "length" "12")] -+ ) -+ -+(define_peephole -+ [(set (match_operand 0 "register_operand" "=r") -+ (if_then_else (match_operator 1 "avr32_comparison_operator" -+ [(match_operand 4 "register_operand" "r") -+ (match_operand 5 "register_immediate_operand" "rKs21")]) -+ (match_operand 2 "avr32_cond_register_immediate_operand" "rKs08") -+ (match_operand 3 "avr32_cond_register_immediate_operand" "rKs08"))) -+ (return)] -+ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM)" -+ { -+ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); -+ -+ if ( GET_CODE(operands[2]) == REG -+ && GET_CODE(operands[3]) == REG -+ && REGNO(operands[2]) != LR_REGNUM -+ && REGNO(operands[3]) != LR_REGNUM ){ -+ return "ret%1 %2\;ret%i1 %3"; -+ } else if ( GET_CODE(operands[2]) == REG -+ && GET_CODE(operands[3]) == CONST_INT ){ -+ if ( INTVAL(operands[3]) == -1 -+ || INTVAL(operands[3]) == 0 -+ || INTVAL(operands[3]) == 1 ){ -+ return "ret%1 %2\;ret%i1 %d3"; -+ } else { -+ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; -+ } -+ } else if ( GET_CODE(operands[2]) == CONST_INT -+ && GET_CODE(operands[3]) == REG ){ -+ if ( INTVAL(operands[2]) == -1 -+ || INTVAL(operands[2]) == 0 -+ || INTVAL(operands[2]) == 1 ){ -+ return "ret%1 %d2\;ret%i1 %3"; -+ } else { -+ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; -+ } -+ } else { -+ if ( (INTVAL(operands[2]) == -1 -+ || INTVAL(operands[2]) == 0 -+ || INTVAL(operands[2]) == 1 ) -+ && (INTVAL(operands[3]) == -1 -+ || INTVAL(operands[3]) == 0 -+ || INTVAL(operands[3]) == 1 )){ -+ return "ret%1 %d2\;ret%i1 %d3"; -+ } else { -+ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; -+ } -+ } -+ } -+ -+ [(set_attr "length" "10") -+ (set_attr "cc" "none") -+ (set_attr "type" "call")]) -+ -+ -+ -+;;================================================================= -+;; mulnhh.w -+;;================================================================= -+ -+(define_peephole2 -+ [(set (match_operand:HI 0 "register_operand" "") -+ (neg:HI (match_operand:HI 1 "register_operand" ""))) -+ (set (match_operand:SI 2 "register_operand" "") -+ (mult:SI -+ (sign_extend:SI (match_dup 0)) -+ (sign_extend:SI (match_operand:HI 3 "register_operand" ""))))] -+ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))" -+ [ (set (match_dup 2) -+ (mult:SI -+ (sign_extend:SI (neg:HI (match_dup 1))) -+ (sign_extend:SI (match_dup 3))))] -+ "" -+ ) -+ -+(define_peephole2 -+ [(set (match_operand:HI 0 "register_operand" "") -+ (neg:HI (match_operand:HI 1 "register_operand" ""))) -+ (set (match_operand:SI 2 "register_operand" "") -+ (mult:SI -+ (sign_extend:SI (match_operand:HI 3 "register_operand" "")) -+ (sign_extend:SI (match_dup 0))))] -+ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))" -+ [ (set (match_dup 2) -+ (mult:SI -+ (sign_extend:SI (neg:HI (match_dup 1))) -+ (sign_extend:SI (match_dup 3))))] -+ "" -+ ) -+ -+ -+ -+;;================================================================= -+;; Vector set and extract operations -+;;================================================================= -+(define_insn "vec_setv2hi_hi" -+ [(set (match_operand:V2HI 0 "register_operand" "=r") -+ (vec_merge:V2HI -+ (match_dup 0) -+ (vec_duplicate:V2HI -+ (match_operand:HI 1 "register_operand" "r")) -+ (const_int 1)))] -+ "" -+ "bfins\t%0, %1, 16, 16" -+ [(set_attr "type" "alu") -+ (set_attr "length" "4") -+ (set_attr "cc" "clobber")]) -+ -+(define_insn "vec_setv2hi_lo" -+ [(set (match_operand:V2HI 0 "register_operand" "+r") -+ (vec_merge:V2HI -+ (match_dup 0) -+ (vec_duplicate:V2HI -+ (match_operand:HI 1 "register_operand" "r")) -+ (const_int 2)))] -+ "" -+ "bfins\t%0, %1, 0, 16" -+ [(set_attr "type" "alu") -+ (set_attr "length" "4") -+ (set_attr "cc" "clobber")]) -+ -+(define_expand "vec_setv2hi" -+ [(set (match_operand:V2HI 0 "register_operand" "") -+ (vec_merge:V2HI -+ (match_dup 0) -+ (vec_duplicate:V2HI -+ (match_operand:HI 1 "register_operand" "")) -+ (match_operand 2 "immediate_operand" "")))] -+ "" -+ { operands[2] = GEN_INT(INTVAL(operands[2]) + 1); } -+ ) -+ -+(define_insn "vec_extractv2hi" -+ [(set (match_operand:HI 0 "register_operand" "=r") -+ (vec_select:HI -+ (match_operand:V2HI 1 "register_operand" "r") -+ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))] -+ "" -+ { -+ if ( INTVAL(operands[2]) == 0 ) -+ return "bfextu\t%0, %1, 16, 16"; -+ else -+ return "bfextu\t%0, %1, 0, 16"; -+ } -+ [(set_attr "type" "alu") -+ (set_attr "length" "4") -+ (set_attr "cc" "clobber")]) -+ -+(define_insn "vec_extractv4qi" -+ [(set (match_operand:QI 0 "register_operand" "=r") -+ (vec_select:QI -+ (match_operand:V4QI 1 "register_operand" "r") -+ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))] -+ "" -+ { -+ switch ( INTVAL(operands[2]) ){ -+ case 0: -+ return "bfextu\t%0, %1, 24, 8"; -+ case 1: -+ return "bfextu\t%0, %1, 16, 8"; -+ case 2: -+ return "bfextu\t%0, %1, 8, 8"; -+ case 3: -+ return "bfextu\t%0, %1, 0, 8"; -+ default: -+ abort(); -+ } -+ } -+ [(set_attr "type" "alu") -+ (set_attr "length" "4") -+ (set_attr "cc" "clobber")]) -+ -+ -+(define_insn "concatv2hi" -+ [(set (match_operand:V2HI 0 "register_operand" "=r, r, r") -+ (vec_concat:V2HI -+ (match_operand:HI 1 "register_operand" "r, r, 0") -+ (match_operand:HI 2 "register_operand" "r, 0, r")))] -+ "" -+ "@ -+ mov\t%0, %1\;bfins\t%0, %2, 0, 16 -+ bfins\t%0, %2, 0, 16 -+ bfins\t%0, %1, 16, 16" -+ [(set_attr "length" "6, 4, 4") -+ (set_attr "type" "alu")]) -+ -+ -+;; Load the atomic operation description -+(include "sync.md") -+ -+;; Load the SIMD description -+(include "simd.md") -+ -+;; Include the FPU for uc3 -+(include "uc3fpu.md") ---- /dev/null -+++ b/gcc/config/avr32/avr32-modes.def -@@ -0,0 +1 @@ -+VECTOR_MODES (INT, 4); /* V4QI V2HI */ ---- /dev/null -+++ b/gcc/config/avr32/avr32.opt -@@ -0,0 +1,93 @@ -+; Options for the ATMEL AVR32 port of the compiler. -+ -+; Copyright 2007 Atmel Corporation. -+; -+; This file is part of GCC. -+; -+; GCC is free software; you can redistribute it and/or modify it under -+; the terms of the GNU General Public License as published by the Free -+; Software Foundation; either version 2, or (at your option) any later -+; version. -+; -+; GCC is distributed in the hope that it will be useful, but WITHOUT ANY -+; WARRANTY; without even the implied warranty of MERCHANTABILITY or -+; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -+; for more details. -+; -+; You should have received a copy of the GNU General Public License -+; along with GCC; see the file COPYING. If not, write to the Free -+; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA -+; 02110-1301, USA. -+ -+muse-rodata-section -+Target Report Mask(USE_RODATA_SECTION) -+Use section .rodata for read-only data instead of .text. -+ -+mhard-float -+Target Report Mask(HARD_FLOAT) -+Use FPU instructions instead of floating point emulation. -+ -+msoft-float -+Target Report InverseMask(HARD_FLOAT, SOFT_FLOAT) -+Use floating point emulation for floating point operations. -+ -+mforce-double-align -+Target Report RejectNegative Mask(FORCE_DOUBLE_ALIGN) -+Force double-word alignment for double-word memory accesses. -+ -+mno-init-got -+Target Report RejectNegative Mask(NO_INIT_GOT) -+Do not initialize GOT register before using it when compiling PIC code. -+ -+mrelax -+Target Report Mask(RELAX) -+Let invoked assembler and linker do relaxing (Enabled by default when optimization level is >1). -+ -+mmd-reorg-opt -+Target Report Undocumented Mask(MD_REORG_OPTIMIZATION) -+Perform machine dependent optimizations in reorg stage. -+ -+masm-addr-pseudos -+Target Report Mask(HAS_ASM_ADDR_PSEUDOS) -+Use assembler pseudo-instructions lda.w and call for handling direct addresses. (Enabled by default) -+ -+mpart= -+Target Report RejectNegative Joined Var(avr32_part_name) -+Specify the AVR32 part name -+ -+mcpu= -+Target Report RejectNegative Joined Undocumented Var(avr32_part_name) -+Specify the AVR32 part name (deprecated) -+ -+march= -+Target Report RejectNegative Joined Var(avr32_arch_name) -+Specify the AVR32 architecture name -+ -+mfast-float -+Target Report Mask(FAST_FLOAT) -+Enable fast floating-point library. Enabled by default if the -funsafe-math-optimizations switch is specified. -+ -+mimm-in-const-pool -+Target Report Var(avr32_imm_in_const_pool) Init(-1) -+Put large immediates in constant pool. This is enabled by default for archs with insn-cache. -+ -+mno-pic -+Target Report RejectNegative Mask(NO_PIC) -+Do not generate position-independent code. (deprecated, use -fno-pic instead) -+ -+mcond-exec-before-reload -+Target Report Undocumented Mask(COND_EXEC_BEFORE_RELOAD) -+Enable experimental conditional execution preparation before the reload stage. -+ -+mrmw-addressable-data -+Target Report Mask(RMW_ADDRESSABLE_DATA) -+Signal that all data is in range for the Atomic Read-Modify-Write memory instructions, and that -+gcc can safely generate these whenever possible. -+ -+mflashvault -+Target Var(TARGET_FLASHVAULT) -+Generate code for flashvault -+ -+mlist-devices -+Target RejectNegative Var(avr32_list_supported_parts) -+Print the list of parts supported while printing --target-help. ---- /dev/null -+++ b/gcc/config/avr32/avr32-protos.h -@@ -0,0 +1,196 @@ -+/* -+ Prototypes for exported functions defined in avr32.c -+ Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. -+ -+ This file is part of GCC. -+ -+ This program is free software; you can redistribute it and/or modify -+ it under the terms of the GNU General Public License as published by -+ the Free Software Foundation; either version 2 of the License, or -+ (at your option) any later version. -+ -+ This program is distributed in the hope that it will be useful, -+ but WITHOUT ANY WARRANTY; without even the implied warranty of -+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+ GNU General Public License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with this program; if not, write to the Free Software -+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ -+ -+ -+#ifndef AVR32_PROTOS_H -+#define AVR32_PROTOS_H -+ -+extern const int swap_reg[]; -+ -+extern int avr32_valid_macmac_bypass (rtx, rtx); -+extern int avr32_valid_mulmac_bypass (rtx, rtx); -+ -+extern int avr32_decode_lcomm_symbol_offset (rtx, int *); -+extern void avr32_encode_lcomm_symbol_offset (tree, char *, int); -+ -+extern const char *avr32_strip_name_encoding (const char *); -+ -+extern rtx avr32_get_note_reg_equiv (rtx insn); -+ -+extern int avr32_use_return_insn (int iscond); -+ -+extern void avr32_make_reglist16 (int reglist16_vect, char *reglist16_string); -+ -+extern void avr32_make_reglist8 (int reglist8_vect, char *reglist8_string); -+extern void avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string); -+extern void avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string); -+ -+extern void avr32_output_return_instruction (int single_ret_inst, -+ int iscond, rtx cond, -+ rtx r12_imm); -+extern void avr32_expand_prologue (void); -+extern void avr32_set_return_address (rtx source, rtx scratch); -+ -+extern int avr32_hard_regno_mode_ok (int regno, enum machine_mode mode); -+extern int avr32_extra_constraint_s (rtx value, const int strict); -+extern int avr32_eh_return_data_regno (const int n); -+extern int avr32_initial_elimination_offset (const int from, const int to); -+extern rtx avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, -+ tree type, int named); -+extern void avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype, -+ rtx libname, tree fndecl); -+extern void avr32_function_arg_advance (CUMULATIVE_ARGS * cum, -+ enum machine_mode mode, -+ tree type, int named); -+#ifdef ARGS_SIZE_RTX -+/* expr.h defines ARGS_SIZE_RTX and `enum direction'. */ -+extern enum direction avr32_function_arg_padding (enum machine_mode mode, -+ tree type); -+#endif /* ARGS_SIZE_RTX */ -+extern rtx avr32_function_value (tree valtype, tree func, bool outgoing); -+extern rtx avr32_libcall_value (enum machine_mode mode); -+extern int avr32_sched_use_dfa_pipeline_interface (void); -+extern bool avr32_return_in_memory (tree type, tree fntype); -+extern void avr32_regs_to_save (char *operand); -+extern void avr32_target_asm_function_prologue (FILE * file, -+ HOST_WIDE_INT size); -+extern void avr32_target_asm_function_epilogue (FILE * file, -+ HOST_WIDE_INT size); -+extern void avr32_trampoline_template (FILE * file); -+extern void avr32_initialize_trampoline (rtx addr, rtx fnaddr, -+ rtx static_chain); -+extern int avr32_legitimate_address (enum machine_mode mode, rtx x, -+ int strict); -+extern int avr32_legitimate_constant_p (rtx x); -+ -+extern int avr32_legitimate_pic_operand_p (rtx x); -+ -+extern rtx avr32_find_symbol (rtx x); -+extern void avr32_select_section (rtx exp, int reloc, int align); -+extern void avr32_encode_section_info (tree decl, rtx rtl, int first); -+extern void avr32_asm_file_end (FILE * stream); -+extern void avr32_asm_output_ascii (FILE * stream, char *ptr, int len); -+extern void avr32_asm_output_common (FILE * stream, const char *name, -+ int size, int rounded); -+extern void avr32_asm_output_label (FILE * stream, const char *name); -+extern void avr32_asm_declare_object_name (FILE * stream, char *name, -+ tree decl); -+extern void avr32_asm_globalize_label (FILE * stream, const char *name); -+extern void avr32_asm_weaken_label (FILE * stream, const char *name); -+extern void avr32_asm_output_external (FILE * stream, tree decl, -+ const char *name); -+extern void avr32_asm_output_external_libcall (FILE * stream, rtx symref); -+extern void avr32_asm_output_labelref (FILE * stream, const char *name); -+extern void avr32_notice_update_cc (rtx exp, rtx insn); -+extern void avr32_print_operand (FILE * stream, rtx x, int code); -+extern void avr32_print_operand_address (FILE * stream, rtx x); -+ -+extern int avr32_symbol (rtx x); -+ -+extern void avr32_select_rtx_section (enum machine_mode mode, rtx x, -+ unsigned HOST_WIDE_INT align); -+ -+extern int avr32_load_multiple_operation (rtx op, enum machine_mode mode); -+extern int avr32_store_multiple_operation (rtx op, enum machine_mode mode); -+ -+extern int avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, -+ const char *str); -+ -+extern bool avr32_cannot_force_const_mem (rtx x); -+ -+extern void avr32_init_builtins (void); -+ -+extern rtx avr32_expand_builtin (tree exp, rtx target, rtx subtarget, -+ enum machine_mode mode, int ignore); -+ -+extern bool avr32_must_pass_in_stack (enum machine_mode mode, tree type); -+ -+extern bool avr32_strict_argument_naming (CUMULATIVE_ARGS * ca); -+ -+extern bool avr32_pass_by_reference (CUMULATIVE_ARGS * cum, -+ enum machine_mode mode, -+ tree type, bool named); -+ -+extern rtx avr32_gen_load_multiple (rtx * regs, int count, rtx from, -+ int write_back, int in_struct_p, -+ int scalar_p); -+extern rtx avr32_gen_store_multiple (rtx * regs, int count, rtx to, -+ int in_struct_p, int scalar_p); -+extern int avr32_gen_movmemsi (rtx * operands); -+ -+extern int avr32_rnd_operands (rtx add, rtx shift); -+extern int avr32_adjust_insn_length (rtx insn, int length); -+ -+extern int symbol_mentioned_p (rtx x); -+extern int label_mentioned_p (rtx x); -+extern rtx legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg); -+extern int avr32_address_register_rtx_p (rtx x, int strict_p); -+extern int avr32_legitimate_index_p (enum machine_mode mode, rtx index, -+ int strict_p); -+ -+extern int avr32_const_double_immediate (rtx value); -+extern void avr32_init_expanders (void); -+extern rtx avr32_return_addr (int count, rtx frame); -+extern bool avr32_got_mentioned_p (rtx addr); -+ -+extern void avr32_final_prescan_insn (rtx insn, rtx * opvec, int noperands); -+ -+extern int avr32_expand_movcc (enum machine_mode mode, rtx operands[]); -+extern int avr32_expand_addcc (enum machine_mode mode, rtx operands[]); -+#ifdef RTX_CODE -+extern int avr32_expand_scc (RTX_CODE cond, rtx * operands); -+#endif -+ -+extern int avr32_store_bypass (rtx insn_out, rtx insn_in); -+extern int avr32_mul_waw_bypass (rtx insn_out, rtx insn_in); -+extern int avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in); -+extern int avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in); -+extern rtx avr32_output_cmp (rtx cond, enum machine_mode mode, -+ rtx op0, rtx op1); -+ -+rtx get_next_insn_cond (rtx cur_insn); -+int set_next_insn_cond (rtx cur_insn, rtx cond); -+rtx next_insn_emits_cmp (rtx cur_insn); -+void avr32_override_options (void); -+void avr32_load_pic_register (void); -+#ifdef GCC_BASIC_BLOCK_H -+rtx avr32_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn, -+ int *num_true_changes); -+rtx avr32_ifcvt_modify_test (ce_if_block_t *ce_info, rtx test ); -+void avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info, int *num_true_changes); -+#endif -+void avr32_optimization_options (int level, int size); -+int avr32_const_ok_for_move (HOST_WIDE_INT c); -+ -+void avr32_split_const_expr (enum machine_mode mode, -+ enum machine_mode new_mode, -+ rtx expr, -+ rtx *split_expr); -+void avr32_get_intval (enum machine_mode mode, -+ rtx const_expr, -+ HOST_WIDE_INT *val); -+ -+int avr32_cond_imm_clobber_splittable (rtx insn, -+ rtx operands[]); -+ -+bool avr32_flashvault_call(tree decl); -+extern void avr32_emit_swdivsf (rtx, rtx, rtx); -+ -+#endif /* AVR32_PROTOS_H */ ---- /dev/null -+++ b/gcc/config/avr32/crti.asm -@@ -0,0 +1,64 @@ -+/* -+ Init/fini stuff for AVR32. -+ Copyright 2003-2006 Atmel Corporation. -+ -+ Written by Ronny Pedersen, Atmel Norway, -+ -+ This file is part of GCC. -+ -+ This program is free software; you can redistribute it and/or modify -+ it under the terms of the GNU General Public License as published by -+ the Free Software Foundation; either version 2 of the License, or -+ (at your option) any later version. -+ -+ This program is distributed in the hope that it will be useful, -+ but WITHOUT ANY WARRANTY; without even the implied warranty of -+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+ GNU General Public License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with this program; if not, write to the Free Software -+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ -+ -+ -+/* The code in sections .init and .fini is supposed to be a single -+ regular function. The function in .init is called directly from -+ start in crt1.asm. The function in .fini is atexit()ed in crt1.asm -+ too. -+ -+ crti.asm contributes the prologue of a function to these sections, -+ and crtn.asm comes up the epilogue. STARTFILE_SPEC should list -+ crti.o before any other object files that might add code to .init -+ or .fini sections, and ENDFILE_SPEC should list crtn.o after any -+ such object files. */ -+ -+ .file "crti.asm" -+ -+ .section ".init" -+/* Just load the GOT */ -+ .align 2 -+ .global _init -+_init: -+ stm --sp, r6, lr -+ lddpc r6, 1f -+0: -+ rsub r6, pc -+ rjmp 2f -+ .align 2 -+1: .long 0b - _GLOBAL_OFFSET_TABLE_ -+2: -+ -+ .section ".fini" -+/* Just load the GOT */ -+ .align 2 -+ .global _fini -+_fini: -+ stm --sp, r6, lr -+ lddpc r6, 1f -+0: -+ rsub r6, pc -+ rjmp 2f -+ .align 2 -+1: .long 0b - _GLOBAL_OFFSET_TABLE_ -+2: -+ ---- /dev/null -+++ b/gcc/config/avr32/crtn.asm -@@ -0,0 +1,44 @@ -+/* Copyright (C) 2001 Free Software Foundation, Inc. -+ Written By Nick Clifton -+ -+ This file is free software; you can redistribute it and/or modify it -+ under the terms of the GNU General Public License as published by the -+ Free Software Foundation; either version 2, or (at your option) any -+ later version. -+ -+ In addition to the permissions in the GNU General Public License, the -+ Free Software Foundation gives you unlimited permission to link the -+ compiled version of this file with other programs, and to distribute -+ those programs without any restriction coming from the use of this -+ file. (The General Public License restrictions do apply in other -+ respects; for example, they cover modification of the file, and -+ distribution when not linked into another program.) -+ -+ This file is distributed in the hope that it will be useful, but -+ WITHOUT ANY WARRANTY; without even the implied warranty of -+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -+ General Public License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with this program; see the file COPYING. If not, write to -+ the Free Software Foundation, 59 Temple Place - Suite 330, -+ Boston, MA 02111-1307, USA. -+ -+ As a special exception, if you link this library with files -+ compiled with GCC to produce an executable, this does not cause -+ the resulting executable to be covered by the GNU General Public License. -+ This exception does not however invalidate any other reasons why -+ the executable file might be covered by the GNU General Public License. -+*/ -+ -+ -+ -+ -+ .file "crtn.asm" -+ -+ .section ".init" -+ ldm sp++, r6, pc -+ -+ .section ".fini" -+ ldm sp++, r6, pc -+ ---- /dev/null -+++ b/gcc/config/avr32/lib1funcs.S -@@ -0,0 +1,2903 @@ -+/* Macro for moving immediate value to register. */ -+.macro mov_imm reg, imm -+.if (((\imm & 0xfffff) == \imm) || ((\imm | 0xfff00000) == \imm)) -+ mov \reg, \imm -+#if __AVR32_UC__ >= 2 -+.elseif ((\imm & 0xffff) == 0) -+ movh \reg, hi(\imm) -+ -+#endif -+.else -+ mov \reg, lo(\imm) -+ orh \reg, hi(\imm) -+.endif -+.endm -+ -+ -+ -+/* Adjust the unpacked double number if it is a subnormal number. -+ The exponent and mantissa pair are stored -+ in [mant_hi,mant_lo] and [exp]. A register with the correct sign bit in -+ the MSB is passed in [sign]. Needs two scratch -+ registers [scratch1] and [scratch2]. An adjusted and packed double float -+ is present in [mant_hi,mant_lo] after macro has executed */ -+.macro adjust_subnormal_df exp, mant_lo, mant_hi, sign, scratch1, scratch2 -+ /* We have an exponent which is <=0 indicating a subnormal number -+ As it should be stored as if the exponent was 1 (although the -+ exponent field is all zeros to indicate a subnormal number) -+ we have to shift down the mantissa to its correct position. */ -+ neg \exp -+ sub \exp,-1 /* amount to shift down */ -+ cp.w \exp,54 -+ brlo 50f /* if more than 53 shift steps, the -+ entire mantissa will disappear -+ without any rounding to occur */ -+ mov \mant_hi, 0 -+ mov \mant_lo, 0 -+ rjmp 52f -+50: -+ sub \exp,-10 /* do the shift to position the -+ mantissa at the same time -+ note! this does not include the -+ final 1 step shift to add the sign */ -+ -+ /* when shifting, save all shifted out bits in [scratch2]. we may need to -+ look at them to make correct rounding. */ -+ -+ rsub \scratch1,\exp,32 /* get inverted shift count */ -+ cp.w \exp,32 /* handle shifts >= 32 separately */ -+ brhs 51f -+ -+ /* small (<32) shift amount, both words are part of the shift */ -+ lsl \scratch2,\mant_lo,\scratch1 /* save bits to shift out from lsw*/ -+ lsl \scratch1,\mant_hi,\scratch1 /* get bits from msw destined for lsw*/ -+ lsr \mant_lo,\mant_lo,\exp /* shift down lsw */ -+ lsr \mant_hi,\mant_hi,\exp /* shift down msw */ -+ or \mant_hi,\scratch1 /* add bits from msw with prepared lsw */ -+ rjmp 50f -+ -+ /* large (>=32) shift amount, only lsw will have bits left after shift. -+ note that shift operations will use ((shift count) mod 32) so -+ we do not need to subtract 32 from shift count. */ -+51: -+ lsl \scratch2,\mant_hi,\scratch1 /* save bits to shift out from msw */ -+ or \scratch2,\mant_lo /* also save all bits from lsw */ -+ mov \mant_lo,\mant_hi /* msw -> lsw (i.e. "shift 32 first") */ -+ mov \mant_hi,0 /* clear msw */ -+ lsr \mant_lo,\mant_lo,\exp /* make rest of shift inside lsw */ -+ -+50: -+ /* result is almost ready to return, except that least significant bit -+ and the part we already shifted out may cause the result to be -+ rounded */ -+ bld \mant_lo,0 /* get bit to be shifted out */ -+ brcc 51f /* if bit was 0, no rounding */ -+ -+ /* msb of part to remove is 1, so rounding depends on rest of bits */ -+ tst \scratch2,\scratch2 /* get shifted out tail */ -+ brne 50f /* if rest > 0, do round */ -+ bld \mant_lo,1 /* we have to look at lsb in result */ -+ brcc 51f /* if lsb is 0, don't round */ -+ -+50: -+ /* subnormal result requires rounding -+ rounding may cause subnormal to become smallest normal number -+ luckily, smallest normal number has exactly the representation -+ we got by rippling a one bit up from mantissa into exponent field. */ -+ sub \mant_lo,-1 -+ subcc \mant_hi,-1 -+ -+51: -+ /* shift and return packed double with correct sign */ -+ rol \sign -+ ror \mant_hi -+ ror \mant_lo -+52: -+.endm -+ -+ -+/* Adjust subnormal single float number with exponent [exp] -+ and mantissa [mant] and round. */ -+.macro adjust_subnormal_sf sf, exp, mant, sign, scratch -+ /* subnormal number */ -+ rsub \exp,\exp, 1 /* shift amount */ -+ cp.w \exp, 25 -+ movhs \mant, 0 -+ brhs 90f /* Return zero */ -+ rsub \scratch, \exp, 32 -+ lsl \scratch, \mant,\scratch/* Check if there are any bits set -+ in the bits discarded in the mantissa */ -+ srne \scratch /* If so set the lsb of the shifted mantissa */ -+ lsr \mant,\mant,\exp /* Shift the mantissa */ -+ or \mant, \scratch /* Round lsb if any bits were shifted out */ -+ /* Rounding : For explaination, see round_sf. */ -+ mov \scratch, 0x7f /* Set rounding constant */ -+ bld \mant, 8 -+ subeq \scratch, -1 /* For odd numbers use rounding constant 0x80 */ -+ add \mant, \scratch /* Add rounding constant to mantissa */ -+ /* We can't overflow because mantissa is at least shifted one position -+ to the right so the implicit bit is zero. We can however get the implicit -+ bit set after rounding which means that we have the lowest normal number -+ but this is ok since this bit has the same position as the LSB of the -+ exponent */ -+ lsr \sf, \mant, 7 -+ /* Rotate in sign */ -+ lsl \sign, 1 -+ ror \sf -+90: -+.endm -+ -+ -+/* Round the unpacked df number with exponent [exp] and -+ mantissa [mant_hi, mant_lo]. Uses scratch register -+ [scratch] */ -+.macro round_df exp, mant_lo, mant_hi, scratch -+ mov \scratch, 0x3ff /* Rounding constant */ -+ bld \mant_lo,11 /* Check if lsb in the final result is -+ set */ -+ subeq \scratch, -1 /* Adjust rounding constant to 0x400 -+ if rounding 0.5 upwards */ -+ add \mant_lo, \scratch /* Round */ -+ acr \mant_hi /* If overflowing we know that -+ we have all zeros in the bits not -+ scaled out so we can leave them -+ but we must increase the exponent with -+ two since we had an implicit bit -+ which is lost + the extra overflow bit */ -+ subcs \exp, -2 /* Update exponent */ -+.endm -+ -+/* Round single float number stored in [mant] and [exp] */ -+.macro round_sf exp, mant, scratch -+ /* Round: -+ For 0.5 we round to nearest even integer -+ for all other cases we round to nearest integer. -+ This means that if the digit left of the "point" (.) -+ is 1 we can add 0x80 to the mantissa since the -+ corner case 0x180 will round up to 0x200. If the -+ digit left of the "point" is 0 we will have to -+ add 0x7f since this will give 0xff and hence a -+ truncation/rounding downwards for the corner -+ case when the 9 lowest bits are 0x080 */ -+ mov \scratch, 0x7f /* Set rounding constant */ -+ /* Check if the mantissa is even or odd */ -+ bld \mant, 8 -+ subeq \scratch, -1 /* Rounding constant should be 0x80 */ -+ add \mant, \scratch -+ subcs \exp, -2 /* Adjust exponent if we overflowed */ -+.endm -+ -+ -+ -+/* Pack a single float number stored in [mant] and [exp] -+ into a single float number in [sf] */ -+.macro pack_sf sf, exp, mant -+ bld \mant,31 /* implicit bit to z */ -+ subne \exp,1 /* if subnormal (implicit bit 0) -+ adjust exponent to storage format */ -+ -+ lsr \sf, \mant, 7 -+ bfins \sf, \exp, 24, 8 -+.endm -+ -+/* Pack exponent [exp] and mantissa [mant_hi, mant_lo] -+ into [df_hi, df_lo]. [df_hi] is shifted -+ one bit up so the sign bit can be shifted into it */ -+ -+.macro pack_df exp, mant_lo, mant_hi, df_lo, df_hi -+ bld \mant_hi,31 /* implicit bit to z */ -+ subne \exp,1 /* if subnormal (implicit bit 0) -+ adjust exponent to storage format */ -+ -+ lsr \mant_lo,11 /* shift back lsw */ -+ or \df_lo,\mant_lo,\mant_hi<<21 /* combine with low bits from msw */ -+ lsl \mant_hi,1 /* get rid of implicit bit */ -+ lsr \mant_hi,11 /* shift back msw except for one step*/ -+ or \df_hi,\mant_hi,\exp<<21 /* combine msw with exponent */ -+.endm -+ -+/* Normalize single float number stored in [mant] and [exp] -+ using scratch register [scratch] */ -+.macro normalize_sf exp, mant, scratch -+ /* Adjust exponent and mantissa */ -+ clz \scratch, \mant -+ sub \exp, \scratch -+ lsl \mant, \mant, \scratch -+.endm -+ -+/* Normalize the exponent and mantissa pair stored -+ in [mant_hi,mant_lo] and [exp]. Needs two scratch -+ registers [scratch1] and [scratch2]. */ -+.macro normalize_df exp, mant_lo, mant_hi, scratch1, scratch2 -+ clz \scratch1,\mant_hi /* Check if we have zeros in high bits */ -+ breq 80f /* No need for scaling if no zeros in high bits */ -+ brcs 81f /* Check for all zeros */ -+ -+ /* shift amount is smaller than 32, and involves both msw and lsw*/ -+ rsub \scratch2,\scratch1,32 /* shift mantissa */ -+ lsl \mant_hi,\mant_hi,\scratch1 -+ lsr \scratch2,\mant_lo,\scratch2 -+ or \mant_hi,\scratch2 -+ lsl \mant_lo,\mant_lo,\scratch1 -+ sub \exp,\scratch1 /* adjust exponent */ -+ rjmp 80f /* Finished */ -+81: -+ /* shift amount is greater than 32 */ -+ clz \scratch1,\mant_lo /* shift mantissa */ -+ movcs \scratch1, 0 -+ subcc \scratch1,-32 -+ lsl \mant_hi,\mant_lo,\scratch1 -+ mov \mant_lo,0 -+ sub \exp,\scratch1 /* adjust exponent */ -+80: -+.endm -+ -+ -+/* Fast but approximate multiply of two 64-bit numbers to give a 64 bit result. -+ The multiplication of [al]x[bl] is discarded. -+ Operands in [ah], [al], [bh], [bl]. -+ Scratch registers in [sh], [sl]. -+ Returns results in registers [rh], [rl].*/ -+.macro mul_approx_df ah, al, bh, bl, rh, rl, sh, sl -+ mulu.d \sl, \ah, \bl -+ macu.d \sl, \al, \bh -+ mulu.d \rl, \ah, \bh -+ add \rl, \sh -+ acr \rh -+.endm -+ -+ -+ -+#if defined(L_avr32_f64_mul) || defined(L_avr32_f64_mul_fast) -+ .align 2 -+#if defined(L_avr32_f64_mul) -+ .global __avr32_f64_mul -+ .type __avr32_f64_mul,@function -+__avr32_f64_mul: -+#else -+ .global __avr32_f64_mul_fast -+ .type __avr32_f64_mul_fast,@function -+__avr32_f64_mul_fast: -+#endif -+ or r12, r10, r11 << 1 -+ breq __avr32_f64_mul_op1_zero -+ -+#if defined(L_avr32_f64_mul) -+ pushm r4-r7, lr -+#else -+ stm --sp, r5,r6,r7,lr -+#endif -+ -+#define AVR32_F64_MUL_OP1_INT_BITS 1 -+#define AVR32_F64_MUL_OP2_INT_BITS 10 -+#define AVR32_F64_MUL_RES_INT_BITS 11 -+ -+ /* op1 in {r11,r10}*/ -+ /* op2 in {r9,r8}*/ -+ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */ -+ -+ /* Unpack op1 to 1.63 format*/ -+ /* exp: r7 */ -+ /* sf: r11, r10 */ -+ bfextu r7, r11, 20, 11 /* Extract exponent */ -+ -+ mov r5, 1 -+ -+ /* Check if normalization is needed */ -+ breq __avr32_f64_mul_op1_subnormal /*If number is subnormal, normalize it */ -+ -+ lsl r11, (12-AVR32_F64_MUL_OP1_INT_BITS-1) /* Extract mantissa, leave room for implicit bit */ -+ or r11, r11, r10>>(32-(12-AVR32_F64_MUL_OP1_INT_BITS-1)) -+ lsl r10, (12-AVR32_F64_MUL_OP1_INT_BITS-1) -+ bfins r11, r5, 32 - (1 + AVR32_F64_MUL_OP1_INT_BITS), 1 + AVR32_F64_MUL_OP1_INT_BITS /* Insert implicit bit */ -+ -+ -+22: -+ /* Unpack op2 to 10.54 format */ -+ /* exp: r6 */ -+ /* sf: r9, r8 */ -+ bfextu r6, r9, 20, 11 /* Extract exponent */ -+ -+ /* Check if normalization is needed */ -+ breq __avr32_f64_mul_op2_subnormal /*If number is subnormal, normalize it */ -+ -+ lsl r8, 1 /* Extract mantissa, leave room for implicit bit */ -+ rol r9 -+ bfins r9, r5, 32 - (1 + AVR32_F64_MUL_OP2_INT_BITS), 1 + AVR32_F64_MUL_OP2_INT_BITS /* Insert implicit bit */ -+ -+23: -+ -+ /* Check if any operands are NaN or INF */ -+ cp r7, 0x7ff -+ breq __avr32_f64_mul_op_nan_or_inf /* Check op1 for NaN or Inf */ -+ cp r6, 0x7ff -+ breq __avr32_f64_mul_op_nan_or_inf /* Check op2 for NaN or Inf */ -+ -+ -+ /* Calculate new exponent in r12*/ -+ add r12, r7, r6 -+ sub r12, (1023-1) -+ -+#if defined(L_avr32_f64_mul) -+ /* Do the multiplication. -+ Place result in [r11, r10, r7, r6]. The result is in 11.117 format. */ -+ mulu.d r4, r11, r8 -+ macu.d r4, r10, r9 -+ mulu.d r6, r10, r8 -+ mulu.d r10, r11, r9 -+ add r7, r4 -+ adc r10, r10, r5 -+ acr r11 -+#else -+ /* Do the multiplication using approximate calculation. discard the al x bl -+ calculation. -+ Place result in [r11, r10, r7]. The result is in 11.85 format. */ -+ -+ /* Do the multiplication using approximate calculation. -+ Place result in r11, r10. Use r7, r6 as scratch registers */ -+ mulu.d r6, r11, r8 -+ macu.d r6, r10, r9 -+ mulu.d r10, r11, r9 -+ add r10, r7 -+ acr r11 -+#endif -+ /* Adjust exponent and mantissa */ -+ /* [r12]:exp, [r11, r10]:mant [r7, r6]:sticky bits */ -+ /* Mantissa may be of the format 00000000000.0xxx or 00000000000.1xxx. */ -+ /* In the first case, shift one pos to left.*/ -+ bld r11, 32-AVR32_F64_MUL_RES_INT_BITS-1 -+ breq 0f -+ lsl r7, 1 -+ rol r10 -+ rol r11 -+ sub r12, 1 -+0: -+ cp r12, 0 -+ brle __avr32_f64_mul_res_subnormal /*Result was subnormal.*/ -+ -+ /* Check for Inf. */ -+ cp.w r12, 0x7ff -+ brge __avr32_f64_mul_res_inf -+ -+ /* Insert exponent. */ -+ bfins r11, r12, 20, 11 -+ -+ /* Result was not subnormal. Perform rounding. */ -+ /* For the fast version we discard the sticky bits and always round -+ the halfwaycase up. */ -+24: -+#if defined(L_avr32_f64_mul) -+ or r6, r6, r10 << 31 /* Or in parity bit into stickybits */ -+ or r7, r7, r6 >> 1 /* Or together sticky and still make the msb -+ of r7 represent the halfway bit. */ -+ eorh r7, 0x8000 /* Toggle halfway bit. */ -+ /* We should now round up by adding one for the following cases: -+ -+ halfway sticky|parity round-up -+ 0 x no -+ 1 0 no -+ 1 1 yes -+ -+ Since we have inverted the halfway bit we can use the satu instruction -+ by saturating to 1 bit to implement this. -+ */ -+ satu r7 >> 0, 1 -+#else -+ lsr r7, 31 -+#endif -+ add r10, r7 -+ acr r11 -+ -+ /* Insert sign bit*/ -+ bld lr, 31 -+ bst r11, 31 -+ -+ /* Return result in [r11,r10] */ -+#if defined(L_avr32_f64_mul) -+ popm r4-r7, pc -+#else -+ ldm sp++, r5, r6, r7,pc -+#endif -+ -+ -+__avr32_f64_mul_op1_subnormal: -+ andh r11, 0x000f /* Remove sign bit and exponent */ -+ clz r12, r10 /* Count leading zeros in lsw */ -+ clz r6, r11 /* Count leading zeros in msw */ -+ subcs r12, -32 + AVR32_F64_MUL_OP1_INT_BITS -+ movcs r6, r12 -+ subcc r6, AVR32_F64_MUL_OP1_INT_BITS -+ cp.w r6, 32 -+ brge 0f -+ -+ /* shifting involves both msw and lsw*/ -+ rsub r12, r6, 32 /* shift mantissa */ -+ lsl r11, r11, r6 -+ lsr r12, r10, r12 -+ or r11, r12 -+ lsl r10, r10, r6 -+ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS -+ sub r7, r6 /* adjust exponent */ -+ rjmp 22b /* Finished */ -+0: -+ /* msw is zero so only need to consider lsw */ -+ lsl r11, r10, r6 -+ breq __avr32_f64_mul_res_zero -+ mov r10, 0 -+ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS -+ sub r7, r6 /* adjust exponent */ -+ rjmp 22b -+ -+ -+__avr32_f64_mul_op2_subnormal: -+ andh r9, 0x000f /* Remove sign bit and exponent */ -+ clz r12, r8 /* Count leading zeros in lsw */ -+ clz r5, r9 /* Count leading zeros in msw */ -+ subcs r12, -32 + AVR32_F64_MUL_OP2_INT_BITS -+ movcs r5, r12 -+ subcc r5, AVR32_F64_MUL_OP2_INT_BITS -+ cp.w r5, 32 -+ brge 0f -+ -+ /* shifting involves both msw and lsw*/ -+ rsub r12, r5, 32 /* shift mantissa */ -+ lsl r9, r9, r5 -+ lsr r12, r8, r12 -+ or r9, r12 -+ lsl r8, r8, r5 -+ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS -+ sub r6, r5 /* adjust exponent */ -+ rjmp 23b /* Finished */ -+0: -+ /* msw is zero so only need to consider lsw */ -+ lsl r9, r8, r5 -+ breq __avr32_f64_mul_res_zero -+ mov r8, 0 -+ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS -+ sub r6, r5 /* adjust exponent */ -+ rjmp 23b -+ -+ -+__avr32_f64_mul_op_nan_or_inf: -+ /* Same code for OP1 and OP2*/ -+ /* Since we are here, at least one of the OPs were NaN or INF*/ -+ andh r9, 0x000f /* Remove sign bit and exponent */ -+ andh r11, 0x000f /* Remove sign bit and exponent */ -+ /* Merge the regs in each operand to check for zero*/ -+ or r11, r10 /* op1 */ -+ or r9, r8 /* op2 */ -+ /* Check if op1 is NaN or INF */ -+ cp r7, 0x7ff -+ brne __avr32_f64_mul_op1_not_naninf -+ /* op1 was NaN or INF.*/ -+ cp r11, 0 -+ brne __avr32_f64_mul_res_nan /* op1 was NaN. Result will be NaN*/ -+ /*op1 was INF. check if op2 is NaN or INF*/ -+ cp r6, 0x7ff -+ brne __avr32_f64_mul_res_inf /*op1 was INF, op2 was neither NaN nor INF*/ -+ /* op1 is INF, op2 is either NaN or INF*/ -+ cp r9, 0 -+ breq __avr32_f64_mul_res_inf /*op2 was also INF*/ -+ rjmp __avr32_f64_mul_res_nan /*op2 was NaN*/ -+ -+__avr32_f64_mul_op1_not_naninf: -+ /* op1 was not NaN nor INF. Then op2 must be NaN or INF*/ -+ cp r9, 0 -+ breq __avr32_f64_mul_res_inf /*op2 was INF, return INF*/ -+ rjmp __avr32_f64_mul_res_nan /*else return NaN*/ -+ -+__avr32_f64_mul_res_subnormal:/* Multiply result was subnormal. */ -+#if defined(L_avr32_f64_mul) -+ /* Check how much we must scale down the mantissa. */ -+ neg r12 -+ sub r12, -1 /* We do no longer have an implicit bit. */ -+ satu r12 >> 0, 6 /* Saturate shift amount to max 63. */ -+ cp.w r12, 32 -+ brge 0f -+ /* Shift amount <32 */ -+ rsub r8, r12, 32 -+ or r6, r7 -+ lsr r7, r7, r12 -+ lsl r9, r10, r8 -+ or r7, r9 -+ lsr r10, r10, r12 -+ lsl r9, r11, r8 -+ or r10, r9 -+ lsr r11, r11, r12 -+ rjmp 24b -+0: -+ /* Shift amount >=32 */ -+ rsub r8, r12, 32 -+ moveq r9, 0 -+ breq 0f -+ lsl r9, r11, r8 -+0: -+ or r6, r7 -+ or r6, r6, r10 << 1 -+ lsr r10, r10, r12 -+ or r7, r9, r10 -+ lsr r10, r11, r12 -+ mov r11, 0 -+ rjmp 24b -+#else -+ /* Flush to zero for the fast version. */ -+ mov r11, lr /*Get correct sign*/ -+ andh r11, 0x8000, COH -+ mov r10, 0 -+ ldm sp++, r5, r6, r7,pc -+#endif -+ -+__avr32_f64_mul_res_zero:/* Multiply result is zero. */ -+ mov r11, lr /*Get correct sign*/ -+ andh r11, 0x8000, COH -+ mov r10, 0 -+#if defined(L_avr32_f64_mul) -+ popm r4-r7, pc -+#else -+ ldm sp++, r5, r6, r7,pc -+#endif -+ -+__avr32_f64_mul_res_nan: /* Return NaN. */ -+ mov r11, -1 -+ mov r10, -1 -+#if defined(L_avr32_f64_mul) -+ popm r4-r7, pc -+#else -+ ldm sp++, r5, r6, r7,pc -+#endif -+ -+__avr32_f64_mul_res_inf: /* Return INF. */ -+ mov r11, 0xfff00000 -+ bld lr, 31 -+ bst r11, 31 -+ mov r10, 0 -+#if defined(L_avr32_f64_mul) -+ popm r4-r7, pc -+#else -+ ldm sp++, r5, r6, r7,pc -+#endif -+ -+__avr32_f64_mul_op1_zero: -+ /* Get sign */ -+ eor r11, r11, r9 -+ andh r11, 0x8000, COH -+ /* Check if op2 is Inf or NaN. */ -+ bfextu r12, r9, 20, 11 -+ cp.w r12, 0x7ff -+ retne r12 /* Return 0.0 */ -+ /* Return NaN */ -+ mov r10, -1 -+ mov r11, -1 -+ ret r12 -+ -+ -+ -+#endif -+ -+ -+#if defined(L_avr32_f64_addsub) || defined(L_avr32_f64_addsub_fast) -+ .align 2 -+ -+__avr32_f64_sub_from_add: -+ /* Switch sign on op2 */ -+ eorh r9, 0x8000 -+ -+#if defined(L_avr32_f64_addsub_fast) -+ .global __avr32_f64_sub_fast -+ .type __avr32_f64_sub_fast,@function -+__avr32_f64_sub_fast: -+#else -+ .global __avr32_f64_sub -+ .type __avr32_f64_sub,@function -+__avr32_f64_sub: -+#endif -+ -+ /* op1 in {r11,r10}*/ -+ /* op2 in {r9,r8}*/ -+ -+#if defined(L_avr32_f64_addsub_fast) -+ /* If op2 is zero just return op1 */ -+ or r12, r8, r9 << 1 -+ reteq r12 -+#endif -+ -+ /* Check signs */ -+ eor r12, r11, r9 -+ /* Different signs, use addition. */ -+ brmi __avr32_f64_add_from_sub -+ -+ stm --sp, r5, r6, r7, lr -+ -+ /* Get sign of op1 into r12 */ -+ mov r12, r11 -+ andh r12, 0x8000, COH -+ -+ /* Remove sign from operands */ -+ cbr r11, 31 -+ cbr r9, 31 -+ -+ /* Put the largest number in [r11, r10] -+ and the smallest number in [r9, r8] */ -+ cp r10, r8 -+ cpc r11, r9 -+ brhs 1f /* Skip swap if operands already correctly ordered*/ -+ /* Operands were not correctly ordered, swap them*/ -+ mov r7, r11 -+ mov r11, r9 -+ mov r9, r7 -+ mov r7, r10 -+ mov r10, r8 -+ mov r8, r7 -+ eorh r12, 0x8000 /* Invert sign in r12*/ -+1: -+ /* Unpack largest operand - opH */ -+ /* exp: r7 */ -+ /* sf: r11, r10 */ -+ lsr r7, r11, 20 /* Extract exponent */ -+ lsl r11, 11 /* Extract mantissa, leave room for implicit bit */ -+ or r11, r11, r10>>21 -+ lsl r10, 11 -+ sbr r11, 31 /* Insert implicit bit */ -+ -+ -+ /* Unpack smallest operand - opL */ -+ /* exp: r6 */ -+ /* sf: r9, r8 */ -+ lsr r6, r9, 20 /* Extract exponent */ -+ breq __avr32_f64_sub_opL_subnormal /* If either zero or subnormal */ -+ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */ -+ or r9, r9, r8>>21 -+ lsl r8, 11 -+ sbr r9, 31 /* Insert implicit bit */ -+ -+ -+__avr32_f64_sub_opL_subnormal_done: -+ /* opH is NaN or Inf. */ -+ cp.w r7, 0x7ff -+ breq __avr32_f64_sub_opH_nan_or_inf -+ -+ /* Get shift amount to scale mantissa of op2. */ -+ rsub r6, r7 -+ breq __avr32_f64_sub_shift_done /* No need to shift, exponents are equal*/ -+ -+ /* Scale mantissa [r9, r8] with amount [r6]. -+ Uses scratch registers [r5] and [lr]. -+ In IEEE mode:Must not forget the sticky bits we intend to shift out. */ -+ -+ rsub r5,r6,32 /* get (32 - shift count) -+ (if shift count > 32 we get a -+ negative value, but that will -+ work as well in the code below.) */ -+ -+ cp.w r6,32 /* handle shifts >= 32 separately */ -+ brhs __avr32_f64_sub_longshift -+ -+ /* small (<32) shift amount, both words are part of the shift -+ first remember whether part that is lost contains any 1 bits ... */ -+ lsl lr,r8,r5 /* shift away bits that are part of -+ final mantissa. only part that goes -+ to lr are bits that will be lost */ -+ -+ /* ... and now to the actual shift */ -+ lsl r5,r9,r5 /* get bits from msw destined for lsw*/ -+ lsr r8,r8,r6 /* shift down lsw of mantissa */ -+ lsr r9,r9,r6 /* shift down msw of mantissa */ -+ or r8,r5 /* combine these bits with prepared lsw*/ -+#if defined(L_avr32_f64_addsub) -+ cp.w lr,0 /* if any '1' bit in part we lost ...*/ -+ srne lr -+ or r8, lr /* ... we need to set sticky bit*/ -+#endif -+ -+__avr32_f64_sub_shift_done: -+ /* Now subtract the mantissas. */ -+ sub r10, r8 -+ sbc r11, r11, r9 -+ -+ /* Normalize the exponent and mantissa pair stored in -+ [r11,r10] and exponent in [r7]. Needs two scratch registers [r6] and [lr]. */ -+ clz r6,r11 /* Check if we have zeros in high bits */ -+ breq __avr32_f64_sub_longnormalize_done /* No need for scaling if no zeros in high bits */ -+ brcs __avr32_f64_sub_longnormalize -+ -+ -+ /* shift amount is smaller than 32, and involves both msw and lsw*/ -+ rsub lr,r6,32 /* shift mantissa */ -+ lsl r11,r11,r6 -+ lsr lr,r10,lr -+ or r11,lr -+ lsl r10,r10,r6 -+ -+ sub r7,r6 /* adjust exponent */ -+ brle __avr32_f64_sub_subnormal_result -+__avr32_f64_sub_longnormalize_done: -+ -+#if defined(L_avr32_f64_addsub) -+ /* Insert the bits we will remove from the mantissa r9[31:21] */ -+ lsl r9, r10, (32 - 11) -+#else -+ /* Keep the last bit shifted out. */ -+ bfextu r9, r10, 10, 1 -+#endif -+ -+ /* Pack final result*/ -+ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */ -+ /* Result in [r11,r10] */ -+ /* Insert mantissa */ -+ lsr r10, 11 -+ or r10, r10, r11<<21 -+ lsr r11, 11 -+ /* Insert exponent and sign bit*/ -+ bfins r11, r7, 20, 11 -+ or r11, r12 -+ -+ /* Round */ -+__avr32_f64_sub_round: -+#if defined(L_avr32_f64_addsub) -+ mov_imm r7, 0x80000000 -+ bld r10, 0 -+ subne r7, -1 -+ -+ cp.w r9, r7 -+ srhs r9 -+#endif -+ add r10, r9 -+ acr r11 -+ -+ /* Return result in [r11,r10] */ -+ ldm sp++, r5, r6, r7,pc -+ -+ -+ -+__avr32_f64_sub_opL_subnormal: -+ /* Extract the of mantissa */ -+ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */ -+ or r9, r9, r8>>21 -+ lsl r8, 11 -+ -+ /* Set exponent to 1 if we do not have a zero. */ -+ or lr, r9, r8 -+ movne r6,1 -+ -+ /* Check if opH is also subnormal. If so, clear implicit bit in r11*/ -+ rsub lr, r7, 0 -+ moveq r7,1 -+ bst r11, 31 -+ -+ /* Check if op1 is zero, if so set exponent to 0. */ -+ or lr, r11, r10 -+ moveq r7,0 -+ -+ rjmp __avr32_f64_sub_opL_subnormal_done -+ -+__avr32_f64_sub_opH_nan_or_inf: -+ /* Check if opH is NaN, if so return NaN */ -+ cbr r11, 31 -+ or lr, r11, r10 -+ brne __avr32_f64_sub_return_nan -+ -+ /* opH is Inf. */ -+ /* Check if opL is Inf. or NaN */ -+ cp.w r6, 0x7ff -+ breq __avr32_f64_sub_return_nan -+ /* Return infinity with correct sign. */ -+ or r11, r12, r7 << 20 -+ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */ -+__avr32_f64_sub_return_nan: -+ mov r10, -1 /* Generate NaN in r11, r10 */ -+ mov r11, -1 -+ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */ -+ -+ -+__avr32_f64_sub_subnormal_result: -+#if defined(L_avr32_f64_addsub) -+ /* Check how much we must scale down the mantissa. */ -+ neg r7 -+ sub r7, -1 /* We do no longer have an implicit bit. */ -+ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */ -+ cp.w r7, 32 -+ brge 0f -+ /* Shift amount <32 */ -+ rsub r8, r7, 32 -+ lsl r9, r10, r8 -+ srne r6 -+ lsr r10, r10, r7 -+ or r10, r6 /* Sticky bit from the -+ part that was shifted out. */ -+ lsl r9, r11, r8 -+ or r10, r10, r9 -+ lsr r11, r10, r7 -+ /* Set exponent */ -+ mov r7, 0 -+ rjmp __avr32_f64_sub_longnormalize_done -+0: -+ /* Shift amount >=32 */ -+ rsub r8, r7, 64 -+ lsl r9, r11, r8 -+ or r9, r10 -+ srne r6 -+ lsr r10, r11, r7 -+ or r10, r6 /* Sticky bit from the -+ part that was shifted out. */ -+ mov r11, 0 -+ /* Set exponent */ -+ mov r7, 0 -+ rjmp __avr32_f64_sub_longnormalize_done -+#else -+ /* Just flush subnormals to zero. */ -+ mov r10, 0 -+ mov r11, 0 -+#endif -+ ldm sp++, r5, r6, r7, pc -+ -+__avr32_f64_sub_longshift: -+ /* large (>=32) shift amount, only lsw will have bits left after shift. -+ note that shift operations will use ((shift count=r6) mod 32) so -+ we do not need to subtract 32 from shift count. */ -+ /* Saturate the shift amount to 63. If the amount -+ is any larger op2 is insignificant. */ -+ satu r6 >> 0, 6 -+ -+#if defined(L_avr32_f64_addsub) -+ /* first remember whether part that is lost contains any 1 bits ... */ -+ moveq lr, r8 /* If shift amount is 32, no bits from msw are lost. */ -+ breq 0f -+ lsl lr,r9,r5 /* save all lost bits from msw */ -+ or lr,r8 /* also save lost bits (all) from lsw -+ now lr != 0 if we lose any bits */ -+#endif -+0: -+ /* ... and now to the actual shift */ -+ lsr r8,r9,r6 /* Move msw to lsw and shift. */ -+ mov r9,0 /* clear msw */ -+#if defined(L_avr32_f64_addsub) -+ cp.w lr,0 /* if any '1' bit in part we lost ...*/ -+ srne lr -+ or r8, lr /* ... we need to set sticky bit*/ -+#endif -+ rjmp __avr32_f64_sub_shift_done -+ -+__avr32_f64_sub_longnormalize: -+ /* shift amount is greater than 32 */ -+ clz r6,r10 /* shift mantissa */ -+ /* If the resulting mantissa is zero the result is -+ zero so force exponent to zero. */ -+ movcs r7, 0 -+ movcs r6, 0 -+ movcs r12, 0 /* Also clear sign bit. A zero result from subtraction -+ always is +0.0 */ -+ subcc r6,-32 -+ lsl r11,r10,r6 -+ mov r10,0 -+ sub r7,r6 /* adjust exponent */ -+ brle __avr32_f64_sub_subnormal_result -+ rjmp __avr32_f64_sub_longnormalize_done -+ -+ -+ -+ .align 2 -+__avr32_f64_add_from_sub: -+ /* Switch sign on op2 */ -+ eorh r9, 0x8000 -+ -+#if defined(L_avr32_f64_addsub_fast) -+ .global __avr32_f64_add_fast -+ .type __avr32_f64_add_fast,@function -+__avr32_f64_add_fast: -+#else -+ .global __avr32_f64_add -+ .type __avr32_f64_add,@function -+__avr32_f64_add: -+#endif -+ -+ /* op1 in {r11,r10}*/ -+ /* op2 in {r9,r8}*/ -+ -+#if defined(L_avr32_f64_addsub_fast) -+ /* If op2 is zero just return op1 */ -+ or r12, r8, r9 << 1 -+ reteq r12 -+#endif -+ -+ /* Check signs */ -+ eor r12, r11, r9 -+ /* Different signs, use subtraction. */ -+ brmi __avr32_f64_sub_from_add -+ -+ stm --sp, r5, r6, r7, lr -+ -+ /* Get sign of op1 into r12 */ -+ mov r12, r11 -+ andh r12, 0x8000, COH -+ -+ /* Remove sign from operands */ -+ cbr r11, 31 -+ cbr r9, 31 -+ -+ /* Put the number with the largest exponent in [r11, r10] -+ and the number with the smallest exponent in [r9, r8] */ -+ cp r11, r9 -+ brhs 1f /* Skip swap if operands already correctly ordered */ -+ /* Operands were not correctly ordered, swap them */ -+ mov r7, r11 -+ mov r11, r9 -+ mov r9, r7 -+ mov r7, r10 -+ mov r10, r8 -+ mov r8, r7 -+1: -+ mov lr, 0 /* Set sticky bits to zero */ -+ /* Unpack largest operand - opH */ -+ /* exp: r7 */ -+ /* sf: r11, r10 */ -+ bfextu R7, R11, 20, 11 /* Extract exponent */ -+ bfextu r11, r11, 0, 20 /* Extract mantissa */ -+ sbr r11, 20 /* Insert implicit bit */ -+ -+ /* Unpack smallest operand - opL */ -+ /* exp: r6 */ -+ /* sf: r9, r8 */ -+ bfextu R6, R9, 20, 11 /* Extract exponent */ -+ breq __avr32_f64_add_op2_subnormal -+ bfextu r9, r9, 0, 20 /* Extract mantissa */ -+ sbr r9, 20 /* Insert implicit bit */ -+ -+2: -+ /* opH is NaN or Inf. */ -+ cp.w r7, 0x7ff -+ breq __avr32_f64_add_opH_nan_or_inf -+ -+ /* Get shift amount to scale mantissa of op2. */ -+ rsub r6, r7 -+ breq __avr32_f64_add_shift_done /* No need to shift, exponents are equal*/ -+ -+ /* Scale mantissa [r9, r8] with amount [r6]. -+ Uses scratch registers [r5] and [lr]. -+ In IEEE mode:Must not forget the sticky bits we intend to shift out. */ -+ rsub r5,r6,32 /* get (32 - shift count) -+ (if shift count > 32 we get a -+ negative value, but that will -+ work as well in the code below.) */ -+ -+ cp.w r6,32 /* handle shifts >= 32 separately */ -+ brhs __avr32_f64_add_longshift -+ -+ /* small (<32) shift amount, both words are part of the shift -+ first remember whether part that is lost contains any 1 bits ... */ -+ lsl lr,r8,r5 /* shift away bits that are part of -+ final mantissa. only part that goes -+ to lr are bits that will be lost */ -+ -+ /* ... and now to the actual shift */ -+ lsl r5,r9,r5 /* get bits from msw destined for lsw*/ -+ lsr r8,r8,r6 /* shift down lsw of mantissa */ -+ lsr r9,r9,r6 /* shift down msw of mantissa */ -+ or r8,r5 /* combine these bits with prepared lsw*/ -+ -+__avr32_f64_add_shift_done: -+ /* Now add the mantissas. */ -+ add r10, r8 -+ adc r11, r11, r9 -+ -+ /* Check if we overflowed. */ -+ bld r11, 21 -+ breq __avr32_f64_add_res_of: -+ -+__avr32_f64_add_res_of_done: -+ -+ /* Pack final result*/ -+ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */ -+ /* Result in [r11,r10] */ -+ /* Insert exponent and sign bit*/ -+ bfins r11, r7, 20, 11 -+ or r11, r12 -+ -+ /* Round */ -+__avr32_f64_add_round: -+#if defined(L_avr32_f64_addsub) -+ bfextu r12, r10, 0, 1 /* Extract parity bit.*/ -+ or lr, r12 /* or it together with the sticky bits. */ -+ eorh lr, 0x8000 /* Toggle round bit. */ -+ /* We should now round up by adding one for the following cases: -+ -+ halfway sticky|parity round-up -+ 0 x no -+ 1 0 no -+ 1 1 yes -+ -+ Since we have inverted the halfway bit we can use the satu instruction -+ by saturating to 1 bit to implement this. -+ */ -+ satu lr >> 0, 1 -+#else -+ lsr lr, 31 -+#endif -+ add r10, lr -+ acr r11 -+ -+ /* Return result in [r11,r10] */ -+ ldm sp++, r5, r6, r7,pc -+ -+ -+__avr32_f64_add_opH_nan_or_inf: -+ /* Check if opH is NaN, if so return NaN */ -+ cbr r11, 20 -+ or lr, r11, r10 -+ brne __avr32_f64_add_return_nan -+ -+ /* opH is Inf. */ -+ /* Check if opL is Inf. or NaN */ -+ cp.w r6, 0x7ff -+ breq __avr32_f64_add_opL_nan_or_inf -+ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */ -+__avr32_f64_add_opL_nan_or_inf: -+ cbr r9, 20 -+ or lr, r9, r8 -+ brne __avr32_f64_add_return_nan -+ mov r10, 0 /* Generate Inf in r11, r10 */ -+ mov_imm r11, 0x7ff00000 -+ or r11, r12 /* Put sign bit back */ -+ ldm sp++, r5, r6, r7, pc/* opL Inf, return Inf */ -+__avr32_f64_add_return_nan: -+ mov r10, -1 /* Generate NaN in r11, r10 */ -+ mov r11, -1 -+ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */ -+ -+ -+__avr32_f64_add_longshift: -+ /* large (>=32) shift amount, only lsw will have bits left after shift. -+ note that shift operations will use ((shift count=r6) mod 32) so -+ we do not need to subtract 32 from shift count. */ -+ /* Saturate the shift amount to 63. If the amount -+ is any larger op2 is insignificant. */ -+ satu r6 >> 0, 6 -+ /* If shift amount is 32 there are no bits from the msw that are lost. */ -+ moveq lr, r8 -+ breq 0f -+ /* first remember whether part that is lost contains any 1 bits ... */ -+ lsl lr,r9,r5 /* save all lost bits from msw */ -+#if defined(L_avr32_f64_addsub) -+ cp.w r8, 0 -+ srne r8 -+ or lr,r8 /* also save lost bits (all) from lsw -+ now lr != 0 if we lose any bits */ -+#endif -+0: -+ /* ... and now to the actual shift */ -+ lsr r8,r9,r6 /* msw -> lsw and make rest of shift inside lsw*/ -+ mov r9,0 /* clear msw */ -+ rjmp __avr32_f64_add_shift_done -+ -+__avr32_f64_add_res_of: -+ /* We overflowed. Scale down mantissa by shifting right one position. */ -+ or lr, lr, lr << 1 /* Remember stickybits*/ -+ lsr r11, 1 -+ ror r10 -+ ror lr -+ sub r7, -1 /* Increment exponent */ -+ -+ /* Clear mantissa to set result to Inf if the exponent is 255. */ -+ cp.w r7, 0x7ff -+ moveq r10, 0 -+ moveq r11, 0 -+ moveq lr, 0 -+ rjmp __avr32_f64_add_res_of_done -+ -+__avr32_f64_add_op2_subnormal: -+ /* Set epxponent to 1 */ -+ mov r6, 1 -+ -+ /* Check if op2 is also subnormal. */ -+ cp.w r7, 0 -+ brne 2b -+ -+ cbr r11, 20 -+ /* Both operands are subnormal. Just addd the mantissas -+ and the exponent will automatically be set to 1 if -+ we overflow into a normal number. */ -+ add r10, r8 -+ adc r11, r11, r9 -+ -+ /* Add sign bit */ -+ or r11, r12 -+ -+ /* Return result in [r11,r10] */ -+ ldm sp++, r5, r6, r7,pc -+ -+ -+ -+#endif -+ -+#ifdef L_avr32_f64_to_u32 -+ /* This goes into L_fixdfsi */ -+#endif -+ -+ -+#ifdef L_avr32_f64_to_s32 -+ .global __avr32_f64_to_u32 -+ .type __avr32_f64_to_u32,@function -+__avr32_f64_to_u32: -+ cp.w r11, 0 -+ retmi 0 /* Negative returns 0 */ -+ -+ /* Fallthrough to df to signed si conversion */ -+ .global __avr32_f64_to_s32 -+ .type __avr32_f64_to_s32,@function -+__avr32_f64_to_s32: -+ lsl r12,r11,1 -+ lsr r12,21 /* extract exponent*/ -+ sub r12,1023 /* convert to unbiased exponent.*/ -+ retlo 0 /* too small exponent implies zero. */ -+ -+1: -+ rsub r12,r12,31 /* shift count = 31 - exponent */ -+ mov r9,r11 /* save sign for later...*/ -+ lsl r11,11 /* remove exponent and sign*/ -+ sbr r11,31 /* add implicit bit*/ -+ or r11,r11,r10>>21 /* get rest of bits from lsw of double */ -+ lsr r11,r11,r12 /* shift down mantissa to final place */ -+ lsl r9,1 /* sign -> carry */ -+ retcc r11 /* if positive, we are done */ -+ neg r11 /* if negative float, negate result */ -+ ret r11 -+ -+#endif /* L_fixdfsi*/ -+ -+#ifdef L_avr32_f64_to_u64 -+ /* Actual function is in L_fixdfdi */ -+#endif -+ -+#ifdef L_avr32_f64_to_s64 -+ .global __avr32_f64_to_u64 -+ .type __avr32_f64_to_u64,@function -+__avr32_f64_to_u64: -+ cp.w r11,0 -+ /* Negative numbers return zero */ -+ movmi r10, 0 -+ movmi r11, 0 -+ retmi r11 -+ -+ -+ -+ /* Fallthrough */ -+ .global __avr32_f64_to_s64 -+ .type __avr32_f64_to_s64,@function -+__avr32_f64_to_s64: -+ lsl r9,r11,1 -+ lsr r9,21 /* get exponent*/ -+ sub r9,1023 /* convert to correct range*/ -+ /* Return zero if exponent to small */ -+ movlo r10, 0 -+ movlo r11, 0 -+ retlo r11 -+ -+ mov r8,r11 /* save sign for later...*/ -+1: -+ lsl r11,11 /* remove exponent */ -+ sbr r11,31 /* add implicit bit*/ -+ or r11,r11,r10>>21 /* get rest of bits from lsw of double*/ -+ lsl r10,11 /* align lsw correctly as well */ -+ rsub r9,r9,63 /* shift count = 63 - exponent */ -+ breq 1f -+ -+ cp.w r9,32 /* is shift count more than one reg? */ -+ brhs 0f -+ -+ mov r12,r11 /* save msw */ -+ lsr r10,r10,r9 /* small shift count, shift down lsw */ -+ lsr r11,r11,r9 /* small shift count, shift down msw */ -+ rsub r9,r9,32 /* get 32-size of shifted out tail */ -+ lsl r12,r12,r9 /* align part to move from msw to lsw */ -+ or r10,r12 /* combine to get new lsw */ -+ rjmp 1f -+ -+0: -+ lsr r10,r11,r9 /* large shift count,only lsw get bits -+ note that shift count is modulo 32*/ -+ mov r11,0 /* msw will be 0 */ -+ -+1: -+ lsl r8,1 /* sign -> carry */ -+ retcc r11 /* if positive, we are done */ -+ -+ neg r11 /* if negative float, negate result */ -+ neg r10 -+ scr r11 -+ ret r11 -+ -+#endif -+ -+#ifdef L_avr32_u32_to_f64 -+ /* Code located in L_floatsidf */ -+#endif -+ -+#ifdef L_avr32_s32_to_f64 -+ .global __avr32_u32_to_f64 -+ .type __avr32_u32_to_f64,@function -+__avr32_u32_to_f64: -+ sub r11, r12, 0 /* Move to r11 and force Z flag to be updated */ -+ mov r12, 0 /* always positive */ -+ rjmp 0f /* Jump to common code for floatsidf */ -+ -+ .global __avr32_s32_to_f64 -+ .type __avr32_s32_to_f64,@function -+__avr32_s32_to_f64: -+ mov r11, r12 /* Keep original value in r12 for sign */ -+ abs r11 /* Absolute value if r12 */ -+0: -+ mov r10,0 /* let remaining bits be zero */ -+ reteq r11 /* zero long will return zero float */ -+ -+ pushm lr -+ mov r9,31+1023 /* set exponent */ -+ -+ normalize_df r9 /*exp*/, r10, r11 /* mantissa */, r8, lr /* scratch */ -+ -+ /* Check if a subnormal result was created */ -+ cp.w r9, 0 -+ brgt 0f -+ -+ adjust_subnormal_df r9 /* exp */, r10, r11 /* Mantissa */, r12 /*sign*/, r8, lr /* scratch */ -+ popm pc -+0: -+ -+ /* Round result */ -+ round_df r9 /*exp*/, r10, r11 /* Mantissa */, r8 /*scratch*/ -+ cp.w r9,0x7ff -+ brlt 0f -+ /*Return infinity */ -+ mov r10, 0 -+ mov_imm r11, 0xffe00000 -+ rjmp __floatsidf_return_op1 -+ -+0: -+ -+ /* Pack */ -+ pack_df r9 /*exp*/, r10, r11 /* mantissa */, r10, r11 /* Output df number*/ -+__floatsidf_return_op1: -+ lsl r12,1 /* shift in sign bit */ -+ ror r11 -+ -+ popm pc -+#endif -+ -+ -+#ifdef L_avr32_f32_cmp_eq -+ .global __avr32_f32_cmp_eq -+ .type __avr32_f32_cmp_eq,@function -+__avr32_f32_cmp_eq: -+ cp.w r12, r11 -+ breq 0f -+ /* If not equal check for +/-0 */ -+ /* Or together the two values and shift out the sign bit. -+ If the result is zero, then the two values are both zero. */ -+ or r12, r11 -+ lsl r12, 1 -+ reteq 1 -+ ret 0 -+0: -+ /* Numbers were equal. Check for NaN or Inf */ -+ mov_imm r11, 0xff000000 -+ lsl r12, 1 -+ cp.w r12, r11 -+ retls 1 /* 0 if NaN, 1 otherwise */ -+ ret 0 -+#endif -+ -+#if defined(L_avr32_f32_cmp_ge) || defined(L_avr32_f32_cmp_lt) -+#ifdef L_avr32_f32_cmp_ge -+ .global __avr32_f32_cmp_ge -+ .type __avr32_f32_cmp_ge,@function -+__avr32_f32_cmp_ge: -+#endif -+#ifdef L_avr32_f32_cmp_lt -+ .global __avr32_f32_cmp_lt -+ .type __avr32_f32_cmp_lt,@function -+__avr32_f32_cmp_lt: -+#endif -+ lsl r10, r12, 1 /* Remove sign bits */ -+ lsl r9, r11, 1 -+ subfeq r10, 0 -+#ifdef L_avr32_f32_cmp_ge -+ reteq 1 /* Both number are zero. Return true. */ -+#endif -+#ifdef L_avr32_f32_cmp_lt -+ reteq 0 /* Both number are zero. Return false. */ -+#endif -+ mov_imm r8, 0xff000000 -+ cp.w r10, r8 -+ rethi 0 /* Op0 is NaN */ -+ cp.w r9, r8 -+ rethi 0 /* Op1 is Nan */ -+ -+ eor r8, r11, r12 -+ bld r12, 31 -+#ifdef L_avr32_f32_cmp_ge -+ srcc r8 /* Set result to true if op0 is positive*/ -+#endif -+#ifdef L_avr32_f32_cmp_lt -+ srcs r8 /* Set result to true if op0 is negative*/ -+#endif -+ retmi r8 /* Return if signs are different */ -+ brcs 0f /* Both signs negative? */ -+ -+ /* Both signs positive */ -+ cp.w r12, r11 -+#ifdef L_avr32_f32_cmp_ge -+ reths 1 -+ retlo 0 -+#endif -+#ifdef L_avr32_f32_cmp_lt -+ reths 0 -+ retlo 1 -+#endif -+0: -+ /* Both signs negative */ -+ cp.w r11, r12 -+#ifdef L_avr32_f32_cmp_ge -+ reths 1 -+ retlo 0 -+#endif -+#ifdef L_avr32_f32_cmp_lt -+ reths 0 -+ retlo 1 -+#endif -+#endif -+ -+ -+#ifdef L_avr32_f64_cmp_eq -+ .global __avr32_f64_cmp_eq -+ .type __avr32_f64_cmp_eq,@function -+__avr32_f64_cmp_eq: -+ cp.w r10,r8 -+ cpc r11,r9 -+ breq 0f -+ -+ /* Args were not equal*/ -+ /* Both args could be zero with different sign bits */ -+ lsl r11,1 /* get rid of sign bits */ -+ lsl r9,1 -+ or r11,r10 /* Check if all bits are zero */ -+ or r11,r9 -+ or r11,r8 -+ reteq 1 /* If all zeros the arguments are equal -+ so return 1 else return 0 */ -+ ret 0 -+0: -+ /* check for NaN */ -+ lsl r11,1 -+ mov_imm r12, 0xffe00000 -+ cp.w r10,0 -+ cpc r11,r12 /* check if nan or inf */ -+ retls 1 /* If Arg is NaN return 0 else 1*/ -+ ret 0 /* Return */ -+ -+#endif -+ -+ -+#if defined(L_avr32_f64_cmp_ge) || defined(L_avr32_f64_cmp_lt) -+ -+#ifdef L_avr32_f64_cmp_ge -+ .global __avr32_f64_cmp_ge -+ .type __avr32_f64_cmp_ge,@function -+__avr32_f64_cmp_ge: -+#endif -+#ifdef L_avr32_f64_cmp_lt -+ .global __avr32_f64_cmp_lt -+ .type __avr32_f64_cmp_lt,@function -+__avr32_f64_cmp_lt: -+#endif -+ -+ /* compare magnitude of op1 and op2 */ -+ st.w --sp, lr -+ st.w --sp, r7 -+ lsl r11,1 /* Remove sign bit of op1 */ -+ srcs r12 /* Sign op1 to lsb of r12*/ -+ lsl r9,1 /* Remove sign bit of op2 */ -+ srcs r7 -+ rol r12 /* Sign op2 to lsb of lr, sign bit op1 bit 1 of r12*/ -+ -+ -+ /* Check for Nan */ -+ mov_imm lr, 0xffe00000 -+ cp.w r10,0 -+ cpc r11,lr -+ brhi 0f /* We have NaN */ -+ cp.w r8,0 -+ cpc r9,lr -+ brhi 0f /* We have NaN */ -+ -+ cp.w r11, 0 -+ subfeq r10, 0 -+ breq 3f /* op1 zero */ -+ ld.w r7, sp++ -+ ld.w lr, sp++ -+ -+ cp.w r12,3 /* both operands negative ?*/ -+ breq 1f -+ -+ cp.w r12,1 /* both operands positive? */ -+ brlo 2f -+ -+ /* Different signs. If sign of op1 is negative the difference -+ between op1 and op2 will always be negative, and if op1 is -+ positive the difference will always be positive */ -+#ifdef L_avr32_f64_cmp_ge -+ reteq 1 -+ retne 0 -+#endif -+#ifdef L_avr32_f64_cmp_lt -+ reteq 0 -+ retne 1 -+#endif -+ -+2: -+ /* Both operands positive. Just compute the difference */ -+ cp.w r10,r8 -+ cpc r11,r9 -+#ifdef L_avr32_f64_cmp_ge -+ reths 1 -+ retlo 0 -+#endif -+#ifdef L_avr32_f64_cmp_lt -+ reths 0 -+ retlo 1 -+#endif -+ -+1: -+ /* Both operands negative. Compute the difference with operands switched */ -+ cp r8,r10 -+ cpc r9,r11 -+#ifdef L_avr32_f64_cmp_ge -+ reths 1 -+ retlo 0 -+#endif -+#ifdef L_avr32_f64_cmp_lt -+ reths 0 -+ retlo 1 -+#endif -+ -+0: -+ ld.w r7, sp++ -+ popm pc, r12=0 -+#endif -+ -+3: -+ cp.w r7, 1 /* Check sign bit from r9 */ -+#ifdef L_avr32_f64_cmp_ge -+ sreq r12 /* If op2 is negative then op1 >= op2. */ -+#endif -+#ifdef L_avr32_f64_cmp_lt -+ srne r12 /* If op2 is positve then op1 <= op2. */ -+#endif -+ cp.w r9, 0 -+ subfeq r8, 0 -+ ld.w r7, sp++ -+ ld.w lr, sp++ -+#ifdef L_avr32_f64_cmp_ge -+ reteq 1 /* Both operands are zero. Return true. */ -+#endif -+#ifdef L_avr32_f64_cmp_lt -+ reteq 0 /* Both operands are zero. Return false. */ -+#endif -+ ret r12 -+ -+ -+#if defined(L_avr32_f64_div) || defined(L_avr32_f64_div_fast) -+ .align 2 -+ -+#if defined(L_avr32_f64_div_fast) -+ .global __avr32_f64_div_fast -+ .type __avr32_f64_div_fast,@function -+__avr32_f64_div_fast: -+#else -+ .global __avr32_f64_div -+ .type __avr32_f64_div,@function -+__avr32_f64_div: -+#endif -+ stm --sp, r0, r1, r2, r3, r4, r5, r6, r7,lr -+ /* op1 in {r11,r10}*/ -+ /* op2 in {r9,r8}*/ -+ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */ -+ -+ -+ /* Unpack op1 to 2.62 format*/ -+ /* exp: r7 */ -+ /* sf: r11, r10 */ -+ lsr r7, r11, 20 /* Extract exponent */ -+ -+ lsl r11, 9 /* Extract mantissa, leave room for implicit bit */ -+ or r11, r11, r10>>23 -+ lsl r10, 9 -+ sbr r11, 29 /* Insert implicit bit */ -+ andh r11, 0x3fff /*Mask last part of exponent since we use 2.62 format*/ -+ -+ cbr r7, 11 /* Clear sign bit */ -+ /* Check if normalization is needed */ -+ breq 11f /*If number is subnormal, normalize it */ -+22: -+ cp r7, 0x7ff -+ brge 2f /* Check op1 for NaN or Inf */ -+ -+ /* Unpack op2 to 2.62 format*/ -+ /* exp: r6 */ -+ /* sf: r9, r8 */ -+ lsr r6, r9, 20 /* Extract exponent */ -+ -+ lsl r9, 9 /* Extract mantissa, leave room for implicit bit */ -+ or r9, r9, r8>>23 -+ lsl r8, 9 -+ sbr r9, 29 /* Insert implicit bit */ -+ andh r9, 0x3fff /*Mask last part of exponent since we use 2.62 format*/ -+ -+ cbr r6, 11 /* Clear sign bit */ -+ /* Check if normalization is needed */ -+ breq 13f /*If number is subnormal, normalize it */ -+23: -+ cp r6, 0x7ff -+ brge 3f /* Check op2 for NaN or Inf */ -+ -+ /* Calculate new exponent */ -+ sub r7, r6 -+ sub r7,-1023 -+ -+ /* Divide */ -+ /* Approximating 1/d with the following recurrence: */ -+ /* R[j+1] = R[j]*(2-R[j]*d) */ -+ /* Using 2.62 format */ -+ /* TWO: r12 */ -+ /* d = op2 = divisor (2.62 format): r9,r8 */ -+ /* Multiply result : r5, r4 */ -+ /* Initial guess : r3, r2 */ -+ /* New approximations : r3, r2 */ -+ /* op1 = Dividend (2.62 format) : r11, r10 */ -+ -+ mov_imm r12, 0x80000000 -+ -+ /* Load initial guess, using look-up table */ -+ /* Initial guess is of format 01.XY, where XY is constructed as follows: */ -+ /* Let d be of following format: 00.1xy....., then XY=~xy */ -+ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */ -+ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */ -+ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */ -+ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */ -+ /* r2 is also part of the reg pair forming initial guess, but it*/ -+ /* is kept uninitialized to save one cycle since it has so low significance*/ -+ -+ lsr r3, r12, 1 -+ bfextu r4, r9, 27, 2 -+ com r4 -+ bfins r3, r4, 28, 2 -+ -+ /* First approximation */ -+ /* Approximating to 32 bits */ -+ /* r5 = R[j]*d */ -+ mulu.d r4, r3, r9 -+ /* r5 = 2-R[j]*d */ -+ sub r5, r12, r5<<2 -+ /* r3 = R[j]*(2-R[j]*d) */ -+ mulu.d r4, r3, r5 -+ lsl r3, r5, 2 -+ -+ /* Second approximation */ -+ /* Approximating to 32 bits */ -+ /* r5 = R[j]*d */ -+ mulu.d r4, r3, r9 -+ /* r5 = 2-R[j]*d */ -+ sub r5, r12, r5<<2 -+ /* r3 = R[j]*(2-R[j]*d) */ -+ mulu.d r4, r3, r5 -+ lsl r3, r5, 2 -+ -+ /* Third approximation */ -+ /* Approximating to 32 bits */ -+ /* r5 = R[j]*d */ -+ mulu.d r4, r3, r9 -+ /* r5 = 2-R[j]*d */ -+ sub r5, r12, r5<<2 -+ /* r3 = R[j]*(2-R[j]*d) */ -+ mulu.d r4, r3, r5 -+ lsl r3, r5, 2 -+ -+ /* Fourth approximation */ -+ /* Approximating to 64 bits */ -+ /* r5,r4 = R[j]*d */ -+ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ -+ lsl r5, 2 -+ or r5, r5, r4>>30 -+ lsl r4, 2 -+ /* r5,r4 = 2-R[j]*d */ -+ neg r4 -+ sbc r5, r12, r5 -+ /* r3,r2 = R[j]*(2-R[j]*d) */ -+ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ -+ lsl r3, r5, 2 -+ or r3, r3, r4>>30 -+ lsl r2, r4, 2 -+ -+ -+ /* Fifth approximation */ -+ /* Approximating to 64 bits */ -+ /* r5,r4 = R[j]*d */ -+ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ -+ lsl r5, 2 -+ or r5, r5, r4>>30 -+ lsl r4, 2 -+ /* r5,r4 = 2-R[j]*d */ -+ neg r4 -+ sbc r5, r12, r5 -+ /* r3,r2 = R[j]*(2-R[j]*d) */ -+ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ -+ lsl r3, r5, 2 -+ or r3, r3, r4>>30 -+ lsl r2, r4, 2 -+ -+ -+ /* Multiply with dividend to get quotient */ -+ mul_approx_df r3 /*ah*/, r2 /*al*/, r11 /*bh*/, r10 /*bl*/, r3 /*rh*/, r2 /*rl*/, r1 /*sh*/, r0 /*sl*/ -+ -+ -+ /* To increase speed, this result is not corrected before final rounding.*/ -+ /* This may give a difference to IEEE compliant code of 1 ULP.*/ -+ -+ -+ /* Adjust exponent and mantissa */ -+ /* r7:exp, [r3, r2]:mant, [r5, r4]:scratch*/ -+ /* Mantissa may be of the format 0.xxxx or 1.xxxx. */ -+ /* In the first case, shift one pos to left.*/ -+ bld r3, 31-3 -+ breq 0f -+ lsl r2, 1 -+ rol r3 -+ sub r7, 1 -+#if defined(L_avr32_f64_div) -+ /* We must scale down the dividend to 5.59 format. */ -+ lsr r10, 3 -+ or r10, r10, r11 << 29 -+ lsr r11, 3 -+ rjmp 1f -+#endif -+0: -+#if defined(L_avr32_f64_div) -+ /* We must scale down the dividend to 6.58 format. */ -+ lsr r10, 4 -+ or r10, r10, r11 << 28 -+ lsr r11, 4 -+1: -+#endif -+ cp r7, 0 -+ brle __avr32_f64_div_res_subnormal /* Result was subnormal. */ -+ -+ -+#if defined(L_avr32_f64_div) -+ /* In order to round correctly we calculate the remainder: -+ Remainder = dividend[11:r10] - divisor[r9:r8]*quotient[r3:r2] -+ for the case when the quotient is halfway between the round-up -+ value and the round down value. If the remainder then is negative -+ it means that the quotient was to big and that it should not be -+ rounded up, if the remainder is positive the quotient was to small -+ and we need to round up. If the remainder is zero it means that the -+ quotient is exact but since we need to remove the guard bit we should -+ round to even. */ -+ -+ /* Truncate and add guard bit. */ -+ andl r2, 0xff00 -+ orl r2, 0x0080 -+ -+ -+ /* Now do the multiplication. The quotient has the format 4.60 -+ while the divisor has the format 2.62 which gives a result -+ of 6.58 */ -+ mulu.d r0, r3, r8 -+ macu.d r0, r2, r9 -+ mulu.d r4, r2, r8 -+ mulu.d r8, r3, r9 -+ add r5, r0 -+ adc r8, r8, r1 -+ acr r9 -+ -+ -+ /* Check if remainder is positive, negative or equal. */ -+ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */ -+ cp r4, 0 -+ cpc r5 -+__avr32_f64_div_round_subnormal: -+ cpc r8, r10 -+ cpc r9, r11 -+ srlo r6 /* Remainder positive: we need to round up.*/ -+ moveq r6, r12 /* Remainder zero: round up if mantissa odd. */ -+#else -+ bfextu r6, r2, 7, 1 /* Get guard bit */ -+#endif -+ /* Final packing, scale down mantissa. */ -+ lsr r10, r2, 8 -+ or r10, r10, r3<<24 -+ lsr r11, r3, 8 -+ /* Insert exponent and sign bit*/ -+ bfins r11, r7, 20, 11 -+ bld lr, 31 -+ bst r11, 31 -+ -+ /* Final rounding */ -+ add r10, r6 -+ acr r11 -+ -+ /* Return result in [r11,r10] */ -+ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc -+ -+ -+2: -+ /* Op1 is NaN or inf */ -+ andh r11, 0x000f /* Extract mantissa */ -+ or r11, r10 -+ brne 16f /* Return NaN if op1 is NaN */ -+ /* Op1 is inf check op2 */ -+ lsr r6, r9, 20 /* Extract exponent */ -+ cbr r6, 11 /* Clear sign bit */ -+ cp r6, 0x7ff -+ brne 17f /* Inf/number gives inf, return inf */ -+ rjmp 16f /* The rest gives NaN*/ -+ -+3: -+ /* Op1 is a valid number. Op 2 is NaN or inf */ -+ andh r9, 0x000f /* Extract mantissa */ -+ or r9, r8 -+ brne 16f /* Return NaN if op2 is NaN */ -+ rjmp 15f /* Op2 was inf, return zero*/ -+ -+11: /* Op1 was denormal. Fix it. */ -+ lsl r11, 3 -+ or r11, r11, r10 >> 29 -+ lsl r10, 3 -+ /* Check if op1 is zero. */ -+ or r4, r10, r11 -+ breq __avr32_f64_div_op1_zero -+ normalize_df r7 /*exp*/, r10, r11 /*Mantissa*/, r4, r5 /*scratch*/ -+ lsr r10, 2 -+ or r10, r10, r11 << 30 -+ lsr r11, 2 -+ rjmp 22b -+ -+ -+13: /* Op2 was denormal. Fix it */ -+ lsl r9, 3 -+ or r9, r9, r8 >> 29 -+ lsl r8, 3 -+ /* Check if op2 is zero. */ -+ or r4, r9, r8 -+ breq 17f /* Divisor is zero -> return Inf */ -+ normalize_df r6 /*exp*/, r8, r9 /*Mantissa*/, r4, r5 /*scratch*/ -+ lsr r8, 2 -+ or r8, r8, r9 << 30 -+ lsr r9, 2 -+ rjmp 23b -+ -+ -+__avr32_f64_div_res_subnormal:/* Divide result was subnormal. */ -+#if defined(L_avr32_f64_div) -+ /* Check how much we must scale down the mantissa. */ -+ neg r7 -+ sub r7, -1 /* We do no longer have an implicit bit. */ -+ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */ -+ cp.w r7, 32 -+ brge 0f -+ /* Shift amount <32 */ -+ /* Scale down quotient */ -+ rsub r6, r7, 32 -+ lsr r2, r2, r7 -+ lsl r12, r3, r6 -+ or r2, r12 -+ lsr r3, r3, r7 -+ /* Scale down the dividend to match the scaling of the quotient. */ -+ lsl r1, r10, r6 -+ lsr r10, r10, r7 -+ lsl r12, r11, r6 -+ or r10, r12 -+ lsr r11, r11, r7 -+ mov r0, 0 -+ rjmp 1f -+0: -+ /* Shift amount >=32 */ -+ rsub r6, r7, 32 -+ moveq r0, 0 -+ moveq r12, 0 -+ breq 0f -+ lsl r0, r10, r6 -+ lsl r12, r11, r6 -+0: -+ lsr r2, r3, r7 -+ mov r3, 0 -+ /* Scale down the dividend to match the scaling of the quotient. */ -+ lsr r1, r10, r7 -+ or r1, r12 -+ lsr r10, r11, r7 -+ mov r11, 0 -+1: -+ /* Start performing the same rounding as done for normal numbers -+ but this time we have scaled the quotient and dividend and hence -+ need a little different comparison. */ -+ /* Truncate and add guard bit. */ -+ andl r2, 0xff00 -+ orl r2, 0x0080 -+ -+ /* Now do the multiplication. */ -+ mulu.d r6, r3, r8 -+ macu.d r6, r2, r9 -+ mulu.d r4, r2, r8 -+ mulu.d r8, r3, r9 -+ add r5, r6 -+ adc r8, r8, r7 -+ acr r9 -+ -+ /* Set exponent to 0 */ -+ mov r7, 0 -+ -+ /* Check if remainder is positive, negative or equal. */ -+ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */ -+ cp r4, r0 -+ cpc r5, r1 -+ /* Now the rest of the rounding is the same as for normals. */ -+ rjmp __avr32_f64_div_round_subnormal -+ -+#endif -+15: -+ /* Flush to zero for the fast version. */ -+ mov r11, lr /*Get correct sign*/ -+ andh r11, 0x8000, COH -+ mov r10, 0 -+ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc -+ -+16: /* Return NaN. */ -+ mov r11, -1 -+ mov r10, 0 -+ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc -+ -+17: -+ /* Check if op1 is zero. */ -+ or r4, r10, r11 -+ breq __avr32_f64_div_op1_zero -+ /* Return INF. */ -+ mov r11, lr /*Get correct sign*/ -+ andh r11, 0x8000, COH -+ orh r11, 0x7ff0 -+ mov r10, 0 -+ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc -+ -+__avr32_f64_div_op1_zero: -+ or r5, r8, r9 << 1 -+ breq 16b /* 0.0/0.0 -> NaN */ -+ bfextu r4, r9, 20, 11 -+ cp r4, 0x7ff -+ brne 15b /* Return zero */ -+ /* Check if divisor is Inf or NaN */ -+ or r5, r8, r9 << 12 -+ breq 15b /* Divisor is inf -> return zero */ -+ rjmp 16b /* Return NaN */ -+ -+ -+ -+ -+#endif -+ -+#if defined(L_avr32_f32_addsub) || defined(L_avr32_f32_addsub_fast) -+ -+ .align 2 -+__avr32_f32_sub_from_add: -+ /* Switch sign on op2 */ -+ eorh r11, 0x8000 -+ -+#if defined(L_avr32_f32_addsub_fast) -+ .global __avr32_f32_sub_fast -+ .type __avr32_f32_sub_fast,@function -+__avr32_f32_sub_fast: -+#else -+ .global __avr32_f32_sub -+ .type __avr32_f32_sub,@function -+__avr32_f32_sub: -+#endif -+ -+ /* Check signs */ -+ eor r8, r11, r12 -+ /* Different signs, use subtraction. */ -+ brmi __avr32_f32_add_from_sub -+ -+ /* Get sign of op1 */ -+ mov r8, r12 -+ andh r12, 0x8000, COH -+ -+ /* Remove sign from operands */ -+ cbr r11, 31 -+#if defined(L_avr32_f32_addsub_fast) -+ reteq r8 /* If op2 is zero return op1 */ -+#endif -+ cbr r8, 31 -+ -+ /* Put the number with the largest exponent in r10 -+ and the number with the smallest exponent in r9 */ -+ max r10, r8, r11 -+ min r9, r8, r11 -+ cp r10, r8 /*If largest operand (in R10) is not equal to op1*/ -+ subne r12, 1 /* Subtract 1 from sign, which will invert MSB of r12*/ -+ andh r12, 0x8000, COH /*Mask all but MSB*/ -+ -+ /* Unpack exponent and mantissa of op1 */ -+ lsl r8, r10, 8 -+ sbr r8, 31 /* Set implicit bit. */ -+ lsr r10, 23 -+ -+ /* op1 is NaN or Inf. */ -+ cp.w r10, 0xff -+ breq __avr32_f32_sub_op1_nan_or_inf -+ -+ /* Unpack exponent and mantissa of op2 */ -+ lsl r11, r9, 8 -+ sbr r11, 31 /* Set implicit bit. */ -+ lsr r9, 23 -+ -+#if defined(L_avr32_f32_addsub) -+ /* Keep sticky bit for correct IEEE rounding */ -+ st.w --sp, r12 -+ -+ /* op2 is either zero or subnormal. */ -+ breq __avr32_f32_sub_op2_subnormal -+0: -+ /* Get shift amount to scale mantissa of op2. */ -+ sub r12, r10, r9 -+ -+ breq __avr32_f32_sub_shift_done -+ -+ /* Saturate the shift amount to 31. If the amount -+ is any larger op2 is insignificant. */ -+ satu r12 >> 0, 5 -+ -+ /* Put the remaining bits into r9.*/ -+ rsub r9, r12, 32 -+ lsl r9, r11, r9 -+ -+ /* If the remaining bits are non-zero then we must subtract one -+ more from opL. */ -+ subne r8, 1 -+ srne r9 /* LSB of r9 represents sticky bits. */ -+ -+ /* Shift mantissa of op2 to same decimal point as the mantissa -+ of op1. */ -+ lsr r11, r11, r12 -+ -+ -+__avr32_f32_sub_shift_done: -+ /* Now subtract the mantissas. */ -+ sub r8, r11 -+ -+ ld.w r12, sp++ -+ -+ /* Normalize resulting mantissa. */ -+ clz r11, r8 -+ -+ retcs 0 -+ lsl r8, r8, r11 -+ sub r10, r11 -+ brle __avr32_f32_sub_subnormal_result -+ -+ /* Insert the bits we will remove from the mantissa into r9[31:24] */ -+ or r9, r9, r8 << 24 -+#else -+ /* Ignore sticky bit to simplify and speed up rounding */ -+ /* op2 is either zero or subnormal. */ -+ breq __avr32_f32_sub_op2_subnormal -+0: -+ /* Get shift amount to scale mantissa of op2. */ -+ rsub r9, r10 -+ -+ /* Saturate the shift amount to 31. If the amount -+ is any larger op2 is insignificant. */ -+ satu r9 >> 0, 5 -+ -+ /* Shift mantissa of op2 to same decimal point as the mantissa -+ of op1. */ -+ lsr r11, r11, r9 -+ -+ /* Now subtract the mantissas. */ -+ sub r8, r11 -+ -+ /* Normalize resulting mantissa. */ -+ clz r9, r8 -+ retcs 0 -+ lsl r8, r8, r9 -+ sub r10, r9 -+ brle __avr32_f32_sub_subnormal_result -+#endif -+ -+ /* Pack result. */ -+ or r12, r12, r8 >> 8 -+ bfins r12, r10, 23, 8 -+ -+ /* Round */ -+__avr32_f32_sub_round: -+#if defined(L_avr32_f32_addsub) -+ mov_imm r10, 0x80000000 -+ bld r12, 0 -+ subne r10, -1 -+ cp.w r9, r10 -+ subhs r12, -1 -+#else -+ bld r8, 7 -+ acr r12 -+#endif -+ -+ ret r12 -+ -+ -+__avr32_f32_sub_op2_subnormal: -+ /* Fix implicit bit and adjust exponent of subnormals. */ -+ cbr r11, 31 -+ /* Set exponent to 1 if we do not have a zero. */ -+ movne r9,1 -+ -+ /* Check if op1 is also subnormal. */ -+ cp.w r10, 0 -+ brne 0b -+ -+ cbr r8, 31 -+ /* If op1 is not zero set exponent to 1. */ -+ movne r10,1 -+ -+ rjmp 0b -+ -+__avr32_f32_sub_op1_nan_or_inf: -+ /* Check if op1 is NaN, if so return NaN */ -+ lsl r11, r8, 1 -+ retne -1 -+ -+ /* op1 is Inf. */ -+ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ -+ -+ /* Check if op2 is Inf. or NaN */ -+ lsr r11, r9, 23 -+ cp.w r11, 0xff -+ retne r12 /* op2 not Inf or NaN, return op1 */ -+ -+ ret -1 /* op2 Inf or NaN, return NaN */ -+ -+__avr32_f32_sub_subnormal_result: -+ /* Check if the number is so small that -+ it will be represented with zero. */ -+ rsub r10, r10, 9 -+ rsub r11, r10, 32 -+ retcs 0 -+ -+ /* Shift the mantissa into the correct position.*/ -+ lsr r10, r8, r10 -+ /* Add sign bit. */ -+ or r12, r10 -+ -+ /* Put the shifted out bits in the most significant part -+ of r8. */ -+ lsl r8, r8, r11 -+ -+#if defined(L_avr32_f32_addsub) -+ /* Add all the remainder bits used for rounding into r9 */ -+ or r9, r8 -+#else -+ lsr r8, 24 -+#endif -+ rjmp __avr32_f32_sub_round -+ -+ -+ .align 2 -+ -+__avr32_f32_add_from_sub: -+ /* Switch sign on op2 */ -+ eorh r11, 0x8000 -+ -+#if defined(L_avr32_f32_addsub_fast) -+ .global __avr32_f32_add_fast -+ .type __avr32_f32_add_fast,@function -+__avr32_f32_add_fast: -+#else -+ .global __avr32_f32_add -+ .type __avr32_f32_add,@function -+__avr32_f32_add: -+#endif -+ -+ /* Check signs */ -+ eor r8, r11, r12 -+ /* Different signs, use subtraction. */ -+ brmi __avr32_f32_sub_from_add -+ -+ /* Get sign of op1 */ -+ mov r8, r12 -+ andh r12, 0x8000, COH -+ -+ /* Remove sign from operands */ -+ cbr r11, 31 -+#if defined(L_avr32_f32_addsub_fast) -+ reteq r8 /* If op2 is zero return op1 */ -+#endif -+ cbr r8, 31 -+ -+ /* Put the number with the largest exponent in r10 -+ and the number with the smallest exponent in r9 */ -+ max r10, r8, r11 -+ min r9, r8, r11 -+ -+ /* Unpack exponent and mantissa of op1 */ -+ lsl r8, r10, 8 -+ sbr r8, 31 /* Set implicit bit. */ -+ lsr r10, 23 -+ -+ /* op1 is NaN or Inf. */ -+ cp.w r10, 0xff -+ breq __avr32_f32_add_op1_nan_or_inf -+ -+ /* Unpack exponent and mantissa of op2 */ -+ lsl r11, r9, 8 -+ sbr r11, 31 /* Set implicit bit. */ -+ lsr r9, 23 -+ -+#if defined(L_avr32_f32_addsub) -+ /* op2 is either zero or subnormal. */ -+ breq __avr32_f32_add_op2_subnormal -+0: -+ /* Keep sticky bit for correct IEEE rounding */ -+ st.w --sp, r12 -+ -+ /* Get shift amount to scale mantissa of op2. */ -+ rsub r9, r10 -+ -+ /* Saturate the shift amount to 31. If the amount -+ is any larger op2 is insignificant. */ -+ satu r9 >> 0, 5 -+ -+ /* Shift mantissa of op2 to same decimal point as the mantissa -+ of op1. */ -+ lsr r12, r11, r9 -+ -+ /* Put the remainding bits into r11[23:..].*/ -+ rsub r9, r9, (32-8) -+ lsl r11, r11, r9 -+ /* Insert the bits we will remove from the mantissa into r11[31:24] */ -+ bfins r11, r12, 24, 8 -+ -+ /* Now add the mantissas. */ -+ add r8, r12 -+ -+ ld.w r12, sp++ -+#else -+ /* Ignore sticky bit to simplify and speed up rounding */ -+ /* op2 is either zero or subnormal. */ -+ breq __avr32_f32_add_op2_subnormal -+0: -+ /* Get shift amount to scale mantissa of op2. */ -+ rsub r9, r10 -+ -+ /* Saturate the shift amount to 31. If the amount -+ is any larger op2 is insignificant. */ -+ satu r9 >> 0, 5 -+ -+ /* Shift mantissa of op2 to same decimal point as the mantissa -+ of op1. */ -+ lsr r11, r11, r9 -+ -+ /* Now add the mantissas. */ -+ add r8, r11 -+ -+#endif -+ /* Check if we overflowed. */ -+ brcs __avr32_f32_add_res_of -+1: -+ /* Pack result. */ -+ or r12, r12, r8 >> 8 -+ bfins r12, r10, 23, 8 -+ -+ /* Round */ -+#if defined(L_avr32_f32_addsub) -+ mov_imm r10, 0x80000000 -+ bld r12, 0 -+ subne r10, -1 -+ cp.w r11, r10 -+ subhs r12, -1 -+#else -+ bld r8, 7 -+ acr r12 -+#endif -+ -+ ret r12 -+ -+__avr32_f32_add_op2_subnormal: -+ /* Fix implicit bit and adjust exponent of subnormals. */ -+ cbr r11, 31 -+ /* Set exponent to 1 if we do not have a zero. */ -+ movne r9,1 -+ -+ /* Check if op1 is also subnormal. */ -+ cp.w r10, 0 -+ brne 0b -+ /* Both operands subnormal, just add the mantissas and -+ pack. If the addition of the subnormal numbers results -+ in a normal number then the exponent will automatically -+ be set to 1 by the addition. */ -+ cbr r8, 31 -+ add r11, r8 -+ or r12, r12, r11 >> 8 -+ ret r12 -+ -+__avr32_f32_add_op1_nan_or_inf: -+ /* Check if op1 is NaN, if so return NaN */ -+ lsl r11, r8, 1 -+ retne -1 -+ -+ /* op1 is Inf. */ -+ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ -+ -+ /* Check if op2 is Inf. or NaN */ -+ lsr r11, r9, 23 -+ cp.w r11, 0xff -+ retne r12 /* op2 not Inf or NaN, return op1 */ -+ -+ lsl r9, 9 -+ reteq r12 /* op2 Inf return op1 */ -+ ret -1 /* op2 is NaN, return NaN */ -+ -+__avr32_f32_add_res_of: -+ /* We overflowed. Increase exponent and shift mantissa.*/ -+ lsr r8, 1 -+ sub r10, -1 -+ -+ /* Clear mantissa to set result to Inf if the exponent is 255. */ -+ cp.w r10, 255 -+ moveq r8, 0 -+ moveq r11, 0 -+ rjmp 1b -+ -+ -+#endif -+ -+ -+#if defined(L_avr32_f32_div) || defined(L_avr32_f32_div_fast) -+ .align 2 -+ -+#if defined(L_avr32_f32_div_fast) -+ .global __avr32_f32_div_fast -+ .type __avr32_f32_div_fast,@function -+__avr32_f32_div_fast: -+#else -+ .global __avr32_f32_div -+ .type __avr32_f32_div,@function -+__avr32_f32_div: -+#endif -+ -+ eor r8, r11, r12 /* MSB(r8) = Sign(op1) ^ Sign(op2) */ -+ -+ /* Unpack */ -+ lsl r12,1 -+ lsl r11,1 -+ breq 4f /* Check op2 for zero */ -+ -+ tst r12, r12 -+ moveq r9, 0 -+ breq 12f -+ -+ /* Unpack op1*/ -+ /* exp: r9 */ -+ /* sf: r12 */ -+ lsr r9, r12, 24 -+ breq 11f /*If number is subnormal*/ -+ cp r9, 0xff -+ brhs 2f /* Check op1 for NaN or Inf */ -+ lsl r12, 7 -+ sbr r12, 31 /*Implicit bit*/ -+12: -+ -+ /* Unpack op2*/ -+ /* exp: r10 */ -+ /* sf: r11 */ -+ lsr r10, r11, 24 -+ breq 13f /*If number is subnormal*/ -+ cp r10, 0xff -+ brhs 3f /* Check op2 for NaN or Inf */ -+ lsl r11,7 -+ sbr r11, 31 /*Implicit bit*/ -+ -+ cp.w r9, 0 -+ subfeq r12, 0 -+ reteq 0 /* op1 is zero and op2 is not zero */ -+ /* or NaN so return zero */ -+ -+14: -+ -+ /* For UC3, store with predecrement is faster than stm */ -+ st.w --sp, r5 -+ st.d --sp, r6 -+ -+ /* Calculate new exponent */ -+ sub r9, r10 -+ sub r9,-127 -+ -+ /* Divide */ -+ /* Approximating 1/d with the following recurrence: */ -+ /* R[j+1] = R[j]*(2-R[j]*d) */ -+ /* Using 2.30 format */ -+ /* TWO: r10 */ -+ /* d: r5 */ -+ /* Multiply result : r6, r7 */ -+ /* Initial guess : r11 */ -+ /* New approximations : r11 */ -+ /* Dividend : r12 */ -+ -+ /* Load TWO */ -+ mov_imm r10, 0x80000000 -+ -+ lsr r12, 2 /* Get significand of Op1 in 2.30 format */ -+ lsr r5, r11, 2 /* Get significand of Op2 (=d) in 2.30 format */ -+ -+ /* Load initial guess, using look-up table */ -+ /* Initial guess is of format 01.XY, where XY is constructed as follows: */ -+ /* Let d be of following format: 00.1xy....., then XY=~xy */ -+ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */ -+ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */ -+ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */ -+ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */ -+ -+ lsr r11, r10, 1 -+ bfextu r6, r5, 27, 2 -+ com r6 -+ bfins r11, r6, 28, 2 -+ -+ /* First approximation */ -+ /* r7 = R[j]*d */ -+ mulu.d r6, r11, r5 -+ /* r7 = 2-R[j]*d */ -+ sub r7, r10, r7<<2 -+ /* r11 = R[j]*(2-R[j]*d) */ -+ mulu.d r6, r11, r7 -+ lsl r11, r7, 2 -+ -+ /* Second approximation */ -+ /* r7 = R[j]*d */ -+ mulu.d r6, r11, r5 -+ /* r7 = 2-R[j]*d */ -+ sub r7, r10, r7<<2 -+ /* r11 = R[j]*(2-R[j]*d) */ -+ mulu.d r6, r11, r7 -+ lsl r11, r7, 2 -+ -+ /* Third approximation */ -+ /* r7 = R[j]*d */ -+ mulu.d r6, r11, r5 -+ /* r7 = 2-R[j]*d */ -+ sub r7, r10, r7<<2 -+ /* r11 = R[j]*(2-R[j]*d) */ -+ mulu.d r6, r11, r7 -+ lsl r11, r7, 2 -+ -+ /* Fourth approximation */ -+ /* r7 = R[j]*d */ -+ mulu.d r6, r11, r5 -+ /* r7 = 2-R[j]*d */ -+ sub r7, r10, r7<<2 -+ /* r11 = R[j]*(2-R[j]*d) */ -+ mulu.d r6, r11, r7 -+ lsl r11, r7, 2 -+ -+ -+ /* Multiply with dividend to get quotient, r7 = sf(op1)/sf(op2) */ -+ mulu.d r6, r11, r12 -+ -+ /* Shift by 3 to get result in 1.31 format, as required by the exponent. */ -+ /* Note that 1.31 format is already used by the exponent in r9, since */ -+ /* a bias of 127 was added to the result exponent, even though the implicit */ -+ /* bit was inserted. This gives the exponent an additional bias of 1, which */ -+ /* supports 1.31 format. */ -+ //lsl r10, r7, 3 -+ -+ /* Adjust exponent and mantissa in case the result is of format -+ 0000.1xxx to 0001.xxx*/ -+#if defined(L_avr32_f32_div) -+ lsr r12, 4 /* Scale dividend to 6.26 format to match the -+ result of the multiplication of the divisor and -+ quotient to get the remainder. */ -+#endif -+ bld r7, 31-3 -+ breq 0f -+ lsl r7, 1 -+ sub r9, 1 -+#if defined(L_avr32_f32_div) -+ lsl r12, 1 /* Scale dividend to 5.27 format to match the -+ result of the multiplication of the divisor and -+ quotient to get the remainder. */ -+#endif -+0: -+ cp r9, 0 -+ brle __avr32_f32_div_res_subnormal /* Result was subnormal. */ -+ -+ -+#if defined(L_avr32_f32_div) -+ /* In order to round correctly we calculate the remainder: -+ Remainder = dividend[r12] - divisor[r5]*quotient[r7] -+ for the case when the quotient is halfway between the round-up -+ value and the round down value. If the remainder then is negative -+ it means that the quotient was to big and that it should not be -+ rounded up, if the remainder is positive the quotient was to small -+ and we need to round up. If the remainder is zero it means that the -+ quotient is exact but since we need to remove the guard bit we should -+ round to even. */ -+ andl r7, 0xffe0 -+ orl r7, 0x0010 -+ -+ /* Now do the multiplication. The quotient has the format 4.28 -+ while the divisor has the format 2.30 which gives a result -+ of 6.26 */ -+ mulu.d r10, r5, r7 -+ -+ /* Check if remainder is positive, negative or equal. */ -+ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */ -+ cp r10, 0 -+__avr32_f32_div_round_subnormal: -+ cpc r11, r12 -+ srlo r11 /* Remainder positive: we need to round up.*/ -+ moveq r11, r5 /* Remainder zero: round up if mantissa odd. */ -+#else -+ bfextu r11, r7, 4, 1 /* Get guard bit */ -+#endif -+ -+ /* Pack final result*/ -+ lsr r12, r7, 5 -+ bfins r12, r9, 23, 8 -+ /* For UC3, load with postincrement is faster than ldm */ -+ ld.d r6, sp++ -+ ld.w r5, sp++ -+ bld r8, 31 -+ bst r12, 31 -+ /* Rounding add. */ -+ add r12, r11 -+ ret r12 -+ -+__divsf_return_op1: -+ lsl r8, 1 -+ ror r12 -+ ret r12 -+ -+ -+2: -+ /* Op1 is NaN or inf */ -+ retne -1 /* Return NaN if op1 is NaN */ -+ /* Op1 is inf check op2 */ -+ mov_imm r9, 0xff000000 -+ cp r11, r9 -+ brlo __divsf_return_op1 /* inf/number gives inf */ -+ ret -1 /* The rest gives NaN*/ -+3: -+ /* Op2 is NaN or inf */ -+ reteq 0 /* Return zero if number/inf*/ -+ ret -1 /* Return NaN*/ -+4: -+ /* Op1 is zero ? */ -+ tst r12,r12 -+ reteq -1 /* 0.0/0.0 is NaN */ -+ /* Op1 is Nan? */ -+ lsr r9, r12, 24 -+ breq 11f /*If number is subnormal*/ -+ cp r9, 0xff -+ brhs 2b /* Check op1 for NaN or Inf */ -+ /* Nonzero/0.0 is Inf. Sign bit will be shifted in before returning*/ -+ mov_imm r12, 0xff000000 -+ rjmp __divsf_return_op1 -+ -+11: /* Op1 was denormal. Fix it. */ -+ lsl r12,7 -+ clz r9,r12 -+ lsl r12,r12,r9 -+ rsub r9,r9,1 -+ rjmp 12b -+ -+13: /* Op2 was denormal. Fix it. */ -+ lsl r11,7 -+ clz r10,r11 -+ lsl r11,r11,r10 -+ rsub r10,r10,1 -+ rjmp 14b -+ -+ -+__avr32_f32_div_res_subnormal: /* Divide result was subnormal */ -+#if defined(L_avr32_f32_div) -+ /* Check how much we must scale down the mantissa. */ -+ neg r9 -+ sub r9, -1 /* We do no longer have an implicit bit. */ -+ satu r9 >> 0, 5 /* Saturate shift amount to max 32. */ -+ /* Scale down quotient */ -+ rsub r10, r9, 32 -+ lsr r7, r7, r9 -+ /* Scale down the dividend to match the scaling of the quotient. */ -+ lsl r6, r12, r10 /* Make the divident 64-bit and put the lsw in r6 */ -+ lsr r12, r12, r9 -+ -+ /* Start performing the same rounding as done for normal numbers -+ but this time we have scaled the quotient and dividend and hence -+ need a little different comparison. */ -+ andl r7, 0xffe0 -+ orl r7, 0x0010 -+ -+ /* Now do the multiplication. The quotient has the format 4.28 -+ while the divisor has the format 2.30 which gives a result -+ of 6.26 */ -+ mulu.d r10, r5, r7 -+ -+ /* Set exponent to 0 */ -+ mov r9, 0 -+ -+ /* Check if remainder is positive, negative or equal. */ -+ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */ -+ cp r10, r6 -+ rjmp __avr32_f32_div_round_subnormal -+ -+#else -+ ld.d r6, sp++ -+ ld.w r5, sp++ -+ /*Flush to zero*/ -+ ret 0 -+#endif -+#endif -+ -+#ifdef L_avr32_f32_mul -+ .global __avr32_f32_mul -+ .type __avr32_f32_mul,@function -+ -+ -+__avr32_f32_mul: -+ mov r8, r12 -+ eor r12, r11 /* MSB(r8) = Sign(op1) ^ Sign(op2) */ -+ andh r12, 0x8000, COH -+ -+ /* arrange operands so that that op1 >= op2 */ -+ cbr r8, 31 -+ breq __avr32_f32_mul_op1_zero -+ cbr r11, 31 -+ -+ /* Put the number with the largest exponent in r10 -+ and the number with the smallest exponent in r9 */ -+ max r10, r8, r11 -+ min r9, r8, r11 -+ -+ /* Unpack exponent and mantissa of op1 */ -+ lsl r8, r10, 8 -+ sbr r8, 31 /* Set implicit bit. */ -+ lsr r10, 23 -+ -+ /* op1 is NaN or Inf. */ -+ cp.w r10, 0xff -+ breq __avr32_f32_mul_op1_nan_or_inf -+ -+ /* Unpack exponent and mantissa of op2 */ -+ lsl r11, r9, 8 -+ sbr r11, 31 /* Set implicit bit. */ -+ lsr r9, 23 -+ -+ /* op2 is either zero or subnormal. */ -+ breq __avr32_f32_mul_op2_subnormal -+0: -+ /* Calculate new exponent */ -+ add r9,r10 -+ -+ /* Do the multiplication */ -+ mulu.d r10,r8,r11 -+ -+ /* We might need to scale up by two if the MSB of the result is -+ zero. */ -+ lsl r8, r11, 1 -+ movcc r11, r8 -+ subcc r9, 1 -+ -+ /* Put the shifted out bits of the mantissa into r10 */ -+ lsr r10, 8 -+ bfins r10, r11, 24, 8 -+ -+ sub r9,(127-1) /* remove extra exponent bias */ -+ brle __avr32_f32_mul_res_subnormal -+ -+ /* Check for Inf. */ -+ cp.w r9, 0xff -+ brge 1f -+ -+ /* Pack result. */ -+ or r12, r12, r11 >> 8 -+ bfins r12, r9, 23, 8 -+ -+ /* Round */ -+__avr32_f32_mul_round: -+ mov_imm r8, 0x80000000 -+ bld r12, 0 -+ subne r8, -1 -+ -+ cp.w r10, r8 -+ subhs r12, -1 -+ -+ ret r12 -+ -+1: -+ /* Return Inf */ -+ orh r12, 0x7f80 -+ ret r12 -+ -+__avr32_f32_mul_op2_subnormal: -+ cbr r11, 31 -+ clz r9, r11 -+ retcs 0 /* op2 is zero. Return 0 */ -+ sub r9, 8 -+ lsl r11, r11, r9 -+ rsub r9, r9, 1 -+ -+ /* Check if op2 is subnormal. */ -+ tst r10, r10 -+ brne 0b -+ -+ /* op2 is subnormal */ -+ cbr r8, 31 -+ clz r10, r11 -+ retcs 0 /* op1 is zero. Return 0 */ -+ lsl r8, r8, r10 -+ rsub r10, r10, 1 -+ -+ rjmp 0b -+ -+ -+__avr32_f32_mul_op1_nan_or_inf: -+ /* Check if op1 is NaN, if so return NaN */ -+ lsl r11, r8, 1 -+ retne -1 -+ -+ /* op1 is Inf. */ -+ tst r9, r9 -+ reteq -1 /* Inf * 0 -> NaN */ -+ -+ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ -+ -+ /* Check if op2 is Inf. or NaN */ -+ lsr r11, r9, 23 -+ cp.w r11, 0xff -+ retne r12 /* op2 not Inf or NaN, return Info */ -+ -+ lsl r9, 9 -+ reteq r12 /* op2 Inf return Inf */ -+ ret -1 /* op2 is NaN, return NaN */ -+ -+__avr32_f32_mul_res_subnormal: -+ /* Check if the number is so small that -+ it will be represented with zero. */ -+ rsub r9, r9, 9 -+ rsub r8, r9, 32 -+ retcs 0 -+ -+ /* Shift the mantissa into the correct position.*/ -+ lsr r9, r11, r9 -+ /* Add sign bit. */ -+ or r12, r9 -+ /* Put the shifted out bits in the most significant part -+ of r8. */ -+ lsl r11, r11, r8 -+ -+ /* Add all the remainder bits used for rounding into r11 */ -+ andh r10, 0x00FF -+ or r10, r11 -+ rjmp __avr32_f32_mul_round -+ -+__avr32_f32_mul_op1_zero: -+ bfextu r10, r11, 23, 8 -+ cp.w r10, 0xff -+ retne r12 -+ reteq -1 -+ -+#endif -+ -+ -+#ifdef L_avr32_s32_to_f32 -+ .global __avr32_s32_to_f32 -+ .type __avr32_s32_to_f32,@function -+__avr32_s32_to_f32: -+ cp r12, 0 -+ reteq r12 /* If zero then return zero float */ -+ mov r11, r12 /* Keep the sign */ -+ abs r12 /* Compute the absolute value */ -+ mov r10, 31 + 127 /* Set the correct exponent */ -+ -+ /* Normalize */ -+ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ -+ -+ /* Check for subnormal result */ -+ cp.w r10, 0 -+ brle __avr32_s32_to_f32_subnormal -+ -+ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ -+ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/ -+ lsl r11, 1 -+ ror r12 -+ ret r12 -+ -+__avr32_s32_to_f32_subnormal: -+ /* Adjust a subnormal result */ -+ adjust_subnormal_sf r12/*sf*/, r10 /*exp*/, r12 /*mant*/, r11/*sign*/, r9 /*scratch*/ -+ ret r12 -+ -+#endif -+ -+#ifdef L_avr32_u32_to_f32 -+ .global __avr32_u32_to_f32 -+ .type __avr32_u32_to_f32,@function -+__avr32_u32_to_f32: -+ cp r12, 0 -+ reteq r12 /* If zero then return zero float */ -+ mov r10, 31 + 127 /* Set the correct exponent */ -+ -+ /* Normalize */ -+ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ -+ -+ /* Check for subnormal result */ -+ cp.w r10, 0 -+ brle __avr32_u32_to_f32_subnormal -+ -+ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ -+ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/ -+ lsr r12,1 /* Sign bit is 0 for unsigned int */ -+ ret r12 -+ -+__avr32_u32_to_f32_subnormal: -+ /* Adjust a subnormal result */ -+ mov r8, 0 -+ adjust_subnormal_sf r12/*sf*/,r10 /*exp*/, r12 /*mant*/,r8/*sign*/, r9 /*scratch*/ -+ ret r12 -+ -+ -+#endif -+ -+ -+#ifdef L_avr32_f32_to_s32 -+ .global __avr32_f32_to_s32 -+ .type __avr32_f32_to_s32,@function -+__avr32_f32_to_s32: -+ bfextu r11, r12, 23, 8 -+ sub r11,127 /* Fix bias */ -+ retlo 0 /* Negative exponent yields zero integer */ -+ -+ /* Shift mantissa into correct position */ -+ rsub r11,r11,31 /* Shift amount */ -+ lsl r10,r12,8 /* Get mantissa */ -+ sbr r10,31 /* Add implicit bit */ -+ lsr r10,r10,r11 /* Perform shift */ -+ lsl r12,1 /* Check sign */ -+ retcc r10 /* if positive, we are done */ -+ neg r10 /* if negative float, negate result */ -+ ret r10 -+ -+#endif -+ -+#ifdef L_avr32_f32_to_u32 -+ .global __avr32_f32_to_u32 -+ .type __avr32_f32_to_u32,@function -+__avr32_f32_to_u32: -+ cp r12,0 -+ retmi 0 /* Negative numbers gives 0 */ -+ bfextu r11, r12, 23, 8 /* Extract exponent */ -+ sub r11,127 /* Fix bias */ -+ retlo 0 /* Negative exponent yields zero integer */ -+ -+ /* Shift mantissa into correct position */ -+ rsub r11,r11,31 /* Shift amount */ -+ lsl r12,8 /* Get mantissa */ -+ sbr r12,31 /* Add implicit bit */ -+ lsr r12,r12,r11 /* Perform shift */ -+ ret r12 -+ -+#endif -+ -+#ifdef L_avr32_f32_to_f64 -+ .global __avr32_f32_to_f64 -+ .type __avr32_f32_to_f64,@function -+ -+__avr32_f32_to_f64: -+ lsl r11,r12,1 /* Remove sign bit, keep original value in r12*/ -+ moveq r10, 0 -+ reteq r11 /* Return zero if input is zero */ -+ -+ bfextu r9,r11,24,8 /* Get exponent */ -+ cp.w r9,0xff /* check for NaN or inf */ -+ breq 0f -+ -+ lsl r11,7 /* Convert sf mantissa to df format */ -+ mov r10,0 -+ -+ /* Check if implicit bit should be set */ -+ cp.w r9, 0 -+ subeq r9,-1 /* Adjust exponent if it was 0 */ -+ srne r8 -+ or r11, r11, r8 << 31 /* Set implicit bit if needed */ -+ sub r9,(127-0x3ff) /* Convert exponent to df format exponent */ -+ -+ /*We know that low register of mantissa is 0, and will be unaffected by normalization.*/ -+ /*We can therefore use the faster normalize_sf function instead of normalize_df.*/ -+ normalize_sf r9 /*exp*/, r11 /*mantissa*/, r8 /*scratch*/ -+ pack_df r9 /*exp*/, r10, r11 /*mantissa*/, r10, r11 /*df*/ -+ -+__extendsfdf_return_op1: -+ /* Rotate in sign bit */ -+ lsl r12, 1 -+ ror r11 -+ ret r11 -+ -+0: -+ /* Inf or NaN*/ -+ mov_imm r10, 0xffe00000 -+ lsl r11,8 /* check mantissa */ -+ movne r11, -1 /* Return NaN */ -+ moveq r11, r10 /* Return inf */ -+ mov r10, 0 -+ rjmp __extendsfdf_return_op1 -+#endif -+ -+ -+#ifdef L_avr32_f64_to_f32 -+ .global __avr32_f64_to_f32 -+ .type __avr32_f64_to_f32,@function -+ -+__avr32_f64_to_f32: -+ /* Unpack */ -+ lsl r9,r11,1 /* Unpack exponent */ -+ lsr r9,21 -+ -+ reteq 0 /* If exponent is 0 the number is so small -+ that the conversion to single float gives -+ zero */ -+ -+ lsl r8,r11,10 /* Adjust mantissa */ -+ or r12,r8,r10>>22 -+ -+ lsl r10,10 /* Check if there are any remaining bits -+ in the low part of the mantissa.*/ -+ neg r10 -+ rol r12 /* If there were remaining bits then set lsb -+ of mantissa to 1 */ -+ -+ cp r9,0x7ff -+ breq 2f /* Check for NaN or inf */ -+ -+ sub r9,(0x3ff-127) /* Adjust bias of exponent */ -+ sbr r12,31 /* set the implicit bit.*/ -+ -+ cp.w r9, 0 /* Check for subnormal number */ -+ brle 3f -+ -+ round_sf r9 /*exp*/, r12 /*mant*/, r10 /*scratch*/ -+ pack_sf r12 /*sf*/, r9 /*exp*/, r12 /*mant*/ -+__truncdfsf_return_op1: -+ /* Rotate in sign bit */ -+ lsl r11, 1 -+ ror r12 -+ ret r12 -+ -+2: -+ /* NaN or inf */ -+ cbr r12,31 /* clear implicit bit */ -+ retne -1 /* Return NaN if mantissa not zero */ -+ mov_imm r12, 0x7f800000 -+ ret r12 /* Return inf */ -+ -+3: /* Result is subnormal. Adjust it.*/ -+ adjust_subnormal_sf r12/*sf*/,r9 /*exp*/, r12 /*mant*/, r11/*sign*/, r10 /*scratch*/ -+ ret r12 -+ -+ -+#endif -+ -+#if defined(L_mulsi3) && defined(__AVR32_NO_MUL__) -+ .global __mulsi3 -+ .type __mulsi3,@function -+ -+__mulsi3: -+ mov r9, 0 -+0: -+ lsr r11, 1 -+ addcs r9, r9, r12 -+ breq 1f -+ lsl r12, 1 -+ rjmp 0b -+1: -+ ret r9 -+#endif ---- /dev/null -+++ b/gcc/config/avr32/lib2funcs.S -@@ -0,0 +1,21 @@ -+ .align 4 -+ .global __nonlocal_goto -+ .type __nonlocal_goto,@function -+ -+/* __nonlocal_goto: This function handles nonlocal_goto's in gcc. -+ -+ parameter 0 (r12) = New Frame Pointer -+ parameter 1 (r11) = Address to goto -+ parameter 2 (r10) = New Stack Pointer -+ -+ This function invalidates the return stack, since it returns from a -+ function without using a return instruction. -+*/ -+__nonlocal_goto: -+ mov r7, r12 -+ mov sp, r10 -+ frs # Flush return stack -+ mov pc, r11 -+ -+ -+ ---- /dev/null -+++ b/gcc/config/avr32/linux-elf.h -@@ -0,0 +1,151 @@ -+/* -+ Linux/Elf specific definitions. -+ Copyright 2003-2006 Atmel Corporation. -+ -+ Written by Ronny Pedersen, Atmel Norway, -+ and H�vard Skinnemoen, Atmel Norway, -+ -+ This file is part of GCC. -+ -+ This program is free software; you can redistribute it and/or modify -+ it under the terms of the GNU General Public License as published by -+ the Free Software Foundation; either version 2 of the License, or -+ (at your option) any later version. -+ -+ This program is distributed in the hope that it will be useful, -+ but WITHOUT ANY WARRANTY; without even the implied warranty of -+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+ GNU General Public License for more details. -+ -+ You should have received a copy of the GNU General Public License -+ along with this program; if not, write to the Free Software -+ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ -+ -+ -+ -+/* elfos.h should have already been included. Now just override -+ any conflicting definitions and add any extras. */ -+ -+/* Run-time Target Specification. */ -+#undef TARGET_VERSION -+#define TARGET_VERSION fputs (" (AVR32 GNU/Linux with ELF)", stderr); -+ -+/* Do not assume anything about header files. */ -+#define NO_IMPLICIT_EXTERN_C -+ -+/* The GNU C++ standard library requires that these macros be defined. */ -+#undef CPLUSPLUS_CPP_SPEC -+#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)" -+ -+/* Now we define the strings used to build the spec file. */ -+#undef LIB_SPEC -+#define LIB_SPEC \ -+ "%{pthread:-lpthread} \ -+ %{shared:-lc} \ -+ %{!shared:%{profile:-lc_p}%{!profile:-lc}}" -+ -+/* Provide a STARTFILE_SPEC appropriate for GNU/Linux. Here we add -+ the GNU/Linux magical crtbegin.o file (see crtstuff.c) which -+ provides part of the support for getting C++ file-scope static -+ object constructed before entering `main'. */ -+ -+#undef STARTFILE_SPEC -+#define STARTFILE_SPEC \ -+ "%{!shared: \ -+ %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} \ -+ %{!p:%{profile:gcrt1.o%s} \ -+ %{!profile:crt1.o%s}}}} \ -+ crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}" -+ -+/* Provide a ENDFILE_SPEC appropriate for GNU/Linux. Here we tack on -+ the GNU/Linux magical crtend.o file (see crtstuff.c) which -+ provides part of the support for getting C++ file-scope static -+ object constructed before entering `main', followed by a normal -+ GNU/Linux "finalizer" file, `crtn.o'. */ -+ -+#undef ENDFILE_SPEC -+#define ENDFILE_SPEC \ -+ "%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s" -+ -+#undef ASM_SPEC -+#define ASM_SPEC "%{!mno-pic:%{!fno-pic:--pic}} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{mcpu=*:-mcpu=%*}" -+ -+#undef LINK_SPEC -+#define LINK_SPEC "%{version:-v} \ -+ %{static:-Bstatic} \ -+ %{shared:-shared} \ -+ %{symbolic:-Bsymbolic} \ -+ %{rdynamic:-export-dynamic} \ -+ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0} \ -+ %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}}" -+ -+#define TARGET_OS_CPP_BUILTINS() LINUX_TARGET_OS_CPP_BUILTINS() -+ -+/* This is how we tell the assembler that two symbols have the same value. */ -+#define ASM_OUTPUT_DEF(FILE, NAME1, NAME2) \ -+ do \ -+ { \ -+ assemble_name (FILE, NAME1); \ -+ fputs (" = ", FILE); \ -+ assemble_name (FILE, NAME2); \ -+ fputc ('\n', FILE); \ -+ } \ -+ while (0) -+ -+ -+ -+#undef CC1_SPEC -+#define CC1_SPEC "%{profile:-p}" -+ -+/* Target CPU builtins. */ -+#define TARGET_CPU_CPP_BUILTINS() \ -+ do \ -+ { \ -+ builtin_define ("__avr32__"); \ -+ builtin_define ("__AVR32__"); \ -+ builtin_define ("__AVR32_LINUX__"); \ -+ builtin_define (avr32_part->macro); \ -+ builtin_define (avr32_arch->macro); \ -+ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \ -+ builtin_define ("__AVR32_AVR32A__"); \ -+ else \ -+ builtin_define ("__AVR32_AVR32B__"); \ -+ if (TARGET_UNALIGNED_WORD) \ -+ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \ -+ if (TARGET_SIMD) \ -+ builtin_define ("__AVR32_HAS_SIMD__"); \ -+ if (TARGET_DSP) \ -+ builtin_define ("__AVR32_HAS_DSP__"); \ -+ if (TARGET_RMW) \ -+ builtin_define ("__AVR32_HAS_RMW__"); \ -+ if (TARGET_BRANCH_PRED) \ -+ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \ -+ if (TARGET_FAST_FLOAT) \ -+ builtin_define ("__AVR32_FAST_FLOAT__"); \ -+ } \ -+ while (0) -+ -+ -+ -+/* Call the function profiler with a given profile label. */ -+#undef FUNCTION_PROFILER -+#define FUNCTION_PROFILER(STREAM, LABELNO) \ -+ do \ -+ { \ -+ fprintf (STREAM, "\tmov\tlr, lo(mcount)\n\torh\tlr, hi(mcount)\n"); \ -+ fprintf (STREAM, "\ticall lr\n"); \ -+ } \ -+ while (0) -+ -+#define NO_PROFILE_COUNTERS 1 -+ -+/* For dynamic libraries to work */ -+/* #define PLT_REG_CALL_CLOBBERED 1 */ -+#define AVR32_ALWAYS_PIC 1 -+ -+/* uclibc does not implement sinf, cosf etc. */ -+#undef TARGET_C99_FUNCTIONS -+#define TARGET_C99_FUNCTIONS 0 -+ -+#define LINK_GCC_C_SEQUENCE_SPEC \ -+ "%{static:--start-group} %G %L %{static:--end-group}%{!static:%G}" ---- /dev/null -+++ b/gcc/config/avr32/predicates.md -@@ -0,0 +1,422 @@ -+;; AVR32 predicates file. -+;; Copyright 2003-2006 Atmel Corporation. -+;; -+;; Written by Ronny Pedersen, Atmel Norway, -+;; -+;; This file is part of GCC. -+;; -+;; This program is free software; you can redistribute it and/or modify -+;; it under the terms of the GNU General Public License as published by -+;; the Free Software Foundation; either version 2 of the License, or -+;; (at your option) any later version. -+;; -+;; This program is distributed in the hope that it will be useful, -+;; but WITHOUT ANY WARRANTY; without even the implied warranty of -+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+;; GNU General Public License for more details. -+;; -+;; You should have received a copy of the GNU General Public License -+;; along with this program; if not, write to the Free Software -+;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. -+ -+ -+;; True if the operand is a memory reference which contains an -+;; Address consisting of a single pointer register -+(define_predicate "avr32_indirect_register_operand" -+ (and (match_code "mem") -+ (match_test "register_operand(XEXP(op, 0), SImode)"))) -+ -+ -+ -+;; Address expression with a base pointer offset with -+;; a register displacement -+(define_predicate "avr32_indexed_memory_operand" -+ (and (match_code "mem") -+ (match_test "GET_CODE(XEXP(op, 0)) == PLUS")) -+ { -+ -+ rtx op0 = XEXP(XEXP(op, 0), 0); -+ rtx op1 = XEXP(XEXP(op, 0), 1); -+ -+ return ((avr32_address_register_rtx_p (op0, 0) -+ && avr32_legitimate_index_p (GET_MODE(op), op1, 0)) -+ || (avr32_address_register_rtx_p (op1, 0) -+ && avr32_legitimate_index_p (GET_MODE(op), op0, 0))); -+ -+ }) -+ -+;; Operand suitable for the ld.sb instruction -+(define_predicate "load_sb_memory_operand" -+ (ior (match_operand 0 "avr32_indirect_register_operand") -+ (match_operand 0 "avr32_indexed_memory_operand"))) -+ -+ -+;; Operand suitable as operand to insns sign extending QI values -+(define_predicate "extendqi_operand" -+ (ior (match_operand 0 "load_sb_memory_operand") -+ (match_operand 0 "register_operand"))) -+ -+(define_predicate "post_inc_memory_operand" -+ (and (match_code "mem") -+ (match_test "(GET_CODE(XEXP(op, 0)) == POST_INC) -+ && REG_P(XEXP(XEXP(op, 0), 0))"))) -+ -+(define_predicate "pre_dec_memory_operand" -+ (and (match_code "mem") -+ (match_test "(GET_CODE(XEXP(op, 0)) == PRE_DEC) -+ && REG_P(XEXP(XEXP(op, 0), 0))"))) -+ -+;; Operand suitable for add instructions -+(define_predicate "avr32_add_operand" -+ (ior (match_operand 0 "register_operand") -+ (and (match_operand 0 "immediate_operand") -+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is21\")")))) -+ -+;; Operand is a power of two immediate -+(define_predicate "power_of_two_operand" -+ (match_code "const_int") -+{ -+ HOST_WIDE_INT value = INTVAL (op); -+ -+ return value != 0 && (value & (value - 1)) == 0; -+}) -+ -+;; Operand is a multiple of 8 immediate -+(define_predicate "multiple_of_8_operand" -+ (match_code "const_int") -+{ -+ HOST_WIDE_INT value = INTVAL (op); -+ -+ return (value & 0x7) == 0 ; -+}) -+ -+;; Operand is a multiple of 16 immediate -+(define_predicate "multiple_of_16_operand" -+ (match_code "const_int") -+{ -+ HOST_WIDE_INT value = INTVAL (op); -+ -+ return (value & 0xf) == 0 ; -+}) -+ -+;; Operand is a mask used for masking away upper bits of a reg -+(define_predicate "avr32_mask_upper_bits_operand" -+ (match_code "const_int") -+{ -+ HOST_WIDE_INT value = INTVAL (op) + 1; -+ -+ return value != 1 && value != 0 && (value & (value - 1)) == 0; -+}) -+ -+ -+;; Operand suitable for mul instructions -+(define_predicate "avr32_mul_operand" -+ (ior (match_operand 0 "register_operand") -+ (and (match_operand 0 "immediate_operand") -+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")")))) -+ -+;; True for logical binary operators. -+(define_predicate "logical_binary_operator" -+ (match_code "ior,xor,and")) -+ -+;; True for logical shift operators -+(define_predicate "logical_shift_operator" -+ (match_code "ashift,lshiftrt")) -+ -+;; True for shift operand for logical and, or and eor insns -+(define_predicate "avr32_logical_shift_operand" -+ (and (match_code "ashift,lshiftrt") -+ (ior (and (match_test "GET_CODE(XEXP(op, 1)) == CONST_INT") -+ (match_test "register_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))")) -+ (and (match_test "GET_CODE(XEXP(op, 0)) == CONST_INT") -+ (match_test "register_operand(XEXP(op, 1), GET_MODE(XEXP(op, 1)))")))) -+ ) -+ -+ -+;; Predicate for second operand to and, ior and xor insn patterns -+(define_predicate "avr32_logical_insn_operand" -+ (ior (match_operand 0 "register_operand") -+ (match_operand 0 "avr32_logical_shift_operand")) -+) -+ -+ -+;; True for avr32 comparison operators -+(define_predicate "avr32_comparison_operator" -+ (ior (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu") -+ (and (match_code "unspec") -+ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) -+ || (XINT(op, 1) == UNSPEC_COND_PL)")))) -+ -+(define_predicate "avr32_cond3_comparison_operator" -+ (ior (match_code "eq, ne, ge, lt, geu, ltu") -+ (and (match_code "unspec") -+ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) -+ || (XINT(op, 1) == UNSPEC_COND_PL)")))) -+ -+;; True for avr32 comparison operand -+(define_predicate "avr32_comparison_operand" -+ (ior (and (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu") -+ (match_test "(CC0_P (XEXP(op,0)) && rtx_equal_p (XEXP(op,1), const0_rtx))")) -+ (and (match_code "unspec") -+ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) -+ || (XINT(op, 1) == UNSPEC_COND_PL)")))) -+ -+;; True if this is a const_int with one bit set -+(define_predicate "one_bit_set_operand" -+ (match_code "const_int") -+ { -+ int i; -+ int value; -+ int ones = 0; -+ -+ value = INTVAL(op); -+ for ( i = 0 ; i < 32; i++ ){ -+ if ( value & ( 1 << i ) ){ -+ ones++; -+ } -+ } -+ -+ return ( ones == 1 ); -+ }) -+ -+ -+;; True if this is a const_int with one bit cleared -+(define_predicate "one_bit_cleared_operand" -+ (match_code "const_int") -+ { -+ int i; -+ int value; -+ int zeroes = 0; -+ -+ value = INTVAL(op); -+ for ( i = 0 ; i < 32; i++ ){ -+ if ( !(value & ( 1 << i )) ){ -+ zeroes++; -+ } -+ } -+ -+ return ( zeroes == 1 ); -+ }) -+ -+ -+;; Immediate all the low 16-bits cleared -+(define_predicate "avr32_hi16_immediate_operand" -+ (match_code "const_int") -+ { -+ /* If the low 16-bits are zero then this -+ is a hi16 immediate. */ -+ return ((INTVAL(op) & 0xffff) == 0); -+ } -+) -+ -+;; True if this is a register or immediate operand -+(define_predicate "register_immediate_operand" -+ (ior (match_operand 0 "register_operand") -+ (match_operand 0 "immediate_operand"))) -+ -+;; True if this is a register or const_int operand -+(define_predicate "register_const_int_operand" -+ (ior (match_operand 0 "register_operand") -+ (and (match_operand 0 "const_int_operand") -+ (match_operand 0 "immediate_operand")))) -+ -+;; True if this is a register or const_double operand -+(define_predicate "register_const_double_operand" -+ (ior (match_operand 0 "register_operand") -+ (match_operand 0 "const_double_operand"))) -+ -+;; True if this is an operand containing a label_ref. -+(define_predicate "avr32_label_ref_operand" -+ (and (match_code "mem") -+ (match_test "avr32_find_symbol(op) -+ && (GET_CODE(avr32_find_symbol(op)) == LABEL_REF)"))) -+ -+;; True if this is a valid symbol pointing to the constant pool. -+(define_predicate "avr32_const_pool_operand" -+ (and (match_code "symbol_ref") -+ (match_test "CONSTANT_POOL_ADDRESS_P(op)")) -+ { -+ return (flag_pic ? (!(symbol_mentioned_p (get_pool_constant (op)) -+ || label_mentioned_p (get_pool_constant (op))) -+ || avr32_got_mentioned_p(get_pool_constant (op))) -+ : true); -+ } -+) -+ -+;; True if this is a memory reference to the constant or mini pool. -+(define_predicate "avr32_const_pool_ref_operand" -+ (ior (match_operand 0 "avr32_label_ref_operand") -+ (and (match_code "mem") -+ (match_test "avr32_const_pool_operand(XEXP(op,0), GET_MODE(XEXP(op,0)))")))) -+ -+ -+;; Legal source operand for movti insns -+(define_predicate "avr32_movti_src_operand" -+ (ior (match_operand 0 "avr32_const_pool_ref_operand") -+ (ior (ior (match_operand 0 "register_immediate_operand") -+ (match_operand 0 "avr32_indirect_register_operand")) -+ (match_operand 0 "post_inc_memory_operand")))) -+ -+;; Legal destination operand for movti insns -+(define_predicate "avr32_movti_dst_operand" -+ (ior (ior (match_operand 0 "register_operand") -+ (match_operand 0 "avr32_indirect_register_operand")) -+ (match_operand 0 "pre_dec_memory_operand"))) -+ -+ -+;; True if this is a k12 offseted memory operand. -+(define_predicate "avr32_k12_memory_operand" -+ (and (match_code "mem") -+ (ior (match_test "REG_P(XEXP(op, 0))") -+ (match_test "GET_CODE(XEXP(op, 0)) == PLUS -+ && REG_P(XEXP(XEXP(op, 0), 0)) -+ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT) -+ && (CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), -+ 'K', (mode == SImode) ? \"Ks14\" : ((mode == HImode) ? \"Ks13\" : \"Ks12\")))")))) -+ -+;; True if this is a memory operand with an immediate displacement. -+(define_predicate "avr32_imm_disp_memory_operand" -+ (and (match_code "mem") -+ (match_test "GET_CODE(XEXP(op, 0)) == PLUS -+ && REG_P(XEXP(XEXP(op, 0), 0)) -+ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)"))) -+ -+;; True if this is a bswap operand. -+(define_predicate "avr32_bswap_operand" -+ (ior (match_operand 0 "avr32_k12_memory_operand") -+ (match_operand 0 "register_operand"))) -+ -+;; True if this is a valid coprocessor insn memory operand. -+(define_predicate "avr32_cop_memory_operand" -+ (and (match_operand 0 "memory_operand") -+ (not (match_test "GET_CODE(XEXP(op, 0)) == PLUS -+ && REG_P(XEXP(XEXP(op, 0), 0)) -+ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT) -+ && !(CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), 'K', \"Ku10\"))")))) -+ -+;; True if this is a valid source/destination operand. -+;; for moving values to/from a coprocessor -+(define_predicate "avr32_cop_move_operand" -+ (ior (match_operand 0 "register_operand") -+ (match_operand 0 "avr32_cop_memory_operand"))) -+ -+ -+;; True if this is a valid extract byte offset for use in -+;; load extracted index insns. -+(define_predicate "avr32_extract_shift_operand" -+ (and (match_operand 0 "const_int_operand") -+ (match_test "(INTVAL(op) == 0) || (INTVAL(op) == 8) -+ || (INTVAL(op) == 16) || (INTVAL(op) == 24)"))) -+ -+;; True if this is a valid avr32 symbol operand. -+(define_predicate "avr32_symbol_operand" -+ (and (match_code "label_ref, symbol_ref, const") -+ (match_test "avr32_find_symbol(op)"))) -+ -+;; True if this is a valid operand for the lda.w and call pseudo insns. -+(define_predicate "avr32_address_operand" -+ (and (and (match_code "label_ref, symbol_ref") -+ (match_test "avr32_find_symbol(op)")) -+ (ior (match_test "TARGET_HAS_ASM_ADDR_PSEUDOS") -+ (match_test "flag_pic")) )) -+ -+;; An immediate k16 address operand -+(define_predicate "avr32_ks16_address_operand" -+ (and (match_operand 0 "address_operand") -+ (ior (match_test "REG_P(op)") -+ (match_test "GET_CODE(op) == PLUS -+ && ((GET_CODE(XEXP(op,0)) == CONST_INT) -+ || (GET_CODE(XEXP(op,1)) == CONST_INT))")) )) -+ -+;; An offset k16 memory operand -+(define_predicate "avr32_ks16_memory_operand" -+ (and (match_code "mem") -+ (match_test "avr32_ks16_address_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))"))) -+ -+;; An immediate k11 address operand -+(define_predicate "avr32_ks11_address_operand" -+ (and (match_operand 0 "address_operand") -+ (ior (match_test "REG_P(op)") -+ (match_test "GET_CODE(op) == PLUS -+ && (((GET_CODE(XEXP(op,0)) == CONST_INT) -+ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,0)), 'K', \"Ks11\")) -+ || ((GET_CODE(XEXP(op,1)) == CONST_INT) -+ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,1)), 'K', \"Ks11\")))")) )) -+ -+;; True if this is a avr32 call operand -+(define_predicate "avr32_call_operand" -+ (ior (ior (match_operand 0 "register_operand") -+ (ior (match_operand 0 "avr32_const_pool_ref_operand") -+ (match_operand 0 "avr32_address_operand"))) -+ (match_test "SYMBOL_REF_RCALL_FUNCTION_P(op)"))) -+ -+;; Return true for operators performing ALU operations -+ -+(define_predicate "alu_operator" -+ (match_code "ior, xor, and, plus, minus, ashift, lshiftrt, ashiftrt")) -+ -+(define_predicate "avr32_add_shift_immediate_operand" -+ (and (match_operand 0 "immediate_operand") -+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ku02\")"))) -+ -+(define_predicate "avr32_cond_register_immediate_operand" -+ (ior (match_operand 0 "register_operand") -+ (and (match_operand 0 "immediate_operand") -+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")")))) -+ -+(define_predicate "avr32_cond_immediate_operand" -+ (and (match_operand 0 "immediate_operand") -+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is08\")"))) -+ -+ -+(define_predicate "avr32_cond_move_operand" -+ (ior (ior (match_operand 0 "register_operand") -+ (and (match_operand 0 "immediate_operand") -+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")"))) -+ (and (match_test "TARGET_V2_INSNS") -+ (match_operand 0 "memory_operand")))) -+ -+(define_predicate "avr32_mov_immediate_operand" -+ (and (match_operand 0 "immediate_operand") -+ (match_test "avr32_const_ok_for_move(INTVAL(op))"))) -+ -+ -+(define_predicate "avr32_rmw_address_operand" -+ (ior (and (match_code "symbol_ref") -+ (match_test "({rtx symbol = avr32_find_symbol(op); \ -+ symbol && (GET_CODE (symbol) == SYMBOL_REF) && SYMBOL_REF_RMW_ADDR(symbol);})")) -+ (and (match_operand 0 "immediate_operand") -+ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks17\")"))) -+ { -+ return TARGET_RMW && !flag_pic; -+ } -+) -+ -+(define_predicate "avr32_rmw_memory_operand" -+ (and (match_code "mem") -+ (match_test "!volatile_refs_p(op) && (GET_MODE(op) == SImode) && -+ avr32_rmw_address_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))"))) -+ -+(define_predicate "avr32_rmw_memory_or_register_operand" -+ (ior (match_operand 0 "avr32_rmw_memory_operand") -+ (match_operand 0 "register_operand"))) -+ -+(define_predicate "avr32_non_rmw_memory_operand" -+ (and (not (match_operand 0 "avr32_rmw_memory_operand")) -+ (match_operand 0 "memory_operand"))) -+ -+(define_predicate "avr32_non_rmw_general_operand" -+ (and (not (match_operand 0 "avr32_rmw_memory_operand")) -+ (match_operand 0 "general_operand"))) -+ -+(define_predicate "avr32_non_rmw_nonimmediate_operand" -+ (and (not (match_operand 0 "avr32_rmw_memory_operand")) -+ (match_operand 0 "nonimmediate_operand"))) -+ -+;; Return true if the operand is the 1.0f constant. -+ -+(define_predicate "const_1f_operand" -+ (match_code "const_int,const_double") -+{ -+ return (op == CONST1_RTX (SFmode)); -+}) ---- /dev/null -+++ b/gcc/config/avr32/simd.md -@@ -0,0 +1,145 @@ -+;; AVR32 machine description file for SIMD instructions. -+;; Copyright 2003-2006 Atmel Corporation. -+;; -+;; Written by Ronny Pedersen, Atmel Norway, -+;; -+;; This file is part of GCC. -+;; -+;; This program is free software; you can redistribute it and/or modify -+;; it under the terms of the GNU General Public License as published by -+;; the Free Software Foundation; either version 2 of the License, or -+;; (at your option) any later version. -+;; -+;; This program is distributed in the hope that it will be useful, -+;; but WITHOUT ANY WARRANTY; without even the implied warranty of -+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+;; GNU General Public License for more details. -+;; -+;; You should have received a copy of the GNU General Public License -+;; along with this program; if not, write to the Free Software -+;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. -+ -+;; -*- Mode: Scheme -*- -+ -+ -+;; Vector modes -+(define_mode_iterator VECM [V2HI V4QI]) -+(define_mode_attr size [(V2HI "h") (V4QI "b")]) -+ -+(define_insn "add3" -+ [(set (match_operand:VECM 0 "register_operand" "=r") -+ (plus:VECM (match_operand:VECM 1 "register_operand" "r") -+ (match_operand:VECM 2 "register_operand" "r")))] -+ "TARGET_SIMD" -+ "padd.\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+ -+(define_insn "sub3" -+ [(set (match_operand:VECM 0 "register_operand" "=r") -+ (minus:VECM (match_operand:VECM 1 "register_operand" "r") -+ (match_operand:VECM 2 "register_operand" "r")))] -+ "TARGET_SIMD" -+ "psub.\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+ -+(define_insn "abs2" -+ [(set (match_operand:VECM 0 "register_operand" "=r") -+ (abs:VECM (match_operand:VECM 1 "register_operand" "r")))] -+ "TARGET_SIMD" -+ "pabs.s\t%0, %1" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+(define_insn "ashl3" -+ [(set (match_operand:VECM 0 "register_operand" "=r") -+ (ashift:VECM (match_operand:VECM 1 "register_operand" "r") -+ (match_operand:SI 2 "immediate_operand" "Ku04")))] -+ "TARGET_SIMD" -+ "plsl.\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+(define_insn "ashr3" -+ [(set (match_operand:VECM 0 "register_operand" "=r") -+ (ashiftrt:VECM (match_operand:VECM 1 "register_operand" "r") -+ (match_operand:SI 2 "immediate_operand" "Ku04")))] -+ "TARGET_SIMD" -+ "pasr.\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+(define_insn "lshr3" -+ [(set (match_operand:VECM 0 "register_operand" "=r") -+ (lshiftrt:VECM (match_operand:VECM 1 "register_operand" "r") -+ (match_operand:SI 2 "immediate_operand" "Ku04")))] -+ "TARGET_SIMD" -+ "plsr.\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+(define_insn "smaxv2hi3" -+ [(set (match_operand:V2HI 0 "register_operand" "=r") -+ (smax:V2HI (match_operand:V2HI 1 "register_operand" "r") -+ (match_operand:V2HI 2 "register_operand" "r")))] -+ -+ "TARGET_SIMD" -+ "pmax.sh\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+(define_insn "sminv2hi3" -+ [(set (match_operand:V2HI 0 "register_operand" "=r") -+ (smin:V2HI (match_operand:V2HI 1 "register_operand" "r") -+ (match_operand:V2HI 2 "register_operand" "r")))] -+ -+ "TARGET_SIMD" -+ "pmin.sh\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+(define_insn "umaxv4qi3" -+ [(set (match_operand:V4QI 0 "register_operand" "=r") -+ (umax:V4QI (match_operand:V4QI 1 "register_operand" "r") -+ (match_operand:V4QI 2 "register_operand" "r")))] -+ -+ "TARGET_SIMD" -+ "pmax.ub\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+(define_insn "uminv4qi3" -+ [(set (match_operand:V4QI 0 "register_operand" "=r") -+ (umin:V4QI (match_operand:V4QI 1 "register_operand" "r") -+ (match_operand:V4QI 2 "register_operand" "r")))] -+ -+ "TARGET_SIMD" -+ "pmin.ub\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+ -+(define_insn "addsubv2hi" -+ [(set (match_operand:V2HI 0 "register_operand" "=r") -+ (vec_concat:V2HI -+ (plus:HI (match_operand:HI 1 "register_operand" "r") -+ (match_operand:HI 2 "register_operand" "r")) -+ (minus:HI (match_dup 1) (match_dup 2))))] -+ "TARGET_SIMD" -+ "paddsub.h\t%0, %1:b, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) -+ -+(define_insn "subaddv2hi" -+ [(set (match_operand:V2HI 0 "register_operand" "=r") -+ (vec_concat:V2HI -+ (minus:HI (match_operand:HI 1 "register_operand" "r") -+ (match_operand:HI 2 "register_operand" "r")) -+ (plus:HI (match_dup 1) (match_dup 2))))] -+ "TARGET_SIMD" -+ "psubadd.h\t%0, %1:b, %2:b" -+ [(set_attr "length" "4") -+ (set_attr "type" "alu")]) ---- /dev/null -+++ b/gcc/config/avr32/sync.md -@@ -0,0 +1,244 @@ -+;;================================================================= -+;; Atomic operations -+;;================================================================= -+ -+ -+(define_insn "sync_compare_and_swapsi" -+ [(set (match_operand:SI 0 "register_operand" "=&r,&r") -+ (match_operand:SI 1 "memory_operand" "+RKs16,+RKs16")) -+ (set (match_dup 1) -+ (unspec_volatile:SI -+ [(match_dup 1) -+ (match_operand:SI 2 "register_immediate_operand" "r,Ks21") -+ (match_operand:SI 3 "register_operand" "r,r")] -+ VUNSPEC_SYNC_CMPXCHG)) ] -+ "" -+ "0: -+ ssrf\t5 -+ ld.w\t%0,%1 -+ cp.w\t%0,%2 -+ brne\t0f -+ stcond\t%1, %3 -+ brne\t0b -+ 0: -+ " -+ [(set_attr "length" "16,18") -+ (set_attr "cc" "clobber")] -+ ) -+ -+ -+(define_code_iterator atomic_op [plus minus and ior xor]) -+(define_code_attr atomic_asm_insn [(plus "add") (minus "sub") (and "and") (ior "or") (xor "eor")]) -+(define_code_attr atomic_insn [(plus "add") (minus "sub") (and "and") (ior "ior") (xor "xor")]) -+ -+(define_insn "sync_loadsi" -+ ; NB! Put an early clobber on the destination operand to -+ ; avoid gcc using the same register in the source and -+ ; destination. This is done in order to avoid gcc to -+ ; clobber the source operand since these instructions -+ ; are actually inside a "loop". -+ [(set (match_operand:SI 0 "register_operand" "=&r") -+ (unspec_volatile:SI -+ [(match_operand:SI 1 "avr32_ks16_memory_operand" "RKs16") -+ (label_ref (match_operand 2 "" ""))] -+ VUNSPEC_SYNC_SET_LOCK_AND_LOAD) )] -+ "" -+ "%2: -+ ssrf\t5 -+ ld.w\t%0,%1" -+ [(set_attr "length" "6") -+ (set_attr "cc" "clobber")] -+ ) -+ -+(define_insn "sync_store_if_lock" -+ [(set (match_operand:SI 0 "avr32_ks16_memory_operand" "=RKs16") -+ (unspec_volatile:SI -+ [(match_operand:SI 1 "register_operand" "r") -+ (label_ref (match_operand 2 "" ""))] -+ VUNSPEC_SYNC_STORE_IF_LOCK) )] -+ "" -+ "stcond\t%0, %1 -+ brne\t%2" -+ [(set_attr "length" "6") -+ (set_attr "cc" "clobber")] -+ ) -+ -+ -+(define_expand "sync_si" -+ [(set (match_dup 2) -+ (unspec_volatile:SI -+ [(match_operand:SI 0 "avr32_ks16_memory_operand" "") -+ (match_dup 3)] -+ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) -+ (set (match_dup 2) -+ (atomic_op:SI (match_dup 2) -+ (match_operand:SI 1 "register_immediate_operand" ""))) -+ (set (match_dup 0) -+ (unspec_volatile:SI -+ [(match_dup 2) -+ (match_dup 3)] -+ VUNSPEC_SYNC_STORE_IF_LOCK) ) -+ (use (match_dup 1)) -+ (use (match_dup 4))] -+ "" -+ { -+ rtx *mem_expr = &operands[0]; -+ rtx ptr_reg; -+ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) -+ { -+ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); -+ XEXP (*mem_expr, 0) = ptr_reg; -+ } -+ else -+ { -+ rtx address = XEXP (*mem_expr, 0); -+ if ( REG_P (address) ) -+ ptr_reg = address; -+ else if ( REG_P (XEXP (address, 0)) ) -+ ptr_reg = XEXP (address, 0); -+ else -+ ptr_reg = XEXP (address, 1); -+ } -+ -+ operands[2] = gen_reg_rtx (SImode); -+ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); -+ operands[4] = ptr_reg; -+ -+ } -+ ) -+ -+ -+ -+(define_expand "sync_old_si" -+ [(set (match_operand:SI 0 "register_operand" "") -+ (unspec_volatile:SI -+ [(match_operand:SI 1 "avr32_ks16_memory_operand" "") -+ (match_dup 4)] -+ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) -+ (set (match_dup 3) -+ (atomic_op:SI (match_dup 0) -+ (match_operand:SI 2 "register_immediate_operand" ""))) -+ (set (match_dup 1) -+ (unspec_volatile:SI -+ [(match_dup 3) -+ (match_dup 4)] -+ VUNSPEC_SYNC_STORE_IF_LOCK) ) -+ (use (match_dup 2)) -+ (use (match_dup 5))] -+ "" -+ { -+ rtx *mem_expr = &operands[1]; -+ rtx ptr_reg; -+ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) -+ { -+ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); -+ XEXP (*mem_expr, 0) = ptr_reg; -+ } -+ else -+ { -+ rtx address = XEXP (*mem_expr, 0); -+ if ( REG_P (address) ) -+ ptr_reg = address; -+ else if ( REG_P (XEXP (address, 0)) ) -+ ptr_reg = XEXP (address, 0); -+ else -+ ptr_reg = XEXP (address, 1); -+ } -+ -+ operands[3] = gen_reg_rtx (SImode); -+ operands[4] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); -+ operands[5] = ptr_reg; -+ } -+ ) -+ -+(define_expand "sync_new_si" -+ [(set (match_operand:SI 0 "register_operand" "") -+ (unspec_volatile:SI -+ [(match_operand:SI 1 "avr32_ks16_memory_operand" "") -+ (match_dup 3)] -+ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) -+ (set (match_dup 0) -+ (atomic_op:SI (match_dup 0) -+ (match_operand:SI 2 "register_immediate_operand" ""))) -+ (set (match_dup 1) -+ (unspec_volatile:SI -+ [(match_dup 0) -+ (match_dup 3)] -+ VUNSPEC_SYNC_STORE_IF_LOCK) ) -+ (use (match_dup 2)) -+ (use (match_dup 4))] -+ "" -+ { -+ rtx *mem_expr = &operands[1]; -+ rtx ptr_reg; -+ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) -+ { -+ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); -+ XEXP (*mem_expr, 0) = ptr_reg; -+ } -+ else -+ { -+ rtx address = XEXP (*mem_expr, 0); -+ if ( REG_P (address) ) -+ ptr_reg = address; -+ else if ( REG_P (XEXP (address, 0)) ) -+ ptr_reg = XEXP (address, 0); -+ else -+ ptr_reg = XEXP (address, 1); -+ } -+ -+ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); -+ operands[4] = ptr_reg; -+ } -+ ) -+ -+ -+;(define_insn "sync_si" -+; [(set (match_operand:SI 0 "memory_operand" "+RKs16") -+; (unspec_volatile:SI -+; [(atomic_op:SI (match_dup 0) -+; (match_operand:SI 1 "register_operand" "r"))] -+; VUNSPEC_SYNC_CMPXCHG)) -+; (clobber (match_scratch:SI 2 "=&r"))] -+; "" -+; "0: -+; ssrf\t5 -+; ld.w\t%2,%0 -+; \t%2,%1 -+; stcond\t%0, %2 -+; brne\t0b -+; " -+; [(set_attr "length" "14") -+; (set_attr "cc" "clobber")] -+; ) -+; -+;(define_insn "sync_new_si" -+; [(set (match_operand:SI 1 "memory_operand" "+RKs16") -+; (unspec_volatile:SI -+; [(atomic_op:SI (match_dup 1) -+; (match_operand:SI 2 "register_operand" "r"))] -+; VUNSPEC_SYNC_CMPXCHG)) -+; (set (match_operand:SI 0 "register_operand" "=&r") -+; (atomic_op:SI (match_dup 1) -+; (match_dup 2)))] -+; "" -+; "0: -+; ssrf\t5 -+; ld.w\t%0,%1 -+; \t%0,%2 -+; stcond\t%1, %0 -+; brne\t0b -+; " -+; [(set_attr "length" "14") -+; (set_attr "cc" "clobber")] -+; ) -+ -+(define_insn "sync_lock_test_and_setsi" -+ [ (set (match_operand:SI 0 "register_operand" "=&r") -+ (match_operand:SI 1 "memory_operand" "+RKu00")) -+ (set (match_dup 1) -+ (match_operand:SI 2 "register_operand" "r")) ] -+ "" -+ "xchg\t%0, %p1, %2" -+ [(set_attr "length" "4")] -+ ) ---- /dev/null -+++ b/gcc/config/avr32/t-avr32 -@@ -0,0 +1,118 @@ -+ -+MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \ -+ $(srcdir)/config/avr32/sync.md \ -+ $(srcdir)/config/avr32/simd.md \ -+ $(srcdir)/config/avr32/predicates.md -+ -+s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \ -+ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES) -+ -+# We want fine grained libraries, so use the new code -+# to build the floating point emulation libraries. -+FPBIT = fp-bit.c -+DPBIT = dp-bit.c -+ -+LIB1ASMSRC = avr32/lib1funcs.S -+LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \ -+ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \ -+ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \ -+ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \ -+ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \ -+ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \ -+ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3 -+ -+#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S -+ -+MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul/march=ucr3/march=ucr3fp -+MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul ucr3 ucr3fp -+MULTILIB_EXCEPTIONS = -+MULTILIB_MATCHES += march?ap=mpart?ap7000 -+MULTILIB_MATCHES += march?ap=mpart?ap7001 -+MULTILIB_MATCHES += march?ap=mpart?ap7002 -+MULTILIB_MATCHES += march?ap=mpart?ap7200 -+MULTILIB_MATCHES += march?ucr1=march?uc -+MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256 -+MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512 -+MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a364 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a464 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a464s -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128s -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256s -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b064 -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128 -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512revc -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b164 -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128 -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512revc -+MULTILIB_MATCHES += march?ucr3=mpart?uc64d3 -+MULTILIB_MATCHES += march?ucr3=mpart?uc128d3 -+MULTILIB_MATCHES += march?ucr3=mpart?uc64d4 -+MULTILIB_MATCHES += march?ucr3=mpart?uc128d4 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3c0512crevc -+MULTILIB_MATCHES += march?ucr3=mpart?uc3c1512crevc -+MULTILIB_MATCHES += march?ucr3=mpart?uc3c2512crevc -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l0256 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l0128 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l064 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l032 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l016 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l064revb -+MULTILIB_MATCHES += march?ucr3=mpart?uc64l3u -+MULTILIB_MATCHES += march?ucr3=mpart?uc128l3u -+MULTILIB_MATCHES += march?ucr3=mpart?uc256l3u -+MULTILIB_MATCHES += march?ucr3=mpart?uc64l4u -+MULTILIB_MATCHES += march?ucr3=mpart?uc128l4u -+MULTILIB_MATCHES += march?ucr3=mpart?uc256l4u -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c064c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0128c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0256c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0512c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c164c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1128c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1256c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1512c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c264c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2128c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2256c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2512c -+MULTILIB_MATCHES += march?ucr3=mpart?mxt768e -+ -+ -+EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o -+ -+CRTSTUFF_T_CFLAGS = -mrelax -+CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC -+TARGET_LIBGCC2_CFLAGS += -mrelax -+ -+LIBGCC = stmp-multilib -+INSTALL_LIBGCC = install-multilib -+ -+fp-bit.c: $(srcdir)/config/fp-bit.c -+ echo '#define FLOAT' > fp-bit.c -+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c -+ -+dp-bit.c: $(srcdir)/config/fp-bit.c -+ cat $(srcdir)/config/fp-bit.c > dp-bit.c -+ -+ -+ ---- /dev/null -+++ b/gcc/config/avr32/t-avr32-linux -@@ -0,0 +1,118 @@ -+ -+MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \ -+ $(srcdir)/config/avr32/sync.md \ -+ $(srcdir)/config/avr32/simd.md \ -+ $(srcdir)/config/avr32/predicates.md -+ -+s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \ -+ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES) -+ -+# We want fine grained libraries, so use the new code -+# to build the floating point emulation libraries. -+FPBIT = fp-bit.c -+DPBIT = dp-bit.c -+ -+LIB1ASMSRC = avr32/lib1funcs.S -+LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \ -+ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \ -+ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \ -+ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \ -+ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \ -+ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \ -+ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3 -+ -+#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S -+ -+MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul/march=ucr3/march=ucr3fp -+MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul ucr3 ucr3fp -+MULTILIB_EXCEPTIONS = -+MULTILIB_MATCHES += march?ap=mpart?ap7000 -+MULTILIB_MATCHES += march?ap=mpart?ap7001 -+MULTILIB_MATCHES += march?ap=mpart?ap7002 -+MULTILIB_MATCHES += march?ap=mpart?ap7200 -+MULTILIB_MATCHES += march?ucr1=march?uc -+MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256 -+MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512 -+MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a364 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a464 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a464s -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128s -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256s -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b064 -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128 -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512revc -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b164 -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128 -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es -+MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512 -+MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512revc -+MULTILIB_MATCHES += march?ucr3=mpart?uc64d3 -+MULTILIB_MATCHES += march?ucr3=mpart?uc128d3 -+MULTILIB_MATCHES += march?ucr3=mpart?uc64d4 -+MULTILIB_MATCHES += march?ucr3=mpart?uc128d4 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3c0512crevc -+MULTILIB_MATCHES += march?ucr3=mpart?uc3c1512crevc -+MULTILIB_MATCHES += march?ucr3=mpart?uc3c2512crevc -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l0256 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l0128 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l064 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l032 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l016 -+MULTILIB_MATCHES += march?ucr3=mpart?uc3l064revb -+MULTILIB_MATCHES += march?ucr3=mpart?uc64l3u -+MULTILIB_MATCHES += march?ucr3=mpart?uc128l3u -+MULTILIB_MATCHES += march?ucr3=mpart?uc256l3u -+MULTILIB_MATCHES += march?ucr3=mpart?uc64l4u -+MULTILIB_MATCHES += march?ucr3=mpart?uc128l4u -+MULTILIB_MATCHES += march?ucr3=mpart?uc256l4u -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c064c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0128c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0256c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0512c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c164c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1128c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1256c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1512c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c264c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2128c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2256c -+MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2512c -+MULTILIB_MATCHES += march?ucr3=mpart?mxt768e -+ -+ -+EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o -+ -+CRTSTUFF_T_CFLAGS = -mrelax -+CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC -+TARGET_LIBGCC2_CFLAGS += -mrelax -+ -+LIBGCC = stmp-multilib -+INSTALL_LIBGCC = install-multilib -+ -+fp-bit.c: $(srcdir)/config/fp-bit.c -+ echo '#define FLOAT' > fp-bit.c -+ cat $(srcdir)/config/fp-bit.c >> fp-bit.c -+ -+dp-bit.c: $(srcdir)/config/fp-bit.c -+ cat $(srcdir)/config/fp-bit.c > dp-bit.c -+ -+ -+ ---- /dev/null -+++ b/gcc/config/avr32/t-elf -@@ -0,0 +1,16 @@ -+ -+# Assemble startup files. -+$(T)crti.o: $(srcdir)/config/avr32/crti.asm $(GCC_PASSES) -+ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \ -+ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/avr32/crti.asm -+ -+$(T)crtn.o: $(srcdir)/config/avr32/crtn.asm $(GCC_PASSES) -+ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \ -+ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/avr32/crtn.asm -+ -+ -+# Build the libraries for both hard and soft floating point -+EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o -+ -+LIBGCC = stmp-multilib -+INSTALL_LIBGCC = install-multilib ---- /dev/null -+++ b/gcc/config/avr32/uc3fpu.md -@@ -0,0 +1,199 @@ -+;; AVR32 machine description file for Floating-Point instructions. -+;; Copyright 2003-2006 Atmel Corporation. -+;; -+;; -+;; This file is part of GCC. -+;; -+;; This program is free software; you can redistribute it and/or modify -+;; it under the terms of the GNU General Public License as published by -+;; the Free Software Foundation; either version 2 of the License, or -+;; (at your option) any later version. -+;; -+;; This program is distributed in the hope that it will be useful, -+;; but WITHOUT ANY WARRANTY; without even the implied warranty of -+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -+;; GNU General Public License for more details. -+;; -+;; You should have received a copy of the GNU General Public License -+;; along with this program; if not, write to the Free Software -+;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. -+ -+(define_insn "*movsf_uc3fp" -+ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,m") -+ (match_operand:SF 1 "general_operand" "r,G,m,r"))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "@ -+ mov\t%0, %1 -+ mov\t%0, %1 -+ ld.w\t%0, %1 -+ st.w\t%0, %1" -+ [(set_attr "length" "2,4,4,4") -+ (set_attr "type" "alu,alu,load,store")]) -+ -+(define_insn "mulsf3" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (mult:SF (match_operand:SF 1 "register_operand" "r") -+ (match_operand:SF 2 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fmul.s\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "fmul")]) -+ -+(define_insn "nmulsf3" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (neg:SF (mult:SF (match_operand:SF 1 "register_operand" "%r") -+ (match_operand:SF 2 "register_operand" "r"))))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fnmul.s\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "fmul")]) -+ -+(define_insn "macsf3" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (plus:SF (mult:SF (match_operand:SF 1 "register_operand" "r") -+ (match_operand:SF 2 "register_operand" "r")) -+ (match_operand:SF 3 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fmac.s\t%0, %3, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "fmul")]) -+ -+;(define_insn "nmacsf3" -+; [(set (match_operand:SF 0 "register_operand" "=r") -+; (plus:SF (neg:SF (match_operand:SF 1 "register_operand" "r")) -+; (mult:SF(match_operand:SF 2 "register_operand" "r") -+; (match_operand:SF 3 "register_operand" "r"))))] -+; "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+; "fnmac.s\t%0, %1, %2, %3" -+; [(set_attr "length" "4") -+; (set_attr "type" "fmul")]) -+ -+(define_insn "nmacsf3" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (minus:SF (mult:SF (match_operand:SF 2 "register_operand" "r") -+ (match_operand:SF 3 "register_operand" "r")) -+ (match_operand:SF 1 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fnmac.s\t%0, %1, %2, %3" -+ [(set_attr "length" "4") -+ (set_attr "type" "fmul")]) -+ -+(define_insn "msubacsf3" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (minus:SF (match_operand:SF 3 "register_operand" "r") -+ (mult:SF (match_operand:SF 1 "register_operand" "r") -+ (match_operand:SF 2 "register_operand" "r"))))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fmsc.s\t%0, %3, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "fmul")]) -+ -+(define_insn "nmsubacsf3" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (minus:SF (neg:SF (mult:SF (match_operand:SF 1 "register_operand" "r") -+ (match_operand:SF 2 "register_operand" "r"))) -+ (match_operand:SF 3 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fnmsc.s\t%0, %3, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "fmul")]) -+ -+(define_insn "addsf3" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (plus:SF (match_operand:SF 1 "register_operand" "%r") -+ (match_operand:SF 2 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fadd.s\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "fmul")]) -+ -+(define_insn "subsf3" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (minus:SF (match_operand:SF 1 "register_operand" "r") -+ (match_operand:SF 2 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fsub.s\t%0, %1, %2" -+ [(set_attr "length" "4") -+ (set_attr "type" "fmul")]) -+ -+(define_insn "fixuns_truncsfsi2" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (unsigned_fix:SI (match_operand:SF 1 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fcastrs.uw\t%0, %1" -+ [(set_attr "length" "4")]) -+ -+(define_insn "fix_truncsfsi2" -+ [(set (match_operand:SI 0 "register_operand" "=r") -+ (fix:SI (match_operand:SF 1 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fcastrs.sw\t%0, %1" -+ [(set_attr "length" "4")]) -+ -+(define_insn "floatunssisf2" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (unsigned_float:SF (match_operand:SI 1 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fcastuw.s\t%0, %1" -+ [(set_attr "length" "4")]) -+ -+(define_insn "floatsisf2" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (float:SF (match_operand:SI 1 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "fcastsw.s\t%0, %1" -+ [(set_attr "length" "4")]) -+ -+(define_insn "cmpsf_internal_uc3fp" -+ [(set (cc0) -+ (compare:CC -+ (match_operand:SF 0 "register_operand" "r") -+ (match_operand:SF 1 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ { -+ avr32_branch_type = CMP_SF; -+ if (!rtx_equal_p(cc_prev_status.mdep.value, SET_SRC(PATTERN (insn))) ) -+ return "fcmp.s\t%0, %1"; -+ return ""; -+ } -+ [(set_attr "length" "4") -+ (set_attr "cc" "compare")]) -+ -+(define_expand "divsf3" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (div:SF (match_operand:SF 1 "register_operand" "r") -+ (match_operand:SF 2 "register_operand" "r")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT && flag_unsafe_math_optimizations" -+ "{ -+ emit_insn(gen_frcpa_internal(operands[0],operands[2])); -+ emit_insn(gen_mulsf3(operands[0],operands[0],operands[1])); -+ DONE; -+ }" -+) -+ -+(define_insn "frcpa_internal" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (unspec:SF [(match_operand:SF 1 "register_operand" "r")] UNSPEC_FRCPA))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "frcpa.s %0,%1" -+ [(set_attr "length" "4")]) -+ -+(define_expand "sqrtsf2" -+ [(set (match_operand:SF 0 "register_operand" "") -+ (sqrt:SF (match_operand:SF 1 "register_operand" "")))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT && flag_unsafe_math_optimizations" -+ " -+{ -+ rtx scratch = gen_reg_rtx (SFmode); -+ emit_insn (gen_rsqrtsf2 (scratch, operands[1], CONST1_RTX (SFmode))); -+ emit_insn (gen_divsf3(operands[0], force_reg (SFmode, CONST1_RTX (SFmode)), -+ scratch)); -+ DONE; -+}") -+ -+(define_insn "rsqrtsf2" -+ [(set (match_operand:SF 0 "register_operand" "=r") -+ (div:SF (match_operand:SF 2 "const_1f_operand" "F") -+ (sqrt:SF (match_operand:SF 1 "register_operand" "?r"))))] -+ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" -+ "frsqrta.s %1, %0") ---- /dev/null -+++ b/gcc/config/avr32/uclinux-elf.h -@@ -0,0 +1,20 @@ -+ -+/* Run-time Target Specification. */ -+#undef TARGET_VERSION -+#define TARGET_VERSION fputs (" (AVR32 uClinux with ELF)", stderr) -+ -+/* We don't want a .jcr section on uClinux. As if this makes a difference... */ -+#define TARGET_USE_JCR_SECTION 0 -+ -+/* Here we go. Drop the crtbegin/crtend stuff completely. */ -+#undef STARTFILE_SPEC -+#define STARTFILE_SPEC \ -+ "%{!shared: %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s}" \ -+ " %{!p:%{profile:gcrt1.o%s}" \ -+ " %{!profile:crt1.o%s}}}} crti.o%s" -+ -+#undef ENDFILE_SPEC -+#define ENDFILE_SPEC "crtn.o%s" -+ -+#undef TARGET_DEFAULT -+#define TARGET_DEFAULT (AVR32_FLAG_NO_INIT_GOT) ---- a/gcc/config/host-linux.c -+++ b/gcc/config/host-linux.c -@@ -25,6 +25,9 @@ - #include "hosthooks.h" - #include "hosthooks-def.h" - -+#ifndef SSIZE_MAX -+#define SSIZE_MAX LONG_MAX -+#endif - - /* Linux has a feature called exec-shield-randomize that perturbs the - address of non-fixed mapped segments by a (relatively) small amount. ---- a/gcc/config.gcc -+++ b/gcc/config.gcc -@@ -810,6 +810,24 @@ avr-*-rtems*) - avr-*-*) - tm_file="avr/avr.h dbxelf.h" - ;; -+avr32*-*-linux*) -+ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/avr32.h " -+ tmake_file="t-linux avr32/t-avr32-linux" -+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" -+ extra_modes=avr32/avr32-modes.def -+ gnu_ld=yes -+ ;; -+avr32*-*-uclinux*) -+ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/uclinux-elf.h avr32/avr32.h" -+ tmake_file="t-linux avr32/t-avr32-linux" -+ extra_modes=avr32/avr32-modes.def -+ gnu_ld=yes -+ ;; -+avr32-*-*) -+ tm_file="dbxelf.h elfos.h avr32/avr32.h avr32/avr32-elf.h" -+ tmake_file="avr32/t-avr32 avr32/t-elf" -+ extra_modes=avr32/avr32-modes.def -+ ;; - bfin*-elf*) - tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h" - tmake_file=bfin/t-bfin-elf -@@ -2764,6 +2782,32 @@ case "${target}" in - fi - ;; - -+ avr32*-*-*) -+ supported_defaults="part arch" -+ -+ case "$with_part" in -+ "" \ -+ | "ap7000" | "ap7010" | "ap7020" | "uc3a0256" | "uc3a0512" | "uc3a1128" | "uc3a1256" | "uc3a1512" ) -+ # OK -+ ;; -+ *) -+ echo "Unknown part used in --with-part=$with_part" 1>&2 -+ exit 1 -+ ;; -+ esac -+ -+ case "$with_arch" in -+ "" \ -+ | "ap" | "uc") -+ # OK -+ ;; -+ *) -+ echo "Unknown arch used in --with-arch=$with_arch" 1>&2 -+ exit 1 -+ ;; -+ esac -+ ;; -+ - fr*-*-*linux*) - supported_defaults=cpu - case "$with_cpu" in ---- a/gcc/configure.ac -+++ b/gcc/configure.ac -@@ -2240,10 +2240,9 @@ L2:], - as_ver=`$gcc_cv_as --version 2>/dev/null | sed 1q` - if echo "$as_ver" | grep GNU > /dev/null; then - changequote(,)dnl -- as_vers=`echo $as_ver | sed -n \ -- -e 's,^.*[ ]\([0-9][0-9]*\.[0-9][0-9]*.*\)$,\1,p'` -- as_major=`expr "$as_vers" : '\([0-9]*\)'` -- as_minor=`expr "$as_vers" : '[0-9]*\.\([0-9]*\)'` -+ as_ver=`echo $as_ver | sed -e 's/GNU assembler\( (GNU Binutils)\)\? \([0-9.][0-9.]*\).*/\2/'` -+ as_major=`echo $as_ver | sed 's/\..*//'` -+ as_minor=`echo $as_ver | sed 's/[^.]*\.\([0-9]*\).*/\1/'` - changequote([,])dnl - if test $as_major -eq 2 && test $as_minor -lt 11 - then : -@@ -3308,7 +3307,7 @@ case "$target" in - i?86*-*-* | mips*-*-* | alpha*-*-* | powerpc*-*-* | sparc*-*-* | m68*-*-* \ - | x86_64*-*-* | hppa*-*-* | arm*-*-* \ - | xstormy16*-*-* | cris-*-* | crisv32-*-* | xtensa*-*-* | bfin-*-* | score*-*-* \ -- | spu-*-* | fido*-*-* | m32c-*-*) -+ | spu-*-* | fido*-*-* | m32c-*-* | avr32-*-*) - insn="nop" - ;; - ia64*-*-* | s390*-*-*) ---- a/gcc/doc/extend.texi -+++ b/gcc/doc/extend.texi -@@ -2397,7 +2397,7 @@ This attribute is ignored for R8C target - - @item interrupt - @cindex interrupt handler functions --Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k, -+Use this attribute on the ARM, AVR, AVR32, CRX, M32C, M32R/D, m68k, - and Xstormy16 ports to indicate that the specified function is an - interrupt handler. The compiler will generate function entry and exit - sequences suitable for use in an interrupt handler when this attribute -@@ -2417,6 +2417,15 @@ void f () __attribute__ ((interrupt ("IR - - Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@. - -+Note, for the AVR32, you can specify which banking scheme is used for -+the interrupt mode this interrupt handler is used in like this: -+ -+@smallexample -+void f () __attribute__ ((interrupt ("FULL"))); -+@end smallexample -+ -+Permissible values for this parameter are: FULL, HALF, NONE and UNDEF. -+ - On ARMv7-M the interrupt type is ignored, and the attribute means the function - may be called with a word aligned stack pointer. - -@@ -4188,6 +4197,23 @@ placed in either the @code{.bss_below100 - - @end table - -+@subsection AVR32 Variable Attributes -+ -+One attribute is currently defined for AVR32 configurations: -+@code{rmw_addressable} -+ -+@table @code -+@item rmw_addressable -+@cindex @code{rmw_addressable} attribute -+ -+This attribute can be used to signal that a variable can be accessed -+with the addressing mode of the AVR32 Atomic Read-Modify-Write memory -+instructions and hence make it possible for gcc to generate these -+instructions without using built-in functions or inline assembly statements. -+Variables used within the AVR32 Atomic Read-Modify-Write built-in -+functions will automatically get the @code{rmw_addressable} attribute. -+@end table -+ - @subsection AVR Variable Attributes - - @table @code -@@ -7042,6 +7068,7 @@ instructions, but allow the compiler to - * Alpha Built-in Functions:: - * ARM iWMMXt Built-in Functions:: - * ARM NEON Intrinsics:: -+* AVR32 Built-in Functions:: - * Blackfin Built-in Functions:: - * FR-V Built-in Functions:: - * X86 Built-in Functions:: -@@ -7284,6 +7311,7 @@ long long __builtin_arm_wxor (long long, - long long __builtin_arm_wzero () - @end smallexample - -+ - @node ARM NEON Intrinsics - @subsection ARM NEON Intrinsics - -@@ -7292,6 +7320,74 @@ when the @option{-mfpu=neon} switch is u - - @include arm-neon-intrinsics.texi - -+@node AVR32 Built-in Functions -+@subsection AVR32 Built-in Functions -+ -+Built-in functions for atomic memory (RMW) instructions. Note that these -+built-ins will fail for targets where the RMW instructions are not -+implemented. Also note that these instructions only that a Ks15 << 2 -+memory address and will therefor not work with any runtime computed -+memory addresses. The user is responsible for making sure that any -+pointers used within these functions points to a valid memory address. -+ -+@smallexample -+void __builtin_mems(int */*ptr*/, int /*bit*/) -+void __builtin_memc(int */*ptr*/, int /*bit*/) -+void __builtin_memt(int */*ptr*/, int /*bit*/) -+@end smallexample -+ -+Built-in functions for DSP instructions. Note that these built-ins will -+fail for targets where the DSP instructions are not implemented. -+ -+@smallexample -+int __builtin_sats (int /*Rd*/,int /*sa*/, int /*bn*/) -+int __builtin_satu (int /*Rd*/,int /*sa*/, int /*bn*/) -+int __builtin_satrnds (int /*Rd*/,int /*sa*/, int /*bn*/) -+int __builtin_satrndu (int /*Rd*/,int /*sa*/, int /*bn*/) -+short __builtin_mulsathh_h (short, short) -+int __builtin_mulsathh_w (short, short) -+short __builtin_mulsatrndhh_h (short, short) -+int __builtin_mulsatrndwh_w (int, short) -+int __builtin_mulsatwh_w (int, short) -+int __builtin_macsathh_w (int, short, short) -+short __builtin_satadd_h (short, short) -+short __builtin_satsub_h (short, short) -+int __builtin_satadd_w (int, int) -+int __builtin_satsub_w (int, int) -+long long __builtin_mulwh_d(int, short) -+long long __builtin_mulnwh_d(int, short) -+long long __builtin_macwh_d(long long, int, short) -+long long __builtin_machh_d(long long, short, short) -+@end smallexample -+ -+Other built-in functions for instructions that cannot easily be -+generated by the compiler. -+ -+@smallexample -+void __builtin_ssrf(int); -+void __builtin_csrf(int); -+void __builtin_musfr(int); -+int __builtin_mustr(void); -+int __builtin_mfsr(int /*Status Register Address*/) -+void __builtin_mtsr(int /*Status Register Address*/, int /*Value*/) -+int __builtin_mfdr(int /*Debug Register Address*/) -+void __builtin_mtdr(int /*Debug Register Address*/, int /*Value*/) -+void __builtin_cache(void * /*Address*/, int /*Cache Operation*/) -+void __builtin_sync(int /*Sync Operation*/) -+void __builtin_tlbr(void) -+void __builtin_tlbs(void) -+void __builtin_tlbw(void) -+void __builtin_breakpoint(void) -+int __builtin_xchg(void * /*Address*/, int /*Value*/ ) -+short __builtin_bswap_16(short) -+int __builtin_bswap_32(int) -+void __builtin_cop(int/*cpnr*/, int/*crd*/, int/*crx*/, int/*cry*/, int/*op*/) -+int __builtin_mvcr_w(int/*cpnr*/, int/*crs*/) -+void __builtin_mvrc_w(int/*cpnr*/, int/*crd*/, int/*value*/) -+long long __builtin_mvcr_d(int/*cpnr*/, int/*crs*/) -+void __builtin_mvrc_d(int/*cpnr*/, int/*crd*/, long long/*value*/) -+@end smallexample -+ - @node Blackfin Built-in Functions - @subsection Blackfin Built-in Functions - ---- a/gcc/doc/invoke.texi -+++ b/gcc/doc/invoke.texi -@@ -195,7 +195,7 @@ in the following sections. - -fvisibility-ms-compat @gol - -Wabi -Wctor-dtor-privacy @gol - -Wnon-virtual-dtor -Wreorder @gol ---Weffc++ -Wstrict-null-sentinel @gol -+-Weffc++ -Wno-deprecated @gol - -Wno-non-template-friend -Wold-style-cast @gol - -Woverloaded-virtual -Wno-pmf-conversions @gol - -Wsign-promo} -@@ -641,6 +641,12 @@ Objective-C and Objective-C++ Dialects}. - -mauto-incdec -minmax -mlong-calls -mshort @gol - -msoft-reg-count=@var{count}} - -+@emph{AVR32 Options} -+@gccoptlist{-muse-rodata-section -mhard-float -msoft-float -mrelax @gol -+-mforce-double-align -mno-init-got -mrelax -mmd-reorg-opt -masm-addr-pseudos @gol -+-mpart=@var{part} -mcpu=@var{cpu} -march=@var{arch} @gol -+-mfast-float -mimm-in-const-pool} -+ - @emph{MCore Options} - @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol - -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol -@@ -3256,13 +3262,11 @@ appears in a class without constructors. - If you want to warn about code which uses the uninitialized value of the - variable in its own initializer, use the @option{-Winit-self} option. - --These warnings occur for individual uninitialized or clobbered --elements of structure, union or array variables as well as for --variables which are uninitialized or clobbered as a whole. They do --not occur for variables or elements declared @code{volatile}. Because --these warnings depend on optimization, the exact variables or elements --for which there are warnings will depend on the precise optimization --options and version of GCC used. -+These warnings occur only for variables that are candidates for -+register allocation. Therefore, they do not occur for a variable that -+is declared @code{volatile}, or whose address is taken, or whose size -+is other than 1, 2, 4 or 8 bytes. Also, they do not occur for -+structures, unions or arrays, even when they are in registers. - - Note that there may be no warning about a variable that is used only - to compute a value that itself is never used, because such -@@ -7461,10 +7465,6 @@ If number of candidates in the set is sm - we always try to remove unnecessary ivs from the set during its - optimization when a new iv is added to the set. - --@item scev-max-expr-size --Bound on size of expressions used in the scalar evolutions analyzer. --Large expressions slow the analyzer. -- - @item omega-max-vars - The maximum number of variables in an Omega constraint system. - The default value is 128. -@@ -8860,6 +8860,7 @@ platform. - * ARC Options:: - * ARM Options:: - * AVR Options:: -+* AVR32 Options:: - * Blackfin Options:: - * CRIS Options:: - * CRX Options:: -@@ -9348,6 +9349,145 @@ comply to the C standards, but it will p - size. - @end table - -+@node AVR32 Options -+@subsection AVR32 Options -+@cindex AVR32 Options -+ -+These options are defined for AVR32 implementations: -+ -+@table @gcctabopt -+@item -muse-rodata-section -+@opindex muse-rodata-section -+Use section @samp{.rodata} for read-only data instead of @samp{.text}. -+ -+@item -mhard-float -+@opindex mhard-float -+Use floating point coprocessor instructions. -+ -+@item -msoft-float -+@opindex msoft-float -+Use software floating-point library for floating-point operations. -+ -+@item -mforce-double-align -+@opindex mforce-double-align -+Force double-word alignment for double-word memory accesses. -+ -+@item -masm-addr-pseudos -+@opindex masm-addr-pseudos -+Use assembler pseudo-instructions lda.w and call for handling direct -+addresses. (Enabled by default) -+ -+@item -mno-init-got -+@opindex mno-init-got -+Do not initialize the GOT register before using it when compiling PIC -+code. -+ -+@item -mrelax -+@opindex mrelax -+Let invoked assembler and linker do relaxing -+(Enabled by default when optimization level is >1). -+This means that when the address of symbols are known at link time, -+the linker can optimize @samp{icall} and @samp{mcall} -+instructions into a @samp{rcall} instruction if possible. -+Loading the address of a symbol can also be optimized. -+ -+@item -mmd-reorg-opt -+@opindex mmd-reorg-opt -+Perform machine dependent optimizations in reorg stage. -+ -+@item -mpart=@var{part} -+@opindex mpart -+Generate code for the specified part. Permissible parts are: -+@samp{ap7000}, -+@samp{ap7001}, -+@samp{ap7002}, -+@samp{ap7200}, -+@samp{uc3a0128}, -+@samp{uc3a0256}, -+@samp{uc3a0512}, -+@samp{uc3a0512es}, -+@samp{uc3a1128}, -+@samp{uc3a1256}, -+@samp{uc3a1512}, -+@samp{uc3a1512es}, -+@samp{uc3a3revd}, -+@samp{uc3a364}, -+@samp{uc3a364s}, -+@samp{uc3a3128}, -+@samp{uc3a3128s}, -+@samp{uc3a3256}, -+@samp{uc3a3256s}, -+@samp{uc3a464}, -+@samp{uc3a464s}, -+@samp{uc3a4128}, -+@samp{uc3a4128s}, -+@samp{uc3a4256}, -+@samp{uc3a4256s}, -+@samp{uc3b064}, -+@samp{uc3b0128}, -+@samp{uc3b0256}, -+@samp{uc3b0256es}, -+@samp{uc3b0512}, -+@samp{uc3b0512revc}, -+@samp{uc3b164}, -+@samp{uc3b1128}, -+@samp{uc3b1256}, -+@samp{uc3b1256es}, -+@samp{uc3b1512}, -+@samp{uc3b1512revc} -+@samp{uc64d3}, -+@samp{uc128d3}, -+@samp{uc64d4}, -+@samp{uc128d4}, -+@samp{uc3c0512crevc}, -+@samp{uc3c1512crevc}, -+@samp{uc3c2512crevc}, -+@samp{uc3l0256}, -+@samp{uc3l0128}, -+@samp{uc3l064}, -+@samp{uc3l032}, -+@samp{uc3l016}, -+@samp{uc3l064revb}, -+@samp{uc64l3u}, -+@samp{uc128l3u}, -+@samp{uc256l3u}, -+@samp{uc64l4u}, -+@samp{uc128l4u}, -+@samp{uc256l4u}, -+@samp{uc3c064c}, -+@samp{uc3c0128c}, -+@samp{uc3c0256c}, -+@samp{uc3c0512c}, -+@samp{uc3c164c}, -+@samp{uc3c1128c}, -+@samp{uc3c1256c}, -+@samp{uc3c1512c}, -+@samp{uc3c264c}, -+@samp{uc3c2128c}, -+@samp{uc3c2256c}, -+@samp{uc3c2512c}, -+@samp{mxt768e}. -+ -+@item -mcpu=@var{cpu-type} -+@opindex mcpu -+Same as -mpart. Obsolete. -+ -+@item -march=@var{arch} -+@opindex march -+Generate code for the specified architecture. Permissible architectures are: -+@samp{ap}, @samp{uc} and @samp{ucr2}. -+ -+@item -mfast-float -+@opindex mfast-float -+Enable fast floating-point library that does not conform to IEEE-754 but is still good enough -+for most applications. The fast floating-point library does not round to the nearest even -+but away from zero. Enabled by default if the -funsafe-math-optimizations switch is specified. -+ -+@item -mimm-in-const-pool -+@opindex mimm-in-const-pool -+Put large immediates in constant pool. This is enabled by default for archs with insn-cache. -+@end table -+ - @node Blackfin Options - @subsection Blackfin Options - @cindex Blackfin Options -@@ -9403,29 +9543,12 @@ When enabled, the compiler will ensure t - contain speculative loads after jump instructions. If this option is used, - @code{__WORKAROUND_SPECULATIVE_LOADS} is defined. - --@item -mno-specld-anomaly --@opindex mno-specld-anomaly --Don't generate extra code to prevent speculative loads from occurring. -- - @item -mcsync-anomaly - @opindex mcsync-anomaly - When enabled, the compiler will ensure that the generated code does not - contain CSYNC or SSYNC instructions too soon after conditional branches. - If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined. - --@item -mno-csync-anomaly --@opindex mno-csync-anomaly --Don't generate extra code to prevent CSYNC or SSYNC instructions from --occurring too soon after a conditional branch. -- --@item -mlow-64k --@opindex mlow-64k --When enabled, the compiler is free to take advantage of the knowledge that --the entire program fits into the low 64k of memory. -- --@item -mno-low-64k --@opindex mno-low-64k --Assume that the program is arbitrarily large. This is the default. - - @item -mstack-check-l1 - @opindex mstack-check-l1 -@@ -9439,11 +9562,6 @@ This allows for execute in place and sha - without virtual memory management. This option implies @option{-fPIC}. - With a @samp{bfin-elf} target, this option implies @option{-msim}. - --@item -mno-id-shared-library --@opindex mno-id-shared-library --Generate code that doesn't assume ID based shared libraries are being used. --This is the default. -- - @item -mleaf-id-shared-library - @opindex mleaf-id-shared-library - Generate code that supports shared libraries via the library ID method, -@@ -9485,11 +9603,6 @@ call on this register. This switch is n - will lie outside of the 24 bit addressing range of the offset based - version of subroutine call instruction. - --This feature is not enabled by default. Specifying --@option{-mno-long-calls} will restore the default behavior. Note these --switches have no effect on how the compiler generates code to handle --function calls via function pointers. -- - @item -mfast-fp - @opindex mfast-fp - Link with the fast floating-point library. This library relaxes some of ---- a/gcc/doc/md.texi -+++ b/gcc/doc/md.texi -@@ -4,6 +4,7 @@ - @c This is part of the GCC manual. - @c For copying conditions, see the file gcc.texi. - -+ - @ifset INTERNALS - @node Machine Desc - @chapter Machine Descriptions -@@ -1685,6 +1686,58 @@ A memory reference suitable for iWMMXt l - A memory reference suitable for the ARMv4 ldrsb instruction. - @end table - -+@item AVR32 family---@file{avr32.h} -+@table @code -+@item f -+Floating-point registers (f0 to f15) -+ -+@item Ku@var{bits} -+Unsigned constant representable with @var{bits} number of bits (Must be -+two digits). I.e: An unsigned 8-bit constant is written as @samp{Ku08} -+ -+@item Ks@var{bits} -+Signed constant representable with @var{bits} number of bits (Must be -+two digits). I.e: A signed 12-bit constant is written as @samp{Ks12} -+ -+@item Is@var{bits} -+The negated range of a signed constant representable with @var{bits} -+number of bits. The same as @samp{Ks@var{bits}} with a negated range. -+This means that the constant must be in the range @math{-2^{bits-1}-1} to @math{2^{bits-1}} -+ -+@item G -+A single/double precision floating-point immediate or 64-bit integer -+immediate where the least and most significant words both can be -+loaded with a move instruction. That is the the integer form of the -+values in the least and most significant words both are in the range -+@math{-2^{20}} to @math{2^{20}-1}. -+ -+@item RKs@var{bits} -+A memory reference where the address consists of a base register -+plus a signed immediate displacement with range given by @samp{Ks@var{bits}} -+which has the same format as for the signed immediate integer constraint -+given above. -+ -+@item RKu@var{bits} -+A memory reference where the address consists of a base register -+plus an unsigned immediate displacement with range given by @samp{Ku@var{bits}} -+which has the same format as for the unsigned immediate integer constraint -+given above. -+ -+@item S -+A memory reference with an immediate or register offset -+ -+@item T -+A memory reference to a constant pool entry -+ -+@item W -+A valid operand for use in the @samp{lda.w} instruction macro when -+relaxing is enabled -+ -+@item Z -+A memory reference valid for coprocessor memory instructions -+ -+@end table -+ - @item AVR family---@file{config/avr/constraints.md} - @table @code - @item l ---- a/gcc/expmed.c -+++ b/gcc/expmed.c -@@ -472,9 +472,9 @@ store_bit_field_1 (rtx str_rtx, unsigned - ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD - || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode)) - && byte_offset % GET_MODE_SIZE (fieldmode) == 0) -- : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0)) -+ : ( (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0)) - || (offset * BITS_PER_UNIT % bitsize == 0 -- && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0)))) -+ && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))) - { - if (MEM_P (op0)) - op0 = adjust_address (op0, fieldmode, offset); ---- a/gcc/expr.c -+++ b/gcc/expr.c -@@ -52,6 +52,7 @@ along with GCC; see the file COPYING3. - #include "tree-flow.h" - #include "target.h" - #include "timevar.h" -+#include "c-common.h" - #include "df.h" - #include "diagnostic.h" - -@@ -3647,16 +3648,17 @@ emit_single_push_insn (enum machine_mode - } - else - { -+ emit_move_insn (stack_pointer_rtx, -+ expand_binop (Pmode, - #ifdef STACK_GROWS_DOWNWARD -- /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */ -- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, -- GEN_INT (-(HOST_WIDE_INT) rounded_size)); -+ sub_optab, - #else -- /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */ -- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, -- GEN_INT (rounded_size)); -+ add_optab, - #endif -- dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr); -+ stack_pointer_rtx, -+ GEN_INT (rounded_size), -+ NULL_RTX, 0, OPTAB_LIB_WIDEN)); -+ dest_addr = stack_pointer_rtx; - } - - dest = gen_rtx_MEM (mode, dest_addr); -@@ -5775,7 +5777,8 @@ store_field (rtx target, HOST_WIDE_INT b - is a bit field, we cannot use addressing to access it. - Use bit-field techniques or SUBREG to store in it. */ - -- if (mode == VOIDmode -+ if ( -+ mode == VOIDmode - || (mode != BLKmode && ! direct_store[(int) mode] - && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT - && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT) -@@ -5932,7 +5935,18 @@ get_inner_reference (tree exp, HOST_WIDE - { - tree field = TREE_OPERAND (exp, 1); - size_tree = DECL_SIZE (field); -- if (!DECL_BIT_FIELD (field)) -+ if (!DECL_BIT_FIELD (field) -+ /* Added for AVR32: -+ Bitfields with a size equal to a target storage -+ type might not cause DECL_BIT_FIELD to return -+ true since it can be optimized into a normal array -+ access operation. But for volatile bitfields we do -+ not allow this when targetm.narrow_volatile_bitfield () -+ is false. We can use DECL_C_BIT_FIELD to check if this -+ really is a c-bitfield. */ -+ && !(TREE_THIS_VOLATILE (exp) -+ && !targetm.narrow_volatile_bitfield () -+ && DECL_C_BIT_FIELD (field)) ) - mode = DECL_MODE (field); - else if (DECL_MODE (field) == BLKmode) - blkmode_bitfield = true; -@@ -7915,7 +7929,8 @@ expand_expr_real_1 (tree exp, rtx target - by doing the extract into an object as wide as the field - (which we know to be the width of a basic mode), then - storing into memory, and changing the mode to BLKmode. */ -- if (mode1 == VOIDmode -+ if ( -+ mode1 == VOIDmode - || REG_P (op0) || GET_CODE (op0) == SUBREG - || (mode1 != BLKmode && ! direct_load[(int) mode1] - && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT ---- a/gcc/function.c -+++ b/gcc/function.c -@@ -2810,7 +2810,11 @@ assign_parm_setup_reg (struct assign_par - assign_parm_remove_parallels (data); - - /* Copy the value into the register. */ -- if (data->nominal_mode != data->passed_mode -+ if ( (data->nominal_mode != data->passed_mode -+ /* Added for AVR32: If passed_mode is equal -+ to promoted nominal mode why should be convert? -+ The conversion should make no difference. */ -+ && data->passed_mode != promoted_nominal_mode) - || promoted_nominal_mode != data->promoted_mode) - { - int save_tree_used; ---- a/gcc/genemit.c -+++ b/gcc/genemit.c -@@ -121,6 +121,24 @@ max_operand_vec (rtx insn, int arg) - } - - static void -+gen_vararg_prologue(int operands) -+{ -+ int i; -+ -+ if (operands > 1) -+ { -+ for (i = 1; i < operands; i++) -+ printf(" rtx operand%d ATTRIBUTE_UNUSED;\n", i); -+ -+ printf(" va_list args;\n\n"); -+ printf(" va_start(args, operand0);\n"); -+ for (i = 1; i < operands; i++) -+ printf(" operand%d = va_arg(args, rtx);\n", i); -+ printf(" va_end(args);\n\n"); -+ } -+} -+ -+static void - print_code (RTX_CODE code) - { - const char *p1; -@@ -406,18 +424,16 @@ gen_insn (rtx insn, int lineno) - fatal ("match_dup operand number has no match_operand"); - - /* Output the function name and argument declarations. */ -- printf ("rtx\ngen_%s (", XSTR (insn, 0)); -+ printf ("rtx\ngen_%s ", XSTR (insn, 0)); -+ - if (operands) -- for (i = 0; i < operands; i++) -- if (i) -- printf (",\n\trtx operand%d ATTRIBUTE_UNUSED", i); -+ printf("(rtx operand0 ATTRIBUTE_UNUSED, ...)\n"); - else -- printf ("rtx operand%d ATTRIBUTE_UNUSED", i); -- else -- printf ("void"); -- printf (")\n"); -+ printf("(void)\n"); - printf ("{\n"); - -+ gen_vararg_prologue(operands); -+ - /* Output code to construct and return the rtl for the instruction body. */ - - if (XVECLEN (insn, 1) == 1) -@@ -461,16 +477,12 @@ gen_expand (rtx expand) - operands = max_operand_vec (expand, 1); - - /* Output the function name and argument declarations. */ -- printf ("rtx\ngen_%s (", XSTR (expand, 0)); -+ printf ("rtx\ngen_%s ", XSTR (expand, 0)); - if (operands) -- for (i = 0; i < operands; i++) -- if (i) -- printf (",\n\trtx operand%d", i); -- else -- printf ("rtx operand%d", i); -+ printf("(rtx operand0 ATTRIBUTE_UNUSED, ...)\n"); - else -- printf ("void"); -- printf (")\n"); -+ printf("(void)\n"); -+ - printf ("{\n"); - - /* If we don't have any C code to write, only one insn is being written, -@@ -480,6 +492,8 @@ gen_expand (rtx expand) - && operands > max_dup_opno - && XVECLEN (expand, 1) == 1) - { -+ gen_vararg_prologue(operands); -+ - printf (" return "); - gen_exp (XVECEXP (expand, 1, 0), DEFINE_EXPAND, NULL); - printf (";\n}\n\n"); -@@ -493,6 +507,7 @@ gen_expand (rtx expand) - for (; i <= max_scratch_opno; i++) - printf (" rtx operand%d ATTRIBUTE_UNUSED;\n", i); - printf (" rtx _val = 0;\n"); -+ gen_vararg_prologue(operands); - printf (" start_sequence ();\n"); - - /* The fourth operand of DEFINE_EXPAND is some code to be executed ---- a/gcc/genflags.c -+++ b/gcc/genflags.c -@@ -127,7 +127,6 @@ static void - gen_proto (rtx insn) - { - int num = num_operands (insn); -- int i; - const char *name = XSTR (insn, 0); - int truth = maybe_eval_c_test (XSTR (insn, 2)); - -@@ -158,12 +157,7 @@ gen_proto (rtx insn) - if (num == 0) - fputs ("void", stdout); - else -- { -- for (i = 1; i < num; i++) -- fputs ("rtx, ", stdout); -- -- fputs ("rtx", stdout); -- } -+ fputs("rtx, ...", stdout); - - puts (");"); - -@@ -173,12 +167,7 @@ gen_proto (rtx insn) - { - printf ("static inline rtx\ngen_%s", name); - if (num > 0) -- { -- putchar ('('); -- for (i = 0; i < num-1; i++) -- printf ("rtx ARG_UNUSED (%c), ", 'a' + i); -- printf ("rtx ARG_UNUSED (%c))\n", 'a' + i); -- } -+ puts("(rtx ARG_UNUSED(a), ...)"); - else - puts ("(void)"); - puts ("{\n return 0;\n}"); ---- a/gcc/genoutput.c -+++ b/gcc/genoutput.c -@@ -386,7 +386,7 @@ output_insn_data (void) - } - - if (d->name && d->name[0] != '*') -- printf (" (insn_gen_fn) gen_%s,\n", d->name); -+ printf (" gen_%s,\n", d->name); - else - printf (" 0,\n"); - ---- a/gcc/ifcvt.c -+++ b/gcc/ifcvt.c -@@ -84,7 +84,7 @@ static int num_possible_if_blocks; - static int num_updated_if_blocks; - - /* # of changes made. */ --static int num_true_changes; -+int num_true_changes; - - /* Whether conditional execution changes were made. */ - static int cond_exec_changed_p; -@@ -290,6 +290,9 @@ cond_exec_process_insns (ce_if_block_t * - if (must_be_last) - return FALSE; - -+#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN -+ if ( !IFCVT_ALLOW_MODIFY_TEST_IN_INSN ) -+#endif - if (modified_in_p (test, insn)) - { - if (!mod_ok) -@@ -570,15 +573,18 @@ cond_exec_process_if_block (ce_if_block_ - IFCVT_MODIFY_FINAL (ce_info); - #endif - -+ /* Merge the blocks! */ -+ if ( reload_completed ){ - /* Conversion succeeded. */ - if (dump_file) - fprintf (dump_file, "%d insn%s converted to conditional execution.\n", - n_insns, (n_insns == 1) ? " was" : "s were"); - -- /* Merge the blocks! */ - merge_if_block (ce_info); - cond_exec_changed_p = TRUE; - return TRUE; -+ } -+ return FALSE; - - fail: - #ifdef IFCVT_MODIFY_CANCEL -@@ -1087,7 +1093,11 @@ noce_try_addcc (struct noce_if_info *if_ - != UNKNOWN)) - { - rtx cond = if_info->cond; -- enum rtx_code code = reversed_comparison_code (cond, if_info->jump); -+ /* This generates wrong code for AVR32. The cond code need not be reversed -+ since the addmodecc patterns add if the condition is NOT met. */ -+ /* enum rtx_code code = reversed_comparison_code (cond, if_info->jump);*/ -+ enum rtx_code code = GET_CODE(cond); -+ - - /* First try to use addcc pattern. */ - if (general_operand (XEXP (cond, 0), VOIDmode) -@@ -3039,7 +3049,12 @@ find_if_header (basic_block test_bb, int - && noce_find_if_block (test_bb, then_edge, else_edge, pass)) - goto success; - -- if (HAVE_conditional_execution && reload_completed -+ if (HAVE_conditional_execution && -+#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD -+ (reload_completed || IFCVT_COND_EXEC_BEFORE_RELOAD) -+#else -+ reload_completed -+#endif - && cond_exec_find_if_block (&ce_info)) - goto success; - -@@ -3154,7 +3169,11 @@ cond_exec_find_if_block (struct ce_if_bl - - /* We only ever should get here after reload, - and only if we have conditional execution. */ -+#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD -+ gcc_assert (HAVE_conditional_execution && (reload_completed||IFCVT_COND_EXEC_BEFORE_RELOAD)); -+#else - gcc_assert (HAVE_conditional_execution && reload_completed); -+#endif - - /* Discover if any fall through predecessors of the current test basic block - were && tests (which jump to the else block) or || tests (which jump to -@@ -4259,6 +4278,14 @@ gate_handle_if_after_reload (void) - static unsigned int - rest_of_handle_if_after_reload (void) - { -+ /* Hack for the AVR32 experimental ifcvt processing before reload. -+ The AVR32 specific ifcvt code needs to know when ifcvt after reload -+ has begun. */ -+#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD -+ if ( IFCVT_COND_EXEC_BEFORE_RELOAD ) -+ cfun->machine->ifcvt_after_reload = 1; -+#endif -+ - if_convert (); - return 0; - } ---- a/gcc/longlong.h -+++ b/gcc/longlong.h -@@ -250,6 +250,41 @@ UDItype __umulsidi3 (USItype, USItype); - #define COUNT_LEADING_ZEROS_0 32 - #endif - -+#if defined (__avr32__) && W_TYPE_SIZE == 32 -+#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ -+ __asm__ ("add\t%1, %4, %5\n\tadc\t%0, %2, %3" \ -+ : "=r" ((USItype) (sh)), \ -+ "=&r" ((USItype) (sl)) \ -+ : "r" ((USItype) (ah)), \ -+ "r" ((USItype) (bh)), \ -+ "r" ((USItype) (al)), \ -+ "r" ((USItype) (bl)) __CLOBBER_CC) -+#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ -+ __asm__ ("sub\t%1, %4, %5\n\tsbc\t%0, %2, %3" \ -+ : "=r" ((USItype) (sh)), \ -+ "=&r" ((USItype) (sl)) \ -+ : "r" ((USItype) (ah)), \ -+ "r" ((USItype) (bh)), \ -+ "r" ((USItype) (al)), \ -+ "r" ((USItype) (bl)) __CLOBBER_CC) -+ -+#if !defined (__AVR32_NO_MUL__) -+#define __umulsidi3(a,b) ((UDItype)(a) * (UDItype)(b)) -+ -+#define umul_ppmm(w1, w0, u, v) \ -+{ \ -+ DWunion __w; \ -+ __w.ll = __umulsidi3 (u, v); \ -+ w1 = __w.s.high; \ -+ w0 = __w.s.low; \ -+} -+#endif -+ -+#define count_leading_zeros(COUNT,X) ((COUNT) = __builtin_clz (X)) -+#define count_trailing_zeros(COUNT,X) ((COUNT) = __builtin_ctz (X)) -+#define COUNT_LEADING_ZEROS_0 32 -+#endif -+ - #if defined (__CRIS__) && __CRIS_arch_version >= 3 - #define count_leading_zeros(COUNT, X) ((COUNT) = __builtin_clz (X)) - #if __CRIS_arch_version >= 8 ---- a/gcc/optabs.h -+++ b/gcc/optabs.h -@@ -603,7 +603,7 @@ extern enum insn_code reload_out_optab[N - extern optab code_to_optab[NUM_RTX_CODE + 1]; - - --typedef rtx (*rtxfun) (rtx); -+typedef rtx (*rtxfun) (rtx, ...); - - /* Indexed by the rtx-code for a conditional (e.g. EQ, LT,...) - gives the gen_function to make a branch to test that condition. */ ---- a/gcc/regrename.c -+++ b/gcc/regrename.c -@@ -1582,6 +1582,9 @@ copyprop_hardreg_forward_1 (basic_block - bool changed = false; - rtx insn; - -+ rtx prev_pred_test; -+ int prev_pred_insn_skipped = 0; -+ - for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn)) - { - int n_ops, i, alt, predicated; -@@ -1621,6 +1624,58 @@ copyprop_hardreg_forward_1 (basic_block - recog_data.operand_type[i] = OP_INOUT; - } - -+ -+ /* Added for targets (AVR32) which supports test operands to be modified -+ in cond_exec instruction. For these targets we cannot make a change to -+ the test operands if one of the test operands is an output operand This beacuse -+ changing the test operands might cause the need for inserting a new test -+ insns in the middle of a sequence of cond_exec insns and if the test operands -+ are modified these tests will fail. -+ */ -+ if ( IFCVT_ALLOW_MODIFY_TEST_IN_INSN -+ && predicated ) -+ { -+ int insn_skipped = 0; -+ rtx test = COND_EXEC_TEST (PATTERN (insn)); -+ -+ /* Check if the previous insn was a skipped predicated insn with the same -+ test as this predicated insns. If so we cannot do any modification to -+ this insn either since we cannot emit the test insn because the operands -+ are clobbered. */ -+ if ( prev_pred_insn_skipped -+ && (rtx_equal_p (test, prev_pred_test) -+ || rtx_equal_p (test, reversed_condition (prev_pred_test))) ) -+ { -+ insn_skipped = 1; -+ } -+ else -+ { -+ /* Check if the output operand is used in the test expression. */ -+ for (i = 0; i < n_ops; ++i) -+ if ( recog_data.operand_type[i] == OP_INOUT -+ && reg_mentioned_p (recog_data.operand[i], test) ) -+ { -+ insn_skipped = 1; -+ break; -+ } -+ -+ } -+ -+ prev_pred_test = test; -+ prev_pred_insn_skipped = insn_skipped; -+ if ( insn_skipped ) -+ { -+ if (insn == BB_END (bb)) -+ break; -+ else -+ continue; -+ } -+ } -+ else -+ { -+ prev_pred_insn_skipped = 0; -+ } -+ - /* For each earlyclobber operand, zap the value data. */ - for (i = 0; i < n_ops; i++) - if (recog_op_alt[i][alt].earlyclobber) ---- a/gcc/sched-deps.c -+++ b/gcc/sched-deps.c -@@ -1473,7 +1473,14 @@ fixup_sched_groups (rtx insn) - - prev_nonnote = prev_nonnote_insn (insn); - if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote) -- && ! sched_insns_conditions_mutex_p (insn, prev_nonnote)) -+ /* Modification for AVR32 by RP: Why is this here, this will -+ cause instruction to be without any dependencies which might -+ cause it to be moved anywhere. For the AVR32 we try to keep -+ a group of conditionals together even if they are mutual exclusive. -+ */ -+ && (! sched_insns_conditions_mutex_p (insn, prev_nonnote) -+ || GET_CODE (PATTERN (insn)) == COND_EXEC ) -+ ) - add_dependence (insn, prev_nonnote, REG_DEP_ANTI); - } - -@@ -2230,8 +2237,29 @@ sched_analyze_insn (struct deps *deps, r - - if (code == COND_EXEC) - { -+#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN -+ if (IFCVT_ALLOW_MODIFY_TEST_IN_INSN) -+ { -+ /* Check if we have a group og conditional instructions with the same test. -+ If so we must make sure that they are not scheduled apart in order to -+ avoid unnecesarry tests and if one of the registers in the test is modified -+ in the instruction this is needed to ensure correct code. */ -+ if ( prev_nonnote_insn (insn) -+ && INSN_P (prev_nonnote_insn (insn)) -+ && GET_CODE (PATTERN (prev_nonnote_insn (insn))) == COND_EXEC -+ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 0), XEXP (COND_EXEC_TEST (x), 0)) -+ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 1), XEXP (COND_EXEC_TEST (x), 1)) -+ && ( GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == GET_CODE (COND_EXEC_TEST (x)) -+ || GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == reversed_comparison_code (COND_EXEC_TEST (x), insn))) -+ { -+ SCHED_GROUP_P (insn) = 1; -+ //CANT_MOVE (prev_nonnote_insn (insn)) = 1; -+ } -+ } -+#endif - sched_analyze_2 (deps, COND_EXEC_TEST (x), insn); - -+ - /* ??? Should be recording conditions so we reduce the number of - false dependencies. */ - x = COND_EXEC_CODE (x); ---- a/gcc/testsuite/gcc.dg/sibcall-3.c -+++ b/gcc/testsuite/gcc.dg/sibcall-3.c -@@ -5,7 +5,7 @@ - Copyright (C) 2002 Free Software Foundation Inc. - Contributed by Hans-Peter Nilsson */ - --/* { dg-do run { xfail { { arc-*-* avr-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ -+/* { dg-do run { xfail { { arc-*-* avr-*-* avr32-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ - /* -mlongcall disables sibcall patterns. */ - /* { dg-skip-if "" { powerpc*-*-* } { "-mlongcall" } { "" } } */ - /* { dg-options "-O2 -foptimize-sibling-calls" } */ ---- a/gcc/testsuite/gcc.dg/sibcall-4.c -+++ b/gcc/testsuite/gcc.dg/sibcall-4.c -@@ -5,7 +5,7 @@ - Copyright (C) 2002 Free Software Foundation Inc. - Contributed by Hans-Peter Nilsson */ - --/* { dg-do run { xfail { { arc-*-* avr-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ -+/* { dg-do run { xfail { { arc-*-* avr-*-* avr32-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ - /* -mlongcall disables sibcall patterns. */ - /* { dg-skip-if "" { powerpc*-*-* } { "-mlongcall" } { "" } } */ - /* { dg-options "-O2 -foptimize-sibling-calls" } */ ---- a/gcc/testsuite/gcc.dg/trampoline-1.c -+++ b/gcc/testsuite/gcc.dg/trampoline-1.c -@@ -47,6 +47,8 @@ void foo (void) - - int main (void) - { -+#ifndef NO_TRAMPOLINES - foo (); -+#endif - return 0; - } ---- a/libgcc/config.host -+++ b/libgcc/config.host -@@ -218,6 +218,13 @@ arm*-wince-pe*) - ;; - arm-*-pe*) - ;; -+avr32-*-linux*) -+ # No need to build crtbeginT.o on uClibc systems. Should probably be -+ # moved to the OS specific section above. -+ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" -+ ;; -+avr32-*-*) -+ ;; - avr-*-rtems*) - ;; - avr-*-*) ---- a/libstdc++-v3/config/os/gnu-linux/ctype_base.h -+++ b/libstdc++-v3/config/os/gnu-linux/ctype_base.h -@@ -26,6 +26,8 @@ - // - // ISO C++ 14882: 22.1 Locales - // -+#include -+#include - - /** @file ctype_base.h - * This is an internal header file, included by other library headers. -@@ -40,7 +42,11 @@ _GLIBCXX_BEGIN_NAMESPACE(std) - struct ctype_base - { - // Non-standard typedefs. -+#ifdef __UCLIBC__ -+ typedef const __ctype_touplow_t* __to_type; -+#else - typedef const int* __to_type; -+#endif - - // NB: Offsets into ctype::_M_table force a particular size - // on the mask type. Because of this, we don't use an enum. ---- a/libstdc++-v3/include/Makefile.in -+++ b/libstdc++-v3/include/Makefile.in -@@ -36,6 +36,7 @@ POST_UNINSTALL = : - build_triplet = @build@ - host_triplet = @host@ - target_triplet = @target@ -+LIBOBJDIR = - DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ - $(top_srcdir)/fragment.am - subdir = include ---- a/libstdc++-v3/libsupc++/Makefile.in -+++ b/libstdc++-v3/libsupc++/Makefile.in -@@ -38,6 +38,7 @@ POST_UNINSTALL = : - build_triplet = @build@ - host_triplet = @host@ - target_triplet = @target@ -+LIBOBJDIR = - DIST_COMMON = $(glibcxxinstall_HEADERS) $(srcdir)/Makefile.am \ - $(srcdir)/Makefile.in $(top_srcdir)/fragment.am - subdir = libsupc++ ---- a/libstdc++-v3/Makefile.in -+++ b/libstdc++-v3/Makefile.in -@@ -36,6 +36,7 @@ POST_UNINSTALL = : - build_triplet = @build@ - host_triplet = @host@ - target_triplet = @target@ -+LIBOBJDIR = - DIST_COMMON = $(top_srcdir)/fragment.am $(srcdir)/../config.guess \ - $(srcdir)/../config.sub README ChangeLog $(srcdir)/Makefile.in \ - $(srcdir)/Makefile.am $(top_srcdir)/configure \ ---- a/libstdc++-v3/po/Makefile.in -+++ b/libstdc++-v3/po/Makefile.in -@@ -36,6 +36,7 @@ POST_UNINSTALL = : - build_triplet = @build@ - host_triplet = @host@ - target_triplet = @target@ -+LIBOBJDIR = - DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ - $(top_srcdir)/fragment.am - subdir = po ---- a/libstdc++-v3/src/Makefile.in -+++ b/libstdc++-v3/src/Makefile.in -@@ -37,6 +37,7 @@ POST_UNINSTALL = : - build_triplet = @build@ - host_triplet = @host@ - target_triplet = @target@ -+LIBOBJDIR = - DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ - $(top_srcdir)/fragment.am - subdir = src diff --git a/toolchain/gcc/patches/4.4.6/931-avr32_disable_shifted_data_opt.patch b/toolchain/gcc/patches/4.4.6/931-avr32_disable_shifted_data_opt.patch deleted file mode 100644 index 2003e97ae0..0000000000 --- a/toolchain/gcc/patches/4.4.6/931-avr32_disable_shifted_data_opt.patch +++ /dev/null @@ -1,32 +0,0 @@ ---- a/gcc/config/avr32/avr32.c -+++ b/gcc/config/avr32/avr32.c -@@ -6726,7 +6726,28 @@ avr32_reorg_optimization (void) - } - } - -- if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) -+ /* Disabled this optimization since it has a bug */ -+ /* In the case where the data instruction the shifted insn gets folded -+ * into is a branch destination, this breaks, i.e. -+ * -+ * add r8, r10, r8 << 2 -+ * 1: -+ * ld.w r11, r8[0] -+ * ... -+ * mov r8, sp -+ * rjmp 1b -+ * -+ * gets folded to: -+ * -+ * 1: -+ * ld.w r11, r10[r8 << 2] -+ * ... -+ * mov r8, sp -+ * rjmp 1b -+ * -+ * which is clearly wrong.. -+ */ -+ if (0 && TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) - { - - /* Scan through all insns looking for shifted add operations */ diff --git a/toolchain/gcc/patches/4.4.6/933-avr32_bug_7435.patch b/toolchain/gcc/patches/4.4.6/933-avr32_bug_7435.patch deleted file mode 100644 index 78106619c5..0000000000 --- a/toolchain/gcc/patches/4.4.6/933-avr32_bug_7435.patch +++ /dev/null @@ -1,32 +0,0 @@ ---- a/gcc/config/avr32/avr32.c -+++ b/gcc/config/avr32/avr32.c -@@ -243,14 +243,14 @@ void - avr32_override_options (void) - { - const struct part_type_s *part; -- const struct arch_type_s *arch; -+ const struct arch_type_s *arch, *part_arch; - - /*Add backward compability*/ - if (strcmp ("uc", avr32_arch_name)== 0) - { - fprintf (stderr, "Warning: Deprecated arch `%s' specified. " - "Please use '-march=ucr1' instead. " -- "Converting to arch 'ucr1'\n", -+ "Using arch 'ucr1'\n", - avr32_arch_name); - avr32_arch_name="ucr1"; - } -@@ -298,6 +298,12 @@ avr32_override_options (void) - if (!arch->name) - avr32_arch = &avr32_arch_types[avr32_part->arch_type]; - -+ /* When architecture implied by -mpart and one passed in -march are -+ * conflicting, issue an error message */ -+ part_arch = &avr32_arch_types[avr32_part->arch_type]; -+ if (strcmp("none",avr32_part_name) && strcmp("none", avr32_arch_name) && strcmp(avr32_arch_name,part_arch->name)) -+ error ("Conflicting architectures implied by -mpart and -march\n"); -+ - /* If optimization level is two or greater, then align start of loops to a - word boundary since this will allow folding the first insn of the loop. - Do this only for targets supporting branch prediction. */ diff --git a/toolchain/gcc/patches/4.4.6/934-avr32_bug_9675.patch b/toolchain/gcc/patches/4.4.6/934-avr32_bug_9675.patch deleted file mode 100644 index 3690e2d04c..0000000000 --- a/toolchain/gcc/patches/4.4.6/934-avr32_bug_9675.patch +++ /dev/null @@ -1,21 +0,0 @@ ---- a/gcc/config/avr32/lib1funcs.S -+++ b/gcc/config/avr32/lib1funcs.S -@@ -1460,7 +1460,6 @@ __avr32_f64_cmp_lt: - 0: - ld.w r7, sp++ - popm pc, r12=0 --#endif - - 3: - cp.w r7, 1 /* Check sign bit from r9 */ -@@ -1481,8 +1480,8 @@ __avr32_f64_cmp_lt: - reteq 0 /* Both operands are zero. Return false. */ - #endif - ret r12 -- -- -+#endif -+ - #if defined(L_avr32_f64_div) || defined(L_avr32_f64_div_fast) - .align 2 - diff --git a/toolchain/gcc/patches/4.4.6/993-arm_insn-opinit-RTX_CODE-fixup.patch b/toolchain/gcc/patches/4.4.6/993-arm_insn-opinit-RTX_CODE-fixup.patch deleted file mode 100644 index b769f932c4..0000000000 --- a/toolchain/gcc/patches/4.4.6/993-arm_insn-opinit-RTX_CODE-fixup.patch +++ /dev/null @@ -1,14 +0,0 @@ ---- a/gcc/config/arm/arm-protos.h -+++ b/gcc/config/arm/arm-protos.h -@@ -43,10 +43,10 @@ extern unsigned int arm_dbx_register_num - extern void arm_output_fn_unwind (FILE *, bool); - - --#ifdef RTX_CODE - extern bool arm_vector_mode_supported_p (enum machine_mode); - extern int arm_hard_regno_mode_ok (unsigned int, enum machine_mode); - extern int const_ok_for_arm (HOST_WIDE_INT); -+#ifdef RTX_CODE - extern int arm_split_constant (RTX_CODE, enum machine_mode, rtx, - HOST_WIDE_INT, rtx, rtx, int); - extern RTX_CODE arm_canonicalize_comparison (RTX_CODE, enum machine_mode, diff --git a/toolchain/gcc/patches/4.4.6/999-coldfire.patch b/toolchain/gcc/patches/4.4.6/999-coldfire.patch deleted file mode 100644 index bce2177e8a..0000000000 --- a/toolchain/gcc/patches/4.4.6/999-coldfire.patch +++ /dev/null @@ -1,10 +0,0 @@ ---- a/gcc/config.gcc -+++ b/gcc/config.gcc -@@ -1537,6 +1537,7 @@ m68k-*-linux*) # Motorola m68k's runnin - if test x$sjlj != x1; then - tmake_file="$tmake_file m68k/t-slibgcc-elf-ver" - fi -+ tmake_file="m68k/t-floatlib m68k/t-m68kbare m68k/t-m68kelf" - ;; - m68k-*-rtems*) - default_m68k_cpu=68020 diff --git a/toolchain/gcc/patches/4.4.7/100-uclibc-conf.patch b/toolchain/gcc/patches/4.4.7/100-uclibc-conf.patch new file mode 100644 index 0000000000..5c77de9b4e --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/100-uclibc-conf.patch @@ -0,0 +1,33 @@ +--- a/contrib/regression/objs-gcc.sh ++++ b/contrib/regression/objs-gcc.sh +@@ -106,6 +106,10 @@ if [ $H_REAL_TARGET = $H_REAL_HOST -a $H + then + make all-gdb all-dejagnu all-ld || exit 1 + make install-gdb install-dejagnu install-ld || exit 1 ++elif [ $H_REAL_TARGET = $H_REAL_HOST -a $H_REAL_TARGET = i686-pc-linux-uclibc ] ++ then ++ make all-gdb all-dejagnu all-ld || exit 1 ++ make install-gdb install-dejagnu install-ld || exit 1 + elif [ $H_REAL_TARGET = $H_REAL_HOST ] ; then + make bootstrap || exit 1 + make install || exit 1 +--- a/libjava/classpath/ltconfig ++++ b/libjava/classpath/ltconfig +@@ -603,7 +603,7 @@ host_os=`echo $host | sed 's/^\([^-]*\)- + + # Transform linux* to *-*-linux-gnu*, to support old configure scripts. + case $host_os in +-linux-gnu*) ;; ++linux-gnu*|linux-uclibc*) ;; + linux*) host=`echo $host | sed 's/^\(.*-.*-linux\)\(.*\)$/\1-gnu\2/'` + esac + +@@ -1251,7 +1251,7 @@ linux-gnuoldld* | linux-gnuaout* | linux + ;; + + # This must be Linux ELF. +-linux-gnu*) ++linux*) + version_type=linux + need_lib_prefix=no + need_version=no diff --git a/toolchain/gcc/patches/4.4.7/301-missing-execinfo_h.patch b/toolchain/gcc/patches/4.4.7/301-missing-execinfo_h.patch new file mode 100644 index 0000000000..b3f1e68d3b --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/301-missing-execinfo_h.patch @@ -0,0 +1,11 @@ +--- a/boehm-gc/include/gc.h ++++ b/boehm-gc/include/gc.h +@@ -503,7 +503,7 @@ GC_API GC_PTR GC_malloc_atomic_ignore_of + #if defined(__linux__) || defined(__GLIBC__) + # include + # if (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 1 || __GLIBC__ > 2) \ +- && !defined(__ia64__) ++ && !defined(__ia64__) && !defined(__UCLIBC__) + # ifndef GC_HAVE_BUILTIN_BACKTRACE + # define GC_HAVE_BUILTIN_BACKTRACE + # endif diff --git a/toolchain/gcc/patches/4.4.7/302-c99-snprintf.patch b/toolchain/gcc/patches/4.4.7/302-c99-snprintf.patch new file mode 100644 index 0000000000..ddbe43d810 --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/302-c99-snprintf.patch @@ -0,0 +1,11 @@ +--- a/libstdc++-v3/include/c_global/cstdio ++++ b/libstdc++-v3/include/c_global/cstdio +@@ -139,7 +139,7 @@ _GLIBCXX_BEGIN_NAMESPACE(std) + + _GLIBCXX_END_NAMESPACE + +-#if _GLIBCXX_USE_C99 ++#if _GLIBCXX_USE_C99 || defined __UCLIBC__ + + #undef snprintf + #undef vfscanf diff --git a/toolchain/gcc/patches/4.4.7/305-libmudflap-susv3-legacy.patch b/toolchain/gcc/patches/4.4.7/305-libmudflap-susv3-legacy.patch new file mode 100644 index 0000000000..8e2d15f81a --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/305-libmudflap-susv3-legacy.patch @@ -0,0 +1,47 @@ +--- a/libmudflap/mf-hooks2.c ++++ b/libmudflap/mf-hooks2.c +@@ -421,7 +421,7 @@ WRAPPER2(void, bzero, void *s, size_t n) + { + TRACE ("%s\n", __PRETTY_FUNCTION__); + MF_VALIDATE_EXTENT(s, n, __MF_CHECK_WRITE, "bzero region"); +- bzero (s, n); ++ memset (s, 0, n); + } + + +@@ -431,7 +431,7 @@ WRAPPER2(void, bcopy, const void *src, v + TRACE ("%s\n", __PRETTY_FUNCTION__); + MF_VALIDATE_EXTENT(src, n, __MF_CHECK_READ, "bcopy src"); + MF_VALIDATE_EXTENT(dest, n, __MF_CHECK_WRITE, "bcopy dest"); +- bcopy (src, dest, n); ++ memmove (dest, src, n); + } + + +@@ -441,7 +441,7 @@ WRAPPER2(int, bcmp, const void *s1, cons + TRACE ("%s\n", __PRETTY_FUNCTION__); + MF_VALIDATE_EXTENT(s1, n, __MF_CHECK_READ, "bcmp 1st arg"); + MF_VALIDATE_EXTENT(s2, n, __MF_CHECK_READ, "bcmp 2nd arg"); +- return bcmp (s1, s2, n); ++ return n == 0 ? 0 : memcmp (s1, s2, n); + } + + +@@ -450,7 +450,7 @@ WRAPPER2(char *, index, const char *s, i + size_t n = strlen (s); + TRACE ("%s\n", __PRETTY_FUNCTION__); + MF_VALIDATE_EXTENT(s, CLAMPADD(n, 1), __MF_CHECK_READ, "index region"); +- return index (s, c); ++ return strchr (s, c); + } + + +@@ -459,7 +459,7 @@ WRAPPER2(char *, rindex, const char *s, + size_t n = strlen (s); + TRACE ("%s\n", __PRETTY_FUNCTION__); + MF_VALIDATE_EXTENT(s, CLAMPADD(n, 1), __MF_CHECK_READ, "rindex region"); +- return rindex (s, c); ++ return strrchr (s, c); + } + + /* XXX: stpcpy, memccpy */ diff --git a/toolchain/gcc/patches/4.4.7/600-ubicom_support.patch b/toolchain/gcc/patches/4.4.7/600-ubicom_support.patch new file mode 100644 index 0000000000..f9f93c1b4e --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/600-ubicom_support.patch @@ -0,0 +1,9368 @@ +--- a/configure ++++ b/configure +@@ -2690,6 +2690,9 @@ case "${target}" in + ip2k-*-*) + noconfigdirs="$noconfigdirs target-libiberty target-libstdc++-v3 ${libgcj}" + ;; ++ ubicom32-*-*) ++ noconfigdirs="$noconfigdirs target-libffi" ++ ;; + *-*-linux* | *-*-gnu* | *-*-k*bsd*-gnu | *-*-kopensolaris*-gnu) + noconfigdirs="$noconfigdirs target-newlib target-libgloss" + ;; +--- /dev/null ++++ b/gcc/config/ubicom32/constraints.md +@@ -0,0 +1,149 @@ ++; Constraint definitions for Ubicom32 ++ ++; Copyright (C) 2009 Free Software Foundation, Inc. ++; Contributed by Ubicom, Inc. ++ ++; This file is part of GCC. ++ ++; GCC is free software; you can redistribute it and/or modify it ++; under the terms of the GNU General Public License as published ++; by the Free Software Foundation; either version 3, or (at your ++; option) any later version. ++ ++; GCC is distributed in the hope that it will be useful, but WITHOUT ++; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ++; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ++; License for more details. ++ ++; You should have received a copy of the GNU General Public License ++; along with GCC; see the file COPYING3. If not see ++; . ++ ++(define_register_constraint "a" "ALL_ADDRESS_REGS" ++ "An An register.") ++ ++(define_register_constraint "d" "DATA_REGS" ++ "A Dn register.") ++ ++(define_register_constraint "h" "ACC_REGS" ++ "An accumulator register.") ++ ++(define_register_constraint "l" "ACC_LO_REGS" ++ "An accn_lo register.") ++ ++(define_register_constraint "Z" "FDPIC_REG" ++ "The FD-PIC GOT pointer: A0.") ++ ++(define_constraint "I" ++ "An 8-bit signed constant value." ++ (and (match_code "const_int") ++ (match_test "(ival >= -128) && (ival <= 127)"))) ++ ++(define_constraint "Q" ++ "An 8-bit signed constant value represented as unsigned." ++ (and (match_code "const_int") ++ (match_test "(ival >= 0x00) && (ival <= 0xff)"))) ++ ++(define_constraint "R" ++ "An 8-bit signed constant value represented as unsigned." ++ (and (match_code "const_int") ++ (match_test "((ival >= 0x0000) && (ival <= 0x007f)) || ((ival >= 0xff80) && (ival <= 0xffff))"))) ++ ++(define_constraint "J" ++ "A 7-bit unsigned constant value." ++ (and (match_code "const_int") ++ (match_test "(ival >= 0) && (ival <= 127)"))) ++ ++(define_constraint "K" ++ "A 7-bit unsigned constant value shifted << 1." ++ (and (match_code "const_int") ++ (match_test "(ival >= 0) && (ival <= 254) && ((ival & 1) == 0)"))) ++ ++(define_constraint "L" ++ "A 7-bit unsigned constant value shifted << 2." ++ (and (match_code "const_int") ++ (match_test "(ival >= 0) && (ival <= 508) && ((ival & 3) == 0)"))) ++ ++(define_constraint "M" ++ "A 5-bit unsigned constant value." ++ (and (match_code "const_int") ++ (match_test "(ival >= 0) && (ival <= 31)"))) ++ ++(define_constraint "N" ++ "A signed 16 bit constant value." ++ (and (match_code "const_int") ++ (match_test "(ival >= -32768) && (ival <= 32767)"))) ++ ++(define_constraint "O" ++ "An exact bitmask of contiguous 1 bits starting at bit 0." ++ (and (match_code "const_int") ++ (match_test "exact_log2 (ival + 1) != -1"))) ++ ++(define_constraint "P" ++ "A 7-bit negative constant value shifted << 2." ++ (and (match_code "const_int") ++ (match_test "(ival >= -504) && (ival <= 0) && ((ival & 3) == 0)"))) ++ ++(define_constraint "S" ++ "A symbolic reference." ++ (match_code "symbol_ref")) ++ ++(define_constraint "Y" ++ "An FD-PIC symbolic reference." ++ (and (match_test "TARGET_FDPIC") ++ (match_test "GET_CODE (op) == UNSPEC") ++ (ior (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT") ++ (match_test "XINT (op, 1) == UNSPEC_FDPIC_GOT_FUNCDESC")))) ++ ++(define_memory_constraint "T1" ++ "A memory operand that can be used for .1 instruction." ++ (and (match_test "memory_operand (op, GET_MODE(op))") ++ (match_test "GET_MODE (op) == QImode"))) ++ ++(define_memory_constraint "T2" ++ "A memory operand that can be used for .2 instruction." ++ (and (match_test "memory_operand (op, GET_MODE(op))") ++ (match_test "GET_MODE (op) == HImode"))) ++ ++(define_memory_constraint "T4" ++ "A memory operand that can be used for .4 instruction." ++ (and (match_test "memory_operand (op, GET_MODE(op))") ++ (ior (match_test "GET_MODE (op) == SImode") ++ (match_test "GET_MODE (op) == DImode") ++ (match_test "GET_MODE (op) == SFmode")))) ++ ++(define_memory_constraint "U1" ++ "An offsettable memory operand that can be used for .1 instruction." ++ (and (match_test "memory_operand (op, GET_MODE(op))") ++ (match_test "GET_MODE (op) == QImode") ++ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC") ++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC") ++ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC") ++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC") ++ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY") ++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY"))) ++ ++(define_memory_constraint "U2" ++ "An offsettable memory operand that can be used for .2 instruction." ++ (and (match_test "memory_operand (op, GET_MODE(op))") ++ (match_test "GET_MODE (op) == HImode") ++ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC") ++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC") ++ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC") ++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC") ++ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY") ++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY"))) ++ ++(define_memory_constraint "U4" ++ "An offsettable memory operand that can be used for .4 instruction." ++ (and (match_test "memory_operand (op, GET_MODE(op))") ++ (ior (match_test "GET_MODE (op) == SImode") ++ (match_test "GET_MODE (op) == DImode") ++ (match_test "GET_MODE (op) == SFmode")) ++ (match_test "GET_CODE (XEXP (op, 0)) != POST_INC") ++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_INC") ++ (match_test "GET_CODE (XEXP (op, 0)) != POST_DEC") ++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_DEC") ++ (match_test "GET_CODE (XEXP (op, 0)) != POST_MODIFY") ++ (match_test "GET_CODE (XEXP (op, 0)) != PRE_MODIFY"))) ++ +--- /dev/null ++++ b/gcc/config/ubicom32/crti.S +@@ -0,0 +1,54 @@ ++/* Specialized code needed to support construction and destruction of ++ file-scope objects in C++ and Java code, and to support exception handling. ++ Copyright (C) 1999 Free Software Foundation, Inc. ++ Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca). ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 2, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING. If not, write to ++the Free Software Foundation, 59 Temple Place - Suite 330, ++Boston, MA 02111-1307, USA. */ ++ ++/* As a special exception, if you link this library with files ++ compiled with GCC to produce an executable, this does not cause ++ the resulting executable to be covered by the GNU General Public License. ++ This exception does not however invalidate any other reasons why ++ the executable file might be covered by the GNU General Public License. */ ++ ++/* ++ * This file just supplies function prologues for the .init and .fini ++ * sections. It is linked in before crtbegin.o. ++ */ ++ .file "crti.o" ++ .ident "GNU C crti.o" ++ ++ .section .init ++ .align 2 ++ .globl _init ++ .type _init, @function ++_init: ++ move.4 -4(sp)++, a5 ++#ifdef __UBICOM32_FDPIC__ ++ move.4 -4(sp)++, a0 ++#endif ++ ++ .section .fini ++ .align 2 ++ .globl _fini ++ .type _fini, @function ++_fini: ++ move.4 -4(sp)++, a5 ++#ifdef __UBICOM32_FDPIC__ ++ move.4 -4(sp)++, a0 ++#endif +--- /dev/null ++++ b/gcc/config/ubicom32/crtn.S +@@ -0,0 +1,47 @@ ++/* Specialized code needed to support construction and destruction of ++ file-scope objects in C++ and Java code, and to support exception handling. ++ Copyright (C) 1999 Free Software Foundation, Inc. ++ Contributed by Charles-Antoine Gauthier (charles.gauthier@iit.nrc.ca). ++ ++This file is part of GCC. ++ ++GCC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 2, or (at your option) ++any later version. ++ ++GCC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GCC; see the file COPYING. If not, write to ++the Free Software Foundation, 59 Temple Place - Suite 330, ++Boston, MA 02111-1307, USA. */ ++ ++/* As a special exception, if you link this library with files ++ compiled with GCC to produce an executable, this does not cause ++ the resulting executable to be covered by the GNU General Public License. ++ This exception does not however invalidate any other reasons why ++ the executable file might be covered by the GNU General Public License. */ ++ ++/* ++ * This file supplies function epilogues for the .init and .fini sections. ++ * It is linked in after all other files. ++ */ ++ ++ .file "crtn.o" ++ .ident "GNU C crtn.o" ++ ++ .section .init ++#ifdef __UBICOM32_FDPIC__ ++ move.4 a0, (sp)4++ ++#endif ++ ret (sp)4++ ++ ++ .section .fini ++#ifdef __UBICOM32_FDPIC__ ++ move.4 a0, (sp)4++ ++#endif ++ ret (sp)4++ +--- /dev/null ++++ b/gcc/config/ubicom32/elf.h +@@ -0,0 +1,29 @@ ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC "\ ++%{msim:%{!shared:crt0%O%s}} \ ++crti%O%s crtbegin%O%s" ++ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC "crtend%O%s crtn%O%s" ++ ++#ifdef __UBICOM32_FDPIC__ ++#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ ++ asm (SECTION_OP); \ ++ asm ("move.4 a0, 0(sp);\n\t" \ ++ "call a5," USER_LABEL_PREFIX #FUNC ";"); \ ++ asm (TEXT_SECTION_ASM_OP); ++#endif ++ ++#undef SUBTARGET_DRIVER_SELF_SPECS ++#define SUBTARGET_DRIVER_SELF_SPECS \ ++ "%{mfdpic:-msim} " ++ ++#define NO_IMPLICIT_EXTERN_C ++ ++/* ++ * We need this to compile crtbegin/crtend. This should really be picked ++ * up from elfos.h but at the moment including elfos.h causes other more ++ * serous linker issues. ++ */ ++#define INIT_SECTION_ASM_OP "\t.section\t.init" ++#define FINI_SECTION_ASM_OP "\t.section\t.fini" +--- /dev/null ++++ b/gcc/config/ubicom32/linux.h +@@ -0,0 +1,80 @@ ++/* Definitions of target machine for Ubicom32-uclinux ++ ++ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, ++ 2009 Free Software Foundation, Inc. ++ Contributed by Ubicom, Inc. ++ ++ This file is part of GCC. ++ ++ GCC is free software; you can redistribute it and/or modify it ++ under the terms of the GNU General Public License as published ++ by the Free Software Foundation; either version 3, or (at your ++ option) any later version. ++ ++ GCC is distributed in the hope that it will be useful, but WITHOUT ++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ++ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ++ License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with GCC; see the file COPYING3. If not see ++ . */ ++ ++/* Don't assume anything about the header files. */ ++#define NO_IMPLICIT_EXTERN_C ++ ++#undef LIB_SPEC ++#define LIB_SPEC \ ++ "%{pthread:-lpthread} " \ ++ "-lc" ++ ++#undef LINK_GCC_C_SEQUENCE_SPEC ++#define LINK_GCC_C_SEQUENCE_SPEC \ ++ "%{static:--start-group} %G %L %{static:--end-group} " \ ++ "%{!static: %G}" ++ ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC \ ++ "%{!shared: %{pg|p|profile:gcrt1%O%s;pie:Scrt1%O%s;:crt1%O%s}} " \ ++ "crtreloc%O%s crti%O%s %{shared|pie:crtbeginS%O%s;:crtbegin%O%s}" ++ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC \ ++ "%{shared|pie:crtendS%O%s;:crtend%O%s} crtn%O%s" ++ ++/* taken from linux.h */ ++/* The GNU C++ standard library requires that these macros be defined. */ ++#undef CPLUSPLUS_CPP_SPEC ++#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)" ++ ++#define TARGET_OS_CPP_BUILTINS() \ ++ do { \ ++ builtin_define_std ("__UBICOM32__"); \ ++ builtin_define_std ("__ubicom32__"); \ ++ builtin_define ("__gnu_linux__"); \ ++ builtin_define_std ("linux"); \ ++ builtin_define_std ("unix"); \ ++ builtin_assert ("system=linux"); \ ++ builtin_assert ("system=unix"); \ ++ builtin_assert ("system=posix"); \ ++ } while (0) ++ ++#define OBJECT_FORMAT_ELF ++ ++ ++#undef DRIVER_SELF_SPECS ++#define DRIVER_SELF_SPECS \ ++ "%{!mno-fdpic:-mfdpic}" ++ ++#undef LINK_SPEC ++#define LINK_SPEC "%{mfdpic: -m elf32ubicom32fdpic -z text } %{shared} %{pie} \ ++ %{static:-dn -Bstatic} \ ++ %{shared:-G -Bdynamic} \ ++ %{!shared: %{!static: \ ++ %{rdynamic:-export-dynamic} \ ++ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0}} \ ++ %{static}} " ++ ++/* ++#define MD_UNWIND_SUPPORT "config/bfin/linux-unwind.h" ++*/ +--- /dev/null ++++ b/gcc/config/ubicom32/predicates.md +@@ -0,0 +1,327 @@ ++; Predicate definitions for Ubicom32. ++ ++; Copyright (C) 2009 Free Software Foundation, Inc. ++; Contributed by Ubicom, Inc. ++ ++; This file is part of GCC. ++ ++; GCC is free software; you can redistribute it and/or modify it ++; under the terms of the GNU General Public License as published ++; by the Free Software Foundation; either version 3, or (at your ++; option) any later version. ++ ++; GCC is distributed in the hope that it will be useful, but WITHOUT ++; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ++; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ++; License for more details. ++ ++; You should have received a copy of the GNU General Public License ++; along with GCC; see the file COPYING3. If not see ++; . ++ ++(define_predicate "ubicom32_move_operand" ++ (match_code "const_int, const_double, const, mem, subreg, reg, lo_sum") ++{ ++ if (CONST_INT_P (op)) ++ return true; ++ ++ if (GET_CODE (op) == CONST_DOUBLE) ++ return true; ++ ++ if (GET_CODE (op) == CONST) ++ return memory_address_p (mode, op); ++ ++ if (GET_MODE (op) != mode) ++ return false; ++ ++ if (MEM_P (op)) ++ return memory_address_p (mode, XEXP (op, 0)); ++ ++ if (GET_CODE (op) == SUBREG) { ++ op = SUBREG_REG (op); ++ ++ if (REG_P (op)) ++ return true; ++ ++ if (! MEM_P (op)) ++ return false; ++ ++ /* Paradoxical SUBREG. */ ++ if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (op))) ++ return false; ++ ++ return memory_address_p (GET_MODE (op), XEXP (op, 0)); ++ } ++ ++ return register_operand (op, mode); ++}) ++ ++;; Returns true if OP is either a symbol reference or a sum of a ++;; symbol reference and a constant. ++ ++(define_predicate "ubicom32_symbolic_address_operand" ++ (match_code "symbol_ref, label_ref, const") ++{ ++ switch (GET_CODE (op)) ++ { ++ case SYMBOL_REF: ++ case LABEL_REF: ++ return true; ++ ++ case CONST: ++ op = XEXP (op, 0); ++ return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF ++ || GET_CODE (XEXP (op, 0)) == LABEL_REF) ++ && CONST_INT_P (XEXP (op, 1))); ++ ++ default: ++ return false; ++ } ++}) ++ ++;; Return true if operand is the uClinux FD-PIC register. ++ ++(define_predicate "ubicom32_fdpic_operand" ++ (match_code "reg") ++{ ++ if (! TARGET_FDPIC) ++ return false; ++ ++ if (!REG_P (op)) ++ return false; ++ ++ if (GET_MODE (op) != mode && mode != VOIDmode) ++ return false; ++ ++ if (REGNO (op) != FDPIC_REGNUM && REGNO (op) < FIRST_PSEUDO_REGISTER) ++ return false; ++ ++ return true; ++}) ++ ++(define_predicate "ubicom32_fdpic_got_offset_operand" ++ (match_code "unspec") ++{ ++ if (! TARGET_FDPIC) ++ return false; ++ ++ if (GET_CODE (op) != UNSPEC) ++ return false; ++ ++ if (XINT (op, 1) != UNSPEC_FDPIC_GOT ++ && XINT (op, 1) != UNSPEC_FDPIC_GOT_FUNCDESC) ++ return false; ++ ++ return true; ++}) ++ ++(define_predicate "ubicom32_arith_operand" ++ (match_code "subreg, reg, const_int, lo_sum, mem") ++{ ++ return (ubicom32_move_operand (op, mode) ++ && ! ubicom32_symbolic_address_operand (op, mode) ++ && (! CONST_INT_P (op) ++ || satisfies_constraint_I (op))); ++}) ++ ++(define_predicate "ubicom32_arith_operand_dot1" ++ (match_code "subreg, reg, const_int, lo_sum, mem") ++{ ++ return (ubicom32_move_operand (op, mode) ++ && ! ubicom32_symbolic_address_operand (op, mode) ++ && (! CONST_INT_P (op) ++ || satisfies_constraint_Q (op))); ++}) ++ ++(define_predicate "ubicom32_arith_operand_dot2" ++ (match_code "subreg, reg, const_int, lo_sum, mem") ++{ ++ return (ubicom32_move_operand (op, mode) ++ && ! ubicom32_symbolic_address_operand (op, mode) ++ && (! CONST_INT_P (op) ++ || satisfies_constraint_R (op))); ++}) ++ ++(define_predicate "ubicom32_compare_operand" ++ (match_code "subreg, reg, const_int, lo_sum, mem") ++{ ++ return (ubicom32_move_operand (op, mode) ++ && ! ubicom32_symbolic_address_operand (op, mode) ++ && (! CONST_INT_P (op) ++ || satisfies_constraint_N (op))); ++}) ++ ++(define_predicate "ubicom32_compare_operator" ++ (match_code "compare")) ++ ++(define_predicate "ubicom32_and_or_si3_operand" ++ (match_code "subreg, reg, const_int, lo_sum, mem") ++{ ++ return (ubicom32_arith_operand (op, mode) ++ || (CONST_INT_P (op) ++ && ((exact_log2 (INTVAL (op) + 1) != -1 ++ && exact_log2 (INTVAL (op) + 1) <= 31) ++ || (exact_log2 (INTVAL (op)) != -1 ++ && exact_log2 (INTVAL (op)) <= 31) ++ || (exact_log2 (~INTVAL (op)) != -1 ++ && exact_log2 (~INTVAL (op)) <= 31)))); ++}) ++ ++(define_predicate "ubicom32_and_or_hi3_operand" ++ (match_code "subreg, reg, const_int, lo_sum, mem") ++{ ++ return (ubicom32_arith_operand (op, mode) ++ || (CONST_INT_P (op) ++ && exact_log2 (INTVAL (op) + 1) != -1 ++ && exact_log2 (INTVAL (op) + 1) <= 15)); ++}) ++ ++(define_predicate "ubicom32_mem_or_address_register_operand" ++ (match_code "subreg, reg, mem") ++{ ++ unsigned int regno; ++ ++ if (MEM_P (op) ++ && memory_operand (op, mode)) ++ return true; ++ ++ if (REG_P (op)) ++ regno = REGNO (op); ++ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))) ++ { ++ int offset; ++ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER) ++ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op))); ++ else ++ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), ++ GET_MODE (SUBREG_REG (op)), ++ SUBREG_BYTE (op), ++ GET_MODE (op)); ++ regno = REGNO (SUBREG_REG (op)) + offset; ++ } ++ else ++ return false; ++ ++ return (regno >= FIRST_PSEUDO_REGISTER ++ || REGNO_REG_CLASS (regno) == FDPIC_REG ++ || REGNO_REG_CLASS (regno) == ADDRESS_REGS); ++}) ++ ++(define_predicate "ubicom32_data_register_operand" ++ (match_code "subreg, reg") ++{ ++ unsigned int regno; ++ ++ if (REG_P (op)) ++ regno = REGNO (op); ++ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))) ++ { ++ int offset; ++ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER) ++ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op))); ++ else ++ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), ++ GET_MODE (SUBREG_REG (op)), ++ SUBREG_BYTE (op), ++ GET_MODE (op)); ++ regno = REGNO (SUBREG_REG (op)) + offset; ++ } ++ else ++ return false; ++ ++ return ((regno >= FIRST_PSEUDO_REGISTER ++ && regno != REGNO (virtual_stack_vars_rtx)) ++ || REGNO_REG_CLASS (regno) == DATA_REGS); ++}) ++ ++(define_predicate "ubicom32_address_register_operand" ++ (match_code "subreg, reg") ++{ ++ unsigned int regno; ++ ++ if (REG_P (op)) ++ regno = REGNO (op); ++ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))) ++ { ++ int offset; ++ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER) ++ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op))); ++ else ++ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), ++ GET_MODE (SUBREG_REG (op)), ++ SUBREG_BYTE (op), ++ GET_MODE (op)); ++ regno = REGNO (SUBREG_REG (op)) + offset; ++ } ++ else ++ return false; ++ ++ return (regno >= FIRST_PSEUDO_REGISTER ++ || REGNO_REG_CLASS (regno) == FDPIC_REG ++ || REGNO_REG_CLASS (regno) == ADDRESS_REGS); ++}) ++ ++(define_predicate "ubicom32_acc_lo_register_operand" ++ (match_code "subreg, reg") ++{ ++ unsigned int regno; ++ ++ if (REG_P (op)) ++ regno = REGNO (op); ++ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))) ++ { ++ int offset; ++ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER) ++ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op))); ++ else ++ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), ++ GET_MODE (SUBREG_REG (op)), ++ SUBREG_BYTE (op), ++ GET_MODE (op)); ++ regno = REGNO (SUBREG_REG (op)) + offset; ++ } ++ else ++ return false; ++ ++ return ((regno >= FIRST_PSEUDO_REGISTER ++ && regno != REGNO (virtual_stack_vars_rtx)) ++ || REGNO_REG_CLASS (regno) == ACC_LO_REGS); ++}) ++ ++(define_predicate "ubicom32_acc_hi_register_operand" ++ (match_code "subreg, reg") ++{ ++ unsigned int regno; ++ ++ if (REG_P (op)) ++ regno = REGNO (op); ++ else if (GET_CODE (op) == SUBREG && REG_P (SUBREG_REG (op))) ++ { ++ int offset; ++ if (REGNO (SUBREG_REG (op)) >= FIRST_PSEUDO_REGISTER) ++ offset = SUBREG_BYTE (op) / (GET_MODE_SIZE (GET_MODE (op))); ++ else ++ offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), ++ GET_MODE (SUBREG_REG (op)), ++ SUBREG_BYTE (op), ++ GET_MODE (op)); ++ regno = REGNO (SUBREG_REG (op)) + offset; ++ } ++ else ++ return false; ++ ++ return ((regno >= FIRST_PSEUDO_REGISTER ++ && regno != REGNO (virtual_stack_vars_rtx)) ++ || REGNO_REG_CLASS (regno) == ACC_REGS); ++}) ++ ++(define_predicate "ubicom32_call_address_operand" ++ (match_code "symbol_ref, subreg, reg") ++{ ++ return (GET_CODE (op) == SYMBOL_REF || REG_P (op)); ++}) ++ ++(define_special_predicate "ubicom32_cc_register_operand" ++ (and (match_code "reg") ++ (match_test "REGNO (op) == CC_REGNUM"))) ++ +--- /dev/null ++++ b/gcc/config/ubicom32/t-ubicom32 +@@ -0,0 +1,52 @@ ++# Name of assembly file containing libgcc1 functions. ++# This entry must be present, but it can be empty if the target does ++# not need any assembler functions to support its code generation. ++CROSS_LIBGCC1 = ++ ++# Alternatively if assembler functions *are* needed then define the ++# entries below: ++# CROSS_LIBGCC1 = libgcc1-asm.a ++ ++LIB2FUNCS_EXTRA = \ ++ $(srcdir)/config/udivmodsi4.c \ ++ $(srcdir)/config/divmod.c \ ++ $(srcdir)/config/udivmod.c ++ ++# If any special flags are necessary when building libgcc2 put them here. ++# ++# TARGET_LIBGCC2_CFLAGS = ++ ++# We want fine grained libraries, so use the new code to build the ++# floating point emulation libraries. ++FPBIT = fp-bit.c ++DPBIT = dp-bit.c ++ ++fp-bit.c: $(srcdir)/config/fp-bit.c ++ echo '#define FLOAT' > fp-bit.c ++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c ++ ++dp-bit.c: $(srcdir)/config/fp-bit.c ++ cat $(srcdir)/config/fp-bit.c > dp-bit.c ++ ++# Commented out to speed up compiler development! ++# ++# MULTILIB_OPTIONS = march=ubicom32v1/march=ubicom32v2/march=ubicom32v3/march=ubicom32v4 ++# MULTILIB_DIRNAMES = ubicom32v1 ubicom32v2 ubicom32v3 ubicom32v4 ++ ++MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4 ++MULTILIB_OPTIONS += mfdpic ++MULTILIB_OPTIONS += mno-ipos-abi/mipos-abi ++MULTILIB_OPTIONS += fno-leading-underscore/fleading-underscore ++ ++# Assemble startup files. ++$(T)crti.o: $(srcdir)/config/ubicom32/crti.S $(GCC_PASSES) ++ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \ ++ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crti.S ++ ++$(T)crtn.o: $(srcdir)/config/ubicom32/crtn.S $(GCC_PASSES) ++ $(GCC_FOR_TARGET) $(GCC_CFLAGS) $(MULTILIB_CFLAGS) $(INCLUDES) \ ++ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/ubicom32/crtn.S ++ ++# these parts are required because uClibc ldso needs them to link. ++# they are not in the specfile so they will not be included automatically. ++EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o crti.o crtn.o +--- /dev/null ++++ b/gcc/config/ubicom32/t-ubicom32-linux +@@ -0,0 +1,35 @@ ++# Name of assembly file containing libgcc1 functions. ++# This entry must be present, but it can be empty if the target does ++# not need any assembler functions to support its code generation. ++CROSS_LIBGCC1 = ++ ++# Alternatively if assembler functions *are* needed then define the ++# entries below: ++# CROSS_LIBGCC1 = libgcc1-asm.a ++ ++LIB2FUNCS_EXTRA = \ ++ $(srcdir)/config/udivmodsi4.c \ ++ $(srcdir)/config/divmod.c \ ++ $(srcdir)/config/udivmod.c ++ ++# If any special flags are necessary when building libgcc2 put them here. ++# ++# TARGET_LIBGCC2_CFLAGS = ++ ++# We want fine grained libraries, so use the new code to build the ++# floating point emulation libraries. ++FPBIT = fp-bit.c ++DPBIT = dp-bit.c ++ ++fp-bit.c: $(srcdir)/config/fp-bit.c ++ echo '#define FLOAT' > fp-bit.c ++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c ++ ++dp-bit.c: $(srcdir)/config/fp-bit.c ++ cat $(srcdir)/config/fp-bit.c > dp-bit.c ++ ++# We only support v3 and v4 ISAs for uClinux. ++ ++MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4 ++ ++#EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o crtbeginS.o crtendS.o +--- /dev/null ++++ b/gcc/config/ubicom32/t-ubicom32-uclinux +@@ -0,0 +1,35 @@ ++# Name of assembly file containing libgcc1 functions. ++# This entry must be present, but it can be empty if the target does ++# not need any assembler functions to support its code generation. ++CROSS_LIBGCC1 = ++ ++# Alternatively if assembler functions *are* needed then define the ++# entries below: ++# CROSS_LIBGCC1 = libgcc1-asm.a ++ ++LIB2FUNCS_EXTRA = \ ++ $(srcdir)/config/udivmodsi4.c \ ++ $(srcdir)/config/divmod.c \ ++ $(srcdir)/config/udivmod.c ++ ++# If any special flags are necessary when building libgcc2 put them here. ++# ++# TARGET_LIBGCC2_CFLAGS = ++ ++# We want fine grained libraries, so use the new code to build the ++# floating point emulation libraries. ++FPBIT = fp-bit.c ++DPBIT = dp-bit.c ++ ++fp-bit.c: $(srcdir)/config/fp-bit.c ++ echo '#define FLOAT' > fp-bit.c ++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c ++ ++dp-bit.c: $(srcdir)/config/fp-bit.c ++ cat $(srcdir)/config/fp-bit.c > dp-bit.c ++ ++# We only support v3 and v4 ISAs for uClinux. ++ ++MULTILIB_OPTIONS = march=ubicom32v3/march=ubicom32v4 ++ ++EXTRA_MULTILIB_PARTS = crtbegin.o crtend.o # crtbeginS.o crtendS.o +--- /dev/null ++++ b/gcc/config/ubicom32/ubicom32-modes.def +@@ -0,0 +1,30 @@ ++/* Definitions of target machine for GNU compiler, Ubicom32 architecture. ++ Copyright (C) 2009 Free Software Foundation, Inc. ++ Contributed by Ubicom, Inc. ++ ++ This file is part of GCC. ++ ++ GCC is free software; you can redistribute it and/or modify it ++ under the terms of the GNU General Public License as published ++ by the Free Software Foundation; either version 3, or (at your ++ option) any later version. ++ ++ GCC is distributed in the hope that it will be useful, but WITHOUT ++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ++ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ++ License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with GCC; see the file COPYING3. If not see ++ . */ ++ ++/* Some insns set all condition code flags, some only set the Z and N flags, and ++ some only set the Z flag. */ ++ ++CC_MODE (CCW); ++CC_MODE (CCWZN); ++CC_MODE (CCWZ); ++CC_MODE (CCS); ++CC_MODE (CCSZN); ++CC_MODE (CCSZ); ++ +--- /dev/null ++++ b/gcc/config/ubicom32/ubicom32-protos.h +@@ -0,0 +1,84 @@ ++/* Function prototypes for Ubicom IP3000. ++ ++ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, ++ 2009 Free Software Foundation, Inc. ++ Contributed by Ubicom, Inc. ++ ++ This file is part of GNU CC. ++ ++ GNU CC is free software; you can redistribute it and/or modify it under ++ the terms of the GNU General Public License as published by the Free ++ Software Foundation; either version 2, or (at your option) any later ++ version. ++ ++ GNU CC is distributed in the hope that it will be useful, but WITHOUT ++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ++ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ++ for more details. ++ ++ You should have received a copy of the GNU General Public License along ++ with GNU CC; see the file COPYING. If not, write to the Free Software ++ Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#ifdef RTX_CODE ++ ++#ifdef TREE_CODE ++extern void ubicom32_va_start (tree, rtx); ++#endif /* TREE_CODE */ ++ ++extern void ubicom32_print_operand (FILE *, rtx, int); ++extern void ubicom32_print_operand_address (FILE *, rtx); ++ ++extern void ubicom32_conditional_register_usage (void); ++extern enum reg_class ubicom32_preferred_reload_class (rtx, enum reg_class); ++extern int ubicom32_regno_ok_for_index_p (int, int); ++extern void ubicom32_expand_movsi (rtx *); ++extern void ubicom32_expand_addsi3 (rtx *); ++extern int ubicom32_emit_mult_sequence (rtx *); ++extern void ubicom32_emit_move_const_int (rtx, rtx); ++extern bool ubicom32_legitimate_constant_p (rtx); ++extern bool ubicom32_legitimate_address_p (enum machine_mode, rtx, int); ++extern rtx ubicom32_legitimize_address (rtx, rtx, enum machine_mode); ++extern rtx ubicom32_legitimize_reload_address (rtx, enum machine_mode, int, int); ++extern void ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1); ++extern int ubicom32_mode_dependent_address_p (rtx); ++extern void ubicom32_output_cond_jump (rtx, rtx, rtx); ++extern void ubicom32_expand_eh_return (rtx *); ++extern void ubicom32_expand_call_fdpic (rtx *); ++extern void ubicom32_expand_call_value_fdpic (rtx *); ++extern enum machine_mode ubicom32_select_cc_mode (RTX_CODE, rtx, rtx); ++extern rtx ubicom32_gen_compare_reg (RTX_CODE, rtx, rtx); ++extern int ubicom32_shiftable_const_int (int); ++#endif /* RTX_CODE */ ++ ++#ifdef TREE_CODE ++extern void init_cumulative_args (CUMULATIVE_ARGS *cum, ++ tree fntype, ++ struct rtx_def *libname, ++ int indirect); ++extern struct rtx_def *function_arg (CUMULATIVE_ARGS *, ++ enum machine_mode, tree, int); ++extern struct rtx_def *function_incoming_arg (CUMULATIVE_ARGS *, ++ enum machine_mode, ++ tree, int); ++extern int function_arg_partial_nregs (CUMULATIVE_ARGS *, ++ enum machine_mode, tree, int); ++extern struct rtx_def *ubicom32_va_arg (tree, tree); ++extern int ubicom32_reg_parm_stack_space (tree); ++#endif /* TREE_CODE */ ++ ++extern struct rtx_def * ubicom32_builtin_saveregs (void); ++extern void asm_file_start (FILE *); ++extern void ubicom32_expand_prologue (void); ++extern void ubicom32_expand_epilogue (void); ++extern int ubicom32_initial_elimination_offset (int, int); ++extern int ubicom32_regno_ok_for_base_p (int, int); ++extern bool ubicom32_hard_regno_mode_ok (unsigned int, enum machine_mode); ++extern int ubicom32_can_use_return_insn_p (void); ++extern rtx ubicom32_return_addr_rtx (int, rtx); ++extern void ubicom32_optimization_options (int, int); ++extern void ubicom32_override_options (void); ++extern bool ubicom32_match_cc_mode (rtx, enum machine_mode); ++ ++extern int ubicom32_reorg_completed; ++ +--- /dev/null ++++ b/gcc/config/ubicom32/ubicom32.c +@@ -0,0 +1,2881 @@ ++/* Subroutines for insn-output.c for Ubicom32 ++ ++ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, ++ 2009 Free Software Foundation, Inc. ++ Contributed by Ubicom, Inc. ++ ++ This file is part of GCC. ++ ++ GCC is free software; you can redistribute it and/or modify it ++ under the terms of the GNU General Public License as published ++ by the Free Software Foundation; either version 3, or (at your ++ option) any later version. ++ ++ GCC is distributed in the hope that it will be useful, but WITHOUT ++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ++ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ++ License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with GCC; see the file COPYING3. If not see ++ . */ ++ ++#include "config.h" ++#include "system.h" ++#include "coretypes.h" ++#include "tm.h" ++#include "rtl.h" ++#include "tree.h" ++#include "regs.h" ++#include "hard-reg-set.h" ++#include "real.h" ++#include "insn-config.h" ++#include "conditions.h" ++#include "insn-flags.h" ++#include "output.h" ++#include "insn-attr.h" ++#include "insn-codes.h" ++#include "flags.h" ++#include "recog.h" ++#include "expr.h" ++#include "function.h" ++#include "obstack.h" ++#include "toplev.h" ++#include "tm_p.h" ++#include "tm-constrs.h" ++#include "basic-block.h" ++#include "integrate.h" ++#include "target.h" ++#include "target-def.h" ++#include "reload.h" ++#include "df.h" ++#include "langhooks.h" ++#include "optabs.h" ++ ++static tree ubicom32_handle_fndecl_attribute (tree *, tree, tree, int, bool *); ++static void ubicom32_layout_frame (void); ++static void ubicom32_function_prologue (FILE *, HOST_WIDE_INT); ++static void ubicom32_function_epilogue (FILE *, HOST_WIDE_INT); ++static bool ubicom32_rtx_costs (rtx, int, int, int *, bool speed); ++static bool ubicom32_fixed_condition_code_regs (unsigned int *, ++ unsigned int *); ++static enum machine_mode ubicom32_cc_modes_compatible (enum machine_mode, ++ enum machine_mode); ++static int ubicom32_naked_function_p (void); ++static void ubicom32_machine_dependent_reorg (void); ++static bool ubicom32_assemble_integer (rtx, unsigned int, int); ++static void ubicom32_asm_init_sections (void); ++static int ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,tree, ++ bool); ++static bool ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, ++ enum machine_mode mode, const_tree type, ++ bool named ATTRIBUTE_UNUSED); ++static bool ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, ++ enum machine_mode mode, const_tree type, ++ bool named ATTRIBUTE_UNUSED); ++ ++static bool ubicom32_return_in_memory (const_tree type, ++ const_tree fntype ATTRIBUTE_UNUSED); ++static bool ubicom32_is_base_reg (rtx, int); ++static void ubicom32_init_builtins (void); ++static rtx ubicom32_expand_builtin (tree, rtx, rtx, enum machine_mode, int); ++static tree ubicom32_fold_builtin (tree, tree, bool); ++static int ubicom32_get_valid_offset_mask (enum machine_mode); ++static bool ubicom32_cannot_force_const_mem (rtx); ++ ++/* Case values threshold */ ++int ubicom32_case_values_threshold = 6; ++ ++/* Nonzero if this chip supports the Ubicom32 v3 ISA. */ ++int ubicom32_v3 = 1; ++ ++/* Nonzero if this chip supports the Ubicom32 v4 ISA. */ ++int ubicom32_v4 = 1; ++ ++/* Valid attributes: ++ naked - don't generate function prologue/epilogue and `ret' command. */ ++const struct attribute_spec ubicom32_attribute_table[] = ++{ ++ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ ++ { "naked", 0, 0, true, false, false, ubicom32_handle_fndecl_attribute }, ++ { NULL, 0, 0, false, false, false, NULL } ++}; ++ ++#undef TARGET_ASM_FUNCTION_PROLOGUE ++#define TARGET_ASM_FUNCTION_PROLOGUE ubicom32_function_prologue ++ ++#undef TARGET_ASM_FUNCTION_EPILOGUE ++#define TARGET_ASM_FUNCTION_EPILOGUE ubicom32_function_epilogue ++ ++#undef TARGET_ATTRIBUTE_TABLE ++#define TARGET_ATTRIBUTE_TABLE ubicom32_attribute_table ++ ++/* All addresses cost the same amount. */ ++#undef TARGET_ADDRESS_COST ++#define TARGET_ADDRESS_COST hook_int_rtx_bool_0 ++ ++#undef TARGET_RTX_COSTS ++#define TARGET_RTX_COSTS ubicom32_rtx_costs ++ ++#undef TARGET_FIXED_CONDITION_CODE_REGS ++#define TARGET_FIXED_CONDITION_CODE_REGS ubicom32_fixed_condition_code_regs ++ ++#undef TARGET_CC_MODES_COMPATIBLE ++#define TARGET_CC_MODES_COMPATIBLE ubicom32_cc_modes_compatible ++ ++#undef TARGET_MACHINE_DEPENDENT_REORG ++#define TARGET_MACHINE_DEPENDENT_REORG ubicom32_machine_dependent_reorg ++ ++#undef TARGET_ASM_INTEGER ++#define TARGET_ASM_INTEGER ubicom32_assemble_integer ++ ++#undef TARGET_ASM_INIT_SECTIONS ++#define TARGET_ASM_INIT_SECTIONS ubicom32_asm_init_sections ++ ++#undef TARGET_ARG_PARTIAL_BYTES ++#define TARGET_ARG_PARTIAL_BYTES ubicom32_arg_partial_bytes ++ ++#undef TARGET_PASS_BY_REFERENCE ++#define TARGET_PASS_BY_REFERENCE ubicom32_pass_by_reference ++ ++#undef TARGET_CALLEE_COPIES ++#define TARGET_CALLEE_COPIES ubicom32_callee_copies ++ ++#undef TARGET_RETURN_IN_MEMORY ++#define TARGET_RETURN_IN_MEMORY ubicom32_return_in_memory ++ ++#undef TARGET_INIT_BUILTINS ++#define TARGET_INIT_BUILTINS ubicom32_init_builtins ++ ++#undef TARGET_EXPAND_BUILTIN ++#define TARGET_EXPAND_BUILTIN ubicom32_expand_builtin ++ ++#undef TARGET_FOLD_BUILTIN ++#define TARGET_FOLD_BUILTIN ubicom32_fold_builtin ++ ++#undef TARGET_CANNOT_FORCE_CONST_MEM ++#define TARGET_CANNOT_FORCE_CONST_MEM ubicom32_cannot_force_const_mem ++ ++struct gcc_target targetm = TARGET_INITIALIZER; ++ ++static char save_regs[FIRST_PSEUDO_REGISTER]; ++static int nregs; ++static int frame_size; ++int ubicom32_stack_size = 0; /* size of allocated stack (including frame) */ ++int ubicom32_can_use_calli_to_ret; ++ ++#define STACK_UNIT_BOUNDARY (STACK_BOUNDARY / BITS_PER_UNIT) ++#define ROUND_CALL_BLOCK_SIZE(BYTES) \ ++ (((BYTES) + (STACK_UNIT_BOUNDARY - 1)) & ~(STACK_UNIT_BOUNDARY - 1)) ++ ++/* In case of a PRE_INC, POST_INC, PRE_DEC, POST_DEC memory reference, we ++ must report the mode of the memory reference from PRINT_OPERAND to ++ PRINT_OPERAND_ADDRESS. */ ++enum machine_mode output_memory_reference_mode; ++ ++/* Flag for some split insns from the ubicom32.md. */ ++int ubicom32_reorg_completed; ++ ++enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER] = ++{ ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ DATA_REGS, ++ FDPIC_REG, ++ ADDRESS_REGS, ++ ADDRESS_REGS, ++ ADDRESS_REGS, ++ ADDRESS_REGS, ++ ADDRESS_REGS, ++ ADDRESS_REGS, ++ ADDRESS_REGS, ++ ACC_REGS, ++ ACC_LO_REGS, ++ ACC_REGS, ++ ACC_LO_REGS, ++ SOURCE3_REG, ++ ADDRESS_REGS, ++ NO_REGS, /* CC_REG must be NO_REGS */ ++ SPECIAL_REGS, ++ SPECIAL_REGS, ++ SPECIAL_REGS, ++ SPECIAL_REGS, ++ SPECIAL_REGS, ++ SPECIAL_REGS, ++ SPECIAL_REGS, ++ SPECIAL_REGS ++}; ++ ++rtx ubicom32_compare_op0; ++rtx ubicom32_compare_op1; ++ ++/* Handle command line option overrides. */ ++ ++void ++ubicom32_override_options (void) ++{ ++ flag_pic = 0; ++ ++ if (strcmp (ubicom32_arch_name, "ubicom32v1") == 0) { ++ /* If we have a version 1 architecture then we want to avoid using jump ++ tables. */ ++ ubicom32_case_values_threshold = 30000; ++ ubicom32_v3 = 0; ++ ubicom32_v4 = 0; ++ } else if (strcmp (ubicom32_arch_name, "ubicom32v2") == 0) { ++ ubicom32_v3 = 0; ++ ubicom32_v4 = 0; ++ } else if (strcmp (ubicom32_arch_name, "ubicom32v3") == 0) { ++ ubicom32_v3 = 1; ++ ubicom32_v4 = 0; ++ } else if (strcmp (ubicom32_arch_name, "ubicom32v4") == 0) { ++ ubicom32_v3 = 1; ++ ubicom32_v4 = 1; ++ } ++ ++ /* There is no single unaligned SI op for PIC code. Sometimes we ++ need to use ".4byte" and sometimes we need to use ".picptr". ++ See ubicom32_assemble_integer for details. */ ++ if (TARGET_FDPIC) ++ targetm.asm_out.unaligned_op.si = 0; ++} ++ ++void ++ubicom32_conditional_register_usage (void) ++{ ++ /* If we're using the old ipOS ABI we need to make D10 through D13 ++ caller-clobbered. */ ++ if (TARGET_IPOS_ABI) ++ { ++ call_used_regs[D10_REGNUM] = 1; ++ call_used_regs[D11_REGNUM] = 1; ++ call_used_regs[D12_REGNUM] = 1; ++ call_used_regs[D13_REGNUM] = 1; ++ } ++} ++ ++/* We have some number of optimizations that don't really work for the Ubicom32 ++ architecture so we deal with them here. */ ++ ++void ++ubicom32_optimization_options (int level ATTRIBUTE_UNUSED, ++ int size ATTRIBUTE_UNUSED) ++{ ++ /* The tree IVOPTs pass seems to do really bad things for the Ubicom32 ++ architecture - it tends to turn things that would happily use pre/post ++ increment/decrement into operations involving unecessary loop ++ indicies. */ ++ flag_ivopts = 0; ++ ++ /* We have problems where DSE at the RTL level misses partial stores ++ to the stack. For now we disable it to avoid this. */ ++ flag_dse = 0; ++} ++ ++/* Print operand X using operand code CODE to assembly language output file ++ FILE. */ ++ ++void ++ubicom32_print_operand (FILE *file, rtx x, int code) ++{ ++ switch (code) ++ { ++ case 'A': ++ /* Identify the correct accumulator to use. */ ++ if (REGNO (x) == ACC0_HI_REGNUM || REGNO (x) == ACC0_LO_REGNUM) ++ fprintf (file, "acc0"); ++ else if (REGNO (x) == ACC1_HI_REGNUM || REGNO (x) == ACC1_LO_REGNUM) ++ fprintf (file, "acc1"); ++ else ++ abort (); ++ break; ++ ++ case 'b': ++ case 'B': ++ { ++ enum machine_mode mode; ++ ++ mode = GET_MODE (XEXP (x, 0)); ++ ++ /* These are normal and reversed branches. */ ++ switch (code == 'b' ? GET_CODE (x) : reverse_condition (GET_CODE (x))) ++ { ++ case NE: ++ fprintf (file, "ne"); ++ break; ++ ++ case EQ: ++ fprintf (file, "eq"); ++ break; ++ ++ case GE: ++ if (mode == CCSZNmode || mode == CCWZNmode) ++ fprintf (file, "pl"); ++ else ++ fprintf (file, "ge"); ++ break; ++ ++ case GT: ++ fprintf (file, "gt"); ++ break; ++ ++ case LE: ++ fprintf (file, "le"); ++ break; ++ ++ case LT: ++ if (mode == CCSZNmode || mode == CCWZNmode) ++ fprintf (file, "mi"); ++ else ++ fprintf (file, "lt"); ++ break; ++ ++ case GEU: ++ fprintf (file, "cs"); ++ break; ++ ++ case GTU: ++ fprintf (file, "hi"); ++ break; ++ ++ case LEU: ++ fprintf (file, "ls"); ++ break; ++ ++ case LTU: ++ fprintf (file, "cc"); ++ break; ++ ++ default: ++ abort (); ++ } ++ } ++ break; ++ ++ case 'C': ++ /* This is used for the operand to a call instruction; ++ if it's a REG, enclose it in parens, else output ++ the operand normally. */ ++ if (REG_P (x)) ++ { ++ fputc ('(', file); ++ ubicom32_print_operand (file, x, 0); ++ fputc (')', file); ++ } ++ else ++ ubicom32_print_operand (file, x, 0); ++ break; ++ ++ case 'd': ++ /* Bit operations we need bit numbers. */ ++ fprintf (file, "%d", exact_log2 (INTVAL (x))); ++ break; ++ ++ case 'D': ++ /* Bit operations we need bit numbers. */ ++ fprintf (file, "%d", exact_log2 (~ INTVAL (x))); ++ break; ++ ++ case 'E': ++ /* For lea, which we use to add address registers. ++ We don't want the '#' on a constant. */ ++ if (CONST_INT_P (x)) ++ { ++ fprintf (file, "%ld", INTVAL (x)); ++ break; ++ } ++ /* FALL THROUGH */ ++ ++ default: ++ switch (GET_CODE (x)) ++ { ++ case MEM: ++ output_memory_reference_mode = GET_MODE (x); ++ output_address (XEXP (x, 0)); ++ break; ++ ++ case PLUS: ++ output_address (x); ++ break; ++ ++ case REG: ++ fprintf (file, "%s", reg_names[REGNO (x)]); ++ break; ++ ++ case SUBREG: ++ fprintf (file, "%s", reg_names[subreg_regno (x)]); ++ break; ++ ++ /* This will only be single precision.... */ ++ case CONST_DOUBLE: ++ { ++ unsigned long val; ++ REAL_VALUE_TYPE rv; ++ ++ REAL_VALUE_FROM_CONST_DOUBLE (rv, x); ++ REAL_VALUE_TO_TARGET_SINGLE (rv, val); ++ fprintf (file, "0x%lx", val); ++ break; ++ } ++ ++ case CONST_INT: ++ case SYMBOL_REF: ++ case CONST: ++ case LABEL_REF: ++ case CODE_LABEL: ++ case LO_SUM: ++ ubicom32_print_operand_address (file, x); ++ break; ++ ++ case HIGH: ++ fprintf (file, "#%%hi("); ++ ubicom32_print_operand_address (file, XEXP (x, 0)); ++ fprintf (file, ")"); ++ break; ++ ++ case UNSPEC: ++ switch (XINT (x, 1)) ++ { ++ case UNSPEC_FDPIC_GOT: ++ fprintf (file, "#%%got_lo("); ++ ubicom32_print_operand_address (file, XVECEXP (x, 0, 0)); ++ fprintf (file, ")"); ++ break; ++ ++ case UNSPEC_FDPIC_GOT_FUNCDESC: ++ fprintf (file, "#%%got_funcdesc_lo("); ++ ubicom32_print_operand_address (file, XVECEXP (x, 0, 0)); ++ fprintf (file, ")"); ++ break; ++ ++ default: ++ abort (); ++ } ++ break; ++ ++ default: ++ abort (); ++ } ++ break; ++ } ++} ++ ++/* Output assembly language output for the address ADDR to FILE. */ ++ ++void ++ubicom32_print_operand_address (FILE *file, rtx addr) ++{ ++ switch (GET_CODE (addr)) ++ { ++ case POST_INC: ++ ubicom32_print_operand_address (file, XEXP (addr, 0)); ++ fprintf (file, "%d++", GET_MODE_SIZE (output_memory_reference_mode)); ++ break; ++ ++ case PRE_INC: ++ fprintf (file, "%d", GET_MODE_SIZE (output_memory_reference_mode)); ++ ubicom32_print_operand_address (file, XEXP (addr, 0)); ++ fprintf (file, "++"); ++ break; ++ ++ case POST_DEC: ++ ubicom32_print_operand_address (file, XEXP (addr, 0)); ++ fprintf (file, "%d++", -GET_MODE_SIZE (output_memory_reference_mode)); ++ break; ++ ++ case PRE_DEC: ++ fprintf (file, "%d", -GET_MODE_SIZE (output_memory_reference_mode)); ++ ubicom32_print_operand_address (file, XEXP (addr, 0)); ++ fprintf (file, "++"); ++ break; ++ ++ case POST_MODIFY: ++ ubicom32_print_operand_address (file, XEXP (addr, 0)); ++ fprintf (file, "%ld++", INTVAL (XEXP (XEXP (addr,1), 1))); ++ break; ++ ++ case PRE_MODIFY: ++ fprintf (file, "%ld", INTVAL (XEXP (XEXP (addr,1), 1))); ++ ubicom32_print_operand_address (file, XEXP (addr, 0)); ++ fprintf (file, "++"); ++ break; ++ ++ case REG: ++ fputc ('(', file); ++ fprintf (file, "%s", reg_names[REGNO (addr)]); ++ fputc (')', file); ++ break; ++ ++ case PLUS: ++ { ++ rtx base = XEXP (addr, 0); ++ rtx index = XEXP (addr, 1); ++ ++ /* Switch around addresses of the form index * scaling + base. */ ++ if (! ubicom32_is_base_reg (base, 1)) ++ { ++ rtx tmp = base; ++ base = index; ++ index = tmp; ++ } ++ ++ if (CONST_INT_P (index)) ++ { ++ fprintf (file, "%ld", INTVAL (index)); ++ fputc ('(', file); ++ fputs (reg_names[REGNO (base)], file); ++ } ++ else if (GET_CODE (index) == MULT ++ || REG_P (index)) ++ { ++ if (GET_CODE (index) == MULT) ++ index = XEXP (index, 0); ++ fputc ('(', file); ++ fputs (reg_names[REGNO (base)], file); ++ fputc (',', file); ++ fputs (reg_names[REGNO (index)], file); ++ } ++ else ++ abort (); ++ ++ fputc (')', file); ++ break; ++ } ++ ++ case LO_SUM: ++ fprintf (file, "%%lo("); ++ ubicom32_print_operand (file, XEXP (addr, 1), 'L'); ++ fprintf (file, ")("); ++ ubicom32_print_operand (file, XEXP (addr, 0), 0); ++ fprintf (file, ")"); ++ break; ++ ++ case CONST_INT: ++ fputc ('#', file); ++ output_addr_const (file, addr); ++ break; ++ ++ default: ++ output_addr_const (file, addr); ++ break; ++ } ++} ++ ++/* X and Y are two things to compare using CODE. Emit the compare insn and ++ return the rtx for the cc reg in the proper mode. */ ++ ++rtx ++ubicom32_gen_compare_reg (enum rtx_code code, rtx x, rtx y) ++{ ++ enum machine_mode mode = SELECT_CC_MODE (code, x, y); ++ rtx cc_reg; ++ ++ cc_reg = gen_rtx_REG (mode, CC_REGNUM); ++ ++ emit_insn (gen_rtx_SET (VOIDmode, cc_reg, ++ gen_rtx_COMPARE (mode, x, y))); ++ ++ return cc_reg; ++} ++ ++/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE, ++ return the mode to be used for the comparison. */ ++ ++enum machine_mode ++ubicom32_select_cc_mode (enum rtx_code op, rtx x, rtx y) ++{ ++ /* Is this a short compare? */ ++ if (GET_MODE (x) == QImode ++ || GET_MODE (x) == HImode ++ || GET_MODE (y) == QImode ++ || GET_MODE (y) == HImode) ++ { ++ switch (op) ++ { ++ case EQ : ++ case NE : ++ return CCSZmode; ++ ++ case GE: ++ case LT: ++ if (y == const0_rtx) ++ return CCSZNmode; ++ ++ default : ++ return CCSmode; ++ } ++ } ++ ++ /* We have a word compare. */ ++ switch (op) ++ { ++ case EQ : ++ case NE : ++ return CCWZmode; ++ ++ case GE : ++ case LT : ++ if (y == const0_rtx) ++ return CCWZNmode; ++ ++ default : ++ return CCWmode; ++ } ++} ++ ++/* Return TRUE or FALSE depending on whether the first SET in INSN ++ has source and destination with matching CC modes, and that the ++ CC mode is at least as constrained as REQ_MODE. */ ++bool ++ubicom32_match_cc_mode (rtx insn, enum machine_mode req_mode) ++{ ++ rtx set; ++ enum machine_mode set_mode; ++ ++ set = PATTERN (insn); ++ if (GET_CODE (set) == PARALLEL) ++ set = XVECEXP (set, 0, 0); ++ gcc_assert (GET_CODE (set) == SET); ++ gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE); ++ ++ /* SET_MODE is the mode we have in the instruction. This must either ++ be the same or less restrictive that the required mode REQ_MODE. */ ++ set_mode = GET_MODE (SET_DEST (set)); ++ ++ switch (req_mode) ++ { ++ case CCSZmode: ++ if (set_mode != CCSZmode) ++ return 0; ++ break; ++ ++ case CCSZNmode: ++ if (set_mode != CCSZmode ++ && set_mode != CCSZNmode) ++ return 0; ++ break; ++ ++ case CCSmode: ++ if (set_mode != CCSmode ++ && set_mode != CCSZmode ++ && set_mode != CCSZNmode) ++ return 0; ++ break; ++ ++ case CCWZmode: ++ if (set_mode != CCWZmode) ++ return 0; ++ break; ++ ++ case CCWZNmode: ++ if (set_mode != CCWZmode ++ && set_mode != CCWZNmode) ++ return 0; ++ break; ++ ++ case CCWmode: ++ if (set_mode != CCWmode ++ && set_mode != CCWZmode ++ && set_mode != CCWZNmode) ++ return 0; ++ break; ++ ++ default: ++ gcc_unreachable (); ++ } ++ ++ return (GET_MODE (SET_SRC (set)) == set_mode); ++} ++ ++/* Replace the comparison OP0 CODE OP1 by a semantically equivalent one ++ that we can implement more efficiently. */ ++ ++void ++ubicom32_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1) ++{ ++ /* If we have a REG and a MEM then compare the MEM with the REG and not ++ the other way round. */ ++ if (REG_P (*op0) && MEM_P (*op1)) ++ { ++ rtx tem = *op0; ++ *op0 = *op1; ++ *op1 = tem; ++ *code = swap_condition (*code); ++ return; ++ } ++ ++ /* If we have a REG and a CONST_INT then we may want to reverse things ++ if the constant can be represented as an "I" constraint. */ ++ if (REG_P (*op0) && CONST_INT_P (*op1) && satisfies_constraint_I (*op1)) ++ { ++ rtx tem = *op0; ++ *op0 = *op1; ++ *op1 = tem; ++ *code = swap_condition (*code); ++ return; ++ } ++} ++ ++/* Return the fixed registers used for condition codes. */ ++ ++static bool ++ubicom32_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) ++{ ++ *p1 = CC_REGNUM; ++ *p2 = INVALID_REGNUM; ++ ++ return true; ++} ++ ++/* If two condition code modes are compatible, return a condition code ++ mode which is compatible with both. Otherwise, return ++ VOIDmode. */ ++ ++static enum machine_mode ++ubicom32_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2) ++{ ++ if (m1 == m2) ++ return m1; ++ ++ if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC) ++ return VOIDmode; ++ ++ switch (m1) ++ { ++ case CCWmode: ++ if (m2 == CCWZNmode || m2 == CCWZmode) ++ return m1; ++ ++ return VOIDmode; ++ ++ case CCWZNmode: ++ if (m2 == CCWmode) ++ return m2; ++ ++ if (m2 == CCWZmode) ++ return m1; ++ ++ return VOIDmode; ++ ++ case CCWZmode: ++ if (m2 == CCWmode || m2 == CCWZNmode) ++ return m2; ++ ++ return VOIDmode; ++ ++ case CCSmode: ++ if (m2 == CCSZNmode || m2 == CCSZmode) ++ return m1; ++ ++ return VOIDmode; ++ ++ case CCSZNmode: ++ if (m2 == CCSmode) ++ return m2; ++ ++ if (m2 == CCSZmode) ++ return m1; ++ ++ return VOIDmode; ++ ++ case CCSZmode: ++ if (m2 == CCSmode || m2 == CCSZNmode) ++ return m2; ++ ++ return VOIDmode; ++ ++ default: ++ gcc_unreachable (); ++ } ++} ++ ++static rtx ++ubicom32_legitimize_fdpic_address_symbol (rtx orig, rtx reg, rtx fdpic_reg) ++{ ++ int unspec; ++ rtx got_offs; ++ rtx got_offs_scaled; ++ rtx plus_scaled; ++ rtx tmp; ++ rtx new_rtx; ++ ++ gcc_assert (reg != 0); ++ ++ if (GET_CODE (orig) == SYMBOL_REF ++ && SYMBOL_REF_FUNCTION_P (orig)) ++ unspec = UNSPEC_FDPIC_GOT_FUNCDESC; ++ else ++ unspec = UNSPEC_FDPIC_GOT; ++ ++ got_offs = gen_reg_rtx (SImode); ++ tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, orig), unspec); ++ emit_move_insn (got_offs, tmp); ++ ++ got_offs_scaled = gen_rtx_MULT (SImode, got_offs, GEN_INT (4)); ++ plus_scaled = gen_rtx_PLUS (Pmode, fdpic_reg, got_offs_scaled); ++ new_rtx = gen_const_mem (Pmode, plus_scaled); ++ emit_move_insn (reg, new_rtx); ++ ++ return reg; ++} ++ ++static rtx ++ubicom32_legitimize_fdpic_address (rtx orig, rtx reg, rtx fdpic_reg) ++{ ++ rtx addr = orig; ++ rtx new_rtx = orig; ++ ++ if (GET_CODE (addr) == CONST || GET_CODE (addr) == PLUS) ++ { ++ rtx base; ++ ++ if (GET_CODE (addr) == CONST) ++ { ++ addr = XEXP (addr, 0); ++ gcc_assert (GET_CODE (addr) == PLUS); ++ } ++ ++ base = ubicom32_legitimize_fdpic_address_symbol (XEXP (addr, 0), reg, fdpic_reg); ++ return gen_rtx_PLUS (Pmode, base, XEXP (addr, 1)); ++ } ++ ++ return new_rtx; ++} ++ ++/* Code generation. */ ++ ++void ++ubicom32_expand_movsi (rtx *operands) ++{ ++ if (GET_CODE (operands[1]) == SYMBOL_REF ++ || (GET_CODE (operands[1]) == CONST ++ && GET_CODE (XEXP (operands[1], 0)) == PLUS ++ && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == SYMBOL_REF) ++ || CONSTANT_ADDRESS_P (operands[1])) ++ { ++ if (TARGET_FDPIC) ++ { ++ rtx tmp; ++ rtx fdpic_reg; ++ ++ gcc_assert (can_create_pseudo_p ()); ++ tmp = gen_reg_rtx (Pmode); ++ fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM); ++ if (GET_CODE (operands[1]) == SYMBOL_REF ++ || GET_CODE (operands[1]) == LABEL_REF) ++ operands[1] = ubicom32_legitimize_fdpic_address_symbol (operands[1], tmp, fdpic_reg); ++ else ++ operands[1] = ubicom32_legitimize_fdpic_address (operands[1], tmp, fdpic_reg); ++ } ++ else ++ { ++ rtx tmp; ++ enum machine_mode mode; ++ ++ /* We want to avoid reusing operand 0 if we can because it limits ++ our ability to optimize later. */ ++ tmp = ! can_create_pseudo_p () ? operands[0] : gen_reg_rtx (Pmode); ++ ++ mode = GET_MODE (operands[0]); ++ emit_insn (gen_rtx_SET (VOIDmode, tmp, ++ gen_rtx_HIGH (mode, operands[1]))); ++ operands[1] = gen_rtx_LO_SUM (mode, tmp, operands[1]); ++ if (can_create_pseudo_p() && ! REG_P (operands[0])) ++ { ++ tmp = gen_reg_rtx (mode); ++ emit_insn (gen_rtx_SET (VOIDmode, tmp, operands[1])); ++ operands[1] = tmp; ++ } ++ } ++ } ++} ++ ++/* Emit code for addsi3. */ ++ ++void ++ubicom32_expand_addsi3 (rtx *operands) ++{ ++ rtx op, clob; ++ ++ if (can_create_pseudo_p ()) ++ { ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (SImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (SImode, operands[2]); ++ } ++ ++ /* Emit the instruction. */ ++ ++ op = gen_rtx_SET (VOIDmode, operands[0], ++ gen_rtx_PLUS (SImode, operands[1], operands[2])); ++ ++ if (! can_create_pseudo_p ()) ++ { ++ /* Reload doesn't know about the flags register, and doesn't know that ++ it doesn't want to clobber it. We can only do this with PLUS. */ ++ emit_insn (op); ++ } ++ else ++ { ++ clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, CC_REGNUM)); ++ emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); ++ } ++} ++ ++/* Emit code for mulsi3. Return 1 if we have generated all the code ++ necessary to do the multiplication. */ ++ ++int ++ubicom32_emit_mult_sequence (rtx *operands) ++{ ++ if (! ubicom32_v4) ++ { ++ rtx a1, a1_1, a2; ++ rtx b1, b1_1, b2; ++ rtx mac_lo_rtx; ++ rtx t1, t2, t3; ++ ++ /* Give up if we cannot create new pseudos. */ ++ if (!can_create_pseudo_p()) ++ return 0; ++ ++ /* Synthesize 32-bit multiplication using 16-bit operations: ++ ++ a1 = highpart (a) ++ a2 = lowpart (a) ++ ++ b1 = highpart (b) ++ b2 = lowpart (b) ++ ++ c = (a1 * b1) << 32 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2 ++ = 0 + (a1 * b2) << 16 + (a2 * b1) << 16 + a2 * b2 ++ ^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^ ^^^^^^^ ++ Signed Signed Unsigned */ ++ ++ if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))) ++ { ++ rtx op1; ++ ++ op1 = gen_reg_rtx (SImode); ++ emit_move_insn (op1, operands[1]); ++ operands[1] = op1; ++ } ++ ++ if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2]))) ++ { ++ rtx op2; ++ ++ op2 = gen_reg_rtx (SImode); ++ emit_move_insn (op2, operands[2]); ++ operands[2] = op2; ++ } ++ ++ /* a1 = highpart (a) */ ++ a1 = gen_reg_rtx (HImode); ++ a1_1 = gen_reg_rtx (SImode); ++ emit_insn (gen_ashrsi3 (a1_1, operands[1], GEN_INT (16))); ++ emit_move_insn (a1, gen_lowpart (HImode, a1_1)); ++ ++ /* a2 = lowpart (a) */ ++ a2 = gen_reg_rtx (HImode); ++ emit_move_insn (a2, gen_lowpart (HImode, operands[1])); ++ ++ /* b1 = highpart (b) */ ++ b1 = gen_reg_rtx (HImode); ++ b1_1 = gen_reg_rtx (SImode); ++ emit_insn (gen_ashrsi3 (b1_1, operands[2], GEN_INT (16))); ++ emit_move_insn (b1, gen_lowpart (HImode, b1_1)); ++ ++ /* b2 = lowpart (b) */ ++ b2 = gen_reg_rtx (HImode); ++ emit_move_insn (b2, gen_lowpart (HImode, operands[2])); ++ ++ /* t1 = (a1 * b2) << 16 */ ++ t1 = gen_reg_rtx (SImode); ++ mac_lo_rtx = gen_rtx_REG (SImode, ACC0_LO_REGNUM); ++ emit_insn (gen_mulhisi3 (mac_lo_rtx, a1, b2)); ++ emit_insn (gen_ashlsi3 (t1, mac_lo_rtx, GEN_INT (16))); ++ ++ /* t2 = (a2 * b1) << 16 */ ++ t2 = gen_reg_rtx (SImode); ++ emit_insn (gen_mulhisi3 (mac_lo_rtx, a2, b1)); ++ emit_insn (gen_ashlsi3 (t2, mac_lo_rtx, GEN_INT (16))); ++ ++ /* mac_lo = a2 * b2 */ ++ emit_insn (gen_umulhisi3 (mac_lo_rtx, a2, b2)); ++ ++ /* t3 = t1 + t2 */ ++ t3 = gen_reg_rtx (SImode); ++ emit_insn (gen_addsi3 (t3, t1, t2)); ++ ++ /* c = t3 + mac_lo_rtx */ ++ emit_insn (gen_addsi3 (operands[0], mac_lo_rtx, t3)); ++ ++ return 1; ++ } ++ else ++ { ++ rtx acc_rtx; ++ ++ /* Give up if we cannot create new pseudos. */ ++ if (!can_create_pseudo_p()) ++ return 0; ++ ++ if (!ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))) ++ { ++ rtx op1; ++ ++ op1 = gen_reg_rtx (SImode); ++ emit_move_insn (op1, operands[1]); ++ operands[1] = op1; ++ } ++ ++ if (!ubicom32_data_register_operand (operands[2], GET_MODE (operands[2]))) ++ { ++ rtx op2; ++ ++ op2 = gen_reg_rtx (SImode); ++ emit_move_insn (op2, operands[2]); ++ operands[2] = op2; ++ } ++ ++ acc_rtx = gen_reg_rtx (DImode); ++ emit_insn (gen_umulsidi3 (acc_rtx, operands[1], operands[2])); ++ emit_move_insn (operands[0], gen_lowpart (SImode, acc_rtx)); ++ ++ return 1; ++ } ++} ++ ++/* Move the integer value VAL into OPERANDS[0]. */ ++ ++void ++ubicom32_emit_move_const_int (rtx dest, rtx imm) ++{ ++ rtx xoperands[2]; ++ ++ xoperands[0] = dest; ++ xoperands[1] = imm; ++ ++ /* Treat mem destinations separately. Values must be explicitly sign ++ extended. */ ++ if (MEM_P (dest)) ++ { ++ rtx low_hword_mem; ++ rtx low_hword_addr; ++ ++ /* Emit shorter sequence for signed 7-bit quantities. */ ++ if (satisfies_constraint_I (imm)) ++ { ++ output_asm_insn ("move.4\t%0, %1", xoperands); ++ return; ++ } ++ ++ /* Special case for pushing constants. */ ++ if (GET_CODE (XEXP (dest, 0)) == PRE_DEC ++ && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx) ++ { ++ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands); ++ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands); ++ return; ++ } ++ ++ /* See if we can add 2 to the original address. This is only ++ possible if the original address is of the form REG or ++ REG+const. */ ++ low_hword_addr = plus_constant (XEXP (dest, 0), 2); ++ if (ubicom32_legitimate_address_p (HImode, low_hword_addr, 1)) ++ { ++ low_hword_mem = gen_rtx_MEM (HImode, low_hword_addr); ++ MEM_COPY_ATTRIBUTES (low_hword_mem, dest); ++ output_asm_insn ("movei\t%0, #%%hi(%E1)", xoperands); ++ xoperands[0] = low_hword_mem; ++ output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands); ++ return; ++ } ++ ++ /* The original address is too complex. We need to use a ++ scratch memory by (sp) and move that to the original ++ destination. */ ++ if (! reg_mentioned_p (stack_pointer_rtx, dest)) ++ { ++ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands); ++ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands); ++ output_asm_insn ("move.4\t%0, (sp)4++", xoperands); ++ return; ++ } ++ ++ /* Our address mentions the stack pointer so we need to ++ use our scratch data register here as well as scratch ++ memory. */ ++ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands); ++ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands); ++ output_asm_insn ("move.4\td15, (sp)4++", xoperands); ++ output_asm_insn ("move.4\t%0, d15", xoperands); ++ return; ++ } ++ ++ /* Move into registers are zero extended by default. */ ++ if (! REG_P (dest)) ++ abort (); ++ ++ if (satisfies_constraint_N (imm)) ++ { ++ output_asm_insn ("movei\t%0, %1", xoperands); ++ return; ++ } ++ ++ if (INTVAL (xoperands[1]) >= 0xff80 ++ && INTVAL (xoperands[1]) < 0x10000) ++ { ++ xoperands[1] = GEN_INT (INTVAL (xoperands[1]) - 0x10000); ++ output_asm_insn ("move.2\t%0, %1", xoperands); ++ return; ++ } ++ ++ if ((REGNO_REG_CLASS (REGNO (xoperands[0])) == ADDRESS_REGS ++ || REGNO_REG_CLASS (REGNO (xoperands[0])) == FDPIC_REG) ++ && ((INTVAL (xoperands[1]) & 0x80000000) == 0)) ++ { ++ output_asm_insn ("moveai\t%0, #%%hi(%E1)", xoperands); ++ if ((INTVAL (xoperands[1]) & 0x7f) != 0) ++ output_asm_insn ("lea.1\t%0, %%lo(%E1)(%0)", xoperands); ++ return; ++ } ++ ++ if ((INTVAL (xoperands[1]) & 0xffff0000) == 0) ++ { ++ output_asm_insn ("movei\t%0, #%%lo(%E1)", xoperands); ++ output_asm_insn ("move.2\t%0, %0", xoperands); ++ return; ++ } ++ ++ /* This is very expensive. The constant is so large that we ++ need to use the stack to do the load. */ ++ output_asm_insn ("movei\t-4(sp)++, #%%hi(%E1)", xoperands); ++ output_asm_insn ("movei\t2(sp), #%%lo(%E1)", xoperands); ++ output_asm_insn ("move.4\t%0, (sp)4++", xoperands); ++} ++ ++/* Stack layout. Prologue/Epilogue. */ ++ ++static int save_regs_size; ++ ++static void ++ubicom32_layout_frame (void) ++{ ++ int regno; ++ ++ memset ((char *) &save_regs[0], 0, sizeof (save_regs)); ++ nregs = 0; ++ frame_size = get_frame_size (); ++ ++ if (frame_pointer_needed || df_regs_ever_live_p (FRAME_POINTER_REGNUM)) ++ { ++ save_regs[FRAME_POINTER_REGNUM] = 1; ++ ++nregs; ++ } ++ ++ if (current_function_is_leaf && ! df_regs_ever_live_p (LINK_REGNO)) ++ ubicom32_can_use_calli_to_ret = 1; ++ else ++ { ++ ubicom32_can_use_calli_to_ret = 0; ++ save_regs[LINK_REGNO] = 1; ++ ++nregs; ++ } ++ ++ /* Figure out which register(s) needs to be saved. */ ++ for (regno = 0; regno <= LAST_ADDRESS_REGNUM; regno++) ++ if (df_regs_ever_live_p(regno) ++ && ! call_used_regs[regno] ++ && ! fixed_regs[regno] ++ && ! save_regs[regno]) ++ { ++ save_regs[regno] = 1; ++ ++nregs; ++ } ++ ++ save_regs_size = 4 * nregs; ++} ++ ++static void ++ubicom32_emit_add_movsi (int regno, int adj) ++{ ++ rtx x; ++ rtx reg = gen_rtx_REG (SImode, regno); ++ ++ adj += 4; ++ if (adj > 8 * 4) ++ { ++ x = emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, ++ GEN_INT (-adj))); ++ RTX_FRAME_RELATED_P (x) = 1; ++ x = emit_move_insn (gen_rtx_MEM (SImode, stack_pointer_rtx), reg); ++ } ++ else ++ { ++ rtx addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, ++ gen_rtx_PLUS (Pmode, stack_pointer_rtx, ++ GEN_INT (-adj))); ++ x = emit_move_insn (gen_rtx_MEM (SImode, addr), reg); ++ } ++ RTX_FRAME_RELATED_P (x) = 1; ++} ++ ++void ++ubicom32_expand_prologue (void) ++{ ++ rtx x; ++ int regno; ++ int outgoing_args_size = crtl->outgoing_args_size; ++ int adj; ++ ++ if (ubicom32_naked_function_p ()) ++ return; ++ ++ ubicom32_builtin_saveregs (); ++ ++ ubicom32_layout_frame (); ++ adj = (outgoing_args_size + get_frame_size () + save_regs_size ++ + crtl->args.pretend_args_size); ++ ++ if (!adj) ++ ; ++ else if (outgoing_args_size + save_regs_size < 508 ++ && get_frame_size () + save_regs_size > 508) ++ { ++ int i = 0; ++ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, ++ GEN_INT (-adj)); ++ x = emit_insn (x); ++ RTX_FRAME_RELATED_P (x) = 1; ++ ++ for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno) ++ if (save_regs[regno] && regno != LINK_REGNO) ++ { ++ x = gen_rtx_MEM (SImode, ++ gen_rtx_PLUS (Pmode, ++ stack_pointer_rtx, ++ GEN_INT (i * 4 + outgoing_args_size))); ++ x = emit_move_insn (x, gen_rtx_REG (SImode, regno)); ++ RTX_FRAME_RELATED_P (x) = 1; ++ ++i; ++ } ++ if (save_regs[LINK_REGNO]) ++ { ++ x = gen_rtx_MEM (SImode, ++ gen_rtx_PLUS (Pmode, ++ stack_pointer_rtx, ++ GEN_INT (i * 4 + outgoing_args_size))); ++ x = emit_move_insn (x, gen_rtx_REG (SImode, LINK_REGNO)); ++ RTX_FRAME_RELATED_P (x) = 1; ++ } ++ } ++ else ++ { ++ int regno; ++ int adj = get_frame_size () + crtl->args.pretend_args_size; ++ int i = 0; ++ ++ if (save_regs[LINK_REGNO]) ++ { ++ ubicom32_emit_add_movsi (LINK_REGNO, adj); ++ ++i; ++ } ++ ++ for (regno = 0; regno <= LAST_ADDRESS_REGNUM; ++regno) ++ if (save_regs[regno] && regno != LINK_REGNO) ++ { ++ if (i) ++ { ++ rtx mem = gen_rtx_MEM (SImode, ++ gen_rtx_PRE_DEC (Pmode, ++ stack_pointer_rtx)); ++ x = emit_move_insn (mem, gen_rtx_REG (SImode, regno)); ++ RTX_FRAME_RELATED_P (x) = 1; ++ } ++ else ++ ubicom32_emit_add_movsi (regno, adj); ++ ++i; ++ } ++ ++ if (outgoing_args_size || (!i && adj)) ++ { ++ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, ++ GEN_INT (-outgoing_args_size - (i ? 0 : adj))); ++ x = emit_insn (x); ++ RTX_FRAME_RELATED_P (x) = 1; ++ } ++ } ++ ++ if (frame_pointer_needed) ++ { ++ int fp_adj = save_regs_size + outgoing_args_size; ++ x = gen_addsi3 (frame_pointer_rtx, stack_pointer_rtx, ++ GEN_INT (fp_adj)); ++ x = emit_insn (x); ++ RTX_FRAME_RELATED_P (x) = 1; ++ } ++} ++ ++void ++ubicom32_expand_epilogue (void) ++{ ++ rtx x; ++ int regno; ++ int outgoing_args_size = crtl->outgoing_args_size; ++ int adj; ++ int i; ++ ++ if (ubicom32_naked_function_p ()) ++ { ++ emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode, ++ LINK_REGNO))); ++ return; ++ } ++ ++ if (cfun->calls_alloca) ++ { ++ x = gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx, ++ GEN_INT (-save_regs_size)); ++ emit_insn (x); ++ outgoing_args_size = 0; ++ } ++ ++ if (outgoing_args_size) ++ { ++ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, ++ GEN_INT (outgoing_args_size)); ++ emit_insn (x); ++ } ++ ++ i = 0; ++ for (regno = LAST_ADDRESS_REGNUM; regno >= 0; --regno) ++ if (save_regs[regno] && regno != LINK_REGNO) ++ { ++ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx)); ++ emit_move_insn (gen_rtx_REG (SImode, regno), x); ++ ++i; ++ } ++ ++ /* Do we have to adjust the stack after we've finished restoring regs? */ ++ adj = get_frame_size() + crtl->args.pretend_args_size; ++ if (cfun->stdarg) ++ adj += UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD; ++ ++#if 0 ++ if (crtl->calls_eh_return && 0) ++ { ++ if (save_regs[LINK_REGNO]) ++ { ++ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx)); ++ emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x); ++ } ++ ++ if (adj) ++ { ++ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, ++ GEN_INT (adj)); ++ x = emit_insn (x); ++ } ++ ++ /* Perform the additional bump for __throw. */ ++ emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, ++ EH_RETURN_STACKADJ_RTX)); ++ emit_jump_insn (gen_eh_return_internal ()); ++ return; ++ } ++#endif ++ ++ if (save_regs[LINK_REGNO]) ++ { ++ if (adj >= 4 && adj <= (6 * 4)) ++ { ++ x = GEN_INT (adj + 4); ++ emit_jump_insn (gen_return_from_post_modify_sp (x)); ++ return; ++ } ++ ++ if (adj == 0) ++ { ++ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx)); ++ emit_jump_insn (gen_return_internal (x)); ++ return; ++ } ++ ++ x = gen_rtx_MEM (SImode, gen_rtx_POST_INC (Pmode, stack_pointer_rtx)); ++ emit_move_insn (gen_rtx_REG (SImode, LINK_REGNO), x); ++ } ++ ++ if (adj) ++ { ++ x = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, ++ GEN_INT (adj)); ++ x = emit_insn (x); ++ adj = 0; ++ } ++ ++ /* Given that we've just done all the hard work here we may as well use ++ a calli to return. */ ++ ubicom32_can_use_calli_to_ret = 1; ++ emit_jump_insn (gen_return_internal (gen_rtx_REG (SImode, LINK_REGNO))); ++} ++ ++void ++ubicom32_expand_call_fdpic (rtx *operands) ++{ ++ rtx c; ++ rtx addr; ++ rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM); ++ ++ addr = XEXP (operands[0], 0); ++ ++ c = gen_call_fdpic (addr, operands[1], fdpic_reg); ++ emit_call_insn (c); ++} ++ ++void ++ubicom32_expand_call_value_fdpic (rtx *operands) ++{ ++ rtx c; ++ rtx addr; ++ rtx fdpic_reg = get_hard_reg_initial_val (SImode, FDPIC_REGNUM); ++ ++ addr = XEXP (operands[1], 0); ++ ++ c = gen_call_value_fdpic (operands[0], addr, operands[2], fdpic_reg); ++ emit_call_insn (c); ++} ++ ++void ++ubicom32_expand_eh_return (rtx *operands) ++{ ++ if (REG_P (operands[0]) ++ || REGNO (operands[0]) != EH_RETURN_STACKADJ_REGNO) ++ { ++ rtx sp = EH_RETURN_STACKADJ_RTX; ++ emit_move_insn (sp, operands[0]); ++ operands[0] = sp; ++ } ++ ++ if (REG_P (operands[1]) ++ || REGNO (operands[1]) != EH_RETURN_HANDLER_REGNO) ++ { ++ rtx ra = EH_RETURN_HANDLER_RTX; ++ emit_move_insn (ra, operands[1]); ++ operands[1] = ra; ++ } ++} ++ ++/* Compute the offsets between eliminable registers. */ ++ ++int ++ubicom32_initial_elimination_offset (int from, int to) ++{ ++ ubicom32_layout_frame (); ++ if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM) ++ return save_regs_size + crtl->outgoing_args_size; ++ ++ if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM) ++ return get_frame_size ()/* + save_regs_size */; ++ ++ if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM) ++ return get_frame_size () ++ + crtl->outgoing_args_size ++ + save_regs_size; ++ ++ return 0; ++} ++ ++/* Return 1 if it is appropriate to emit `ret' instructions in the ++ body of a function. Do this only if the epilogue is simple, needing a ++ couple of insns. Prior to reloading, we can't tell how many registers ++ must be saved, so return 0 then. Return 0 if there is no frame ++ marker to de-allocate. ++ ++ If NON_SAVING_SETJMP is defined and true, then it is not possible ++ for the epilogue to be simple, so return 0. This is a special case ++ since NON_SAVING_SETJMP will not cause regs_ever_live to change ++ until final, but jump_optimize may need to know sooner if a ++ `return' is OK. */ ++ ++int ++ubicom32_can_use_return_insn_p (void) ++{ ++ if (! reload_completed || frame_pointer_needed) ++ return 0; ++ ++ return 1; ++} ++ ++/* Attributes and CC handling. */ ++ ++/* Handle an attribute requiring a FUNCTION_DECL; arguments as in ++ struct attribute_spec.handler. */ ++static tree ++ubicom32_handle_fndecl_attribute (tree *node, tree name, ++ tree args ATTRIBUTE_UNUSED, ++ int flags ATTRIBUTE_UNUSED, ++ bool *no_add_attrs) ++{ ++ if (TREE_CODE (*node) != FUNCTION_DECL) ++ { ++ warning ("'%s' attribute only applies to functions", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ } ++ ++ return NULL_TREE; ++} ++ ++/* A C expression that places additional restrictions on the register class to ++ use when it is necessary to copy value X into a register in class CLASS. ++ The value is a register class; perhaps CLASS, or perhaps another, smaller ++ class. On many machines, the following definition is safe: ++ ++ #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS ++ ++ Sometimes returning a more restrictive class makes better code. For ++ example, on the 68000, when X is an integer constant that is in range for a ++ `moveq' instruction, the value of this macro is always `DATA_REGS' as long ++ as CLASS includes the data registers. Requiring a data register guarantees ++ that a `moveq' will be used. ++ ++ If X is a `const_double', by returning `NO_REGS' you can force X into a ++ memory constant. This is useful on certain machines where immediate ++ floating values cannot be loaded into certain kinds of registers. */ ++ ++enum reg_class ++ubicom32_preferred_reload_class (rtx x, enum reg_class class) ++{ ++ /* If a symbolic constant, HIGH or a PLUS is reloaded, ++ it is most likely being used as an address, so ++ prefer ADDRESS_REGS. If 'class' is not a superset ++ of ADDRESS_REGS, e.g. DATA_REGS, then reject this reload. */ ++ if (GET_CODE (x) == PLUS ++ || GET_CODE (x) == HIGH ++ || GET_CODE (x) == LABEL_REF ++ || GET_CODE (x) == SYMBOL_REF ++ || GET_CODE (x) == CONST) ++ { ++ if (reg_class_subset_p (ALL_ADDRESS_REGS, class)) ++ return ALL_ADDRESS_REGS; ++ ++ return NO_REGS; ++ } ++ ++ return class; ++} ++ ++/* Function arguments and varargs. */ ++ ++int ++ubicom32_reg_parm_stack_space (tree fndecl) ++{ ++ return 0; ++ ++ if (fndecl ++ && TYPE_ARG_TYPES (TREE_TYPE (fndecl)) != 0 ++ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (TREE_TYPE (fndecl)))) ++ != void_type_node)) ++ return UBICOM32_FUNCTION_ARG_REGS * UNITS_PER_WORD; ++ ++ return 0; ++} ++ ++/* Flush the argument registers to the stack for a stdarg function; ++ return the new argument pointer. */ ++ ++rtx ++ubicom32_builtin_saveregs (void) ++{ ++ int regno; ++ ++ if (! cfun->stdarg) ++ return 0; ++ ++ for (regno = UBICOM32_FUNCTION_ARG_REGS - 1; regno >= 0; --regno) ++ emit_move_insn (gen_rtx_MEM (SImode, ++ gen_rtx_PRE_DEC (SImode, ++ stack_pointer_rtx)), ++ gen_rtx_REG (SImode, regno)); ++ ++ return stack_pointer_rtx; ++} ++ ++void ++ubicom32_va_start (tree valist, rtx nextarg) ++{ ++ std_expand_builtin_va_start (valist, nextarg); ++} ++ ++rtx ++ubicom32_va_arg (tree valist, tree type) ++{ ++ HOST_WIDE_INT size, rsize; ++ tree addr, incr, tmp; ++ rtx addr_rtx; ++ int indirect = 0; ++ ++ /* Round up sizeof(type) to a word. */ ++ size = int_size_in_bytes (type); ++ rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD; ++ ++ /* Large types are passed by reference. */ ++ if (size > 8) ++ { ++ indirect = 1; ++ size = rsize = UNITS_PER_WORD; ++ } ++ ++ incr = valist; ++ addr = incr = save_expr (incr); ++ ++ /* FIXME Nat's version - is it correct? */ ++ tmp = fold_convert (ptr_type_node, size_int (rsize)); ++ tmp = build2 (PLUS_EXPR, ptr_type_node, incr, tmp); ++ incr = fold (tmp); ++ ++ /* FIXME Nat's version - is it correct? */ ++ incr = build2 (MODIFY_EXPR, ptr_type_node, valist, incr); ++ ++ TREE_SIDE_EFFECTS (incr) = 1; ++ expand_expr (incr, const0_rtx, VOIDmode, EXPAND_NORMAL); ++ ++ addr_rtx = expand_expr (addr, NULL, Pmode, EXPAND_NORMAL); ++ ++ if (size < UNITS_PER_WORD) ++ emit_insn (gen_addsi3 (addr_rtx, addr_rtx, ++ GEN_INT (UNITS_PER_WORD - size))); ++ ++ if (indirect) ++ { ++ addr_rtx = force_reg (Pmode, addr_rtx); ++ addr_rtx = gen_rtx_MEM (Pmode, addr_rtx); ++ set_mem_alias_set (addr_rtx, get_varargs_alias_set ()); ++ } ++ ++ return addr_rtx; ++} ++ ++void ++init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype, rtx libname, ++ int indirect ATTRIBUTE_UNUSED) ++{ ++ cum->nbytes = 0; ++ ++ if (!libname) ++ { ++ cum->stdarg = (TYPE_ARG_TYPES (fntype) != 0 ++ && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) ++ != void_type_node)); ++ } ++} ++ ++/* Return an RTX to represent where a value in mode MODE will be passed ++ to a function. If the result is 0, the argument will be pushed. */ ++ ++rtx ++function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, ++ int named ATTRIBUTE_UNUSED) ++{ ++ rtx result = 0; ++ int size, align; ++ int nregs = UBICOM32_FUNCTION_ARG_REGS; ++ ++ /* Figure out the size of the object to be passed. */ ++ if (mode == BLKmode) ++ size = int_size_in_bytes (type); ++ else ++ size = GET_MODE_SIZE (mode); ++ ++ /* Figure out the alignment of the object to be passed. */ ++ align = size; ++ ++ cum->nbytes = (cum->nbytes + 3) & ~3; ++ ++ /* Don't pass this arg via a register if all the argument registers ++ are used up. */ ++ if (cum->nbytes >= nregs * UNITS_PER_WORD) ++ return 0; ++ ++ /* Don't pass this arg via a register if it would be split between ++ registers and memory. */ ++ result = gen_rtx_REG (mode, cum->nbytes / UNITS_PER_WORD); ++ ++ return result; ++} ++ ++rtx ++function_incoming_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, ++ int named ATTRIBUTE_UNUSED) ++{ ++ if (cfun->stdarg) ++ return 0; ++ ++ return function_arg (cum, mode, type, named); ++} ++ ++ ++/* Implement hook TARGET_ARG_PARTIAL_BYTES. ++ ++ Returns the number of bytes at the beginning of an argument that ++ must be put in registers. The value must be zero for arguments ++ that are passed entirely in registers or that are entirely pushed ++ on the stack. */ ++static int ++ubicom32_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode, ++ tree type, bool named ATTRIBUTE_UNUSED) ++{ ++ int size, diff; ++ ++ int nregs = UBICOM32_FUNCTION_ARG_REGS; ++ ++ /* round up to full word */ ++ cum->nbytes = (cum->nbytes + 3) & ~3; ++ ++ if (targetm.calls.pass_by_reference (cum, mode, type, named)) ++ return 0; ++ ++ /* number of bytes left in registers */ ++ diff = nregs*UNITS_PER_WORD - cum->nbytes; ++ ++ /* regs all used up */ ++ if (diff <= 0) ++ return 0; ++ ++ /* Figure out the size of the object to be passed. */ ++ if (mode == BLKmode) ++ size = int_size_in_bytes (type); ++ else ++ size = GET_MODE_SIZE (mode); ++ ++ /* enough space left in regs for size */ ++ if (size <= diff) ++ return 0; ++ ++ /* put diff bytes in regs and rest on stack */ ++ return diff; ++ ++} ++ ++static bool ++ubicom32_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, ++ enum machine_mode mode, const_tree type, ++ bool named ATTRIBUTE_UNUSED) ++{ ++ int size; ++ ++ if (type) ++ size = int_size_in_bytes (type); ++ else ++ size = GET_MODE_SIZE (mode); ++ ++ return size <= 0 || size > 8; ++} ++ ++static bool ++ubicom32_callee_copies (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED, ++ enum machine_mode mode, const_tree type, ++ bool named ATTRIBUTE_UNUSED) ++{ ++ int size; ++ ++ if (type) ++ size = int_size_in_bytes (type); ++ else ++ size = GET_MODE_SIZE (mode); ++ ++ return size <= 0 || size > 8; ++} ++ ++static bool ++ubicom32_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) ++{ ++ int size, mode; ++ ++ if (!type) ++ return true; ++ ++ size = int_size_in_bytes(type); ++ if (size > 8) ++ return true; ++ ++ mode = TYPE_MODE(type); ++ if (mode == BLKmode) ++ return true; ++ ++ return false; ++} ++ ++/* Return true if a given register number REGNO is acceptable for machine ++ mode MODE. */ ++bool ++ubicom32_hard_regno_mode_ok (unsigned int regno, enum machine_mode mode) ++{ ++ /* If we're not at least a v3 ISA then ACC0_HI is only 16 bits. */ ++ if (! ubicom32_v3) ++ { ++ if (regno == ACC0_HI_REGNUM) ++ return (mode == QImode || mode == HImode); ++ } ++ ++ /* Only the flags reg can hold CCmode. */ ++ if (GET_MODE_CLASS (mode) == MODE_CC) ++ return regno == CC_REGNUM; ++ ++ /* We restrict the choice of DImode registers to only being address, ++ data or accumulator regs. We also restrict them to only start on ++ even register numbers so we never have to worry about partial ++ overlaps between operands in instructions. */ ++ if (GET_MODE_SIZE (mode) > 4) ++ { ++ switch (REGNO_REG_CLASS (regno)) ++ { ++ case ADDRESS_REGS: ++ case DATA_REGS: ++ case ACC_REGS: ++ return (regno & 1) == 0; ++ ++ default: ++ return false; ++ } ++ } ++ ++ return true; ++} ++ ++/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx ++ and check its validity for a certain class. ++ We have two alternate definitions for each of them. ++ The usual definition accepts all pseudo regs; the other rejects ++ them unless they have been allocated suitable hard regs. ++ The symbol REG_OK_STRICT causes the latter definition to be used. ++ ++ Most source files want to accept pseudo regs in the hope that ++ they will get allocated to the class that the insn wants them to be in. ++ Source files for reload pass need to be strict. ++ After reload, it makes no difference, since pseudo regs have ++ been eliminated by then. ++ ++ These assume that REGNO is a hard or pseudo reg number. ++ They give nonzero only if REGNO is a hard reg of the suitable class ++ or a pseudo reg currently allocated to a suitable hard reg. ++ Since they use reg_renumber, they are safe only once reg_renumber ++ has been allocated, which happens in local-alloc.c. */ ++ ++int ++ubicom32_regno_ok_for_base_p (int regno, int strict) ++{ ++ if ((regno >= FIRST_ADDRESS_REGNUM && regno <= STACK_POINTER_REGNUM) ++ || (!strict ++ && (regno >= FIRST_PSEUDO_REGISTER ++ || regno == ARG_POINTER_REGNUM)) ++ || (strict && (reg_renumber ++ && reg_renumber[regno] >= FIRST_ADDRESS_REGNUM ++ && reg_renumber[regno] <= STACK_POINTER_REGNUM))) ++ return 1; ++ ++ return 0; ++} ++ ++int ++ubicom32_regno_ok_for_index_p (int regno, int strict) ++{ ++ if ((regno >= FIRST_DATA_REGNUM && regno <= LAST_DATA_REGNUM) ++ || (!strict && regno >= FIRST_PSEUDO_REGISTER) ++ || (strict && (reg_renumber ++ && reg_renumber[regno] >= FIRST_DATA_REGNUM ++ && reg_renumber[regno] <= LAST_DATA_REGNUM))) ++ return 1; ++ ++ return 0; ++} ++ ++/* Returns 1 if X is a valid index register. STRICT is 1 if only hard ++ registers should be accepted. Accept either REG or SUBREG where a ++ register is valid. */ ++ ++static bool ++ubicom32_is_index_reg (rtx x, int strict) ++{ ++ if ((REG_P (x) && ubicom32_regno_ok_for_index_p (REGNO (x), strict)) ++ || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)) ++ && ubicom32_regno_ok_for_index_p (REGNO (SUBREG_REG (x)), strict))) ++ return true; ++ ++ return false; ++} ++ ++/* Return 1 if X is a valid index for a memory address. */ ++ ++static bool ++ubicom32_is_index_expr (enum machine_mode mode, rtx x, int strict) ++{ ++ /* Immediate index must be an unsigned 7-bit offset multiple of 1, 2 ++ or 4 depending on mode. */ ++ if (CONST_INT_P (x)) ++ { ++ switch (mode) ++ { ++ case QImode: ++ return satisfies_constraint_J (x); ++ ++ case HImode: ++ return satisfies_constraint_K (x); ++ ++ case SImode: ++ case SFmode: ++ return satisfies_constraint_L (x); ++ ++ case DImode: ++ return satisfies_constraint_L (x) ++ && satisfies_constraint_L (GEN_INT (INTVAL (x) + 4)); ++ ++ default: ++ return false; ++ } ++ } ++ ++ if (mode != SImode && mode != HImode && mode != QImode) ++ return false; ++ ++ /* Register index scaled by mode of operand: REG + REG * modesize. ++ Valid scaled index registers are: ++ ++ SImode (mult (dreg) 4)) ++ HImode (mult (dreg) 2)) ++ QImode (mult (dreg) 1)) */ ++ if (GET_CODE (x) == MULT ++ && ubicom32_is_index_reg (XEXP (x, 0), strict) ++ && CONST_INT_P (XEXP (x, 1)) ++ && INTVAL (XEXP (x, 1)) == (HOST_WIDE_INT)GET_MODE_SIZE (mode)) ++ return true; ++ ++ /* REG + REG addressing is allowed for QImode. */ ++ if (ubicom32_is_index_reg (x, strict) && mode == QImode) ++ return true; ++ ++ return false; ++} ++ ++static bool ++ubicom32_is_valid_offset (enum machine_mode mode, HOST_WIDE_INT offs) ++{ ++ if (offs < 0) ++ return false; ++ ++ switch (mode) ++ { ++ case QImode: ++ return offs <= 127; ++ ++ case HImode: ++ return offs <= 254; ++ ++ case SImode: ++ case SFmode: ++ return offs <= 508; ++ ++ case DImode: ++ return offs <= 504; ++ ++ default: ++ return false; ++ } ++} ++ ++static int ++ubicom32_get_valid_offset_mask (enum machine_mode mode) ++{ ++ switch (mode) ++ { ++ case QImode: ++ return 127; ++ ++ case HImode: ++ return 255; ++ ++ case SImode: ++ case SFmode: ++ return 511; ++ ++ case DImode: ++ return 255; ++ ++ default: ++ return 0; ++ } ++} ++ ++/* Returns 1 if X is a valid base register. STRICT is 1 if only hard ++ registers should be accepted. Accept either REG or SUBREG where a ++ register is valid. */ ++ ++static bool ++ubicom32_is_base_reg (rtx x, int strict) ++{ ++ if ((REG_P (x) && ubicom32_regno_ok_for_base_p (REGNO (x), strict)) ++ || (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)) ++ && ubicom32_regno_ok_for_base_p (REGNO (SUBREG_REG (x)), strict))) ++ return true; ++ ++ return false; ++} ++ ++static bool ++ubicom32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED) ++{ ++ return TARGET_FDPIC; ++} ++ ++/* Determine if X is a legitimate constant. */ ++ ++bool ++ubicom32_legitimate_constant_p (rtx x) ++{ ++ /* Among its other duties, LEGITIMATE_CONSTANT_P decides whether ++ a constant can be entered into reg_equiv_constant[]. If we return true, ++ reload can create new instances of the constant whenever it likes. ++ ++ The idea is therefore to accept as many constants as possible (to give ++ reload more freedom) while rejecting constants that can only be created ++ at certain times. In particular, anything with a symbolic component will ++ require use of the pseudo FDPIC register, which is only available before ++ reload. */ ++ if (TARGET_FDPIC) ++ { ++ if (GET_CODE (x) == SYMBOL_REF ++ || (GET_CODE (x) == CONST ++ && GET_CODE (XEXP (x, 0)) == PLUS ++ && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF) ++ || CONSTANT_ADDRESS_P (x)) ++ return false; ++ ++ return true; ++ } ++ ++ /* For non-PIC code anything goes! */ ++ return true; ++} ++ ++/* Address validation. */ ++ ++bool ++ubicom32_legitimate_address_p (enum machine_mode mode, rtx x, int strict) ++{ ++ if (TARGET_DEBUG_ADDRESS) ++ { ++ fprintf (stderr, "\n==> GO_IF_LEGITIMATE_ADDRESS%s\n", ++ (strict) ? " (STRICT)" : ""); ++ debug_rtx (x); ++ } ++ ++ if (CONSTANT_ADDRESS_P (x)) ++ return false; ++ ++ if (ubicom32_is_base_reg (x, strict)) ++ return true; ++ ++ if ((GET_CODE (x) == POST_INC ++ || GET_CODE (x) == PRE_INC ++ || GET_CODE (x) == POST_DEC ++ || GET_CODE (x) == PRE_DEC) ++ && REG_P (XEXP (x, 0)) ++ && ubicom32_is_base_reg (XEXP (x, 0), strict) ++ && mode != DImode) ++ return true; ++ ++ if ((GET_CODE (x) == PRE_MODIFY || GET_CODE (x) == POST_MODIFY) ++ && ubicom32_is_base_reg (XEXP (x, 0), strict) ++ && GET_CODE (XEXP (x, 1)) == PLUS ++ && rtx_equal_p (XEXP (x, 0), XEXP (XEXP (x, 1), 0)) ++ && CONST_INT_P (XEXP (XEXP (x, 1), 1)) ++ && mode != DImode) ++ { ++ HOST_WIDE_INT disp = INTVAL (XEXP (XEXP (x, 1), 1)); ++ switch (mode) ++ { ++ case QImode: ++ return disp >= -8 && disp <= 7; ++ ++ case HImode: ++ return disp >= -16 && disp <= 14 && ! (disp & 1); ++ ++ case SImode: ++ return disp >= -32 && disp <= 28 && ! (disp & 3); ++ ++ default: ++ return false; ++ } ++ } ++ ++ /* Accept base + index * scale. */ ++ if (GET_CODE (x) == PLUS ++ && ubicom32_is_base_reg (XEXP (x, 0), strict) ++ && ubicom32_is_index_expr (mode, XEXP (x, 1), strict)) ++ return true; ++ ++ /* Accept index * scale + base. */ ++ if (GET_CODE (x) == PLUS ++ && ubicom32_is_base_reg (XEXP (x, 1), strict) ++ && ubicom32_is_index_expr (mode, XEXP (x, 0), strict)) ++ return true; ++ ++ if (! TARGET_FDPIC) ++ { ++ /* Accept (lo_sum (reg) (symbol_ref)) that can be used as a mem+7bits ++ displacement operand: ++ ++ moveai a1, #%hi(SYM) ++ move.4 d3, %lo(SYM)(a1) */ ++ if (GET_CODE (x) == LO_SUM ++ && ubicom32_is_base_reg (XEXP (x, 0), strict) ++ && (GET_CODE (XEXP (x, 1)) == SYMBOL_REF ++ || GET_CODE (XEXP (x, 1)) == LABEL_REF /* FIXME: wrong */) ++ && mode != DImode) ++ return true; ++ } ++ ++ if (TARGET_DEBUG_ADDRESS) ++ fprintf (stderr, "\nNot a legitimate address.\n"); ++ ++ return false; ++} ++ ++rtx ++ubicom32_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, ++ enum machine_mode mode) ++{ ++ if (mode == BLKmode) ++ return NULL_RTX; ++ ++ if (GET_CODE (x) == PLUS ++ && REG_P (XEXP (x, 0)) ++ && ! REGNO_PTR_FRAME_P (REGNO (XEXP (x, 0))) ++ && CONST_INT_P (XEXP (x, 1)) ++ && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (x, 1)))) ++ { ++ rtx base; ++ rtx plus; ++ rtx new_rtx; ++ HOST_WIDE_INT val = INTVAL (XEXP (x, 1)); ++ HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode); ++ HOST_WIDE_INT high = val ^ low; ++ ++ if (val < 0) ++ return NULL_RTX; ++ ++ if (! low) ++ return NULL_RTX; ++ ++ /* Reload the high part into a base reg; leave the low part ++ in the mem directly. */ ++ base = XEXP (x, 0); ++ if (! ubicom32_is_base_reg (base, 0)) ++ base = copy_to_mode_reg (Pmode, base); ++ ++ plus = expand_simple_binop (Pmode, PLUS, ++ gen_int_mode (high, Pmode), ++ base, NULL, 0, OPTAB_WIDEN); ++ new_rtx = plus_constant (plus, low); ++ ++ return new_rtx; ++ } ++ ++ return NULL_RTX; ++} ++ ++/* Try a machine-dependent way of reloading an illegitimate address AD ++ operand. If we find one, push the reload and and return the new address. ++ ++ MODE is the mode of the enclosing MEM. OPNUM is the operand number ++ and TYPE is the reload type of the current reload. */ ++ ++rtx ++ubicom32_legitimize_reload_address (rtx ad, enum machine_mode mode, ++ int opnum, int type) ++{ ++ /* Is this an address that we've already fixed up? If it is then ++ recognize it and move on. */ ++ if (GET_CODE (ad) == PLUS ++ && GET_CODE (XEXP (ad, 0)) == PLUS ++ && REG_P (XEXP (XEXP (ad, 0), 0)) ++ && CONST_INT_P (XEXP (XEXP (ad, 0), 1)) ++ && CONST_INT_P (XEXP (ad, 1))) ++ { ++ push_reload (XEXP (ad, 0), NULL_RTX, &XEXP (ad, 0), NULL, ++ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, ++ opnum, (enum reload_type) type); ++ return ad; ++ } ++ ++ /* Have we got an address where the offset is simply out of range? If ++ yes then reload the range as a high part and smaller offset. */ ++ if (GET_CODE (ad) == PLUS ++ && REG_P (XEXP (ad, 0)) ++ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER ++ && REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0))) ++ && CONST_INT_P (XEXP (ad, 1)) ++ && ! ubicom32_is_valid_offset (mode, INTVAL (XEXP (ad, 1)))) ++ { ++ rtx temp; ++ rtx new_rtx; ++ ++ HOST_WIDE_INT val = INTVAL (XEXP (ad, 1)); ++ HOST_WIDE_INT low = val & ubicom32_get_valid_offset_mask (mode); ++ HOST_WIDE_INT high = val ^ low; ++ ++ /* Reload the high part into a base reg; leave the low part ++ in the mem directly. */ ++ temp = gen_rtx_PLUS (Pmode, XEXP (ad, 0), GEN_INT (high)); ++ new_rtx = gen_rtx_PLUS (Pmode, temp, GEN_INT (low)); ++ ++ push_reload (XEXP (new_rtx, 0), NULL_RTX, &XEXP (new_rtx, 0), NULL, ++ BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, ++ opnum, (enum reload_type) type); ++ return new_rtx; ++ } ++ ++ /* If we're presented with an pre/post inc/dec then we must force this ++ to be done in an address register. The register allocator should ++ work this out for itself but at times ends up trying to use the wrong ++ class. If we get the wrong class then reload will end up generating ++ at least 3 instructions whereas this way we can hopefully keep it to ++ just 2. */ ++ if ((GET_CODE (ad) == POST_INC ++ || GET_CODE (ad) == PRE_INC ++ || GET_CODE (ad) == POST_DEC ++ || GET_CODE (ad) == PRE_DEC) ++ && REG_P (XEXP (ad, 0)) ++ && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER ++ && ! REGNO_OK_FOR_BASE_P (REGNO (XEXP (ad, 0)))) ++ { ++ push_reload (XEXP (ad, 0), XEXP (ad, 0), &XEXP (ad, 0), &XEXP (ad, 0), ++ BASE_REG_CLASS, GET_MODE (XEXP (ad, 0)), GET_MODE (XEXP (ad, 0)), 0, 0, ++ opnum, RELOAD_OTHER); ++ return ad; ++ } ++ ++ return NULL_RTX; ++} ++ ++/* Compute a (partial) cost for rtx X. Return true if the complete ++ cost has been computed, and false if subexpressions should be ++ scanned. In either case, *TOTAL contains the cost result. */ ++ ++static bool ++ubicom32_rtx_costs (rtx x, int code, int outer_code, int *total, ++ bool speed ATTRIBUTE_UNUSED) ++{ ++ enum machine_mode mode = GET_MODE (x); ++ ++ switch (code) ++ { ++ case CONST_INT: ++ /* Very short constants often fold into instructions so ++ we pretend that they don't cost anything! This is ++ really important as regards zero values as otherwise ++ the compiler has a nasty habit of wanting to reuse ++ zeroes that are in regs but that tends to pessimize ++ the code. */ ++ if (satisfies_constraint_I (x)) ++ { ++ *total = 0; ++ return true; ++ } ++ ++ /* Bit clearing costs nothing */ ++ if (outer_code == AND ++ && exact_log2 (~INTVAL (x)) != -1) ++ { ++ *total = 0; ++ return true; ++ } ++ ++ /* Masking the lower set of bits costs nothing. */ ++ if (outer_code == AND ++ && exact_log2 (INTVAL (x) + 1) != -1) ++ { ++ *total = 0; ++ return true; ++ } ++ ++ /* Bit setting costs nothing. */ ++ if (outer_code == IOR ++ && exact_log2 (INTVAL (x)) != -1) ++ { ++ *total = 0; ++ return true; ++ } ++ ++ /* Larger constants that can be loaded via movei aren't too ++ bad. If we're just doing a set they cost nothing extra. */ ++ if (satisfies_constraint_N (x)) ++ { ++ if (mode == DImode) ++ *total = COSTS_N_INSNS (2); ++ else ++ *total = COSTS_N_INSNS (1); ++ return true; ++ } ++ ++ if (mode == DImode) ++ *total = COSTS_N_INSNS (5); ++ else ++ *total = COSTS_N_INSNS (3); ++ return true; ++ ++ case CONST_DOUBLE: ++ /* We don't optimize CONST_DOUBLEs well nor do we relax them well, ++ so their cost is very high. */ ++ *total = COSTS_N_INSNS (6); ++ return true; ++ ++ case CONST: ++ case SYMBOL_REF: ++ case MEM: ++ *total = 0; ++ return true; ++ ++ case IF_THEN_ELSE: ++ *total = COSTS_N_INSNS (1); ++ return true; ++ ++ case LABEL_REF: ++ case HIGH: ++ case LO_SUM: ++ case BSWAP: ++ case PLUS: ++ case MINUS: ++ case AND: ++ case IOR: ++ case XOR: ++ case ASHIFT: ++ case ASHIFTRT: ++ case LSHIFTRT: ++ case NEG: ++ case NOT: ++ case SIGN_EXTEND: ++ case ZERO_EXTEND: ++ case ZERO_EXTRACT: ++ if (outer_code == SET) ++ { ++ if (mode == DImode) ++ *total = COSTS_N_INSNS (2); ++ else ++ *total = COSTS_N_INSNS (1); ++ } ++ return true; ++ ++ case COMPARE: ++ if (outer_code == SET) ++ { ++ if (GET_MODE (XEXP (x, 0)) == DImode ++ || GET_MODE (XEXP (x, 1)) == DImode) ++ *total = COSTS_N_INSNS (2); ++ else ++ *total = COSTS_N_INSNS (1); ++ } ++ return true; ++ ++ case UMOD: ++ case UDIV: ++ case MOD: ++ case DIV: ++ if (outer_code == SET) ++ { ++ if (mode == DImode) ++ *total = COSTS_N_INSNS (600); ++ else ++ *total = COSTS_N_INSNS (200); ++ } ++ return true; ++ ++ case MULT: ++ if (outer_code == SET) ++ { ++ if (! ubicom32_v4) ++ { ++ if (mode == DImode) ++ *total = COSTS_N_INSNS (15); ++ else ++ *total = COSTS_N_INSNS (5); ++ } ++ else ++ { ++ if (mode == DImode) ++ *total = COSTS_N_INSNS (6); ++ else ++ *total = COSTS_N_INSNS (2); ++ } ++ } ++ return true; ++ ++ case UNSPEC: ++ if (XINT (x, 1) == UNSPEC_FDPIC_GOT ++ || XINT (x, 1) == UNSPEC_FDPIC_GOT_FUNCDESC) ++ *total = 0; ++ return true; ++ ++ default: ++ return false; ++ } ++} ++ ++/* Return 1 if ADDR can have different meanings depending on the machine ++ mode of the memory reference it is used for or if the address is ++ valid for some modes but not others. ++ ++ Autoincrement and autodecrement addresses typically have ++ mode-dependent effects because the amount of the increment or ++ decrement is the size of the operand being addressed. Some machines ++ have other mode-dependent addresses. Many RISC machines have no ++ mode-dependent addresses. ++ ++ You may assume that ADDR is a valid address for the machine. */ ++ ++int ++ubicom32_mode_dependent_address_p (rtx addr) ++{ ++ if (GET_CODE (addr) == POST_INC ++ || GET_CODE (addr) == PRE_INC ++ || GET_CODE (addr) == POST_DEC ++ || GET_CODE (addr) == PRE_DEC ++ || GET_CODE (addr) == POST_MODIFY ++ || GET_CODE (addr) == PRE_MODIFY) ++ return 1; ++ ++ return 0; ++} ++ ++static void ++ubicom32_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED) ++{ ++ fprintf (file, "/* frame/pretend: %ld/%d save_regs: %d out_args: %d %s */\n", ++ get_frame_size (), crtl->args.pretend_args_size, ++ save_regs_size, crtl->outgoing_args_size, ++ current_function_is_leaf ? "leaf" : "nonleaf"); ++} ++ ++static void ++ubicom32_function_epilogue (FILE *file ATTRIBUTE_UNUSED, ++ HOST_WIDE_INT size ATTRIBUTE_UNUSED) ++{ ++ ubicom32_reorg_completed = 0; ++} ++ ++static void ++ubicom32_machine_dependent_reorg (void) ++{ ++#if 0 /* Commenting out this optimization until it is fixed */ ++ if (optimize) ++ { ++ compute_bb_for_insn (); ++ ++ /* Do a very simple CSE pass over just the hard registers. */ ++ reload_cse_regs (get_insns ()); ++ ++ /* Reload_cse_regs can eliminate potentially-trapping MEMs. ++ Remove any EH edges associated with them. */ ++ if (flag_non_call_exceptions) ++ purge_all_dead_edges (); ++ } ++#endif ++ ubicom32_reorg_completed = 1; ++} ++ ++void ++ubicom32_output_cond_jump (rtx insn, rtx cond, rtx target) ++{ ++ rtx note; ++ int mostly_false_jump; ++ rtx xoperands[2]; ++ rtx cc_reg; ++ ++ note = find_reg_note (insn, REG_BR_PROB, 0); ++ mostly_false_jump = !note || (INTVAL (XEXP (note, 0)) ++ <= REG_BR_PROB_BASE / 2); ++ ++ xoperands[0] = target; ++ xoperands[1] = cond; ++ cc_reg = XEXP (cond, 0); ++ ++ if (GET_MODE (cc_reg) == CCWmode ++ || GET_MODE (cc_reg) == CCWZmode ++ || GET_MODE (cc_reg) == CCWZNmode) ++ { ++ if (mostly_false_jump) ++ output_asm_insn ("jmp%b1.w.f\t%0", xoperands); ++ else ++ output_asm_insn ("jmp%b1.w.t\t%0", xoperands); ++ return; ++ } ++ ++ if (GET_MODE (cc_reg) == CCSmode ++ || GET_MODE (cc_reg) == CCSZmode ++ || GET_MODE (cc_reg) == CCSZNmode) ++ { ++ if (mostly_false_jump) ++ output_asm_insn ("jmp%b1.s.f\t%0", xoperands); ++ else ++ output_asm_insn ("jmp%b1.s.t\t%0", xoperands); ++ return; ++ } ++ ++ abort (); ++} ++ ++/* Return non-zero if FUNC is a naked function. */ ++ ++static int ++ubicom32_naked_function_p (void) ++{ ++ return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE; ++} ++ ++/* Return an RTX indicating where the return address to the ++ calling function can be found. */ ++rtx ++ubicom32_return_addr_rtx (int count, rtx frame ATTRIBUTE_UNUSED) ++{ ++ if (count != 0) ++ return NULL_RTX; ++ ++ return get_hard_reg_initial_val (Pmode, LINK_REGNO); ++} ++ ++/* ++ * ubicom32_readonly_data_section: This routtine handles code ++ * at the start of readonly data sections ++ */ ++static void ++ubicom32_readonly_data_section (const void *data ATTRIBUTE_UNUSED) ++{ ++ static int num = 0; ++ if (in_section == readonly_data_section){ ++ fprintf (asm_out_file, "%s", DATA_SECTION_ASM_OP); ++ if (flag_data_sections){ ++ fprintf (asm_out_file, ".rodata%d", num); ++ fprintf (asm_out_file, ",\"a\""); ++ } ++ fprintf (asm_out_file, "\n"); ++ } ++ num++; ++} ++ ++/* ++ * ubicom32_text_section: not in readonly section ++ */ ++static void ++ubicom32_text_section(const void *data ATTRIBUTE_UNUSED) ++{ ++ fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP); ++} ++ ++/* ++ * ubicom32_data_section: not in readonly section ++ */ ++static void ++ubicom32_data_section(const void *data ATTRIBUTE_UNUSED) ++{ ++ fprintf (asm_out_file, "%s\n", DATA_SECTION_ASM_OP); ++} ++ ++/* ++ * ubicom32_asm_init_sections: This routine implements special ++ * section handling ++ */ ++static void ++ubicom32_asm_init_sections(void) ++{ ++ text_section = get_unnamed_section(SECTION_CODE, ubicom32_text_section, NULL); ++ ++ data_section = get_unnamed_section(SECTION_WRITE, ubicom32_data_section, NULL); ++ ++ readonly_data_section = get_unnamed_section(0, ubicom32_readonly_data_section, NULL); ++} ++ ++/* ++ * ubicom32_profiler: This routine would call ++ * mcount to support prof and gprof if mcount ++ * was supported. Currently, do nothing. ++ */ ++void ++ubicom32_profiler(void) ++{ ++} ++ ++/* Initialise the builtin functions. Start by initialising ++ descriptions of different types of functions (e.g., void fn(int), ++ int fn(void)), and then use these to define the builtins. */ ++static void ++ubicom32_init_builtins (void) ++{ ++ tree endlink; ++ tree short_unsigned_endlink; ++ tree unsigned_endlink; ++ tree short_unsigned_ftype_short_unsigned; ++ tree unsigned_ftype_unsigned; ++ ++ endlink = void_list_node; ++ ++ short_unsigned_endlink ++ = tree_cons (NULL_TREE, short_unsigned_type_node, endlink); ++ ++ unsigned_endlink ++ = tree_cons (NULL_TREE, unsigned_type_node, endlink); ++ ++ short_unsigned_ftype_short_unsigned ++ = build_function_type (short_unsigned_type_node, short_unsigned_endlink); ++ ++ unsigned_ftype_unsigned ++ = build_function_type (unsigned_type_node, unsigned_endlink); ++ ++ /* Initialise the byte swap function. */ ++ add_builtin_function ("__builtin_ubicom32_swapb_2", ++ short_unsigned_ftype_short_unsigned, ++ UBICOM32_BUILTIN_UBICOM32_SWAPB_2, ++ BUILT_IN_MD, NULL, ++ NULL_TREE); ++ ++ /* Initialise the byte swap function. */ ++ add_builtin_function ("__builtin_ubicom32_swapb_4", ++ unsigned_ftype_unsigned, ++ UBICOM32_BUILTIN_UBICOM32_SWAPB_4, ++ BUILT_IN_MD, NULL, ++ NULL_TREE); ++} ++ ++/* Given a builtin function taking 2 operands (i.e., target + source), ++ emit the RTL for the underlying instruction. */ ++static rtx ++ubicom32_expand_builtin_2op (enum insn_code icode, tree arglist, rtx target) ++{ ++ tree arg0; ++ rtx op0, pat; ++ enum machine_mode tmode, mode0; ++ ++ /* Grab the incoming argument and emit its RTL. */ ++ arg0 = TREE_VALUE (arglist); ++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); ++ ++ /* Determine the modes of the instruction operands. */ ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ /* Ensure that the incoming argument RTL is in a register of the ++ correct mode. */ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ op0 = copy_to_mode_reg (mode0, op0); ++ ++ /* If there isn't a suitable target, emit a target register. */ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ /* Emit and return the new instruction. */ ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++} ++ ++/* Expand a call to a builtin function. */ ++static rtx ++ubicom32_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ int ignore ATTRIBUTE_UNUSED) ++{ ++ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); ++ tree arglist = CALL_EXPR_ARGS(exp); ++ int fcode = DECL_FUNCTION_CODE (fndecl); ++ ++ switch (fcode) ++ { ++ case UBICOM32_BUILTIN_UBICOM32_SWAPB_2: ++ return ubicom32_expand_builtin_2op (CODE_FOR_bswaphi, arglist, target); ++ ++ case UBICOM32_BUILTIN_UBICOM32_SWAPB_4: ++ return ubicom32_expand_builtin_2op (CODE_FOR_bswapsi, arglist, target); ++ ++ default: ++ gcc_unreachable(); ++ } ++ ++ /* Should really do something sensible here. */ ++ return NULL_RTX; ++} ++ ++/* Fold any constant argument for a swapb.2 instruction. */ ++static tree ++ubicom32_fold_builtin_ubicom32_swapb_2 (tree fndecl, tree arglist) ++{ ++ tree arg0; ++ ++ arg0 = TREE_VALUE (arglist); ++ ++ /* Optimize constant value. */ ++ if (TREE_CODE (arg0) == INTEGER_CST) ++ { ++ HOST_WIDE_INT v; ++ HOST_WIDE_INT res; ++ ++ v = TREE_INT_CST_LOW (arg0); ++ res = ((v >> 8) & 0xff) ++ | ((v & 0xff) << 8); ++ ++ return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), res); ++ } ++ ++ return NULL_TREE; ++} ++ ++/* Fold any constant argument for a swapb.4 instruction. */ ++static tree ++ubicom32_fold_builtin_ubicom32_swapb_4 (tree fndecl, tree arglist) ++{ ++ tree arg0; ++ ++ arg0 = TREE_VALUE (arglist); ++ ++ /* Optimize constant value. */ ++ if (TREE_CODE (arg0) == INTEGER_CST) ++ { ++ unsigned HOST_WIDE_INT v; ++ unsigned HOST_WIDE_INT res; ++ ++ v = TREE_INT_CST_LOW (arg0); ++ res = ((v >> 24) & 0xff) ++ | (((v >> 16) & 0xff) << 8) ++ | (((v >> 8) & 0xff) << 16) ++ | ((v & 0xff) << 24); ++ ++ return build_int_cst_wide (TREE_TYPE (TREE_TYPE (fndecl)), res, 0); ++ } ++ ++ return NULL_TREE; ++} ++ ++/* Fold any constant arguments for builtin functions. */ ++static tree ++ubicom32_fold_builtin (tree fndecl, tree arglist, bool ignore ATTRIBUTE_UNUSED) ++{ ++ switch (DECL_FUNCTION_CODE (fndecl)) ++ { ++ case UBICOM32_BUILTIN_UBICOM32_SWAPB_2: ++ return ubicom32_fold_builtin_ubicom32_swapb_2 (fndecl, arglist); ++ ++ case UBICOM32_BUILTIN_UBICOM32_SWAPB_4: ++ return ubicom32_fold_builtin_ubicom32_swapb_4 (fndecl, arglist); ++ ++ default: ++ return NULL; ++ } ++} ++ ++/* Implementation of TARGET_ASM_INTEGER. When using FD-PIC, we need to ++ tell the assembler to generate pointers to function descriptors in ++ some cases. */ ++static bool ++ubicom32_assemble_integer (rtx value, unsigned int size, int aligned_p) ++{ ++ if (TARGET_FDPIC && size == UNITS_PER_WORD) ++ { ++ if (GET_CODE (value) == SYMBOL_REF ++ && SYMBOL_REF_FUNCTION_P (value)) ++ { ++ fputs ("\t.picptr\t%funcdesc(", asm_out_file); ++ output_addr_const (asm_out_file, value); ++ fputs (")\n", asm_out_file); ++ return true; ++ } ++ ++ if (!aligned_p) ++ { ++ /* We've set the unaligned SI op to NULL, so we always have to ++ handle the unaligned case here. */ ++ assemble_integer_with_op ("\t.4byte\t", value); ++ return true; ++ } ++ } ++ ++ return default_assemble_integer (value, size, aligned_p); ++} ++ ++/* If the constant I can be constructed by shifting a source-1 immediate ++ by a constant number of bits then return the bit count. If not ++ return 0. */ ++ ++int ++ubicom32_shiftable_const_int (int i) ++{ ++ int shift = 0; ++ ++ /* Note that any constant that can be represented as an immediate to ++ a movei instruction is automatically ignored here in the interests ++ of the clarity of the output asm code. */ ++ if (i >= -32768 && i <= 32767) ++ return 0; ++ ++ /* Find the number of trailing zeroes. We could use __builtin_ctz ++ here but it's not obvious if this is supported on all build ++ compilers so we err on the side of caution. */ ++ if ((i & 0xffff) == 0) ++ { ++ shift += 16; ++ i >>= 16; ++ } ++ ++ if ((i & 0xff) == 0) ++ { ++ shift += 8; ++ i >>= 8; ++ } ++ ++ if ((i & 0xf) == 0) ++ { ++ shift += 4; ++ i >>= 4; ++ } ++ ++ if ((i & 0x3) == 0) ++ { ++ shift += 2; ++ i >>= 2; ++ } ++ ++ if ((i & 0x1) == 0) ++ { ++ shift += 1; ++ i >>= 1; ++ } ++ ++ if (i >= -128 && i <= 127) ++ return shift; ++ ++ return 0; ++} ++ +--- /dev/null ++++ b/gcc/config/ubicom32/ubicom32.h +@@ -0,0 +1,1564 @@ ++/* Definitions of target machine for Ubicom32 ++ ++ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, ++ 2009 Free Software Foundation, Inc. ++ Contributed by Ubicom, Inc. ++ ++ This file is part of GCC. ++ ++ GCC is free software; you can redistribute it and/or modify it ++ under the terms of the GNU General Public License as published ++ by the Free Software Foundation; either version 3, or (at your ++ option) any later version. ++ ++ GCC is distributed in the hope that it will be useful, but WITHOUT ++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ++ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ++ License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with GCC; see the file COPYING3. If not see ++ . */ ++ ++ ++ ++#define OBJECT_FORMAT_ELF ++ ++/* Run-time target specifications. */ ++ ++/* Target CPU builtins. */ ++#define TARGET_CPU_CPP_BUILTINS() \ ++ do \ ++ { \ ++ builtin_define_std ("__UBICOM32__"); \ ++ builtin_define_std ("__ubicom32__"); \ ++ \ ++ if (TARGET_FDPIC) \ ++ { \ ++ builtin_define ("__UBICOM32_FDPIC__"); \ ++ builtin_define ("__FDPIC__"); \ ++ } \ ++ } \ ++ while (0) ++ ++#ifndef TARGET_DEFAULT ++#define TARGET_DEFAULT 0 ++#endif ++ ++extern int ubicom32_case_values_threshold; ++ ++/* Nonzero if this chip supports the Ubicom32 v3 ISA. */ ++extern int ubicom32_v3; ++ ++/* Nonzero if this chip supports the Ubicom32 v4 ISA. */ ++extern int ubicom32_v4; ++ ++extern int ubicom32_stack_size; ++ ++/* Flag for whether we can use calli instead of ret in returns. */ ++extern int ubicom32_can_use_calli_to_ret; ++ ++/* This macro is a C statement to print on `stderr' a string describing the ++ particular machine description choice. Every machine description should ++ define `TARGET_VERSION'. */ ++#define TARGET_VERSION fprintf (stderr, " (UBICOM32)"); ++ ++/* We don't need a frame pointer to debug things. Doing this means ++ that gcc can turn on -fomit-frame-pointer when '-O' is specified. */ ++#define CAN_DEBUG_WITHOUT_FP ++ ++/* We need to handle processor-specific options. */ ++#define OVERRIDE_OPTIONS ubicom32_override_options () ++ ++#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \ ++ ubicom32_optimization_options (LEVEL, SIZE) ++ ++/* For Ubicom32 the least significant bit has the lowest bit number ++ so we define this to be 0. */ ++#define BITS_BIG_ENDIAN 0 ++ ++/* For Ubicom32 the most significant byte in a word has the lowest ++ number. */ ++#define BYTES_BIG_ENDIAN 1 ++ ++/* For Ubicom32, in a multiword object, the most signifant word has the ++ lowest number. */ ++#define WORDS_BIG_ENDIAN 1 ++ ++/* Ubicom32 has 8 bits per byte. */ ++#define BITS_PER_UNIT 8 ++ ++/* Ubicom32 has 32 bits per word. */ ++#define BITS_PER_WORD 32 ++ ++/* Width of a word, in units (bytes). */ ++#define UNITS_PER_WORD 4 ++ ++/* Width of a pointer, in bits. */ ++#define POINTER_SIZE 32 ++ ++/* Alias for pointers. Ubicom32 is a 32-bit architecture so we use ++ SImode. */ ++#define Pmode SImode ++ ++/* Normal alignment required for function parameters on the stack, in ++ bits. */ ++#define PARM_BOUNDARY 32 ++ ++/* We need to maintain the stack on a 32-bit boundary. */ ++#define STACK_BOUNDARY 32 ++ ++/* Alignment required for a function entry point, in bits. */ ++#define FUNCTION_BOUNDARY 32 ++ ++/* Alias for the machine mode used for memory references to functions being ++ called, in `call' RTL expressions. We use byte-oriented addresses ++ here. */ ++#define FUNCTION_MODE QImode ++ ++/* Biggest alignment that any data type can require on this machine, ++ in bits. */ ++#define BIGGEST_ALIGNMENT 32 ++ ++/* this default to BIGGEST_ALIGNMENT unless defined */ ++/* ART: What's the correct value here? Default is (((unsigned int)1<<28)*8)*/ ++#undef MAX_OFILE_ALIGNMENT ++#define MAX_OFILE_ALIGNMENT (128 * 8) ++ ++/* Alignment in bits to be given to a structure bit field that follows an empty ++ field such as `int : 0;'. */ ++#define EMPTY_FIELD_BOUNDARY 32 ++ ++/* All structures must be a multiple of 32 bits in size. */ ++#define STRUCTURE_SIZE_BOUNDARY 32 ++ ++/* A bit-field declared as `int' forces `int' alignment for the struct. */ ++#define PCC_BITFIELD_TYPE_MATTERS 1 ++ ++/* For Ubicom32 we absolutely require that data be aligned with nominal ++ alignment. */ ++#define STRICT_ALIGNMENT 1 ++ ++/* Make strcpy of constants fast. */ ++#define CONSTANT_ALIGNMENT(EXP, ALIGN) \ ++ (TREE_CODE (EXP) == STRING_CST \ ++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN)) ++ ++/* Define this macro as an expression for the alignment of a structure ++ (given by STRUCT as a tree node) if the alignment computed in the ++ usual way is COMPUTED and the alignment explicitly specified was ++ SPECIFIED. */ ++#define DATA_ALIGNMENT(TYPE, ALIGN) \ ++ ((((ALIGN) < BITS_PER_WORD) \ ++ && (TREE_CODE (TYPE) == ARRAY_TYPE \ ++ || TREE_CODE (TYPE) == UNION_TYPE \ ++ || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN)) ++ ++#define LOCAL_ALIGNMENT(TYPE,ALIGN) DATA_ALIGNMENT(TYPE,ALIGN) ++ ++/* For Ubicom32 we default to unsigned chars. */ ++#define DEFAULT_SIGNED_CHAR 0 ++ ++/* Machine-specific data register numbers. */ ++#define FIRST_DATA_REGNUM 0 ++#define D10_REGNUM 10 ++#define D11_REGNUM 11 ++#define D12_REGNUM 12 ++#define D13_REGNUM 13 ++#define LAST_DATA_REGNUM 15 ++ ++/* Machine-specific address register numbers. */ ++#define FIRST_ADDRESS_REGNUM 16 ++#define LAST_ADDRESS_REGNUM 22 ++ ++/* Register numbers used for passing a function's static chain pointer. If ++ register windows are used, the register number as seen by the called ++ function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as ++ seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers ++ are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined. ++ ++ The static chain register need not be a fixed register. ++ ++ If the static chain is passed in memory, these macros should not be defined; ++ instead, the next two macros should be defined. */ ++#define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM + 1) ++ ++/* The register number of the frame pointer register, which is used to access ++ automatic variables in the stack frame. We generally eliminate this anyway ++ for Ubicom32 but we make it A6 by default. */ ++#define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM) ++ ++/* The register number of the stack pointer register, which is also be a ++ fixed register according to `FIXED_REGISTERS'. For Ubicom32 we don't ++ have a hardware requirement about which register this is, but by convention ++ we use A7. */ ++#define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM + 1) ++ ++/* Machine-specific accumulator register numbers. */ ++#define ACC0_HI_REGNUM 24 ++#define ACC0_LO_REGNUM 25 ++#define ACC1_HI_REGNUM 26 ++#define ACC1_LO_REGNUM 27 ++ ++/* source3 register number */ ++#define SOURCE3_REGNUM 28 ++ ++/* The register number of the arg pointer register, which is used to access the ++ function's argument list. On some machines, this is the same as the frame ++ pointer register. On some machines, the hardware determines which register ++ this is. On other machines, you can choose any register you wish for this ++ purpose. If this is not the same register as the frame pointer register, ++ then you must mark it as a fixed register according to `FIXED_REGISTERS', or ++ arrange to be able to eliminate it. */ ++#define ARG_POINTER_REGNUM 29 ++ ++/* Pseudo-reg for condition code. */ ++#define CC_REGNUM 30 ++ ++/* Interrupt set/clear registers. */ ++#define INT_SET0_REGNUM 31 ++#define INT_SET1_REGNUM 32 ++#define INT_CLR0_REGNUM 33 ++#define INT_CLR1_REGNUM 34 ++ ++/* Scratchpad registers. */ ++#define SCRATCHPAD0_REGNUM 35 ++#define SCRATCHPAD1_REGNUM 36 ++#define SCRATCHPAD2_REGNUM 37 ++#define SCRATCHPAD3_REGNUM 38 ++ ++/* FDPIC register. */ ++#define FDPIC_REGNUM 16 ++ ++/* Number of hardware registers known to the compiler. They receive numbers 0 ++ through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number ++ really is assigned the number `FIRST_PSEUDO_REGISTER'. */ ++#define FIRST_PSEUDO_REGISTER 39 ++ ++/* An initializer that says which registers are used for fixed purposes all ++ throughout the compiled code and are therefore not available for general ++ allocation. These would include the stack pointer, the frame pointer ++ (except on machines where that can be used as a general register when no ++ frame pointer is needed), the program counter on machines where that is ++ considered one of the addressable registers, and any other numbered register ++ with a standard use. ++ ++ This information is expressed as a sequence of numbers, separated by commas ++ and surrounded by braces. The Nth number is 1 if register N is fixed, 0 ++ otherwise. ++ ++ The table initialized from this macro, and the table initialized by the ++ following one, may be overridden at run time either automatically, by the ++ actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the ++ command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */ ++#define FIXED_REGISTERS \ ++ { \ ++ 0, 0, 0, 0, 0, 0, 0, 0, /* d0 - d7 */ \ ++ 0, 0, 0, 0, 0, 0, 0, 1, /* d8 - d15 */ \ ++ 0, 0, 0, 0, 0, 0, 0, 1, /* a0 - a7 */ \ ++ 0, 0, /* acc0 hi/lo */ \ ++ 0, 0, /* acc1 hi/lo */ \ ++ 0, /* source3 */ \ ++ 1, /* arg */ \ ++ 1, /* cc */ \ ++ 1, 1, /* int_set[01] */ \ ++ 1, 1, /* int_clr[01] */ \ ++ 1, 1, 1, 1 /* scratchpad[0123] */ \ ++ } ++ ++/* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in ++ general) by function calls as well as for fixed registers. This macro ++ therefore identifies the registers that are not available for general ++ allocation of values that must live across function calls. ++ ++ If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically ++ saves it on function entry and restores it on function exit, if the register ++ is used within the function. */ ++#define CALL_USED_REGISTERS \ ++ { \ ++ 1, 1, 1, 1, 1, 1, 1, 1, /* d0 - d7 */ \ ++ 1, 1, 0, 0, 0, 0, 1, 1, /* d8 - d15 */ \ ++ 1, 0, 0, 1, 1, 1, 0, 1, /* a0 - a7 */ \ ++ 1, 1, /* acc0 hi/lo */ \ ++ 1, 1, /* acc1 hi/lo */ \ ++ 1, /* source3 */ \ ++ 1, /* arg */ \ ++ 1, /* cc */ \ ++ 1, 1, /* int_set[01] */ \ ++ 1, 1, /* int_clr[01] */ \ ++ 1, 1, 1, 1 /* scratchpad[0123] */ \ ++ } ++ ++/* How to refer to registers in assembler output. ++ This sequence is indexed by compiler's hard-register-number (see above). */ ++ ++/* A C initializer containing the assembler's names for the machine registers, ++ each one as a C string constant. This is what translates register numbers ++ in the compiler into assembler language. */ ++#define REGISTER_NAMES \ ++ { \ ++ "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \ ++ "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", \ ++ "a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \ ++ "acc0_hi", "acc0_lo", \ ++ "acc1_hi", "acc1_lo", \ ++ "source3", \ ++ "arg", \ ++ "cc", \ ++ "int_set0", "int_set1", \ ++ "int_clr0", "int_clr1", \ ++ "scratchpad0", "scratchpad1", "scratchpad2", "scratchpad3" \ ++ } ++ ++#define CONDITIONAL_REGISTER_USAGE \ ++ ubicom32_conditional_register_usage (); ++ ++/* Order of allocation of registers. */ ++ ++/* If defined, an initializer for a vector of integers, containing the numbers ++ of hard registers in the order in which GNU CC should prefer to use them ++ (from most preferred to least). ++ ++ For Ubicom32 we try using caller-clobbered data registers first, then ++ callee-saved data registers, then caller-clobbered address registers, ++ then callee-saved address registers and finally everything else. ++ ++ The caller-clobbered registers are usually slightly cheaper to use because ++ there's no need to save/restore. */ ++#define REG_ALLOC_ORDER \ ++ { \ ++ 0, 1, 2, 3, 4, /* d0 - d4 */ \ ++ 5, 6, 7, 8, 9, /* d5 - d9 */ \ ++ 14, /* d14 */ \ ++ 10, 11, 12, 13, /* d10 - d13 */ \ ++ 19, 20, 16, 21, /* a3, a4, a0, a5 */ \ ++ 17, 18, 22, /* a1, a2, a6 */ \ ++ 24, 25, /* acc0 hi/lo */ \ ++ 26, 27, /* acc0 hi/lo */ \ ++ 28 /* source3 */ \ ++ } ++ ++/* C expression for the number of consecutive hard registers, starting at ++ register number REGNO, required to hold a value of mode MODE. */ ++#define HARD_REGNO_NREGS(REGNO, MODE) \ ++ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) ++ ++/* Most registers can hold QImode, HImode and SImode values but we have to ++ be able to indicate any hard registers that cannot hold values with some ++ modes. */ ++#define HARD_REGNO_MODE_OK(REGNO, MODE) \ ++ ubicom32_hard_regno_mode_ok(REGNO, MODE) ++ ++/* We can rename most registers aside from the FDPIC register if we're using ++ FDPIC. */ ++#define HARD_REGNO_RENAME_OK(from, to) (TARGET_FDPIC ? ((to) != FDPIC_REGNUM) : 1) ++ ++/* A C expression that is nonzero if it is desirable to choose register ++ allocation so as to avoid move instructions between a value of mode MODE1 ++ and a value of mode MODE2. ++ ++ If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are ++ ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be ++ zero. */ ++#define MODES_TIEABLE_P(MODE1, MODE2) 1 ++ ++/* An enumeral type that must be defined with all the register class names as ++ enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last ++ register class, followed by one more enumeral value, `LIM_REG_CLASSES', ++ which is not a register class but rather tells how many classes there are. ++ ++ Each register class has a number, which is the value of casting the class ++ name to type `int'. The number serves as an index in many of the tables ++ described below. */ ++ ++enum reg_class ++{ ++ NO_REGS, ++ DATA_REGS, ++ FDPIC_REG, ++ ADDRESS_REGS, ++ ALL_ADDRESS_REGS, ++ ACC_LO_REGS, ++ ACC_REGS, ++ CC_REG, ++ DATA_ACC_REGS, ++ SOURCE3_REG, ++ SPECIAL_REGS, ++ GENERAL_REGS, ++ ALL_REGS, ++ LIM_REG_CLASSES ++}; ++ ++/* The number of distinct register classes. */ ++#define N_REG_CLASSES (int) LIM_REG_CLASSES ++ ++/* An initializer containing the names of the register classes as C string ++ constants. These names are used in writing some of the debugging dumps. */ ++ ++#define REG_CLASS_NAMES \ ++{ \ ++ "NO_REGS", \ ++ "DATA_REGS", \ ++ "FDPIC_REG", \ ++ "ADDRESS_REGS", \ ++ "ALL_ADDRESS_REGS", \ ++ "ACC_LO_REGS", \ ++ "ACC_REGS", \ ++ "CC_REG", \ ++ "DATA_ACC_REGS", \ ++ "SOURCE3_REG", \ ++ "SPECIAL_REGS", \ ++ "GENERAL_REGS", \ ++ "ALL_REGS", \ ++ "LIM_REGS" \ ++} ++ ++/* An initializer containing the contents of the register classes, as integers ++ which are bit masks. The Nth integer specifies the contents of class N. ++ The way the integer MASK is interpreted is that register R is in the class ++ if `MASK & (1 << R)' is 1. ++ ++ When the machine has more than 32 registers, an integer does not suffice. ++ Then the integers are replaced by sub-initializers, braced groupings ++ containing several integers. Each sub-initializer must be suitable as an ++ initializer for the type `HARD_REG_SET' which is defined in ++ `hard-reg-set.h'. */ ++#define REG_CLASS_CONTENTS \ ++{ \ ++ {0x00000000, 0x00000000}, /* No regs */ \ ++ {0x0000ffff, 0x00000000}, /* DATA_REGS */ \ ++ {0x00010000, 0x00000000}, /* FDPIC_REG */ \ ++ {0x20fe0000, 0x00000000}, /* ADDRESS_REGS */ \ ++ {0x20ff0000, 0x00000000}, /* ALL_ADDRESS_REGS */ \ ++ {0x0a000000, 0x00000000}, /* ACC_LO_REGS */ \ ++ {0x0f000000, 0x00000000}, /* ACC_REGS */ \ ++ {0x40000000, 0x00000000}, /* CC_REG */ \ ++ {0x0f00ffff, 0x00000000}, /* DATA_ACC_REGS */ \ ++ {0x10000000, 0x00000000}, /* SOURGE3_REG */ \ ++ {0x80000000, 0x0000007f}, /* SPECIAL_REGS */ \ ++ {0xbfffffff, 0x0000007f}, /* GENERAL_REGS */ \ ++ {0xbfffffff, 0x0000007f} /* ALL_REGS */ \ ++} ++ ++extern enum reg_class const ubicom32_regclass_map[FIRST_PSEUDO_REGISTER]; ++ ++/* A C expression whose value is a register class containing hard register ++ REGNO. In general there is more than one such class; choose a class which ++ is "minimal", meaning that no smaller class also contains the register. */ ++#define REGNO_REG_CLASS(REGNO) (ubicom32_regclass_map[REGNO]) ++ ++#define IRA_COVER_CLASSES \ ++{ \ ++ GENERAL_REGS, \ ++ LIM_REG_CLASSES \ ++} ++ ++/* Ubicom32 base registers must be address registers since addresses can ++ only be reached via address registers. */ ++#define BASE_REG_CLASS ALL_ADDRESS_REGS ++ ++/* Ubicom32 index registers must be data registers since we cannot add ++ two address registers together to form an address. */ ++#define INDEX_REG_CLASS DATA_REGS ++ ++/* A C expression which is nonzero if register number NUM is suitable for use ++ as a base register in operand addresses. It may be either a suitable hard ++ register or a pseudo register that has been allocated such a hard register. */ ++ ++#ifndef REG_OK_STRICT ++#define REGNO_OK_FOR_BASE_P(regno) \ ++ ubicom32_regno_ok_for_base_p (regno, 0) ++#else ++#define REGNO_OK_FOR_BASE_P(regno) \ ++ ubicom32_regno_ok_for_base_p (regno, 1) ++#endif ++ ++/* A C expression which is nonzero if register number NUM is suitable for use ++ as an index register in operand addresses. It may be either a suitable hard ++ register or a pseudo register that has been allocated such a hard register. ++ ++ The difference between an index register and a base register is that the ++ index register may be scaled. If an address involves the sum of two ++ registers, neither one of them scaled, then either one may be labeled the ++ "base" and the other the "index"; but whichever labeling is used must fit ++ the machine's constraints of which registers may serve in each capacity. ++ The compiler will try both labelings, looking for one that is valid, and ++ will reload one or both registers only if neither labeling works. */ ++#ifndef REG_OK_STRICT ++#define REGNO_OK_FOR_INDEX_P(regno) \ ++ ubicom32_regno_ok_for_index_p (regno, 0) ++#else ++#define REGNO_OK_FOR_INDEX_P(regno) \ ++ ubicom32_regno_ok_for_index_p (regno, 1) ++#endif ++ ++/* Attempt to restrict the register class we need to copy value X intoto the ++ would-be register class CLASS. Most things are fine for Ubicom32 but we ++ have to restrict certain types of address loads. */ ++#define PREFERRED_RELOAD_CLASS(X, CLASS) \ ++ ubicom32_preferred_reload_class (X, CLASS) ++ ++/* A C expression for the maximum number of consecutive registers of ++ class CLASS needed to hold a value of mode MODE. For Ubicom32 this ++ is pretty much identical to HARD_REGNO_NREGS. */ ++#define CLASS_MAX_NREGS(CLASS, MODE) \ ++ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) ++ ++/* For Ubicom32 the stack grows downwards when we push a word onto the stack ++ - i.e. it moves to a smaller address. */ ++#define STACK_GROWS_DOWNWARD 1 ++ ++/* Offset from the frame pointer to the first local variable slot to ++ be allocated. */ ++#define STARTING_FRAME_OFFSET 0 ++ ++/* Offset from the argument pointer register to the first argument's ++ address. */ ++#define FIRST_PARM_OFFSET(FNDECL) 0 ++ ++/* A C expression whose value is RTL representing the value of the return ++ address for the frame COUNT steps up from the current frame, after the ++ prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame ++ pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is ++ defined. ++ ++ The value of the expression must always be the correct address when COUNT is ++ zero, but may be `NULL_RTX' if there is not way to determine the return ++ address of other frames. */ ++#define RETURN_ADDR_RTX(COUNT, FRAME) \ ++ ubicom32_return_addr_rtx (COUNT, FRAME) ++ ++/* Register That Address the Stack Frame. */ ++ ++/* We don't actually require a frame pointer in most functions with the ++ Ubicom32 architecture so we allow it to be eliminated. */ ++#define FRAME_POINTER_REQUIRED 0 ++ ++/* Macro that defines a table of register pairs used to eliminate unecessary ++ registers that point into the stack frame. ++ ++ For Ubicom32 we don't generally need an arg pointer of a frame pointer ++ so we allow the arg pointer to be replaced by either the frame pointer or ++ the stack pointer. We also allow the frame pointer to be replaced by ++ the stack pointer. */ ++#define ELIMINABLE_REGS \ ++{ \ ++ {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ ++ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ ++ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \ ++} ++ ++/* Let the compiler know that we want to use the ELIMINABLE_REGS macro ++ above. */ ++#define CAN_ELIMINATE(FROM, TO) 1 ++ ++/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the ++ initial difference between the specified pair of registers. This macro must ++ be defined if `ELIMINABLE_REGS' is defined. */ ++#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ ++ (OFFSET) = ubicom32_initial_elimination_offset (FROM, TO) ++ ++/* If defined, the maximum amount of space required for outgoing arguments will ++ be computed and placed into the variable ++ `current_function_outgoing_args_size'. No space will be pushed onto the ++ stack for each call; instead, the function prologue should increase the ++ stack frame size by this amount. ++ ++ Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not ++ proper. */ ++#define ACCUMULATE_OUTGOING_ARGS 1 ++ ++/* Define this macro if functions should assume that stack space has been ++ allocated for arguments even when their values are passed in registers. ++ ++ The value of this macro is the size, in bytes, of the area reserved for ++ arguments passed in registers for the function represented by FNDECL. ++ ++ This space can be allocated by the caller, or be a part of the ++ machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says ++ which. */ ++#define REG_PARM_STACK_SPACE(FNDECL) ubicom32_reg_parm_stack_space(FNDECL) ++ ++/* A C expression that should indicate the number of bytes of its own arguments ++ that a function pops on returning, or 0 if the function pops no arguments ++ and the caller must therefore pop them all after the function returns. ++ ++ FUNDECL is a C variable whose value is a tree node that describes the ++ function in question. Normally it is a node of type `FUNCTION_DECL' that ++ describes the declaration of the function. From this it is possible to ++ obtain the DECL_MACHINE_ATTRIBUTES of the function. ++ ++ FUNTYPE is a C variable whose value is a tree node that describes the ++ function in question. Normally it is a node of type `FUNCTION_TYPE' that ++ describes the data type of the function. From this it is possible to obtain ++ the data types of the value and arguments (if known). ++ ++ When a call to a library function is being considered, FUNTYPE will contain ++ an identifier node for the library function. Thus, if you need to ++ distinguish among various library functions, you can do so by their names. ++ Note that "library function" in this context means a function used to ++ perform arithmetic, whose name is known specially in the compiler and was ++ not mentioned in the C code being compiled. ++ ++ STACK-SIZE is the number of bytes of arguments passed on the stack. If a ++ variable number of bytes is passed, it is zero, and argument popping will ++ always be the responsibility of the calling function. ++ ++ On the Vax, all functions always pop their arguments, so the definition of ++ this macro is STACK-SIZE. On the 68000, using the standard calling ++ convention, no functions pop their arguments, so the value of the macro is ++ always 0 in this case. But an alternative calling convention is available ++ in which functions that take a fixed number of arguments pop them but other ++ functions (such as `printf') pop nothing (the caller pops all). When this ++ convention is in use, FUNTYPE is examined to determine whether a function ++ takes a fixed number of arguments. */ ++#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0 ++ ++/* A C expression that controls whether a function argument is passed in a ++ register, and which register. ++ ++ The arguments are CUM, of type CUMULATIVE_ARGS, which summarizes (in a way ++ defined by INIT_CUMULATIVE_ARGS and FUNCTION_ARG_ADVANCE) all of the previous ++ arguments so far passed in registers; MODE, the machine mode of the argument; ++ TYPE, the data type of the argument as a tree node or 0 if that is not known ++ (which happens for C support library functions); and NAMED, which is 1 for an ++ ordinary argument and 0 for nameless arguments that correspond to `...' in the ++ called function's prototype. ++ ++ The value of the expression should either be a `reg' RTX for the hard ++ register in which to pass the argument, or zero to pass the argument on the ++ stack. ++ ++ For machines like the Vax and 68000, where normally all arguments are ++ pushed, zero suffices as a definition. ++ ++ The usual way to make the ANSI library `stdarg.h' work on a machine where ++ some arguments are usually passed in registers, is to cause nameless ++ arguments to be passed on the stack instead. This is done by making ++ `FUNCTION_ARG' return 0 whenever NAMED is 0. ++ ++ You may use the macro `MUST_PASS_IN_STACK (MODE, TYPE)' in the definition of ++ this macro to determine if this argument is of a type that must be passed in ++ the stack. If `REG_PARM_STACK_SPACE' is not defined and `FUNCTION_ARG' ++ returns non-zero for such an argument, the compiler will abort. If ++ `REG_PARM_STACK_SPACE' is defined, the argument will be computed in the ++ stack and then loaded into a register. */ ++#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ ++ function_arg (&CUM, MODE, TYPE, NAMED) ++ ++#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \ ++ function_incoming_arg (&CUM, MODE, TYPE, NAMED) ++ ++/* A C expression for the number of words, at the beginning of an argument, ++ must be put in registers. The value must be zero for arguments that are ++ passed entirely in registers or that are entirely pushed on the stack. ++ ++ On some machines, certain arguments must be passed partially in registers ++ and partially in memory. On these machines, typically the first N words of ++ arguments are passed in registers, and the rest on the stack. If a ++ multi-word argument (a `double' or a structure) crosses that boundary, its ++ first few words must be passed in registers and the rest must be pushed. ++ This macro tells the compiler when this occurs, and how many of the words ++ should go in registers. ++ ++ `FUNCTION_ARG' for these arguments should return the first register to be ++ used by the caller for this argument; likewise `FUNCTION_INCOMING_ARG', for ++ the called function. */ ++ ++/* A C expression that indicates when an argument must be passed by reference. ++ If nonzero for an argument, a copy of that argument is made in memory and a ++ pointer to the argument is passed instead of the argument itself. The ++ pointer is passed in whatever way is appropriate for passing a pointer to ++ that type. ++ ++ On machines where `REG_PARM_STACK_SPACE' is not defined, a suitable ++ definition of this macro might be ++ #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \ ++ MUST_PASS_IN_STACK (MODE, TYPE) */ ++ ++/* If defined, a C expression that indicates when it is the called function's ++ responsibility to make a copy of arguments passed by invisible reference. ++ Normally, the caller makes a copy and passes the address of the copy to the ++ routine being called. When FUNCTION_ARG_CALLEE_COPIES is defined and is ++ nonzero, the caller does not make a copy. Instead, it passes a pointer to ++ the "live" value. The called function must not modify this value. If it ++ can be determined that the value won't be modified, it need not make a copy; ++ otherwise a copy must be made. */ ++ ++/* A C type for declaring a variable that is used as the first argument of ++ `FUNCTION_ARG' and other related values. For some target machines, the type ++ `int' suffices and can hold the number of bytes of argument so far. ++ ++ There is no need to record in `CUMULATIVE_ARGS' anything about the arguments ++ that have been passed on the stack. The compiler has other variables to ++ keep track of that. For target machines on which all arguments are passed ++ on the stack, there is no need to store anything in `CUMULATIVE_ARGS'; ++ however, the data structure must exist and should not be empty, so use ++ `int'. */ ++struct cum_arg ++{ ++ int nbytes; ++ int reg; ++ int stdarg; ++}; ++#define CUMULATIVE_ARGS struct cum_arg ++ ++/* A C statement (sans semicolon) for initializing the variable CUM for the ++ state at the beginning of the argument list. The variable has type ++ `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type ++ of the function which will receive the args, or 0 if the args are to a ++ compiler support library function. The value of INDIRECT is nonzero when ++ processing an indirect call, for example a call through a function pointer. ++ The value of INDIRECT is zero for a call to an explicitly named function, a ++ library function call, or when `INIT_CUMULATIVE_ARGS' is used to find ++ arguments for the function being compiled. ++ ++ When processing a call to a compiler support library function, LIBNAME ++ identifies which one. It is a `symbol_ref' rtx which contains the name of ++ the function, as a string. LIBNAME is 0 when an ordinary C function call is ++ being processed. Thus, each time this macro is called, either LIBNAME or ++ FNTYPE is nonzero, but never both of them at once. */ ++ ++#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, NAMED_ARGS) \ ++ init_cumulative_args (&(CUM), FNTYPE, LIBNAME, INDIRECT); ++ ++/* A C statement (sans semicolon) to update the summarizer variable CUM to ++ advance past an argument in the argument list. The values MODE, TYPE and ++ NAMED describe that argument. Once this is done, the variable CUM is ++ suitable for analyzing the *following* argument with `FUNCTION_ARG', etc. ++ ++ This macro need not do anything if the argument in question was passed on ++ the stack. The compiler knows how to track the amount of stack space used ++ for arguments without any special help. */ ++#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ ++ ((CUM).nbytes += ((MODE) != BLKmode \ ++ ? (GET_MODE_SIZE (MODE) + 3) & ~3 \ ++ : (int_size_in_bytes (TYPE) + 3) & ~3)) ++ ++/* For the Ubicom32 we define the upper function argument register here. */ ++#define UBICOM32_FUNCTION_ARG_REGS 10 ++ ++/* A C expression that is nonzero if REGNO is the number of a hard register in ++ which function arguments are sometimes passed. This does *not* include ++ implicit arguments such as the static chain and the structure-value address. ++ On many machines, no registers can be used for this purpose since all ++ function arguments are pushed on the stack. */ ++#define FUNCTION_ARG_REGNO_P(N) ((N) < UBICOM32_FUNCTION_ARG_REGS) ++ ++ ++/* How Scalar Function Values are Returned. */ ++ ++/* The number of the hard register that is used to return a scalar value from a ++ function call. */ ++#define RETURN_VALUE_REGNUM 0 ++ ++/* A C expression to create an RTX representing the place where a function ++ returns a value of data type VALTYPE. VALTYPE is a tree node representing a ++ data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to ++ represent that type. On many machines, only the mode is relevant. ++ (Actually, on most machines, scalar values are returned in the same place ++ regardless of mode). ++ ++ If `PROMOTE_FUNCTION_RETURN' is defined, you must apply the same promotion ++ rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type. ++ ++ If the precise function being called is known, FUNC is a tree node ++ (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it ++ possible to use a different value-returning convention for specific ++ functions when all their calls are known. ++ ++ `FUNCTION_VALUE' is not used for return vales with aggregate data types, ++ because these are returned in another way. See `STRUCT_VALUE_REGNUM' and ++ related macros, below. */ ++#define FUNCTION_VALUE(VALTYPE, FUNC) \ ++ gen_rtx_REG (TYPE_MODE (VALTYPE), FIRST_DATA_REGNUM) ++ ++/* A C expression to create an RTX representing the place where a library ++ function returns a value of mode MODE. ++ ++ Note that "library function" in this context means a compiler support ++ routine, used to perform arithmetic, whose name is known specially by the ++ compiler and was not mentioned in the C code being compiled. ++ ++ The definition of `LIBRARY_VALUE' need not be concerned aggregate data ++ types, because none of the library functions returns such types. */ ++#define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM) ++ ++/* A C expression that is nonzero if REGNO is the number of a hard register in ++ which the values of called function may come back. ++ ++ A register whose use for returning values is limited to serving as the ++ second of a pair (for a value of type `double', say) need not be recognized ++ by this macro. So for most machines, this definition suffices: ++ ++ #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN) ++ ++ If the machine has register windows, so that the caller and the called ++ function use different registers for the return value, this macro should ++ recognize only the caller's register numbers. */ ++#define FUNCTION_VALUE_REGNO_P(N) ((N) == FIRST_DATA_REGNUM) ++ ++ ++/* How Large Values are Returned. */ ++ ++/* A C expression which can inhibit the returning of certain function values in ++ registers, based on the type of value. A nonzero value says to return the ++ function value in memory, just as large structures are always returned. ++ Here TYPE will be a C expression of type `tree', representing the data type ++ of the value. ++ ++ Note that values of mode `BLKmode' must be explicitly handled by this macro. ++ Also, the option `-fpcc-struct-return' takes effect regardless of this ++ macro. On most systems, it is possible to leave the macro undefined; this ++ causes a default definition to be used, whose value is the constant 1 for ++ `BLKmode' values, and 0 otherwise. ++ ++ Do not use this macro to indicate that structures and unions should always ++ be returned in memory. You should instead use `DEFAULT_PCC_STRUCT_RETURN' ++ to indicate this. */ ++#define RETURN_IN_MEMORY(TYPE) \ ++ (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode) ++ ++/* Define this macro to be 1 if all structure and union return values must be ++ in memory. Since this results in slower code, this should be defined only ++ if needed for compatibility with other compilers or with an ABI. If you ++ define this macro to be 0, then the conventions used for structure and union ++ return values are decided by the `RETURN_IN_MEMORY' macro. ++ ++ If not defined, this defaults to the value 1. */ ++#define DEFAULT_PCC_STRUCT_RETURN 0 ++ ++/* If the structure value address is not passed in a register, define ++ `STRUCT_VALUE' as an expression returning an RTX for the place ++ where the address is passed. If it returns 0, the address is ++ passed as an "invisible" first argument. */ ++#define STRUCT_VALUE 0 ++ ++/* Define this macro as a C expression that is nonzero if the return ++ instruction or the function epilogue ignores the value of the stack pointer; ++ in other words, if it is safe to delete an instruction to adjust the stack ++ pointer before a return from the function. ++ ++ Note that this macro's value is relevant only for functions for which frame ++ pointers are maintained. It is never safe to delete a final stack ++ adjustment in a function that has no frame pointer, and the compiler knows ++ this regardless of `EXIT_IGNORE_STACK'. */ ++#define EXIT_IGNORE_STACK 1 ++ ++/* A C statement or compound statement to output to FILE some assembler code to ++ call the profiling subroutine `mcount'. Before calling, the assembler code ++ must load the address of a counter variable into a register where `mcount' ++ expects to find the address. The name of this variable is `LP' followed by ++ the number LABELNO, so you would generate the name using `LP%d' in a ++ `fprintf'. ++ ++ The details of how the address should be passed to `mcount' are determined ++ by your operating system environment, not by GNU CC. To figure them out, ++ compile a small program for profiling using the system's installed C ++ compiler and look at the assembler code that results. ++ ++ This declaration must be present, but it can be an abort if profiling is ++ not implemented. */ ++ ++#define FUNCTION_PROFILER(file, labelno) ubicom32_profiler(file, labelno) ++ ++/* A C statement to output, on the stream FILE, assembler code for a block of ++ data that contains the constant parts of a trampoline. This code should not ++ include a label--the label is taken care of automatically. */ ++#if 0 ++#define TRAMPOLINE_TEMPLATE(FILE) \ ++ do { \ ++ fprintf (FILE, "\tadd -4,sp\n"); \ ++ fprintf (FILE, "\t.long 0x0004fffa\n"); \ ++ fprintf (FILE, "\tmov (0,sp),a0\n"); \ ++ fprintf (FILE, "\tadd 4,sp\n"); \ ++ fprintf (FILE, "\tmov (13,a0),a1\n"); \ ++ fprintf (FILE, "\tmov (17,a0),a0\n"); \ ++ fprintf (FILE, "\tjmp (a0)\n"); \ ++ fprintf (FILE, "\t.long 0\n"); \ ++ fprintf (FILE, "\t.long 0\n"); \ ++ } while (0) ++#endif ++ ++/* A C expression for the size in bytes of the trampoline, as an integer. */ ++#define TRAMPOLINE_SIZE 0x1b ++ ++/* Alignment required for trampolines, in bits. ++ ++ If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for ++ aligning trampolines. */ ++#define TRAMPOLINE_ALIGNMENT 32 ++ ++/* A C statement to initialize the variable parts of a trampoline. ADDR is an ++ RTX for the address of the trampoline; FNADDR is an RTX for the address of ++ the nested function; STATIC_CHAIN is an RTX for the static chain value that ++ should be passed to the function when it is called. */ ++#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ ++{ \ ++ emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \ ++ (CXT)); \ ++ emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \ ++ (FNADDR)); \ ++} ++ ++/* Ubicom32 supports pre and post increment/decrement addressing. */ ++#define HAVE_POST_INCREMENT 1 ++#define HAVE_PRE_INCREMENT 1 ++#define HAVE_POST_DECREMENT 1 ++#define HAVE_PRE_DECREMENT 1 ++ ++/* Ubicom32 supports pre and post address side-effects with constants ++ other than the size of the memory operand. */ ++#define HAVE_PRE_MODIFY_DISP 1 ++#define HAVE_POST_MODIFY_DISP 1 ++ ++/* A C expression that is 1 if the RTX X is a constant which is a valid ++ address. On most machines, this can be defined as `CONSTANT_P (X)', ++ but a few machines are more restrictive in which constant addresses ++ are supported. ++ ++ `CONSTANT_P' accepts integer-values expressions whose values are not ++ explicitly known, such as `symbol_ref', `label_ref', and `high' ++ expressions and `const' arithmetic expressions, in addition to ++ `const_int' and `const_double' expressions. */ ++#define CONSTANT_ADDRESS_P(X) \ ++ (GET_CODE (X) == LABEL_REF \ ++ || (GET_CODE (X) == CONST \ ++ && GET_CODE (XEXP (X, 0)) == PLUS \ ++ && GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF)) ++ ++/* Ubicom32 supports a maximum of 2 registers in a valid memory address. ++ One is always an address register while a second, optional, one may be a ++ data register. */ ++#define MAX_REGS_PER_ADDRESS 2 ++ ++/* A C compound statement with a conditional `goto LABEL;' executed if X (an ++ RTX) is a legitimate memory address on the target machine for a memory ++ operand of mode MODE. ++ ++ It usually pays to define several simpler macros to serve as subroutines for ++ this one. Otherwise it may be too complicated to understand. ++ ++ This macro must exist in two variants: a strict variant and a non-strict ++ one. The strict variant is used in the reload pass. It must be defined so ++ that any pseudo-register that has not been allocated a hard register is ++ considered a memory reference. In contexts where some kind of register is ++ required, a pseudo-register with no hard register must be rejected. ++ ++ The non-strict variant is used in other passes. It must be defined to ++ accept all pseudo-registers in every context where some kind of register is ++ required. ++ ++ Compiler source files that want to use the strict variant of this macro ++ define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT' ++ conditional to define the strict variant in that case and the non-strict ++ variant otherwise. ++ ++ Subroutines to check for acceptable registers for various purposes (one for ++ base registers, one for index registers, and so on) are typically among the ++ subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these ++ subroutine macros need have two variants; the higher levels of macros may be ++ the same whether strict or not. ++ ++ Normally, constant addresses which are the sum of a `symbol_ref' and an ++ integer are stored inside a `const' RTX to mark them as constant. ++ Therefore, there is no need to recognize such sums specifically as ++ legitimate addresses. Normally you would simply recognize any `const' as ++ legitimate. ++ ++ Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that ++ are not marked with `const'. It assumes that a naked `plus' indicates ++ indexing. If so, then you *must* reject such naked constant sums as ++ illegitimate addresses, so that none of them will be given to ++ `PRINT_OPERAND_ADDRESS'. ++ ++ On some machines, whether a symbolic address is legitimate depends on the ++ section that the address refers to. On these machines, define the macro ++ `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and ++ then check for it here. When you see a `const', you will have to look ++ inside it to find the `symbol_ref' in order to determine the section. ++ ++ The best way to modify the name string is by adding text to the beginning, ++ with suitable punctuation to prevent any ambiguity. Allocate the new name ++ in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to ++ remove and decode the added text and output the name accordingly, and define ++ `STRIP_NAME_ENCODING' to access the original name string. ++ ++ You can check the information stored here into the `symbol_ref' in the ++ definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and ++ `PRINT_OPERAND_ADDRESS'. */ ++/* On the ubicom32, the value in the address register must be ++ in the same memory space/segment as the effective address. ++ ++ This is problematical for reload since it does not understand ++ that base+index != index+base in a memory reference. */ ++ ++#ifdef REG_OK_STRICT ++#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ ++ if (ubicom32_legitimate_address_p (MODE, X, 1)) goto ADDR; ++#else ++#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ ++ if (ubicom32_legitimate_address_p (MODE, X, 0)) goto ADDR; ++#endif ++ ++/* Try machine-dependent ways of modifying an illegitimate address ++ to be legitimate. If we find one, return the new, valid address. ++ This macro is used in only one place: `memory_address' in explow.c. ++ ++ OLDX is the address as it was before break_out_memory_refs was called. ++ In some cases it is useful to look at this to decide what needs to be done. ++ ++ MODE and WIN are passed so that this macro can use ++ GO_IF_LEGITIMATE_ADDRESS. ++ ++ It is always safe for this macro to do nothing. It exists to recognize ++ opportunities to optimize the output. ++ ++ On RS/6000, first check for the sum of a register with a constant ++ integer that is out of range. If so, generate code to add the ++ constant with the low-order 16 bits masked to the register and force ++ this result into another register (this can be done with `cau'). ++ Then generate an address of REG+(CONST&0xffff), allowing for the ++ possibility of bit 16 being a one. ++ ++ Then check for the sum of a register and something not constant, try to ++ load the other things into a register and return the sum. */ ++ ++#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ ++{ \ ++ rtx result = ubicom32_legitimize_address ((X), (OLDX), (MODE)); \ ++ if (result != NULL_RTX) \ ++ { \ ++ (X) = result; \ ++ goto WIN; \ ++ } \ ++} ++ ++/* Try a machine-dependent way of reloading an illegitimate address ++ operand. If we find one, push the reload and jump to WIN. This ++ macro is used in only one place: `find_reloads_address' in reload.c. */ ++#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \ ++{ \ ++ rtx new_rtx = ubicom32_legitimize_reload_address ((AD), (MODE), (OPNUM), (int)(TYPE)); \ ++ if (new_rtx) \ ++ { \ ++ (AD) = new_rtx; \ ++ goto WIN; \ ++ } \ ++} ++ ++/* A C statement or compound statement with a conditional `goto LABEL;' ++ executed if memory address X (an RTX) can have different meanings depending ++ on the machine mode of the memory reference it is used for or if the address ++ is valid for some modes but not others. ++ ++ Autoincrement and autodecrement addresses typically have mode-dependent ++ effects because the amount of the increment or decrement is the size of the ++ operand being addressed. Some machines have other mode-dependent addresses. ++ Many RISC machines have no mode-dependent addresses. ++ ++ You may assume that ADDR is a valid address for the machine. */ ++#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ ++ if (ubicom32_mode_dependent_address_p (ADDR)) \ ++ goto LABEL; ++ ++/* A C expression that is nonzero if X is a legitimate constant for an ++ immediate operand on the target machine. You can assume that X ++ satisfies `CONSTANT_P', so you need not check this. In fact, `1' is ++ a suitable definition for this macro on machines where anything ++ `CONSTANT_P' is valid. */ ++#define LEGITIMATE_CONSTANT_P(X) \ ++ ubicom32_legitimate_constant_p ((X)) ++ ++/* Moves between registers are pretty-much single instructions for ++ Ubicom32. We make this the default "2" that gcc likes. */ ++#define REGISTER_MOVE_COST(MODE, FROM, TO) 2 ++ ++/* This is a little bit of magic from the S390 port that wins 2% on code ++ size when building the Linux kernel! Unfortunately while it wins on ++ that size the user-space apps built using FD-PIC don't improve and the ++ performance is lower because we put more pressure on the caches. We may ++ want this back on some future CPU that has higher cache performance. */ ++/* #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) 0.5 */ ++ ++/* Moves between registers and memory are more expensive than between ++ registers because we have caches and write buffers that slow things ++ down! */ ++#define MEMORY_MOVE_COST(MODE, CLASS, IN) 2 ++ ++/* A fall-through branch is very low cost but anything that changes the PC ++ incurs a major pipeline hazard. We don't make the full extent of this ++ hazard visible because we hope that multiple threads will absorb much ++ of the cost and so we don't want a jump being replaced with, say, 7 ++ instructions. */ ++#define BRANCH_COST(SPEED_P, PREDICTABLE_P) \ ++ ((PREDICTABLE_P) ? 1 : 3) ++ ++/* Define this macro as a C expression which is nonzero if accessing less than ++ a word of memory (i.e. a `char' or a `short') is no faster than accessing a ++ word of memory, i.e., if such access require more than one instruction or if ++ there is no difference in cost between byte and (aligned) word loads. ++ ++ When this macro is not defined, the compiler will access a field by finding ++ the smallest containing object; when it is defined, a fullword load will be ++ used if alignment permits. Unless bytes accesses are faster than word ++ accesses, using word accesses is preferable since it may eliminate ++ subsequent memory access if subsequent accesses occur to other fields in the ++ same word of the structure, but to different bytes. */ ++#define SLOW_BYTE_ACCESS 0 ++ ++/* The number of scalar move insns which should be generated instead of a ++ string move insn or a library call. Increasing the value will always make ++ code faster, but eventually incurs high cost in increased code size. ++ ++ If you don't define this, a reasonable default is used. */ ++/* According to expr.c, a value of around 6 should minimize code size. */ ++#define MOVE_RATIO(SPEED) 6 ++ ++/* We're much better off calling a constant function address with the ++ Ubicom32 architecture because we have an opcode for doing so. Don't ++ let the compiler extract function addresses as common subexpressions ++ into an address register. */ ++#define NO_FUNCTION_CSE ++ ++#define SELECT_CC_MODE(OP, X, Y) ubicom32_select_cc_mode (OP, X, Y) ++ ++#define REVERSIBLE_CC_MODE(MODE) 1 ++ ++/* Canonicalize a comparison from one we don't have to one we do have. */ ++#define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \ ++ ubicom32_canonicalize_comparison (&(CODE), &(OP0), &(OP1)) ++ ++/* Dividing the output into sections. */ ++ ++/* A C expression whose value is a string containing the assembler operation ++ that should precede instructions and read-only data. Normally `".text"' is ++ right. */ ++#define TEXT_SECTION_ASM_OP "\t.section .text" ++ ++/* A C expression whose value is a string containing the assembler operation to ++ identify the following data as writable initialized data. Normally ++ `".data"' is right. */ ++#define DATA_SECTION_ASM_OP "\t.section .data" ++ ++ ++/* If defined, a C expression whose value is a string containing the ++ assembler operation to identify the following data as ++ uninitialized global data. If not defined, and neither ++ `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined, ++ uninitialized global data will be output in the data section if ++ `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be ++ used. */ ++#define BSS_SECTION_ASM_OP "\t.section .bss" ++ ++/* This is how we tell the assembler that a symbol is weak. */ ++ ++#define ASM_WEAKEN_LABEL(FILE, NAME) \ ++ do \ ++ { \ ++ fputs ("\t.weak\t", (FILE)); \ ++ assemble_name ((FILE), (NAME)); \ ++ fputc ('\n', (FILE)); \ ++ } \ ++ while (0) ++ ++/* The Overall Framework of an Assembler File. */ ++ ++#undef SET_ASM_OP ++#define SET_ASM_OP "\t.set\t" ++ ++/* A C string constant describing how to begin a comment in the target ++ assembler language. The compiler assumes that the comment will end at the ++ end of the line. */ ++#define ASM_COMMENT_START ";" ++ ++/* A C string constant for text to be output before each `asm' statement or ++ group of consecutive ones. Normally this is `"#APP"', which is a comment ++ that has no effect on most assemblers but tells the GNU assembler that it ++ must check the lines that follow for all valid assembler constructs. */ ++#define ASM_APP_ON "#APP\n" ++ ++/* A C string constant for text to be output after each `asm' statement or ++ group of consecutive ones. Normally this is `"#NO_APP"', which tells the ++ GNU assembler to resume making the time-saving assumptions that are valid ++ for ordinary compiler output. */ ++#define ASM_APP_OFF "#NO_APP\n" ++ ++/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a separate, ++ explicit argument. If you define this macro, it is used in place of ++ `ASM_OUTPUT_BSS', and gives you more flexibility in handling the required ++ alignment of the variable. The alignment is specified as the number of ++ bits. ++ ++ Try to use function `asm_output_aligned_bss' defined in file `varasm.c' when ++ defining this macro. */ ++#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ ++ asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN)) ++ ++/* A C expression to assign to OUTVAR (which is a variable of type `char *') a ++ newly allocated string made from the string NAME and the number NUMBER, with ++ some suitable punctuation added. Use `alloca' to get space for the string. ++ ++ The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce ++ an assembler label for an internal static variable whose name is NAME. ++ Therefore, the string must be such as to result in valid assembler code. ++ The argument NUMBER is different each time this macro is executed; it ++ prevents conflicts between similarly-named internal static variables in ++ different scopes. ++ ++ Ideally this string should not be a valid C identifier, to prevent any ++ conflict with the user's own symbols. Most assemblers allow periods or ++ percent signs in assembler symbols; putting at least one of these between ++ the name and the number will suffice. */ ++#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \ ++ ((OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \ ++ sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO))) ++ ++#define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \ ++ sprintf (STRING, "*.%s%ld", PREFIX, (long)(NUM)) ++/* A C statement to store into the string STRING a label whose name ++ is made from the string PREFIX and the number NUM. ++ ++ This string, when output subsequently by `assemble_name', should ++ produce the output that `(*targetm.asm_out.internal_label)' would produce ++ with the same PREFIX and NUM. ++ ++ If the string begins with `*', then `assemble_name' will output ++ the rest of the string unchanged. It is often convenient for ++ `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the ++ string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to ++ output the string, and may change it. (Of course, ++ `ASM_OUTPUT_LABELREF' is also part of your machine description, so ++ you should know what it does on your machine.) */ ++ ++/* This says how to output assembler code to declare an ++ uninitialized external linkage data object. Under SVR4, ++ the linker seems to want the alignment of data objects ++ to depend on their types. We do exactly that here. */ ++ ++#define COMMON_ASM_OP "\t.comm\t" ++ ++#undef ASM_OUTPUT_COMMON ++#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ++ do \ ++ { \ ++ fprintf ((FILE), "%s", COMMON_ASM_OP); \ ++ assemble_name ((FILE), (NAME)); \ ++ fprintf ((FILE), ", %u\n", (SIZE)); \ ++ } \ ++ while (0) ++ ++/* This says how to output assembler code to declare an ++ uninitialized internal linkage data object. Under SVR4, ++ the linker seems to want the alignment of data objects ++ to depend on their types. We do exactly that here. */ ++#define LOCAL_ASM_OP "\t.lcomm\t" ++ ++#undef ASM_OUTPUT_LOCAL ++#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ ++ do \ ++ { \ ++ fprintf ((FILE), "%s", LOCAL_ASM_OP); \ ++ assemble_name ((FILE), (NAME)); \ ++ fprintf ((FILE), ", %u\n", (SIZE)); \ ++ } \ ++ while (0) ++ ++/* Globalizing directive for a label. */ ++#define GLOBAL_ASM_OP ".global\t" ++ ++/* Output the operand of an instruction. */ ++#define PRINT_OPERAND(FILE, X, CODE) \ ++ ubicom32_print_operand(FILE, X, CODE) ++ ++/* Output the address of an operand. */ ++#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \ ++ ubicom32_print_operand_address (FILE, ADDR) ++ ++/* A C expression to output to STREAM some assembler code which will push hard ++ register number REGNO onto the stack. The code need not be optimal, since ++ this macro is used only when profiling. */ ++#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) ++ ++/* A C expression to output to STREAM some assembler code which will pop hard ++ register number REGNO off of the stack. The code need not be optimal, since ++ this macro is used only when profiling. */ ++#define ASM_OUTPUT_REG_POP(FILE, REGNO) ++ ++/* This macro should be provided on machines where the addresses in a dispatch ++ table are relative to the table's own address. ++ ++ The definition should be a C statement to output to the stdio stream STREAM ++ an assembler pseudo-instruction to generate a difference between two labels. ++ VALUE and REL are the numbers of two internal labels. The definitions of ++ these labels are output using `ASM_OUTPUT_INTERNAL_LABEL', and they must be ++ printed in the same way here. For example, ++ ++ fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */ ++#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ ++ fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL) ++ ++/* This macro should be provided on machines where the addresses in a dispatch ++ table are absolute. ++ ++ The definition should be a C statement to output to the stdio stream STREAM ++ an assembler pseudo-instruction to generate a reference to a label. VALUE ++ is the number of an internal label whose definition is output using ++ `ASM_OUTPUT_INTERNAL_LABEL'. For example, ++ ++ fprintf (STREAM, "\t.word L%d\n", VALUE) */ ++#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ ++ fprintf (STREAM, "\t.word .L%d\n", VALUE) ++ ++/* Switch into a generic section. */ ++#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section ++ ++/* Assembler Commands for Alignment. */ ++ ++#define ASM_OUTPUT_SKIP(STREAM, N) fprintf (STREAM, "\t.skip %d,0\n", N) ++/* A C statement to output to the stdio stream STREAM an assembler ++ instruction to advance the location counter by NBYTES bytes. ++ Those bytes should be zero when loaded. NBYTES will be a C ++ expression of type `int'. */ ++ ++/* A C statement to output to the stdio stream STREAM an assembler command to ++ advance the location counter to a multiple of 2 to the POWER bytes. POWER ++ will be a C expression of type `int'. */ ++#define ASM_OUTPUT_ALIGN(FILE, LOG) \ ++ if ((LOG) != 0) \ ++ fprintf (FILE, "\t.align %d\n", (LOG)) ++ ++/* A C expression that returns the DBX register number for the compiler ++ register number REGNO. In simple cases, the value of this expression may be ++ REGNO itself. But sometimes there are some registers that the compiler ++ knows about and DBX does not, or vice versa. In such cases, some register ++ may need to have one number in the compiler and another for DBX. ++ ++ If two registers have consecutive numbers inside GNU CC, and they can be ++ used as a pair to hold a multiword value, then they *must* have consecutive ++ numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers ++ will be unable to access such a pair, because they expect register pairs to ++ be consecutive in their own numbering scheme. ++ ++ If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not ++ preserve register pairs, then what you must do instead is redefine the ++ actual register numbering scheme. ++ ++ This declaration is required. */ ++#define DBX_REGISTER_NUMBER(REGNO) REGNO ++ ++/* A C expression that returns the integer offset value for an automatic ++ variable having address X (an RTL expression). The default computation ++ assumes that X is based on the frame-pointer and gives the offset from the ++ frame-pointer. This is required for targets that produce debugging output ++ for DBX or COFF-style debugging output for SDB and allow the frame-pointer ++ to be eliminated when the `-g' options is used. */ ++#define DEBUGGER_AUTO_OFFSET(X) \ ++ ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \ ++ + (frame_pointer_needed \ ++ ? 0 : -initial_elimination_offset (FRAME_POINTER_REGNUM, \ ++ STACK_POINTER_REGNUM))) ++ ++/* A C expression that returns the integer offset value for an argument having ++ address X (an RTL expression). The nominal offset is OFFSET. */ ++#define DEBUGGER_ARG_OFFSET(OFFSET, X) \ ++ ((GET_CODE (X) == PLUS ? OFFSET : 0) \ ++ + (frame_pointer_needed \ ++ ? 0 : -initial_elimination_offset (ARG_POINTER_REGNUM, \ ++ STACK_POINTER_REGNUM))) ++ ++/* A C expression that returns the type of debugging output GNU CC produces ++ when the user specifies `-g' or `-ggdb'. Define this if you have arranged ++ for GNU CC to support more than one format of debugging output. Currently, ++ the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG', ++ `DWARF2_DEBUG', and `XCOFF_DEBUG'. ++ ++ The value of this macro only affects the default debugging output; the user ++ can always get a specific type of output by using `-gstabs', `-gcoff', ++ `-gdwarf-1', `-gdwarf-2', or `-gxcoff'. ++ ++ Defined in svr4.h. ++*/ ++#undef PREFERRED_DEBUGGING_TYPE ++#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG ++ ++/* Define this macro if GNU CC should produce dwarf version 2 format debugging ++ output in response to the `-g' option. ++ ++ To support optional call frame debugging information, you must also define ++ `INCOMING_RETURN_ADDR_RTX' and either set `RTX_FRAME_RELATED_P' on the ++ prologue insns if you use RTL for the prologue, or call `dwarf2out_def_cfa' ++ and `dwarf2out_reg_save' as appropriate from `FUNCTION_PROLOGUE' if you ++ don't. ++ ++ Defined in svr4.h. */ ++ ++#define DWARF2_DEBUGGING_INFO 1 ++/*#define DWARF2_UNWIND_INFO 1*/ ++#define DWARF2_UNWIND_INFO 0 ++#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGNO) ++#define INCOMING_FRAME_SP_OFFSET 0 ++#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGNO) ++#define EH_RETURN_FIRST 9 ++#define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + EH_RETURN_FIRST : INVALID_REGNUM) ++ ++/* The EH_RETURN_STACKADJ_RTX macro returns RTL which describes the ++ location used to store the amount to ajdust the stack. This is ++ usually a registers that is available from end of the function's body ++ to the end of the epilogue. Thus, this cannot be a register used as a ++ temporary by the epilogue. ++ ++ This must be an integer register. */ ++#define EH_RETURN_STACKADJ_REGNO 11 ++#define EH_RETURN_STACKADJ_RTX \ ++ gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO) ++ ++/* The EH_RETURN_HANDLER_RTX macro returns RTL which describes the ++ location used to store the address the processor should jump to ++ catch exception. This is usually a registers that is available from ++ end of the function's body to the end of the epilogue. Thus, this ++ cannot be a register used as a temporary by the epilogue. ++ ++ This must be an address register. */ ++#define EH_RETURN_HANDLER_REGNO 18 ++#define EH_RETURN_HANDLER_RTX \ ++ gen_rtx_REG (Pmode, EH_RETURN_HANDLER_REGNO) ++ ++/* #define DWARF2_DEBUGGING_INFO */ ++ ++/* Define this macro if GNU CC should produce dwarf version 2-style ++ line numbers. This usually requires extending the assembler to ++ support them, and #defining DWARF2_LINE_MIN_INSN_LENGTH in the ++ assembler configuration header files. */ ++/* #define DWARF2_ASM_LINE_DEBUG_INFO 1 */ ++ ++ ++/* An alias for a machine mode name. This is the machine mode that elements ++ of a jump-table have. */ ++#define CASE_VECTOR_MODE Pmode ++ ++/* Smallest number of different values for which it is best to use a ++ jump-table instead of a tree of conditional branches. For most Ubicom32 ++ targets this is quite small, but for the v1 architecture implementations ++ we had very little data memory and so heavily prefer the tree approach ++ rather than the jump tables. */ ++#define CASE_VALUES_THRESHOLD ubicom32_case_values_threshold ++ ++/* Register operations within the Ubicom32 architecture always operate on ++ the whole register word and not just the sub-bits required for the opcode ++ mode size. */ ++#define WORD_REGISTER_OPERATIONS ++ ++/* The maximum number of bytes that a single instruction can move quickly from ++ memory to memory. */ ++#define MOVE_MAX 4 ++ ++/* A C expression that is nonzero if on this machine the number of bits ++ actually used for the count of a shift operation is equal to the number of ++ bits needed to represent the size of the object being shifted. When this ++ macro is non-zero, the compiler will assume that it is safe to omit a ++ sign-extend, zero-extend, and certain bitwise `and' instructions that ++ truncates the count of a shift operation. On machines that have ++ instructions that act on bitfields at variable positions, which may include ++ `bit test' instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables ++ deletion of truncations of the values that serve as arguments to bitfield ++ instructions. ++ ++ If both types of instructions truncate the count (for shifts) and position ++ (for bitfield operations), or if no variable-position bitfield instructions ++ exist, you should define this macro. ++ ++ However, on some machines, such as the 80386 and the 680x0, truncation only ++ applies to shift operations and not the (real or pretended) bitfield ++ operations. Define `SHIFT_COUNT_TRUNCATED' to be zero on such machines. ++ Instead, add patterns to the `md' file that include the implied truncation ++ of the shift instructions. ++ ++ You need not define this macro if it would always have the value of zero. */ ++#define SHIFT_COUNT_TRUNCATED 1 ++ ++/* A C expression which is nonzero if on this machine it is safe to "convert" ++ an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller ++ than INPREC) by merely operating on it as if it had only OUTPREC bits. ++ ++ On many machines, this expression can be 1. ++ ++ When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for ++ which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the ++ case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve ++ things. */ ++#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 ++ ++/* A C string constant that tells the GNU CC driver program options to pass ++ to the assembler. It can also specify how to translate options you give ++ to GNU CC into options for GNU CC to pass to the assembler. See the ++ file `sun3.h' for an example of this. ++ ++ Defined in svr4.h. */ ++#undef ASM_SPEC ++#define ASM_SPEC \ ++ "%{march=*:-m%*} %{!march=*:-mubicom32v4} %{mfdpic:-mfdpic}" ++ ++#define LINK_SPEC "\ ++%{h*} %{v:-V} \ ++%{b} \ ++%{mfdpic:-melf32ubicom32fdpic -z text} \ ++%{static:-dn -Bstatic} \ ++%{shared:-G -Bdynamic} \ ++%{symbolic:-Bsymbolic} \ ++%{G*} \ ++%{YP,*} \ ++%{Qy:} %{!Qn:-Qy}" ++ ++#undef STARTFILE_SPEC ++#undef ENDFILE_SPEC ++ ++/* The svr4.h LIB_SPEC with -leval and --*group tacked on */ ++ ++#undef LIB_SPEC ++#define LIB_SPEC "%{!shared:%{!symbolic:--start-group -lc -leval -lgcc --end-group}}" ++ ++#undef HAVE_GAS_SHF_MERGE ++#define HAVE_GAS_SHF_MERGE 0 ++ ++#define HANDLE_SYSV_PRAGMA 1 ++#undef HANDLE_PRAGMA_PACK ++ ++typedef void (*ubicom32_func_ptr) (void); ++ ++/* Define builtins for selected special-purpose instructions. */ ++enum ubicom32_builtins ++{ ++ UBICOM32_BUILTIN_UBICOM32_SWAPB_2, ++ UBICOM32_BUILTIN_UBICOM32_SWAPB_4 ++}; ++ ++extern rtx ubicom32_compare_op0; ++extern rtx ubicom32_compare_op1; ++ ++#define TYPE_ASM_OP "\t.type\t" ++#define TYPE_OPERAND_FMT "@%s" ++ ++#ifndef ASM_DECLARE_RESULT ++#define ASM_DECLARE_RESULT(FILE, RESULT) ++#endif ++ ++/* These macros generate the special .type and .size directives which ++ are used to set the corresponding fields of the linker symbol table ++ entries in an ELF object file under SVR4. These macros also output ++ the starting labels for the relevant functions/objects. */ ++ ++/* Write the extra assembler code needed to declare a function properly. ++ Some svr4 assemblers need to also have something extra said about the ++ function's return value. We allow for that here. */ ++ ++#ifndef ASM_DECLARE_FUNCTION_NAME ++#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \ ++ do \ ++ { \ ++ ASM_OUTPUT_TYPE_DIRECTIVE (FILE, NAME, "function"); \ ++ ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \ ++ ASM_OUTPUT_LABEL (FILE, NAME); \ ++ } \ ++ while (0) ++#endif +--- /dev/null ++++ b/gcc/config/ubicom32/ubicom32.md +@@ -0,0 +1,3753 @@ ++; GCC machine description for Ubicom32 ++; ++; Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software ++; Foundation, Inc. ++; Contributed by Ubicom, Inc. ++; ++; This file is part of GCC. ++; ++; GCC is free software; you can redistribute it and/or modify ++; it under the terms of the GNU General Public License as published by ++; the Free Software Foundation; either version 3, or (at your option) ++; any later version. ++; ++; GCC is distributed in the hope that it will be useful, ++; but WITHOUT ANY WARRANTY; without even the implied warranty of ++; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++; GNU General Public License for more details. ++; ++; You should have received a copy of the GNU General Public License ++; along with GCC; see the file COPYING3. If not see ++; . ++ ++(define_constants ++ [(AUX_DATA_REGNO 15) ++ (LINK_REGNO 21) ++ (SP_REGNO 23) ++ (ACC0_HI_REGNO 24) ++ (ACC1_HI_REGNO 26) ++ (CC_REGNO 30)]) ++ ++(define_constants ++ [(UNSPEC_FDPIC_GOT 0) ++ (UNSPEC_FDPIC_GOT_FUNCDESC 1)]) ++ ++(define_constants ++ [(UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC 0)]) ++ ++;; Types of instructions (for scheduling purposes). ++ ++(define_attr "type" "mul,addr,other" ++ (const_string "other")) ++ ++; Define instruction scheduling characteristics. We can only issue ++; one instruction per clock so we don't need to define CPU units. ++; ++(define_automaton "ubicom32") ++ ++(define_cpu_unit "i_pipeline" "ubicom32"); ++ ++; We have a 4 cycle hazard associated with address calculations which ++; seems rather tricky to avoid so we go with a defensive assumption ++; that almost anything can be used to generate addresses. ++; ++;(define_insn_reservation "ubicom32_other" 4 ++; (eq_attr "type" "other") ++; "i_pipeline") ++ ++; Some moves don't generate hazards. ++; ++;(define_insn_reservation "ubicom32_addr" 1 ++; (eq_attr "type" "addr") ++; "i_pipeline") ++ ++; We need 3 cycles between a multiply instruction and any use of the ++; matching accumulator register(s). ++; ++(define_insn_reservation "ubicom32_mul" 4 ++ (eq_attr "type" "mul") ++ "i_pipeline") ++ ++(define_attr "length" "" ++ (const_int 4)) ++ ++(include "predicates.md") ++(include "constraints.md") ++ ++; 8-bit move with no change to the flags reg. ++; ++(define_insn "movqi" ++ [(set (match_operand:QI 0 "nonimmediate_operand" "=rm") ++ (match_operand:QI 1 "ubicom32_move_operand" "g"))] ++ "" ++ "move.1\\t%0, %1") ++ ++; Combiner-generated 8-bit move with the zero flag set accordingly. ++; ++(define_insn "movqi_ccszn" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:QI 0 "nonimmediate_operand" "rm") ++ (const_int 0))) ++ (set (match_operand:QI 1 "nonimmediate_operand" "=rm") ++ (match_dup 0))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "ext.1\\t%1, %0") ++ ++; Combine isn't very good at merging some types of operations so we ++; have to make do with a peephole. It's not as effective but it's better ++; than doing nothing. ++; ++(define_peephole2 ++ [(set (match_operand:QI 0 "nonimmediate_operand" "") ++ (match_operand:QI 1 "nonimmediate_operand" "")) ++ (set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (match_operator 3 "ubicom32_compare_operator" ++ [(match_dup 0) ++ (const_int 0)]))] ++ "(GET_MODE (operands[2]) == CCSZNmode ++ || GET_MODE (operands[2]) == CCSZmode)" ++ [(parallel ++ [(set (match_dup 2) ++ (match_op_dup 3 ++ [(match_dup 1) ++ (const_int 0)])) ++ (set (match_dup 0) ++ (match_dup 1))])] ++ "") ++ ++; Combine isn't very good at merging some types of operations so we ++; have to make do with a peephole. It's not as effective but it's better ++; than doing nothing. ++; ++(define_peephole2 ++ [(set (match_operand:QI 0 "nonimmediate_operand" "") ++ (match_operand:QI 1 "nonimmediate_operand" "")) ++ (set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (match_operator 3 "ubicom32_compare_operator" ++ [(match_dup 1) ++ (const_int 0)]))] ++ "(GET_MODE (operands[2]) == CCSZNmode ++ || GET_MODE (operands[2]) == CCSZmode)" ++ [(parallel ++ [(set (match_dup 2) ++ (match_op_dup 3 ++ [(match_dup 1) ++ (const_int 0)])) ++ (set (match_dup 0) ++ (match_dup 1))])] ++ "") ++ ++; 16-bit move with no change to the flags reg. ++; ++(define_insn "movhi" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "=rm") ++ (match_operand:HI 1 "ubicom32_move_operand" "g"))] ++ "" ++ "* ++ { ++ if (CONST_INT_P (operands[1])) ++ return \"movei\\t%0, %1\"; ++ ++ return \"move.2\\t%0, %1\"; ++ }") ++ ++; Combiner-generated 16-bit move with the zero flag set accordingly. ++; ++(define_insn "movhi_ccszn" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:HI 0 "nonimmediate_operand" "rm") ++ (const_int 0))) ++ (set (match_operand:HI 1 "nonimmediate_operand" "=rm") ++ (match_dup 0))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "ext.2\\t%1, %0") ++ ++; Combine isn't very good at merging some types of operations so we ++; have to make do with a peephole. It's not as effective but it's better ++; than doing nothing. ++; ++(define_peephole2 ++ [(set (match_operand:HI 0 "nonimmediate_operand" "") ++ (match_operand:HI 1 "nonimmediate_operand" "")) ++ (set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (match_operator 3 "ubicom32_compare_operator" ++ [(match_dup 0) ++ (const_int 0)]))] ++ "(GET_MODE (operands[2]) == CCSZNmode ++ || GET_MODE (operands[2]) == CCSZmode)" ++ [(parallel ++ [(set (match_dup 2) ++ (match_op_dup 3 ++ [(match_dup 1) ++ (const_int 0)])) ++ (set (match_dup 0) ++ (match_dup 1))])] ++ "") ++ ++; Combine isn't very good at merging some types of operations so we ++; have to make do with a peephole. It's not as effective but it's better ++; than doing nothing. ++; ++(define_peephole2 ++ [(set (match_operand:HI 0 "nonimmediate_operand" "") ++ (match_operand:HI 1 "nonimmediate_operand" "")) ++ (set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (match_operator 3 "ubicom32_compare_operator" ++ [(match_dup 1) ++ (const_int 0)]))] ++ "(GET_MODE (operands[2]) == CCSZNmode ++ || GET_MODE (operands[2]) == CCSZmode)" ++ [(parallel ++ [(set (match_dup 2) ++ (match_op_dup 3 ++ [(match_dup 1) ++ (const_int 0)])) ++ (set (match_dup 0) ++ (match_dup 1))])] ++ "") ++ ++; 32-bit move with no change to the flags reg. ++; ++(define_expand "movsi" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "general_operand" ""))] ++ "" ++ "{ ++ /* Convert any complexities in operand 1 into something that can just ++ fall into the default expander code. */ ++ ubicom32_expand_movsi (operands); ++ }") ++ ++(define_insn "movsi_high" ++ [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a") ++ (high:SI (match_operand:SI 1 "ubicom32_symbolic_address_operand" "s")))] ++ "" ++ "moveai\\t%0, #%%hi(%E1)") ++ ++(define_insn "movsi_lo_sum" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (lo_sum:SI (match_operand:SI 1 "ubicom32_address_register_operand" "a") ++ (match_operand:SI 2 "immediate_operand" "s")))] ++ "" ++ "lea.1\\t%0, %%lo(%E2)(%1)") ++ ++(define_insn "movsi_internal" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (match_operand:SI 1 "ubicom32_move_operand" "rmnY"))] ++ "" ++ "* ++ { ++ if (CONST_INT_P (operands[1])) ++ { ++ ubicom32_emit_move_const_int (operands[0], operands[1]); ++ return \"\"; ++ } ++ ++ if (GET_CODE (operands[1]) == CONST_DOUBLE) ++ { ++ HOST_WIDE_INT i = CONST_DOUBLE_LOW (operands[1]); ++ ++ ubicom32_emit_move_const_int (operands[0], GEN_INT (i)); ++ return \"\"; ++ } ++ ++ if (ubicom32_address_register_operand (operands[0], VOIDmode) ++ && register_operand (operands[1], VOIDmode)) ++ { ++ if (ubicom32_address_register_operand (operands[1], VOIDmode)) ++ return \"lea.1\\t%0, 0(%1)\"; ++ ++ /* Use movea here to utilize the hazard bypass in the >= v4 ISA. */ ++ if (ubicom32_v4) ++ return \"movea\\t%0, %1\"; ++ ++ return \"move.4\\t%0, %1\"; ++ } ++ ++ return \"move.4\\t%0, %1\"; ++ }") ++ ++; If we're not dependent on the state of the condition codes we can construct ++; constants of value 2^n by using a bset. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(exact_log2 (INTVAL (operands[1])) > 14 ++ && peep2_regno_dead_p (0, CC_REGNO))" ++ [(parallel ++ [(set (match_dup 0) ++ (ior:SI (const_int 0) ++ (match_dup 1))) ++ (clobber (reg:CC CC_REGNO))])] ++ "") ++ ++; If we're not dependent on the state of the condition codes we can construct ++; constants of value ~(2^n) by using a bclr. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(exact_log2 (~INTVAL (operands[1])) > 14 ++ && peep2_regno_dead_p (0, CC_REGNO))" ++ [(parallel ++ [(set (match_dup 0) ++ (and:SI (const_int -1) ++ (match_dup 1))) ++ (clobber (reg:CC CC_REGNO))])] ++ "") ++ ++; For 32-bit constants that have bits 0 through 24 and bit 31 set the same ++; we can use swapb.4! ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(ubicom32_v4 ++ && (INTVAL (operands[1]) & 0xffffffff) != 0xffffffff ++ && (INTVAL (operands[1]) & 0xffffffff) != 0 ++ && ((INTVAL (operands[1]) & 0x80ffffff) == 0 ++ || (INTVAL (operands[1]) & 0x80ffffff) == 0x80ffffff))" ++ [(set (match_dup 0) ++ (bswap:SI (match_dup 2)))] ++ "{ ++ operands[2] = GEN_INT (INTVAL (operands[1]) >> 24); ++ }") ++ ++; If this is a write of a constant to memory look to see if we can usefully ++; transform this into 2 smaller writes. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "memory_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "! satisfies_constraint_I (operands[1]) ++ && ubicom32_legitimate_address_p (HImode, plus_constant (XEXP (operands[0], 0), 2), 1)" ++ [(set (match_dup 4) (match_dup 2)) ++ (set (match_dup 5) (match_dup 3))] ++ "{ ++ rtx low_hword_addr; ++ ++ operands[2] = gen_highpart_mode (HImode, SImode, operands[1]); ++ operands[3] = gen_lowpart (HImode, operands[1]); ++ ++ operands[4] = gen_rtx_MEM (HImode, XEXP (operands[0], 0)); ++ MEM_COPY_ATTRIBUTES (operands[4], operands[0]); ++ ++ low_hword_addr = plus_constant (XEXP (operands[0], 0), 2); ++ operands[5] = gen_rtx_MEM (HImode, low_hword_addr); ++ MEM_COPY_ATTRIBUTES (operands[5], operands[0]); ++ }") ++ ++; If we're writing memory and we've not found a better way to do this then ++; try loading into a D register and then copying to memory. This will ++; perform the fewest possible memory read/writes. ++; ++(define_peephole2 ++ [(match_scratch:SI 2 "d") ++ (set (match_operand:SI 0 "memory_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "! satisfies_constraint_I (operands[1])" ++ [(set (match_dup 2) (match_dup 1)) ++ (set (match_dup 0) (match_dup 2))] ++ "") ++ ++; If we're not dependent on the state of the condition codes we can construct ++; constants of value (2^n - 1) by using an lsr.4. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(exact_log2 (INTVAL (operands[1]) + 1) > 14 ++ && peep2_regno_dead_p (0, CC_REGNO))" ++ [(parallel ++ [(set (match_dup 0) ++ (lshiftrt:SI (const_int -1) ++ (match_dup 2))) ++ (clobber (reg:CC CC_REGNO))])] ++ "{ ++ operands[2] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1)); ++ }") ++ ++; If we're not dependent on the state of the condition codes we can construct ++; constants of value (2^n - 1) by using an lsr.4. ++; ++(define_peephole2 ++ [(match_scratch:SI 2 "d") ++ (set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(exact_log2 (INTVAL (operands[1]) + 1) > 14 ++ && peep2_regno_dead_p (0, CC_REGNO))" ++ [(parallel ++ [(set (match_dup 2) ++ (lshiftrt:SI (const_int -1) ++ (match_dup 3))) ++ (clobber (reg:CC CC_REGNO))]) ++ (set (match_dup 0) ++ (match_dup 2))] ++ "{ ++ operands[3] = GEN_INT (32 - exact_log2 (INTVAL (operands[1]) + 1)); ++ }") ++ ++; If we're not dependent on the state of the condition codes we can construct ++; some other constants by using an lsl.4 to shift 7 bits left by some ++; constant. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(ubicom32_shiftable_const_int (INTVAL (operands[1])) ++ && peep2_regno_dead_p (0, CC_REGNO))" ++ [(parallel ++ [(set (match_dup 0) ++ (ashift:SI (match_dup 2) ++ (match_dup 3))) ++ (clobber (reg:CC CC_REGNO))])] ++ "{ ++ int shift = ubicom32_shiftable_const_int (INTVAL (operands[1])); ++ operands[2] = GEN_INT (INTVAL (operands[1]) >> shift); ++ operands[3] = GEN_INT (shift); ++ }") ++ ++; If we're not dependent on the state of the condition codes we can construct ++; some other constants by using an lsl.4 to shift 7 bits left by some ++; constant. ++; ++(define_peephole2 ++ [(match_scratch:SI 2 "d") ++ (set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(ubicom32_shiftable_const_int (INTVAL (operands[1])) ++ && peep2_regno_dead_p (0, CC_REGNO))" ++ [(parallel ++ [(set (match_dup 2) ++ (ashift:SI (match_dup 3) ++ (match_dup 4))) ++ (clobber (reg:CC CC_REGNO))]) ++ (set (match_dup 0) ++ (match_dup 2))] ++ "{ ++ int shift = ubicom32_shiftable_const_int (INTVAL (operands[1])); ++ operands[3] = GEN_INT (INTVAL (operands[1]) >> shift); ++ operands[4] = GEN_INT (shift); ++ }") ++ ++; For some 16-bit unsigned constants that have bit 15 set we can use ++; swapb.2! ++; ++; Note that the movsi code emits the same sequence but by using a peephole2 ++; we split the pattern early enough to allow instruction scheduling to ++; occur. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(ubicom32_v4 ++ && (INTVAL (operands[1]) & 0xffff80ff) == 0x80ff)" ++ [(set (match_dup 0) ++ (zero_extend:SI (bswap:HI (match_dup 2))))] ++ "{ ++ HOST_WIDE_INT i = INTVAL (operands[1]) >> 8; ++ if (i >= 0x80) ++ i -= 0x100; ++ operands[2] = GEN_INT (i); ++ }") ++ ++; In general for a 16-bit unsigned constant that has bit 15 set ++; then we need a movei/move.2 pair unless we can represent it ++; via just a move.2. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(INTVAL (operands[1]) & 0xffff8000) == 0x8000 ++ && (INTVAL (operands[1]) & 0xffff) < 0xff80" ++ [(set (match_dup 2) ++ (match_dup 1)) ++ (set (match_dup 0) ++ (zero_extend:SI (match_dup 2)))] ++ "{ ++ operands[2] = gen_rtx_REG (HImode, REGNO (operands[0])); ++ }") ++ ++; If we're not dependent on the state of the condition codes we can construct ++; 32-bit constants that have bits 16 through 31 set to arbitrary values ++; and have bits 0 through 15 set to something representable as a default ++; source-1 immediate - we use movei/shmrg.2 ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(((INTVAL (operands[1]) >= 0x8000 ++ && INTVAL (operands[1]) < 0xff80) ++ || INTVAL (operands[1]) >= 0x10000 ++ || INTVAL (operands[1]) < -0x8000) ++ && ((INTVAL (operands[1]) & 0xffff) >= 0xff80 ++ || (INTVAL (operands[1]) & 0xffff) < 0x80) ++ && peep2_regno_dead_p (0, CC_REGNO))" ++ [(set (match_dup 0) ++ (match_dup 2)) ++ (parallel ++ [(set (match_dup 0) ++ (ior:SI ++ (ashift:SI (match_dup 0) ++ (const_int 16)) ++ (zero_extend:SI ++ (match_dup 3)))) ++ (clobber (reg:CC CC_REGNO))])] ++ "{ ++ operands[2] = gen_highpart_mode (HImode, SImode, operands[1]); ++ operands[3] = gen_lowpart (HImode, operands[1]); ++ }") ++ ++; Exactly the same as the peephole2 preceding except that this targets a ++; general register instead of D register. Hopefully the later optimization ++; passes will notice that the value ended up in a D register first here ++; and eliminate away the other register! ++; ++(define_peephole2 ++ [(match_scratch:SI 2 "d") ++ (set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(((INTVAL (operands[1]) >= 0x8000 ++ && INTVAL (operands[1]) < 0xff80) ++ || INTVAL (operands[1]) >= 0x10000 ++ || INTVAL (operands[1]) < -0x8000) ++ && ((INTVAL (operands[1]) & 0xffff) >= 0xff80 ++ || (INTVAL (operands[1]) & 0xffff) < 0x80) ++ && peep2_regno_dead_p (0, CC_REGNO))" ++ [(set (match_dup 2) ++ (match_dup 3)) ++ (parallel ++ [(set (match_dup 2) ++ (ior:SI ++ (ashift:SI (match_dup 2) ++ (const_int 16)) ++ (zero_extend:SI ++ (match_dup 4)))) ++ (clobber (reg:CC CC_REGNO))]) ++ (set (match_dup 0) ++ (match_dup 2))] ++ "{ ++ operands[3] = gen_highpart_mode (HImode, SImode, operands[1]); ++ operands[4] = gen_lowpart (HImode, operands[1]); ++ }") ++ ++; If we have a load of a large integer constant which does not have bit 31 ++; set and we have a spare A reg then construct it with a moveai/lea.1 pair ++; instead. This avoids constructing it in 3 instructions on the stack. ++; ++; Note that we have to be careful not to match anything that matches ++; something we can do in a single instruction! There aren't many such ++; constants but there are some. ++; ++(define_peephole2 ++ [(match_scratch:SI 2 "a") ++ (set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "const_int_operand" ""))] ++ "(! (INTVAL (operands[1]) & 0x80000000) ++ && ((INTVAL (operands[1]) >= 0x8000 ++ && INTVAL (operands[1]) < 0xff80) ++ || INTVAL (operands[1]) >= 0x10000))" ++ [(set (match_dup 2) ++ (match_dup 3)) ++ (set (match_dup 0) ++ (plus:SI (match_dup 2) ++ (match_dup 4)))] ++ "{ ++ HOST_WIDE_INT i = INTVAL (operands[1]); ++ operands[3] = GEN_INT (i & 0xffffff80); ++ operands[4] = GEN_INT (i & 0x7f); ++ }") ++ ++; If we're not dependent on the state of the condition codes we can construct ++; a 32-bit constant with a movei/movei/shmrg.2 sequence if possible. ++; ++(define_peephole2 ++ [(match_scratch:HI 2 "d") ++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "") ++ (match_operand:SI 1 "const_int_operand" "")) ++ (match_dup 2)] ++ "(INTVAL (operands[1]) & 0x80000000 ++ && INTVAL (operands[1]) < -0x8000 ++ && peep2_regno_dead_p (0, CC_REGNO))" ++ [(set (match_dup 0) ++ (match_dup 3)) ++ (set (match_dup 2) ++ (match_dup 4)) ++ (parallel ++ [(set (match_dup 0) ++ (ior:SI ++ (ashift:SI (match_dup 0) ++ (const_int 16)) ++ (zero_extend:SI ++ (match_dup 2)))) ++ (clobber (reg:CC CC_REGNO))])] ++ "{ ++ operands[3] = gen_highpart_mode (HImode, SImode, operands[1]); ++ operands[4] = gen_lowpart (HImode, operands[1]); ++ }") ++ ++; Exactly the same as the peephole2 preceding except that this targets a ++; general register instead of D register. Hopefully the later optimization ++; passes will notice that the value ended up in a D register first here ++; and eliminate away the other register! ++; ++(define_peephole2 ++ [(match_scratch:SI 2 "d") ++ (match_scratch:HI 3 "d") ++ (set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "const_int_operand" "")) ++ (match_dup 3)] ++ "(INTVAL (operands[1]) & 0x80000000 ++ && INTVAL (operands[1]) < -0x8000 ++ && peep2_regno_dead_p (0, CC_REGNO))" ++ [(set (match_dup 2) ++ (match_dup 4)) ++ (set (match_dup 3) ++ (match_dup 5)) ++ (parallel ++ [(set (match_dup 2) ++ (ior:SI ++ (ashift:SI (match_dup 2) ++ (const_int 16)) ++ (zero_extend:SI ++ (match_dup 3)))) ++ (clobber (reg:CC CC_REGNO))]) ++ (set (match_dup 0) ++ (match_dup 2))] ++ "{ ++ operands[4] = gen_highpart_mode (HImode, SImode, operands[1]); ++ operands[5] = gen_lowpart (HImode, operands[1]); ++ }") ++ ++(define_insn "movsi_fdpic_got_offset" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (match_operand:SI 1 "ubicom32_fdpic_got_offset_operand" "Y"))] ++ "" ++ "movei\\t%0, %1") ++ ++; The explicit MEM inside the UNSPEC prevents the compiler from moving ++; the load before a branch after a NULL test, or before a store that ++; initializes a function descriptor. ++ ++(define_insn_and_split "load_fdpic_funcdesc" ++ [(set (match_operand:SI 0 "ubicom32_address_register_operand" "=a") ++ (unspec_volatile:SI [(mem:SI (match_operand:SI 1 "address_operand" "p"))] ++ UNSPEC_VOLATILE_LOAD_FDPIC_FUNCDESC))] ++ "" ++ "#" ++ "reload_completed" ++ [(set (match_dup 0) ++ (mem:SI (match_dup 1)))]) ++ ++; Combiner-generated 32-bit move with the zero flag set accordingly. ++; ++(define_insn "movsi_ccwzn" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:SI 0 "nonimmediate_operand" "rm, d") ++ (const_int 0))) ++ (set (match_operand:SI 1 "nonimmediate_operand" "=d,rm") ++ (match_dup 0))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "@ ++ lsl.4\\t%1, %0, #0 ++ add.4\\t%1, #0, %0") ++ ++; Combiner-generated 32-bit move with all flags set accordingly. ++; ++(define_insn "movsi_ccw" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d") ++ (const_int 0))) ++ (set (match_operand:SI 1 "nonimmediate_operand" "=rm") ++ (match_dup 0))] ++ "ubicom32_match_cc_mode(insn, CCWmode)" ++ "add.4\\t%1, #0, %0") ++ ++; Combine isn't very good at merging some types of operations so we ++; have to make do with a peephole. It's not as effective but it's better ++; than doing nothing. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "") ++ (match_operand:SI 1 "nonimmediate_operand" "")) ++ (parallel ++ [(set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (match_operator 3 "ubicom32_compare_operator" ++ [(match_dup 0) ++ (const_int 0)])) ++ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])] ++ "(GET_MODE (operands[2]) == CCWZNmode ++ || GET_MODE (operands[2]) == CCWZmode)" ++ [(parallel ++ [(set (match_dup 2) ++ (match_op_dup 3 ++ [(match_dup 1) ++ (const_int 0)])) ++ (set (match_dup 0) ++ (match_dup 1))])] ++ "") ++ ++; Combine isn't very good at merging some types of operations so we ++; have to make do with a peephole. It's not as effective but it's better ++; than doing nothing. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "ubicom32_data_register_operand" "")) ++ (parallel ++ [(set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (match_operator 3 "ubicom32_compare_operator" ++ [(match_dup 1) ++ (const_int 0)])) ++ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])] ++ "(GET_MODE (operands[2]) == CCWZNmode ++ || GET_MODE (operands[2]) == CCWZmode)" ++ [(parallel ++ [(set (match_dup 2) ++ (match_op_dup 3 ++ [(match_dup 1) ++ (const_int 0)])) ++ (set (match_dup 0) ++ (match_dup 1))])] ++ "") ++ ++; Combine isn't very good at merging some types of operations so we ++; have to make do with a peephole. It's not as effective but it's better ++; than doing nothing. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "nonimmediate_operand" "")) ++ (parallel ++ [(set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (match_operator 3 "ubicom32_compare_operator" ++ [(match_dup 0) ++ (const_int 0)])) ++ (set (match_operand:SI 4 "ubicom32_data_register_operand" "") ++ (match_dup 0))])] ++ "(peep2_reg_dead_p (2, operands[0]) ++ && (GET_MODE (operands[2]) == CCWZNmode ++ || GET_MODE (operands[2]) == CCWZmode))" ++ [(parallel ++ [(set (match_dup 2) ++ (match_op_dup 3 ++ [(match_dup 1) ++ (const_int 0)])) ++ (set (match_dup 4) ++ (match_dup 1))])] ++ "") ++ ++; Register renaming may make a general reg into a D reg in which case ++; we may be able to simplify a compare. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "nonimmediate_operand" "")) ++ (parallel ++ [(set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (match_operator 3 "ubicom32_compare_operator" ++ [(match_dup 0) ++ (const_int 0)])) ++ (clobber (match_operand:SI 4 "ubicom32_data_register_operand" ""))])] ++ "(peep2_reg_dead_p (2, operands[0]) ++ && (GET_MODE (operands[2]) == CCWZNmode ++ || GET_MODE (operands[2]) == CCWZmode))" ++ [(parallel ++ [(set (match_dup 2) ++ (match_op_dup 3 ++ [(match_dup 1) ++ (const_int 0)])) ++ (clobber (match_dup 4))])] ++ "") ++ ++(define_insn_and_split "movdi" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,rm") ++ (match_operand:DI 1 "general_operand" "rmi,ri"))] ++ "" ++ "#" ++ "reload_completed" ++ [(set (match_dup 2) (match_dup 3)) ++ (set (match_dup 4) (match_dup 5))] ++ "{ ++ rtx dest_low; ++ rtx src_low; ++ ++ dest_low = gen_lowpart (SImode, operands[0]); ++ src_low = gen_lowpart (SImode, operands[1]); ++ ++ if (REG_P (operands[0]) ++ && REG_P (operands[1]) ++ && REGNO (operands[0]) < REGNO (operands[1])) ++ { ++ operands[2] = gen_highpart (SImode, operands[0]); ++ operands[3] = gen_highpart_mode (SImode, DImode, operands[1]); ++ operands[4] = dest_low; ++ operands[5] = src_low; ++ } ++ else if (reg_mentioned_p (dest_low, src_low)) ++ { ++ operands[2] = gen_highpart (SImode, operands[0]); ++ operands[3] = gen_highpart_mode (SImode, DImode, operands[1]); ++ operands[4] = dest_low; ++ operands[5] = src_low; ++ } ++ else ++ { ++ operands[2] = dest_low; ++ operands[3] = src_low; ++ operands[4] = gen_highpart (SImode, operands[0]); ++ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]); ++ } ++ }" ++ [(set_attr "length" "8")]) ++ ++; Combiner-generated 64-bit move with all flags set accordingly. ++; ++(define_insn "movdi_ccwzn" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r") ++ (const_int 0))) ++ (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm") ++ (match_dup 0)) ++ (clobber (match_scratch:SI 2 "=X, d, d"))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "* ++ { ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_highpart (SImode, operands[0]); ++ operands[6] = gen_highpart (SImode, operands[1]); ++ ++ if (ubicom32_data_register_operand (operands[0], VOIDmode)) ++ return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\"; ++ ++ return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\"; ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_insn "movdi_ccw" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:DI 0 "nonimmediate_operand" "d, m, r") ++ (const_int 0))) ++ (set (match_operand:DI 1 "nonimmediate_operand" "=&rm,rm,!&rm") ++ (match_dup 0)) ++ (clobber (match_scratch:SI 2 "=X, d, d"))] ++ "ubicom32_match_cc_mode(insn, CCWmode)" ++ "* ++ { ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_highpart (SImode, operands[0]); ++ operands[6] = gen_highpart (SImode, operands[1]); ++ ++ if (ubicom32_data_register_operand (operands[0], VOIDmode)) ++ return \"add.4\\t%4, #0, %3\;addc\\t%6, #0, %5\"; ++ ++ return \"movei\\t%2, #0\;add.4\\t%4, %3, %2\;addc\\t%6, %5, %2\"; ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_insn "movsf" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "=!d,*rm") ++ (match_operand:SF 1 "ubicom32_move_operand" "rmF,rmF"))] ++ "" ++ "* ++ { ++ if (GET_CODE (operands[1]) == CONST_DOUBLE) ++ { ++ HOST_WIDE_INT val; ++ REAL_VALUE_TYPE rv; ++ ++ REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]); ++ REAL_VALUE_TO_TARGET_SINGLE (rv, val); ++ ++ ubicom32_emit_move_const_int (operands[0], GEN_INT (val)); ++ return \"\"; ++ } ++ ++ return \"move.4\\t%0, %1\"; ++ }") ++ ++(define_insn "zero_extendqihi2" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm")))] ++ "" ++ "move.1\\t%0, %1") ++ ++(define_insn "zero_extendqisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")))] ++ "" ++ "move.1\\t%0, %1") ++ ++(define_insn "zero_extendqisi2_ccwz_1" ++ [(set (reg CC_REGNO) ++ (compare ++ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (zero_extend:SI (match_dup 1)))] ++ "ubicom32_match_cc_mode(insn, CCWZmode)" ++ "shmrg.1\\t%0, %1, #0") ++ ++(define_insn "zero_extendhisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))] ++ "" ++ "move.2\\t%0, %1") ++ ++(define_insn "zero_extendhisi2_ccwz_1" ++ [(set (reg CC_REGNO) ++ (compare ++ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (zero_extend:SI (match_dup 1)))] ++ "ubicom32_match_cc_mode(insn, CCWZmode)" ++ "shmrg.2\\t%0, %1, #0") ++ ++(define_insn_and_split "zero_extendqidi2" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI (match_operand:QI 1 "nonimmediate_operand" "rm")))] ++ "" ++ "#" ++ "reload_completed" ++ [(set (match_dup 2) ++ (zero_extend:SI (match_dup 1))) ++ (set (match_dup 3) ++ (const_int 0))] ++ "{ ++ operands[2] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_highpart (SImode, operands[0]); ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_insn_and_split "zero_extendhidi2" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (zero_extend:DI (match_operand:HI 1 "nonimmediate_operand" "rm")))] ++ "" ++ "#" ++ "reload_completed" ++ [(set (match_dup 2) ++ (zero_extend:SI (match_dup 1))) ++ (set (match_dup 3) ++ (const_int 0))] ++ "{ ++ operands[2] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_highpart (SImode, operands[0]); ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_insn_and_split "zero_extendsidi2" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=rm") ++ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm")))] ++ "" ++ "#" ++ "reload_completed" ++ [(set (match_dup 2) ++ (match_dup 1)) ++ (set (match_dup 3) ++ (const_int 0))] ++ "{ ++ operands[2] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_highpart (SImode, operands[0]); ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_insn "extendqihi2" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "rm"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "ext.1\\t%0, %1") ++ ++(define_insn "extendqisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "rm"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "ext.1\\t%0, %1") ++ ++(define_insn "extendhisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "ext.2\\t%0, %1") ++ ++(define_insn_and_split "extendsidi2" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=d") ++ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "rm"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "#" ++ "reload_completed" ++ [(set (match_dup 2) ++ (match_dup 1)) ++ (parallel ++ [(set (match_dup 3) ++ (ashiftrt:SI (match_dup 2) ++ (const_int 31))) ++ (clobber (reg:CC CC_REGNO))])] ++ "{ ++ operands[2] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_highpart (SImode, operands[0]); ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_insn "bswaphi" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "=rm") ++ (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))] ++ "(ubicom32_v4)" ++ "swapb.2\\t%0, %1"); ++ ++(define_insn "bswaphisi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI ++ (bswap:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI"))))] ++ "(ubicom32_v4)" ++ "swapb.2\\t%0, %1"); ++ ++(define_insn "bswapsi" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (bswap:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")))] ++ "(ubicom32_v4)" ++ "swapb.4\\t%0, %1"); ++ ++(define_insn "tstqi_ext1" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:QI 0 "nonimmediate_operand" "rm") ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "ext.1\\t#0, %0") ++ ++(define_expand "cmpqi" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:QI 0 "ubicom32_arith_operand" "") ++ (match_operand:QI 1 "ubicom32_data_register_operand" "")))] ++ "(ubicom32_v4)" ++ "{ ++ ubicom32_compare_op0 = operands[0]; ++ ubicom32_compare_op1 = operands[1]; ++ DONE; ++ }") ++ ++(define_insn "sub1_ccs" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:QI 0 "ubicom32_arith_operand" "rmI") ++ (match_operand:QI 1 "ubicom32_data_register_operand" "d")))] ++ "(ubicom32_v4)" ++ "sub.1\\t#0, %0, %1") ++ ++; If we're testing for equality we don't have to worry about reversing conditions. ++; ++(define_insn "sub1_ccsz_1" ++ [(set (reg:CCSZ CC_REGNO) ++ (compare:CCSZ (match_operand:QI 0 "nonimmediate_operand" "rm") ++ (match_operand:QI 1 "ubicom32_data_register_operand" "d")))] ++ "(ubicom32_v4)" ++ "sub.1\\t#0, %0, %1") ++ ++(define_insn "sub1_ccsz_2" ++ [(set (reg:CCSZ CC_REGNO) ++ (compare:CCSZ (match_operand:QI 0 "ubicom32_data_register_operand" "d") ++ (match_operand:QI 1 "ubicom32_arith_operand" "rmI")))] ++ "(ubicom32_v4)" ++ "sub.1\\t#0, %1, %0") ++ ++; When the combiner runs it doesn't have any insight into whether or not an argument ++; to a compare is spilled to the stack and therefore can't swap the comparison in ++; an attempt to use sub.1 more effectively. We peephole this case here. ++; ++(define_peephole2 ++ [(set (match_operand:QI 0 "register_operand" "") ++ (match_operand:QI 1 "ubicom32_arith_operand" "")) ++ (set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (compare (match_operand:QI 3 "ubicom32_data_register_operand" "") ++ (match_dup 0))) ++ (set (pc) ++ (if_then_else (match_operator 4 "comparison_operator" ++ [(match_dup 2) ++ (const_int 0)]) ++ (label_ref (match_operand 5 "" "")) ++ (pc)))] ++ "(peep2_reg_dead_p (2, operands[0]) ++ && peep2_regno_dead_p (3, CC_REGNO))" ++ [(set (match_dup 2) ++ (compare (match_dup 1) ++ (match_dup 3))) ++ (set (pc) ++ (if_then_else (match_op_dup 6 ++ [(match_dup 2) ++ (const_int 0)]) ++ (label_ref (match_dup 5)) ++ (pc)))] ++ "{ ++ rtx cc_reg; ++ ++ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO); ++ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])), ++ GET_MODE (operands[4]), ++ cc_reg, ++ const0_rtx); ++ }") ++ ++(define_insn "tsthi_ext2" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:HI 0 "nonimmediate_operand" "rm") ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "ext.2\\t#0, %0") ++ ++(define_expand "cmphi" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:HI 0 "ubicom32_arith_operand" "") ++ (match_operand:HI 1 "ubicom32_compare_operand" "")))] ++ "" ++ "{ ++ do ++ { ++ /* Is this a cmpi? */ ++ if (CONST_INT_P (operands[1])) ++ break; ++ ++ /* Must be a sub.2 - if necessary copy an operand into a reg. */ ++ if (! ubicom32_data_register_operand (operands[1], HImode)) ++ operands[1] = copy_to_mode_reg (HImode, operands[1]); ++ } ++ while (0); ++ ++ ubicom32_compare_op0 = operands[0]; ++ ubicom32_compare_op1 = operands[1]; ++ DONE; ++ }") ++ ++(define_insn "cmpi" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:HI 0 "nonimmediate_operand" "rm") ++ (match_operand 1 "const_int_operand" "N")))] ++ "" ++ "cmpi\\t%0, %1") ++ ++(define_insn "sub2_ccs" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:HI 0 "ubicom32_arith_operand" "rmI") ++ (match_operand:HI 1 "ubicom32_data_register_operand" "d")))] ++ "" ++ "sub.2\\t#0, %0, %1") ++ ++; If we're testing for equality we don't have to worry about reversing conditions. ++; ++(define_insn "sub2_ccsz_1" ++ [(set (reg:CCSZ CC_REGNO) ++ (compare:CCSZ (match_operand:HI 0 "nonimmediate_operand" "rm") ++ (match_operand:HI 1 "ubicom32_data_register_operand" "d")))] ++ "" ++ "sub.2\\t#0, %0, %1") ++ ++(define_insn "sub2_ccsz_2" ++ [(set (reg:CCSZ CC_REGNO) ++ (compare:CCSZ (match_operand:HI 0 "ubicom32_data_register_operand" "d") ++ (match_operand:HI 1 "ubicom32_arith_operand" "rmI")))] ++ "" ++ "sub.2\\t#0, %1, %0") ++ ++; When the combiner runs it doesn't have any insight into whether or not an argument ++; to a compare is spilled to the stack and therefore can't swap the comparison in ++; an attempt to use sub.2 more effectively. We peephole this case here. ++; ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (match_operand:HI 1 "ubicom32_arith_operand" "")) ++ (set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (compare (match_operand:HI 3 "ubicom32_data_register_operand" "") ++ (match_dup 0))) ++ (set (pc) ++ (if_then_else (match_operator 4 "comparison_operator" ++ [(match_dup 2) ++ (const_int 0)]) ++ (label_ref (match_operand 5 "" "")) ++ (pc)))] ++ "(peep2_reg_dead_p (2, operands[0]) ++ && peep2_regno_dead_p (3, CC_REGNO))" ++ [(set (match_dup 2) ++ (compare (match_dup 1) ++ (match_dup 3))) ++ (set (pc) ++ (if_then_else (match_op_dup 6 ++ [(match_dup 2) ++ (const_int 0)]) ++ (label_ref (match_dup 5)) ++ (pc)))] ++ "{ ++ rtx cc_reg; ++ ++ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO); ++ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])), ++ GET_MODE (operands[4]), ++ cc_reg, ++ const0_rtx); ++ }") ++ ++(define_insn_and_split "tstsi_lsl4" ++ [(set (match_operand 0 "ubicom32_cc_register_operand" "=r") ++ (match_operator 1 "ubicom32_compare_operator" ++ [(match_operand:SI 2 "nonimmediate_operand" "rm") ++ (const_int 0)]))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "#" ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ [(parallel ++ [(set (match_dup 0) ++ (match_op_dup 1 ++ [(match_dup 2) ++ (const_int 0)])) ++ (clobber (match_dup 3))])] ++ "{ ++ operands[3] = gen_reg_rtx (SImode); ++ }") ++ ++(define_insn "tstsi_lsl4_d" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:SI 0 "nonimmediate_operand" "rm") ++ (const_int 0))) ++ (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "lsl.4\\t%1, %0, #0") ++ ++; Comparison for equality with -1. ++; ++(define_insn "cmpsi_not4_ccwz" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:SI 0 "nonimmediate_operand" "rm") ++ (const_int -1)))] ++ "ubicom32_match_cc_mode(insn, CCWZmode)" ++ "not.4\\t#0, %0") ++ ++(define_expand "cmpsi" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:SI 0 "ubicom32_arith_operand" "") ++ (match_operand:SI 1 "ubicom32_compare_operand" "")))] ++ "" ++ "{ ++ do ++ { ++ /* Is this a cmpi? We can't take a memory address as cmpi takes ++ 16-bit operands. */ ++ if (register_operand (operands[0], SImode) ++ && CONST_INT_P (operands[1]) ++ && satisfies_constraint_N (operands[1])) ++ break; ++ ++ /* Must be a sub.4 - if necessary copy an operand into a reg. */ ++ if (! ubicom32_data_register_operand (operands[1], SImode)) ++ operands[1] = copy_to_mode_reg (SImode, operands[1]); ++ } ++ while (0); ++ ++ ubicom32_compare_op0 = operands[0]; ++ ubicom32_compare_op1 = operands[1]; ++ DONE; ++ }") ++ ++(define_insn "cmpsi_cmpi" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:SI 0 "register_operand" "r") ++ (match_operand 1 "const_int_operand" "N")))] ++ "(satisfies_constraint_N (operands[1]))" ++ "cmpi\\t%0, %1") ++ ++(define_insn "cmpsi_sub4" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:SI 0 "ubicom32_arith_operand" "rmI") ++ (match_operand:SI 1 "ubicom32_data_register_operand" "d")))] ++ "" ++ "sub.4\\t#0, %0, %1") ++ ++; If we're testing for equality we don't have to worry about reversing conditions. ++; ++(define_insn "cmpsi_sub4_ccwz_1" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:SI 0 "nonimmediate_operand" "rm") ++ (match_operand:SI 1 "ubicom32_data_register_operand" "d")))] ++ "ubicom32_match_cc_mode(insn, CCWZmode)" ++ "sub.4\\t#0, %0, %1") ++ ++(define_insn "cmpsi_sub4_ccwz_2" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:SI 0 "ubicom32_data_register_operand" "d") ++ (match_operand:SI 1 "nonimmediate_operand" "rm")))] ++ "ubicom32_match_cc_mode(insn, CCWZmode)" ++ "sub.4\\t#0, %1, %0") ++ ++; When the combiner runs it doesn't have any insight into whether or not an argument ++; to a compare is spilled to the stack and therefore can't swap the comparison in ++; an attempt to use sub.4 more effectively. We peephole this case here. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "ubicom32_arith_operand" "")) ++ (set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (compare (match_operand:SI 3 "ubicom32_data_register_operand" "") ++ (match_dup 0))) ++ (set (pc) ++ (if_then_else (match_operator 4 "comparison_operator" ++ [(match_dup 2) ++ (const_int 0)]) ++ (label_ref (match_operand 5 "" "")) ++ (pc)))] ++ "(peep2_reg_dead_p (2, operands[0]) ++ && peep2_regno_dead_p (3, CC_REGNO))" ++ [(set (match_dup 2) ++ (compare (match_dup 1) ++ (match_dup 3))) ++ (set (pc) ++ (if_then_else (match_op_dup 6 ++ [(match_dup 2) ++ (const_int 0)]) ++ (label_ref (match_dup 5)) ++ (pc)))] ++ "{ ++ rtx cc_reg; ++ ++ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO); ++ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])), ++ GET_MODE (operands[4]), ++ cc_reg, ++ const0_rtx); ++ }") ++ ++(define_insn_and_split "tstdi_or4" ++ [(set (reg:CCWZ CC_REGNO) ++ (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm") ++ (const_int 0)))] ++ "" ++ "#" ++ "" ++ [(parallel ++ [(set (reg:CCWZ CC_REGNO) ++ (compare:CCWZ (match_dup 0) ++ (const_int 0))) ++ (clobber (match_dup 1))])] ++ "{ ++ operands[1] = gen_reg_rtx (SImode); ++ }") ++ ++(define_insn "tstdi_or4_d" ++ [(set (reg:CCWZ CC_REGNO) ++ (compare:CCWZ (match_operand:DI 0 "nonimmediate_operand" "rm") ++ (const_int 0))) ++ (clobber (match_operand:SI 1 "ubicom32_data_register_operand" "=d"))] ++ "" ++ "* ++ { ++ operands[2] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_highpart_mode (SImode, DImode, operands[0]); ++ ++ if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0]))) ++ return \"or.4\\t#0, %2, %3\"; ++ ++ return \"move.4\\t%1, %2\;or.4\\t%1, %3, %1\"; ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_expand "cmpdi" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:DI 0 "ubicom32_arith_operand" "") ++ (match_operand:DI 1 "ubicom32_data_register_operand" "")))] ++ "" ++ "{ ++ ubicom32_compare_op0 = operands[0]; ++ ubicom32_compare_op1 = operands[1]; ++ DONE; ++ }") ++ ++(define_insn "cmpdi_sub4subc" ++ [(set (reg CC_REGNO) ++ (compare (match_operand:DI 0 "ubicom32_arith_operand" "rmI") ++ (match_operand:DI 1 "ubicom32_data_register_operand" "d")))] ++ "" ++ "* ++ { ++ operands[2] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_lowpart (SImode, operands[1]); ++ operands[4] = gen_highpart_mode (SImode, DImode, operands[0]); ++ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]); ++ ++ return \"sub.4\\t#0, %2, %3\;subc\\t#0, %4, %5\"; ++ }" ++ [(set_attr "length" "8")]) ++ ++; When the combiner runs it doesn't have any insight into whether or not an argument ++; to a compare is spilled to the stack and therefore can't swap the comparison in ++; an attempt to use sub.4/subc more effectively. We peephole this case here. ++; ++(define_peephole2 ++ [(set (match_operand:DI 0 "register_operand" "") ++ (match_operand:DI 1 "ubicom32_arith_operand" "")) ++ (set (match_operand 2 "ubicom32_cc_register_operand" "") ++ (compare (match_operand:DI 3 "ubicom32_data_register_operand" "") ++ (match_dup 0))) ++ (set (pc) ++ (if_then_else (match_operator 4 "comparison_operator" ++ [(match_dup 2) ++ (const_int 0)]) ++ (label_ref (match_operand 5 "" "")) ++ (pc)))] ++ "(peep2_reg_dead_p (2, operands[0]) ++ && peep2_regno_dead_p (3, CC_REGNO))" ++ [(set (match_dup 2) ++ (compare (match_dup 1) ++ (match_dup 3))) ++ (set (pc) ++ (if_then_else (match_op_dup 6 ++ [(match_dup 2) ++ (const_int 0)]) ++ (label_ref (match_dup 5)) ++ (pc)))] ++ "{ ++ rtx cc_reg; ++ ++ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO); ++ operands[6] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[4])), ++ GET_MODE (operands[4]), ++ cc_reg, ++ const0_rtx); ++ }") ++ ++(define_insn "btst" ++ [(set (reg:CCWZ CC_REGNO) ++ (compare:CCWZ ++ (zero_extract:SI ++ (match_operand:SI 0 "nonimmediate_operand" "rm") ++ (const_int 1) ++ (match_operand:SI 1 "ubicom32_arith_operand" "dM")) ++ (const_int 0)))] ++ "" ++ "btst\\t%0, %1") ++ ++(define_insn "bfextu_ccwz_null" ++ [(set (reg:CCWZ CC_REGNO) ++ (compare:CCWZ ++ (zero_extract:SI ++ (match_operand:SI 0 "nonimmediate_operand" "rm") ++ (match_operand 1 "const_int_operand" "M") ++ (const_int 0)) ++ (const_int 0))) ++ (clobber (match_scratch:SI 2 "=d"))] ++ "" ++ "bfextu\\t%2, %0, %1") ++ ++(define_expand "addqi3" ++ [(parallel ++ [(set (match_operand:QI 0 "memory_operand" "") ++ (plus:QI (match_operand:QI 1 "nonimmediate_operand" "") ++ (match_operand:QI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "(ubicom32_v4)" ++ "{ ++ if (!memory_operand (operands[0], QImode)) ++ FAIL; ++ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (QImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (QImode, operands[2]); ++ }") ++ ++(define_insn "addqi3_add1" ++ [(set (match_operand:QI 0 "memory_operand" "=m, m") ++ (plus:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4)" ++ "@ ++ add.1\\t%0, %2, %1 ++ add.1\\t%0, %1, %2") ++ ++(define_insn "addqi3_add1_ccszn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (neg:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm")) ++ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d")))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "@ ++ add.1\\t#0, %1, %0 ++ add.1\\t#0, %0, %1") ++ ++(define_expand "addhi3" ++ [(parallel ++ [(set (match_operand:HI 0 "memory_operand" "") ++ (plus:HI (match_operand:HI 1 "nonimmediate_operand" "") ++ (match_operand:HI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ "{ ++ if (!memory_operand (operands[0], HImode)) ++ FAIL; ++ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (HImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (HImode, operands[2]); ++ }") ++ ++(define_insn "addhi3_add2" ++ [(set (match_operand:HI 0 "memory_operand" "=m, m") ++ (plus:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "@ ++ add.2\\t%0, %2, %1 ++ add.2\\t%0, %1, %2") ++ ++(define_insn "addhi3_add2_ccszn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (neg:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm")) ++ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d")))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "@ ++ add.2\\t#0, %1, %0 ++ add.2\\t#0, %0, %1") ++ ++(define_expand "addsi3" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "") ++ (match_operand:SI 2 "ubicom32_move_operand" "")))] ++ "" ++ "{ ++ ubicom32_expand_addsi3 (operands); ++ DONE; ++ }") ++ ++; We start with an instruction pattern that can do all sorts of interesting ++; things but we split out any uses of lea or pdec instructions because ++; those instructions don't clobber the condition codes. ++; ++(define_insn_and_split "addsi3_1" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm, rm,rm") ++ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%a, a, a, a, a, d,rm") ++ (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d,rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "@ ++ # ++ # ++ # ++ # ++ # ++ add.4\\t%0, %2, %1 ++ add.4\\t%0, %1, %2" ++ "(reload_completed ++ && ubicom32_address_register_operand (operands[1], GET_MODE (operands[1])))" ++ [(set (match_dup 0) ++ (plus:SI (match_dup 1) ++ (match_dup 2)))] ++ "" ++) ++ ++(define_insn "addsi3_1_ccwzn" ++ [(set (reg CC_REGNO) ++ (compare ++ (plus:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") ++ (plus:SI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "@ ++ add.4\\t%0, %2, %1 ++ add.4\\t%0, %1, %2") ++ ++(define_insn "addsi3_1_ccwzn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (neg:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm")) ++ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "@ ++ add.4\\t#0, %1, %0 ++ add.4\\t#0, %0, %1") ++ ++(define_insn_and_split "addsi3_2" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm,rm,rm,rm,rm") ++ (plus:SI (match_operand:SI 1 "ubicom32_address_register_operand" "%a, a, a, a, a, a") ++ (match_operand:SI 2 "ubicom32_move_operand" "L, K, J, P, d, n")))] ++ "" ++ "@ ++ lea.4\\t%0, %E2(%1) ++ lea.2\\t%0, %E2(%1) ++ lea.1\\t%0, %E2(%1) ++ pdec\\t%0, %n2(%1) ++ lea.1\\t%0, (%1,%2) ++ #" ++ "(reload_completed ++ && ! satisfies_constraint_L (operands[2]) ++ && ! satisfies_constraint_K (operands[2]) ++ && ! satisfies_constraint_J (operands[2]) ++ && ! satisfies_constraint_P (operands[2]) ++ && ! ubicom32_data_register_operand (operands[2], GET_MODE (operands[2])))" ++ [(set (reg:SI AUX_DATA_REGNO) ++ (match_dup 2)) ++ (set (match_dup 0) ++ (plus:SI (match_dup 1) ++ (reg:SI AUX_DATA_REGNO)))] ++ "" ++) ++ ++(define_insn "lea_2" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") ++ (const_int 2)) ++ (match_operand:SI 2 "ubicom32_address_register_operand" "a")))] ++ "" ++ "lea.2\\t%0, (%2,%1)") ++ ++(define_insn "lea_4" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (plus:SI (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") ++ (const_int 4)) ++ (match_operand:SI 2 "ubicom32_address_register_operand" "a")))] ++ "" ++ "lea.4\\t%0, (%2,%1)") ++ ++(define_expand "adddi3" ++ [(parallel ++ [(set (match_operand:DI 0 "nonimmediate_operand" "") ++ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "") ++ (match_operand:DI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ "{ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (DImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (DImode, operands[2]); ++ }") ++ ++; We construct a 64-bit add from 32-bit operations. Note that we use the ++; & constraint to prevent overlapping registers being allocated. We do ++; allow identical registers though as that won't break anything. ++; ++(define_insn "adddi3_add4addc" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m") ++ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm") ++ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "* ++ { ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart (SImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++ ++ if (ubicom32_data_register_operand (operands[2], GET_MODE (operands[2]))) ++ return \"add.4\\t%3, %4, %5\;addc\\t%6, %7, %8\"; ++ ++ return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\"; ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_insn "adddi3_ccwz" ++ [(set (reg CC_REGNO) ++ (compare ++ (plus:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm") ++ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d, d,rmI,rmI, d")) ++ (const_int 0))) ++ (set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r,rm, d, m, m") ++ (plus:DI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "* ++ { ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ ++ if (ubicom32_data_register_operand (operands[1], GET_MODE (operands[1]))) ++ { ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[7] = gen_highpart (SImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++ } ++ else ++ { ++ operands[4] = gen_lowpart (SImode, operands[2]); ++ operands[5] = gen_lowpart (SImode, operands[1]); ++ operands[7] = gen_highpart (SImode, operands[2]); ++ operands[8] = gen_highpart (SImode, operands[1]); ++ } ++ ++ return \"add.4\\t%3, %5, %4\;addc\\t%6, %8, %7\"; ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_insn "adddi3_ccwz_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (neg:DI (match_operand:DI 0 "nonimmediate_operand" "%d,rm")) ++ (match_operand:DI 1 "ubicom32_arith_operand" "rmI, d")))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "* ++ { ++ if (ubicom32_data_register_operand (operands[0], GET_MODE (operands[0]))) ++ { ++ operands[2] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_lowpart (SImode, operands[1]); ++ operands[4] = gen_highpart (SImode, operands[0]); ++ operands[5] = gen_highpart_mode (SImode, DImode, operands[1]); ++ } ++ else ++ { ++ operands[2] = gen_lowpart (SImode, operands[1]); ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_highpart (SImode, operands[1]); ++ operands[5] = gen_highpart (SImode, operands[0]); ++ } ++ ++ return \"add.4\\t#0, %3, %2\;addc\\t#0, %5, %4\"; ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_expand "subqi3" ++ [(parallel ++ [(set (match_operand:QI 0 "memory_operand" "") ++ (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "") ++ (match_operand:QI 2 "ubicom32_data_register_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "(ubicom32_v4)" ++ "{ ++ if (!memory_operand (operands[0], QImode)) ++ FAIL; ++ }") ++ ++(define_insn "subqi3_sub1" ++ [(set (match_operand:QI 0 "memory_operand" "=m") ++ (minus:QI (match_operand:QI 1 "ubicom32_arith_operand" "rmI") ++ (match_operand:QI 2 "ubicom32_data_register_operand" "d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4)" ++ "sub.1\\t%0, %1, %2") ++ ++(define_expand "subhi3" ++ [(parallel ++ [(set (match_operand:HI 0 "memory_operand" "") ++ (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "") ++ (match_operand:HI 2 "ubicom32_data_register_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "(ubicom32_v4)" ++ "{ ++ if (!memory_operand (operands[0], HImode)) ++ FAIL; ++ }") ++ ++(define_insn "subhi3_sub2" ++ [(set (match_operand:HI 0 "memory_operand" "=m") ++ (minus:HI (match_operand:HI 1 "ubicom32_arith_operand" "rmI") ++ (match_operand:HI 2 "ubicom32_data_register_operand" "d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "sub.2\\t%0, %1, %2") ++ ++(define_insn "subsi3" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") ++ (match_operand:SI 2 "ubicom32_data_register_operand" "d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "sub.4\\t%0, %1, %2") ++ ++(define_insn "subsi3_ccwz" ++ [(set (reg CC_REGNO) ++ (compare ++ (minus:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") ++ (match_operand:SI 2 "ubicom32_data_register_operand" "d")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (minus:SI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "sub.4\\t%0, %1, %2") ++ ++; We construct a 64-bit add from 32-bit operations. Note that we use the ++; & constraint to prevent overlapping registers being allocated. We do ++; allow identical registers though as that won't break anything. ++; ++(define_insn "subdi3" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,r, d, m") ++ (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,0,rmI,rmI") ++ (match_operand:DI 2 "ubicom32_data_register_operand" "d,d, 0, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "* ++ { ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); ++ operands[8] = gen_highpart (SImode, operands[2]); ++ ++ return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\"; ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_insn "subdi3_ccwz" ++ [(set (reg CC_REGNO) ++ (compare ++ (minus:DI (match_operand:DI 1 "ubicom32_arith_operand" "rmI,rmI") ++ (match_operand:DI 2 "ubicom32_data_register_operand" "d, d")) ++ (const_int 0))) ++ (set (match_operand:DI 0 "nonimmediate_operand" "=&r, m") ++ (minus:DI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "* ++ { ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); ++ operands[8] = gen_highpart (SImode, operands[2]); ++ ++ return \"sub.4\\t%3, %4, %5\;subc\\t%6, %7, %8\"; ++ }" ++ [(set_attr "length" "8")]) ++ ++;(define_insn "negqi2" ++; [(set (match_operand:QI 0 "nonimmediate_operand" "=rm") ++; (neg:QI (match_operand:QI 1 "ubicom32_data_register_operand" "d"))) ++; (clobber (reg:CC CC_REGNO))] ++; "(ubicom32_v4)" ++; "sub.1\\t%0, #0, %1") ++ ++;(define_insn "neghi2" ++; [(set (match_operand:HI 0 "nonimmediate_operand" "=rm") ++; (neg:HI (match_operand:HI 1 "ubicom32_data_register_operand" "d"))) ++; (clobber (reg:CC CC_REGNO))] ++; "" ++; "sub.2\\t%0, #0, %1") ++ ++(define_insn "negsi2" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (neg:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "sub.4\\t%0, #0, %1") ++ ++(define_insn_and_split "negdi2" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm") ++ (neg:DI (match_operand:DI 1 "ubicom32_data_register_operand" "d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "#" ++ "reload_completed" ++ [(parallel [(set (match_dup 0) ++ (minus:DI (const_int 0) ++ (match_dup 1))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ [(set_attr "length" "8")]) ++ ++(define_insn "umulhisi3" ++ [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l") ++ (mult:SI ++ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")) ++ (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d")))) ++ (clobber (reg:HI ACC0_HI_REGNO)) ++ (clobber (reg:HI ACC1_HI_REGNO))] ++ "" ++ "@ ++ mulu\\t%A0, %2, %1 ++ mulu\\t%A0, %1, %2" ++ [(set_attr "type" "mul,mul")]) ++ ++(define_insn "mulhisi3" ++ [(set (match_operand:SI 0 "ubicom32_acc_lo_register_operand" "=l, l") ++ (mult:SI ++ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%d,rm")) ++ (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rm, d")))) ++ (clobber (reg:HI ACC0_HI_REGNO)) ++ (clobber (reg:HI ACC1_HI_REGNO))] ++ "" ++ "@ ++ muls\\t%A0, %2, %1 ++ muls\\t%A0, %1, %2" ++ [(set_attr "type" "mul,mul")]) ++ ++(define_expand "mulsi3" ++ [(set (match_operand:SI 0 "ubicom32_acc_hi_register_operand" "") ++ (mult:SI (match_operand:SI 1 "ubicom32_arith_operand" "") ++ (match_operand:SI 2 "ubicom32_arith_operand" "")))] ++ "" ++ "{ ++ if (ubicom32_emit_mult_sequence (operands)) ++ DONE; ++ }") ++ ++(define_insn "umulsidi3" ++ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h") ++ (mult:DI ++ (zero_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")) ++ (zero_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))] ++ "(ubicom32_v4)" ++ "@ ++ mulu.4\\t%A0, %2, %1 ++ mulu.4\\t%A0, %1, %2" ++ [(set_attr "type" "mul,mul")]) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "nonimmediate_operand" "")) ++ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "") ++ (mult:DI ++ (zero_extend:DI (match_dup 0)) ++ (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))] ++ "(peep2_reg_dead_p (2, operands[0]) ++ || REGNO (operands[0]) == REGNO (operands[2]) ++ || REGNO (operands[0]) == REGNO (operands[2]) + 1) ++ && ! rtx_equal_p (operands[0], operands[3])" ++ [(set (match_dup 2) ++ (mult:DI ++ (zero_extend:DI (match_dup 1)) ++ (zero_extend:DI (match_dup 3))))] ++ "") ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "nonimmediate_operand" "")) ++ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "") ++ (mult:DI ++ (zero_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" "")) ++ (zero_extend:DI (match_dup 0))))] ++ "(peep2_reg_dead_p (2, operands[0]) ++ || REGNO (operands[0]) == REGNO (operands[2]) ++ || REGNO (operands[0]) == REGNO (operands[2]) + 1) ++ && ! rtx_equal_p (operands[0], operands[3])" ++ [(set (match_dup 2) ++ (mult:DI ++ (zero_extend:DI (match_dup 1)) ++ (zero_extend:DI (match_dup 3))))] ++ "") ++ ++(define_insn "umulsidi3_const" ++ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h") ++ (mult:DI ++ (zero_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d")) ++ (match_operand 2 "const_int_operand" "I")))] ++ "(ubicom32_v4 && satisfies_constraint_I (operands[2]))" ++ "mulu.4\\t%A0, %2, %1" ++ [(set_attr "type" "mul")]) ++ ++(define_insn "mulsidi3" ++ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h, h") ++ (mult:DI ++ (sign_extend:DI (match_operand:SI 1 "nonimmediate_operand" "%d,rm")) ++ (sign_extend:DI (match_operand:SI 2 "nonimmediate_operand" "rm, d"))))] ++ "(ubicom32_v4)" ++ "@ ++ muls.4\\t%A0, %2, %1 ++ muls.4\\t%A0, %1, %2" ++ [(set_attr "type" "mul,mul")]) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "nonimmediate_operand" "")) ++ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "") ++ (mult:DI ++ (sign_extend:DI (match_dup 0)) ++ (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" ""))))] ++ "(peep2_reg_dead_p (2, operands[0]) ++ || REGNO (operands[0]) == REGNO (operands[2]) ++ || REGNO (operands[0]) == REGNO (operands[2]) + 1) ++ && ! rtx_equal_p (operands[0], operands[3])" ++ [(set (match_dup 2) ++ (mult:DI ++ (sign_extend:DI (match_dup 1)) ++ (sign_extend:DI (match_dup 3))))] ++ "") ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "nonimmediate_operand" "")) ++ (set (match_operand:DI 2 "ubicom32_acc_hi_register_operand" "") ++ (mult:DI ++ (sign_extend:DI (match_operand:SI 3 "ubicom32_data_register_operand" "")) ++ (sign_extend:DI (match_dup 0))))] ++ "(peep2_reg_dead_p (2, operands[0]) ++ || REGNO (operands[0]) == REGNO (operands[2]) ++ || REGNO (operands[0]) == REGNO (operands[2]) + 1) ++ && ! rtx_equal_p (operands[0], operands[3])" ++ [(set (match_dup 2) ++ (mult:DI ++ (sign_extend:DI (match_dup 1)) ++ (sign_extend:DI (match_dup 3))))] ++ "") ++ ++(define_insn "mulsidi3_const" ++ [(set (match_operand:DI 0 "ubicom32_acc_hi_register_operand" "=h") ++ (mult:DI ++ (sign_extend:DI (match_operand:SI 1 "ubicom32_data_register_operand" "%d")) ++ (match_operand 2 "const_int_operand" "I")))] ++ "(ubicom32_v4 && satisfies_constraint_I (operands[2]))" ++ "muls.4\\t%A0, %2, %1" ++ [(set_attr "type" "mul")]) ++ ++(define_expand "andqi3" ++ [(parallel ++ [(set (match_operand:QI 0 "memory_operand" "") ++ (and:QI (match_operand:QI 1 "nonimmediate_operand" "") ++ (match_operand:QI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "(ubicom32_v4)" ++ "{ ++ if (!memory_operand (operands[0], QImode)) ++ FAIL; ++ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (QImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (QImode, operands[2]); ++ }") ++ ++(define_insn "andqi3_and1" ++ [(set (match_operand:QI 0 "memory_operand" "=m, m") ++ (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4)" ++ "@ ++ and.1\\t%0, %2, %1 ++ and.1\\t%0, %1, %2") ++ ++(define_insn "andqi3_and1_ccszn" ++ [(set (reg CC_REGNO) ++ (compare ++ (and:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0))) ++ (set (match_operand:QI 0 "memory_operand" "=m, m") ++ (and:QI (match_dup 1) ++ (match_dup 2)))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "@ ++ and.1\\t%0, %2, %1 ++ and.1\\t%0, %1, %2") ++ ++(define_insn "andqi3_and1_ccszn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (and:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm") ++ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0)))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "@ ++ and.1\\t#0, %1, %0 ++ and.1\\t#0, %0, %1") ++ ++(define_insn "and1_ccszn_null_1" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:QI ++ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d") ++ (match_operand:SI 1 "ubicom32_arith_operand" "rI")) ++ 3) ++ (const_int 0)))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "and.1\\t#0, %1, %0") ++ ++(define_insn "and1_ccszn_null_2" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:QI ++ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d") ++ (subreg:SI ++ (match_operand:QI 1 "memory_operand" "m") ++ 0)) ++ 3) ++ (const_int 0)))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "and.1\\t#0, %1, %0") ++ ++(define_insn "and1_ccszn_null_3" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:QI ++ (and:SI (subreg:SI ++ (match_operand:QI 0 "memory_operand" "m") ++ 0) ++ (match_operand:SI 1 "ubicom32_data_register_operand" "d")) ++ 3) ++ (const_int 0)))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "and.1\\t#0, %0, %1") ++ ++(define_expand "andhi3" ++ [(parallel ++ [(set (match_operand:HI 0 "memory_operand" "") ++ (and:HI (match_operand:HI 1 "nonimmediate_operand" "") ++ (match_operand:HI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ "{ ++ if (!memory_operand (operands[0], HImode)) ++ FAIL; ++ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (HImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (HImode, operands[2]); ++ }") ++ ++(define_insn "andhi3_and2" ++ [(set (match_operand:HI 0 "memory_operand" "=m, m") ++ (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "@ ++ and.2\\t%0, %2, %1 ++ and.2\\t%0, %1, %2") ++ ++(define_insn "andhi3_and2_ccszn" ++ [(set (reg CC_REGNO) ++ (compare ++ (and:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0))) ++ (set (match_operand:HI 0 "memory_operand" "=m, m") ++ (and:HI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "@ ++ and.2\\t%0, %2, %1 ++ and.2\\t%0, %1, %2") ++ ++(define_insn "andhi3_and2_ccszn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (and:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm") ++ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "@ ++ and.2\\t#0, %1, %0 ++ and.2\\t#0, %0, %1") ++ ++(define_insn "and2_ccszn_null_1" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:HI ++ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d") ++ (match_operand:SI 1 "ubicom32_arith_operand" "rI")) ++ 2) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "and.2\\t#0, %1, %0") ++ ++(define_insn "and2_ccszn_null_2" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:HI ++ (and:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d") ++ (subreg:SI ++ (match_operand:HI 1 "memory_operand" "m") ++ 0)) ++ 2) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "and.2\\t#0, %1, %0") ++ ++(define_insn "and2_ccszn_null_3" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:HI ++ (and:SI (subreg:SI ++ (match_operand:HI 0 "memory_operand" "m") ++ 0) ++ (match_operand:SI 1 "ubicom32_data_register_operand" "d")) ++ 2) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "and.2\\t#0, %0, %1") ++ ++(define_expand "andsi3" ++ [(parallel ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (and:SI (match_operand:SI 1 "nonimmediate_operand" "") ++ (match_operand:SI 2 "ubicom32_and_or_si3_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ "{ ++ do ++ { ++ /* Is this a bfextu? */ ++ if (ubicom32_data_register_operand (operands[0], SImode) ++ && CONST_INT_P (operands[2]) ++ && exact_log2 (INTVAL (operands[2]) + 1) != -1) ++ break; ++ ++ /* Is this a bclr? */ ++ if (CONST_INT_P (operands[2]) ++ && exact_log2 (~INTVAL (operands[2])) != -1) ++ break; ++ ++ /* Must be an and.4 */ ++ if (!ubicom32_data_register_operand (operands[1], SImode)) ++ operands[1] = copy_to_mode_reg (SImode, operands[1]); ++ ++ if (!ubicom32_arith_operand (operands[2], SImode)) ++ operands[2] = copy_to_mode_reg (SImode, operands[2]); ++ } ++ while (0); ++ }") ++ ++(define_insn "andsi3_bfextu" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm") ++ (match_operand:SI 2 "const_int_operand" "O"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(satisfies_constraint_O (operands[2]))" ++ "* ++ { ++ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1)); ++ ++ return \"bfextu\\t%0, %1, %3\"; ++ }") ++ ++(define_insn "andsi3_bfextu_ccwz" ++ [(set (reg CC_REGNO) ++ (compare ++ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%rm") ++ (match_operand:SI 2 "const_int_operand" "O")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (and:SI (match_dup 1) ++ (match_dup 2)))] ++ "(satisfies_constraint_O (operands[2]) ++ && ubicom32_match_cc_mode(insn, CCWZmode))" ++ "* ++ { ++ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[2]) + 1)); ++ ++ return \"bfextu\\t%0, %1, %3\"; ++ }") ++ ++(define_insn "andsi3_bfextu_ccwz_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm") ++ (match_operand:SI 1 "const_int_operand" "O")) ++ (const_int 0))) ++ (clobber (match_scratch:SI 2 "=d"))] ++ "(satisfies_constraint_O (operands[1]) ++ && ubicom32_match_cc_mode(insn, CCWZmode))" ++ "* ++ { ++ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1]) + 1)); ++ ++ return \"bfextu\\t%2, %0, %3\"; ++ }") ++ ++(define_insn "andsi3_bclr" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (and:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI") ++ (match_operand:SI 2 "const_int_operand" "n"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(exact_log2 (~INTVAL (operands[2])) != -1)" ++ "bclr\\t%0, %1, #%D2") ++ ++(define_insn "andsi3_and4" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") ++ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "@ ++ and.4\\t%0, %2, %1 ++ and.4\\t%0, %1, %2") ++ ++(define_insn "andsi3_and4_ccwzn" ++ [(set (reg CC_REGNO) ++ (compare ++ (and:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") ++ (and:SI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "@ ++ and.4\\t%0, %2, %1 ++ and.4\\t%0, %1, %2") ++ ++(define_insn "andsi3_and4_ccwzn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm") ++ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "@ ++ and.4\\t#0, %1, %0 ++ and.4\\t#0, %0, %1") ++ ++(define_insn "andsi3_lsr4_ccwz_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (and:SI (match_operand:SI 0 "nonimmediate_operand" "%rm") ++ (match_operand:SI 1 "const_int_operand" "n")) ++ (const_int 0))) ++ (clobber (match_scratch:SI 2 "=d"))] ++ "(exact_log2 ((~(INTVAL (operands[1]))) + 1) != -1 ++ && ubicom32_match_cc_mode(insn, CCWZmode))" ++ "* ++ { ++ operands[3] = GEN_INT (exact_log2 ((~(INTVAL (operands[1]))) + 1)); ++ ++ return \"lsr.4\\t%2, %0, %3\"; ++ }") ++ ++; We really would like the combiner to recognize this scenario and deal with ++; it but unfortunately it tries to canonicalize zero_extract ops on MEMs ++; into QImode operations and we can't match them in any useful way. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand:SI 1 "const_int_operand" "")) ++ (set (reg:CCWZ CC_REGNO) ++ (compare:CCWZ ++ (and:SI (match_operand:SI 2 "nonimmediate_operand" "") ++ (match_dup 0)) ++ (const_int 0)))] ++ "(exact_log2 (INTVAL (operands[1])) != -1 ++ && peep2_reg_dead_p (2, operands[0]))" ++ [(set (reg:CCWZ CC_REGNO) ++ (compare:CCWZ ++ (zero_extract:SI ++ (match_dup 2) ++ (const_int 1) ++ (match_dup 3)) ++ (const_int 0)))] ++ "{ ++ operands[3] = GEN_INT (exact_log2 (INTVAL (operands[1]))); ++ }") ++ ++(define_expand "anddi3" ++ [(parallel ++ [(set (match_operand:DI 0 "nonimmediate_operand" "") ++ (and:DI (match_operand:DI 1 "nonimmediate_operand" "") ++ (match_operand:DI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ "{ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (DImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (DImode, operands[2]); ++ }") ++ ++(define_insn_and_split "anddi3_and4" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m") ++ (and:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm") ++ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "#" ++ "reload_completed" ++ [(parallel [(set (match_dup 3) ++ (and:SI (match_dup 4) ++ (match_dup 5))) ++ (clobber (reg:CC CC_REGNO))]) ++ (parallel [(set (match_dup 6) ++ (and:SI (match_dup 7) ++ (match_dup 8))) ++ (clobber (reg:CC CC_REGNO))])] ++ "{ ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart (SImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_expand "iorqi3" ++ [(parallel ++ [(set (match_operand:QI 0 "memory_operand" "") ++ (ior:QI (match_operand:QI 1 "nonimmediate_operand" "") ++ (match_operand:QI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "(ubicom32_v4)" ++ "{ ++ if (!memory_operand (operands[0], QImode)) ++ FAIL; ++ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (QImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (QImode, operands[2]); ++ }") ++ ++(define_insn "iorqi3_or1" ++ [(set (match_operand:QI 0 "memory_operand" "=m, m") ++ (ior:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4)" ++ "@ ++ or.1\\t%0, %2, %1 ++ or.1\\t%0, %1, %2") ++ ++(define_expand "iorhi3" ++ [(parallel ++ [(set (match_operand:HI 0 "memory_operand" "") ++ (ior:HI (match_operand:HI 1 "nonimmediate_operand" "") ++ (match_operand:HI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ "{ ++ if (!memory_operand (operands[0], HImode)) ++ FAIL; ++ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (HImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (HImode, operands[2]); ++ }") ++ ++(define_insn "iorhi3_or2" ++ [(set (match_operand:HI 0 "memory_operand" "=m, m") ++ (ior:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "@ ++ or.2\\t%0, %2, %1 ++ or.2\\t%0, %1, %2") ++ ++(define_expand "iorsi3" ++ [(parallel ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "") ++ (match_operand:SI 2 "ubicom32_and_or_si3_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ "{ ++ do ++ { ++ /* Is this a bset? */ ++ if (CONST_INT_P (operands[2]) ++ && exact_log2 (INTVAL (operands[2])) != -1) ++ break; ++ ++ /* Must be an or.4 */ ++ if (!ubicom32_data_register_operand (operands[1], SImode)) ++ operands[1] = copy_to_mode_reg (SImode, operands[1]); ++ ++ if (!ubicom32_arith_operand (operands[2], SImode)) ++ operands[2] = copy_to_mode_reg (SImode, operands[2]); ++ } ++ while (0); ++ }") ++ ++(define_insn "iorsi3_bset" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (ior:SI (match_operand:SI 1 "ubicom32_arith_operand" "%rmI") ++ (match_operand 2 "const_int_operand" "n"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(exact_log2 (INTVAL (operands[2])) != -1)" ++ "bset\\t%0, %1, #%d2") ++ ++(define_insn "iorsi3_or4" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") ++ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "@ ++ or.4\\t%0, %2, %1 ++ or.4\\t%0, %1, %2") ++ ++(define_insn "iorsi3_ccwzn" ++ [(set (reg CC_REGNO) ++ (compare ++ (ior:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") ++ (ior:SI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "@ ++ or.4\\t%0, %2, %1 ++ or.4\\t%0, %1, %2") ++ ++(define_insn "iorsi3_ccwzn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (ior:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm") ++ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "@ ++ or.4\\t#0, %1, %0 ++ or.4\\t#0, %0, %1") ++ ++(define_expand "iordi3" ++ [(parallel ++ [(set (match_operand:DI 0 "nonimmediate_operand" "") ++ (ior:DI (match_operand:DI 1 "nonimmediate_operand" "") ++ (match_operand:DI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ "{ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (DImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (DImode, operands[2]); ++ }") ++ ++(define_insn_and_split "iordi3_or4" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m") ++ (ior:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm") ++ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "#" ++ "reload_completed" ++ [(parallel [(set (match_dup 3) ++ (ior:SI (match_dup 4) ++ (match_dup 5))) ++ (clobber (reg:CC CC_REGNO))]) ++ (parallel [(set (match_dup 6) ++ (ior:SI (match_dup 7) ++ (match_dup 8))) ++ (clobber (reg:CC CC_REGNO))])] ++ "{ ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart (SImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_expand "xorqi3" ++ [(parallel ++ [(set (match_operand:QI 0 "memory_operand" "") ++ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "") ++ (match_operand:QI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "(ubicom32_v4)" ++ "{ ++ if (!memory_operand (operands[0], QImode)) ++ FAIL; ++ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (QImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (QImode, operands[2]); ++ }") ++ ++(define_insn "xorqi3_xor1" ++ [(set (match_operand:QI 0 "memory_operand" "=m, m") ++ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4)" ++ "@ ++ xor.1\\t%0, %2, %1 ++ xor.1\\t%0, %1, %2") ++ ++(define_insn "xorqi3_xor1_ccszn" ++ [(set (reg CC_REGNO) ++ (compare ++ (xor:QI (match_operand:QI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0))) ++ (set (match_operand:QI 0 "memory_operand" "=m, m") ++ (xor:QI (match_dup 1) ++ (match_dup 2)))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "@ ++ xor.1\\t%0, %2, %1 ++ xor.1\\t%0, %1, %2") ++ ++(define_insn "xorqi3_xor1_ccszn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (xor:QI (match_operand:QI 0 "nonimmediate_operand" "%d,rm") ++ (match_operand:QI 1 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0)))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "@ ++ xor.1\\t#0, %1, %0 ++ xor.1\\t#0, %0, %1") ++ ++(define_insn "xor1_ccszn_null_1" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:QI ++ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d") ++ (match_operand:SI 1 "ubicom32_arith_operand" "rI")) ++ 3) ++ (const_int 0)))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "xor.1\\t#0, %1, %0") ++ ++(define_insn "xor1_ccszn_null_2" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:QI ++ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d") ++ (subreg:SI ++ (match_operand:QI 1 "memory_operand" "m") ++ 0)) ++ 3) ++ (const_int 0)))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "xor.1\\t#0, %1, %0") ++ ++(define_insn "xor1_ccwzn_null_3" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:QI ++ (xor:SI (subreg:SI ++ (match_operand:QI 0 "memory_operand" "m") ++ 0) ++ (match_operand:SI 1 "ubicom32_data_register_operand" "d")) ++ 3) ++ (const_int 0)))] ++ "(ubicom32_v4 ++ && ubicom32_match_cc_mode(insn, CCSZNmode))" ++ "xor.1\\t#0, %0, %1") ++ ++(define_expand "xorhi3" ++ [(parallel ++ [(set (match_operand:HI 0 "memory_operand" "") ++ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "") ++ (match_operand:HI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ "{ ++ if (!memory_operand (operands[0], HImode)) ++ FAIL; ++ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (HImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (HImode, operands[2]); ++ }") ++ ++(define_insn "xorhi3_xor2" ++ [(set (match_operand:HI 0 "memory_operand" "=m, m") ++ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "@ ++ xor.2\\t%0, %2, %1 ++ xor.2\\t%0, %1, %2") ++ ++(define_insn "xorhi3_xor2_ccszn" ++ [(set (reg CC_REGNO) ++ (compare ++ (xor:HI (match_operand:HI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0))) ++ (set (match_operand:HI 0 "memory_operand" "=m, m") ++ (xor:HI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "@ ++ xor.2\\t%0, %2, %1 ++ xor.2\\t%0, %1, %2") ++ ++(define_insn "xorhi3_xor2_ccszn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (xor:HI (match_operand:HI 0 "nonimmediate_operand" "%d,rm") ++ (match_operand:HI 1 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "@ ++ xor.2\\t#0, %1, %0 ++ xor.2\\t#0, %0, %1") ++ ++(define_insn "xor2_ccszn_null_1" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:HI ++ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "%d") ++ (match_operand:SI 1 "ubicom32_arith_operand" "rI")) ++ 2) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "xor.2\\t#0, %1, %0") ++ ++(define_insn "xor2_ccszn_null_2" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:HI ++ (xor:SI (match_operand:SI 0 "ubicom32_data_register_operand" "d") ++ (subreg:SI ++ (match_operand:HI 1 "memory_operand" "m") ++ 0)) ++ 2) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "xor.2\\t#0, %1, %0") ++ ++(define_insn "xor2_ccszn_null_3" ++ [(set (reg CC_REGNO) ++ (compare ++ (subreg:HI ++ (xor:SI (subreg:SI ++ (match_operand:HI 0 "memory_operand" "m") ++ 0) ++ (match_operand:SI 1 "ubicom32_data_register_operand" "d")) ++ 2) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCSZNmode)" ++ "xor.2\\t#0, %0, %1") ++ ++(define_insn "xorsi3" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") ++ (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "@ ++ xor.4\\t%0, %2, %1 ++ xor.4\\t%0, %1, %2") ++ ++(define_insn "xorsi3_ccwzn" ++ [(set (reg CC_REGNO) ++ (compare ++ (xor:SI (match_operand:SI 1 "nonimmediate_operand" "%d,rm") ++ (match_operand:SI 2 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm,rm") ++ (xor:SI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "@ ++ xor.4\\t%0, %2, %1 ++ xor.4\\t%0, %1, %2") ++ ++(define_insn "xorsi3_ccwzn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (xor:SI (match_operand:SI 0 "nonimmediate_operand" "%d,rm") ++ (match_operand:SI 1 "ubicom32_arith_operand" "rmI, d")) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "@ ++ xor.4\\t#0, %1, %0 ++ xor.4\\t#0, %0, %1") ++ ++(define_expand "xordi3" ++ [(parallel ++ [(set (match_operand:DI 0 "nonimmediate_operand" "") ++ (xor:DI (match_operand:DI 1 "nonimmediate_operand" "") ++ (match_operand:DI 2 "ubicom32_arith_operand" ""))) ++ (clobber (reg:CC CC_REGNO))])] ++ "" ++ "{ ++ /* If we have a non-data reg for operand 1 then prefer that over ++ a CONST_INT in operand 2. */ ++ if (! ubicom32_data_register_operand (operands[1], GET_MODE (operands[1])) ++ && CONST_INT_P (operands[2])) ++ operands[2] = copy_to_mode_reg (DImode, operands[2]); ++ ++ if (CONST_INT_P (operands[2]) && ! satisfies_constraint_I (operands[2])) ++ operands[2] = copy_to_mode_reg (DImode, operands[2]); ++ }") ++ ++(define_insn_and_split "xordi3_xor4" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&r,&r, d,rm, m, m") ++ (xor:DI (match_operand:DI 1 "nonimmediate_operand" "%d,rm, 0, 0, d,rm") ++ (match_operand:DI 2 "ubicom32_arith_operand" "rmI, d,rmI, d,rmI, d"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "#" ++ "reload_completed" ++ [(parallel [(set (match_dup 3) ++ (xor:SI (match_dup 4) ++ (match_dup 5))) ++ (clobber (reg:CC CC_REGNO))]) ++ (parallel [(set (match_dup 6) ++ (xor:SI (match_dup 7) ++ (match_dup 8))) ++ (clobber (reg:CC CC_REGNO))])] ++ "{ ++ operands[3] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_lowpart (SImode, operands[2]); ++ operands[6] = gen_highpart (SImode, operands[0]); ++ operands[7] = gen_highpart (SImode, operands[1]); ++ operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); ++ }" ++ [(set_attr "length" "8")]) ++ ++(define_insn "not2_2" ++ [(set (match_operand:HI 0 "memory_operand" "=m") ++ (subreg:HI ++ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")) ++ 2)) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "not.2\\t%0, %1") ++ ++(define_insn "one_cmplsi2" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "not.4\\t%0, %1") ++ ++(define_insn "one_cmplsi2_ccwzn" ++ [(set (reg CC_REGNO) ++ (compare ++ (not:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "nonimmediate_operand" "=rm") ++ (not:SI (match_dup 1)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "not.4\\t%0, %1") ++ ++(define_insn "one_cmplsi2_ccwzn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (not:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI")) ++ (const_int 0)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "not.4\\t#0, %0") ++ ++(define_insn_and_split "one_cmpldi2" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=&rm") ++ (not:DI (match_operand:DI 1 "nonimmediate_operand" "rmI0"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "#" ++ "" ++ [(parallel [(set (match_dup 2) ++ (not:SI (match_dup 3))) ++ (clobber (reg:CC CC_REGNO))]) ++ (parallel [(set (match_dup 4) ++ (not:SI (match_dup 5))) ++ (clobber (reg:CC CC_REGNO))])] ++ "{ ++ operands[2] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_lowpart (SImode, operands[1]); ++ operands[4] = gen_highpart (SImode, operands[0]); ++ operands[5] = gen_highpart (SImode, operands[1]); ++ }" ++ [(set_attr "length" "8")]) ++ ++; Conditional jump instructions ++ ++(define_expand "beq" ++ [(set (pc) ++ (if_then_else (eq (match_dup 1) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "{ ++ operands[1] = ubicom32_gen_compare_reg (EQ, ubicom32_compare_op0, ++ ubicom32_compare_op1); ++ }") ++ ++(define_expand "bne" ++ [(set (pc) ++ (if_then_else (ne (match_dup 1) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "{ ++ operands[1] = ubicom32_gen_compare_reg (NE, ubicom32_compare_op0, ++ ubicom32_compare_op1); ++ }") ++ ++(define_expand "bgt" ++ [(set (pc) ++ (if_then_else (gt (match_dup 1) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "{ ++ operands[1] = ubicom32_gen_compare_reg (GT, ubicom32_compare_op0, ++ ubicom32_compare_op1); ++ }") ++ ++(define_expand "ble" ++ [(set (pc) ++ (if_then_else (le (match_dup 1) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "{ ++ operands[1] = ubicom32_gen_compare_reg (LE, ubicom32_compare_op0, ++ ubicom32_compare_op1); ++ }") ++ ++(define_expand "bge" ++ [(set (pc) ++ (if_then_else (ge (match_dup 1) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "{ ++ operands[1] = ubicom32_gen_compare_reg (GE, ubicom32_compare_op0, ++ ubicom32_compare_op1); ++ }") ++ ++(define_expand "blt" ++ [(set (pc) ++ (if_then_else (lt (match_dup 1) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "{ ++ operands[1] = ubicom32_gen_compare_reg (LT, ubicom32_compare_op0, ++ ubicom32_compare_op1); ++ }") ++ ++(define_expand "bgtu" ++ [(set (pc) ++ (if_then_else (gtu (match_dup 1) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "{ ++ operands[1] = ubicom32_gen_compare_reg (GTU, ubicom32_compare_op0, ++ ubicom32_compare_op1); ++ }") ++ ++(define_expand "bleu" ++ [(set (pc) ++ (if_then_else (leu (match_dup 1) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "{ ++ operands[1] = ubicom32_gen_compare_reg (LEU, ubicom32_compare_op0, ++ ubicom32_compare_op1); ++ }") ++ ++(define_expand "bgeu" ++ [(set (pc) ++ (if_then_else (geu (match_dup 1) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "{ ++ operands[1] = ubicom32_gen_compare_reg (GEU, ubicom32_compare_op0, ++ ubicom32_compare_op1); ++ }") ++ ++(define_expand "bltu" ++ [(set (pc) ++ (if_then_else (ltu (match_dup 1) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "{ ++ operands[1] = ubicom32_gen_compare_reg (LTU, ubicom32_compare_op0, ++ ubicom32_compare_op1); ++ }") ++ ++(define_insn "jcc" ++ [(set (pc) ++ (if_then_else (match_operator 1 "comparison_operator" ++ [(match_operand 2 "ubicom32_cc_register_operand" "") ++ (const_int 0)]) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "* ++ { ++ ubicom32_output_cond_jump (insn, operands[1], operands[0]); ++ return \"\"; ++ }") ++ ++; Reverse branch - reverse our comparison condition so that we can ++; branch in the opposite sense. ++; ++(define_insn_and_split "jcc_reverse" ++ [(set (pc) ++ (if_then_else (match_operator 1 "comparison_operator" ++ [(match_operand 2 "ubicom32_cc_register_operand" "") ++ (const_int 0)]) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "#" ++ "reload_completed" ++ [(set (pc) ++ (if_then_else (match_dup 3) ++ (label_ref (match_dup 0)) ++ (pc)))] ++ "{ ++ rtx cc_reg; ++ ++ cc_reg = gen_rtx_REG (GET_MODE (operands[2]), CC_REGNO); ++ operands[3] = gen_rtx_fmt_ee (reverse_condition (GET_CODE (operands[1])), ++ GET_MODE (operands[1]), ++ cc_reg, ++ const0_rtx); ++ }") ++ ++(define_insn "jump" ++ [(set (pc) ++ (label_ref (match_operand 0 "" "")))] ++ "" ++ "jmpt\\t%l0") ++ ++(define_expand "indirect_jump" ++ [(parallel [(set (pc) ++ (match_operand:SI 0 "register_operand" "")) ++ (clobber (match_dup 0))])] ++ "" ++ "") ++ ++(define_insn "indirect_jump_internal" ++ [(set (pc) ++ (match_operand:SI 0 "register_operand" "a")) ++ (clobber (match_dup 0))] ++ "" ++ "calli\\t%0,0(%0)") ++ ++; Program Space: The table contains instructions, typically jumps. ++; CALL An,TABLE_SIZE(PC) ;An = Jump Table Base Address. ++; ;An -> Here. ++; LEA Ak, (An,Dn) ;Ak -> Table Entry ++; JMP/CALL (Ak) ++ ++(define_expand "tablejump" ++ [(parallel [(set (pc) ++ (match_operand:SI 0 "nonimmediate_operand" "")) ++ (use (label_ref (match_operand 1 "" "")))])] ++ "" ++ "") ++ ++(define_insn "tablejump_internal" ++ [(set (pc) ++ (match_operand:SI 0 "nonimmediate_operand" "rm")) ++ (use (label_ref (match_operand 1 "" "")))] ++ "" ++ "ret\\t%0") ++ ++; Call subroutine with no return value. ++; ++(define_expand "call" ++ [(call (match_operand:QI 0 "general_operand" "") ++ (match_operand:SI 1 "general_operand" ""))] ++ "" ++ "{ ++ if (TARGET_FDPIC) ++ { ++ ubicom32_expand_call_fdpic (operands); ++ DONE; ++ } ++ ++ if (! ubicom32_call_address_operand (XEXP (operands[0], 0), VOIDmode)) ++ XEXP (operands[0], 0) = force_reg (SImode, XEXP (operands[0], 0)); ++ }") ++ ++; We expand to a simple form that doesn't clobber the link register and ++; then split to a form that does. This allows the RTL optimizers that ++; run before the splitter to have the opportunity to eliminate the call ++; without marking A5 as being clobbered and this in turn avoids saves ++; and returns in a number of cases. ++; ++(define_insn_and_split "call_1" ++ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S")) ++ (match_operand:SI 1 "general_operand" "g,g"))] ++ "! TARGET_FDPIC" ++ "#" ++ "" ++ [(parallel ++ [(call (mem:QI (match_dup 0)) ++ (match_dup 1)) ++ (clobber (reg:SI LINK_REGNO))])] ++ "") ++ ++(define_insn "call_slow" ++ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S")) ++ (match_operand:SI 1 "general_operand" "g,g")) ++ (clobber (reg:SI LINK_REGNO))] ++ "(! TARGET_FDPIC && ! TARGET_FASTCALL)" ++ "@ ++ calli\\ta5, 0(%0) ++ moveai\\ta5, #%%hi(%C0)\;calli\\ta5, %%lo(%C0)(a5)") ++ ++(define_insn "call_fast" ++ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S")) ++ (match_operand:SI 1 "general_operand" "g,g")) ++ (clobber (reg:SI LINK_REGNO))] ++ "(! TARGET_FDPIC && TARGET_FASTCALL)" ++ "@ ++ calli\\ta5, 0(%0) ++ call\\ta5, %C0") ++ ++; We expand to a simple form that doesn't clobber the link register and ++; then split to a form that does. This allows the RTL optimizers that ++; run before the splitter to have the opportunity to eliminate the call ++; without marking A5 as being clobbered and this in turn avoids saves ++; and returns in a number of cases. ++; ++(define_insn_and_split "call_fdpic" ++ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S")) ++ (match_operand:SI 1 "general_operand" "g,g")) ++ (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z"))] ++ "TARGET_FDPIC" ++ "#" ++ "" ++ [(parallel ++ [(call (mem:QI (match_dup 0)) ++ (match_dup 1)) ++ (use (match_dup 2)) ++ (clobber (reg:SI LINK_REGNO))])] ++ "") ++ ++(define_insn "call_fdpic_clobber" ++ [(call (mem:QI (match_operand:SI 0 "ubicom32_call_address_operand" "a,S")) ++ (match_operand:SI 1 "general_operand" "g,g")) ++ (use (match_operand:SI 2 "ubicom32_fdpic_operand" "Z,Z")) ++ (clobber (reg:SI LINK_REGNO))] ++ "TARGET_FDPIC" ++ "@ ++ move.4\\ta5, 0(%0)\;move.4\\t%2, 4(%0)\;calli\\ta5, 0(a5) ++ call\\ta5, %C0") ++ ++; Call subroutine, returning value in operand 0 ++; (which must be a hard register). ++; ++(define_expand "call_value" ++ [(set (match_operand 0 "" "") ++ (call (match_operand:QI 1 "general_operand" "") ++ (match_operand:SI 2 "general_operand" "")))] ++ "" ++ "{ ++ if (TARGET_FDPIC) ++ { ++ ubicom32_expand_call_value_fdpic (operands); ++ DONE; ++ } ++ ++ if (! ubicom32_call_address_operand (XEXP (operands[1], 0), VOIDmode)) ++ XEXP (operands[1], 0) = force_reg (SImode, XEXP (operands[1], 0)); ++ }") ++ ++; We expand to a simple form that doesn't clobber the link register and ++; then split to a form that does. This allows the RTL optimizers that ++; run before the splitter to have the opportunity to eliminate the call ++; without marking A5 as being clobbered and this in turn avoids saves ++; and returns in a number of cases. ++; ++(define_insn_and_split "call_value_1" ++ [(set (match_operand 0 "register_operand" "=r,r") ++ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S")) ++ (match_operand:SI 2 "general_operand" "g,g")))] ++ "! TARGET_FDPIC" ++ "#" ++ "" ++ [(parallel ++ [(set (match_dup 0) ++ (call (mem:QI (match_dup 1)) ++ (match_dup 2))) ++ (clobber (reg:SI LINK_REGNO))])] ++ "") ++ ++(define_insn "call_value_slow" ++ [(set (match_operand 0 "register_operand" "=r,r") ++ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S")) ++ (match_operand:SI 2 "general_operand" "g,g"))) ++ (clobber (reg:SI LINK_REGNO))] ++ "(! TARGET_FDPIC && ! TARGET_FASTCALL)" ++ "@ ++ calli\\ta5, 0(%1) ++ moveai\\ta5, #%%hi(%C1)\;calli\\ta5, %%lo(%C1)(a5)") ++ ++(define_insn "call_value_fast" ++ [(set (match_operand 0 "register_operand" "=r,r") ++ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S")) ++ (match_operand:SI 2 "general_operand" "g,g"))) ++ (clobber (reg:SI LINK_REGNO))] ++ "(! TARGET_FDPIC && TARGET_FASTCALL)" ++ "@ ++ calli\\ta5, 0(%1) ++ call\\ta5, %C1") ++ ++; We expand to a simple form that doesn't clobber the link register and ++; then split to a form that does. This allows the RTL optimizers that ++; run before the splitter to have the opportunity to eliminate the call ++; without marking A5 as being clobbered and this in turn avoids saves ++; and returns in a number of cases. ++; ++(define_insn_and_split "call_value_fdpic" ++ [(set (match_operand 0 "register_operand" "=r,r") ++ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S")) ++ (match_operand:SI 2 "general_operand" "g,g"))) ++ (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z"))] ++ "TARGET_FDPIC" ++ "#" ++ "" ++ [(parallel ++ [(set (match_dup 0) ++ (call (mem:QI (match_dup 1)) ++ (match_dup 2))) ++ (use (match_dup 3)) ++ (clobber (reg:SI LINK_REGNO))])] ++ "") ++ ++(define_insn "call_value_fdpic_clobber" ++ [(set (match_operand 0 "register_operand" "=r,r") ++ (call (mem:QI (match_operand:SI 1 "ubicom32_call_address_operand" "a,S")) ++ (match_operand:SI 2 "general_operand" "g,g"))) ++ (use (match_operand:SI 3 "ubicom32_fdpic_operand" "Z,Z")) ++ (clobber (reg:SI LINK_REGNO))] ++ "TARGET_FDPIC" ++ "@ ++ move.4\\ta5, 0(%1)\;move.4\\t%3, 4(%1)\;calli\\ta5, 0(a5) ++ call\\ta5, %C1") ++ ++(define_expand "untyped_call" ++ [(parallel [(call (match_operand 0 "" "") ++ (const_int 0)) ++ (match_operand 1 "" "") ++ (match_operand 2 "" "")])] ++ "" ++ "{ ++ int i; ++ ++ emit_call_insn (gen_call (operands[0], const0_rtx)); ++ ++ for (i = 0; i < XVECLEN (operands[2], 0); i++) ++ { ++ rtx set = XVECEXP (operands[2], 0, i); ++ emit_move_insn (SET_DEST (set), SET_SRC (set)); ++ } ++ DONE; ++ }") ++ ++(define_insn "lsl1_1" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (ashift:SI (subreg:SI ++ (match_operand:QI 1 "memory_operand" "m") ++ 0) ++ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4)" ++ "lsl.1\\t%0, %1, %2") ++ ++; The combiner gets rather creative about left shifts of sub-word memory ++; operands because it's uncertain about whether the memory is sign or ++; zero extended. It only wants zero-extended behaviour and so throws ++; in an extra and operation. ++; ++(define_insn "lsl1_2" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (and:SI ++ (ashift:SI (subreg:SI ++ (match_operand:QI 1 "memory_operand" "m") ++ 0) ++ (match_operand:SI 2 "const_int_operand" "M")) ++ (match_operand:SI 3 "const_int_operand" "n"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4 ++ && INTVAL (operands[3]) == (0xff << INTVAL (operands[2])))" ++ "lsl.1\\t%0, %1, %2") ++ ++(define_insn "lsl2_1" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (ashift:SI (subreg:SI ++ (match_operand:HI 1 "memory_operand" "m") ++ 0) ++ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4)" ++ "lsl.2\\t%0, %1, %2") ++ ++; The combiner gets rather creative about left shifts of sub-word memory ++; operands because it's uncertain about whether the memory is sign or ++; zero extended. It only wants zero-extended behaviour and so throws ++; in an extra and operation. ++; ++(define_insn "lsl2_2" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (and:SI ++ (ashift:SI (subreg:SI ++ (match_operand:HI 1 "memory_operand" "m") ++ 0) ++ (match_operand:SI 2 "const_int_operand" "M")) ++ (match_operand:SI 3 "const_int_operand" "n"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4 ++ && INTVAL (operands[3]) == (0xffff << INTVAL (operands[2])))" ++ "lsl.2\\t%0, %1, %2") ++ ++(define_insn "ashlsi3" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") ++ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "lsl.4\\t%0, %1, %2") ++ ++(define_insn "lshlsi3_ccwz" ++ [(set (reg CC_REGNO) ++ (compare ++ (ashift:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") ++ (match_operand:SI 2 "ubicom32_arith_operand" "dM")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (ashift:SI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCWZmode)" ++ "lsl.4\\t%0, %1, %2") ++ ++(define_insn "lshlsi3_ccwz_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (ashift:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI") ++ (match_operand:SI 1 "ubicom32_arith_operand" "dM")) ++ (const_int 0))) ++ (clobber (match_scratch:SI 2 "=d"))] ++ "ubicom32_match_cc_mode(insn, CCWZmode)" ++ "lsl.4\\t%2, %0, %1") ++ ++; The combiner finds this canonical form for what is in essence a right ++; shift. ++; ++(define_insn "asr1_2" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (sign_extract:SI (match_operand:QI 1 "memory_operand" "m") ++ (match_operand:SI 2 "const_int_operand" "M") ++ (match_operand:SI 3 "const_int_operand" "M"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4 ++ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))" ++ "asr.1\\t%0, %1, %3") ++ ++; The combiner finds this canonical form for what is in essence a right ++; shift. ++; ++(define_insn "asr2_2" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (sign_extract:SI (match_operand:HI 1 "memory_operand" "m") ++ (match_operand:SI 2 "const_int_operand" "M") ++ (match_operand:SI 3 "const_int_operand" "M"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4 ++ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))" ++ "asr.2\\t%0, %1, %3") ++ ++(define_insn "ashrsi3" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ") ++ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "asr.4\\t%0, %1, %2") ++ ++(define_insn "ashrsi3_ccwzn" ++ [(set (reg CC_REGNO) ++ (compare ++ (ashiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmJ") ++ (match_operand:SI 2 "ubicom32_arith_operand" "dM")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (ashiftrt:SI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "asr.4\\t%0, %1, %2") ++ ++(define_insn "ashrsi3_ccwzn_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (ashiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmJ") ++ (match_operand:SI 1 "ubicom32_arith_operand" "dM")) ++ (const_int 0))) ++ (clobber (match_scratch:SI 2 "=d"))] ++ "ubicom32_match_cc_mode(insn, CCWZNmode)" ++ "asr.4\\t%2, %0, %1") ++ ++(define_insn "lsr1_1" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (lshiftrt:SI (subreg:SI ++ (match_operand:QI 1 "memory_operand" "m") ++ 0) ++ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4)" ++ "lsr.1\\t%0, %1, %2") ++ ++; The combiner finds this canonical form for what is in essence a right ++; shift. ++; ++(define_insn "lsr1_2" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (zero_extract:SI (match_operand:QI 1 "memory_operand" "m") ++ (match_operand:SI 2 "const_int_operand" "M") ++ (match_operand:SI 3 "const_int_operand" "M"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4 ++ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 8))" ++ "lsr.1\\t%0, %1, %3") ++ ++(define_insn "lsr2_1" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (lshiftrt:SI (subreg:SI ++ (match_operand:HI 1 "memory_operand" "m") ++ 0) ++ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4)" ++ "lsr.2\\t%0, %1, %2") ++ ++; The combiner finds this canonical form for what is in essence a right ++; shift. ++; ++(define_insn "lsr2_2" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (zero_extract:SI (match_operand:HI 1 "memory_operand" "m") ++ (match_operand:SI 2 "const_int_operand" "M") ++ (match_operand:SI 3 "const_int_operand" "M"))) ++ (clobber (reg:CC CC_REGNO))] ++ "(ubicom32_v4 ++ && (INTVAL (operands[2]) + INTVAL (operands[3]) == 16))" ++ "lsr.2\\t%0, %1, %3") ++ ++(define_insn "lshrsi3" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") ++ (match_operand:SI 2 "ubicom32_arith_operand" "dM"))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "lsr.4\\t%0, %1, %2") ++ ++(define_insn "lshrsi3_ccwz" ++ [(set (reg CC_REGNO) ++ (compare ++ (lshiftrt:SI (match_operand:SI 1 "ubicom32_arith_operand" "rmI") ++ (match_operand:SI 2 "ubicom32_arith_operand" "dM")) ++ (const_int 0))) ++ (set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (lshiftrt:SI (match_dup 1) ++ (match_dup 2)))] ++ "ubicom32_match_cc_mode(insn, CCWZmode)" ++ "lsr.4\\t%0, %1, %2") ++ ++(define_insn "lshrsi3_ccwz_null" ++ [(set (reg CC_REGNO) ++ (compare ++ (lshiftrt:SI (match_operand:SI 0 "ubicom32_arith_operand" "rmI") ++ (match_operand:SI 1 "ubicom32_arith_operand" "dM")) ++ (const_int 0))) ++ (clobber (match_scratch:SI 2 "=d"))] ++ "ubicom32_match_cc_mode(insn, CCWZmode)" ++ "lsr.4\\t%2, %0, %1") ++ ++(define_expand "prologue" ++ [(const_int 0)] ++ "" ++ "{ ++ ubicom32_expand_prologue (); ++ DONE; ++ }") ++ ++(define_expand "epilogue" ++ [(return)] ++ "" ++ "{ ++ ubicom32_expand_epilogue (); ++ DONE; ++ }") ++ ++(define_expand "return" ++ [(return)] ++ "" ++ "{ ++ ubicom32_expand_epilogue (); ++ DONE; ++ }") ++ ++(define_expand "_eh_return" ++ [(use (match_operand:SI 0 "register_operand" "r")) ++ (use (match_operand:SI 1 "register_operand" "r"))] ++ "" ++ "{ ++ ubicom32_expand_eh_return (operands); ++ DONE; ++ }") ++ ++; XXX - it looks almost certain that we could make return_internal use a Dn ++; register too. In that instance we'd have to use a ret instruction ++; rather than a calli but it might save cycles. ++; ++(define_insn "return_internal" ++ [(const_int 2) ++ (return) ++ (use (match_operand:SI 0 "ubicom32_mem_or_address_register_operand" "rm"))] ++ "" ++ "* ++ { ++ if (REG_P (operands[0]) && REGNO (operands[0]) == LINK_REGNO ++ && ubicom32_can_use_calli_to_ret) ++ return \"calli\\t%0, 0(%0)\"; ++ ++ return \"ret\\t%0\"; ++ }") ++ ++(define_insn "return_from_post_modify_sp" ++ [(parallel ++ [(const_int 2) ++ (return) ++ (use (mem:SI (post_modify:SI ++ (reg:SI SP_REGNO) ++ (plus:SI (reg:SI SP_REGNO) ++ (match_operand:SI 0 "const_int_operand" "n")))))])] ++ "INTVAL (operands[0]) >= 4 && INTVAL (operands[0]) <= 7 * 4" ++ "ret\\t(sp)%E0++") ++ ++;(define_insn "eh_return_internal" ++; [(const_int 4) ++; (return) ++; (use (reg:SI 34))] ++; "" ++; "ret\\ta2") ++ ++; No operation, needed in case the user uses -g but not -O. ++(define_expand "nop" ++ [(const_int 0)] ++ "" ++ "") ++ ++(define_insn "nop_internal" ++ [(const_int 0)] ++ "" ++ "nop") ++ ++; The combiner will generate this pattern given shift and add operations. ++; The canonical form that the combiner wants to use appears to be multiplies ++; instead of shifts even if the compiled sources use shifts. ++; ++(define_insn "shmrg1_add" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (plus:SI ++ (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") ++ (const_int 256)) ++ (zero_extend:SI ++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI")))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "shmrg.1\\t%0, %2, %1") ++ ++; The combiner will generate this pattern given shift and or operations. ++; ++(define_insn "shmrg1_ior" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (ior:SI ++ (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") ++ (const_int 8)) ++ (zero_extend:SI ++ (match_operand:QI 2 "ubicom32_arith_operand" "rmI")))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "shmrg.1\\t%0, %2, %1") ++ ++; The combiner will generate this pattern given shift and add operations. ++; The canonical form that the combiner wants to use appears to be multiplies ++; instead of shifts even if the compiled sources use shifts. ++; ++(define_insn "shmrg2_add" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (plus:SI ++ (mult:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") ++ (const_int 65536)) ++ (zero_extend:SI ++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI")))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "shmrg.2\\t%0, %2, %1") ++ ++; The combiner will generate this pattern given shift and or operations. ++; ++(define_insn "shmrg2_ior" ++ [(set (match_operand:SI 0 "ubicom32_data_register_operand" "=d") ++ (ior:SI ++ (ashift:SI (match_operand:SI 1 "ubicom32_data_register_operand" "d") ++ (const_int 16)) ++ (zero_extend:SI ++ (match_operand:HI 2 "ubicom32_arith_operand" "rmI")))) ++ (clobber (reg:CC CC_REGNO))] ++ "" ++ "shmrg.2\\t%0, %2, %1") ++ ++; Match the case where we load a word from the stack but then discard the ++; upper 16 bits. We turn this into a zero-extended load of that useful ++; 16 bits direct from the stack where possible. ++; ++ ++; XXX - do these peephole2 ops actually work after the CCmode conversion? ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mem:SI (plus:SI (reg:SI SP_REGNO) ++ (match_operand:SI 1 "const_int_operand" "")))) ++ (set (match_operand:SI 2 "nonimmediate_operand" "") ++ (zero_extend:SI (match_operand:HI 3 "register_operand" "")))] ++ "(INTVAL (operands[1]) <= 252 ++ && REGNO (operands[3]) == REGNO (operands[0]) ++ && ((peep2_reg_dead_p (2, operands[0]) ++ && ! reg_mentioned_p (operands[0], operands[2])) ++ || rtx_equal_p (operands[0], operands[2])))" ++ [(set (match_dup 2) ++ (zero_extend:SI (mem:HI (plus:SI (reg:SI SP_REGNO) ++ (match_dup 4)))))] ++ "{ ++ operands[4] = GEN_INT (INTVAL (operands[1]) + 2); ++ }") ++ ++; Match the case where we load a word from the stack but then discard the ++; upper 16 bits. We turn this into a 16-bit load of that useful ++; 16 bits direct from the stack where possible. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mem:SI (plus:SI (reg:SI SP_REGNO) ++ (match_operand:SI 1 "const_int_operand" "")))) ++ (set (match_operand:HI 2 "nonimmediate_operand" "") ++ (match_operand:HI 3 "register_operand" ""))] ++ "(INTVAL (operands[1]) <= 252 ++ && REGNO (operands[3]) == REGNO (operands[0]) ++ && ((peep2_reg_dead_p (2, operands[0]) ++ && ! reg_mentioned_p (operands[0], operands[2])) ++ || rtx_equal_p (operands[0], operands[2])))" ++ [(set (match_dup 2) ++ (mem:HI (plus:SI (reg:SI SP_REGNO) ++ (match_dup 4))))] ++ "{ ++ operands[4] = GEN_INT (INTVAL (operands[1]) + 2); ++ }") ++ ++; Match the case where we load a word from the stack but then discard the ++; upper 24 bits. We turn this into a zero-extended load of that useful ++; 8 bits direct from the stack where possible. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mem:SI (plus:SI (reg:SI SP_REGNO) ++ (match_operand:SI 1 "const_int_operand" "")))) ++ (set (match_operand:SI 2 "nonimmediate_operand" "") ++ (zero_extend:SI (match_operand:QI 3 "register_operand" "")))] ++ "(INTVAL (operands[1]) <= 124 ++ && REGNO (operands[3]) == REGNO (operands[0]) ++ && ((peep2_reg_dead_p (2, operands[0]) ++ && ! reg_mentioned_p (operands[0], operands[2])) ++ || rtx_equal_p (operands[0], operands[2])))" ++ [(set (match_dup 2) ++ (zero_extend:SI (mem:QI (plus:SI (reg:SI SP_REGNO) ++ (match_dup 4)))))] ++ "{ ++ operands[4] = GEN_INT (INTVAL (operands[1]) + 3); ++ }") ++ ++; Match the case where we load a word from the stack but then discard the ++; upper 24 bits. We turn this into an 8-bit load of that useful ++; 8 bits direct from the stack where possible. ++; ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mem:SI (plus:SI (reg:SI SP_REGNO) ++ (match_operand:SI 1 "const_int_operand" "")))) ++ (set (match_operand:QI 2 "nonimmediate_operand" "") ++ (match_operand:QI 3 "register_operand" ""))] ++ "(INTVAL (operands[1]) <= 124 ++ && REGNO (operands[3]) == REGNO (operands[0]) ++ && ((peep2_reg_dead_p (2, operands[0]) ++ && ! reg_mentioned_p (operands[0], operands[2])) ++ || rtx_equal_p (operands[0], operands[2])))" ++ [(set (match_dup 2) ++ (mem:QI (plus:SI (reg:SI SP_REGNO) ++ (match_dup 4))))] ++ "{ ++ operands[4] = GEN_INT (INTVAL (operands[1]) + 3); ++ }") ++ +--- /dev/null ++++ b/gcc/config/ubicom32/ubicom32.opt +@@ -0,0 +1,27 @@ ++mdebug-address ++Target RejectNegative Report Undocumented Mask(DEBUG_ADDRESS) ++Debug addresses ++ ++mdebug-context ++Target RejectNegative Report Undocumented Mask(DEBUG_CONTEXT) ++Debug contexts ++ ++march= ++Target Report Var(ubicom32_arch_name) Init("ubicom32v4") Joined ++Specify the name of the target architecture ++ ++mfdpic ++Target Report Mask(FDPIC) ++Enable Function Descriptor PIC mode ++ ++minline-plt ++Target Report Mask(INLINE_PLT) ++Enable inlining of PLT in function calls ++ ++mfastcall ++Target Report Mask(FASTCALL) ++Enable default fast (call) calling sequence for smaller applications ++ ++mipos-abi ++Target Report Mask(IPOS_ABI) ++Enable the ipOS ABI in which D10-D13 are caller-clobbered +--- /dev/null ++++ b/gcc/config/ubicom32/uclinux.h +@@ -0,0 +1,67 @@ ++/* Definitions of target machine for Ubicom32-uclinux ++ ++ Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, ++ 2009 Free Software Foundation, Inc. ++ Contributed by Ubicom, Inc. ++ ++ This file is part of GCC. ++ ++ GCC is free software; you can redistribute it and/or modify it ++ under the terms of the GNU General Public License as published ++ by the Free Software Foundation; either version 3, or (at your ++ option) any later version. ++ ++ GCC is distributed in the hope that it will be useful, but WITHOUT ++ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ++ or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ++ License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with GCC; see the file COPYING3. If not see ++ . */ ++ ++/* Don't assume anything about the header files. */ ++#define NO_IMPLICIT_EXTERN_C ++ ++#undef LIB_SPEC ++#define LIB_SPEC \ ++ "%{pthread:-lpthread} " \ ++ "%{!shared:%{!symbolic: -lc}} " ++ ++ ++#undef LINK_GCC_C_SEQUENCE_SPEC ++#define LINK_GCC_C_SEQUENCE_SPEC \ ++ "%{!shared:--start-group} %G %L %{!shared:--end-group}%{shared:%G} " ++ ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC \ ++ "%{!shared: crt1%O%s}" \ ++ " crti%O%s crtbegin%O%s" ++ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC "crtend%O%s crtn%O%s" ++ ++/* This macro applies on top of OBJECT_FORMAT_ELF and indicates that ++ we want to support both flat and ELF output. */ ++#define OBJECT_FORMAT_FLAT ++ ++#undef DRIVER_SELF_SPECS ++#define DRIVER_SELF_SPECS \ ++ "%{!mno-fastcall:-mfastcall}" ++ ++/* taken from linux.h */ ++/* The GNU C++ standard library requires that these macros be defined. */ ++#undef CPLUSPLUS_CPP_SPEC ++#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)" ++ ++#define TARGET_OS_CPP_BUILTINS() \ ++ do { \ ++ builtin_define_std ("__UBICOM32__"); \ ++ builtin_define_std ("__ubicom32__"); \ ++ builtin_define ("__gnu_linux__"); \ ++ builtin_define_std ("linux"); \ ++ builtin_define_std ("unix"); \ ++ builtin_assert ("system=linux"); \ ++ builtin_assert ("system=unix"); \ ++ builtin_assert ("system=posix"); \ ++ } while (0) +--- /dev/null ++++ b/gcc/config/ubicom32/xm-ubicom32.h +@@ -0,0 +1,36 @@ ++/* Configuration for Ubicom's Ubicom32 architecture. ++ Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software ++ Foundation, Inc. ++ Contributed by Ubicom Inc. ++ ++This file is part of GNU CC. ++ ++GNU CC is free software; you can redistribute it and/or modify ++it under the terms of the GNU General Public License as published by ++the Free Software Foundation; either version 2, or (at your option) ++any later version. ++ ++GNU CC is distributed in the hope that it will be useful, ++but WITHOUT ANY WARRANTY; without even the implied warranty of ++MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++GNU General Public License for more details. ++ ++You should have received a copy of the GNU General Public License ++along with GNU CC; see the file COPYING. If not, write to ++the Free Software Foundation, 59 Temple Place - Suite 330, ++Boston, MA 02111-1307, USA. */ ++ ++/* #defines that need visibility everywhere. */ ++#define FALSE 0 ++#define TRUE 1 ++ ++/* This describes the machine the compiler is hosted on. */ ++#define HOST_BITS_PER_CHAR 8 ++#define HOST_BITS_PER_SHORT 16 ++#define HOST_BITS_PER_INT 32 ++#define HOST_BITS_PER_LONG 32 ++#define HOST_BITS_PER_LONGLONG 64 ++ ++/* Arguments to use with `exit'. */ ++#define SUCCESS_EXIT_CODE 0 ++#define FATAL_EXIT_CODE 33 +--- a/gcc/config.gcc ++++ b/gcc/config.gcc +@@ -2340,6 +2340,34 @@ spu-*-elf*) + c_target_objs="${c_target_objs} spu-c.o" + cxx_target_objs="${cxx_target_objs} spu-c.o" + ;; ++ubicom32-*-elf) ++ xm_file=ubicom32/xm-ubicom32.h ++ tm_file="${tm_file} ubicom32/elf.h" # still need dbxelf.h elfos.h ++ tmake_file=ubicom32/t-ubicom32 ++ ;; ++ubicom32-*-uclinux*) ++ xm_file=ubicom32/xm-ubicom32.h ++ tm_file="${tm_file} ubicom32/elf.h ubicom32/uclinux.h" # still need dbxelf.h elfos.h linux.h ++ tm_defines="${tm_defines} UCLIBC_DEFAULT=1" ++ extra_options="${extra_options} linux.opt" ++ tmake_file=ubicom32/t-ubicom32-uclinux ++ use_collect2=no ++ ;; ++ubicom32-*-linux-uclibc) ++ xm_file=ubicom32/xm-ubicom32.h ++ tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h ++ tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux" ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ use_collect2=no ++ ;; ++ubicom32-*-linux*) ++ xm_file=ubicom32/xm-ubicom32.h ++ tm_file="${tm_file} ubicom32/elf.h linux.h ubicom32/linux.h" # still need dbxelf.h elfos.h ++ tmake_file="t-slibgcc-elf-ver ubicom32/t-ubicom32-linux" ++ tm_defines="${tm_defines} UCLIBC_DEFAULT=1" ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ use_collect2=no ++ ;; + v850e1-*-*) + target_cpu_default="TARGET_CPU_v850e1" + tm_file="dbxelf.h elfos.h svr4.h v850/v850.h" +--- a/libgcc/config.host ++++ b/libgcc/config.host +@@ -551,6 +551,15 @@ sparc64-*-netbsd*) + ;; + spu-*-elf*) + ;; ++ubicom32*-*-elf*) ++ ;; ++ubicom32*-*-uclinux*) ++ ;; ++ubicom32*-*-linux*) ++ # No need to build crtbeginT.o on uClibc systems. Should probably ++ # be moved to the OS specific section above. ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ ;; + v850e1-*-*) + ;; + v850e-*-*) diff --git a/toolchain/gcc/patches/4.4.7/810-arm-softfloat-libgcc.patch b/toolchain/gcc/patches/4.4.7/810-arm-softfloat-libgcc.patch new file mode 100644 index 0000000000..7af72aadfa --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/810-arm-softfloat-libgcc.patch @@ -0,0 +1,25 @@ +--- a/gcc/config/arm/linux-elf.h ++++ b/gcc/config/arm/linux-elf.h +@@ -60,7 +60,7 @@ + %{shared:-lc} \ + %{!shared:%{profile:-lc_p}%{!profile:-lc}}" + +-#define LIBGCC_SPEC "%{msoft-float:-lfloat} %{mfloat-abi=soft*:-lfloat} -lgcc" ++#define LIBGCC_SPEC "-lgcc" + + #define GLIBC_DYNAMIC_LINKER "/lib/ld-linux.so.2" + +--- a/gcc/config/arm/t-linux ++++ b/gcc/config/arm/t-linux +@@ -4,7 +4,10 @@ TARGET_LIBGCC2_CFLAGS = -fomit-frame-poi + + LIB1ASMSRC = arm/lib1funcs.asm + LIB1ASMFUNCS = _udivsi3 _divsi3 _umodsi3 _modsi3 _dvmd_lnx _clzsi2 _clzdi2 \ +- _arm_addsubdf3 _arm_addsubsf3 ++ _arm_addsubdf3 _arm_addsubsf3 \ ++ _negdf2 _addsubdf3 _muldivdf3 _cmpdf2 _unorddf2 _fixdfsi _fixunsdfsi \ ++ _truncdfsf2 _negsf2 _addsubsf3 _muldivsf3 _cmpsf2 _unordsf2 \ ++ _fixsfsi _fixunssfsi _floatdidf _floatundidf _floatdisf _floatundisf + + # MULTILIB_OPTIONS = mhard-float/msoft-float + # MULTILIB_DIRNAMES = hard-float soft-float diff --git a/toolchain/gcc/patches/4.4.7/820-libgcc_pic.patch b/toolchain/gcc/patches/4.4.7/820-libgcc_pic.patch new file mode 100644 index 0000000000..18386dfd42 --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/820-libgcc_pic.patch @@ -0,0 +1,36 @@ +--- a/libgcc/Makefile.in ++++ b/libgcc/Makefile.in +@@ -729,11 +729,12 @@ $(libgcov-objects): %$(objext): $(gcc_sr + + # Static libraries. + libgcc.a: $(libgcc-objects) ++libgcc_pic.a: $(libgcc-s-objects) + libgcov.a: $(libgcov-objects) + libunwind.a: $(libunwind-objects) + libgcc_eh.a: $(libgcc-eh-objects) + +-libgcc.a libgcov.a libunwind.a libgcc_eh.a: ++libgcc.a libgcov.a libunwind.a libgcc_eh.a libgcc_pic.a: + -rm -f $@ + + objects="$(objects)"; \ +@@ -755,7 +756,7 @@ libgcc_s$(SHLIB_EXT): libunwind$(SHLIB_E + endif + + ifeq ($(enable_shared),yes) +-all: libgcc_eh.a libgcc_s$(SHLIB_EXT) ++all: libgcc_eh.a libgcc_pic.a libgcc_s$(SHLIB_EXT) + ifneq ($(LIBUNWIND),) + all: libunwind$(SHLIB_EXT) + endif +@@ -928,6 +929,10 @@ install-shared: + chmod 644 $(DESTDIR)$(inst_libdir)/libgcc_eh.a + $(RANLIB) $(DESTDIR)$(inst_libdir)/libgcc_eh.a + ++ $(INSTALL_DATA) libgcc_pic.a $(mapfile) $(DESTDIR)$(inst_libdir)/ ++ chmod 644 $(DESTDIR)$(inst_libdir)/libgcc_pic.a ++ $(RANLIB) $(DESTDIR)$(inst_libdir)/libgcc_pic.a ++ + $(subst @multilib_dir@,$(MULTIDIR),$(subst \ + @shlib_base_name@,libgcc_s,$(subst \ + @shlib_slibdir_qual@,$(MULTIOSSUBDIR),$(SHLIB_INSTALL)))) diff --git a/toolchain/gcc/patches/4.4.7/910-mbsd_multi.patch b/toolchain/gcc/patches/4.4.7/910-mbsd_multi.patch new file mode 100644 index 0000000000..1b17e983e9 --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/910-mbsd_multi.patch @@ -0,0 +1,269 @@ + + This patch brings over a few features from MirBSD: + * -fhonour-copts + If this option is not given, it's warned (depending + on environment variables). This is to catch errors + of misbuilt packages which override CFLAGS themselves. + * -Werror-maybe-reset + Has the effect of -Wno-error if GCC_NO_WERROR is + set and not '0', a no-operation otherwise. This is + to be able to use -Werror in "make" but prevent + GNU autoconf generated configure scripts from + freaking out. + * Make -fno-strict-aliasing and -fno-delete-null-pointer-checks + the default for -O2/-Os, because they trigger gcc bugs + and can delete code with security implications. + + This patch was authored by Thorsten Glaser + with copyright assignment to the FSF in effect. + +--- a/gcc/c-opts.c ++++ b/gcc/c-opts.c +@@ -105,6 +105,9 @@ static size_t deferred_count; + /* Number of deferred options scanned for -include. */ + static size_t include_cursor; + ++/* Check if a port honours COPTS. */ ++static int honour_copts = 0; ++ + static void set_Wimplicit (int); + static void handle_OPT_d (const char *); + static void set_std_cxx98 (int); +@@ -454,6 +457,14 @@ c_common_handle_option (size_t scode, co + enable_warning_as_error ("implicit-function-declaration", value, CL_C | CL_ObjC); + break; + ++ case OPT_Werror_maybe_reset: ++ { ++ char *ev = getenv ("GCC_NO_WERROR"); ++ if ((ev != NULL) && (*ev != '0')) ++ cpp_opts->warnings_are_errors = 0; ++ } ++ break; ++ + case OPT_Wformat: + set_Wformat (value); + break; +@@ -690,6 +701,12 @@ c_common_handle_option (size_t scode, co + flag_exceptions = value; + break; + ++ case OPT_fhonour_copts: ++ if (c_language == clk_c) { ++ honour_copts++; ++ } ++ break; ++ + case OPT_fimplement_inlines: + flag_implement_inlines = value; + break; +@@ -1209,6 +1226,47 @@ c_common_init (void) + return false; + } + ++ if (c_language == clk_c) { ++ char *ev = getenv ("GCC_HONOUR_COPTS"); ++ int evv; ++ if (ev == NULL) ++ evv = -1; ++ else if ((*ev == '0') || (*ev == '\0')) ++ evv = 0; ++ else if (*ev == '1') ++ evv = 1; ++ else if (*ev == '2') ++ evv = 2; ++ else if (*ev == 's') ++ evv = -1; ++ else { ++ warning (0, "unknown GCC_HONOUR_COPTS value, assuming 1"); ++ evv = 1; /* maybe depend this on something like MIRBSD_NATIVE? */ ++ } ++ if (evv == 1) { ++ if (honour_copts == 0) { ++ error ("someone does not honour COPTS at all in lenient mode"); ++ return false; ++ } else if (honour_copts != 1) { ++ warning (0, "someone does not honour COPTS correctly, passed %d times", ++ honour_copts); ++ } ++ } else if (evv == 2) { ++ if (honour_copts == 0) { ++ error ("someone does not honour COPTS at all in strict mode"); ++ return false; ++ } else if (honour_copts != 1) { ++ error ("someone does not honour COPTS correctly, passed %d times", ++ honour_copts); ++ return false; ++ } ++ } else if (evv == 0) { ++ if (honour_copts != 1) ++ inform (0, "someone does not honour COPTS correctly, passed %d times", ++ honour_copts); ++ } ++ } ++ + return true; + } + +--- a/gcc/c.opt ++++ b/gcc/c.opt +@@ -215,6 +215,10 @@ Werror-implicit-function-declaration + C ObjC RejectNegative Warning + This switch is deprecated; use -Werror=implicit-function-declaration instead + ++Werror-maybe-reset ++C ObjC C++ ObjC++ ++; Documented in common.opt ++ + Wfloat-equal + C ObjC C++ ObjC++ Var(warn_float_equal) Warning + Warn if testing floating point numbers for equality +@@ -613,6 +617,9 @@ C++ ObjC++ Optimization + fhonor-std + C++ ObjC++ + ++fhonour-copts ++C ObjC C++ ObjC++ RejectNegative ++ + fhosted + C ObjC + Assume normal C execution environment +--- a/gcc/common.opt ++++ b/gcc/common.opt +@@ -102,6 +102,10 @@ Werror= + Common Joined + Treat specified warning as error + ++Werror-maybe-reset ++Common ++If environment variable GCC_NO_WERROR is set, act as -Wno-error ++ + Wextra + Common Warning + Print extra (possibly unwanted) warnings +@@ -573,6 +577,9 @@ fguess-branch-probability + Common Report Var(flag_guess_branch_prob) Optimization + Enable guessing of branch probabilities + ++fhonour-copts ++Common RejectNegative ++ + ; Nonzero means ignore `#ident' directives. 0 means handle them. + ; Generate position-independent code for executables if possible + ; On SVR4 targets, it also controls whether or not to emit a +--- a/gcc/opts.c ++++ b/gcc/opts.c +@@ -898,9 +898,6 @@ decode_options (unsigned int argc, const + flag_schedule_insns_after_reload = opt2; + #endif + flag_regmove = opt2; +- flag_strict_aliasing = opt2; +- flag_strict_overflow = opt2; +- flag_delete_null_pointer_checks = opt2; + flag_reorder_blocks = opt2; + flag_reorder_functions = opt2; + flag_tree_vrp = opt2; +@@ -924,6 +921,9 @@ decode_options (unsigned int argc, const + + /* -O3 optimizations. */ + opt3 = (optimize >= 3); ++ flag_strict_aliasing = opt3; ++ flag_strict_overflow = opt3; ++ flag_delete_null_pointer_checks = opt3; + flag_predictive_commoning = opt3; + flag_inline_functions = opt3; + flag_unswitch_loops = opt3; +@@ -1603,6 +1603,17 @@ common_handle_option (size_t scode, cons + enable_warning_as_error (arg, value, lang_mask); + break; + ++ case OPT_Werror_maybe_reset: ++ { ++ char *ev = getenv ("GCC_NO_WERROR"); ++ if ((ev != NULL) && (*ev != '0')) ++ warnings_are_errors = 0; ++ } ++ break; ++ ++ case OPT_fhonour_copts: ++ break; ++ + case OPT_Wextra: + set_Wextra (value); + break; +--- a/gcc/doc/cppopts.texi ++++ b/gcc/doc/cppopts.texi +@@ -164,6 +164,11 @@ in older programs. This warning is on b + Make all warnings into hard errors. Source code which triggers warnings + will be rejected. + ++ at item -Werror-maybe-reset ++ at opindex Werror-maybe-reset ++Act like @samp{-Wno-error} if the @env{GCC_NO_WERROR} environment ++variable is set to anything other than 0 or empty. ++ + @item -Wsystem-headers + @opindex Wsystem-headers + Issue warnings for code in system headers. These are normally unhelpful +--- a/gcc/doc/invoke.texi ++++ b/gcc/doc/invoke.texi +@@ -234,7 +234,7 @@ Objective-C and Objective-C++ Dialects}. + -Wconversion -Wcoverage-mismatch -Wno-deprecated @gol + -Wno-deprecated-declarations -Wdisabled-optimization @gol + -Wno-div-by-zero -Wempty-body -Wenum-compare -Wno-endif-labels @gol +--Werror -Werror=* @gol ++-Werror -Werror=* -Werror-maybe-reset @gol + -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol + -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol + -Wformat-security -Wformat-y2k @gol +@@ -4182,6 +4182,22 @@ This option is only supported for C and + @option{-Wall} and by @option{-pedantic}, which can be disabled with + @option{-Wno-pointer-sign}. + ++ at item -Werror-maybe-reset ++ at opindex Werror-maybe-reset ++Act like @samp{-Wno-error} if the @env{GCC_NO_WERROR} environment ++variable is set to anything other than 0 or empty. ++ ++ at item -fhonour-copts ++ at opindex fhonour-copts ++If @env{GCC_HONOUR_COPTS} is set to 1, abort if this option is not ++given at least once, and warn if it is given more than once. ++If @env{GCC_HONOUR_COPTS} is set to 2, abort if this option is not ++given exactly once. ++If @env{GCC_HONOUR_COPTS} is set to 0 or unset, warn if this option ++is not given exactly once. ++The warning is quelled if @env{GCC_HONOUR_COPTS} is set to @samp{s}. ++This flag and environment variable only affect the C language. ++ + @item -Wstack-protector + @opindex Wstack-protector + @opindex Wno-stack-protector +@@ -5721,7 +5737,7 @@ so, the first branch is redirected to ei + second branch or a point immediately following it, depending on whether + the condition is known to be true or false. + +-Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++Enabled at levels @option{-O3}. + + @item -fsplit-wide-types + @opindex fsplit-wide-types +@@ -5866,7 +5882,7 @@ safely dereference null pointers. Use + @option{-fno-delete-null-pointer-checks} to disable this optimization + for programs which depend on that behavior. + +-Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++Enabled at levels @option{-O3}. + + @item -fexpensive-optimizations + @opindex fexpensive-optimizations +--- a/gcc/java/jvspec.c ++++ b/gcc/java/jvspec.c +@@ -670,6 +670,7 @@ lang_specific_pre_link (void) + class name. Append dummy `.c' that can be stripped by set_input so %b + is correct. */ + set_input (concat (main_class_name, "main.c", NULL)); ++ putenv ("GCC_HONOUR_COPTS=s"); /* XXX hack! */ + err = do_spec (jvgenmain_spec); + if (err == 0) + { diff --git a/toolchain/gcc/patches/4.4.7/930-avr32_support.patch b/toolchain/gcc/patches/4.4.7/930-avr32_support.patch new file mode 100644 index 0000000000..334d2cd134 --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/930-avr32_support.patch @@ -0,0 +1,22706 @@ +--- a/gcc/builtins.c ++++ b/gcc/builtins.c +@@ -11108,7 +11108,7 @@ validate_gimple_arglist (const_gimple ca + + do + { +- code = va_arg (ap, enum tree_code); ++ code = va_arg (ap, int); + switch (code) + { + case 0: +--- a/gcc/calls.c ++++ b/gcc/calls.c +@@ -3447,7 +3447,7 @@ emit_library_call_value_1 (int retval, r + for (; count < nargs; count++) + { + rtx val = va_arg (p, rtx); +- enum machine_mode mode = va_arg (p, enum machine_mode); ++ enum machine_mode mode = va_arg (p, int); + + /* We cannot convert the arg value to the mode the library wants here; + must do it earlier where we know the signedness of the arg. */ +--- /dev/null ++++ b/gcc/config/avr32/avr32.c +@@ -0,0 +1,8060 @@ ++/* ++ Target hooks and helper functions for AVR32. ++ Copyright 2003,2004,2005,2006,2007,2008,2009,2010 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#include "config.h" ++#include "system.h" ++#include "coretypes.h" ++#include "tm.h" ++#include "rtl.h" ++#include "tree.h" ++#include "obstack.h" ++#include "regs.h" ++#include "hard-reg-set.h" ++#include "real.h" ++#include "insn-config.h" ++#include "conditions.h" ++#include "output.h" ++#include "insn-attr.h" ++#include "flags.h" ++#include "reload.h" ++#include "function.h" ++#include "expr.h" ++#include "optabs.h" ++#include "toplev.h" ++#include "recog.h" ++#include "ggc.h" ++#include "except.h" ++#include "c-pragma.h" ++#include "integrate.h" ++#include "tm_p.h" ++#include "langhooks.h" ++#include "hooks.h" ++#include "df.h" ++ ++#include "target.h" ++#include "target-def.h" ++ ++#include ++ ++ ++ ++/* Global variables. */ ++typedef struct minipool_node Mnode; ++typedef struct minipool_fixup Mfix; ++ ++/* Obstack for minipool constant handling. */ ++static struct obstack minipool_obstack; ++static char *minipool_startobj; ++static rtx minipool_vector_label; ++ ++/* True if we are currently building a constant table. */ ++int making_const_table; ++ ++tree fndecl_attribute_args = NULL_TREE; ++ ++ ++/* Function prototypes. */ ++static unsigned long avr32_isr_value (tree); ++static unsigned long avr32_compute_func_type (void); ++static tree avr32_handle_isr_attribute (tree *, tree, tree, int, bool *); ++static tree avr32_handle_acall_attribute (tree *, tree, tree, int, bool *); ++static tree avr32_handle_fndecl_attribute (tree * node, tree name, tree args, ++ int flags, bool * no_add_attrs); ++static void avr32_reorg (void); ++bool avr32_return_in_msb (tree type); ++bool avr32_vector_mode_supported (enum machine_mode mode); ++static void avr32_init_libfuncs (void); ++static void avr32_file_end (void); ++static void flashvault_decl_list_add (unsigned int vector_num, const char *name); ++ ++ ++ ++static void ++avr32_add_gc_roots (void) ++{ ++ gcc_obstack_init (&minipool_obstack); ++ minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0); ++} ++ ++ ++/* List of all known AVR32 parts */ ++static const struct part_type_s avr32_part_types[] = { ++ /* name, part_type, architecture type, macro */ ++ {"none", PART_TYPE_AVR32_NONE, ARCH_TYPE_AVR32_AP, "__AVR32__"}, ++ {"ap7000", PART_TYPE_AVR32_AP7000, ARCH_TYPE_AVR32_AP, "__AVR32_AP7000__"}, ++ {"ap7001", PART_TYPE_AVR32_AP7001, ARCH_TYPE_AVR32_AP, "__AVR32_AP7001__"}, ++ {"ap7002", PART_TYPE_AVR32_AP7002, ARCH_TYPE_AVR32_AP, "__AVR32_AP7002__"}, ++ {"ap7200", PART_TYPE_AVR32_AP7200, ARCH_TYPE_AVR32_AP, "__AVR32_AP7200__"}, ++ {"uc3a0128", PART_TYPE_AVR32_UC3A0128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0128__"}, ++ {"uc3a0256", PART_TYPE_AVR32_UC3A0256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0256__"}, ++ {"uc3a0512", PART_TYPE_AVR32_UC3A0512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0512__"}, ++ {"uc3a0512es", PART_TYPE_AVR32_UC3A0512ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3A0512ES__"}, ++ {"uc3a1128", PART_TYPE_AVR32_UC3A1128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1128__"}, ++ {"uc3a1256", PART_TYPE_AVR32_UC3A1256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1256__"}, ++ {"uc3a1512", PART_TYPE_AVR32_UC3A1512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1512__"}, ++ {"uc3a1512es", PART_TYPE_AVR32_UC3A1512ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3A1512ES__"}, ++ {"uc3a3revd", PART_TYPE_AVR32_UC3A3REVD, ARCH_TYPE_AVR32_UCR2NOMUL, "__AVR32_UC3A3256S__"}, ++ {"uc3a364", PART_TYPE_AVR32_UC3A364, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A364__"}, ++ {"uc3a364s", PART_TYPE_AVR32_UC3A364S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A364S__"}, ++ {"uc3a3128", PART_TYPE_AVR32_UC3A3128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3128__"}, ++ {"uc3a3128s", PART_TYPE_AVR32_UC3A3128S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3128S__"}, ++ {"uc3a3256", PART_TYPE_AVR32_UC3A3256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3256__"}, ++ {"uc3a3256s", PART_TYPE_AVR32_UC3A3256S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3256S__"}, ++ {"uc3a464", PART_TYPE_AVR32_UC3A464, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A464__"}, ++ {"uc3a464s", PART_TYPE_AVR32_UC3A464S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A464S__"}, ++ {"uc3a4128", PART_TYPE_AVR32_UC3A4128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4128__"}, ++ {"uc3a4128s", PART_TYPE_AVR32_UC3A4128S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4128S__"}, ++ {"uc3a4256", PART_TYPE_AVR32_UC3A4256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4256__"}, ++ {"uc3a4256s", PART_TYPE_AVR32_UC3A4256S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4256S__"}, ++ {"uc3b064", PART_TYPE_AVR32_UC3B064, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B064__"}, ++ {"uc3b0128", PART_TYPE_AVR32_UC3B0128, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0128__"}, ++ {"uc3b0256", PART_TYPE_AVR32_UC3B0256, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0256__"}, ++ {"uc3b0256es", PART_TYPE_AVR32_UC3B0256ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0256ES__"}, ++ {"uc3b0512", PART_TYPE_AVR32_UC3B0512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B0512__"}, ++ {"uc3b0512revc", PART_TYPE_AVR32_UC3B0512REVC, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B0512REVC__"}, ++ {"uc3b164", PART_TYPE_AVR32_UC3B164, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B164__"}, ++ {"uc3b1128", PART_TYPE_AVR32_UC3B1128, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1128__"}, ++ {"uc3b1256", PART_TYPE_AVR32_UC3B1256, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1256__"}, ++ {"uc3b1256es", PART_TYPE_AVR32_UC3B1256ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1256ES__"}, ++ {"uc3b1512", PART_TYPE_AVR32_UC3B1512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B1512__"}, ++ {"uc3b1512revc", PART_TYPE_AVR32_UC3B1512REVC, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B1512REVC__"}, ++ {"uc64d3", PART_TYPE_AVR32_UC64D3, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64D3__"}, ++ {"uc128d3", PART_TYPE_AVR32_UC128D3, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128D3__"}, ++ {"uc64d4", PART_TYPE_AVR32_UC64D4, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64D4__"}, ++ {"uc128d4", PART_TYPE_AVR32_UC128D4, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128D4__"}, ++ {"uc3c0512crevc", PART_TYPE_AVR32_UC3C0512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C0512CREVC__"}, ++ {"uc3c1512crevc", PART_TYPE_AVR32_UC3C1512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C1512CREVC__"}, ++ {"uc3c2512crevc", PART_TYPE_AVR32_UC3C2512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C2512CREVC__"}, ++ {"uc3l0256", PART_TYPE_AVR32_UC3L0256, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L0256__"}, ++ {"uc3l0128", PART_TYPE_AVR32_UC3L0128, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L0128__"}, ++ {"uc3l064", PART_TYPE_AVR32_UC3L064, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L064__"}, ++ {"uc3l032", PART_TYPE_AVR32_UC3L032, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L032__"}, ++ {"uc3l016", PART_TYPE_AVR32_UC3L016, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L016__"}, ++ {"uc3l064revb", PART_TYPE_AVR32_UC3L064REVB, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L064REVB__"}, ++ {"uc64l3u", PART_TYPE_AVR32_UC64L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64L3U__"}, ++ {"uc128l3u", PART_TYPE_AVR32_UC128L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128L3U__"}, ++ {"uc256l3u", PART_TYPE_AVR32_UC256L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC256L3U__"}, ++ {"uc64l4u", PART_TYPE_AVR32_UC64L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64L4U__"}, ++ {"uc128l4u", PART_TYPE_AVR32_UC128L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128L4U__"}, ++ {"uc256l4u", PART_TYPE_AVR32_UC256L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC256L4U__"}, ++ {"uc3c064c", PART_TYPE_AVR32_UC3C064C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C064C__"}, ++ {"uc3c0128c", PART_TYPE_AVR32_UC3C0128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0128C__"}, ++ {"uc3c0256c", PART_TYPE_AVR32_UC3C0256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0256C__"}, ++ {"uc3c0512c", PART_TYPE_AVR32_UC3C0512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0512C__"}, ++ {"uc3c164c", PART_TYPE_AVR32_UC3C164C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C164C__"}, ++ {"uc3c1128c", PART_TYPE_AVR32_UC3C1128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1128C__"}, ++ {"uc3c1256c", PART_TYPE_AVR32_UC3C1256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1256C__"}, ++ {"uc3c1512c", PART_TYPE_AVR32_UC3C1512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1512C__"}, ++ {"uc3c264c", PART_TYPE_AVR32_UC3C264C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C264C__"}, ++ {"uc3c2128c", PART_TYPE_AVR32_UC3C2128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2128C__"}, ++ {"uc3c2256c", PART_TYPE_AVR32_UC3C2256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2256C__"}, ++ {"uc3c2512c", PART_TYPE_AVR32_UC3C2512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2512C__"}, ++ {"mxt768e", PART_TYPE_AVR32_MXT768E, ARCH_TYPE_AVR32_UCR3, "__AVR32_MXT768E__"}, ++ {NULL, 0, 0, NULL} ++}; ++ ++/* List of all known AVR32 architectures */ ++static const struct arch_type_s avr32_arch_types[] = { ++ /* name, architecture type, microarchitecture type, feature flags, macro */ ++ {"ap", ARCH_TYPE_AVR32_AP, UARCH_TYPE_AVR32B, ++ (FLAG_AVR32_HAS_DSP ++ | FLAG_AVR32_HAS_SIMD ++ | FLAG_AVR32_HAS_UNALIGNED_WORD ++ | FLAG_AVR32_HAS_BRANCH_PRED | FLAG_AVR32_HAS_RETURN_STACK ++ | FLAG_AVR32_HAS_CACHES), ++ "__AVR32_AP__"}, ++ {"ucr1", ARCH_TYPE_AVR32_UCR1, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW), ++ "__AVR32_UC__=1"}, ++ {"ucr2", ARCH_TYPE_AVR32_UCR2, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW ++ | FLAG_AVR32_HAS_V2_INSNS), ++ "__AVR32_UC__=2"}, ++ {"ucr2nomul", ARCH_TYPE_AVR32_UCR2NOMUL, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW ++ | FLAG_AVR32_HAS_V2_INSNS | FLAG_AVR32_HAS_NO_MUL_INSNS), ++ "__AVR32_UC__=2"}, ++ {"ucr3", ARCH_TYPE_AVR32_UCR3, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW ++ | FLAG_AVR32_HAS_V2_INSNS), ++ "__AVR32_UC__=3"}, ++ {"ucr3fp", ARCH_TYPE_AVR32_UCR3FP, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW | FLAG_AVR32_HAS_FPU ++ | FLAG_AVR32_HAS_V2_INSNS), ++ "__AVR32_UC__=3"}, ++ {NULL, 0, 0, 0, NULL} ++}; ++ ++/* Default arch name */ ++const char *avr32_arch_name = "none"; ++const char *avr32_part_name = "none"; ++ ++const struct part_type_s *avr32_part; ++const struct arch_type_s *avr32_arch; ++ ++ ++/* FIXME: needs to use GC. */ ++struct flashvault_decl_list ++{ ++ struct flashvault_decl_list *next; ++ unsigned int vector_num; ++ const char *name; ++}; ++ ++static struct flashvault_decl_list *flashvault_decl_list_head = NULL; ++ ++ ++/* Set default target_flags. */ ++#undef TARGET_DEFAULT_TARGET_FLAGS ++#define TARGET_DEFAULT_TARGET_FLAGS \ ++ (MASK_HAS_ASM_ADDR_PSEUDOS | MASK_MD_REORG_OPTIMIZATION | MASK_COND_EXEC_BEFORE_RELOAD) ++ ++void ++avr32_optimization_options (int level, int size) ++{ ++ if (AVR32_ALWAYS_PIC) ++ flag_pic = 1; ++ ++ /* Enable section anchors if optimization is enabled. */ ++ if (level > 0 || size) ++ flag_section_anchors = 2; ++} ++ ++ ++/* Override command line options */ ++void ++avr32_override_options (void) ++{ ++ const struct part_type_s *part; ++ const struct arch_type_s *arch; ++ ++ /*Add backward compability*/ ++ if (strcmp ("uc", avr32_arch_name)== 0) ++ { ++ fprintf (stderr, "Warning: Deprecated arch `%s' specified. " ++ "Please use '-march=ucr1' instead. " ++ "Converting to arch 'ucr1'\n", ++ avr32_arch_name); ++ avr32_arch_name="ucr1"; ++ } ++ ++ /* Check if arch type is set. */ ++ for (arch = avr32_arch_types; arch->name; arch++) ++ { ++ if (strcmp (arch->name, avr32_arch_name) == 0) ++ break; ++ } ++ avr32_arch = arch; ++ ++ if (!arch->name && strcmp("none", avr32_arch_name) != 0) ++ { ++ fprintf (stderr, "Unknown arch `%s' specified\n" ++ "Known arch names:\n" ++ "\tuc (deprecated)\n", ++ avr32_arch_name); ++ for (arch = avr32_arch_types; arch->name; arch++) ++ fprintf (stderr, "\t%s\n", arch->name); ++ avr32_arch = &avr32_arch_types[ARCH_TYPE_AVR32_AP]; ++ } ++ ++ /* Check if part type is set. */ ++ for (part = avr32_part_types; part->name; part++) ++ if (strcmp (part->name, avr32_part_name) == 0) ++ break; ++ ++ avr32_part = part; ++ if (!part->name) ++ { ++ fprintf (stderr, "Unknown part `%s' specified\nKnown part names:\n", ++ avr32_part_name); ++ for (part = avr32_part_types; part->name; part++) ++ { ++ if (strcmp("none", part->name) != 0) ++ fprintf (stderr, "\t%s\n", part->name); ++ } ++ /* Set default to NONE*/ ++ avr32_part = &avr32_part_types[PART_TYPE_AVR32_NONE]; ++ } ++ ++ /* NB! option -march= overrides option -mpart ++ * if both are used at the same time */ ++ if (!arch->name) ++ avr32_arch = &avr32_arch_types[avr32_part->arch_type]; ++ ++ /* If optimization level is two or greater, then align start of loops to a ++ word boundary since this will allow folding the first insn of the loop. ++ Do this only for targets supporting branch prediction. */ ++ if (optimize >= 2 && TARGET_BRANCH_PRED) ++ align_loops = 2; ++ ++ ++ /* Enable fast-float library if unsafe math optimizations ++ are used. */ ++ if (flag_unsafe_math_optimizations) ++ target_flags |= MASK_FAST_FLOAT; ++ ++ /* Check if we should set avr32_imm_in_const_pool ++ based on if caches are present or not. */ ++ if ( avr32_imm_in_const_pool == -1 ) ++ { ++ if ( TARGET_CACHES ) ++ avr32_imm_in_const_pool = 1; ++ else ++ avr32_imm_in_const_pool = 0; ++ } ++ ++ if (TARGET_NO_PIC) ++ flag_pic = 0; ++ avr32_add_gc_roots (); ++} ++ ++ ++/* ++If defined, a function that outputs the assembler code for entry to a ++function. The prologue is responsible for setting up the stack frame, ++initializing the frame pointer register, saving registers that must be ++saved, and allocating size additional bytes of storage for the ++local variables. size is an integer. file is a stdio ++stream to which the assembler code should be output. ++ ++The label for the beginning of the function need not be output by this ++macro. That has already been done when the macro is run. ++ ++To determine which registers to save, the macro can refer to the array ++regs_ever_live: element r is nonzero if hard register ++r is used anywhere within the function. This implies the function ++prologue should save register r, provided it is not one of the ++call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use ++regs_ever_live.) ++ ++On machines that have ``register windows'', the function entry code does ++not save on the stack the registers that are in the windows, even if ++they are supposed to be preserved by function calls; instead it takes ++appropriate steps to ``push'' the register stack, if any non-call-used ++registers are used in the function. ++ ++On machines where functions may or may not have frame-pointers, the ++function entry code must vary accordingly; it must set up the frame ++pointer if one is wanted, and not otherwise. To determine whether a ++frame pointer is in wanted, the macro can refer to the variable ++frame_pointer_needed. The variable's value will be 1 at run ++time in a function that needs a frame pointer. (see Elimination). ++ ++The function entry code is responsible for allocating any stack space ++required for the function. This stack space consists of the regions ++listed below. In most cases, these regions are allocated in the ++order listed, with the last listed region closest to the top of the ++stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and ++the highest address if it is not defined). You can use a different order ++for a machine if doing so is more convenient or required for ++compatibility reasons. Except in cases where required by standard ++or by a debugger, there is no reason why the stack layout used by GCC ++need agree with that used by other compilers for a machine. ++*/ ++ ++#undef TARGET_ASM_FUNCTION_PROLOGUE ++#define TARGET_ASM_FUNCTION_PROLOGUE avr32_target_asm_function_prologue ++ ++#undef TARGET_ASM_FILE_END ++#define TARGET_ASM_FILE_END avr32_file_end ++ ++#undef TARGET_DEFAULT_SHORT_ENUMS ++#define TARGET_DEFAULT_SHORT_ENUMS hook_bool_void_false ++ ++#undef TARGET_PROMOTE_FUNCTION_ARGS ++#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true ++ ++#undef TARGET_PROMOTE_FUNCTION_RETURN ++#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true ++ ++#undef TARGET_PROMOTE_PROTOTYPES ++#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true ++ ++#undef TARGET_MUST_PASS_IN_STACK ++#define TARGET_MUST_PASS_IN_STACK avr32_must_pass_in_stack ++ ++#undef TARGET_PASS_BY_REFERENCE ++#define TARGET_PASS_BY_REFERENCE avr32_pass_by_reference ++ ++#undef TARGET_STRICT_ARGUMENT_NAMING ++#define TARGET_STRICT_ARGUMENT_NAMING avr32_strict_argument_naming ++ ++#undef TARGET_VECTOR_MODE_SUPPORTED_P ++#define TARGET_VECTOR_MODE_SUPPORTED_P avr32_vector_mode_supported ++ ++#undef TARGET_RETURN_IN_MEMORY ++#define TARGET_RETURN_IN_MEMORY avr32_return_in_memory ++ ++#undef TARGET_RETURN_IN_MSB ++#define TARGET_RETURN_IN_MSB avr32_return_in_msb ++ ++#undef TARGET_ENCODE_SECTION_INFO ++#define TARGET_ENCODE_SECTION_INFO avr32_encode_section_info ++ ++#undef TARGET_ARG_PARTIAL_BYTES ++#define TARGET_ARG_PARTIAL_BYTES avr32_arg_partial_bytes ++ ++#undef TARGET_STRIP_NAME_ENCODING ++#define TARGET_STRIP_NAME_ENCODING avr32_strip_name_encoding ++ ++#define streq(string1, string2) (strcmp (string1, string2) == 0) ++ ++#undef TARGET_NARROW_VOLATILE_BITFIELD ++#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false ++ ++#undef TARGET_ATTRIBUTE_TABLE ++#define TARGET_ATTRIBUTE_TABLE avr32_attribute_table ++ ++#undef TARGET_COMP_TYPE_ATTRIBUTES ++#define TARGET_COMP_TYPE_ATTRIBUTES avr32_comp_type_attributes ++ ++ ++#undef TARGET_RTX_COSTS ++#define TARGET_RTX_COSTS avr32_rtx_costs ++ ++#undef TARGET_CANNOT_FORCE_CONST_MEM ++#define TARGET_CANNOT_FORCE_CONST_MEM avr32_cannot_force_const_mem ++ ++#undef TARGET_ASM_INTEGER ++#define TARGET_ASM_INTEGER avr32_assemble_integer ++ ++#undef TARGET_FUNCTION_VALUE ++#define TARGET_FUNCTION_VALUE avr32_function_value ++ ++#undef TARGET_MIN_ANCHOR_OFFSET ++#define TARGET_MIN_ANCHOR_OFFSET (0) ++ ++#undef TARGET_MAX_ANCHOR_OFFSET ++#define TARGET_MAX_ANCHOR_OFFSET ((1 << 15) - 1) ++#undef TARGET_SECONDARY_RELOAD ++#define TARGET_SECONDARY_RELOAD avr32_secondary_reload ++ ++ ++/* ++ * Defining the option, -mlist-devices to list the devices supported by gcc. ++ * This option should be used while printing target-help to list all the ++ * supported devices. ++ */ ++#undef TARGET_HELP ++#define TARGET_HELP avr32_target_help ++ ++void avr32_target_help () ++{ ++ if (avr32_list_supported_parts) ++ { ++ const struct part_type_s *list; ++ fprintf (stdout, "List of parts supported by avr32-gcc:\n"); ++ for (list = avr32_part_types; list->name; list++) ++ { ++ if (strcmp("none", list->name) != 0) ++ fprintf (stdout, "%-20s%s\n", list->name, list->macro); ++ } ++ fprintf (stdout, "\n\n"); ++ } ++} ++ ++enum reg_class ++avr32_secondary_reload (bool in_p, rtx x, enum reg_class class, ++ enum machine_mode mode, secondary_reload_info *sri) ++{ ++ ++ if ( avr32_rmw_memory_operand (x, mode) ) ++ { ++ if (!in_p) ++ sri->icode = CODE_FOR_reload_out_rmw_memory_operand; ++ else ++ sri->icode = CODE_FOR_reload_in_rmw_memory_operand; ++ } ++ return NO_REGS; ++ ++} ++/* ++ * Switches to the appropriate section for output of constant pool ++ * entry x in mode. You can assume that x is some kind of constant in ++ * RTL. The argument mode is redundant except in the case of a ++ * const_int rtx. Select the section by calling readonly_data_ section ++ * or one of the alternatives for other sections. align is the ++ * constant alignment in bits. ++ * ++ * The default version of this function takes care of putting symbolic ++ * constants in flag_ pic mode in data_section and everything else in ++ * readonly_data_section. ++ */ ++//#undef TARGET_ASM_SELECT_RTX_SECTION ++//#define TARGET_ASM_SELECT_RTX_SECTION avr32_select_rtx_section ++ ++ ++/* ++ * If non-null, this hook performs a target-specific pass over the ++ * instruction stream. The compiler will run it at all optimization ++ * levels, just before the point at which it normally does ++ * delayed-branch scheduling. ++ * ++ * The exact purpose of the hook varies from target to target. Some ++ * use it to do transformations that are necessary for correctness, ++ * such as laying out in-function constant pools or avoiding hardware ++ * hazards. Others use it as an opportunity to do some ++ * machine-dependent optimizations. ++ * ++ * You need not implement the hook if it has nothing to do. The ++ * default definition is null. ++ */ ++#undef TARGET_MACHINE_DEPENDENT_REORG ++#define TARGET_MACHINE_DEPENDENT_REORG avr32_reorg ++ ++/* Target hook for assembling integer objects. ++ Need to handle integer vectors */ ++static bool ++avr32_assemble_integer (rtx x, unsigned int size, int aligned_p) ++{ ++ if (avr32_vector_mode_supported (GET_MODE (x))) ++ { ++ int i, units; ++ ++ if (GET_CODE (x) != CONST_VECTOR) ++ abort (); ++ ++ units = CONST_VECTOR_NUNITS (x); ++ ++ switch (GET_MODE (x)) ++ { ++ case V2HImode: ++ size = 2; ++ break; ++ case V4QImode: ++ size = 1; ++ break; ++ default: ++ abort (); ++ } ++ ++ for (i = 0; i < units; i++) ++ { ++ rtx elt; ++ ++ elt = CONST_VECTOR_ELT (x, i); ++ assemble_integer (elt, size, i == 0 ? 32 : size * BITS_PER_UNIT, 1); ++ } ++ ++ return true; ++ } ++ ++ return default_assemble_integer (x, size, aligned_p); ++} ++ ++ ++/* ++ * This target hook describes the relative costs of RTL expressions. ++ * ++ * The cost may depend on the precise form of the expression, which is ++ * available for examination in x, and the rtx code of the expression ++ * in which it is contained, found in outer_code. code is the ++ * expression code--redundant, since it can be obtained with GET_CODE ++ * (x). ++ * ++ * In implementing this hook, you can use the construct COSTS_N_INSNS ++ * (n) to specify a cost equal to n fast instructions. ++ * ++ * On entry to the hook, *total contains a default estimate for the ++ * cost of the expression. The hook should modify this value as ++ * necessary. Traditionally, the default costs are COSTS_N_INSNS (5) ++ * for multiplications, COSTS_N_INSNS (7) for division and modulus ++ * operations, and COSTS_N_INSNS (1) for all other operations. ++ * ++ * When optimizing for code size, i.e. when optimize_size is non-zero, ++ * this target hook should be used to estimate the relative size cost ++ * of an expression, again relative to COSTS_N_INSNS. ++ * ++ * The hook returns true when all subexpressions of x have been ++ * processed, and false when rtx_cost should recurse. ++ */ ++ ++/* Worker routine for avr32_rtx_costs. */ ++static inline int ++avr32_rtx_costs_1 (rtx x, enum rtx_code code ATTRIBUTE_UNUSED, ++ enum rtx_code outer ATTRIBUTE_UNUSED) ++{ ++ enum machine_mode mode = GET_MODE (x); ++ ++ switch (GET_CODE (x)) ++ { ++ case MEM: ++ /* Using pre decrement / post increment memory operations on the ++ avr32_uc architecture means that two writebacks must be performed ++ and hence two cycles are needed. */ ++ if (!optimize_size ++ && GET_MODE_SIZE (mode) <= 2 * UNITS_PER_WORD ++ && TARGET_ARCH_UC ++ && (GET_CODE (XEXP (x, 0)) == PRE_DEC ++ || GET_CODE (XEXP (x, 0)) == POST_INC)) ++ return COSTS_N_INSNS (5); ++ ++ /* Memory costs quite a lot for the first word, but subsequent words ++ load at the equivalent of a single insn each. */ ++ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ++ return COSTS_N_INSNS (3 + (GET_MODE_SIZE (mode) / UNITS_PER_WORD)); ++ ++ return COSTS_N_INSNS (4); ++ case SYMBOL_REF: ++ case CONST: ++ /* These are valid for the pseudo insns: lda.w and call which operates ++ on direct addresses. We assume that the cost of a lda.w is the same ++ as the cost of a ld.w insn. */ ++ return (outer == SET) ? COSTS_N_INSNS (4) : COSTS_N_INSNS (1); ++ case DIV: ++ case MOD: ++ case UDIV: ++ case UMOD: ++ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16); ++ ++ case ROTATE: ++ case ROTATERT: ++ if (mode == TImode) ++ return COSTS_N_INSNS (100); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (10); ++ return COSTS_N_INSNS (4); ++ case ASHIFT: ++ case LSHIFTRT: ++ case ASHIFTRT: ++ case NOT: ++ if (mode == TImode) ++ return COSTS_N_INSNS (10); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (4); ++ return COSTS_N_INSNS (1); ++ case PLUS: ++ case MINUS: ++ case NEG: ++ case COMPARE: ++ case ABS: ++ if (GET_MODE_CLASS (mode) == MODE_FLOAT) ++ return COSTS_N_INSNS (100); ++ ++ if (mode == TImode) ++ return COSTS_N_INSNS (50); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (2); ++ return COSTS_N_INSNS (1); ++ ++ case MULT: ++ { ++ if (GET_MODE_CLASS (mode) == MODE_FLOAT) ++ return COSTS_N_INSNS (300); ++ ++ if (mode == TImode) ++ return COSTS_N_INSNS (16); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (4); ++ ++ if (mode == HImode) ++ return COSTS_N_INSNS (2); ++ ++ return COSTS_N_INSNS (3); ++ } ++ case IF_THEN_ELSE: ++ if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC) ++ return COSTS_N_INSNS (4); ++ return COSTS_N_INSNS (1); ++ case SIGN_EXTEND: ++ case ZERO_EXTEND: ++ /* Sign/Zero extensions of registers cost quite much since these ++ instrcutions only take one register operand which means that gcc ++ often must insert some move instrcutions */ ++ if (mode == QImode || mode == HImode) ++ return (COSTS_N_INSNS (GET_CODE (XEXP (x, 0)) == MEM ? 0 : 1)); ++ return COSTS_N_INSNS (4); ++ case UNSPEC: ++ /* divmod operations */ ++ if (XINT (x, 1) == UNSPEC_UDIVMODSI4_INTERNAL ++ || XINT (x, 1) == UNSPEC_DIVMODSI4_INTERNAL) ++ { ++ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16); ++ } ++ /* Fallthrough */ ++ default: ++ return COSTS_N_INSNS (1); ++ } ++} ++ ++ ++static bool ++avr32_rtx_costs (rtx x, int code, int outer_code, int *total) ++{ ++ *total = avr32_rtx_costs_1 (x, code, outer_code); ++ return true; ++} ++ ++ ++bool ++avr32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED) ++{ ++ /* Do not want symbols in the constant pool when compiling pic or if using ++ address pseudo instructions. */ ++ return ((flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS) ++ && avr32_find_symbol (x) != NULL_RTX); ++} ++ ++ ++/* Table of machine attributes. */ ++const struct attribute_spec avr32_attribute_table[] = { ++ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ ++ /* Interrupt Service Routines have special prologue and epilogue ++ requirements. */ ++ {"isr", 0, 1, false, false, false, avr32_handle_isr_attribute}, ++ {"interrupt", 0, 1, false, false, false, avr32_handle_isr_attribute}, ++ {"acall", 0, 1, false, true, true, avr32_handle_acall_attribute}, ++ {"naked", 0, 0, true, false, false, avr32_handle_fndecl_attribute}, ++ {"rmw_addressable", 0, 0, true, false, false, NULL}, ++ {"flashvault", 0, 1, true, false, false, avr32_handle_fndecl_attribute}, ++ {"flashvault_impl", 0, 1, true, false, false, avr32_handle_fndecl_attribute}, ++ {NULL, 0, 0, false, false, false, NULL} ++}; ++ ++ ++typedef struct ++{ ++ const char *const arg; ++ const unsigned long return_value; ++} ++isr_attribute_arg; ++ ++ ++static const isr_attribute_arg isr_attribute_args[] = { ++ {"FULL", AVR32_FT_ISR_FULL}, ++ {"full", AVR32_FT_ISR_FULL}, ++ {"HALF", AVR32_FT_ISR_HALF}, ++ {"half", AVR32_FT_ISR_HALF}, ++ {"NONE", AVR32_FT_ISR_NONE}, ++ {"none", AVR32_FT_ISR_NONE}, ++ {"UNDEF", AVR32_FT_ISR_NONE}, ++ {"undef", AVR32_FT_ISR_NONE}, ++ {"SWI", AVR32_FT_ISR_NONE}, ++ {"swi", AVR32_FT_ISR_NONE}, ++ {NULL, AVR32_FT_ISR_NONE} ++}; ++ ++ ++/* Returns the (interrupt) function type of the current ++ function, or AVR32_FT_UNKNOWN if the type cannot be determined. */ ++static unsigned long ++avr32_isr_value (tree argument) ++{ ++ const isr_attribute_arg *ptr; ++ const char *arg; ++ ++ /* No argument - default to ISR_NONE. */ ++ if (argument == NULL_TREE) ++ return AVR32_FT_ISR_NONE; ++ ++ /* Get the value of the argument. */ ++ if (TREE_VALUE (argument) == NULL_TREE ++ || TREE_CODE (TREE_VALUE (argument)) != STRING_CST) ++ return AVR32_FT_UNKNOWN; ++ ++ arg = TREE_STRING_POINTER (TREE_VALUE (argument)); ++ ++ /* Check it against the list of known arguments. */ ++ for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++) ++ if (streq (arg, ptr->arg)) ++ return ptr->return_value; ++ ++ /* An unrecognized interrupt type. */ ++ return AVR32_FT_UNKNOWN; ++} ++ ++ ++/* ++These hooks specify assembly directives for creating certain kinds ++of integer object. The TARGET_ASM_BYTE_OP directive creates a ++byte-sized object, the TARGET_ASM_ALIGNED_HI_OP one creates an ++aligned two-byte object, and so on. Any of the hooks may be ++NULL, indicating that no suitable directive is available. ++ ++The compiler will print these strings at the start of a new line, ++followed immediately by the object's initial value. In most cases, ++the string should contain a tab, a pseudo-op, and then another tab. ++*/ ++#undef TARGET_ASM_BYTE_OP ++#define TARGET_ASM_BYTE_OP "\t.byte\t" ++#undef TARGET_ASM_ALIGNED_HI_OP ++#define TARGET_ASM_ALIGNED_HI_OP "\t.align 1\n\t.short\t" ++#undef TARGET_ASM_ALIGNED_SI_OP ++#define TARGET_ASM_ALIGNED_SI_OP "\t.align 2\n\t.int\t" ++#undef TARGET_ASM_ALIGNED_DI_OP ++#define TARGET_ASM_ALIGNED_DI_OP NULL ++#undef TARGET_ASM_ALIGNED_TI_OP ++#define TARGET_ASM_ALIGNED_TI_OP NULL ++#undef TARGET_ASM_UNALIGNED_HI_OP ++#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t" ++#undef TARGET_ASM_UNALIGNED_SI_OP ++#define TARGET_ASM_UNALIGNED_SI_OP "\t.int\t" ++#undef TARGET_ASM_UNALIGNED_DI_OP ++#define TARGET_ASM_UNALIGNED_DI_OP NULL ++#undef TARGET_ASM_UNALIGNED_TI_OP ++#define TARGET_ASM_UNALIGNED_TI_OP NULL ++ ++#undef TARGET_ASM_OUTPUT_MI_THUNK ++#define TARGET_ASM_OUTPUT_MI_THUNK avr32_output_mi_thunk ++ ++#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK ++#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true ++ ++ ++static void ++avr32_output_mi_thunk (FILE * file, ++ tree thunk ATTRIBUTE_UNUSED, ++ HOST_WIDE_INT delta, ++ HOST_WIDE_INT vcall_offset, tree function) ++ { ++ int mi_delta = delta; ++ int this_regno = ++ (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ? ++ INTERNAL_REGNUM (11) : INTERNAL_REGNUM (12)); ++ ++ ++ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21") ++ || vcall_offset) ++ { ++ fputs ("\tpushm\tlr\n", file); ++ } ++ ++ ++ if (mi_delta != 0) ++ { ++ if (avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")) ++ { ++ fprintf (file, "\tsub\t%s, %d\n", reg_names[this_regno], -mi_delta); ++ } ++ else ++ { ++ /* Immediate is larger than k21 we must make us a temp register by ++ pushing a register to the stack. */ ++ fprintf (file, "\tmov\tlr, lo(%d)\n", mi_delta); ++ fprintf (file, "\torh\tlr, hi(%d)\n", mi_delta); ++ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]); ++ } ++ } ++ ++ ++ if (vcall_offset != 0) ++ { ++ fprintf (file, "\tld.w\tlr, %s[0]\n", reg_names[this_regno]); ++ fprintf (file, "\tld.w\tlr, lr[%i]\n", (int) vcall_offset); ++ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]); ++ } ++ ++ ++ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21") ++ || vcall_offset) ++ { ++ fputs ("\tpopm\tlr\n", file); ++ } ++ ++ /* Jump to the function. We assume that we can use an rjmp since the ++ function to jump to is local and probably not too far away from ++ the thunk. If this assumption proves to be wrong we could implement ++ this jump by calculating the offset between the jump source and destination ++ and put this in the constant pool and then perform an add to pc. ++ This would also be legitimate PIC code. But for now we hope that an rjmp ++ will be sufficient... ++ */ ++ fputs ("\trjmp\t", file); ++ assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0)); ++ fputc ('\n', file); ++ } ++ ++ ++/* Implements target hook vector_mode_supported. */ ++bool ++avr32_vector_mode_supported (enum machine_mode mode) ++{ ++ if ((mode == V2HImode) || (mode == V4QImode)) ++ return true; ++ ++ return false; ++} ++ ++ ++#undef TARGET_INIT_LIBFUNCS ++#define TARGET_INIT_LIBFUNCS avr32_init_libfuncs ++ ++#undef TARGET_INIT_BUILTINS ++#define TARGET_INIT_BUILTINS avr32_init_builtins ++ ++#undef TARGET_EXPAND_BUILTIN ++#define TARGET_EXPAND_BUILTIN avr32_expand_builtin ++ ++tree int_ftype_int, int_ftype_void, short_ftype_short, void_ftype_int_int, ++ void_ftype_ptr_int; ++tree void_ftype_int, void_ftype_ulong, void_ftype_void, int_ftype_ptr_int; ++tree short_ftype_short, int_ftype_int_short, int_ftype_short_short, ++ short_ftype_short_short; ++tree int_ftype_int_int, longlong_ftype_int_short, longlong_ftype_short_short; ++tree void_ftype_int_int_int_int_int, void_ftype_int_int_int; ++tree longlong_ftype_int_int, void_ftype_int_int_longlong; ++tree int_ftype_int_int_int, longlong_ftype_longlong_int_short; ++tree longlong_ftype_longlong_short_short, int_ftype_int_short_short; ++ ++#define def_builtin(NAME, TYPE, CODE) \ ++ add_builtin_function ((NAME), (TYPE), (CODE), \ ++ BUILT_IN_MD, NULL, NULL_TREE) ++ ++#define def_mbuiltin(MASK, NAME, TYPE, CODE) \ ++ do \ ++ { \ ++ if ((MASK)) \ ++ add_builtin_function ((NAME), (TYPE), (CODE), \ ++ BUILT_IN_MD, NULL, NULL_TREE); \ ++ } \ ++ while (0) ++ ++struct builtin_description ++{ ++ const unsigned int mask; ++ const enum insn_code icode; ++ const char *const name; ++ const int code; ++ const enum rtx_code comparison; ++ const unsigned int flag; ++ const tree *ftype; ++}; ++ ++static const struct builtin_description bdesc_2arg[] = { ++ ++#define DSP_BUILTIN(code, builtin, ftype) \ ++ { 1, CODE_FOR_##code, "__builtin_" #code , \ ++ AVR32_BUILTIN_##builtin, 0, 0, ftype } ++ ++ DSP_BUILTIN (mulsathh_h, MULSATHH_H, &short_ftype_short_short), ++ DSP_BUILTIN (mulsathh_w, MULSATHH_W, &int_ftype_short_short), ++ DSP_BUILTIN (mulsatrndhh_h, MULSATRNDHH_H, &short_ftype_short_short), ++ DSP_BUILTIN (mulsatrndwh_w, MULSATRNDWH_W, &int_ftype_int_short), ++ DSP_BUILTIN (mulsatwh_w, MULSATWH_W, &int_ftype_int_short), ++ DSP_BUILTIN (satadd_h, SATADD_H, &short_ftype_short_short), ++ DSP_BUILTIN (satsub_h, SATSUB_H, &short_ftype_short_short), ++ DSP_BUILTIN (satadd_w, SATADD_W, &int_ftype_int_int), ++ DSP_BUILTIN (satsub_w, SATSUB_W, &int_ftype_int_int), ++ DSP_BUILTIN (mulwh_d, MULWH_D, &longlong_ftype_int_short), ++ DSP_BUILTIN (mulnwh_d, MULNWH_D, &longlong_ftype_int_short) ++}; ++ ++ ++void ++avr32_init_builtins (void) ++{ ++ unsigned int i; ++ const struct builtin_description *d; ++ tree endlink = void_list_node; ++ tree int_endlink = tree_cons (NULL_TREE, integer_type_node, endlink); ++ tree longlong_endlink = ++ tree_cons (NULL_TREE, long_long_integer_type_node, endlink); ++ tree short_endlink = ++ tree_cons (NULL_TREE, short_integer_type_node, endlink); ++ tree void_endlink = tree_cons (NULL_TREE, void_type_node, endlink); ++ ++ /* int func (int) */ ++ int_ftype_int = build_function_type (integer_type_node, int_endlink); ++ ++ /* short func (short) */ ++ short_ftype_short ++ = build_function_type (short_integer_type_node, short_endlink); ++ ++ /* short func (short, short) */ ++ short_ftype_short_short ++ = build_function_type (short_integer_type_node, ++ tree_cons (NULL_TREE, short_integer_type_node, ++ short_endlink)); ++ ++ /* long long func (long long, short, short) */ ++ longlong_ftype_longlong_short_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, long_long_integer_type_node, ++ tree_cons (NULL_TREE, ++ short_integer_type_node, ++ short_endlink))); ++ ++ /* long long func (short, short) */ ++ longlong_ftype_short_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, short_integer_type_node, ++ short_endlink)); ++ ++ /* int func (int, int) */ ++ int_ftype_int_int ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink)); ++ ++ /* long long func (int, int) */ ++ longlong_ftype_int_int ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink)); ++ ++ /* long long int func (long long, int, short) */ ++ longlong_ftype_longlong_int_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, long_long_integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ short_endlink))); ++ ++ /* long long int func (int, short) */ ++ longlong_ftype_int_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ short_endlink)); ++ ++ /* int func (int, short, short) */ ++ int_ftype_int_short_short ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, ++ short_integer_type_node, ++ short_endlink))); ++ ++ /* int func (short, short) */ ++ int_ftype_short_short ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, short_integer_type_node, ++ short_endlink)); ++ ++ /* int func (int, short) */ ++ int_ftype_int_short ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ short_endlink)); ++ ++ /* void func (int, int) */ ++ void_ftype_int_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink)); ++ ++ /* void func (int, int, int) */ ++ void_ftype_int_int_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink))); ++ ++ /* void func (int, int, long long) */ ++ void_ftype_int_int_longlong ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ longlong_endlink))); ++ ++ /* void func (int, int, int, int, int) */ ++ void_ftype_int_int_int_int_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, ++ integer_type_node, ++ tree_cons ++ (NULL_TREE, ++ integer_type_node, ++ int_endlink))))); ++ ++ /* void func (void *, int) */ ++ void_ftype_ptr_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, ptr_type_node, int_endlink)); ++ ++ /* void func (int) */ ++ void_ftype_int = build_function_type (void_type_node, int_endlink); ++ ++ /* void func (ulong) */ ++ void_ftype_ulong = build_function_type_list (void_type_node, ++ long_unsigned_type_node, NULL_TREE); ++ ++ /* void func (void) */ ++ void_ftype_void = build_function_type (void_type_node, void_endlink); ++ ++ /* int func (void) */ ++ int_ftype_void = build_function_type (integer_type_node, void_endlink); ++ ++ /* int func (void *, int) */ ++ int_ftype_ptr_int ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, ptr_type_node, int_endlink)); ++ ++ /* int func (int, int, int) */ ++ int_ftype_int_int_int ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink))); ++ ++ /* Initialize avr32 builtins. */ ++ def_builtin ("__builtin_mfsr", int_ftype_int, AVR32_BUILTIN_MFSR); ++ def_builtin ("__builtin_mtsr", void_ftype_int_int, AVR32_BUILTIN_MTSR); ++ def_builtin ("__builtin_mfdr", int_ftype_int, AVR32_BUILTIN_MFDR); ++ def_builtin ("__builtin_mtdr", void_ftype_int_int, AVR32_BUILTIN_MTDR); ++ def_builtin ("__builtin_cache", void_ftype_ptr_int, AVR32_BUILTIN_CACHE); ++ def_builtin ("__builtin_sync", void_ftype_int, AVR32_BUILTIN_SYNC); ++ def_builtin ("__builtin_ssrf", void_ftype_int, AVR32_BUILTIN_SSRF); ++ def_builtin ("__builtin_csrf", void_ftype_int, AVR32_BUILTIN_CSRF); ++ def_builtin ("__builtin_tlbr", void_ftype_void, AVR32_BUILTIN_TLBR); ++ def_builtin ("__builtin_tlbs", void_ftype_void, AVR32_BUILTIN_TLBS); ++ def_builtin ("__builtin_tlbw", void_ftype_void, AVR32_BUILTIN_TLBW); ++ def_builtin ("__builtin_breakpoint", void_ftype_void, ++ AVR32_BUILTIN_BREAKPOINT); ++ def_builtin ("__builtin_xchg", int_ftype_ptr_int, AVR32_BUILTIN_XCHG); ++ def_builtin ("__builtin_ldxi", int_ftype_ptr_int, AVR32_BUILTIN_LDXI); ++ def_builtin ("__builtin_bswap_16", short_ftype_short, ++ AVR32_BUILTIN_BSWAP16); ++ def_builtin ("__builtin_bswap_32", int_ftype_int, AVR32_BUILTIN_BSWAP32); ++ def_builtin ("__builtin_cop", void_ftype_int_int_int_int_int, ++ AVR32_BUILTIN_COP); ++ def_builtin ("__builtin_mvcr_w", int_ftype_int_int, AVR32_BUILTIN_MVCR_W); ++ def_builtin ("__builtin_mvrc_w", void_ftype_int_int_int, ++ AVR32_BUILTIN_MVRC_W); ++ def_builtin ("__builtin_mvcr_d", longlong_ftype_int_int, ++ AVR32_BUILTIN_MVCR_D); ++ def_builtin ("__builtin_mvrc_d", void_ftype_int_int_longlong, ++ AVR32_BUILTIN_MVRC_D); ++ def_builtin ("__builtin_sats", int_ftype_int_int_int, AVR32_BUILTIN_SATS); ++ def_builtin ("__builtin_satu", int_ftype_int_int_int, AVR32_BUILTIN_SATU); ++ def_builtin ("__builtin_satrnds", int_ftype_int_int_int, ++ AVR32_BUILTIN_SATRNDS); ++ def_builtin ("__builtin_satrndu", int_ftype_int_int_int, ++ AVR32_BUILTIN_SATRNDU); ++ def_builtin ("__builtin_musfr", void_ftype_int, AVR32_BUILTIN_MUSFR); ++ def_builtin ("__builtin_mustr", int_ftype_void, AVR32_BUILTIN_MUSTR); ++ def_builtin ("__builtin_macsathh_w", int_ftype_int_short_short, ++ AVR32_BUILTIN_MACSATHH_W); ++ def_builtin ("__builtin_macwh_d", longlong_ftype_longlong_int_short, ++ AVR32_BUILTIN_MACWH_D); ++ def_builtin ("__builtin_machh_d", longlong_ftype_longlong_short_short, ++ AVR32_BUILTIN_MACHH_D); ++ def_builtin ("__builtin_mems", void_ftype_ptr_int, AVR32_BUILTIN_MEMS); ++ def_builtin ("__builtin_memt", void_ftype_ptr_int, AVR32_BUILTIN_MEMT); ++ def_builtin ("__builtin_memc", void_ftype_ptr_int, AVR32_BUILTIN_MEMC); ++ def_builtin ("__builtin_sleep", void_ftype_int, AVR32_BUILTIN_SLEEP); ++ def_builtin ("__builtin_avr32_delay_cycles", void_ftype_int, AVR32_BUILTIN_DELAY_CYCLES); ++ ++ /* Add all builtins that are more or less simple operations on two ++ operands. */ ++ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) ++ { ++ /* Use one of the operands; the target can have a different mode for ++ mask-generating compares. */ ++ ++ if (d->name == 0) ++ continue; ++ ++ def_mbuiltin (d->mask, d->name, *(d->ftype), d->code); ++ } ++} ++ ++ ++/* Subroutine of avr32_expand_builtin to take care of binop insns. */ ++static rtx ++avr32_expand_binop_builtin (enum insn_code icode, tree exp, rtx target) ++{ ++ rtx pat; ++ tree arg0 = CALL_EXPR_ARG (exp,0); ++ tree arg1 = CALL_EXPR_ARG (exp,1); ++ rtx op0 = expand_normal (arg0); ++ rtx op1 = expand_normal (arg1); ++ enum machine_mode tmode = insn_data[icode].operand[0].mode; ++ enum machine_mode mode0 = insn_data[icode].operand[1].mode; ++ enum machine_mode mode1 = insn_data[icode].operand[2].mode; ++ ++ if (!target ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ /* In case the insn wants input operands in modes different from the ++ result, abort. */ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ /* If op0 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op0)) ++ op0 = convert_to_mode (mode0, op0, 1); ++ else ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) ++ { ++ /* If op1 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op1)) ++ op1 = convert_to_mode (mode1, op1, 1); ++ else ++ op1 = copy_to_mode_reg (mode1, op1); ++ } ++ pat = GEN_FCN (icode) (target, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++} ++ ++ ++/* Expand an expression EXP that calls a built-in function, ++ with result going to TARGET if that's convenient ++ (and in mode MODE if that's convenient). ++ SUBTARGET may be used as the target for computing one of EXP's operands. ++ IGNORE is nonzero if the value is to be ignored. */ ++rtx ++avr32_expand_builtin (tree exp, ++ rtx target, ++ rtx subtarget ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ int ignore ATTRIBUTE_UNUSED) ++{ ++ const struct builtin_description *d; ++ unsigned int i; ++ enum insn_code icode = 0; ++ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); ++ tree arg0, arg1, arg2; ++ rtx op0, op1, op2, pat; ++ enum machine_mode tmode, mode0, mode1; ++ enum machine_mode arg0_mode; ++ int fcode = DECL_FUNCTION_CODE (fndecl); ++ ++ switch (fcode) ++ { ++ default: ++ break; ++ ++ case AVR32_BUILTIN_SATS: ++ case AVR32_BUILTIN_SATU: ++ case AVR32_BUILTIN_SATRNDS: ++ case AVR32_BUILTIN_SATRNDU: ++ { ++ const char *fname; ++ switch (fcode) ++ { ++ default: ++ case AVR32_BUILTIN_SATS: ++ icode = CODE_FOR_sats; ++ fname = "sats"; ++ break; ++ case AVR32_BUILTIN_SATU: ++ icode = CODE_FOR_satu; ++ fname = "satu"; ++ break; ++ case AVR32_BUILTIN_SATRNDS: ++ icode = CODE_FOR_satrnds; ++ fname = "satrnds"; ++ break; ++ case AVR32_BUILTIN_SATRNDU: ++ icode = CODE_FOR_satrndu; ++ fname = "satrndu"; ++ break; ++ } ++ ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ ++ tmode = insn_data[icode].operand[0].mode; ++ ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, GET_MODE (op0))) ++ { ++ op0 = copy_to_mode_reg (insn_data[icode].operand[0].mode, op0); ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) ++ { ++ error ("Parameter 2 to __builtin_%s should be a constant number.", ++ fname); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op2, SImode)) ++ { ++ error ("Parameter 3 to __builtin_%s should be a constant number.", ++ fname); ++ return NULL_RTX; ++ } ++ ++ emit_move_insn (target, op0); ++ pat = GEN_FCN (icode) (target, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_MUSTR: ++ icode = CODE_FOR_mustr; ++ tmode = insn_data[icode].operand[0].mode; ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ ++ case AVR32_BUILTIN_MFSR: ++ icode = CODE_FOR_mfsr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mfsr must be a constant number"); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_MTSR: ++ icode = CODE_FOR_mtsr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ mode0 = insn_data[icode].operand[0].mode; ++ mode1 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mtsr must be a constant number"); ++ return gen_reg_rtx (mode0); ++ } ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) ++ op1 = copy_to_mode_reg (mode1, op1); ++ pat = GEN_FCN (icode) (op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_MFDR: ++ icode = CODE_FOR_mfdr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mfdr must be a constant number"); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_MTDR: ++ icode = CODE_FOR_mtdr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ mode0 = insn_data[icode].operand[0].mode; ++ mode1 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mtdr must be a constant number"); ++ return gen_reg_rtx (mode0); ++ } ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) ++ op1 = copy_to_mode_reg (mode1, op1); ++ pat = GEN_FCN (icode) (op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_CACHE: ++ icode = CODE_FOR_cache; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ mode0 = insn_data[icode].operand[0].mode; ++ mode1 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) ++ { ++ error ("Parameter 2 to __builtin_cache must be a constant number"); ++ return gen_reg_rtx (mode1); ++ } ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ op0 = copy_to_mode_reg (mode0, op0); ++ ++ pat = GEN_FCN (icode) (op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_SYNC: ++ case AVR32_BUILTIN_MUSFR: ++ case AVR32_BUILTIN_SSRF: ++ case AVR32_BUILTIN_CSRF: ++ { ++ const char *fname; ++ switch (fcode) ++ { ++ default: ++ case AVR32_BUILTIN_SYNC: ++ icode = CODE_FOR_sync; ++ fname = "sync"; ++ break; ++ case AVR32_BUILTIN_MUSFR: ++ icode = CODE_FOR_musfr; ++ fname = "musfr"; ++ break; ++ case AVR32_BUILTIN_SSRF: ++ icode = CODE_FOR_ssrf; ++ fname = "ssrf"; ++ break; ++ case AVR32_BUILTIN_CSRF: ++ icode = CODE_FOR_csrf; ++ fname = "csrf"; ++ break; ++ } ++ ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ mode0 = insn_data[icode].operand[0].mode; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ { ++ if (icode == CODE_FOR_musfr) ++ op0 = copy_to_mode_reg (mode0, op0); ++ else ++ { ++ error ("Parameter to __builtin_%s is illegal.", fname); ++ return gen_reg_rtx (mode0); ++ } ++ } ++ pat = GEN_FCN (icode) (op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ } ++ case AVR32_BUILTIN_TLBR: ++ icode = CODE_FOR_tlbr; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_TLBS: ++ icode = CODE_FOR_tlbs; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_TLBW: ++ icode = CODE_FOR_tlbw; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_BREAKPOINT: ++ icode = CODE_FOR_breakpoint; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_XCHG: ++ icode = CODE_FOR_sync_lock_test_and_setsi; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ mode1 = insn_data[icode].operand[2].mode; ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) ++ { ++ op1 = copy_to_mode_reg (mode1, op1); ++ } ++ ++ op0 = force_reg (GET_MODE (op0), op0); ++ op0 = gen_rtx_MEM (GET_MODE (op0), op0); ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ++ ("Parameter 1 to __builtin_xchg must be a pointer to an integer."); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_LDXI: ++ icode = CODE_FOR_ldxi; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ mode1 = insn_data[icode].operand[2].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) ++ { ++ op1 = copy_to_mode_reg (mode1, op1); ++ } ++ ++ if (!(*insn_data[icode].operand[3].predicate) (op2, SImode)) ++ { ++ error ++ ("Parameter 3 to __builtin_ldxi must be a valid extract shift operand: (0|8|16|24)"); ++ return gen_reg_rtx (mode0); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_BSWAP16: ++ { ++ icode = CODE_FOR_bswap_16; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg0_mode = TYPE_MODE (TREE_TYPE (arg0)); ++ mode0 = insn_data[icode].operand[1].mode; ++ if (arg0_mode != mode0) ++ arg0 = build1 (NOP_EXPR, ++ (*lang_hooks.types.type_for_mode) (mode0, 0), arg0); ++ ++ op0 = expand_expr (arg0, NULL_RTX, HImode, 0); ++ tmode = insn_data[icode].operand[0].mode; ++ ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ if ( CONST_INT_P (op0) ) ++ { ++ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x00ff) << 8) | ++ ((INTVAL (op0)&0xff00) >> 8) ); ++ /* Sign extend 16-bit value to host wide int */ ++ val <<= (HOST_BITS_PER_WIDE_INT - 16); ++ val >>= (HOST_BITS_PER_WIDE_INT - 16); ++ op0 = GEN_INT(val); ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ emit_move_insn(target, op0); ++ return target; ++ } ++ else ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ { ++ target = gen_reg_rtx (tmode); ++ } ++ ++ ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_BSWAP32: ++ { ++ icode = CODE_FOR_bswap_32; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ if ( CONST_INT_P (op0) ) ++ { ++ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x000000ff) << 24) | ++ ((INTVAL (op0)&0x0000ff00) << 8) | ++ ((INTVAL (op0)&0x00ff0000) >> 8) | ++ ((INTVAL (op0)&0xff000000) >> 24) ); ++ /* Sign extend 32-bit value to host wide int */ ++ val <<= (HOST_BITS_PER_WIDE_INT - 32); ++ val >>= (HOST_BITS_PER_WIDE_INT - 32); ++ op0 = GEN_INT(val); ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ emit_move_insn(target, op0); ++ return target; ++ } ++ else ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_MVCR_W: ++ case AVR32_BUILTIN_MVCR_D: ++ { ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ ++ if (fcode == AVR32_BUILTIN_MVCR_W) ++ icode = CODE_FOR_mvcrsi; ++ else ++ icode = CODE_FOR_mvcrdi; ++ ++ tmode = insn_data[icode].operand[0].mode; ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, SImode)) ++ { ++ error ++ ("Parameter 1 to __builtin_cop is not a valid coprocessor number."); ++ error ("Number should be between 0 and 7."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op1, SImode)) ++ { ++ error ++ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ pat = GEN_FCN (icode) (target, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_MACSATHH_W: ++ case AVR32_BUILTIN_MACWH_D: ++ case AVR32_BUILTIN_MACHH_D: ++ { ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ ++ icode = ((fcode == AVR32_BUILTIN_MACSATHH_W) ? CODE_FOR_macsathh_w : ++ (fcode == AVR32_BUILTIN_MACWH_D) ? CODE_FOR_macwh_d : ++ CODE_FOR_machh_d); ++ ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ mode1 = insn_data[icode].operand[2].mode; ++ ++ ++ if (!target ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, tmode)) ++ { ++ /* If op0 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op0)) ++ op0 = convert_to_mode (tmode, op0, 1); ++ else ++ op0 = copy_to_mode_reg (tmode, op0); ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode0)) ++ { ++ /* If op1 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op1)) ++ op1 = convert_to_mode (mode0, op1, 1); ++ else ++ op1 = copy_to_mode_reg (mode0, op1); ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op2, mode1)) ++ { ++ /* If op1 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op2)) ++ op2 = convert_to_mode (mode1, op2, 1); ++ else ++ op2 = copy_to_mode_reg (mode1, op2); ++ } ++ ++ emit_move_insn (target, op0); ++ ++ pat = GEN_FCN (icode) (target, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ } ++ case AVR32_BUILTIN_MVRC_W: ++ case AVR32_BUILTIN_MVRC_D: ++ { ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ ++ if (fcode == AVR32_BUILTIN_MVRC_W) ++ icode = CODE_FOR_mvrcsi; ++ else ++ icode = CODE_FOR_mvrcdi; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode)) ++ { ++ error ("Parameter 1 is not a valid coprocessor number."); ++ error ("Number should be between 0 and 7."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) ++ { ++ error ("Parameter 2 is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (GET_CODE (op2) == CONST_INT ++ || GET_CODE (op2) == CONST ++ || GET_CODE (op2) == SYMBOL_REF || GET_CODE (op2) == LABEL_REF) ++ { ++ op2 = force_const_mem (insn_data[icode].operand[2].mode, op2); ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op2, GET_MODE (op2))) ++ op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2); ++ ++ ++ pat = GEN_FCN (icode) (op0, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return NULL_RTX; ++ } ++ case AVR32_BUILTIN_COP: ++ { ++ rtx op3, op4; ++ tree arg3, arg4; ++ icode = CODE_FOR_cop; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ arg3 = CALL_EXPR_ARG (exp,3); ++ arg4 = CALL_EXPR_ARG (exp,4); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ op3 = expand_normal (arg3); ++ op4 = expand_normal (arg4); ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode)) ++ { ++ error ++ ("Parameter 1 to __builtin_cop is not a valid coprocessor number."); ++ error ("Number should be between 0 and 7."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) ++ { ++ error ++ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op2, SImode)) ++ { ++ error ++ ("Parameter 3 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[3].predicate) (op3, SImode)) ++ { ++ error ++ ("Parameter 4 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[4].predicate) (op4, SImode)) ++ { ++ error ++ ("Parameter 5 to __builtin_cop is not a valid coprocessor operation."); ++ error ("Number should be between 0 and 127."); ++ return NULL_RTX; ++ } ++ ++ pat = GEN_FCN (icode) (op0, op1, op2, op3, op4); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ ++ case AVR32_BUILTIN_MEMS: ++ case AVR32_BUILTIN_MEMC: ++ case AVR32_BUILTIN_MEMT: ++ { ++ if (!TARGET_RMW) ++ error ("Trying to use __builtin_mem(s/c/t) when target does not support RMW insns."); ++ ++ switch (fcode) { ++ case AVR32_BUILTIN_MEMS: ++ icode = CODE_FOR_iorsi3; ++ break; ++ case AVR32_BUILTIN_MEMC: ++ icode = CODE_FOR_andsi3; ++ break; ++ case AVR32_BUILTIN_MEMT: ++ icode = CODE_FOR_xorsi3; ++ break; ++ } ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); ++ if ( GET_CODE (op0) == SYMBOL_REF ) ++ // This symbol must be RMW addressable ++ SYMBOL_REF_FLAGS (op0) |= (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT); ++ op0 = gen_rtx_MEM(SImode, op0); ++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mem(s/c/t) must be a Ks15<<2 address or a rmw addressable symbol."); ++ } ++ ++ if ( !CONST_INT_P (op1) ++ || INTVAL (op1) > 31 ++ || INTVAL (op1) < 0 ) ++ error ("Parameter 2 to __builtin_mem(s/c/t) must be a constant between 0 and 31."); ++ ++ if ( fcode == AVR32_BUILTIN_MEMC ) ++ op1 = GEN_INT((~(1 << INTVAL(op1)))&0xffffffff); ++ else ++ op1 = GEN_INT((1 << INTVAL(op1))&0xffffffff); ++ pat = GEN_FCN (icode) (op0, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return op0; ++ } ++ ++ case AVR32_BUILTIN_SLEEP: ++ { ++ arg0 = CALL_EXPR_ARG (exp, 0); ++ op0 = expand_normal (arg0); ++ int intval = INTVAL(op0); ++ ++ /* Check if the argument if integer and if the value of integer ++ is greater than 0. */ ++ ++ if (!CONSTANT_P (op0)) ++ error ("Parameter 1 to __builtin_sleep() is not a valid integer."); ++ if (intval < 0 ) ++ error ("Parameter 1 to __builtin_sleep() should be an integer greater than 0."); ++ ++ int strncmpval = strncmp (avr32_part_name,"uc3l", 4); ++ ++ /* Check if op0 is less than 7 for uc3l* and less than 6 for other ++ devices. By this check we are avoiding if operand is less than ++ 256. For more devices, add more such checks. */ ++ ++ if ( strncmpval == 0 && intval >= 7) ++ error ("Parameter 1 to __builtin_sleep() should be less than or equal to 7."); ++ else if ( strncmp != 0 && intval >= 6) ++ error ("Parameter 1 to __builtin_sleep() should be less than or equal to 6."); ++ ++ emit_insn (gen_sleep(op0)); ++ return target; ++ ++ } ++ case AVR32_BUILTIN_DELAY_CYCLES: ++ { ++ arg0 = CALL_EXPR_ARG (exp, 0); ++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); ++ ++ if (TARGET_ARCH_AP) ++ error (" __builtin_avr32_delay_cycles() not supported for \'%s\' architecture.", avr32_arch_name); ++ if (!CONSTANT_P (op0)) ++ error ("Parameter 1 to __builtin_avr32_delay_cycles() should be an integer."); ++ emit_insn (gen_delay_cycles (op0)); ++ return 0; ++ ++ } ++ ++ } ++ ++ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) ++ if (d->code == fcode) ++ return avr32_expand_binop_builtin (d->icode, exp, target); ++ ++ ++ /* @@@ Should really do something sensible here. */ ++ return NULL_RTX; ++} ++ ++ ++/* Handle an "interrupt" or "isr" attribute; ++ arguments as in struct attribute_spec.handler. */ ++static tree ++avr32_handle_isr_attribute (tree * node, tree name, tree args, ++ int flags, bool * no_add_attrs) ++{ ++ if (DECL_P (*node)) ++ { ++ if (TREE_CODE (*node) != FUNCTION_DECL) ++ { ++ warning (OPT_Wattributes,"`%s' attribute only applies to functions", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ } ++ /* FIXME: the argument if any is checked for type attributes; should it ++ be checked for decl ones? */ ++ } ++ else ++ { ++ if (TREE_CODE (*node) == FUNCTION_TYPE ++ || TREE_CODE (*node) == METHOD_TYPE) ++ { ++ if (avr32_isr_value (args) == AVR32_FT_UNKNOWN) ++ { ++ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ } ++ } ++ else if (TREE_CODE (*node) == POINTER_TYPE ++ && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE ++ || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE) ++ && avr32_isr_value (args) != AVR32_FT_UNKNOWN) ++ { ++ *node = build_variant_type_copy (*node); ++ TREE_TYPE (*node) = build_type_attribute_variant ++ (TREE_TYPE (*node), ++ tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node)))); ++ *no_add_attrs = true; ++ } ++ else ++ { ++ /* Possibly pass this attribute on from the type to a decl. */ ++ if (flags & ((int) ATTR_FLAG_DECL_NEXT ++ | (int) ATTR_FLAG_FUNCTION_NEXT ++ | (int) ATTR_FLAG_ARRAY_NEXT)) ++ { ++ *no_add_attrs = true; ++ return tree_cons (name, args, NULL_TREE); ++ } ++ else ++ { ++ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name)); ++ } ++ } ++ } ++ ++ return NULL_TREE; ++} ++ ++ ++/* Handle an attribute requiring a FUNCTION_DECL; ++ arguments as in struct attribute_spec.handler. */ ++static tree ++avr32_handle_fndecl_attribute (tree * node, tree name, ++ tree args, ++ int flags ATTRIBUTE_UNUSED, ++ bool * no_add_attrs) ++{ ++ if (TREE_CODE (*node) != FUNCTION_DECL) ++ { ++ warning (OPT_Wattributes,"%qs attribute only applies to functions", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ return NULL_TREE; ++ } ++ ++ fndecl_attribute_args = args; ++ if (args == NULL_TREE) ++ return NULL_TREE; ++ ++ tree value = TREE_VALUE (args); ++ if (TREE_CODE (value) != INTEGER_CST) ++ { ++ warning (OPT_Wattributes, ++ "argument of %qs attribute is not an integer constant", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ } ++ ++ return NULL_TREE; ++} ++ ++ ++/* Handle an acall attribute; ++ arguments as in struct attribute_spec.handler. */ ++ ++static tree ++avr32_handle_acall_attribute (tree * node, tree name, ++ tree args ATTRIBUTE_UNUSED, ++ int flags ATTRIBUTE_UNUSED, bool * no_add_attrs) ++{ ++ if (TREE_CODE (*node) == FUNCTION_TYPE || TREE_CODE (*node) == METHOD_TYPE) ++ { ++ warning (OPT_Wattributes,"`%s' attribute not yet supported...", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ return NULL_TREE; ++ } ++ ++ warning (OPT_Wattributes,"`%s' attribute only applies to functions", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ return NULL_TREE; ++} ++ ++ ++bool ++avr32_flashvault_call(tree decl) ++{ ++ tree attributes; ++ tree fv_attribute; ++ tree vector_tree; ++ unsigned int vector; ++ ++ if (decl && TREE_CODE (decl) == FUNCTION_DECL) ++ { ++ attributes = DECL_ATTRIBUTES(decl); ++ fv_attribute = lookup_attribute ("flashvault", attributes); ++ if (fv_attribute != NULL_TREE) ++ { ++ /* Get attribute parameter, for the function vector number. */ ++ /* ++ There is probably an easier, standard way to retrieve the ++ attribute parameter which needs to be done here. ++ */ ++ vector_tree = TREE_VALUE(fv_attribute); ++ if (vector_tree != NULL_TREE) ++ { ++ vector = (unsigned int)TREE_INT_CST_LOW(TREE_VALUE(vector_tree)); ++ fprintf (asm_out_file, ++ "\tmov\tr8, lo(%i)\t# Load vector number for sscall.\n", ++ vector); ++ } ++ ++ fprintf (asm_out_file, ++ "\tsscall\t# Secure system call.\n"); ++ ++ return true; ++ } ++ } ++ ++ return false; ++} ++ ++ ++static bool has_attribute_p (tree decl, const char *name) ++{ ++ if (decl && TREE_CODE (decl) == FUNCTION_DECL) ++ { ++ return (lookup_attribute (name, DECL_ATTRIBUTES(decl)) != NULL_TREE); ++ } ++ return NULL_TREE; ++} ++ ++ ++/* Return 0 if the attributes for two types are incompatible, 1 if they ++ are compatible, and 2 if they are nearly compatible (which causes a ++ warning to be generated). */ ++static int ++avr32_comp_type_attributes (tree type1, tree type2) ++{ ++ bool acall1, acall2, isr1, isr2, naked1, naked2, fv1, fv2, fvimpl1, fvimpl2; ++ ++ /* Check for mismatch of non-default calling convention. */ ++ if (TREE_CODE (type1) != FUNCTION_TYPE) ++ return 1; ++ ++ /* Check for mismatched call attributes. */ ++ acall1 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type1)) != NULL; ++ acall2 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type2)) != NULL; ++ naked1 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type1)) != NULL; ++ naked2 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type2)) != NULL; ++ fv1 = lookup_attribute ("flashvault", TYPE_ATTRIBUTES (type1)) != NULL; ++ fv2 = lookup_attribute ("flashvault", TYPE_ATTRIBUTES (type2)) != NULL; ++ fvimpl1 = lookup_attribute ("flashvault_impl", TYPE_ATTRIBUTES (type1)) != NULL; ++ fvimpl2 = lookup_attribute ("flashvault_impl", TYPE_ATTRIBUTES (type2)) != NULL; ++ isr1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL; ++ if (!isr1) ++ isr1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL; ++ ++ isr2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL; ++ if (!isr2) ++ isr2 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL; ++ ++ if ((acall1 && isr2) ++ || (acall2 && isr1) ++ || (naked1 && isr2) ++ || (naked2 && isr1) ++ || (fv1 && isr2) ++ || (fv2 && isr1) ++ || (fvimpl1 && isr2) ++ || (fvimpl2 && isr1) ++ || (fv1 && fvimpl2) ++ || (fv2 && fvimpl1) ++ ) ++ return 0; ++ ++ return 1; ++} ++ ++ ++/* Computes the type of the current function. */ ++static unsigned long ++avr32_compute_func_type (void) ++{ ++ unsigned long type = AVR32_FT_UNKNOWN; ++ tree a; ++ tree attr; ++ ++ if (TREE_CODE (current_function_decl) != FUNCTION_DECL) ++ abort (); ++ ++ /* Decide if the current function is volatile. Such functions never ++ return, and many memory cycles can be saved by not storing register ++ values that will never be needed again. This optimization was added to ++ speed up context switching in a kernel application. */ ++ if (optimize > 0 ++ && TREE_NOTHROW (current_function_decl) ++ && TREE_THIS_VOLATILE (current_function_decl)) ++ type |= AVR32_FT_VOLATILE; ++ ++ if (cfun->static_chain_decl != NULL) ++ type |= AVR32_FT_NESTED; ++ ++ attr = DECL_ATTRIBUTES (current_function_decl); ++ ++ a = lookup_attribute ("isr", attr); ++ if (a == NULL_TREE) ++ a = lookup_attribute ("interrupt", attr); ++ ++ if (a == NULL_TREE) ++ type |= AVR32_FT_NORMAL; ++ else ++ type |= avr32_isr_value (TREE_VALUE (a)); ++ ++ ++ a = lookup_attribute ("acall", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_ACALL; ++ ++ a = lookup_attribute ("naked", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_NAKED; ++ ++ a = lookup_attribute ("flashvault", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_FLASHVAULT; ++ ++ a = lookup_attribute ("flashvault_impl", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_FLASHVAULT_IMPL; ++ ++ return type; ++} ++ ++ ++/* Returns the type of the current function. */ ++static unsigned long ++avr32_current_func_type (void) ++{ ++ if (AVR32_FUNC_TYPE (cfun->machine->func_type) == AVR32_FT_UNKNOWN) ++ cfun->machine->func_type = avr32_compute_func_type (); ++ ++ return cfun->machine->func_type; ++} ++ ++ ++/* ++This target hook should return true if we should not pass type solely ++in registers. The file expr.h defines a definition that is usually appropriate, ++refer to expr.h for additional documentation. ++*/ ++bool ++avr32_must_pass_in_stack (enum machine_mode mode ATTRIBUTE_UNUSED, tree type) ++{ ++ if (type && AGGREGATE_TYPE_P (type) ++ /* If the alignment is less than the size then pass in the struct on ++ the stack. */ ++ && ((unsigned int) TYPE_ALIGN_UNIT (type) < ++ (unsigned int) int_size_in_bytes (type)) ++ /* If we support unaligned word accesses then structs of size 4 and 8 ++ can have any alignment and still be passed in registers. */ ++ && !(TARGET_UNALIGNED_WORD ++ && (int_size_in_bytes (type) == 4 ++ || int_size_in_bytes (type) == 8)) ++ /* Double word structs need only a word alignment. */ ++ && !(int_size_in_bytes (type) == 8 && TYPE_ALIGN_UNIT (type) >= 4)) ++ return true; ++ ++ if (type && AGGREGATE_TYPE_P (type) ++ /* Structs of size 3,5,6,7 are always passed in registers. */ ++ && (int_size_in_bytes (type) == 3 ++ || int_size_in_bytes (type) == 5 ++ || int_size_in_bytes (type) == 6 || int_size_in_bytes (type) == 7)) ++ return true; ++ ++ ++ return (type && TREE_ADDRESSABLE (type)); ++} ++ ++ ++bool ++avr32_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED) ++{ ++ return true; ++} ++ ++ ++/* ++ This target hook should return true if an argument at the position indicated ++ by cum should be passed by reference. This predicate is queried after target ++ independent reasons for being passed by reference, such as TREE_ADDRESSABLE (type). ++ ++ If the hook returns true, a copy of that argument is made in memory and a ++ pointer to the argument is passed instead of the argument itself. The pointer ++ is passed in whatever way is appropriate for passing a pointer to that type. ++*/ ++bool ++avr32_pass_by_reference (CUMULATIVE_ARGS * cum ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ tree type, bool named ATTRIBUTE_UNUSED) ++{ ++ return (type && (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)); ++} ++ ++ ++static int ++avr32_arg_partial_bytes (CUMULATIVE_ARGS * pcum ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ tree type ATTRIBUTE_UNUSED, ++ bool named ATTRIBUTE_UNUSED) ++{ ++ return 0; ++} ++ ++ ++struct gcc_target targetm = TARGET_INITIALIZER; ++ ++/* ++ Table used to convert from register number in the assembler instructions and ++ the register numbers used in gcc. ++*/ ++const int avr32_function_arg_reglist[] = { ++ INTERNAL_REGNUM (12), ++ INTERNAL_REGNUM (11), ++ INTERNAL_REGNUM (10), ++ INTERNAL_REGNUM (9), ++ INTERNAL_REGNUM (8) ++}; ++ ++ ++rtx avr32_compare_op0 = NULL_RTX; ++rtx avr32_compare_op1 = NULL_RTX; ++rtx avr32_compare_operator = NULL_RTX; ++rtx avr32_acc_cache = NULL_RTX; ++/* type of branch to use */ ++enum avr32_cmp_type avr32_branch_type; ++ ++ ++/* ++ Returns nonzero if it is allowed to store a value of mode mode in hard ++ register number regno. ++*/ ++int ++avr32_hard_regno_mode_ok (int regnr, enum machine_mode mode) ++{ ++ switch (mode) ++ { ++ case DImode: /* long long */ ++ case DFmode: /* double */ ++ case SCmode: /* __complex__ float */ ++ case CSImode: /* __complex__ int */ ++ if (regnr < 4) ++ { /* long long int not supported in r12, sp, lr or pc. */ ++ return 0; ++ } ++ else ++ { ++ /* long long int has to be referred in even registers. */ ++ if (regnr % 2) ++ return 0; ++ else ++ return 1; ++ } ++ case CDImode: /* __complex__ long long */ ++ case DCmode: /* __complex__ double */ ++ case TImode: /* 16 bytes */ ++ if (regnr < 7) ++ return 0; ++ else if (regnr % 2) ++ return 0; ++ else ++ return 1; ++ default: ++ return 1; ++ } ++} ++ ++ ++int ++avr32_rnd_operands (rtx add, rtx shift) ++{ ++ if (GET_CODE (shift) == CONST_INT && ++ GET_CODE (add) == CONST_INT && INTVAL (shift) > 0) ++ { ++ if ((1 << (INTVAL (shift) - 1)) == INTVAL (add)) ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, const char *str) ++{ ++ switch (c) ++ { ++ case 'K': ++ case 'I': ++ { ++ HOST_WIDE_INT min_value = 0, max_value = 0; ++ char size_str[3]; ++ int const_size; ++ ++ size_str[0] = str[2]; ++ size_str[1] = str[3]; ++ size_str[2] = '\0'; ++ const_size = atoi (size_str); ++ ++ if (TOUPPER (str[1]) == 'U') ++ { ++ min_value = 0; ++ max_value = (1 << const_size) - 1; ++ } ++ else if (TOUPPER (str[1]) == 'S') ++ { ++ min_value = -(1 << (const_size - 1)); ++ max_value = (1 << (const_size - 1)) - 1; ++ } ++ ++ if (c == 'I') ++ { ++ value = -value; ++ } ++ ++ if (value >= min_value && value <= max_value) ++ { ++ return 1; ++ } ++ break; ++ } ++ case 'M': ++ return avr32_mask_upper_bits_operand (GEN_INT (value), VOIDmode); ++ case 'J': ++ return avr32_hi16_immediate_operand (GEN_INT (value), VOIDmode); ++ case 'O': ++ return one_bit_set_operand (GEN_INT (value), VOIDmode); ++ case 'N': ++ return one_bit_cleared_operand (GEN_INT (value), VOIDmode); ++ case 'L': ++ /* The lower 16-bits are set. */ ++ return ((value & 0xffff) == 0xffff) ; ++ } ++ ++ return 0; ++} ++ ++ ++/* Compute mask of registers which needs saving upon function entry. */ ++static unsigned long ++avr32_compute_save_reg_mask (int push) ++{ ++ unsigned long func_type; ++ unsigned int save_reg_mask = 0; ++ unsigned int reg; ++ ++ func_type = avr32_current_func_type (); ++ ++ if (IS_INTERRUPT (func_type)) ++ { ++ unsigned int max_reg = 12; ++ ++ /* Get the banking scheme for the interrupt */ ++ switch (func_type) ++ { ++ case AVR32_FT_ISR_FULL: ++ max_reg = 0; ++ break; ++ case AVR32_FT_ISR_HALF: ++ max_reg = 7; ++ break; ++ case AVR32_FT_ISR_NONE: ++ max_reg = 12; ++ break; ++ } ++ ++ /* Interrupt functions must not corrupt any registers, even call ++ clobbered ones. If this is a leaf function we can just examine the ++ registers used by the RTL, but otherwise we have to assume that ++ whatever function is called might clobber anything, and so we have ++ to save all the call-clobbered registers as well. */ ++ ++ /* Need not push the registers r8-r12 for AVR32A architectures, as this ++ is automatially done in hardware. We also do not have any shadow ++ registers. */ ++ if (TARGET_UARCH_AVR32A) ++ { ++ max_reg = 7; ++ func_type = AVR32_FT_ISR_NONE; ++ } ++ ++ /* All registers which are used and are not shadowed must be saved. */ ++ for (reg = 0; reg <= max_reg; reg++) ++ if (df_regs_ever_live_p (INTERNAL_REGNUM (reg)) ++ || (!current_function_is_leaf ++ && call_used_regs[INTERNAL_REGNUM (reg)])) ++ save_reg_mask |= (1 << reg); ++ ++ /* Check LR */ ++ if ((df_regs_ever_live_p (LR_REGNUM) ++ || !current_function_is_leaf || frame_pointer_needed) ++ /* Only non-shadowed register models */ ++ && (func_type == AVR32_FT_ISR_NONE)) ++ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM)); ++ ++ /* Make sure that the GOT register is pushed. */ ++ if (max_reg >= ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM) ++ && crtl->uses_pic_offset_table) ++ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)); ++ ++ } ++ else ++ { ++ int use_pushm = optimize_size; ++ ++ /* In the normal case we only need to save those registers which are ++ call saved and which are used by this function. */ ++ for (reg = 0; reg <= 7; reg++) ++ if (df_regs_ever_live_p (INTERNAL_REGNUM (reg)) ++ && !call_used_regs[INTERNAL_REGNUM (reg)]) ++ save_reg_mask |= (1 << reg); ++ ++ /* Make sure that the GOT register is pushed. */ ++ if (crtl->uses_pic_offset_table) ++ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)); ++ ++ ++ /* If we optimize for size and do not have anonymous arguments: use ++ pushm/popm always. */ ++ if (use_pushm) ++ { ++ if ((save_reg_mask & (1 << 0)) ++ || (save_reg_mask & (1 << 1)) ++ || (save_reg_mask & (1 << 2)) || (save_reg_mask & (1 << 3))) ++ save_reg_mask |= 0xf; ++ ++ if ((save_reg_mask & (1 << 4)) ++ || (save_reg_mask & (1 << 5)) ++ || (save_reg_mask & (1 << 6)) || (save_reg_mask & (1 << 7))) ++ save_reg_mask |= 0xf0; ++ ++ if ((save_reg_mask & (1 << 8)) || (save_reg_mask & (1 << 9))) ++ save_reg_mask |= 0x300; ++ } ++ ++ ++ /* Check LR */ ++ if ((df_regs_ever_live_p (LR_REGNUM) ++ || !current_function_is_leaf ++ || (optimize_size ++ && save_reg_mask ++ && !crtl->calls_eh_return) ++ || frame_pointer_needed) ++ && !IS_FLASHVAULT (func_type)) ++ { ++ if (push ++ /* Never pop LR into PC for functions which ++ calls __builtin_eh_return, since we need to ++ fix the SP after the restoring of the registers ++ and before returning. */ ++ || crtl->calls_eh_return) ++ { ++ /* Push/Pop LR */ ++ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM)); ++ } ++ else ++ { ++ /* Pop PC */ ++ save_reg_mask |= (1 << ASM_REGNUM (PC_REGNUM)); ++ } ++ } ++ } ++ ++ ++ /* Save registers so the exception handler can modify them. */ ++ if (crtl->calls_eh_return) ++ { ++ unsigned int i; ++ ++ for (i = 0;; i++) ++ { ++ reg = EH_RETURN_DATA_REGNO (i); ++ if (reg == INVALID_REGNUM) ++ break; ++ save_reg_mask |= 1 << ASM_REGNUM (reg); ++ } ++ } ++ ++ return save_reg_mask; ++} ++ ++ ++/* Compute total size in bytes of all saved registers. */ ++static int ++avr32_get_reg_mask_size (int reg_mask) ++{ ++ int reg, size; ++ size = 0; ++ ++ for (reg = 0; reg <= 15; reg++) ++ if (reg_mask & (1 << reg)) ++ size += 4; ++ ++ return size; ++} ++ ++ ++/* Get a register from one of the registers which are saved onto the stack ++ upon function entry. */ ++static int ++avr32_get_saved_reg (int save_reg_mask) ++{ ++ unsigned int reg; ++ ++ /* Find the first register which is saved in the saved_reg_mask */ ++ for (reg = 0; reg <= 15; reg++) ++ if (save_reg_mask & (1 << reg)) ++ return reg; ++ ++ return -1; ++} ++ ++ ++/* Return 1 if it is possible to return using a single instruction. */ ++int ++avr32_use_return_insn (int iscond) ++{ ++ unsigned int func_type = avr32_current_func_type (); ++ unsigned long saved_int_regs; ++ ++ /* Never use a return instruction before reload has run. */ ++ if (!reload_completed) ++ return 0; ++ ++ /* Must adjust the stack for vararg functions. */ ++ if (crtl->args.info.uses_anonymous_args) ++ return 0; ++ ++ /* If there a stack adjstment. */ ++ if (get_frame_size ()) ++ return 0; ++ ++ saved_int_regs = avr32_compute_save_reg_mask (TRUE); ++ ++ /* Conditional returns can not be performed in one instruction if we need ++ to restore registers from the stack */ ++ if (iscond && saved_int_regs) ++ return 0; ++ ++ /* Conditional return can not be used for interrupt handlers. */ ++ if (iscond && IS_INTERRUPT (func_type)) ++ return 0; ++ ++ /* For interrupt handlers which needs to pop registers */ ++ if (saved_int_regs && IS_INTERRUPT (func_type)) ++ return 0; ++ ++ ++ /* If there are saved registers but the LR isn't saved, then we need two ++ instructions for the return. */ ++ if (saved_int_regs && !(saved_int_regs & (1 << ASM_REGNUM (LR_REGNUM)))) ++ return 0; ++ ++ ++ return 1; ++} ++ ++ ++/* Generate some function prologue info in the assembly file. */ ++void ++avr32_target_asm_function_prologue (FILE * f, HOST_WIDE_INT frame_size) ++{ ++ unsigned long func_type = avr32_current_func_type (); ++ ++ if (IS_NAKED (func_type)) ++ fprintf (f, ++ "\t# Function is naked: Prologue and epilogue provided by programmer\n"); ++ ++ if (IS_FLASHVAULT (func_type)) ++ { ++ fprintf(f, ++ "\t.ident \"flashvault\"\n\t# Function is defined with flashvault attribute.\n"); ++ } ++ ++ if (IS_FLASHVAULT_IMPL (func_type)) ++ { ++ fprintf(f, ++ "\t.ident \"flashvault\"\n\t# Function is defined with flashvault_impl attribute.\n"); ++ ++ /* Save information on flashvault function declaration. */ ++ tree fv_attribute = lookup_attribute ("flashvault_impl", DECL_ATTRIBUTES(current_function_decl)); ++ if (fv_attribute != NULL_TREE) ++ { ++ tree vector_tree = TREE_VALUE(fv_attribute); ++ if (vector_tree != NULL_TREE) ++ { ++ unsigned int vector_num; ++ const char * name; ++ ++ vector_num = (unsigned int) TREE_INT_CST_LOW (TREE_VALUE (vector_tree)); ++ ++ name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); ++ ++ flashvault_decl_list_add (vector_num, name); ++ } ++ } ++ } ++ ++ if (IS_INTERRUPT (func_type)) ++ { ++ switch (func_type) ++ { ++ case AVR32_FT_ISR_FULL: ++ fprintf (f, ++ "\t# Interrupt Function: Fully shadowed register file\n"); ++ break; ++ case AVR32_FT_ISR_HALF: ++ fprintf (f, ++ "\t# Interrupt Function: Half shadowed register file\n"); ++ break; ++ default: ++ case AVR32_FT_ISR_NONE: ++ fprintf (f, "\t# Interrupt Function: No shadowed register file\n"); ++ break; ++ } ++ } ++ ++ ++ fprintf (f, "\t# args = %i, frame = %li, pretend = %i\n", ++ crtl->args.size, frame_size, ++ crtl->args.pretend_args_size); ++ ++ fprintf (f, "\t# frame_needed = %i, leaf_function = %i\n", ++ frame_pointer_needed, current_function_is_leaf); ++ ++ fprintf (f, "\t# uses_anonymous_args = %i\n", ++ crtl->args.info.uses_anonymous_args); ++ ++ if (crtl->calls_eh_return) ++ fprintf (f, "\t# Calls __builtin_eh_return.\n"); ++ ++} ++ ++ ++/* Generate and emit an insn that we will recognize as a pushm or stm. ++ Unfortunately, since this insn does not reflect very well the actual ++ semantics of the operation, we need to annotate the insn for the benefit ++ of DWARF2 frame unwind information. */ ++ ++int avr32_convert_to_reglist16 (int reglist8_vect); ++ ++static rtx ++emit_multi_reg_push (int reglist, int usePUSHM) ++{ ++ rtx insn; ++ rtx dwarf; ++ rtx tmp; ++ rtx reg; ++ int i; ++ int nr_regs; ++ int index = 0; ++ ++ if (usePUSHM) ++ { ++ insn = emit_insn (gen_pushm (gen_rtx_CONST_INT (SImode, reglist))); ++ reglist = avr32_convert_to_reglist16 (reglist); ++ } ++ else ++ { ++ insn = emit_insn (gen_stm (stack_pointer_rtx, ++ gen_rtx_CONST_INT (SImode, reglist), ++ gen_rtx_CONST_INT (SImode, 1))); ++ } ++ ++ nr_regs = avr32_get_reg_mask_size (reglist) / 4; ++ dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1)); ++ ++ for (i = 15; i >= 0; i--) ++ { ++ if (reglist & (1 << i)) ++ { ++ reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (i)); ++ tmp = gen_rtx_SET (VOIDmode, ++ gen_rtx_MEM (SImode, ++ plus_constant (stack_pointer_rtx, ++ 4 * index)), reg); ++ RTX_FRAME_RELATED_P (tmp) = 1; ++ XVECEXP (dwarf, 0, 1 + index++) = tmp; ++ } ++ } ++ ++ tmp = gen_rtx_SET (SImode, ++ stack_pointer_rtx, ++ gen_rtx_PLUS (SImode, ++ stack_pointer_rtx, ++ GEN_INT (-4 * nr_regs))); ++ RTX_FRAME_RELATED_P (tmp) = 1; ++ XVECEXP (dwarf, 0, 0) = tmp; ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf, ++ REG_NOTES (insn)); ++ return insn; ++} ++ ++rtx ++avr32_gen_load_multiple (rtx * regs, int count, rtx from, ++ int write_back, int in_struct_p, int scalar_p) ++{ ++ ++ rtx result; ++ int i = 0, j; ++ ++ result = ++ gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + (write_back ? 1 : 0))); ++ ++ if (write_back) ++ { ++ XVECEXP (result, 0, 0) ++ = gen_rtx_SET (GET_MODE (from), from, ++ plus_constant (from, count * 4)); ++ i = 1; ++ count++; ++ } ++ ++ ++ for (j = 0; i < count; i++, j++) ++ { ++ rtx unspec; ++ rtx mem = gen_rtx_MEM (SImode, plus_constant (from, j * 4)); ++ MEM_IN_STRUCT_P (mem) = in_struct_p; ++ MEM_SCALAR_P (mem) = scalar_p; ++ unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, mem), UNSPEC_LDM); ++ XVECEXP (result, 0, i) = gen_rtx_SET (VOIDmode, regs[j], unspec); ++ } ++ ++ return result; ++} ++ ++ ++rtx ++avr32_gen_store_multiple (rtx * regs, int count, rtx to, ++ int in_struct_p, int scalar_p) ++{ ++ rtx result; ++ int i = 0, j; ++ ++ result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count)); ++ ++ for (j = 0; i < count; i++, j++) ++ { ++ rtx mem = gen_rtx_MEM (SImode, plus_constant (to, j * 4)); ++ MEM_IN_STRUCT_P (mem) = in_struct_p; ++ MEM_SCALAR_P (mem) = scalar_p; ++ XVECEXP (result, 0, i) ++ = gen_rtx_SET (VOIDmode, mem, ++ gen_rtx_UNSPEC (VOIDmode, ++ gen_rtvec (1, regs[j]), ++ UNSPEC_STORE_MULTIPLE)); ++ } ++ ++ return result; ++} ++ ++ ++/* Move a block of memory if it is word aligned or we support unaligned ++ word memory accesses. The size must be maximum 64 bytes. */ ++int ++avr32_gen_movmemsi (rtx * operands) ++{ ++ HOST_WIDE_INT bytes_to_go; ++ rtx src, dst; ++ rtx st_src, st_dst; ++ int src_offset = 0, dst_offset = 0; ++ int block_size; ++ int dst_in_struct_p, src_in_struct_p; ++ int dst_scalar_p, src_scalar_p; ++ int unaligned; ++ ++ if (GET_CODE (operands[2]) != CONST_INT ++ || GET_CODE (operands[3]) != CONST_INT ++ || INTVAL (operands[2]) > 64 ++ || ((INTVAL (operands[3]) & 3) && !TARGET_UNALIGNED_WORD)) ++ return 0; ++ ++ unaligned = (INTVAL (operands[3]) & 3) != 0; ++ ++ block_size = 4; ++ ++ st_dst = XEXP (operands[0], 0); ++ st_src = XEXP (operands[1], 0); ++ ++ dst_in_struct_p = MEM_IN_STRUCT_P (operands[0]); ++ dst_scalar_p = MEM_SCALAR_P (operands[0]); ++ src_in_struct_p = MEM_IN_STRUCT_P (operands[1]); ++ src_scalar_p = MEM_SCALAR_P (operands[1]); ++ ++ dst = copy_to_mode_reg (SImode, st_dst); ++ src = copy_to_mode_reg (SImode, st_src); ++ ++ bytes_to_go = INTVAL (operands[2]); ++ ++ while (bytes_to_go) ++ { ++ enum machine_mode move_mode; ++ /* (Seems to be a problem with reloads for the movti pattern so this is ++ disabled until that problem is resolved) ++ UPDATE: Problem seems to be solved now.... */ ++ if (bytes_to_go >= GET_MODE_SIZE (TImode) && !unaligned ++ /* Do not emit ldm/stm for UC3 as ld.d/st.d is more optimal. */ ++ && !TARGET_ARCH_UC) ++ move_mode = TImode; ++ else if ((bytes_to_go >= GET_MODE_SIZE (DImode)) && !unaligned) ++ move_mode = DImode; ++ else if (bytes_to_go >= GET_MODE_SIZE (SImode)) ++ move_mode = SImode; ++ else ++ move_mode = QImode; ++ ++ { ++ rtx src_mem; ++ rtx dst_mem = gen_rtx_MEM (move_mode, ++ gen_rtx_PLUS (SImode, dst, ++ GEN_INT (dst_offset))); ++ dst_offset += GET_MODE_SIZE (move_mode); ++ if ( 0 /* This causes an error in GCC. Think there is ++ something wrong in the gcse pass which causes REQ_EQUIV notes ++ to be wrong so disabling it for now. */ ++ && move_mode == TImode ++ && INTVAL (operands[2]) > GET_MODE_SIZE (TImode) ) ++ { ++ src_mem = gen_rtx_MEM (move_mode, ++ gen_rtx_POST_INC (SImode, src)); ++ } ++ else ++ { ++ src_mem = gen_rtx_MEM (move_mode, ++ gen_rtx_PLUS (SImode, src, ++ GEN_INT (src_offset))); ++ src_offset += GET_MODE_SIZE (move_mode); ++ } ++ ++ bytes_to_go -= GET_MODE_SIZE (move_mode); ++ ++ MEM_IN_STRUCT_P (dst_mem) = dst_in_struct_p; ++ MEM_SCALAR_P (dst_mem) = dst_scalar_p; ++ ++ MEM_IN_STRUCT_P (src_mem) = src_in_struct_p; ++ MEM_SCALAR_P (src_mem) = src_scalar_p; ++ emit_move_insn (dst_mem, src_mem); ++ ++ } ++ } ++ ++ return 1; ++} ++ ++ ++/* Expand the prologue instruction. */ ++void ++avr32_expand_prologue (void) ++{ ++ rtx insn, dwarf; ++ unsigned long saved_reg_mask; ++ int reglist8 = 0; ++ ++ /* Naked functions do not have a prologue. */ ++ if (IS_NAKED (avr32_current_func_type ())) ++ return; ++ ++ saved_reg_mask = avr32_compute_save_reg_mask (TRUE); ++ ++ if (saved_reg_mask) ++ { ++ /* Must push used registers. */ ++ ++ /* Should we use POPM or LDM? */ ++ int usePUSHM = TRUE; ++ reglist8 = 0; ++ if (((saved_reg_mask & (1 << 0)) || ++ (saved_reg_mask & (1 << 1)) || ++ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3)))) ++ { ++ /* One of R0-R3 should at least be pushed. */ ++ if (((saved_reg_mask & (1 << 0)) && ++ (saved_reg_mask & (1 << 1)) && ++ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3)))) ++ { ++ /* All should be pushed. */ ++ reglist8 |= 0x01; ++ } ++ else ++ { ++ usePUSHM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 4)) || ++ (saved_reg_mask & (1 << 5)) || ++ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7)))) ++ { ++ /* One of R4-R7 should at least be pushed */ ++ if (((saved_reg_mask & (1 << 4)) && ++ (saved_reg_mask & (1 << 5)) && ++ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7)))) ++ { ++ if (usePUSHM) ++ /* All should be pushed */ ++ reglist8 |= 0x02; ++ } ++ else ++ { ++ usePUSHM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9)))) ++ { ++ /* One of R8-R9 should at least be pushed. */ ++ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9)))) ++ { ++ if (usePUSHM) ++ /* All should be pushed. */ ++ reglist8 |= 0x04; ++ } ++ else ++ { ++ usePUSHM = FALSE; ++ } ++ } ++ ++ if (saved_reg_mask & (1 << 10)) ++ reglist8 |= 0x08; ++ ++ if (saved_reg_mask & (1 << 11)) ++ reglist8 |= 0x10; ++ ++ if (saved_reg_mask & (1 << 12)) ++ reglist8 |= 0x20; ++ ++ if ((saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM))) ++ && !IS_FLASHVAULT (avr32_current_func_type ())) ++ { ++ /* Push LR */ ++ reglist8 |= 0x40; ++ } ++ ++ if (usePUSHM) ++ { ++ insn = emit_multi_reg_push (reglist8, TRUE); ++ } ++ else ++ { ++ insn = emit_multi_reg_push (saved_reg_mask, FALSE); ++ } ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ /* Prevent this instruction from being scheduled after any other ++ instructions. */ ++ emit_insn (gen_blockage ()); ++ } ++ ++ /* Set frame pointer */ ++ if (frame_pointer_needed) ++ { ++ insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ } ++ ++ if (get_frame_size () > 0) ++ { ++ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks21")) ++ { ++ insn = emit_insn (gen_rtx_SET (SImode, ++ stack_pointer_rtx, ++ gen_rtx_PLUS (SImode, ++ stack_pointer_rtx, ++ gen_rtx_CONST_INT ++ (SImode, ++ -get_frame_size ++ ())))); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ } ++ else ++ { ++ /* Immediate is larger than k21 We must either check if we can use ++ one of the pushed reegisters as temporary storage or we must ++ make us a temp register by pushing a register to the stack. */ ++ rtx temp_reg, const_pool_entry, insn; ++ if (saved_reg_mask) ++ { ++ temp_reg = ++ gen_rtx_REG (SImode, ++ INTERNAL_REGNUM (avr32_get_saved_reg ++ (saved_reg_mask))); ++ } ++ else ++ { ++ temp_reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (7)); ++ emit_move_insn (gen_rtx_MEM ++ (SImode, ++ gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)), ++ temp_reg); ++ } ++ ++ const_pool_entry = ++ force_const_mem (SImode, ++ gen_rtx_CONST_INT (SImode, get_frame_size ())); ++ emit_move_insn (temp_reg, const_pool_entry); ++ ++ insn = emit_insn (gen_rtx_SET (SImode, ++ stack_pointer_rtx, ++ gen_rtx_MINUS (SImode, ++ stack_pointer_rtx, ++ temp_reg))); ++ ++ dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx, ++ gen_rtx_PLUS (SImode, stack_pointer_rtx, ++ GEN_INT (-get_frame_size ()))); ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, ++ dwarf, REG_NOTES (insn)); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ if (!saved_reg_mask) ++ { ++ insn = ++ emit_move_insn (temp_reg, ++ gen_rtx_MEM (SImode, ++ gen_rtx_POST_INC (SImode, ++ gen_rtx_REG ++ (SImode, ++ 13)))); ++ } ++ ++ /* Mark the temp register as dead */ ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, temp_reg, ++ REG_NOTES (insn)); ++ ++ ++ } ++ ++ /* Prevent the the stack adjustment to be scheduled after any ++ instructions using the frame pointer. */ ++ emit_insn (gen_blockage ()); ++ } ++ ++ /* Load GOT */ ++ if (flag_pic) ++ { ++ avr32_load_pic_register (); ++ ++ /* gcc does not know that load or call instructions might use the pic ++ register so it might schedule these instructions before the loading ++ of the pic register. To avoid this emit a barrier for now. TODO! ++ Find out a better way to let gcc know which instructions might use ++ the pic register. */ ++ emit_insn (gen_blockage ()); ++ } ++ return; ++} ++ ++ ++void ++avr32_set_return_address (rtx source, rtx scratch) ++{ ++ rtx addr; ++ unsigned long saved_regs; ++ ++ saved_regs = avr32_compute_save_reg_mask (TRUE); ++ ++ if (!(saved_regs & (1 << ASM_REGNUM (LR_REGNUM)))) ++ emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source); ++ else ++ { ++ if (frame_pointer_needed) ++ addr = gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM); ++ else ++ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks16")) ++ { ++ addr = plus_constant (stack_pointer_rtx, get_frame_size ()); ++ } ++ else ++ { ++ emit_insn (gen_movsi (scratch, GEN_INT (get_frame_size ()))); ++ addr = scratch; ++ } ++ emit_move_insn (gen_rtx_MEM (Pmode, addr), source); ++ } ++} ++ ++ ++/* Return the length of INSN. LENGTH is the initial length computed by ++ attributes in the machine-description file. */ ++int ++avr32_adjust_insn_length (rtx insn ATTRIBUTE_UNUSED, ++ int length ATTRIBUTE_UNUSED) ++{ ++ return length; ++} ++ ++ ++void ++avr32_output_return_instruction (int single_ret_inst ATTRIBUTE_UNUSED, ++ int iscond ATTRIBUTE_UNUSED, ++ rtx cond ATTRIBUTE_UNUSED, rtx r12_imm) ++{ ++ ++ unsigned long saved_reg_mask; ++ int insert_ret = TRUE; ++ int reglist8 = 0; ++ int stack_adjustment = get_frame_size (); ++ unsigned int func_type = avr32_current_func_type (); ++ FILE *f = asm_out_file; ++ ++ /* Naked functions does not have an epilogue */ ++ if (IS_NAKED (func_type)) ++ return; ++ ++ saved_reg_mask = avr32_compute_save_reg_mask (FALSE); ++ ++ /* Reset frame pointer */ ++ if (stack_adjustment > 0) ++ { ++ if (avr32_const_ok_for_constraint_p (stack_adjustment, 'I', "Is21")) ++ { ++ fprintf (f, "\tsub\tsp, %i # Reset Frame Pointer\n", ++ -stack_adjustment); ++ } ++ else ++ { ++ /* TODO! Is it safe to use r8 as scratch?? */ ++ fprintf (f, "\tmov\tr8, lo(%i) # Reset Frame Pointer\n", ++ -stack_adjustment); ++ fprintf (f, "\torh\tr8, hi(%i) # Reset Frame Pointer\n", ++ -stack_adjustment); ++ fprintf (f, "\tadd\tsp, r8 # Reset Frame Pointer\n"); ++ } ++ } ++ ++ if (saved_reg_mask) ++ { ++ /* Must pop used registers */ ++ ++ /* Should we use POPM or LDM? */ ++ int usePOPM = TRUE; ++ if (((saved_reg_mask & (1 << 0)) || ++ (saved_reg_mask & (1 << 1)) || ++ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3)))) ++ { ++ /* One of R0-R3 should at least be popped */ ++ if (((saved_reg_mask & (1 << 0)) && ++ (saved_reg_mask & (1 << 1)) && ++ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3)))) ++ { ++ /* All should be popped */ ++ reglist8 |= 0x01; ++ } ++ else ++ { ++ usePOPM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 4)) || ++ (saved_reg_mask & (1 << 5)) || ++ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7)))) ++ { ++ /* One of R0-R3 should at least be popped */ ++ if (((saved_reg_mask & (1 << 4)) && ++ (saved_reg_mask & (1 << 5)) && ++ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7)))) ++ { ++ if (usePOPM) ++ /* All should be popped */ ++ reglist8 |= 0x02; ++ } ++ else ++ { ++ usePOPM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9)))) ++ { ++ /* One of R8-R9 should at least be pushed */ ++ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9)))) ++ { ++ if (usePOPM) ++ /* All should be pushed */ ++ reglist8 |= 0x04; ++ } ++ else ++ { ++ usePOPM = FALSE; ++ } ++ } ++ ++ if (saved_reg_mask & (1 << 10)) ++ reglist8 |= 0x08; ++ ++ if (saved_reg_mask & (1 << 11)) ++ reglist8 |= 0x10; ++ ++ if (saved_reg_mask & (1 << 12)) ++ reglist8 |= 0x20; ++ ++ if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM))) ++ /* Pop LR */ ++ reglist8 |= 0x40; ++ ++ if ((saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM))) ++ && !IS_FLASHVAULT_IMPL (func_type)) ++ /* Pop LR into PC. */ ++ reglist8 |= 0x80; ++ ++ if (usePOPM) ++ { ++ char reglist[64]; /* 64 bytes should be enough... */ ++ avr32_make_reglist8 (reglist8, (char *) reglist); ++ ++ if (reglist8 & 0x80) ++ /* This instruction is also a return */ ++ insert_ret = FALSE; ++ ++ if (r12_imm && !insert_ret) ++ fprintf (f, "\tpopm\t%s, r12=%li\n", reglist, INTVAL (r12_imm)); ++ else ++ fprintf (f, "\tpopm\t%s\n", reglist); ++ ++ } ++ else ++ { ++ char reglist[64]; /* 64 bytes should be enough... */ ++ avr32_make_reglist16 (saved_reg_mask, (char *) reglist); ++ if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM))) ++ /* This instruction is also a return */ ++ insert_ret = FALSE; ++ ++ if (r12_imm && !insert_ret) ++ fprintf (f, "\tldm\tsp++, %s, r12=%li\n", reglist, ++ INTVAL (r12_imm)); ++ else ++ fprintf (f, "\tldm\tsp++, %s\n", reglist); ++ ++ } ++ ++ } ++ ++ /* Stack adjustment for exception handler. */ ++ if (crtl->calls_eh_return) ++ fprintf (f, "\tadd\tsp, r%d\n", ASM_REGNUM (EH_RETURN_STACKADJ_REGNO)); ++ ++ ++ if (IS_INTERRUPT (func_type)) ++ { ++ fprintf (f, "\trete\n"); ++ } ++ else if (IS_FLASHVAULT (func_type)) ++ { ++ /* Normal return from Secure System call, increment SS_RAR before ++ returning. Use R8 as scratch. */ ++ fprintf (f, ++ "\t# Normal return from sscall.\n" ++ "\t# Increment SS_RAR before returning.\n" ++ "\t# Use R8 as scratch.\n" ++ "\tmfsr\tr8, 440\n" ++ "\tsub\tr8, -2\n" ++ "\tmtsr\t440, r8\n" ++ "\tretss\n"); ++ } ++ else if (insert_ret) ++ { ++ if (r12_imm) ++ fprintf (f, "\tretal\t%li\n", INTVAL (r12_imm)); ++ else ++ fprintf (f, "\tretal\tr12\n"); ++ } ++} ++ ++void ++avr32_make_reglist16 (int reglist16_vect, char *reglist16_string) ++{ ++ int i; ++ bool first_reg = true; ++ /* Make sure reglist16_string is empty. */ ++ reglist16_string[0] = '\0'; ++ ++ for (i = 0; i < 16; ++i) ++ { ++ if (reglist16_vect & (1 << i)) ++ { ++ first_reg == true ? first_reg = false : strcat(reglist16_string,", "); ++ strcat (reglist16_string, reg_names[INTERNAL_REGNUM (i)]); ++ } ++ } ++} ++ ++int ++avr32_convert_to_reglist16 (int reglist8_vect) ++{ ++ int reglist16_vect = 0; ++ if (reglist8_vect & 0x1) ++ reglist16_vect |= 0xF; ++ if (reglist8_vect & 0x2) ++ reglist16_vect |= 0xF0; ++ if (reglist8_vect & 0x4) ++ reglist16_vect |= 0x300; ++ if (reglist8_vect & 0x8) ++ reglist16_vect |= 0x400; ++ if (reglist8_vect & 0x10) ++ reglist16_vect |= 0x800; ++ if (reglist8_vect & 0x20) ++ reglist16_vect |= 0x1000; ++ if (reglist8_vect & 0x40) ++ reglist16_vect |= 0x4000; ++ if (reglist8_vect & 0x80) ++ reglist16_vect |= 0x8000; ++ ++ return reglist16_vect; ++} ++ ++void ++avr32_make_reglist8 (int reglist8_vect, char *reglist8_string) ++{ ++ /* Make sure reglist8_string is empty. */ ++ reglist8_string[0] = '\0'; ++ ++ if (reglist8_vect & 0x1) ++ strcpy (reglist8_string, "r0-r3"); ++ if (reglist8_vect & 0x2) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r4-r7") : ++ strcpy (reglist8_string, "r4-r7"); ++ if (reglist8_vect & 0x4) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r8-r9") : ++ strcpy (reglist8_string, "r8-r9"); ++ if (reglist8_vect & 0x8) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r10") : ++ strcpy (reglist8_string, "r10"); ++ if (reglist8_vect & 0x10) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r11") : ++ strcpy (reglist8_string, "r11"); ++ if (reglist8_vect & 0x20) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r12") : ++ strcpy (reglist8_string, "r12"); ++ if (reglist8_vect & 0x40) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", lr") : ++ strcpy (reglist8_string, "lr"); ++ if (reglist8_vect & 0x80) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", pc") : ++ strcpy (reglist8_string, "pc"); ++} ++ ++ ++int ++avr32_eh_return_data_regno (int n) ++{ ++ if (n >= 0 && n <= 3) ++ return 8 + n; ++ else ++ return INVALID_REGNUM; ++} ++ ++ ++/* Compute the distance from register FROM to register TO. ++ These can be the arg pointer, the frame pointer or ++ the stack pointer. ++ Typical stack layout looks like this: ++ ++ old stack pointer -> | | ++ ---- ++ | | \ ++ | | saved arguments for ++ | | vararg functions ++ arg_pointer -> | | / ++ -- ++ | | \ ++ | | call saved ++ | | registers ++ | | / ++ frame ptr -> -- ++ | | \ ++ | | local ++ | | variables ++ stack ptr --> | | / ++ -- ++ | | \ ++ | | outgoing ++ | | arguments ++ | | / ++ -- ++ ++ For a given funciton some or all of these stack compomnents ++ may not be needed, giving rise to the possibility of ++ eliminating some of the registers. ++ ++ The values returned by this function must reflect the behaviour ++ of avr32_expand_prologue() and avr32_compute_save_reg_mask(). ++ ++ The sign of the number returned reflects the direction of stack ++ growth, so the values are positive for all eliminations except ++ from the soft frame pointer to the hard frame pointer. */ ++int ++avr32_initial_elimination_offset (int from, int to) ++{ ++ int i; ++ int call_saved_regs = 0; ++ unsigned long saved_reg_mask; ++ unsigned int local_vars = get_frame_size (); ++ ++ saved_reg_mask = avr32_compute_save_reg_mask (TRUE); ++ ++ for (i = 0; i < 16; ++i) ++ { ++ if (saved_reg_mask & (1 << i)) ++ call_saved_regs += 4; ++ } ++ ++ switch (from) ++ { ++ case ARG_POINTER_REGNUM: ++ switch (to) ++ { ++ case STACK_POINTER_REGNUM: ++ return call_saved_regs + local_vars; ++ case FRAME_POINTER_REGNUM: ++ return call_saved_regs; ++ default: ++ abort (); ++ } ++ case FRAME_POINTER_REGNUM: ++ switch (to) ++ { ++ case STACK_POINTER_REGNUM: ++ return local_vars; ++ default: ++ abort (); ++ } ++ default: ++ abort (); ++ } ++} ++ ++ ++/* ++ Returns a rtx used when passing the next argument to a function. ++ avr32_init_cumulative_args() and avr32_function_arg_advance() sets which ++ register to use. ++*/ ++rtx ++avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, ++ tree type, int named) ++{ ++ int index = -1; ++ //unsigned long func_type = avr32_current_func_type (); ++ //int last_reg_index = (IS_FLASHVAULT(func_type) || IS_FLASHVAULT_IMPL(func_type) || cum->flashvault_func ? LAST_CUM_REG_INDEX - 1 : LAST_CUM_REG_INDEX); ++ int last_reg_index = (cum->flashvault_func ? LAST_CUM_REG_INDEX - 1 : LAST_CUM_REG_INDEX); ++ ++ HOST_WIDE_INT arg_size, arg_rsize; ++ if (type) ++ { ++ arg_size = int_size_in_bytes (type); ++ } ++ else ++ { ++ arg_size = GET_MODE_SIZE (mode); ++ } ++ arg_rsize = PUSH_ROUNDING (arg_size); ++ ++ /* ++ The last time this macro is called, it is called with mode == VOIDmode, ++ and its result is passed to the call or call_value pattern as operands 2 ++ and 3 respectively. */ ++ if (mode == VOIDmode) ++ { ++ return gen_rtx_CONST_INT (SImode, 22); /* ToDo: fixme. */ ++ } ++ ++ if ((*targetm.calls.must_pass_in_stack) (mode, type) || !named) ++ { ++ return NULL_RTX; ++ } ++ ++ if (arg_rsize == 8) ++ { ++ /* use r11:r10 or r9:r8. */ ++ if (!(GET_USED_INDEX (cum, 1) || GET_USED_INDEX (cum, 2))) ++ index = 1; ++ else if ((last_reg_index == 4) && ++ !(GET_USED_INDEX (cum, 3) || GET_USED_INDEX (cum, 4))) ++ index = 3; ++ else ++ index = -1; ++ } ++ else if (arg_rsize == 4) ++ { /* Use first available register */ ++ index = 0; ++ while (index <= last_reg_index && GET_USED_INDEX (cum, index)) ++ index++; ++ if (index > last_reg_index) ++ index = -1; ++ } ++ ++ SET_REG_INDEX (cum, index); ++ ++ if (GET_REG_INDEX (cum) >= 0) ++ return gen_rtx_REG (mode, avr32_function_arg_reglist[GET_REG_INDEX (cum)]); ++ ++ return NULL_RTX; ++} ++ ++ ++/* Set the register used for passing the first argument to a function. */ ++void ++avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, ++ tree fntype ATTRIBUTE_UNUSED, ++ rtx libname ATTRIBUTE_UNUSED, ++ tree fndecl) ++{ ++ /* Set all registers as unused. */ ++ SET_INDEXES_UNUSED (cum); ++ ++ /* Reset uses_anonymous_args */ ++ cum->uses_anonymous_args = 0; ++ ++ /* Reset size of stack pushed arguments */ ++ cum->stack_pushed_args_size = 0; ++ ++ cum->flashvault_func = (fndecl && (has_attribute_p (fndecl,"flashvault") || has_attribute_p (fndecl,"flashvault_impl"))); ++} ++ ++ ++/* ++ Set register used for passing the next argument to a function. Only the ++ Scratch Registers are used. ++ ++ number name ++ 15 r15 PC ++ 14 r14 LR ++ 13 r13 _SP_________ ++ FIRST_CUM_REG 12 r12 _||_ ++ 10 r11 || ++ 11 r10 _||_ Scratch Registers ++ 8 r9 || ++ LAST_SCRATCH_REG 9 r8 _\/_________ ++ 6 r7 /\ ++ 7 r6 || ++ 4 r5 || ++ 5 r4 || ++ 2 r3 || ++ 3 r2 || ++ 0 r1 || ++ 1 r0 _||_________ ++ ++*/ ++void ++avr32_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode, ++ tree type, int named ATTRIBUTE_UNUSED) ++{ ++ HOST_WIDE_INT arg_size, arg_rsize; ++ ++ if (type) ++ { ++ arg_size = int_size_in_bytes (type); ++ } ++ else ++ { ++ arg_size = GET_MODE_SIZE (mode); ++ } ++ arg_rsize = PUSH_ROUNDING (arg_size); ++ ++ /* If the argument had to be passed in stack, no register is used. */ ++ if ((*targetm.calls.must_pass_in_stack) (mode, type)) ++ { ++ cum->stack_pushed_args_size += PUSH_ROUNDING (int_size_in_bytes (type)); ++ return; ++ } ++ ++ /* Mark the used registers as "used". */ ++ if (GET_REG_INDEX (cum) >= 0) ++ { ++ SET_USED_INDEX (cum, GET_REG_INDEX (cum)); ++ if (arg_rsize == 8) ++ { ++ SET_USED_INDEX (cum, (GET_REG_INDEX (cum) + 1)); ++ } ++ } ++ else ++ { ++ /* Had to use stack */ ++ cum->stack_pushed_args_size += arg_rsize; ++ } ++} ++ ++ ++/* ++ Defines witch direction to go to find the next register to use if the ++ argument is larger then one register or for arguments shorter than an ++ int which is not promoted, such as the last part of structures with ++ size not a multiple of 4. */ ++enum direction ++avr32_function_arg_padding (enum machine_mode mode ATTRIBUTE_UNUSED, ++ tree type) ++{ ++ /* Pad upward for all aggregates except byte and halfword sized aggregates ++ which can be passed in registers. */ ++ if (type ++ && AGGREGATE_TYPE_P (type) ++ && (int_size_in_bytes (type) != 1) ++ && !((int_size_in_bytes (type) == 2) ++ && TYPE_ALIGN_UNIT (type) >= 2) ++ && (int_size_in_bytes (type) & 0x3)) ++ { ++ return upward; ++ } ++ ++ return downward; ++} ++ ++ ++/* Return a rtx used for the return value from a function call. */ ++rtx ++avr32_function_value (tree type, tree func, bool outgoing ATTRIBUTE_UNUSED) ++{ ++ if (avr32_return_in_memory (type, func)) ++ return NULL_RTX; ++ ++ if (int_size_in_bytes (type) <= 4) ++ { ++ enum machine_mode mode = TYPE_MODE (type); ++ int unsignedp = 0; ++ PROMOTE_FUNCTION_MODE (mode, unsignedp, type); ++ return gen_rtx_REG (mode, RET_REGISTER); ++ } ++ else if (int_size_in_bytes (type) <= 8) ++ return gen_rtx_REG (TYPE_MODE (type), INTERNAL_REGNUM (11)); ++ ++ return NULL_RTX; ++} ++ ++ ++/* Return a rtx used for the return value from a library function call. */ ++rtx ++avr32_libcall_value (enum machine_mode mode) ++{ ++ ++ if (GET_MODE_SIZE (mode) <= 4) ++ return gen_rtx_REG (mode, RET_REGISTER); ++ else if (GET_MODE_SIZE (mode) <= 8) ++ return gen_rtx_REG (mode, INTERNAL_REGNUM (11)); ++ else ++ return NULL_RTX; ++} ++ ++ ++/* Return TRUE if X references a SYMBOL_REF. */ ++int ++symbol_mentioned_p (rtx x) ++{ ++ const char *fmt; ++ int i; ++ ++ if (GET_CODE (x) == SYMBOL_REF) ++ return 1; ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'E') ++ { ++ int j; ++ ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ if (symbol_mentioned_p (XVECEXP (x, i, j))) ++ return 1; ++ } ++ else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i))) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++ ++/* Return TRUE if X references a LABEL_REF. */ ++int ++label_mentioned_p (rtx x) ++{ ++ const char *fmt; ++ int i; ++ ++ if (GET_CODE (x) == LABEL_REF) ++ return 1; ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'E') ++ { ++ int j; ++ ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ if (label_mentioned_p (XVECEXP (x, i, j))) ++ return 1; ++ } ++ else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i))) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++ ++/* Return TRUE if X contains a MEM expression. */ ++int ++mem_mentioned_p (rtx x) ++{ ++ const char *fmt; ++ int i; ++ ++ if (MEM_P (x)) ++ return 1; ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'E') ++ { ++ int j; ++ ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ if (mem_mentioned_p (XVECEXP (x, i, j))) ++ return 1; ++ } ++ else if (fmt[i] == 'e' && mem_mentioned_p (XEXP (x, i))) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++ ++int ++avr32_legitimate_pic_operand_p (rtx x) ++{ ++ ++ /* We can't have const, this must be broken down to a symbol. */ ++ if (GET_CODE (x) == CONST) ++ return FALSE; ++ ++ /* Can't access symbols or labels via the constant pool either */ ++ if ((GET_CODE (x) == SYMBOL_REF ++ && CONSTANT_POOL_ADDRESS_P (x) ++ && (symbol_mentioned_p (get_pool_constant (x)) ++ || label_mentioned_p (get_pool_constant (x))))) ++ return FALSE; ++ ++ return TRUE; ++} ++ ++ ++rtx ++legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED, ++ rtx reg) ++{ ++ ++ if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF) ++ { ++ int subregs = 0; ++ ++ if (reg == 0) ++ { ++ if (!can_create_pseudo_p ()) ++ abort (); ++ else ++ reg = gen_reg_rtx (Pmode); ++ ++ subregs = 1; ++ } ++ ++ emit_move_insn (reg, orig); ++ ++ /* Only set current function as using pic offset table if flag_pic is ++ set. This is because this function is also used if ++ TARGET_HAS_ASM_ADDR_PSEUDOS is set. */ ++ if (flag_pic) ++ crtl->uses_pic_offset_table = 1; ++ ++ /* Put a REG_EQUAL note on this insn, so that it can be optimized by ++ loop. */ ++ return reg; ++ } ++ else if (GET_CODE (orig) == CONST) ++ { ++ rtx base, offset; ++ ++ if (flag_pic ++ && GET_CODE (XEXP (orig, 0)) == PLUS ++ && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) ++ return orig; ++ ++ if (reg == 0) ++ { ++ if (!can_create_pseudo_p ()) ++ abort (); ++ else ++ reg = gen_reg_rtx (Pmode); ++ } ++ ++ if (GET_CODE (XEXP (orig, 0)) == PLUS) ++ { ++ base = ++ legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); ++ offset = ++ legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, ++ base == reg ? 0 : reg); ++ } ++ else ++ abort (); ++ ++ if (GET_CODE (offset) == CONST_INT) ++ { ++ /* The base register doesn't really matter, we only want to test ++ the index for the appropriate mode. */ ++ if (!avr32_const_ok_for_constraint_p (INTVAL (offset), 'I', "Is21")) ++ { ++ if (can_create_pseudo_p ()) ++ offset = force_reg (Pmode, offset); ++ else ++ abort (); ++ } ++ ++ if (GET_CODE (offset) == CONST_INT) ++ return plus_constant (base, INTVAL (offset)); ++ } ++ ++ return gen_rtx_PLUS (Pmode, base, offset); ++ } ++ ++ return orig; ++} ++ ++ ++/* Generate code to load the PIC register. */ ++void ++avr32_load_pic_register (void) ++{ ++ rtx l1, pic_tmp; ++ rtx global_offset_table; ++ ++ if ((crtl->uses_pic_offset_table == 0) || TARGET_NO_INIT_GOT) ++ return; ++ ++ if (!flag_pic) ++ abort (); ++ ++ l1 = gen_label_rtx (); ++ ++ global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); ++ pic_tmp = ++ gen_rtx_CONST (Pmode, ++ gen_rtx_MINUS (SImode, gen_rtx_LABEL_REF (Pmode, l1), ++ global_offset_table)); ++ emit_insn (gen_pic_load_addr ++ (pic_offset_table_rtx, force_const_mem (SImode, pic_tmp))); ++ emit_insn (gen_pic_compute_got_from_pc (pic_offset_table_rtx, l1)); ++ ++ /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp ++ can cause life info to screw up. */ ++ emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx)); ++} ++ ++ ++/* This hook should return true if values of type type are returned at the most ++ significant end of a register (in other words, if they are padded at the ++ least significant end). You can assume that type is returned in a register; ++ the caller is required to check this. Note that the register provided by ++ FUNCTION_VALUE must be able to hold the complete return value. For example, ++ if a 1-, 2- or 3-byte structure is returned at the most significant end of a ++ 4-byte register, FUNCTION_VALUE should provide an SImode rtx. */ ++bool ++avr32_return_in_msb (tree type ATTRIBUTE_UNUSED) ++{ ++ /* if ( AGGREGATE_TYPE_P (type) ) if ((int_size_in_bytes(type) == 1) || ++ ((int_size_in_bytes(type) == 2) && TYPE_ALIGN_UNIT(type) >= 2)) return ++ false; else return true; */ ++ ++ return false; ++} ++ ++ ++/* ++ Returns one if a certain function value is going to be returned in memory ++ and zero if it is going to be returned in a register. ++ ++ BLKmode and all other modes that is larger than 64 bits are returned in ++ memory. ++*/ ++bool ++avr32_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED) ++{ ++ if (TYPE_MODE (type) == VOIDmode) ++ return false; ++ ++ if (int_size_in_bytes (type) > (2 * UNITS_PER_WORD) ++ || int_size_in_bytes (type) == -1) ++ { ++ return true; ++ } ++ ++ /* If we have an aggregate then use the same mechanism as when checking if ++ it should be passed on the stack. */ ++ if (type ++ && AGGREGATE_TYPE_P (type) ++ && (*targetm.calls.must_pass_in_stack) (TYPE_MODE (type), type)) ++ return true; ++ ++ return false; ++} ++ ++ ++/* Output the constant part of the trampoline. ++ lddpc r0, pc[0x8:e] ; load static chain register ++ lddpc pc, pc[0x8:e] ; jump to subrutine ++ .long 0 ; Address to static chain, ++ ; filled in by avr32_initialize_trampoline() ++ .long 0 ; Address to subrutine, ++ ; filled in by avr32_initialize_trampoline() ++*/ ++void ++avr32_trampoline_template (FILE * file) ++{ ++ fprintf (file, "\tlddpc r0, pc[8]\n"); ++ fprintf (file, "\tlddpc pc, pc[8]\n"); ++ /* make room for the address of the static chain. */ ++ fprintf (file, "\t.long\t0\n"); ++ /* make room for the address to the subrutine. */ ++ fprintf (file, "\t.long\t0\n"); ++} ++ ++ ++/* Initialize the variable parts of a trampoline. */ ++void ++avr32_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain) ++{ ++ /* Store the address to the static chain. */ ++ emit_move_insn (gen_rtx_MEM ++ (SImode, plus_constant (addr, TRAMPOLINE_SIZE - 4)), ++ static_chain); ++ ++ /* Store the address to the function. */ ++ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, TRAMPOLINE_SIZE)), ++ fnaddr); ++ ++ emit_insn (gen_cache (gen_rtx_REG (SImode, 13), ++ gen_rtx_CONST_INT (SImode, ++ AVR32_CACHE_INVALIDATE_ICACHE))); ++} ++ ++ ++/* Return nonzero if X is valid as an addressing register. */ ++int ++avr32_address_register_rtx_p (rtx x, int strict_p) ++{ ++ int regno; ++ ++ if (!register_operand(x, GET_MODE(x))) ++ return 0; ++ ++ /* If strict we require the register to be a hard register. */ ++ if (strict_p ++ && !REG_P(x)) ++ return 0; ++ ++ regno = REGNO (x); ++ ++ if (strict_p) ++ return REGNO_OK_FOR_BASE_P (regno); ++ ++ return (regno <= LAST_REGNUM || regno >= FIRST_PSEUDO_REGISTER); ++} ++ ++ ++/* Return nonzero if INDEX is valid for an address index operand. */ ++int ++avr32_legitimate_index_p (enum machine_mode mode, rtx index, int strict_p) ++{ ++ enum rtx_code code = GET_CODE (index); ++ ++ if (GET_MODE_SIZE (mode) > 8) ++ return 0; ++ ++ /* Standard coprocessor addressing modes. */ ++ if (code == CONST_INT) ++ { ++ return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ks16"); ++ } ++ ++ if (avr32_address_register_rtx_p (index, strict_p)) ++ return 1; ++ ++ if (code == MULT) ++ { ++ rtx xiop0 = XEXP (index, 0); ++ rtx xiop1 = XEXP (index, 1); ++ return ((avr32_address_register_rtx_p (xiop0, strict_p) ++ && power_of_two_operand (xiop1, SImode) ++ && (INTVAL (xiop1) <= 8)) ++ || (avr32_address_register_rtx_p (xiop1, strict_p) ++ && power_of_two_operand (xiop0, SImode) ++ && (INTVAL (xiop0) <= 8))); ++ } ++ else if (code == ASHIFT) ++ { ++ rtx op = XEXP (index, 1); ++ ++ return (avr32_address_register_rtx_p (XEXP (index, 0), strict_p) ++ && GET_CODE (op) == CONST_INT ++ && INTVAL (op) > 0 && INTVAL (op) <= 3); ++ } ++ ++ return 0; ++} ++ ++ ++/* ++ Used in the GO_IF_LEGITIMATE_ADDRESS macro. Returns a nonzero value if ++ the RTX x is a legitimate memory address. ++ ++ Returns NO_REGS if the address is not legatime, GENERAL_REGS or ALL_REGS ++ if it is. ++*/ ++ ++ ++/* Forward declaration */ ++int is_minipool_label (rtx label); ++ ++int ++avr32_legitimate_address (enum machine_mode mode, rtx x, int strict) ++{ ++ ++ switch (GET_CODE (x)) ++ { ++ case REG: ++ return avr32_address_register_rtx_p (x, strict); ++ case CONST_INT: ++ return ((mode==SImode) && TARGET_RMW_ADDRESSABLE_DATA ++ && CONST_OK_FOR_CONSTRAINT_P(INTVAL(x), 'K', "Ks17")); ++ case CONST: ++ { ++ rtx label = avr32_find_symbol (x); ++ if (label ++ && ++ (/* ++ If we enable (const (plus (symbol_ref ...))) type constant ++ pool entries we must add support for it in the predicates and ++ in the minipool generation in avr32_reorg(). ++ (CONSTANT_POOL_ADDRESS_P (label) ++ && !(flag_pic ++ && (symbol_mentioned_p (get_pool_constant (label)) ++ || label_mentioned_p (get_pool_constant (label))))) ++ ||*/ ++ ((GET_CODE (label) == LABEL_REF) ++ && GET_CODE (XEXP (label, 0)) == CODE_LABEL ++ && is_minipool_label (XEXP (label, 0))) ++ /*|| ((GET_CODE (label) == SYMBOL_REF) ++ && mode == SImode ++ && SYMBOL_REF_RMW_ADDR(label))*/)) ++ { ++ return TRUE; ++ } ++ } ++ break; ++ case LABEL_REF: ++ if (GET_CODE (XEXP (x, 0)) == CODE_LABEL ++ && is_minipool_label (XEXP (x, 0))) ++ { ++ return TRUE; ++ } ++ break; ++ case SYMBOL_REF: ++ { ++ if (CONSTANT_POOL_ADDRESS_P (x) ++ && !(flag_pic ++ && (symbol_mentioned_p (get_pool_constant (x)) ++ || label_mentioned_p (get_pool_constant (x))))) ++ return TRUE; ++ else if (SYMBOL_REF_RCALL_FUNCTION_P (x) ++ || (mode == SImode ++ && SYMBOL_REF_RMW_ADDR (x))) ++ return TRUE; ++ break; ++ } ++ case PRE_DEC: /* (pre_dec (...)) */ ++ case POST_INC: /* (post_inc (...)) */ ++ return avr32_address_register_rtx_p (XEXP (x, 0), strict); ++ case PLUS: /* (plus (...) (...)) */ ++ { ++ rtx xop0 = XEXP (x, 0); ++ rtx xop1 = XEXP (x, 1); ++ ++ return ((avr32_address_register_rtx_p (xop0, strict) ++ && avr32_legitimate_index_p (mode, xop1, strict)) ++ || (avr32_address_register_rtx_p (xop1, strict) ++ && avr32_legitimate_index_p (mode, xop0, strict))); ++ } ++ default: ++ break; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_const_ok_for_move (HOST_WIDE_INT c) ++{ ++ if ( TARGET_V2_INSNS ) ++ return ( avr32_const_ok_for_constraint_p (c, 'K', "Ks21") ++ /* movh instruction */ ++ || avr32_hi16_immediate_operand (GEN_INT(c), VOIDmode) ); ++ else ++ return avr32_const_ok_for_constraint_p (c, 'K', "Ks21"); ++} ++ ++ ++int ++avr32_const_double_immediate (rtx value) ++{ ++ HOST_WIDE_INT hi, lo; ++ ++ if (GET_CODE (value) != CONST_DOUBLE) ++ return FALSE; ++ ++ if (SCALAR_FLOAT_MODE_P (GET_MODE (value))) ++ { ++ HOST_WIDE_INT target_float[2]; ++ hi = lo = 0; ++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (value), ++ GET_MODE (value)); ++ lo = target_float[0]; ++ hi = target_float[1]; ++ } ++ else ++ { ++ hi = CONST_DOUBLE_HIGH (value); ++ lo = CONST_DOUBLE_LOW (value); ++ } ++ ++ if (avr32_const_ok_for_constraint_p (lo, 'K', "Ks21") ++ && (GET_MODE (value) == SFmode ++ || avr32_const_ok_for_constraint_p (hi, 'K', "Ks21"))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_legitimate_constant_p (rtx x) ++{ ++ switch (GET_CODE (x)) ++ { ++ case CONST_INT: ++ /* Check if we should put large immediate into constant pool ++ or load them directly with mov/orh.*/ ++ if (!avr32_imm_in_const_pool) ++ return 1; ++ ++ return avr32_const_ok_for_move (INTVAL (x)); ++ case CONST_DOUBLE: ++ /* Check if we should put large immediate into constant pool ++ or load them directly with mov/orh.*/ ++ if (!avr32_imm_in_const_pool) ++ return 1; ++ ++ if (GET_MODE (x) == SFmode ++ || GET_MODE (x) == DFmode || GET_MODE (x) == DImode) ++ return avr32_const_double_immediate (x); ++ else ++ return 0; ++ case LABEL_REF: ++ case SYMBOL_REF: ++ return avr32_find_symbol (x) && (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS); ++ case CONST: ++ case HIGH: ++ case CONST_VECTOR: ++ return 0; ++ default: ++ printf ("%s():\n", __FUNCTION__); ++ debug_rtx (x); ++ return 1; ++ } ++} ++ ++ ++/* Strip any special encoding from labels */ ++const char * ++avr32_strip_name_encoding (const char *name) ++{ ++ const char *stripped = name; ++ ++ while (1) ++ { ++ switch (stripped[0]) ++ { ++ case '#': ++ stripped = strchr (name + 1, '#') + 1; ++ break; ++ case '*': ++ stripped = &stripped[1]; ++ break; ++ default: ++ return stripped; ++ } ++ } ++} ++ ++ ++ ++/* Do anything needed before RTL is emitted for each function. */ ++static struct machine_function * ++avr32_init_machine_status (void) ++{ ++ struct machine_function *machine; ++ machine = ++ (machine_function *) ggc_alloc_cleared (sizeof (machine_function)); ++ ++#if AVR32_FT_UNKNOWN != 0 ++ machine->func_type = AVR32_FT_UNKNOWN; ++#endif ++ ++ machine->minipool_label_head = 0; ++ machine->minipool_label_tail = 0; ++ machine->ifcvt_after_reload = 0; ++ return machine; ++} ++ ++ ++void ++avr32_init_expanders (void) ++{ ++ /* Arrange to initialize and mark the machine per-function status. */ ++ init_machine_status = avr32_init_machine_status; ++} ++ ++ ++/* Return an RTX indicating where the return address to the ++ calling function can be found. */ ++rtx ++avr32_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) ++{ ++ if (count != 0) ++ return NULL_RTX; ++ ++ return get_hard_reg_initial_val (Pmode, LR_REGNUM); ++} ++ ++ ++void ++avr32_encode_section_info (tree decl, rtx rtl, int first) ++{ ++ default_encode_section_info(decl, rtl, first); ++ ++ if ( TREE_CODE (decl) == VAR_DECL ++ && (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF) ++ && (lookup_attribute ("rmw_addressable", DECL_ATTRIBUTES (decl)) ++ || TARGET_RMW_ADDRESSABLE_DATA) ){ ++ if ( !TARGET_RMW || flag_pic ) ++ return; ++ // { ++ // warning ("Using RMW addressable data with an arch that does not support RMW instructions."); ++ // return; ++ // } ++ // ++ //if ( flag_pic ) ++ // { ++ // warning ("Using RMW addressable data with together with -fpic switch. Can not use RMW instruction when compiling with -fpic."); ++ // return; ++ // } ++ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT); ++ } ++} ++ ++ ++void ++avr32_asm_output_label (FILE * stream, const char *name) ++{ ++ name = avr32_strip_name_encoding (name); ++ ++ /* Print the label. */ ++ assemble_name (stream, name); ++ fprintf (stream, ":\n"); ++} ++ ++ ++void ++avr32_asm_weaken_label (FILE * stream, const char *name) ++{ ++ fprintf (stream, "\t.weak "); ++ assemble_name (stream, name); ++ fprintf (stream, "\n"); ++} ++ ++ ++/* ++ Checks if a labelref is equal to a reserved word in the assembler. If it is, ++ insert a '_' before the label name. ++*/ ++void ++avr32_asm_output_labelref (FILE * stream, const char *name) ++{ ++ int verbatim = FALSE; ++ const char *stripped = name; ++ int strip_finished = FALSE; ++ ++ while (!strip_finished) ++ { ++ switch (stripped[0]) ++ { ++ case '#': ++ stripped = strchr (name + 1, '#') + 1; ++ break; ++ case '*': ++ stripped = &stripped[1]; ++ verbatim = TRUE; ++ break; ++ default: ++ strip_finished = TRUE; ++ break; ++ } ++ } ++ ++ if (verbatim) ++ fputs (stripped, stream); ++ else ++ asm_fprintf (stream, "%U%s", stripped); ++} ++ ++ ++/* ++ Check if the comparison in compare_exp is redundant ++ for the condition given in next_cond given that the ++ needed flags are already set by an earlier instruction. ++ Uses cc_prev_status to check this. ++ ++ Returns NULL_RTX if the compare is not redundant ++ or the new condition to use in the conditional ++ instruction if the compare is redundant. ++*/ ++static rtx ++is_compare_redundant (rtx compare_exp, rtx next_cond) ++{ ++ int z_flag_valid = FALSE; ++ int n_flag_valid = FALSE; ++ rtx new_cond; ++ ++ if (GET_CODE (compare_exp) != COMPARE ++ && GET_CODE (compare_exp) != AND) ++ return NULL_RTX; ++ ++ ++ if (rtx_equal_p (cc_prev_status.mdep.value, compare_exp)) ++ { ++ /* cc0 already contains the correct comparison -> delete cmp insn */ ++ return next_cond; ++ } ++ ++ if (GET_MODE (compare_exp) != SImode) ++ return NULL_RTX; ++ ++ switch (cc_prev_status.mdep.flags) ++ { ++ case CC_SET_VNCZ: ++ case CC_SET_NCZ: ++ n_flag_valid = TRUE; ++ case CC_SET_CZ: ++ case CC_SET_Z: ++ z_flag_valid = TRUE; ++ } ++ ++ if (cc_prev_status.mdep.value ++ && GET_CODE (compare_exp) == COMPARE ++ && REG_P (XEXP (compare_exp, 0)) ++ && REGNO (XEXP (compare_exp, 0)) == REGNO (cc_prev_status.mdep.value) ++ && GET_CODE (XEXP (compare_exp, 1)) == CONST_INT ++ && next_cond != NULL_RTX) ++ { ++ if (INTVAL (XEXP (compare_exp, 1)) == 0 ++ && z_flag_valid ++ && (GET_CODE (next_cond) == EQ || GET_CODE (next_cond) == NE)) ++ /* We can skip comparison Z flag is already reflecting ops[0] */ ++ return next_cond; ++ else if (n_flag_valid ++ && ((INTVAL (XEXP (compare_exp, 1)) == 0 ++ && (GET_CODE (next_cond) == GE ++ || GET_CODE (next_cond) == LT)) ++ || (INTVAL (XEXP (compare_exp, 1)) == -1 ++ && (GET_CODE (next_cond) == GT ++ || GET_CODE (next_cond) == LE)))) ++ { ++ /* We can skip comparison N flag is already reflecting ops[0], ++ which means that we can use the mi/pl conditions to check if ++ ops[0] is GE or LT 0. */ ++ if ((GET_CODE (next_cond) == GE) || (GET_CODE (next_cond) == GT)) ++ new_cond = ++ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx), ++ UNSPEC_COND_PL); ++ else ++ new_cond = ++ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx), ++ UNSPEC_COND_MI); ++ return new_cond; ++ } ++ } ++ return NULL_RTX; ++} ++ ++ ++/* Updates cc_status. */ ++void ++avr32_notice_update_cc (rtx exp, rtx insn) ++{ ++ enum attr_cc attr_cc = get_attr_cc (insn); ++ ++ if ( attr_cc == CC_SET_Z_IF_NOT_V2 ) ++ { ++ if (TARGET_V2_INSNS) ++ attr_cc = CC_NONE; ++ else ++ attr_cc = CC_SET_Z; ++ } ++ ++ switch (attr_cc) ++ { ++ case CC_CALL_SET: ++ CC_STATUS_INIT; ++ /* Check if the function call returns a value in r12 */ ++ if (REG_P (recog_data.operand[0]) ++ && REGNO (recog_data.operand[0]) == RETVAL_REGNUM) ++ { ++ cc_status.flags = 0; ++ cc_status.mdep.value = ++ gen_rtx_COMPARE (SImode, recog_data.operand[0], const0_rtx); ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ ++ } ++ break; ++ case CC_COMPARE: ++ { ++ /* Check that compare will not be optimized away if so nothing should ++ be done */ ++ rtx compare_exp = SET_SRC (exp); ++ /* Check if we have a tst expression. If so convert it to a ++ compare with 0. */ ++ if ( REG_P (SET_SRC (exp)) ) ++ compare_exp = gen_rtx_COMPARE (GET_MODE (SET_SRC (exp)), ++ SET_SRC (exp), ++ const0_rtx); ++ ++ if (!next_insn_emits_cmp (insn) ++ && (is_compare_redundant (compare_exp, get_next_insn_cond (insn)) == NULL_RTX)) ++ { ++ ++ /* Reset the nonstandard flag */ ++ CC_STATUS_INIT; ++ cc_status.flags = 0; ++ cc_status.mdep.value = compare_exp; ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ } ++ } ++ break; ++ case CC_CMP_COND_INSN: ++ { ++ /* Conditional insn that emit the compare itself. */ ++ rtx cmp; ++ rtx cmp_op0, cmp_op1; ++ rtx cond; ++ rtx dest; ++ rtx next_insn = next_nonnote_insn (insn); ++ ++ if ( GET_CODE (exp) == COND_EXEC ) ++ { ++ cmp_op0 = XEXP (COND_EXEC_TEST (exp), 0); ++ cmp_op1 = XEXP (COND_EXEC_TEST (exp), 1); ++ cond = COND_EXEC_TEST (exp); ++ dest = SET_DEST (COND_EXEC_CODE (exp)); ++ } ++ else ++ { ++ /* If then else conditional. compare operands are in operands ++ 4 and 5. */ ++ cmp_op0 = recog_data.operand[4]; ++ cmp_op1 = recog_data.operand[5]; ++ cond = recog_data.operand[1]; ++ dest = SET_DEST (exp); ++ } ++ ++ if ( GET_CODE (cmp_op0) == AND ) ++ cmp = cmp_op0; ++ else ++ cmp = gen_rtx_COMPARE (GET_MODE (cmp_op0), ++ cmp_op0, ++ cmp_op1); ++ ++ /* Check if the conditional insns updates a register present ++ in the comparison, if so then we must reset the cc_status. */ ++ if (REG_P (dest) ++ && (reg_mentioned_p (dest, cmp_op0) ++ || reg_mentioned_p (dest, cmp_op1)) ++ && GET_CODE (exp) != COND_EXEC ) ++ { ++ CC_STATUS_INIT; ++ } ++ else if (is_compare_redundant (cmp, cond) == NULL_RTX) ++ { ++ /* Reset the nonstandard flag */ ++ CC_STATUS_INIT; ++ if ( GET_CODE (cmp_op0) == AND ) ++ { ++ cc_status.flags = CC_INVERTED; ++ cc_status.mdep.flags = CC_SET_Z; ++ } ++ else ++ { ++ cc_status.flags = 0; ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ } ++ cc_status.mdep.value = cmp; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ } ++ ++ ++ /* Check if we have a COND_EXEC insn which updates one ++ of the registers in the compare status. */ ++ if (REG_P (dest) ++ && (reg_mentioned_p (dest, cmp_op0) ++ || reg_mentioned_p (dest, cmp_op1)) ++ && GET_CODE (exp) == COND_EXEC ) ++ cc_status.mdep.cond_exec_cmp_clobbered = 1; ++ ++ if ( cc_status.mdep.cond_exec_cmp_clobbered ++ && GET_CODE (exp) == COND_EXEC ++ && next_insn != NULL ++ && INSN_P (next_insn) ++ && !(GET_CODE (PATTERN (next_insn)) == COND_EXEC ++ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0), cmp_op0) ++ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1), cmp_op1) ++ && (GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == GET_CODE (cond) ++ || GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == reverse_condition (GET_CODE (cond)))) ) ++ { ++ /* We have a sequence of conditional insns where the compare status has been clobbered ++ since the compare no longer reflects the content of the values to compare. */ ++ CC_STATUS_INIT; ++ cc_status.mdep.cond_exec_cmp_clobbered = 1; ++ } ++ ++ } ++ break; ++ case CC_BLD: ++ /* Bit load is kind of like an inverted testsi, because the Z flag is ++ inverted */ ++ CC_STATUS_INIT; ++ cc_status.flags = CC_INVERTED; ++ cc_status.mdep.value = SET_SRC (exp); ++ cc_status.mdep.flags = CC_SET_Z; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ case CC_NONE: ++ /* Insn does not affect CC at all. Check if the instruction updates ++ some of the register currently reflected in cc0 */ ++ ++ if ((GET_CODE (exp) == SET) ++ && (cc_status.value1 || cc_status.value2 || cc_status.mdep.value) ++ && (reg_mentioned_p (SET_DEST (exp), cc_status.value1) ++ || reg_mentioned_p (SET_DEST (exp), cc_status.value2) ++ || reg_mentioned_p (SET_DEST (exp), cc_status.mdep.value))) ++ { ++ CC_STATUS_INIT; ++ } ++ ++ /* If this is a parallel we must step through each of the parallel ++ expressions */ ++ if (GET_CODE (exp) == PARALLEL) ++ { ++ int i; ++ for (i = 0; i < XVECLEN (exp, 0); ++i) ++ { ++ rtx vec_exp = XVECEXP (exp, 0, i); ++ if ((GET_CODE (vec_exp) == SET) ++ && (cc_status.value1 || cc_status.value2 ++ || cc_status.mdep.value) ++ && (reg_mentioned_p (SET_DEST (vec_exp), cc_status.value1) ++ || reg_mentioned_p (SET_DEST (vec_exp), ++ cc_status.value2) ++ || reg_mentioned_p (SET_DEST (vec_exp), ++ cc_status.mdep.value))) ++ { ++ CC_STATUS_INIT; ++ } ++ } ++ } ++ ++ /* Check if we have memory opartions with post_inc or pre_dec on the ++ register currently reflected in cc0 */ ++ if (GET_CODE (exp) == SET ++ && GET_CODE (SET_SRC (exp)) == MEM ++ && (GET_CODE (XEXP (SET_SRC (exp), 0)) == POST_INC ++ || GET_CODE (XEXP (SET_SRC (exp), 0)) == PRE_DEC) ++ && ++ (reg_mentioned_p ++ (XEXP (XEXP (SET_SRC (exp), 0), 0), cc_status.value1) ++ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0), ++ cc_status.value2) ++ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0), ++ cc_status.mdep.value))) ++ CC_STATUS_INIT; ++ ++ if (GET_CODE (exp) == SET ++ && GET_CODE (SET_DEST (exp)) == MEM ++ && (GET_CODE (XEXP (SET_DEST (exp), 0)) == POST_INC ++ || GET_CODE (XEXP (SET_DEST (exp), 0)) == PRE_DEC) ++ && ++ (reg_mentioned_p ++ (XEXP (XEXP (SET_DEST (exp), 0), 0), cc_status.value1) ++ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0), ++ cc_status.value2) ++ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0), ++ cc_status.mdep.value))) ++ CC_STATUS_INIT; ++ break; ++ ++ case CC_SET_VNCZ: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_SET_NCZ: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_NCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_SET_CZ: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_CZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_SET_Z: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_Z; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_CLOBBER: ++ CC_STATUS_INIT; ++ break; ++ ++ default: ++ CC_STATUS_INIT; ++ } ++} ++ ++ ++/* ++ Outputs to stdio stream stream the assembler syntax for an instruction ++ operand x. x is an RTL expression. ++*/ ++void ++avr32_print_operand (FILE * stream, rtx x, int code) ++{ ++ int error = 0; ++ ++ if ( code == '?' ) ++ { ++ /* Predicable instruction, print condition code */ ++ ++ /* If the insn should not be conditional then do nothing. */ ++ if ( current_insn_predicate == NULL_RTX ) ++ return; ++ ++ /* Set x to the predicate to force printing ++ the condition later on. */ ++ x = current_insn_predicate; ++ ++ /* Reverse condition if useing bld insn. */ ++ if ( GET_CODE (XEXP(current_insn_predicate,0)) == AND ) ++ x = reversed_condition (current_insn_predicate); ++ } ++ else if ( code == '!' ) ++ { ++ /* Output compare for conditional insn if needed. */ ++ rtx new_cond; ++ gcc_assert ( current_insn_predicate != NULL_RTX ); ++ new_cond = avr32_output_cmp(current_insn_predicate, ++ GET_MODE(XEXP(current_insn_predicate,0)), ++ XEXP(current_insn_predicate,0), ++ XEXP(current_insn_predicate,1)); ++ ++ /* Check if the new condition is a special avr32 condition ++ specified using UNSPECs. If so we must handle it differently. */ ++ if ( GET_CODE (new_cond) == UNSPEC ) ++ { ++ current_insn_predicate = ++ gen_rtx_UNSPEC (CCmode, ++ gen_rtvec (2, ++ XEXP(current_insn_predicate,0), ++ XEXP(current_insn_predicate,1)), ++ XINT (new_cond, 1)); ++ } ++ else ++ { ++ PUT_CODE(current_insn_predicate, GET_CODE(new_cond)); ++ } ++ return; ++ } ++ ++ switch (GET_CODE (x)) ++ { ++ case UNSPEC: ++ switch (XINT (x, 1)) ++ { ++ case UNSPEC_COND_PL: ++ if (code == 'i') ++ fputs ("mi", stream); ++ else ++ fputs ("pl", stream); ++ break; ++ case UNSPEC_COND_MI: ++ if (code == 'i') ++ fputs ("pl", stream); ++ else ++ fputs ("mi", stream); ++ break; ++ default: ++ error = 1; ++ } ++ break; ++ case EQ: ++ if (code == 'i') ++ fputs ("ne", stream); ++ else ++ fputs ("eq", stream); ++ break; ++ case NE: ++ if (code == 'i') ++ fputs ("eq", stream); ++ else ++ fputs ("ne", stream); ++ break; ++ case GT: ++ if (code == 'i') ++ fputs ("le", stream); ++ else ++ fputs ("gt", stream); ++ break; ++ case GTU: ++ if (code == 'i') ++ fputs ("ls", stream); ++ else ++ fputs ("hi", stream); ++ break; ++ case LT: ++ if (code == 'i') ++ fputs ("ge", stream); ++ else ++ fputs ("lt", stream); ++ break; ++ case LTU: ++ if (code == 'i') ++ fputs ("hs", stream); ++ else ++ fputs ("lo", stream); ++ break; ++ case GE: ++ if (code == 'i') ++ fputs ("lt", stream); ++ else ++ fputs ("ge", stream); ++ break; ++ case GEU: ++ if (code == 'i') ++ fputs ("lo", stream); ++ else ++ fputs ("hs", stream); ++ break; ++ case LE: ++ if (code == 'i') ++ fputs ("gt", stream); ++ else ++ fputs ("le", stream); ++ break; ++ case LEU: ++ if (code == 'i') ++ fputs ("hi", stream); ++ else ++ fputs ("ls", stream); ++ break; ++ case CONST_INT: ++ { ++ HOST_WIDE_INT value = INTVAL (x); ++ ++ switch (code) ++ { ++ case 'm': ++ if ( HOST_BITS_PER_WIDE_INT > BITS_PER_WORD ) ++ { ++ /* A const_int can be used to represent DImode constants. */ ++ value >>= BITS_PER_WORD; ++ } ++ /* We might get a const_int immediate for setting a DI register, ++ we then must then return the correct sign extended DI. The most ++ significant word is just a sign extension. */ ++ else if (value < 0) ++ value = -1; ++ else ++ value = 0; ++ break; ++ case 'i': ++ value++; ++ break; ++ case 'p': ++ { ++ /* Set to bit position of first bit set in immediate */ ++ int i, bitpos = 32; ++ for (i = 0; i < 32; i++) ++ if (value & (1 << i)) ++ { ++ bitpos = i; ++ break; ++ } ++ value = bitpos; ++ } ++ break; ++ case 'z': ++ { ++ /* Set to bit position of first bit cleared in immediate */ ++ int i, bitpos = 32; ++ for (i = 0; i < 32; i++) ++ if (!(value & (1 << i))) ++ { ++ bitpos = i; ++ break; ++ } ++ value = bitpos; ++ } ++ break; ++ case 'r': ++ { ++ /* Reglist 8 */ ++ char op[50]; ++ op[0] = '\0'; ++ ++ if (value & 0x01) ++ strcpy (op, "r0-r3"); ++ if (value & 0x02) ++ strlen (op) ? strcat (op, ", r4-r7") : strcpy (op,"r4-r7"); ++ if (value & 0x04) ++ strlen (op) ? strcat (op, ", r8-r9") : strcpy (op,"r8-r9"); ++ if (value & 0x08) ++ strlen (op) ? strcat (op, ", r10") : strcpy (op,"r10"); ++ if (value & 0x10) ++ strlen (op) ? strcat (op, ", r11") : strcpy (op,"r11"); ++ if (value & 0x20) ++ strlen (op) ? strcat (op, ", r12") : strcpy (op,"r12"); ++ if (value & 0x40) ++ strlen (op) ? strcat (op, ", lr") : strcpy (op, "lr"); ++ if (value & 0x80) ++ strlen (op) ? strcat (op, ", pc") : strcpy (op, "pc"); ++ ++ fputs (op, stream); ++ return; ++ } ++ case 's': ++ { ++ /* Reglist 16 */ ++ char reglist16_string[100]; ++ int i; ++ bool first_reg = true; ++ reglist16_string[0] = '\0'; ++ ++ for (i = 0; i < 16; ++i) ++ { ++ if (value & (1 << i)) ++ { ++ first_reg == true ? first_reg = false : strcat(reglist16_string,", "); ++ strcat(reglist16_string,reg_names[INTERNAL_REGNUM(i)]); ++ } ++ } ++ fputs (reglist16_string, stream); ++ return; ++ } ++ case 'h': ++ /* Print halfword part of word */ ++ fputs (value ? "b" : "t", stream); ++ return; ++ } ++ ++ /* Print Value */ ++ fprintf (stream, "%d", value); ++ break; ++ } ++ case CONST_DOUBLE: ++ { ++ HOST_WIDE_INT hi, lo; ++ if (SCALAR_FLOAT_MODE_P (GET_MODE (x))) ++ { ++ HOST_WIDE_INT target_float[2]; ++ hi = lo = 0; ++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (x), ++ GET_MODE (x)); ++ /* For doubles the most significant part starts at index 0. */ ++ if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) ++ { ++ hi = target_float[0]; ++ lo = target_float[1]; ++ } ++ else ++ { ++ lo = target_float[0]; ++ } ++ } ++ else ++ { ++ hi = CONST_DOUBLE_HIGH (x); ++ lo = CONST_DOUBLE_LOW (x); ++ } ++ ++ if (code == 'm') ++ fprintf (stream, "%ld", hi); ++ else ++ fprintf (stream, "%ld", lo); ++ ++ break; ++ } ++ case CONST: ++ output_addr_const (stream, XEXP (XEXP (x, 0), 0)); ++ fprintf (stream, "+%ld", INTVAL (XEXP (XEXP (x, 0), 1))); ++ break; ++ case REG: ++ /* Swap register name if the register is DImode or DFmode. */ ++ if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode) ++ { ++ /* Double register must have an even numbered address */ ++ gcc_assert (!(REGNO (x) % 2)); ++ if (code == 'm') ++ fputs (reg_names[true_regnum (x)], stream); ++ else ++ fputs (reg_names[true_regnum (x) + 1], stream); ++ } ++ else if (GET_MODE (x) == TImode) ++ { ++ switch (code) ++ { ++ case 'T': ++ fputs (reg_names[true_regnum (x)], stream); ++ break; ++ case 'U': ++ fputs (reg_names[true_regnum (x) + 1], stream); ++ break; ++ case 'L': ++ fputs (reg_names[true_regnum (x) + 2], stream); ++ break; ++ case 'B': ++ fputs (reg_names[true_regnum (x) + 3], stream); ++ break; ++ default: ++ fprintf (stream, "%s, %s, %s, %s", ++ reg_names[true_regnum (x) + 3], ++ reg_names[true_regnum (x) + 2], ++ reg_names[true_regnum (x) + 1], ++ reg_names[true_regnum (x)]); ++ break; ++ } ++ } ++ else ++ { ++ fputs (reg_names[true_regnum (x)], stream); ++ } ++ break; ++ case CODE_LABEL: ++ case LABEL_REF: ++ case SYMBOL_REF: ++ output_addr_const (stream, x); ++ break; ++ case MEM: ++ switch (GET_CODE (XEXP (x, 0))) ++ { ++ case LABEL_REF: ++ case SYMBOL_REF: ++ output_addr_const (stream, XEXP (x, 0)); ++ break; ++ case MEM: ++ switch (GET_CODE (XEXP (XEXP (x, 0), 0))) ++ { ++ case SYMBOL_REF: ++ output_addr_const (stream, XEXP (XEXP (x, 0), 0)); ++ break; ++ default: ++ error = 1; ++ break; ++ } ++ break; ++ case REG: ++ avr32_print_operand (stream, XEXP (x, 0), 0); ++ if (code != 'p') ++ fputs ("[0]", stream); ++ break; ++ case PRE_DEC: ++ fputs ("--", stream); ++ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0); ++ break; ++ case POST_INC: ++ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0); ++ fputs ("++", stream); ++ break; ++ case PLUS: ++ { ++ rtx op0 = XEXP (XEXP (x, 0), 0); ++ rtx op1 = XEXP (XEXP (x, 0), 1); ++ rtx base = NULL_RTX, offset = NULL_RTX; ++ ++ if (avr32_address_register_rtx_p (op0, 1)) ++ { ++ base = op0; ++ offset = op1; ++ } ++ else if (avr32_address_register_rtx_p (op1, 1)) ++ { ++ /* Operands are switched. */ ++ base = op1; ++ offset = op0; ++ } ++ ++ gcc_assert (base && offset ++ && avr32_address_register_rtx_p (base, 1) ++ && avr32_legitimate_index_p (GET_MODE (x), offset, ++ 1)); ++ ++ avr32_print_operand (stream, base, 0); ++ fputs ("[", stream); ++ avr32_print_operand (stream, offset, 0); ++ fputs ("]", stream); ++ break; ++ } ++ case CONST: ++ output_addr_const (stream, XEXP (XEXP (XEXP (x, 0), 0), 0)); ++ fprintf (stream, " + %ld", ++ INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))); ++ break; ++ case CONST_INT: ++ avr32_print_operand (stream, XEXP (x, 0), 0); ++ break; ++ default: ++ error = 1; ++ } ++ break; ++ case MULT: ++ { ++ int value = INTVAL (XEXP (x, 1)); ++ ++ /* Convert immediate in multiplication into a shift immediate */ ++ switch (value) ++ { ++ case 2: ++ value = 1; ++ break; ++ case 4: ++ value = 2; ++ break; ++ case 8: ++ value = 3; ++ break; ++ default: ++ value = 0; ++ } ++ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))], ++ value); ++ break; ++ } ++ case ASHIFT: ++ if (GET_CODE (XEXP (x, 1)) == CONST_INT) ++ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))], ++ (int) INTVAL (XEXP (x, 1))); ++ else if (REG_P (XEXP (x, 1))) ++ fprintf (stream, "%s << %s", reg_names[true_regnum (XEXP (x, 0))], ++ reg_names[true_regnum (XEXP (x, 1))]); ++ else ++ { ++ error = 1; ++ } ++ break; ++ case LSHIFTRT: ++ if (GET_CODE (XEXP (x, 1)) == CONST_INT) ++ fprintf (stream, "%s >> %i", reg_names[true_regnum (XEXP (x, 0))], ++ (int) INTVAL (XEXP (x, 1))); ++ else if (REG_P (XEXP (x, 1))) ++ fprintf (stream, "%s >> %s", reg_names[true_regnum (XEXP (x, 0))], ++ reg_names[true_regnum (XEXP (x, 1))]); ++ else ++ { ++ error = 1; ++ } ++ fprintf (stream, ">>"); ++ break; ++ case PARALLEL: ++ { ++ /* Load store multiple */ ++ int i; ++ int count = XVECLEN (x, 0); ++ int reglist16 = 0; ++ char reglist16_string[100]; ++ ++ for (i = 0; i < count; ++i) ++ { ++ rtx vec_elm = XVECEXP (x, 0, i); ++ if (GET_MODE (vec_elm) != SET) ++ { ++ debug_rtx (vec_elm); ++ internal_error ("Unknown element in parallel expression!"); ++ } ++ if (GET_MODE (XEXP (vec_elm, 0)) == REG) ++ { ++ /* Load multiple */ ++ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 0))); ++ } ++ else ++ { ++ /* Store multiple */ ++ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 1))); ++ } ++ } ++ ++ avr32_make_reglist16 (reglist16, reglist16_string); ++ fputs (reglist16_string, stream); ++ ++ break; ++ } ++ ++ case PLUS: ++ { ++ rtx op0 = XEXP (x, 0); ++ rtx op1 = XEXP (x, 1); ++ rtx base = NULL_RTX, offset = NULL_RTX; ++ ++ if (avr32_address_register_rtx_p (op0, 1)) ++ { ++ base = op0; ++ offset = op1; ++ } ++ else if (avr32_address_register_rtx_p (op1, 1)) ++ { ++ /* Operands are switched. */ ++ base = op1; ++ offset = op0; ++ } ++ ++ gcc_assert (base && offset ++ && avr32_address_register_rtx_p (base, 1) ++ && avr32_legitimate_index_p (GET_MODE (x), offset, 1)); ++ ++ avr32_print_operand (stream, base, 0); ++ fputs ("[", stream); ++ avr32_print_operand (stream, offset, 0); ++ fputs ("]", stream); ++ break; ++ } ++ ++ default: ++ error = 1; ++ } ++ ++ if (error) ++ { ++ debug_rtx (x); ++ internal_error ("Illegal expression for avr32_print_operand"); ++ } ++} ++ ++rtx ++avr32_get_note_reg_equiv (rtx insn) ++{ ++ rtx note; ++ ++ note = find_reg_note (insn, REG_EQUIV, NULL_RTX); ++ ++ if (note != NULL_RTX) ++ return XEXP (note, 0); ++ else ++ return NULL_RTX; ++} ++ ++ ++/* ++ Outputs to stdio stream stream the assembler syntax for an instruction ++ operand that is a memory reference whose address is x. x is an RTL ++ expression. ++ ++ ToDo: fixme. ++*/ ++void ++avr32_print_operand_address (FILE * stream, rtx x) ++{ ++ fprintf (stream, "(%d) /* address */", REGNO (x)); ++} ++ ++ ++/* Return true if _GLOBAL_OFFSET_TABLE_ symbol is mentioned. */ ++bool ++avr32_got_mentioned_p (rtx addr) ++{ ++ if (GET_CODE (addr) == MEM) ++ addr = XEXP (addr, 0); ++ while (GET_CODE (addr) == CONST) ++ addr = XEXP (addr, 0); ++ if (GET_CODE (addr) == SYMBOL_REF) ++ { ++ return streq (XSTR (addr, 0), "_GLOBAL_OFFSET_TABLE_"); ++ } ++ if (GET_CODE (addr) == PLUS || GET_CODE (addr) == MINUS) ++ { ++ bool l1, l2; ++ ++ l1 = avr32_got_mentioned_p (XEXP (addr, 0)); ++ l2 = avr32_got_mentioned_p (XEXP (addr, 1)); ++ return l1 || l2; ++ } ++ return false; ++} ++ ++ ++/* Find the symbol in an address expression. */ ++rtx ++avr32_find_symbol (rtx addr) ++{ ++ if (GET_CODE (addr) == MEM) ++ addr = XEXP (addr, 0); ++ ++ while (GET_CODE (addr) == CONST) ++ addr = XEXP (addr, 0); ++ ++ if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF) ++ return addr; ++ if (GET_CODE (addr) == PLUS) ++ { ++ rtx l1, l2; ++ ++ l1 = avr32_find_symbol (XEXP (addr, 0)); ++ l2 = avr32_find_symbol (XEXP (addr, 1)); ++ if (l1 != NULL_RTX && l2 == NULL_RTX) ++ return l1; ++ else if (l1 == NULL_RTX && l2 != NULL_RTX) ++ return l2; ++ } ++ ++ return NULL_RTX; ++} ++ ++ ++/* Routines for manipulation of the constant pool. */ ++ ++/* AVR32 instructions cannot load a large constant directly into a ++ register; they have to come from a pc relative load. The constant ++ must therefore be placed in the addressable range of the pc ++ relative load. Depending on the precise pc relative load ++ instruction the range is somewhere between 256 bytes and 4k. This ++ means that we often have to dump a constant inside a function, and ++ generate code to branch around it. ++ ++ It is important to minimize this, since the branches will slow ++ things down and make the code larger. ++ ++ Normally we can hide the table after an existing unconditional ++ branch so that there is no interruption of the flow, but in the ++ worst case the code looks like this: ++ ++ lddpc rn, L1 ++ ... ++ rjmp L2 ++ align ++ L1: .long value ++ L2: ++ ... ++ ++ lddpc rn, L3 ++ ... ++ rjmp L4 ++ align ++ L3: .long value ++ L4: ++ ... ++ ++ We fix this by performing a scan after scheduling, which notices ++ which instructions need to have their operands fetched from the ++ constant table and builds the table. ++ ++ The algorithm starts by building a table of all the constants that ++ need fixing up and all the natural barriers in the function (places ++ where a constant table can be dropped without breaking the flow). ++ For each fixup we note how far the pc-relative replacement will be ++ able to reach and the offset of the instruction into the function. ++ ++ Having built the table we then group the fixes together to form ++ tables that are as large as possible (subject to addressing ++ constraints) and emit each table of constants after the last ++ barrier that is within range of all the instructions in the group. ++ If a group does not contain a barrier, then we forcibly create one ++ by inserting a jump instruction into the flow. Once the table has ++ been inserted, the insns are then modified to reference the ++ relevant entry in the pool. ++ ++ Possible enhancements to the algorithm (not implemented) are: ++ ++ 1) For some processors and object formats, there may be benefit in ++ aligning the pools to the start of cache lines; this alignment ++ would need to be taken into account when calculating addressability ++ of a pool. */ ++ ++/* These typedefs are located at the start of this file, so that ++ they can be used in the prototypes there. This comment is to ++ remind readers of that fact so that the following structures ++ can be understood more easily. ++ ++ typedef struct minipool_node Mnode; ++ typedef struct minipool_fixup Mfix; */ ++ ++struct minipool_node ++{ ++ /* Doubly linked chain of entries. */ ++ Mnode *next; ++ Mnode *prev; ++ /* The maximum offset into the code that this entry can be placed. While ++ pushing fixes for forward references, all entries are sorted in order of ++ increasing max_address. */ ++ HOST_WIDE_INT max_address; ++ /* Similarly for an entry inserted for a backwards ref. */ ++ HOST_WIDE_INT min_address; ++ /* The number of fixes referencing this entry. This can become zero if we ++ "unpush" an entry. In this case we ignore the entry when we come to ++ emit the code. */ ++ int refcount; ++ /* The offset from the start of the minipool. */ ++ HOST_WIDE_INT offset; ++ /* The value in table. */ ++ rtx value; ++ /* The mode of value. */ ++ enum machine_mode mode; ++ /* The size of the value. */ ++ int fix_size; ++}; ++ ++ ++struct minipool_fixup ++{ ++ Mfix *next; ++ rtx insn; ++ HOST_WIDE_INT address; ++ rtx *loc; ++ enum machine_mode mode; ++ int fix_size; ++ rtx value; ++ Mnode *minipool; ++ HOST_WIDE_INT forwards; ++ HOST_WIDE_INT backwards; ++}; ++ ++ ++/* Fixes less than a word need padding out to a word boundary. */ ++#define MINIPOOL_FIX_SIZE(mode, value) \ ++ (IS_FORCE_MINIPOOL(value) ? 0 : \ ++ (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4)) ++ ++#define IS_FORCE_MINIPOOL(x) \ ++ (GET_CODE(x) == UNSPEC && \ ++ XINT(x, 1) == UNSPEC_FORCE_MINIPOOL) ++ ++static Mnode *minipool_vector_head; ++static Mnode *minipool_vector_tail; ++ ++/* The linked list of all minipool fixes required for this function. */ ++Mfix *minipool_fix_head; ++Mfix *minipool_fix_tail; ++/* The fix entry for the current minipool, once it has been placed. */ ++Mfix *minipool_barrier; ++ ++ ++/* Determines if INSN is the start of a jump table. Returns the end ++ of the TABLE or NULL_RTX. */ ++static rtx ++is_jump_table (rtx insn) ++{ ++ rtx table; ++ ++ if (GET_CODE (insn) == JUMP_INSN ++ && JUMP_LABEL (insn) != NULL ++ && ((table = next_real_insn (JUMP_LABEL (insn))) ++ == next_real_insn (insn)) ++ && table != NULL ++ && GET_CODE (table) == JUMP_INSN ++ && (GET_CODE (PATTERN (table)) == ADDR_VEC ++ || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC)) ++ return table; ++ ++ return NULL_RTX; ++} ++ ++ ++static HOST_WIDE_INT ++get_jump_table_size (rtx insn) ++{ ++ /* ADDR_VECs only take room if read-only data does into the text section. */ ++ if (JUMP_TABLES_IN_TEXT_SECTION ++#if !defined(READONLY_DATA_SECTION_ASM_OP) ++ || 1 ++#endif ++ ) ++ { ++ rtx body = PATTERN (insn); ++ int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0; ++ ++ return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt); ++ } ++ ++ return 0; ++} ++ ++ ++/* Move a minipool fix MP from its current location to before MAX_MP. ++ If MAX_MP is NULL, then MP doesn't need moving, but the addressing ++ constraints may need updating. */ ++static Mnode * ++move_minipool_fix_forward_ref (Mnode * mp, Mnode * max_mp, ++ HOST_WIDE_INT max_address) ++{ ++ /* This should never be true and the code below assumes these are ++ different. */ ++ if (mp == max_mp) ++ abort (); ++ ++ if (max_mp == NULL) ++ { ++ if (max_address < mp->max_address) ++ mp->max_address = max_address; ++ } ++ else ++ { ++ if (max_address > max_mp->max_address - mp->fix_size) ++ mp->max_address = max_mp->max_address - mp->fix_size; ++ else ++ mp->max_address = max_address; ++ ++ /* Unlink MP from its current position. Since max_mp is non-null, ++ mp->prev must be non-null. */ ++ mp->prev->next = mp->next; ++ if (mp->next != NULL) ++ mp->next->prev = mp->prev; ++ else ++ minipool_vector_tail = mp->prev; ++ ++ /* Re-insert it before MAX_MP. */ ++ mp->next = max_mp; ++ mp->prev = max_mp->prev; ++ max_mp->prev = mp; ++ ++ if (mp->prev != NULL) ++ mp->prev->next = mp; ++ else ++ minipool_vector_head = mp; ++ } ++ ++ /* Save the new entry. */ ++ max_mp = mp; ++ ++ /* Scan over the preceding entries and adjust their addresses as required. ++ */ ++ while (mp->prev != NULL ++ && mp->prev->max_address > mp->max_address - mp->prev->fix_size) ++ { ++ mp->prev->max_address = mp->max_address - mp->prev->fix_size; ++ mp = mp->prev; ++ } ++ ++ return max_mp; ++} ++ ++ ++/* Add a constant to the minipool for a forward reference. Returns the ++ node added or NULL if the constant will not fit in this pool. */ ++static Mnode * ++add_minipool_forward_ref (Mfix * fix) ++{ ++ /* If set, max_mp is the first pool_entry that has a lower constraint than ++ the one we are trying to add. */ ++ Mnode *max_mp = NULL; ++ HOST_WIDE_INT max_address = fix->address + fix->forwards; ++ Mnode *mp; ++ ++ /* If this fix's address is greater than the address of the first entry, ++ then we can't put the fix in this pool. We subtract the size of the ++ current fix to ensure that if the table is fully packed we still have ++ enough room to insert this value by suffling the other fixes forwards. */ ++ if (minipool_vector_head && ++ fix->address >= minipool_vector_head->max_address - fix->fix_size) ++ return NULL; ++ ++ /* Scan the pool to see if a constant with the same value has already been ++ added. While we are doing this, also note the location where we must ++ insert the constant if it doesn't already exist. */ ++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) ++ { ++ if (GET_CODE (fix->value) == GET_CODE (mp->value) ++ && fix->mode == mp->mode ++ && (GET_CODE (fix->value) != CODE_LABEL ++ || (CODE_LABEL_NUMBER (fix->value) ++ == CODE_LABEL_NUMBER (mp->value))) ++ && rtx_equal_p (fix->value, mp->value)) ++ { ++ /* More than one fix references this entry. */ ++ mp->refcount++; ++ return move_minipool_fix_forward_ref (mp, max_mp, max_address); ++ } ++ ++ /* Note the insertion point if necessary. */ ++ if (max_mp == NULL && mp->max_address > max_address) ++ max_mp = mp; ++ ++ } ++ ++ /* The value is not currently in the minipool, so we need to create a new ++ entry for it. If MAX_MP is NULL, the entry will be put on the end of ++ the list since the placement is less constrained than any existing ++ entry. Otherwise, we insert the new fix before MAX_MP and, if ++ necessary, adjust the constraints on the other entries. */ ++ mp = xmalloc (sizeof (*mp)); ++ mp->fix_size = fix->fix_size; ++ mp->mode = fix->mode; ++ mp->value = fix->value; ++ mp->refcount = 1; ++ /* Not yet required for a backwards ref. */ ++ mp->min_address = -65536; ++ ++ if (max_mp == NULL) ++ { ++ mp->max_address = max_address; ++ mp->next = NULL; ++ mp->prev = minipool_vector_tail; ++ ++ if (mp->prev == NULL) ++ { ++ minipool_vector_head = mp; ++ minipool_vector_label = gen_label_rtx (); ++ } ++ else ++ mp->prev->next = mp; ++ ++ minipool_vector_tail = mp; ++ } ++ else ++ { ++ if (max_address > max_mp->max_address - mp->fix_size) ++ mp->max_address = max_mp->max_address - mp->fix_size; ++ else ++ mp->max_address = max_address; ++ ++ mp->next = max_mp; ++ mp->prev = max_mp->prev; ++ max_mp->prev = mp; ++ if (mp->prev != NULL) ++ mp->prev->next = mp; ++ else ++ minipool_vector_head = mp; ++ } ++ ++ /* Save the new entry. */ ++ max_mp = mp; ++ ++ /* Scan over the preceding entries and adjust their addresses as required. ++ */ ++ while (mp->prev != NULL ++ && mp->prev->max_address > mp->max_address - mp->prev->fix_size) ++ { ++ mp->prev->max_address = mp->max_address - mp->prev->fix_size; ++ mp = mp->prev; ++ } ++ ++ return max_mp; ++} ++ ++ ++static Mnode * ++move_minipool_fix_backward_ref (Mnode * mp, Mnode * min_mp, ++ HOST_WIDE_INT min_address) ++{ ++ HOST_WIDE_INT offset; ++ ++ /* This should never be true, and the code below assumes these are ++ different. */ ++ if (mp == min_mp) ++ abort (); ++ ++ if (min_mp == NULL) ++ { ++ if (min_address > mp->min_address) ++ mp->min_address = min_address; ++ } ++ else ++ { ++ /* We will adjust this below if it is too loose. */ ++ mp->min_address = min_address; ++ ++ /* Unlink MP from its current position. Since min_mp is non-null, ++ mp->next must be non-null. */ ++ mp->next->prev = mp->prev; ++ if (mp->prev != NULL) ++ mp->prev->next = mp->next; ++ else ++ minipool_vector_head = mp->next; ++ ++ /* Reinsert it after MIN_MP. */ ++ mp->prev = min_mp; ++ mp->next = min_mp->next; ++ min_mp->next = mp; ++ if (mp->next != NULL) ++ mp->next->prev = mp; ++ else ++ minipool_vector_tail = mp; ++ } ++ ++ min_mp = mp; ++ ++ offset = 0; ++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) ++ { ++ mp->offset = offset; ++ if (mp->refcount > 0) ++ offset += mp->fix_size; ++ ++ if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size) ++ mp->next->min_address = mp->min_address + mp->fix_size; ++ } ++ ++ return min_mp; ++} ++ ++ ++/* Add a constant to the minipool for a backward reference. Returns the ++ node added or NULL if the constant will not fit in this pool. ++ ++ Note that the code for insertion for a backwards reference can be ++ somewhat confusing because the calculated offsets for each fix do ++ not take into account the size of the pool (which is still under ++ construction. */ ++static Mnode * ++add_minipool_backward_ref (Mfix * fix) ++{ ++ /* If set, min_mp is the last pool_entry that has a lower constraint than ++ the one we are trying to add. */ ++ Mnode *min_mp = NULL; ++ /* This can be negative, since it is only a constraint. */ ++ HOST_WIDE_INT min_address = fix->address - fix->backwards; ++ Mnode *mp; ++ ++ /* If we can't reach the current pool from this insn, or if we can't insert ++ this entry at the end of the pool without pushing other fixes out of ++ range, then we don't try. This ensures that we can't fail later on. */ ++ if (min_address >= minipool_barrier->address ++ || (minipool_vector_tail->min_address + fix->fix_size ++ >= minipool_barrier->address)) ++ return NULL; ++ ++ /* Scan the pool to see if a constant with the same value has already been ++ added. While we are doing this, also note the location where we must ++ insert the constant if it doesn't already exist. */ ++ for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev) ++ { ++ if (GET_CODE (fix->value) == GET_CODE (mp->value) ++ && fix->mode == mp->mode ++ && (GET_CODE (fix->value) != CODE_LABEL ++ || (CODE_LABEL_NUMBER (fix->value) ++ == CODE_LABEL_NUMBER (mp->value))) ++ && rtx_equal_p (fix->value, mp->value) ++ /* Check that there is enough slack to move this entry to the end ++ of the table (this is conservative). */ ++ && (mp->max_address ++ > (minipool_barrier->address ++ + minipool_vector_tail->offset ++ + minipool_vector_tail->fix_size))) ++ { ++ mp->refcount++; ++ return move_minipool_fix_backward_ref (mp, min_mp, min_address); ++ } ++ ++ if (min_mp != NULL) ++ mp->min_address += fix->fix_size; ++ else ++ { ++ /* Note the insertion point if necessary. */ ++ if (mp->min_address < min_address) ++ { ++ min_mp = mp; ++ } ++ else if (mp->max_address ++ < minipool_barrier->address + mp->offset + fix->fix_size) ++ { ++ /* Inserting before this entry would push the fix beyond its ++ maximum address (which can happen if we have re-located a ++ forwards fix); force the new fix to come after it. */ ++ min_mp = mp; ++ min_address = mp->min_address + fix->fix_size; ++ } ++ } ++ } ++ ++ /* We need to create a new entry. */ ++ mp = xmalloc (sizeof (*mp)); ++ mp->fix_size = fix->fix_size; ++ mp->mode = fix->mode; ++ mp->value = fix->value; ++ mp->refcount = 1; ++ mp->max_address = minipool_barrier->address + 65536; ++ ++ mp->min_address = min_address; ++ ++ if (min_mp == NULL) ++ { ++ mp->prev = NULL; ++ mp->next = minipool_vector_head; ++ ++ if (mp->next == NULL) ++ { ++ minipool_vector_tail = mp; ++ minipool_vector_label = gen_label_rtx (); ++ } ++ else ++ mp->next->prev = mp; ++ ++ minipool_vector_head = mp; ++ } ++ else ++ { ++ mp->next = min_mp->next; ++ mp->prev = min_mp; ++ min_mp->next = mp; ++ ++ if (mp->next != NULL) ++ mp->next->prev = mp; ++ else ++ minipool_vector_tail = mp; ++ } ++ ++ /* Save the new entry. */ ++ min_mp = mp; ++ ++ if (mp->prev) ++ mp = mp->prev; ++ else ++ mp->offset = 0; ++ ++ /* Scan over the following entries and adjust their offsets. */ ++ while (mp->next != NULL) ++ { ++ if (mp->next->min_address < mp->min_address + mp->fix_size) ++ mp->next->min_address = mp->min_address + mp->fix_size; ++ ++ if (mp->refcount) ++ mp->next->offset = mp->offset + mp->fix_size; ++ else ++ mp->next->offset = mp->offset; ++ ++ mp = mp->next; ++ } ++ ++ return min_mp; ++} ++ ++ ++static void ++assign_minipool_offsets (Mfix * barrier) ++{ ++ HOST_WIDE_INT offset = 0; ++ Mnode *mp; ++ ++ minipool_barrier = barrier; ++ ++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) ++ { ++ mp->offset = offset; ++ ++ if (mp->refcount > 0) ++ offset += mp->fix_size; ++ } ++} ++ ++ ++/* Print a symbolic form of X to the debug file, F. */ ++static void ++avr32_print_value (FILE * f, rtx x) ++{ ++ switch (GET_CODE (x)) ++ { ++ case CONST_INT: ++ fprintf (f, "0x%x", (int) INTVAL (x)); ++ return; ++ ++ case CONST_DOUBLE: ++ fprintf (f, "<0x%lx,0x%lx>", (long) XWINT (x, 2), (long) XWINT (x, 3)); ++ return; ++ ++ case CONST_VECTOR: ++ { ++ int i; ++ ++ fprintf (f, "<"); ++ for (i = 0; i < CONST_VECTOR_NUNITS (x); i++) ++ { ++ fprintf (f, "0x%x", (int) INTVAL (CONST_VECTOR_ELT (x, i))); ++ if (i < (CONST_VECTOR_NUNITS (x) - 1)) ++ fputc (',', f); ++ } ++ fprintf (f, ">"); ++ } ++ return; ++ ++ case CONST_STRING: ++ fprintf (f, "\"%s\"", XSTR (x, 0)); ++ return; ++ ++ case SYMBOL_REF: ++ fprintf (f, "`%s'", XSTR (x, 0)); ++ return; ++ ++ case LABEL_REF: ++ fprintf (f, "L%d", INSN_UID (XEXP (x, 0))); ++ return; ++ ++ case CONST: ++ avr32_print_value (f, XEXP (x, 0)); ++ return; ++ ++ case PLUS: ++ avr32_print_value (f, XEXP (x, 0)); ++ fprintf (f, "+"); ++ avr32_print_value (f, XEXP (x, 1)); ++ return; ++ ++ case PC: ++ fprintf (f, "pc"); ++ return; ++ ++ default: ++ fprintf (f, "????"); ++ return; ++ } ++} ++ ++ ++int ++is_minipool_label (rtx label) ++{ ++ minipool_labels *cur_mp_label = cfun->machine->minipool_label_head; ++ ++ if (GET_CODE (label) != CODE_LABEL) ++ return FALSE; ++ ++ while (cur_mp_label) ++ { ++ if (CODE_LABEL_NUMBER (label) ++ == CODE_LABEL_NUMBER (cur_mp_label->label)) ++ return TRUE; ++ cur_mp_label = cur_mp_label->next; ++ } ++ return FALSE; ++} ++ ++ ++static void ++new_minipool_label (rtx label) ++{ ++ if (!cfun->machine->minipool_label_head) ++ { ++ cfun->machine->minipool_label_head = ++ ggc_alloc (sizeof (minipool_labels)); ++ cfun->machine->minipool_label_tail = cfun->machine->minipool_label_head; ++ cfun->machine->minipool_label_head->label = label; ++ cfun->machine->minipool_label_head->next = 0; ++ cfun->machine->minipool_label_head->prev = 0; ++ } ++ else ++ { ++ cfun->machine->minipool_label_tail->next = ++ ggc_alloc (sizeof (minipool_labels)); ++ cfun->machine->minipool_label_tail->next->label = label; ++ cfun->machine->minipool_label_tail->next->next = 0; ++ cfun->machine->minipool_label_tail->next->prev = ++ cfun->machine->minipool_label_tail; ++ cfun->machine->minipool_label_tail = ++ cfun->machine->minipool_label_tail->next; ++ } ++} ++ ++ ++/* Output the literal table */ ++static void ++dump_minipool (rtx scan) ++{ ++ Mnode *mp; ++ Mnode *nmp; ++ ++ if (dump_file) ++ fprintf (dump_file, ++ ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n", ++ INSN_UID (scan), (unsigned long) minipool_barrier->address, 4); ++ ++ scan = emit_insn_after (gen_consttable_start (), scan); ++ scan = emit_insn_after (gen_align_4 (), scan); ++ scan = emit_label_after (minipool_vector_label, scan); ++ new_minipool_label (minipool_vector_label); ++ ++ for (mp = minipool_vector_head; mp != NULL; mp = nmp) ++ { ++ if (mp->refcount > 0) ++ { ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Offset %u, min %ld, max %ld ", ++ (unsigned) mp->offset, (unsigned long) mp->min_address, ++ (unsigned long) mp->max_address); ++ avr32_print_value (dump_file, mp->value); ++ fputc ('\n', dump_file); ++ } ++ ++ switch (mp->fix_size) ++ { ++#ifdef HAVE_consttable_4 ++ case 4: ++ scan = emit_insn_after (gen_consttable_4 (mp->value), scan); ++ break; ++ ++#endif ++#ifdef HAVE_consttable_8 ++ case 8: ++ scan = emit_insn_after (gen_consttable_8 (mp->value), scan); ++ break; ++ ++#endif ++#ifdef HAVE_consttable_16 ++ case 16: ++ scan = emit_insn_after (gen_consttable_16 (mp->value), scan); ++ break; ++ ++#endif ++ case 0: ++ /* This can happen for force-minipool entries which just are ++ there to force the minipool to be generate. */ ++ break; ++ default: ++ abort (); ++ break; ++ } ++ } ++ ++ nmp = mp->next; ++ free (mp); ++ } ++ ++ minipool_vector_head = minipool_vector_tail = NULL; ++ scan = emit_insn_after (gen_consttable_end (), scan); ++ scan = emit_barrier_after (scan); ++} ++ ++ ++/* Return the cost of forcibly inserting a barrier after INSN. */ ++static int ++avr32_barrier_cost (rtx insn) ++{ ++ /* Basing the location of the pool on the loop depth is preferable, but at ++ the moment, the basic block information seems to be corrupt by this ++ stage of the compilation. */ ++ int base_cost = 50; ++ rtx next = next_nonnote_insn (insn); ++ ++ if (next != NULL && GET_CODE (next) == CODE_LABEL) ++ base_cost -= 20; ++ ++ switch (GET_CODE (insn)) ++ { ++ case CODE_LABEL: ++ /* It will always be better to place the table before the label, rather ++ than after it. */ ++ return 50; ++ ++ case INSN: ++ case CALL_INSN: ++ return base_cost; ++ ++ case JUMP_INSN: ++ return base_cost - 10; ++ ++ default: ++ return base_cost + 10; ++ } ++} ++ ++ ++/* Find the best place in the insn stream in the range ++ (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier. ++ Create the barrier by inserting a jump and add a new fix entry for ++ it. */ ++static Mfix * ++create_fix_barrier (Mfix * fix, HOST_WIDE_INT max_address) ++{ ++ HOST_WIDE_INT count = 0; ++ rtx barrier; ++ rtx from = fix->insn; ++ rtx selected = from; ++ int selected_cost; ++ HOST_WIDE_INT selected_address; ++ Mfix *new_fix; ++ HOST_WIDE_INT max_count = max_address - fix->address; ++ rtx label = gen_label_rtx (); ++ ++ selected_cost = avr32_barrier_cost (from); ++ selected_address = fix->address; ++ ++ while (from && count < max_count) ++ { ++ rtx tmp; ++ int new_cost; ++ ++ /* This code shouldn't have been called if there was a natural barrier ++ within range. */ ++ if (GET_CODE (from) == BARRIER) ++ abort (); ++ ++ /* Count the length of this insn. */ ++ count += get_attr_length (from); ++ ++ /* If there is a jump table, add its length. */ ++ tmp = is_jump_table (from); ++ if (tmp != NULL) ++ { ++ count += get_jump_table_size (tmp); ++ ++ /* Jump tables aren't in a basic block, so base the cost on the ++ dispatch insn. If we select this location, we will still put ++ the pool after the table. */ ++ new_cost = avr32_barrier_cost (from); ++ ++ if (count < max_count && new_cost <= selected_cost) ++ { ++ selected = tmp; ++ selected_cost = new_cost; ++ selected_address = fix->address + count; ++ } ++ ++ /* Continue after the dispatch table. */ ++ from = NEXT_INSN (tmp); ++ continue; ++ } ++ ++ new_cost = avr32_barrier_cost (from); ++ ++ if (count < max_count && new_cost <= selected_cost) ++ { ++ selected = from; ++ selected_cost = new_cost; ++ selected_address = fix->address + count; ++ } ++ ++ from = NEXT_INSN (from); ++ } ++ ++ /* Create a new JUMP_INSN that branches around a barrier. */ ++ from = emit_jump_insn_after (gen_jump (label), selected); ++ JUMP_LABEL (from) = label; ++ barrier = emit_barrier_after (from); ++ emit_label_after (label, barrier); ++ ++ /* Create a minipool barrier entry for the new barrier. */ ++ new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*new_fix)); ++ new_fix->insn = barrier; ++ new_fix->address = selected_address; ++ new_fix->next = fix->next; ++ fix->next = new_fix; ++ ++ return new_fix; ++} ++ ++ ++/* Record that there is a natural barrier in the insn stream at ++ ADDRESS. */ ++static void ++push_minipool_barrier (rtx insn, HOST_WIDE_INT address) ++{ ++ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix)); ++ ++ fix->insn = insn; ++ fix->address = address; ++ ++ fix->next = NULL; ++ if (minipool_fix_head != NULL) ++ minipool_fix_tail->next = fix; ++ else ++ minipool_fix_head = fix; ++ ++ minipool_fix_tail = fix; ++} ++ ++ ++/* Record INSN, which will need fixing up to load a value from the ++ minipool. ADDRESS is the offset of the insn since the start of the ++ function; LOC is a pointer to the part of the insn which requires ++ fixing; VALUE is the constant that must be loaded, which is of type ++ MODE. */ ++static void ++push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx * loc, ++ enum machine_mode mode, rtx value) ++{ ++ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix)); ++ rtx body = PATTERN (insn); ++ ++ fix->insn = insn; ++ fix->address = address; ++ fix->loc = loc; ++ fix->mode = mode; ++ fix->fix_size = MINIPOOL_FIX_SIZE (mode, value); ++ fix->value = value; ++ ++ if (GET_CODE (body) == PARALLEL) ++ { ++ /* Mcall : Ks16 << 2 */ ++ fix->forwards = ((1 << 15) - 1) << 2; ++ fix->backwards = (1 << 15) << 2; ++ } ++ else if (GET_CODE (body) == SET ++ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 4) ++ { ++ if (optimize_size) ++ { ++ /* Lddpc : Ku7 << 2 */ ++ fix->forwards = ((1 << 7) - 1) << 2; ++ fix->backwards = 0; ++ } ++ else ++ { ++ /* Ld.w : Ks16 */ ++ fix->forwards = ((1 << 15) - 4); ++ fix->backwards = (1 << 15); ++ } ++ } ++ else if (GET_CODE (body) == SET ++ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 8) ++ { ++ /* Ld.d : Ks16 */ ++ fix->forwards = ((1 << 15) - 4); ++ fix->backwards = (1 << 15); ++ } ++ else if (GET_CODE (body) == UNSPEC_VOLATILE ++ && XINT (body, 1) == VUNSPEC_MVRC) ++ { ++ /* Coprocessor load */ ++ /* Ldc : Ku8 << 2 */ ++ fix->forwards = ((1 << 8) - 1) << 2; ++ fix->backwards = 0; ++ } ++ else ++ { ++ /* Assume worst case which is lddpc insn. */ ++ fix->forwards = ((1 << 7) - 1) << 2; ++ fix->backwards = 0; ++ } ++ ++ fix->minipool = NULL; ++ ++ /* If an insn doesn't have a range defined for it, then it isn't expecting ++ to be reworked by this code. Better to abort now than to generate duff ++ assembly code. */ ++ if (fix->forwards == 0 && fix->backwards == 0) ++ abort (); ++ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ", ++ GET_MODE_NAME (mode), ++ INSN_UID (insn), (unsigned long) address, ++ -1 * (long) fix->backwards, (long) fix->forwards); ++ avr32_print_value (dump_file, fix->value); ++ fprintf (dump_file, "\n"); ++ } ++ ++ /* Add it to the chain of fixes. */ ++ fix->next = NULL; ++ ++ if (minipool_fix_head != NULL) ++ minipool_fix_tail->next = fix; ++ else ++ minipool_fix_head = fix; ++ ++ minipool_fix_tail = fix; ++} ++ ++ ++/* Scan INSN and note any of its operands that need fixing. ++ If DO_PUSHES is false we do not actually push any of the fixups ++ needed. The function returns TRUE is any fixups were needed/pushed. ++ This is used by avr32_memory_load_p() which needs to know about loads ++ of constants that will be converted into minipool loads. */ ++static bool ++note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes) ++{ ++ bool result = false; ++ int opno; ++ ++ extract_insn (insn); ++ ++ if (!constrain_operands (1)) ++ fatal_insn_not_found (insn); ++ ++ if (recog_data.n_alternatives == 0) ++ return false; ++ ++ /* Fill in recog_op_alt with information about the constraints of this ++ insn. */ ++ preprocess_constraints (); ++ ++ for (opno = 0; opno < recog_data.n_operands; opno++) ++ { ++ rtx op; ++ ++ /* Things we need to fix can only occur in inputs. */ ++ if (recog_data.operand_type[opno] != OP_IN) ++ continue; ++ ++ op = recog_data.operand[opno]; ++ ++ if (avr32_const_pool_ref_operand (op, GET_MODE (op))) ++ { ++ if (do_pushes) ++ { ++ rtx cop = avoid_constant_pool_reference (op); ++ ++ /* Casting the address of something to a mode narrower than a ++ word can cause avoid_constant_pool_reference() to return the ++ pool reference itself. That's no good to us here. Lets ++ just hope that we can use the constant pool value directly. ++ */ ++ if (op == cop) ++ cop = get_pool_constant (XEXP (op, 0)); ++ ++ push_minipool_fix (insn, address, ++ recog_data.operand_loc[opno], ++ recog_data.operand_mode[opno], cop); ++ } ++ ++ result = true; ++ } ++ else if (TARGET_HAS_ASM_ADDR_PSEUDOS ++ && avr32_address_operand (op, GET_MODE (op))) ++ { ++ /* Handle pseudo instructions using a direct address. These pseudo ++ instructions might need entries in the constant pool and we must ++ therefor create a constant pool for them, in case the ++ assembler/linker needs to insert entries. */ ++ if (do_pushes) ++ { ++ /* Push a dummy constant pool entry so that the .cpool ++ directive should be inserted on the appropriate place in the ++ code even if there are no real constant pool entries. This ++ is used by the assembler and linker to know where to put ++ generated constant pool entries. */ ++ push_minipool_fix (insn, address, ++ recog_data.operand_loc[opno], ++ recog_data.operand_mode[opno], ++ gen_rtx_UNSPEC (VOIDmode, ++ gen_rtvec (1, const0_rtx), ++ UNSPEC_FORCE_MINIPOOL)); ++ result = true; ++ } ++ } ++ } ++ return result; ++} ++ ++ ++static int ++avr32_insn_is_cast (rtx insn) ++{ ++ ++ if (NONJUMP_INSN_P (insn) ++ && GET_CODE (PATTERN (insn)) == SET ++ && (GET_CODE (SET_SRC (PATTERN (insn))) == ZERO_EXTEND ++ || GET_CODE (SET_SRC (PATTERN (insn))) == SIGN_EXTEND) ++ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 0)) ++ && REG_P (SET_DEST (PATTERN (insn)))) ++ return true; ++ return false; ++} ++ ++ ++/* Replace all occurances of reg FROM with reg TO in X. */ ++rtx ++avr32_replace_reg (rtx x, rtx from, rtx to) ++{ ++ int i, j; ++ const char *fmt; ++ ++ gcc_assert ( REG_P (from) && REG_P (to) ); ++ ++ /* Allow this function to make replacements in EXPR_LISTs. */ ++ if (x == 0) ++ return 0; ++ ++ if (rtx_equal_p (x, from)) ++ return to; ++ ++ if (GET_CODE (x) == SUBREG) ++ { ++ rtx new = avr32_replace_reg (SUBREG_REG (x), from, to); ++ ++ if (GET_CODE (new) == CONST_INT) ++ { ++ x = simplify_subreg (GET_MODE (x), new, ++ GET_MODE (SUBREG_REG (x)), ++ SUBREG_BYTE (x)); ++ gcc_assert (x); ++ } ++ else ++ SUBREG_REG (x) = new; ++ ++ return x; ++ } ++ else if (GET_CODE (x) == ZERO_EXTEND) ++ { ++ rtx new = avr32_replace_reg (XEXP (x, 0), from, to); ++ ++ if (GET_CODE (new) == CONST_INT) ++ { ++ x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x), ++ new, GET_MODE (XEXP (x, 0))); ++ gcc_assert (x); ++ } ++ else ++ XEXP (x, 0) = new; ++ ++ return x; ++ } ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'e') ++ XEXP (x, i) = avr32_replace_reg (XEXP (x, i), from, to); ++ else if (fmt[i] == 'E') ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ XVECEXP (x, i, j) = avr32_replace_reg (XVECEXP (x, i, j), from, to); ++ } ++ ++ return x; ++} ++ ++ ++/* FIXME: The level of nesting in this function is way too deep. It needs to be ++ torn apart. */ ++static void ++avr32_reorg_optimization (void) ++{ ++ rtx first = get_first_nonnote_insn (); ++ rtx insn; ++ ++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ { ++ ++ /* Scan through all insns looking for cast operations. */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ";; Deleting redundant cast operations:\n"); ++ } ++ for (insn = first; insn; insn = NEXT_INSN (insn)) ++ { ++ rtx reg, src_reg, scan; ++ enum machine_mode mode; ++ int unused_cast; ++ rtx label_ref; ++ ++ if (avr32_insn_is_cast (insn) ++ && (GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == QImode ++ || GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == HImode)) ++ { ++ mode = GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)); ++ reg = SET_DEST (PATTERN (insn)); ++ src_reg = XEXP (SET_SRC (PATTERN (insn)), 0); ++ } ++ else ++ { ++ continue; ++ } ++ ++ unused_cast = false; ++ label_ref = NULL_RTX; ++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) ++ { ++ /* Check if we have reached the destination of a simple ++ conditional jump which we have already scanned past. If so, ++ we can safely continue scanning. */ ++ if (LABEL_P (scan) && label_ref != NULL_RTX) ++ { ++ if (CODE_LABEL_NUMBER (scan) == ++ CODE_LABEL_NUMBER (XEXP (label_ref, 0))) ++ label_ref = NULL_RTX; ++ else ++ break; ++ } ++ ++ if (!INSN_P (scan)) ++ continue; ++ ++ /* For conditional jumps we can manage to keep on scanning if ++ we meet the destination label later on before any new jump ++ insns occure. */ ++ if (GET_CODE (scan) == JUMP_INSN) ++ { ++ if (any_condjump_p (scan) && label_ref == NULL_RTX) ++ label_ref = condjump_label (scan); ++ else ++ break; ++ } ++ ++ /* Check if we have a call and the register is used as an argument. */ ++ if (CALL_P (scan) ++ && find_reg_fusage (scan, USE, reg) ) ++ break; ++ ++ if (!reg_mentioned_p (reg, PATTERN (scan))) ++ continue; ++ ++ /* Check if casted register is used in this insn */ ++ if ((regno_use_in (REGNO (reg), PATTERN (scan)) != NULL_RTX) ++ && (GET_MODE (regno_use_in (REGNO (reg), PATTERN (scan))) == ++ GET_MODE (reg))) ++ { ++ /* If not used in the source to the set or in a memory ++ expression in the destiantion then the register is used ++ as a destination and is really dead. */ ++ if (single_set (scan) ++ && GET_CODE (PATTERN (scan)) == SET ++ && REG_P (SET_DEST (PATTERN (scan))) ++ && !regno_use_in (REGNO (reg), SET_SRC (PATTERN (scan))) ++ && label_ref == NULL_RTX) ++ { ++ unused_cast = true; ++ } ++ break; ++ } ++ ++ /* Check if register is dead or set in this insn */ ++ if (dead_or_set_p (scan, reg)) ++ { ++ unused_cast = true; ++ break; ++ } ++ } ++ ++ /* Check if we have unresolved conditional jumps */ ++ if (label_ref != NULL_RTX) ++ continue; ++ ++ if (unused_cast) ++ { ++ if (REGNO (reg) == REGNO (XEXP (SET_SRC (PATTERN (insn)), 0))) ++ { ++ /* One operand cast, safe to delete */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; INSN %i removed, casted register %i value not used.\n", ++ INSN_UID (insn), REGNO (reg)); ++ } ++ SET_INSN_DELETED (insn); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ } ++ else ++ { ++ /* Two operand cast, which really could be substituted with ++ a move, if the source register is dead after the cast ++ insn and then the insn which sets the source register ++ could instead directly set the destination register for ++ the cast. As long as there are no insns in between which ++ uses the register. */ ++ rtx link = NULL_RTX; ++ rtx set; ++ rtx src_reg = XEXP (SET_SRC (PATTERN (insn)), 0); ++ unused_cast = false; ++ ++ if (!find_reg_note (insn, REG_DEAD, src_reg)) ++ continue; ++ ++ /* Search for the insn which sets the source register */ ++ for (scan = PREV_INSN (insn); ++ scan && GET_CODE (scan) != CODE_LABEL; ++ scan = PREV_INSN (scan)) ++ { ++ if (! INSN_P (scan)) ++ continue; ++ ++ set = single_set (scan); ++ // Fix for bug #11763 : the following if condition ++ // has been modified and else part is included to ++ // set the link to NULL_RTX. ++ // if (set && rtx_equal_p (src_reg, SET_DEST (set))) ++ if (set && (REGNO(src_reg) == REGNO(SET_DEST(set)))) ++ { ++ if (rtx_equal_p (src_reg, SET_DEST (set))) ++ { ++ link = scan; ++ break; ++ } ++ else ++ { ++ link = NULL_RTX; ++ break; ++ } ++ } ++ } ++ ++ ++ /* Found no link or link is a call insn where we can not ++ change the destination register */ ++ if (link == NULL_RTX || CALL_P (link)) ++ continue; ++ ++ /* Scan through all insn between link and insn */ ++ for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan)) ++ { ++ /* Don't try to trace forward past a CODE_LABEL if we ++ haven't seen INSN yet. Ordinarily, we will only ++ find the setting insn in LOG_LINKS if it is in the ++ same basic block. However, cross-jumping can insert ++ code labels in between the load and the call, and ++ can result in situations where a single call insn ++ may have two targets depending on where we came ++ from. */ ++ ++ if (GET_CODE (scan) == CODE_LABEL) ++ break; ++ ++ if (!INSN_P (scan)) ++ continue; ++ ++ /* Don't try to trace forward past a JUMP. To optimize ++ safely, we would have to check that all the ++ instructions at the jump destination did not use REG. ++ */ ++ ++ if (GET_CODE (scan) == JUMP_INSN) ++ { ++ break; ++ } ++ ++ if (!reg_mentioned_p (src_reg, PATTERN (scan))) ++ continue; ++ ++ /* We have reached the cast insn */ ++ if (scan == insn) ++ { ++ /* We can remove cast and replace the destination ++ register of the link insn with the destination ++ of the cast */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; INSN %i removed, casted value unused. " ++ "Destination of removed cast operation: register %i, folded into INSN %i.\n", ++ INSN_UID (insn), REGNO (reg), ++ INSN_UID (link)); ++ } ++ /* Update link insn */ ++ SET_DEST (PATTERN (link)) = ++ gen_rtx_REG (mode, REGNO (reg)); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (link) = -1; ++ ++ /* Delete insn */ ++ SET_INSN_DELETED (insn); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ break; ++ } ++ } ++ } ++ } ++ } ++ } ++ ++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ { ++ ++ /* Scan through all insns looking for shifted add operations */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Deleting redundant shifted add operations:\n"); ++ } ++ for (insn = first; insn; insn = NEXT_INSN (insn)) ++ { ++ rtx reg, mem_expr, scan, op0, op1; ++ int add_only_used_as_pointer; ++ ++ if (INSN_P (insn) ++ && GET_CODE (PATTERN (insn)) == SET ++ && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS ++ && (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == MULT ++ || GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == ASHIFT) ++ && GET_CODE (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1)) == ++ CONST_INT && REG_P (SET_DEST (PATTERN (insn))) ++ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 1)) ++ && REG_P (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0))) ++ { ++ reg = SET_DEST (PATTERN (insn)); ++ mem_expr = SET_SRC (PATTERN (insn)); ++ op0 = XEXP (XEXP (mem_expr, 0), 0); ++ op1 = XEXP (mem_expr, 1); ++ } ++ else ++ { ++ continue; ++ } ++ ++ /* Scan forward the check if the result of the shifted add ++ operation is only used as an address in memory operations and ++ that the operands to the shifted add are not clobbered. */ ++ add_only_used_as_pointer = false; ++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) ++ { ++ if (!INSN_P (scan)) ++ continue; ++ ++ /* Don't try to trace forward past a JUMP or CALL. To optimize ++ safely, we would have to check that all the instructions at ++ the jump destination did not use REG. */ ++ ++ if (GET_CODE (scan) == JUMP_INSN) ++ { ++ break; ++ } ++ ++ /* If used in a call insn then we cannot optimize it away */ ++ if (CALL_P (scan) && find_regno_fusage (scan, USE, REGNO (reg))) ++ break; ++ ++ /* If any of the operands of the shifted add are clobbered we ++ cannot optimize the shifted adda away */ ++ if ((reg_set_p (op0, scan) && (REGNO (op0) != REGNO (reg))) ++ || (reg_set_p (op1, scan) && (REGNO (op1) != REGNO (reg)))) ++ break; ++ ++ if (!reg_mentioned_p (reg, PATTERN (scan))) ++ continue; ++ ++ /* If used any other place than as a pointer or as the ++ destination register we failed */ ++ if (!(single_set (scan) ++ && GET_CODE (PATTERN (scan)) == SET ++ && ((MEM_P (SET_DEST (PATTERN (scan))) ++ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0)) ++ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) == REGNO (reg)) ++ || (MEM_P (SET_SRC (PATTERN (scan))) ++ && REG_P (XEXP (SET_SRC (PATTERN (scan)), 0)) ++ && REGNO (XEXP ++ (SET_SRC (PATTERN (scan)), 0)) == REGNO (reg)))) ++ && !(GET_CODE (PATTERN (scan)) == SET ++ && REG_P (SET_DEST (PATTERN (scan))) ++ && !regno_use_in (REGNO (reg), ++ SET_SRC (PATTERN (scan))))) ++ break; ++ ++ /* We cannot replace the pointer in TImode insns ++ as these has a differene addressing mode than the other ++ memory insns. */ ++ if ( GET_MODE (SET_DEST (PATTERN (scan))) == TImode ) ++ break; ++ ++ /* Check if register is dead or set in this insn */ ++ if (dead_or_set_p (scan, reg)) ++ { ++ add_only_used_as_pointer = true; ++ break; ++ } ++ } ++ ++ if (add_only_used_as_pointer) ++ { ++ /* Lets delete the add insn and replace all memory references ++ which uses the pointer with the full expression. */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Deleting INSN %i since address expression can be folded into all " ++ "memory references using this expression\n", ++ INSN_UID (insn)); ++ } ++ SET_INSN_DELETED (insn); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ ++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) ++ { ++ if (!INSN_P (scan)) ++ continue; ++ ++ if (!reg_mentioned_p (reg, PATTERN (scan))) ++ continue; ++ ++ /* If used any other place than as a pointer or as the ++ destination register we failed */ ++ if ((single_set (scan) ++ && GET_CODE (PATTERN (scan)) == SET ++ && ((MEM_P (SET_DEST (PATTERN (scan))) ++ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0)) ++ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) == ++ REGNO (reg)) || (MEM_P (SET_SRC (PATTERN (scan))) ++ && ++ REG_P (XEXP ++ (SET_SRC (PATTERN (scan)), ++ 0)) ++ && ++ REGNO (XEXP ++ (SET_SRC (PATTERN (scan)), ++ 0)) == REGNO (reg))))) ++ { ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Register %i replaced by indexed address in INSN %i\n", ++ REGNO (reg), INSN_UID (scan)); ++ } ++ if (MEM_P (SET_DEST (PATTERN (scan)))) ++ XEXP (SET_DEST (PATTERN (scan)), 0) = mem_expr; ++ else ++ XEXP (SET_SRC (PATTERN (scan)), 0) = mem_expr; ++ } ++ ++ /* Check if register is dead or set in this insn */ ++ if (dead_or_set_p (scan, reg)) ++ { ++ break; ++ } ++ ++ } ++ } ++ } ++ } ++ ++ ++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ { ++ ++ /* Scan through all insns looking for conditional register to ++ register move operations */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Folding redundant conditional move operations:\n"); ++ } ++ for (insn = first; insn; insn = next_nonnote_insn (insn)) ++ { ++ rtx src_reg, dst_reg, scan, test; ++ ++ if (INSN_P (insn) ++ && GET_CODE (PATTERN (insn)) == COND_EXEC ++ && GET_CODE (COND_EXEC_CODE (PATTERN (insn))) == SET ++ && REG_P (SET_SRC (COND_EXEC_CODE (PATTERN (insn)))) ++ && REG_P (SET_DEST (COND_EXEC_CODE (PATTERN (insn)))) ++ && find_reg_note (insn, REG_DEAD, SET_SRC (COND_EXEC_CODE (PATTERN (insn))))) ++ { ++ src_reg = SET_SRC (COND_EXEC_CODE (PATTERN (insn))); ++ dst_reg = SET_DEST (COND_EXEC_CODE (PATTERN (insn))); ++ test = COND_EXEC_TEST (PATTERN (insn)); ++ } ++ else ++ { ++ continue; ++ } ++ ++ /* Scan backward through the rest of insns in this if-then or if-else ++ block and check if we can fold the move into another of the conditional ++ insns in the same block. */ ++ scan = prev_nonnote_insn (insn); ++ while (INSN_P (scan) ++ && GET_CODE (PATTERN (scan)) == COND_EXEC ++ && rtx_equal_p (COND_EXEC_TEST (PATTERN (scan)), test)) ++ { ++ rtx pattern = COND_EXEC_CODE (PATTERN (scan)); ++ if ( GET_CODE (pattern) == PARALLEL ) ++ pattern = XVECEXP (pattern, 0, 0); ++ ++ if ( reg_set_p (src_reg, pattern) ) ++ { ++ /* Fold in the destination register for the cond. move ++ into this insn. */ ++ SET_DEST (pattern) = dst_reg; ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Deleting INSN %i since this operation can be folded into INSN %i\n", ++ INSN_UID (insn), INSN_UID (scan)); ++ } ++ ++ /* Scan and check if any of the insns in between uses the src_reg. We ++ must then replace it with the dst_reg. */ ++ while ( (scan = next_nonnote_insn (scan)) != insn ){ ++ avr32_replace_reg (scan, src_reg, dst_reg); ++ } ++ /* Delete the insn. */ ++ SET_INSN_DELETED (insn); ++ ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ break; ++ } ++ ++ /* If the destination register is used but not set in this insn ++ we cannot fold. */ ++ if ( reg_mentioned_p (dst_reg, pattern) ) ++ break; ++ ++ scan = prev_nonnote_insn (scan); ++ } ++ } ++ } ++ ++} ++ ++ ++/* Exported to toplev.c. ++ ++ Do a final pass over the function, just before delayed branch ++ scheduling. */ ++static void ++avr32_reorg (void) ++{ ++ rtx insn; ++ HOST_WIDE_INT address = 0; ++ Mfix *fix; ++ ++ minipool_fix_head = minipool_fix_tail = NULL; ++ ++ /* The first insn must always be a note, or the code below won't scan it ++ properly. */ ++ insn = get_insns (); ++ if (GET_CODE (insn) != NOTE) ++ abort (); ++ ++ /* Scan all the insns and record the operands that will need fixing. */ ++ for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn)) ++ { ++ if (GET_CODE (insn) == BARRIER) ++ push_minipool_barrier (insn, address); ++ else if (INSN_P (insn)) ++ { ++ rtx table; ++ ++ note_invalid_constants (insn, address, true); ++ address += get_attr_length (insn); ++ ++ /* If the insn is a vector jump, add the size of the table and skip ++ the table. */ ++ if ((table = is_jump_table (insn)) != NULL) ++ { ++ address += get_jump_table_size (table); ++ insn = table; ++ } ++ } ++ } ++ ++ fix = minipool_fix_head; ++ ++ /* Now scan the fixups and perform the required changes. */ ++ while (fix) ++ { ++ Mfix *ftmp; ++ Mfix *fdel; ++ Mfix *last_added_fix; ++ Mfix *last_barrier = NULL; ++ Mfix *this_fix; ++ ++ /* Skip any further barriers before the next fix. */ ++ while (fix && GET_CODE (fix->insn) == BARRIER) ++ fix = fix->next; ++ ++ /* No more fixes. */ ++ if (fix == NULL) ++ break; ++ ++ last_added_fix = NULL; ++ ++ for (ftmp = fix; ftmp; ftmp = ftmp->next) ++ { ++ if (GET_CODE (ftmp->insn) == BARRIER) ++ { ++ if (ftmp->address >= minipool_vector_head->max_address) ++ break; ++ ++ last_barrier = ftmp; ++ } ++ else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL) ++ break; ++ ++ last_added_fix = ftmp; /* Keep track of the last fix added. ++ */ ++ } ++ ++ /* If we found a barrier, drop back to that; any fixes that we could ++ have reached but come after the barrier will now go in the next ++ mini-pool. */ ++ if (last_barrier != NULL) ++ { ++ /* Reduce the refcount for those fixes that won't go into this pool ++ after all. */ ++ for (fdel = last_barrier->next; ++ fdel && fdel != ftmp; fdel = fdel->next) ++ { ++ fdel->minipool->refcount--; ++ fdel->minipool = NULL; ++ } ++ ++ ftmp = last_barrier; ++ } ++ else ++ { ++ /* ftmp is first fix that we can't fit into this pool and there no ++ natural barriers that we could use. Insert a new barrier in the ++ code somewhere between the previous fix and this one, and ++ arrange to jump around it. */ ++ HOST_WIDE_INT max_address; ++ ++ /* The last item on the list of fixes must be a barrier, so we can ++ never run off the end of the list of fixes without last_barrier ++ being set. */ ++ if (ftmp == NULL) ++ abort (); ++ ++ max_address = minipool_vector_head->max_address; ++ /* Check that there isn't another fix that is in range that we ++ couldn't fit into this pool because the pool was already too ++ large: we need to put the pool before such an instruction. */ ++ if (ftmp->address < max_address) ++ max_address = ftmp->address; ++ ++ last_barrier = create_fix_barrier (last_added_fix, max_address); ++ } ++ ++ assign_minipool_offsets (last_barrier); ++ ++ while (ftmp) ++ { ++ if (GET_CODE (ftmp->insn) != BARRIER ++ && ((ftmp->minipool = add_minipool_backward_ref (ftmp)) ++ == NULL)) ++ break; ++ ++ ftmp = ftmp->next; ++ } ++ ++ /* Scan over the fixes we have identified for this pool, fixing them up ++ and adding the constants to the pool itself. */ ++ for (this_fix = fix; this_fix && ftmp != this_fix; ++ this_fix = this_fix->next) ++ if (GET_CODE (this_fix->insn) != BARRIER ++ /* Do nothing for entries present just to force the insertion of ++ a minipool. */ ++ && !IS_FORCE_MINIPOOL (this_fix->value)) ++ { ++ rtx addr = plus_constant (gen_rtx_LABEL_REF (VOIDmode, ++ minipool_vector_label), ++ this_fix->minipool->offset); ++ *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr); ++ } ++ ++ dump_minipool (last_barrier->insn); ++ fix = ftmp; ++ } ++ ++ /* Free the minipool memory. */ ++ obstack_free (&minipool_obstack, minipool_startobj); ++ ++ avr32_reorg_optimization (); ++} ++ ++ ++/* Hook for doing some final scanning of instructions. Does nothing yet...*/ ++void ++avr32_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED, ++ rtx * opvec ATTRIBUTE_UNUSED, ++ int noperands ATTRIBUTE_UNUSED) ++{ ++ return; ++} ++ ++ ++/* Function for changing the condition on the next instruction, ++ should be used when emmiting compare instructions and ++ the condition of the next instruction needs to change. ++*/ ++int ++set_next_insn_cond (rtx cur_insn, rtx new_cond) ++{ ++ rtx next_insn = next_nonnote_insn (cur_insn); ++ if ((next_insn != NULL_RTX) ++ && (INSN_P (next_insn))) ++ { ++ if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE)) ++ { ++ /* Branch instructions */ ++ XEXP (SET_SRC (PATTERN (next_insn)), 0) = new_cond; ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (next_insn) = -1; ++ return TRUE; ++ } ++ else if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)), ++ GET_MODE (SET_SRC (PATTERN (next_insn))))) ++ { ++ /* scc with no compare */ ++ SET_SRC (PATTERN (next_insn)) = new_cond; ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (next_insn) = -1; ++ return TRUE; ++ } ++ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC) ++ { ++ if ( GET_CODE (new_cond) == UNSPEC ) ++ { ++ COND_EXEC_TEST (PATTERN (next_insn)) = ++ gen_rtx_UNSPEC (CCmode, ++ gen_rtvec (2, ++ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0), ++ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1)), ++ XINT (new_cond, 1)); ++ } ++ else ++ { ++ PUT_CODE(COND_EXEC_TEST (PATTERN (next_insn)), GET_CODE(new_cond)); ++ } ++ } ++ } ++ ++ return FALSE; ++} ++ ++ ++/* Function for obtaining the condition for the next instruction after cur_insn. ++*/ ++rtx ++get_next_insn_cond (rtx cur_insn) ++{ ++ rtx next_insn = next_nonnote_insn (cur_insn); ++ rtx cond = NULL_RTX; ++ if (next_insn != NULL_RTX ++ && INSN_P (next_insn)) ++ { ++ if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE)) ++ { ++ /* Branch and cond if then else instructions */ ++ cond = XEXP (SET_SRC (PATTERN (next_insn)), 0); ++ } ++ else if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)), ++ GET_MODE (SET_SRC (PATTERN (next_insn))))) ++ { ++ /* scc with no compare */ ++ cond = SET_SRC (PATTERN (next_insn)); ++ } ++ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC) ++ { ++ cond = COND_EXEC_TEST (PATTERN (next_insn)); ++ } ++ } ++ return cond; ++} ++ ++ ++/* Check if the next insn is a conditional insn that will emit a compare ++ for itself. ++*/ ++rtx ++next_insn_emits_cmp (rtx cur_insn) ++{ ++ rtx next_insn = next_nonnote_insn (cur_insn); ++ rtx cond = NULL_RTX; ++ if (next_insn != NULL_RTX ++ && INSN_P (next_insn)) ++ { ++ if ( ((GET_CODE (PATTERN (next_insn)) == SET) ++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE) ++ && (XEXP (XEXP (SET_SRC (PATTERN (next_insn)), 0),0) != cc0_rtx)) ++ || GET_CODE (PATTERN (next_insn)) == COND_EXEC ) ++ return TRUE; ++ } ++ return FALSE; ++} ++ ++ ++rtx ++avr32_output_cmp (rtx cond, enum machine_mode mode, rtx op0, rtx op1) ++{ ++ ++ rtx new_cond = NULL_RTX; ++ rtx ops[2]; ++ rtx compare_pattern; ++ ops[0] = op0; ++ ops[1] = op1; ++ ++ if ( GET_CODE (op0) == AND ) ++ compare_pattern = op0; ++ else ++ compare_pattern = gen_rtx_COMPARE (mode, op0, op1); ++ ++ new_cond = is_compare_redundant (compare_pattern, cond); ++ ++ if (new_cond != NULL_RTX) ++ return new_cond; ++ ++ /* Check if we are inserting a bit-load instead of a compare. */ ++ if ( GET_CODE (op0) == AND ) ++ { ++ ops[0] = XEXP (op0, 0); ++ ops[1] = XEXP (op0, 1); ++ output_asm_insn ("bld\t%0, %p1", ops); ++ return cond; ++ } ++ ++ /* Insert compare */ ++ switch (mode) ++ { ++ case QImode: ++ output_asm_insn ("cp.b\t%0, %1", ops); ++ break; ++ case HImode: ++ output_asm_insn ("cp.h\t%0, %1", ops); ++ break; ++ case SImode: ++ output_asm_insn ("cp.w\t%0, %1", ops); ++ break; ++ case DImode: ++ if (GET_CODE (op1) != REG) ++ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0", ops); ++ else ++ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0, %m1", ops); ++ break; ++ default: ++ internal_error ("Unknown comparison mode"); ++ break; ++ } ++ ++ return cond; ++} ++ ++ ++int ++avr32_load_multiple_operation (rtx op, ++ enum machine_mode mode ATTRIBUTE_UNUSED) ++{ ++ int count = XVECLEN (op, 0); ++ unsigned int dest_regno; ++ rtx src_addr; ++ rtx elt; ++ int i = 1, base = 0; ++ ++ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET) ++ return 0; ++ ++ /* Check to see if this might be a write-back. */ ++ if (GET_CODE (SET_SRC (elt = XVECEXP (op, 0, 0))) == PLUS) ++ { ++ i++; ++ base = 1; ++ ++ /* Now check it more carefully. */ ++ if (GET_CODE (SET_DEST (elt)) != REG ++ || GET_CODE (XEXP (SET_SRC (elt), 0)) != REG ++ || GET_CODE (XEXP (SET_SRC (elt), 1)) != CONST_INT ++ || INTVAL (XEXP (SET_SRC (elt), 1)) != (count - 1) * 4) ++ return 0; ++ } ++ ++ /* Perform a quick check so we don't blow up below. */ ++ if (count <= 1 ++ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET ++ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != REG ++ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC) ++ return 0; ++ ++ dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, i - 1))); ++ src_addr = XEXP (SET_SRC (XVECEXP (op, 0, i - 1)), 0); ++ ++ for (; i < count; i++) ++ { ++ elt = XVECEXP (op, 0, i); ++ ++ if (GET_CODE (elt) != SET ++ || GET_CODE (SET_DEST (elt)) != REG ++ || GET_MODE (SET_DEST (elt)) != SImode ++ || GET_CODE (SET_SRC (elt)) != UNSPEC) ++ return 0; ++ } ++ ++ return 1; ++} ++ ++ ++int ++avr32_store_multiple_operation (rtx op, ++ enum machine_mode mode ATTRIBUTE_UNUSED) ++{ ++ int count = XVECLEN (op, 0); ++ int src_regno; ++ rtx dest_addr; ++ rtx elt; ++ int i = 1; ++ ++ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET) ++ return 0; ++ ++ /* Perform a quick check so we don't blow up below. */ ++ if (count <= i ++ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET ++ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != MEM ++ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC) ++ return 0; ++ ++ src_regno = REGNO (SET_SRC (XVECEXP (op, 0, i - 1))); ++ dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, i - 1)), 0); ++ ++ for (; i < count; i++) ++ { ++ elt = XVECEXP (op, 0, i); ++ ++ if (GET_CODE (elt) != SET ++ || GET_CODE (SET_DEST (elt)) != MEM ++ || GET_MODE (SET_DEST (elt)) != SImode ++ || GET_CODE (SET_SRC (elt)) != UNSPEC) ++ return 0; ++ } ++ ++ return 1; ++} ++ ++ ++int ++avr32_valid_macmac_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Check if they use the same accumulator */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_valid_mulmac_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* ++ Check if the mul instruction produces the accumulator for the mac ++ instruction. */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ return FALSE; ++} ++ ++ ++int ++avr32_store_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Only valid bypass if the output result is used as an src in the store ++ instruction, NOT if used as a pointer or base. */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_SRC (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_mul_waw_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Check if the register holding the result from the mul instruction is ++ used as a result register in the input instruction. */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Check if the first loaded word in insn_out is used in insn_in. */ ++ rtx dst_reg; ++ rtx second_loaded_reg; ++ ++ /* If this is a double alu operation then the bypass is not valid */ ++ if ((get_attr_type (insn_in) == TYPE_ALU ++ || get_attr_type (insn_in) == TYPE_ALU2) ++ && (GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (insn_out)))) > 4)) ++ return FALSE; ++ ++ /* Get the destination register in the load */ ++ if (!REG_P (SET_DEST (PATTERN (insn_out)))) ++ return FALSE; ++ ++ dst_reg = SET_DEST (PATTERN (insn_out)); ++ second_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 1); ++ ++ if (!reg_mentioned_p (second_loaded_reg, PATTERN (insn_in))) ++ return TRUE; ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* ++ Check if the two first loaded word in insn_out are used in insn_in. */ ++ rtx dst_reg; ++ rtx third_loaded_reg, fourth_loaded_reg; ++ ++ /* Get the destination register in the load */ ++ if (!REG_P (SET_DEST (PATTERN (insn_out)))) ++ return FALSE; ++ ++ dst_reg = SET_DEST (PATTERN (insn_out)); ++ third_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 2); ++ fourth_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 3); ++ ++ if (!reg_mentioned_p (third_loaded_reg, PATTERN (insn_in)) ++ && !reg_mentioned_p (fourth_loaded_reg, PATTERN (insn_in))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++rtx ++avr32_ifcvt_modify_test (ce_if_block_t *ce_info, rtx test ) ++{ ++ rtx branch_insn; ++ rtx cmp_test; ++ rtx compare_op0; ++ rtx compare_op1; ++ ++ ++ if ( !ce_info ++ || test == NULL_RTX ++ || !reg_mentioned_p (cc0_rtx, test)) ++ return test; ++ ++ branch_insn = BB_END (ce_info->test_bb); ++ cmp_test = PATTERN(prev_nonnote_insn (branch_insn)); ++ ++ if (GET_CODE(cmp_test) != SET ++ || !CC0_P(XEXP(cmp_test, 0)) ) ++ return cmp_test; ++ ++ if ( GET_CODE(SET_SRC(cmp_test)) == COMPARE ){ ++ compare_op0 = XEXP(SET_SRC(cmp_test), 0); ++ compare_op1 = XEXP(SET_SRC(cmp_test), 1); ++ } else { ++ compare_op0 = SET_SRC(cmp_test); ++ compare_op1 = const0_rtx; ++ } ++ ++ return gen_rtx_fmt_ee (GET_CODE(test), GET_MODE (compare_op0), ++ compare_op0, compare_op1); ++} ++ ++ ++rtx ++avr32_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn, ++ int *num_true_changes) ++{ ++ rtx test = COND_EXEC_TEST(pattern); ++ rtx op = COND_EXEC_CODE(pattern); ++ rtx cmp_insn; ++ rtx cond_exec_insn; ++ int inputs_set_outside_ifblock = 1; ++ basic_block current_bb = BLOCK_FOR_INSN (insn); ++ rtx bb_insn ; ++ enum machine_mode mode = GET_MODE (XEXP (op, 0)); ++ ++ if (CC0_P(XEXP(test, 0))) ++ test = avr32_ifcvt_modify_test (ce_info, ++ test ); ++ ++ /* We do not support multiple tests. */ ++ if ( ce_info ++ && ce_info->num_multiple_test_blocks > 0 ) ++ return NULL_RTX; ++ ++ pattern = gen_rtx_COND_EXEC (VOIDmode, test, op); ++ ++ if ( !reload_completed ) ++ { ++ rtx start; ++ int num_insns; ++ int max_insns = MAX_CONDITIONAL_EXECUTE; ++ ++ if ( !ce_info ) ++ return op; ++ ++ /* Check if the insn is not suitable for conditional ++ execution. */ ++ start_sequence (); ++ cond_exec_insn = emit_insn (pattern); ++ if ( recog_memoized (cond_exec_insn) < 0 ++ && can_create_pseudo_p () ) ++ { ++ /* Insn is not suitable for conditional execution, try ++ to fix it up by using an extra scratch register or ++ by pulling the operation outside the if-then-else ++ and then emiting a conditional move inside the if-then-else. */ ++ end_sequence (); ++ if ( GET_CODE (op) != SET ++ || !REG_P (SET_DEST (op)) ++ || GET_CODE (SET_SRC (op)) == IF_THEN_ELSE ++ || GET_MODE_SIZE (mode) > UNITS_PER_WORD ) ++ return NULL_RTX; ++ ++ /* Check if any of the input operands to the insn is set inside the ++ current block. */ ++ if ( current_bb->index == ce_info->then_bb->index ) ++ start = PREV_INSN (BB_HEAD (ce_info->then_bb)); ++ else ++ start = PREV_INSN (BB_HEAD (ce_info->else_bb)); ++ ++ ++ for ( bb_insn = next_nonnote_insn (start); bb_insn != insn; bb_insn = next_nonnote_insn (bb_insn) ) ++ { ++ rtx set = single_set (bb_insn); ++ ++ if ( set && reg_mentioned_p (SET_DEST (set), SET_SRC (op))) ++ { ++ inputs_set_outside_ifblock = 0; ++ break; ++ } ++ } ++ ++ cmp_insn = prev_nonnote_insn (BB_END (ce_info->test_bb)); ++ ++ ++ /* Check if we can insert more insns. */ ++ num_insns = ( ce_info->num_then_insns + ++ ce_info->num_else_insns + ++ ce_info->num_cond_clobber_insns + ++ ce_info->num_extra_move_insns ); ++ ++ if ( ce_info->num_else_insns != 0 ) ++ max_insns *=2; ++ ++ if ( num_insns >= max_insns ) ++ return NULL_RTX; ++ ++ /* Check if we have an instruction which might be converted to ++ conditional form if we give it a scratch register to clobber. */ ++ { ++ rtx clobber_insn; ++ rtx scratch_reg = gen_reg_rtx (mode); ++ rtx new_pattern = copy_rtx (pattern); ++ rtx set_src = SET_SRC (COND_EXEC_CODE (new_pattern)); ++ ++ rtx clobber = gen_rtx_CLOBBER (mode, scratch_reg); ++ rtx vec[2] = { COND_EXEC_CODE (new_pattern), clobber }; ++ COND_EXEC_CODE (new_pattern) = gen_rtx_PARALLEL (mode, gen_rtvec_v (2, vec)); ++ ++ start_sequence (); ++ clobber_insn = emit_insn (new_pattern); ++ ++ if ( recog_memoized (clobber_insn) >= 0 ++ && ( ( GET_RTX_LENGTH (GET_CODE (set_src)) == 2 ++ && CONST_INT_P (XEXP (set_src, 1)) ++ && avr32_const_ok_for_constraint_p (INTVAL (XEXP (set_src, 1)), 'K', "Ks08") ) ++ || !ce_info->else_bb ++ || current_bb->index == ce_info->else_bb->index )) ++ { ++ end_sequence (); ++ /* Force the insn to be recognized again. */ ++ INSN_CODE (insn) = -1; ++ ++ /* If this is the first change in this IF-block then ++ signal that we have made a change. */ ++ if ( ce_info->num_cond_clobber_insns == 0 ++ && ce_info->num_extra_move_insns == 0 ) ++ *num_true_changes += 1; ++ ++ ce_info->num_cond_clobber_insns++; ++ ++ if (dump_file) ++ fprintf (dump_file, ++ "\nReplacing INSN %d with an insn using a scratch register for later ifcvt passes...\n", ++ INSN_UID (insn)); ++ ++ return COND_EXEC_CODE (new_pattern); ++ } ++ end_sequence (); ++ } ++ ++ if ( inputs_set_outside_ifblock ) ++ { ++ /* Check if the insn before the cmp is an and which used ++ together with the cmp can be optimized into a bld. If ++ so then we should try to put the insn before the and ++ so that we can catch the bld peephole. */ ++ rtx set; ++ rtx insn_before_cmp_insn = prev_nonnote_insn (cmp_insn); ++ if (insn_before_cmp_insn ++ && (set = single_set (insn_before_cmp_insn)) ++ && GET_CODE (SET_SRC (set)) == AND ++ && one_bit_set_operand (XEXP (SET_SRC (set), 1), SImode) ++ /* Also make sure that the insn does not set any ++ of the input operands to the insn we are pulling out. */ ++ && !reg_mentioned_p (SET_DEST (set), SET_SRC (op)) ) ++ cmp_insn = prev_nonnote_insn (cmp_insn); ++ ++ /* We can try to put the operation outside the if-then-else ++ blocks and insert a move. */ ++ if ( !insn_invalid_p (insn) ++ /* Do not allow conditional insns to be moved outside the ++ if-then-else. */ ++ && !reg_mentioned_p (cc0_rtx, insn) ++ /* We cannot move memory loads outside of the if-then-else ++ since the memory access should not be perfomed if the ++ condition is not met. */ ++ && !mem_mentioned_p (SET_SRC (op)) ) ++ { ++ rtx scratch_reg = gen_reg_rtx (mode); ++ rtx op_pattern = copy_rtx (op); ++ rtx new_insn, seq; ++ rtx link, prev_link; ++ op = copy_rtx (op); ++ /* Emit the operation to a temp reg before the compare, ++ and emit a move inside the if-then-else, hoping that the ++ whole if-then-else can be converted to conditional ++ execution. */ ++ SET_DEST (op_pattern) = scratch_reg; ++ start_sequence (); ++ new_insn = emit_insn (op_pattern); ++ seq = get_insns(); ++ end_sequence (); ++ ++ /* Check again that the insn is valid. For some insns the insn might ++ become invalid if the destination register is changed. Ie. for mulacc ++ operations. */ ++ if ( insn_invalid_p (new_insn) ) ++ return NULL_RTX; ++ ++ emit_insn_before_setloc (seq, cmp_insn, INSN_LOCATOR (insn)); ++ ++ if (dump_file) ++ fprintf (dump_file, ++ "\nMoving INSN %d out of IF-block by adding INSN %d...\n", ++ INSN_UID (insn), INSN_UID (new_insn)); ++ ++ ce_info->extra_move_insns[ce_info->num_extra_move_insns] = insn; ++ ce_info->moved_insns[ce_info->num_extra_move_insns] = new_insn; ++ XEXP (op, 1) = scratch_reg; ++ /* Force the insn to be recognized again. */ ++ INSN_CODE (insn) = -1; ++ ++ /* Move REG_DEAD notes to the moved insn. */ ++ prev_link = NULL_RTX; ++ for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) ++ { ++ if (REG_NOTE_KIND (link) == REG_DEAD) ++ { ++ /* Add the REG_DEAD note to the new insn. */ ++ rtx dead_reg = XEXP (link, 0); ++ REG_NOTES (new_insn) = gen_rtx_EXPR_LIST (REG_DEAD, dead_reg, REG_NOTES (new_insn)); ++ /* Remove the REG_DEAD note from the insn we convert to a move. */ ++ if ( prev_link ) ++ XEXP (prev_link, 1) = XEXP (link, 1); ++ else ++ REG_NOTES (insn) = XEXP (link, 1); ++ } ++ else ++ { ++ prev_link = link; ++ } ++ } ++ /* Add a REG_DEAD note to signal that the scratch register is dead. */ ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, scratch_reg, REG_NOTES (insn)); ++ ++ /* If this is the first change in this IF-block then ++ signal that we have made a change. */ ++ if ( ce_info->num_cond_clobber_insns == 0 ++ && ce_info->num_extra_move_insns == 0 ) ++ *num_true_changes += 1; ++ ++ ce_info->num_extra_move_insns++; ++ return op; ++ } ++ } ++ ++ /* We failed to fixup the insns, so this if-then-else can not be made ++ conditional. Just return NULL_RTX so that the if-then-else conversion ++ for this if-then-else will be cancelled. */ ++ return NULL_RTX; ++ } ++ end_sequence (); ++ return op; ++ } ++ ++ /* Signal that we have started if conversion after reload, which means ++ that it should be safe to split all the predicable clobber insns which ++ did not become cond_exec back into a simpler form if possible. */ ++ cfun->machine->ifcvt_after_reload = 1; ++ ++ return pattern; ++} ++ ++ ++void ++avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info, int *num_true_changes) ++{ ++ int n; ++ ++ if ( ce_info->num_extra_move_insns > 0 ++ && ce_info->num_cond_clobber_insns == 0) ++ /* Signal that we did not do any changes after all. */ ++ *num_true_changes -= 1; ++ ++ /* Remove any inserted move insns. */ ++ for ( n = 0; n < ce_info->num_extra_move_insns; n++ ) ++ { ++ rtx link, prev_link; ++ ++ /* Remove REG_DEAD note since we are not needing the scratch register anyway. */ ++ prev_link = NULL_RTX; ++ for (link = REG_NOTES (ce_info->extra_move_insns[n]); link; link = XEXP (link, 1)) ++ { ++ if (REG_NOTE_KIND (link) == REG_DEAD) ++ { ++ if ( prev_link ) ++ XEXP (prev_link, 1) = XEXP (link, 1); ++ else ++ REG_NOTES (ce_info->extra_move_insns[n]) = XEXP (link, 1); ++ } ++ else ++ { ++ prev_link = link; ++ } ++ } ++ ++ /* Revert all reg_notes for the moved insn. */ ++ for (link = REG_NOTES (ce_info->moved_insns[n]); link; link = XEXP (link, 1)) ++ { ++ REG_NOTES (ce_info->extra_move_insns[n]) = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link), ++ XEXP (link, 0), ++ REG_NOTES (ce_info->extra_move_insns[n])); ++ } ++ ++ /* Remove the moved insn. */ ++ remove_insn ( ce_info->moved_insns[n] ); ++ } ++} ++ ++ ++/* Function returning TRUE if INSN with OPERANDS is a splittable ++ conditional immediate clobber insn. We assume that the insn is ++ already a conditional immediate clobber insns and do not check ++ for that. */ ++int ++avr32_cond_imm_clobber_splittable (rtx insn, rtx operands[]) ++{ ++ if ( REGNO (operands[0]) == REGNO (operands[1]) ) ++ { ++ if ( (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is21")) ++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21"))) ++ return FALSE; ++ } ++ else if ( (logical_binary_operator (SET_SRC (XVECEXP (PATTERN (insn),0,0)), VOIDmode) ++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is16")) ++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks16"))) ) ++ return FALSE; ++ ++ return TRUE; ++} ++ ++ ++/* Function for getting an integer value from a const_int or const_double ++ expression regardless of the HOST_WIDE_INT size. Each target cpu word ++ will be put into the val array where the LSW will be stored at the lowest ++ address and so forth. Assumes that const_expr is either a const_int or ++ const_double. Only valid for modes which have sizes that are a multiple ++ of the word size. ++*/ ++void ++avr32_get_intval (enum machine_mode mode, rtx const_expr, HOST_WIDE_INT *val) ++{ ++ int words_in_mode = GET_MODE_SIZE (mode)/UNITS_PER_WORD; ++ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD; ++ ++ if ( GET_CODE(const_expr) == CONST_DOUBLE ){ ++ HOST_WIDE_INT hi = CONST_DOUBLE_HIGH(const_expr); ++ HOST_WIDE_INT lo = CONST_DOUBLE_LOW(const_expr); ++ /* Evaluate hi and lo values of const_double. */ ++ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0), ++ GEN_INT (lo), ++ &val[0]); ++ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0), ++ GEN_INT (hi), ++ &val[words_in_const_int]); ++ } else if ( GET_CODE(const_expr) == CONST_INT ){ ++ HOST_WIDE_INT value = INTVAL(const_expr); ++ int word; ++ for ( word = 0; (word < words_in_mode) && (word < words_in_const_int); word++ ){ ++ /* Shift word up to the MSW and shift down again to extract the ++ word and sign-extend. */ ++ int lshift = (words_in_const_int - word - 1) * BITS_PER_WORD; ++ int rshift = (words_in_const_int-1) * BITS_PER_WORD; ++ val[word] = (value << lshift) >> rshift; ++ } ++ ++ for ( ; word < words_in_mode; word++ ){ ++ /* Just put the sign bits in the remaining words. */ ++ val[word] = value < 0 ? -1 : 0; ++ } ++ } ++} ++ ++ ++void ++avr32_split_const_expr (enum machine_mode mode, enum machine_mode new_mode, ++ rtx expr, rtx *split_expr) ++{ ++ int i, word; ++ int words_in_intval = GET_MODE_SIZE (mode)/UNITS_PER_WORD; ++ int words_in_split_values = GET_MODE_SIZE (new_mode)/UNITS_PER_WORD; ++ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD; ++ HOST_WIDE_INT *val = alloca (words_in_intval * UNITS_PER_WORD); ++ ++ avr32_get_intval (mode, expr, val); ++ ++ for ( i=0; i < (words_in_intval/words_in_split_values); i++ ) ++ { ++ HOST_WIDE_INT value_lo = 0, value_hi = 0; ++ for ( word = 0; word < words_in_split_values; word++ ) ++ { ++ if ( word >= words_in_const_int ) ++ value_hi |= ((val[i * words_in_split_values + word] & ++ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1)) ++ << (BITS_PER_WORD * (word - words_in_const_int))); ++ else ++ value_lo |= ((val[i * words_in_split_values + word] & ++ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1)) ++ << (BITS_PER_WORD * word)); ++ } ++ split_expr[i] = immed_double_const(value_lo, value_hi, new_mode); ++ } ++} ++ ++ ++/* Set up library functions to comply to AVR32 ABI */ ++static void ++avr32_init_libfuncs (void) ++{ ++ /* Convert gcc run-time function names to AVR32 ABI names */ ++ ++ /* Double-precision floating-point arithmetic. */ ++ set_optab_libfunc (neg_optab, DFmode, NULL); ++ ++ /* Double-precision comparisons. */ ++ set_optab_libfunc (eq_optab, DFmode, "__avr32_f64_cmp_eq"); ++ set_optab_libfunc (ne_optab, DFmode, NULL); ++ set_optab_libfunc (lt_optab, DFmode, "__avr32_f64_cmp_lt"); ++ set_optab_libfunc (le_optab, DFmode, NULL); ++ set_optab_libfunc (ge_optab, DFmode, "__avr32_f64_cmp_ge"); ++ set_optab_libfunc (gt_optab, DFmode, NULL); ++ ++ /* Single-precision floating-point arithmetic. */ ++ set_optab_libfunc (smul_optab, SFmode, "__avr32_f32_mul"); ++ set_optab_libfunc (neg_optab, SFmode, NULL); ++ ++ /* Single-precision comparisons. */ ++ set_optab_libfunc (eq_optab, SFmode, "__avr32_f32_cmp_eq"); ++ set_optab_libfunc (ne_optab, SFmode, NULL); ++ set_optab_libfunc (lt_optab, SFmode, "__avr32_f32_cmp_lt"); ++ set_optab_libfunc (le_optab, SFmode, NULL); ++ set_optab_libfunc (ge_optab, SFmode, "__avr32_f32_cmp_ge"); ++ set_optab_libfunc (gt_optab, SFmode, NULL); ++ ++ /* Floating-point to integer conversions. */ ++ set_conv_libfunc (sfix_optab, SImode, DFmode, "__avr32_f64_to_s32"); ++ set_conv_libfunc (ufix_optab, SImode, DFmode, "__avr32_f64_to_u32"); ++ set_conv_libfunc (sfix_optab, DImode, DFmode, "__avr32_f64_to_s64"); ++ set_conv_libfunc (ufix_optab, DImode, DFmode, "__avr32_f64_to_u64"); ++ set_conv_libfunc (sfix_optab, SImode, SFmode, "__avr32_f32_to_s32"); ++ set_conv_libfunc (ufix_optab, SImode, SFmode, "__avr32_f32_to_u32"); ++ set_conv_libfunc (sfix_optab, DImode, SFmode, "__avr32_f32_to_s64"); ++ set_conv_libfunc (ufix_optab, DImode, SFmode, "__avr32_f32_to_u64"); ++ ++ /* Conversions between floating types. */ ++ set_conv_libfunc (trunc_optab, SFmode, DFmode, "__avr32_f64_to_f32"); ++ set_conv_libfunc (sext_optab, DFmode, SFmode, "__avr32_f32_to_f64"); ++ ++ /* Integer to floating-point conversions. Table 8. */ ++ set_conv_libfunc (sfloat_optab, DFmode, SImode, "__avr32_s32_to_f64"); ++ set_conv_libfunc (sfloat_optab, DFmode, DImode, "__avr32_s64_to_f64"); ++ set_conv_libfunc (sfloat_optab, SFmode, SImode, "__avr32_s32_to_f32"); ++ set_conv_libfunc (sfloat_optab, SFmode, DImode, "__avr32_s64_to_f32"); ++ set_conv_libfunc (ufloat_optab, DFmode, SImode, "__avr32_u32_to_f64"); ++ set_conv_libfunc (ufloat_optab, SFmode, SImode, "__avr32_u32_to_f32"); ++ /* TODO: Add these to gcc library functions */ ++ //set_conv_libfunc (ufloat_optab, DFmode, DImode, NULL); ++ //set_conv_libfunc (ufloat_optab, SFmode, DImode, NULL); ++ ++ /* Long long. Table 9. */ ++ set_optab_libfunc (smul_optab, DImode, "__avr32_mul64"); ++ set_optab_libfunc (sdiv_optab, DImode, "__avr32_sdiv64"); ++ set_optab_libfunc (udiv_optab, DImode, "__avr32_udiv64"); ++ set_optab_libfunc (smod_optab, DImode, "__avr32_smod64"); ++ set_optab_libfunc (umod_optab, DImode, "__avr32_umod64"); ++ set_optab_libfunc (ashl_optab, DImode, "__avr32_lsl64"); ++ set_optab_libfunc (lshr_optab, DImode, "__avr32_lsr64"); ++ set_optab_libfunc (ashr_optab, DImode, "__avr32_asr64"); ++ ++ /* Floating point library functions which have fast versions. */ ++ if ( TARGET_FAST_FLOAT ) ++ { ++ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div_fast"); ++ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul_fast"); ++ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add_fast"); ++ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub_fast"); ++ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add_fast"); ++ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub_fast"); ++ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div_fast"); ++ } ++ else ++ { ++ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div"); ++ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul"); ++ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add"); ++ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub"); ++ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add"); ++ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub"); ++ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div"); ++ } ++} ++ ++ ++/* Record a flashvault declaration. */ ++static void ++flashvault_decl_list_add (unsigned int vector_num, const char *name) ++{ ++ struct flashvault_decl_list *p; ++ ++ p = (struct flashvault_decl_list *) ++ xmalloc (sizeof (struct flashvault_decl_list)); ++ p->next = flashvault_decl_list_head; ++ p->name = name; ++ p->vector_num = vector_num; ++ flashvault_decl_list_head = p; ++} ++ ++ ++static void ++avr32_file_end (void) ++{ ++ struct flashvault_decl_list *p; ++ unsigned int num_entries = 0; ++ ++ /* Check if a list of flashvault declarations exists. */ ++ if (flashvault_decl_list_head != NULL) ++ { ++ /* Calculate the number of entries in the table. */ ++ for (p = flashvault_decl_list_head; p != NULL; p = p->next) ++ { ++ num_entries++; ++ } ++ ++ /* Generate the beginning of the flashvault data table. */ ++ fputs ("\t.global __fv_table\n" ++ "\t.data\n" ++ "\t.align 2\n" ++ "\t.set .LFVTABLE, . + 0\n" ++ "\t.type __fv_table, @object\n", asm_out_file); ++ /* Each table entry is 8 bytes. */ ++ fprintf (asm_out_file, "\t.size __fv_table, %u\n", (num_entries * 8)); ++ ++ fputs("__fv_table:\n", asm_out_file); ++ ++ for (p = flashvault_decl_list_head; p != NULL; p = p->next) ++ { ++ /* Output table entry. */ ++ fprintf (asm_out_file, ++ "\t.align 2\n" ++ "\t.int %u\n", p->vector_num); ++ fprintf (asm_out_file, ++ "\t.align 2\n" ++ "\t.int %s\n", p->name); ++ } ++ } ++} +--- /dev/null ++++ b/gcc/config/avr32/avr32-elf.h +@@ -0,0 +1,91 @@ ++/* ++ Elf specific definitions. ++ Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++/***************************************************************************** ++ * Controlling the Compiler Driver, 'gcc' ++ *****************************************************************************/ ++ ++/* Run-time Target Specification. */ ++#undef TARGET_VERSION ++#define TARGET_VERSION fputs (" (AVR32 GNU with ELF)", stderr); ++ ++/* ++Another C string constant used much like LINK_SPEC. The ++difference between the two is that STARTFILE_SPEC is used at ++the very beginning of the command given to the linker. ++ ++If this macro is not defined, a default is provided that loads the ++standard C startup file from the usual place. See gcc.c. ++*/ ++#if 0 ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC "crt0%O%s crti%O%s crtbegin%O%s" ++#endif ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC "%{mflashvault: crtfv.o%s} %{!mflashvault: crt0.o%s} \ ++ crti.o%s crtbegin.o%s" ++ ++#undef LINK_SPEC ++#define LINK_SPEC "%{muse-oscall:--defsym __do_not_use_oscall_coproc__=0} %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}} %{mpart=uc3a3revd:-mavr32elf_uc3a3256s;:%{mpart=*:-mavr32elf_%*}} %{mcpu=*:-mavr32elf_%*}" ++ ++ ++/* ++Another C string constant used much like LINK_SPEC. The ++difference between the two is that ENDFILE_SPEC is used at ++the very end of the command given to the linker. ++ ++Do not define this macro if it does not need to do anything. ++*/ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC "crtend%O%s crtn%O%s" ++ ++ ++/* Target CPU builtins. */ ++#define TARGET_CPU_CPP_BUILTINS() \ ++ do \ ++ { \ ++ builtin_define ("__avr32__"); \ ++ builtin_define ("__AVR32__"); \ ++ builtin_define ("__AVR32_ELF__"); \ ++ builtin_define (avr32_part->macro); \ ++ builtin_define (avr32_arch->macro); \ ++ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \ ++ builtin_define ("__AVR32_AVR32A__"); \ ++ else \ ++ builtin_define ("__AVR32_AVR32B__"); \ ++ if (TARGET_UNALIGNED_WORD) \ ++ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \ ++ if (TARGET_SIMD) \ ++ builtin_define ("__AVR32_HAS_SIMD__"); \ ++ if (TARGET_DSP) \ ++ builtin_define ("__AVR32_HAS_DSP__"); \ ++ if (TARGET_RMW) \ ++ builtin_define ("__AVR32_HAS_RMW__"); \ ++ if (TARGET_BRANCH_PRED) \ ++ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \ ++ if (TARGET_FAST_FLOAT) \ ++ builtin_define ("__AVR32_FAST_FLOAT__"); \ ++ if (TARGET_FLASHVAULT) \ ++ builtin_define ("__AVR32_FLASHVAULT__"); \ ++ if (TARGET_NO_MUL_INSNS) \ ++ builtin_define ("__AVR32_NO_MUL__"); \ ++ } \ ++ while (0) +--- /dev/null ++++ b/gcc/config/avr32/avr32.h +@@ -0,0 +1,3316 @@ ++/* ++ Definitions of target machine for AVR32. ++ Copyright 2003,2004,2005,2006,2007,2008,2009,2010 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#ifndef GCC_AVR32_H ++#define GCC_AVR32_H ++ ++ ++#ifndef OBJECT_FORMAT_ELF ++#error avr32.h included before elfos.h ++#endif ++ ++#ifndef LOCAL_LABEL_PREFIX ++#define LOCAL_LABEL_PREFIX "." ++#endif ++ ++#ifndef SUBTARGET_CPP_SPEC ++#define SUBTARGET_CPP_SPEC "-D__ELF__" ++#endif ++ ++ ++extern struct rtx_def *avr32_compare_op0; ++extern struct rtx_def *avr32_compare_op1; ++ ++/* comparison type */ ++enum avr32_cmp_type { ++ CMP_QI, /* 1 byte ->char */ ++ CMP_HI, /* 2 byte->half word */ ++ CMP_SI, /* four byte->word*/ ++ CMP_DI, /* eight byte->double word */ ++ CMP_SF, /* single precision floats */ ++ CMP_MAX /* max comparison type */ ++}; ++ ++extern enum avr32_cmp_type avr32_branch_type; /* type of branch to use */ ++ ++ ++extern struct rtx_def *avr32_acc_cache; ++ ++/* cache instruction op5 codes */ ++#define AVR32_CACHE_INVALIDATE_ICACHE 1 ++ ++/* ++These bits describe the different types of function supported by the AVR32 ++backend. They are exclusive, e.g. a function cannot be both a normal function ++and an interworked function. Knowing the type of a function is important for ++determining its prologue and epilogue sequences. Note value 7 is currently ++unassigned. Also note that the interrupt function types all have bit 2 set, ++so that they can be tested for easily. Note that 0 is deliberately chosen for ++AVR32_FT_UNKNOWN so that when the machine_function structure is initialized ++(to zero) func_type will default to unknown. This will force the first use of ++avr32_current_func_type to call avr32_compute_func_type. ++*/ ++#define AVR32_FT_UNKNOWN 0 /* Type has not yet been determined. */ ++#define AVR32_FT_NORMAL 1 /* Normal function. */ ++#define AVR32_FT_ACALL 2 /* An acall function. */ ++#define AVR32_FT_EXCEPTION_HANDLER 3 /* A C++ exception handler. */ ++#define AVR32_FT_ISR_FULL 4 /* A fully shadowed interrupt mode. */ ++#define AVR32_FT_ISR_HALF 5 /* A half shadowed interrupt mode. */ ++#define AVR32_FT_ISR_NONE 6 /* No shadow registers. */ ++ ++#define AVR32_FT_TYPE_MASK ((1 << 3) - 1) ++ ++/* In addition functions can have several type modifiers, outlined by these bit masks: */ ++#define AVR32_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */ ++#define AVR32_FT_NAKED (1 << 3) /* No prologue or epilogue. */ ++#define AVR32_FT_VOLATILE (1 << 4) /* Does not return. */ ++#define AVR32_FT_NESTED (1 << 5) /* Embedded inside another func. */ ++#define AVR32_FT_FLASHVAULT (1 << 6) /* Flashvault function call. */ ++#define AVR32_FT_FLASHVAULT_IMPL (1 << 7) /* Function definition in FlashVault. */ ++ ++ ++/* Some macros to test these flags. */ ++#define AVR32_FUNC_TYPE(t) (t & AVR32_FT_TYPE_MASK) ++#define IS_INTERRUPT(t) (t & AVR32_FT_INTERRUPT) ++#define IS_NAKED(t) (t & AVR32_FT_NAKED) ++#define IS_VOLATILE(t) (t & AVR32_FT_VOLATILE) ++#define IS_NESTED(t) (t & AVR32_FT_NESTED) ++#define IS_FLASHVAULT(t) (t & AVR32_FT_FLASHVAULT) ++#define IS_FLASHVAULT_IMPL(t) (t & AVR32_FT_FLASHVAULT_IMPL) ++ ++#define SYMBOL_FLAG_RMW_ADDR_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT ++#define SYMBOL_REF_RMW_ADDR(RTX) \ ++ ((SYMBOL_REF_FLAGS (RTX) & (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT)) != 0) ++ ++ ++typedef struct minipool_labels ++GTY ((chain_next ("%h.next"), chain_prev ("%h.prev"))) ++{ ++ rtx label; ++ struct minipool_labels *prev; ++ struct minipool_labels *next; ++} minipool_labels; ++ ++/* A C structure for machine-specific, per-function data. ++ This is added to the cfun structure. */ ++ ++typedef struct machine_function ++GTY (()) ++{ ++ /* Records the type of the current function. */ ++ unsigned long func_type; ++ /* List of minipool labels, use for checking if code label is valid in a ++ memory expression */ ++ minipool_labels *minipool_label_head; ++ minipool_labels *minipool_label_tail; ++ int ifcvt_after_reload; ++} machine_function; ++ ++/* Initialize data used by insn expanders. This is called from insn_emit, ++ once for every function before code is generated. */ ++#define INIT_EXPANDERS avr32_init_expanders () ++ ++/****************************************************************************** ++ * SPECS ++ *****************************************************************************/ ++ ++#ifndef ASM_SPEC ++#define ASM_SPEC "%{fpic:--pic} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{march=ucr2nomul:-march=ucr2;:%{march=*:-march=%*}} %{mpart=uc3a3revd:-mpart=uc3a3256s;:%{mpart=*:-mpart=%*}}" ++#endif ++ ++#ifndef MULTILIB_DEFAULTS ++#define MULTILIB_DEFAULTS { "march=ap", "" } ++#endif ++ ++/****************************************************************************** ++ * Run-time Target Specification ++ *****************************************************************************/ ++#ifndef TARGET_VERSION ++#define TARGET_VERSION fprintf(stderr, " (AVR32, GNU assembler syntax)"); ++#endif ++ ++ ++/* Part types. Keep this in sync with the order of avr32_part_types in avr32.c*/ ++enum part_type ++{ ++ PART_TYPE_AVR32_NONE, ++ PART_TYPE_AVR32_AP7000, ++ PART_TYPE_AVR32_AP7001, ++ PART_TYPE_AVR32_AP7002, ++ PART_TYPE_AVR32_AP7200, ++ PART_TYPE_AVR32_UC3A0128, ++ PART_TYPE_AVR32_UC3A0256, ++ PART_TYPE_AVR32_UC3A0512, ++ PART_TYPE_AVR32_UC3A0512ES, ++ PART_TYPE_AVR32_UC3A1128, ++ PART_TYPE_AVR32_UC3A1256, ++ PART_TYPE_AVR32_UC3A1512, ++ PART_TYPE_AVR32_UC3A1512ES, ++ PART_TYPE_AVR32_UC3A3REVD, ++ PART_TYPE_AVR32_UC3A364, ++ PART_TYPE_AVR32_UC3A364S, ++ PART_TYPE_AVR32_UC3A3128, ++ PART_TYPE_AVR32_UC3A3128S, ++ PART_TYPE_AVR32_UC3A3256, ++ PART_TYPE_AVR32_UC3A3256S, ++ PART_TYPE_AVR32_UC3A464, ++ PART_TYPE_AVR32_UC3A464S, ++ PART_TYPE_AVR32_UC3A4128, ++ PART_TYPE_AVR32_UC3A4128S, ++ PART_TYPE_AVR32_UC3A4256, ++ PART_TYPE_AVR32_UC3A4256S, ++ PART_TYPE_AVR32_UC3B064, ++ PART_TYPE_AVR32_UC3B0128, ++ PART_TYPE_AVR32_UC3B0256, ++ PART_TYPE_AVR32_UC3B0256ES, ++ PART_TYPE_AVR32_UC3B0512, ++ PART_TYPE_AVR32_UC3B0512REVC, ++ PART_TYPE_AVR32_UC3B164, ++ PART_TYPE_AVR32_UC3B1128, ++ PART_TYPE_AVR32_UC3B1256, ++ PART_TYPE_AVR32_UC3B1256ES, ++ PART_TYPE_AVR32_UC3B1512, ++ PART_TYPE_AVR32_UC3B1512REVC, ++ PART_TYPE_AVR32_UC64D3, ++ PART_TYPE_AVR32_UC128D3, ++ PART_TYPE_AVR32_UC64D4, ++ PART_TYPE_AVR32_UC128D4, ++ PART_TYPE_AVR32_UC3C0512CREVC, ++ PART_TYPE_AVR32_UC3C1512CREVC, ++ PART_TYPE_AVR32_UC3C2512CREVC, ++ PART_TYPE_AVR32_UC3L0256, ++ PART_TYPE_AVR32_UC3L0128, ++ PART_TYPE_AVR32_UC3L064, ++ PART_TYPE_AVR32_UC3L032, ++ PART_TYPE_AVR32_UC3L016, ++ PART_TYPE_AVR32_UC3L064REVB, ++ PART_TYPE_AVR32_UC64L3U, ++ PART_TYPE_AVR32_UC128L3U, ++ PART_TYPE_AVR32_UC256L3U, ++ PART_TYPE_AVR32_UC64L4U, ++ PART_TYPE_AVR32_UC128L4U, ++ PART_TYPE_AVR32_UC256L4U, ++ PART_TYPE_AVR32_UC3C064C, ++ PART_TYPE_AVR32_UC3C0128C, ++ PART_TYPE_AVR32_UC3C0256C, ++ PART_TYPE_AVR32_UC3C0512C, ++ PART_TYPE_AVR32_UC3C164C, ++ PART_TYPE_AVR32_UC3C1128C, ++ PART_TYPE_AVR32_UC3C1256C, ++ PART_TYPE_AVR32_UC3C1512C, ++ PART_TYPE_AVR32_UC3C264C, ++ PART_TYPE_AVR32_UC3C2128C, ++ PART_TYPE_AVR32_UC3C2256C, ++ PART_TYPE_AVR32_UC3C2512C, ++ PART_TYPE_AVR32_MXT768E ++}; ++ ++/* Microarchitectures. */ ++enum microarchitecture_type ++{ ++ UARCH_TYPE_AVR32A, ++ UARCH_TYPE_AVR32B, ++ UARCH_TYPE_NONE ++}; ++ ++/* Architectures types which specifies the pipeline. ++ Keep this in sync with avr32_arch_types in avr32.c ++ and the pipeline attribute in avr32.md */ ++enum architecture_type ++{ ++ ARCH_TYPE_AVR32_AP, ++ ARCH_TYPE_AVR32_UCR1, ++ ARCH_TYPE_AVR32_UCR2, ++ ARCH_TYPE_AVR32_UCR2NOMUL, ++ ARCH_TYPE_AVR32_UCR3, ++ ARCH_TYPE_AVR32_UCR3FP, ++ ARCH_TYPE_AVR32_NONE ++}; ++ ++/* Flag specifying if the cpu has support for DSP instructions.*/ ++#define FLAG_AVR32_HAS_DSP (1 << 0) ++/* Flag specifying if the cpu has support for Read-Modify-Write ++ instructions.*/ ++#define FLAG_AVR32_HAS_RMW (1 << 1) ++/* Flag specifying if the cpu has support for SIMD instructions. */ ++#define FLAG_AVR32_HAS_SIMD (1 << 2) ++/* Flag specifying if the cpu has support for unaligned memory word access. */ ++#define FLAG_AVR32_HAS_UNALIGNED_WORD (1 << 3) ++/* Flag specifying if the cpu has support for branch prediction. */ ++#define FLAG_AVR32_HAS_BRANCH_PRED (1 << 4) ++/* Flag specifying if the cpu has support for a return stack. */ ++#define FLAG_AVR32_HAS_RETURN_STACK (1 << 5) ++/* Flag specifying if the cpu has caches. */ ++#define FLAG_AVR32_HAS_CACHES (1 << 6) ++/* Flag specifying if the cpu has support for v2 insns. */ ++#define FLAG_AVR32_HAS_V2_INSNS (1 << 7) ++/* Flag specifying that the cpu has buggy mul insns. */ ++#define FLAG_AVR32_HAS_NO_MUL_INSNS (1 << 8) ++/* Flag specifying that the device has FPU instructions according ++ to AVR32002 specifications*/ ++#define FLAG_AVR32_HAS_FPU (1 << 9) ++ ++/* Structure for holding information about different avr32 CPUs/parts */ ++struct part_type_s ++{ ++ const char *const name; ++ enum part_type part_type; ++ enum architecture_type arch_type; ++ /* Must lie outside user's namespace. NULL == no macro. */ ++ const char *const macro; ++}; ++ ++/* Structure for holding information about different avr32 pipeline ++ architectures. */ ++struct arch_type_s ++{ ++ const char *const name; ++ enum architecture_type arch_type; ++ enum microarchitecture_type uarch_type; ++ const unsigned long feature_flags; ++ /* Must lie outside user's namespace. NULL == no macro. */ ++ const char *const macro; ++}; ++ ++extern const struct part_type_s *avr32_part; ++extern const struct arch_type_s *avr32_arch; ++ ++#define TARGET_SIMD (avr32_arch->feature_flags & FLAG_AVR32_HAS_SIMD) ++#define TARGET_DSP (avr32_arch->feature_flags & FLAG_AVR32_HAS_DSP) ++#define TARGET_RMW (avr32_arch->feature_flags & FLAG_AVR32_HAS_RMW) ++#define TARGET_UNALIGNED_WORD (avr32_arch->feature_flags & FLAG_AVR32_HAS_UNALIGNED_WORD) ++#define TARGET_BRANCH_PRED (avr32_arch->feature_flags & FLAG_AVR32_HAS_BRANCH_PRED) ++#define TARGET_RETURN_STACK (avr32_arch->feature_flags & FLAG_AVR32_HAS_RETURN_STACK) ++#define TARGET_V2_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_V2_INSNS) ++#define TARGET_CACHES (avr32_arch->feature_flags & FLAG_AVR32_HAS_CACHES) ++#define TARGET_NO_MUL_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_NO_MUL_INSNS) ++#define TARGET_ARCH_AP (avr32_arch->arch_type == ARCH_TYPE_AVR32_AP) ++#define TARGET_ARCH_UCR1 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR1) ++#define TARGET_ARCH_UCR2 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR2) ++#define TARGET_ARCH_UC (TARGET_ARCH_UCR1 || TARGET_ARCH_UCR2) ++#define TARGET_UARCH_AVR32A (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) ++#define TARGET_UARCH_AVR32B (avr32_arch->uarch_type == UARCH_TYPE_AVR32B) ++#define TARGET_ARCH_FPU (avr32_arch->feature_flags & FLAG_AVR32_HAS_FPU) ++ ++#define CAN_DEBUG_WITHOUT_FP ++ ++ ++ ++ ++/****************************************************************************** ++ * Storage Layout ++ *****************************************************************************/ ++ ++/* ++Define this macro to have the value 1 if the most significant bit in a ++byte has the lowest number; otherwise define it to have the value zero. ++This means that bit-field instructions count from the most significant ++bit. If the machine has no bit-field instructions, then this must still ++be defined, but it doesn't matter which value it is defined to. This ++macro need not be a constant. ++ ++This macro does not affect the way structure fields are packed into ++bytes or words; that is controlled by BYTES_BIG_ENDIAN. ++*/ ++#define BITS_BIG_ENDIAN 0 ++ ++/* ++Define this macro to have the value 1 if the most significant byte in a ++word has the lowest number. This macro need not be a constant. ++*/ ++/* ++ Data is stored in an big-endian way. ++*/ ++#define BYTES_BIG_ENDIAN 1 ++ ++/* ++Define this macro to have the value 1 if, in a multiword object, the ++most significant word has the lowest number. This applies to both ++memory locations and registers; GCC fundamentally assumes that the ++order of words in memory is the same as the order in registers. This ++macro need not be a constant. ++*/ ++/* ++ Data is stored in an bin-endian way. ++*/ ++#define WORDS_BIG_ENDIAN 1 ++ ++/* ++Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a ++constant value with the same meaning as WORDS_BIG_ENDIAN, which will be ++used only when compiling libgcc2.c. Typically the value will be set ++based on preprocessor defines. ++*/ ++#define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN ++ ++/* ++Define this macro to have the value 1 if DFmode, XFmode or ++TFmode floating point numbers are stored in memory with the word ++containing the sign bit at the lowest address; otherwise define it to ++have the value 0. This macro need not be a constant. ++ ++You need not define this macro if the ordering is the same as for ++multi-word integers. ++*/ ++/* #define FLOAT_WORDS_BIG_ENDIAN 1 */ ++ ++/* ++Define this macro to be the number of bits in an addressable storage ++unit (byte); normally 8. ++*/ ++#define BITS_PER_UNIT 8 ++ ++/* ++Number of bits in a word; normally 32. ++*/ ++#define BITS_PER_WORD 32 ++ ++/* ++Maximum number of bits in a word. If this is undefined, the default is ++BITS_PER_WORD. Otherwise, it is the constant value that is the ++largest value that BITS_PER_WORD can have at run-time. ++*/ ++/* MAX_BITS_PER_WORD not defined*/ ++ ++/* ++Number of storage units in a word; normally 4. ++*/ ++#define UNITS_PER_WORD 4 ++ ++/* ++Minimum number of units in a word. If this is undefined, the default is ++UNITS_PER_WORD. Otherwise, it is the constant value that is the ++smallest value that UNITS_PER_WORD can have at run-time. ++*/ ++/* MIN_UNITS_PER_WORD not defined */ ++ ++/* ++Width of a pointer, in bits. You must specify a value no wider than the ++width of Pmode. If it is not equal to the width of Pmode, ++you must define POINTERS_EXTEND_UNSIGNED. ++*/ ++#define POINTER_SIZE 32 ++ ++/* ++A C expression whose value is greater than zero if pointers that need to be ++extended from being POINTER_SIZE bits wide to Pmode are to ++be zero-extended and zero if they are to be sign-extended. If the value ++is less then zero then there must be an "ptr_extend" instruction that ++extends a pointer from POINTER_SIZE to Pmode. ++ ++You need not define this macro if the POINTER_SIZE is equal ++to the width of Pmode. ++*/ ++/* #define POINTERS_EXTEND_UNSIGNED */ ++ ++/* ++A Macro to update M and UNSIGNEDP when an object whose type ++is TYPE and which has the specified mode and signedness is to be ++stored in a register. This macro is only called when TYPE is a ++scalar type. ++ ++On most RISC machines, which only have operations that operate on a full ++register, define this macro to set M to word_mode if ++M is an integer mode narrower than BITS_PER_WORD. In most ++cases, only integer modes should be widened because wider-precision ++floating-point operations are usually more expensive than their narrower ++counterparts. ++ ++For most machines, the macro definition does not change UNSIGNEDP. ++However, some machines, have instructions that preferentially handle ++either signed or unsigned quantities of certain modes. For example, on ++the DEC Alpha, 32-bit loads from memory and 32-bit add instructions ++sign-extend the result to 64 bits. On such machines, set ++UNSIGNEDP according to which kind of extension is more efficient. ++ ++Do not define this macro if it would never modify M. ++*/ ++#define PROMOTE_MODE(M, UNSIGNEDP, TYPE) \ ++ { \ ++ if (!AGGREGATE_TYPE_P (TYPE) \ ++ && GET_MODE_CLASS (mode) == MODE_INT \ ++ && GET_MODE_SIZE (mode) < 4) \ ++ { \ ++ if (M == QImode) \ ++ (UNSIGNEDP) = 1; \ ++ else if (M == HImode) \ ++ (UNSIGNEDP) = 0; \ ++ (M) = SImode; \ ++ } \ ++ } ++ ++#define PROMOTE_FUNCTION_MODE(M, UNSIGNEDP, TYPE) \ ++ PROMOTE_MODE(M, UNSIGNEDP, TYPE) ++ ++/* Define if operations between registers always perform the operation ++ on the full register even if a narrower mode is specified. */ ++#define WORD_REGISTER_OPERATIONS ++ ++/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD ++ will either zero-extend or sign-extend. The value of this macro should ++ be the code that says which one of the two operations is implicitly ++ done, UNKNOWN if not known. */ ++#define LOAD_EXTEND_OP(MODE) \ ++ (((MODE) == QImode) ? ZERO_EXTEND \ ++ : ((MODE) == HImode) ? SIGN_EXTEND : UNKNOWN) ++ ++ ++/* ++Normal alignment required for function parameters on the stack, in ++bits. All stack parameters receive at least this much alignment ++regardless of data type. On most machines, this is the same as the ++size of an integer. ++*/ ++#define PARM_BOUNDARY 32 ++ ++/* ++Define this macro to the minimum alignment enforced by hardware for the ++stack pointer on this machine. The definition is a C expression for the ++desired alignment (measured in bits). This value is used as a default ++if PREFERRED_STACK_BOUNDARY is not defined. On most machines, ++this should be the same as PARM_BOUNDARY. ++*/ ++#define STACK_BOUNDARY 32 ++ ++/* ++Define this macro if you wish to preserve a certain alignment for the ++stack pointer, greater than what the hardware enforces. The definition ++is a C expression for the desired alignment (measured in bits). This ++macro must evaluate to a value equal to or larger than ++STACK_BOUNDARY. ++*/ ++#define PREFERRED_STACK_BOUNDARY (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 ) ++ ++/* ++Alignment required for a function entry point, in bits. ++*/ ++#define FUNCTION_BOUNDARY 16 ++ ++/* ++Biggest alignment that any data type can require on this machine, in bits. ++*/ ++#define BIGGEST_ALIGNMENT (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 ) ++ ++/* ++If defined, the smallest alignment, in bits, that can be given to an ++object that can be referenced in one operation, without disturbing any ++nearby object. Normally, this is BITS_PER_UNIT, but may be larger ++on machines that don't have byte or half-word store operations. ++*/ ++#define MINIMUM_ATOMIC_ALIGNMENT BITS_PER_UNIT ++ ++ ++/* ++An integer expression for the size in bits of the largest integer machine mode that ++should actually be used. All integer machine modes of this size or smaller can be ++used for structures and unions with the appropriate sizes. If this macro is undefined, ++GET_MODE_BITSIZE (DImode) is assumed.*/ ++#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode) ++ ++ ++/* ++If defined, a C expression to compute the alignment given to a constant ++that is being placed in memory. CONSTANT is the constant and ++BASIC_ALIGN is the alignment that the object would ordinarily ++have. The value of this macro is used instead of that alignment to ++align the object. ++ ++If this macro is not defined, then BASIC_ALIGN is used. ++ ++The typical use of this macro is to increase alignment for string ++constants to be word aligned so that strcpy calls that copy ++constants can be done inline. ++*/ ++#define CONSTANT_ALIGNMENT(CONSTANT, BASIC_ALIGN) \ ++ ((TREE_CODE(CONSTANT) == STRING_CST) ? BITS_PER_WORD : BASIC_ALIGN) ++ ++/* Try to align string to a word. */ ++#define DATA_ALIGNMENT(TYPE, ALIGN) \ ++ ({(TREE_CODE (TYPE) == ARRAY_TYPE \ ++ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ ++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));}) ++ ++/* Try to align local store strings to a word. */ ++#define LOCAL_ALIGNMENT(TYPE, ALIGN) \ ++ ({(TREE_CODE (TYPE) == ARRAY_TYPE \ ++ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ ++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));}) ++ ++/* ++Define this macro to be the value 1 if instructions will fail to work ++if given data not on the nominal alignment. If instructions will merely ++go slower in that case, define this macro as 0. ++*/ ++#define STRICT_ALIGNMENT 1 ++ ++/* ++Define this if you wish to imitate the way many other C compilers handle ++alignment of bit-fields and the structures that contain them. ++ ++The behavior is that the type written for a bit-field (int, ++short, or other integer type) imposes an alignment for the ++entire structure, as if the structure really did contain an ordinary ++field of that type. In addition, the bit-field is placed within the ++structure so that it would fit within such a field, not crossing a ++boundary for it. ++ ++Thus, on most machines, a bit-field whose type is written as int ++would not cross a four-byte boundary, and would force four-byte ++alignment for the whole structure. (The alignment used may not be four ++bytes; it is controlled by the other alignment parameters.) ++ ++If the macro is defined, its definition should be a C expression; ++a nonzero value for the expression enables this behavior. ++ ++Note that if this macro is not defined, or its value is zero, some ++bit-fields may cross more than one alignment boundary. The compiler can ++support such references if there are insv, extv, and ++extzv insns that can directly reference memory. ++ ++The other known way of making bit-fields work is to define ++STRUCTURE_SIZE_BOUNDARY as large as BIGGEST_ALIGNMENT. ++Then every structure can be accessed with fullwords. ++ ++Unless the machine has bit-field instructions or you define ++STRUCTURE_SIZE_BOUNDARY that way, you must define ++PCC_BITFIELD_TYPE_MATTERS to have a nonzero value. ++ ++If your aim is to make GCC use the same conventions for laying out ++bit-fields as are used by another compiler, here is how to investigate ++what the other compiler does. Compile and run this program: ++ ++struct foo1 ++{ ++ char x; ++ char :0; ++ char y; ++}; ++ ++struct foo2 ++{ ++ char x; ++ int :0; ++ char y; ++}; ++ ++main () ++{ ++ printf ("Size of foo1 is %d\n", ++ sizeof (struct foo1)); ++ printf ("Size of foo2 is %d\n", ++ sizeof (struct foo2)); ++ exit (0); ++} ++ ++If this prints 2 and 5, then the compiler's behavior is what you would ++get from PCC_BITFIELD_TYPE_MATTERS. ++*/ ++#define PCC_BITFIELD_TYPE_MATTERS 1 ++ ++ ++/****************************************************************************** ++ * Layout of Source Language Data Types ++ *****************************************************************************/ ++ ++/* ++A C expression for the size in bits of the type int on the ++target machine. If you don't define this, the default is one word. ++*/ ++#define INT_TYPE_SIZE 32 ++ ++/* ++A C expression for the size in bits of the type short on the ++target machine. If you don't define this, the default is half a word. (If ++this would be less than one storage unit, it is rounded up to one unit.) ++*/ ++#define SHORT_TYPE_SIZE 16 ++ ++/* ++A C expression for the size in bits of the type long on the ++target machine. If you don't define this, the default is one word. ++*/ ++#define LONG_TYPE_SIZE 32 ++ ++ ++/* ++A C expression for the size in bits of the type long long on the ++target machine. If you don't define this, the default is two ++words. If you want to support GNU Ada on your machine, the value of this ++macro must be at least 64. ++*/ ++#define LONG_LONG_TYPE_SIZE 64 ++ ++/* ++A C expression for the size in bits of the type char on the ++target machine. If you don't define this, the default is ++BITS_PER_UNIT. ++*/ ++#define CHAR_TYPE_SIZE 8 ++ ++ ++/* ++A C expression for the size in bits of the C++ type bool and ++C99 type _Bool on the target machine. If you don't define ++this, and you probably shouldn't, the default is CHAR_TYPE_SIZE. ++*/ ++#define BOOL_TYPE_SIZE 8 ++ ++ ++/* ++An expression whose value is 1 or 0, according to whether the type ++char should be signed or unsigned by default. The user can ++always override this default with the options -fsigned-char ++and -funsigned-char. ++*/ ++/* We are using unsigned char */ ++#define DEFAULT_SIGNED_CHAR 0 ++ ++ ++/* ++A C expression for a string describing the name of the data type to use ++for size values. The typedef name size_t is defined using the ++contents of the string. ++ ++The string can contain more than one keyword. If so, separate them with ++spaces, and write first any length keyword, then unsigned if ++appropriate, and finally int. The string must exactly match one ++of the data type names defined in the function ++init_decl_processing in the file c-decl.c. You may not ++omit int or change the order - that would cause the compiler to ++crash on startup. ++ ++If you don't define this macro, the default is "long unsigned int". ++*/ ++#define SIZE_TYPE "long unsigned int" ++ ++/* ++A C expression for a string describing the name of the data type to use ++for the result of subtracting two pointers. The typedef name ++ptrdiff_t is defined using the contents of the string. See ++SIZE_TYPE above for more information. ++ ++If you don't define this macro, the default is "long int". ++*/ ++#define PTRDIFF_TYPE "long int" ++ ++ ++/* ++A C expression for the size in bits of the data type for wide ++characters. This is used in cpp, which cannot make use of ++WCHAR_TYPE. ++*/ ++#define WCHAR_TYPE_SIZE 32 ++ ++ ++/* ++A C expression for a string describing the name of the data type to ++use for wide characters passed to printf and returned from ++getwc. The typedef name wint_t is defined using the ++contents of the string. See SIZE_TYPE above for more ++information. ++ ++If you don't define this macro, the default is "unsigned int". ++*/ ++#define WINT_TYPE "unsigned int" ++ ++/* ++A C expression for a string describing the name of the data type that ++can represent any value of any standard or extended signed integer type. ++The typedef name intmax_t is defined using the contents of the ++string. See SIZE_TYPE above for more information. ++ ++If you don't define this macro, the default is the first of ++"int", "long int", or "long long int" that has as ++much precision as long long int. ++*/ ++#define INTMAX_TYPE "long long int" ++ ++/* ++A C expression for a string describing the name of the data type that ++can represent any value of any standard or extended unsigned integer ++type. The typedef name uintmax_t is defined using the contents ++of the string. See SIZE_TYPE above for more information. ++ ++If you don't define this macro, the default is the first of ++"unsigned int", "long unsigned int", or "long long unsigned int" ++that has as much precision as long long unsigned int. ++*/ ++#define UINTMAX_TYPE "long long unsigned int" ++ ++ ++/****************************************************************************** ++ * Register Usage ++ *****************************************************************************/ ++ ++/* Convert from gcc internal register number to register number ++ used in assembly code */ ++#define ASM_REGNUM(reg) (LAST_REGNUM - (reg)) ++ ++/* Convert between register number used in assembly to gcc ++ internal register number */ ++#define INTERNAL_REGNUM(reg) (LAST_REGNUM - (reg)) ++ ++/** Basic Characteristics of Registers **/ ++ ++/* ++Number of hardware registers known to the compiler. They receive ++numbers 0 through FIRST_PSEUDO_REGISTER-1; thus, the first ++pseudo register's number really is assigned the number ++FIRST_PSEUDO_REGISTER. ++*/ ++#define FIRST_PSEUDO_REGISTER (LAST_REGNUM + 1) ++ ++#define FIRST_REGNUM 0 ++#define LAST_REGNUM 15 ++ ++/* ++An initializer that says which registers are used for fixed purposes ++all throughout the compiled code and are therefore not available for ++general allocation. These would include the stack pointer, the frame ++pointer (except on machines where that can be used as a general ++register when no frame pointer is needed), the program counter on ++machines where that is considered one of the addressable registers, ++and any other numbered register with a standard use. ++ ++This information is expressed as a sequence of numbers, separated by ++commas and surrounded by braces. The nth number is 1 if ++register n is fixed, 0 otherwise. ++ ++The table initialized from this macro, and the table initialized by ++the following one, may be overridden at run time either automatically, ++by the actions of the macro CONDITIONAL_REGISTER_USAGE, or by ++the user with the command options -ffixed-[reg], ++-fcall-used-[reg] and -fcall-saved-[reg]. ++*/ ++ ++/* The internal gcc register numbers are reversed ++ compared to the real register numbers since ++ gcc expects data types stored over multiple ++ registers in the register file to be big endian ++ if the memory layout is big endian. But this ++ is not the case for avr32 so we fake a big ++ endian register file. */ ++ ++#define FIXED_REGISTERS { \ ++ 1, /* Program Counter */ \ ++ 0, /* Link Register */ \ ++ 1, /* Stack Pointer */ \ ++ 0, /* r12 */ \ ++ 0, /* r11 */ \ ++ 0, /* r10 */ \ ++ 0, /* r9 */ \ ++ 0, /* r8 */ \ ++ 0, /* r7 */ \ ++ 0, /* r6 */ \ ++ 0, /* r5 */ \ ++ 0, /* r4 */ \ ++ 0, /* r3 */ \ ++ 0, /* r2 */ \ ++ 0, /* r1 */ \ ++ 0, /* r0 */ \ ++} ++ ++/* ++Like FIXED_REGISTERS but has 1 for each register that is ++clobbered (in general) by function calls as well as for fixed ++registers. This macro therefore identifies the registers that are not ++available for general allocation of values that must live across ++function calls. ++ ++If a register has 0 in CALL_USED_REGISTERS, the compiler ++automatically saves it on function entry and restores it on function ++exit, if the register is used within the function. ++*/ ++#define CALL_USED_REGISTERS { \ ++ 1, /* Program Counter */ \ ++ 0, /* Link Register */ \ ++ 1, /* Stack Pointer */ \ ++ 1, /* r12 */ \ ++ 1, /* r11 */ \ ++ 1, /* r10 */ \ ++ 1, /* r9 */ \ ++ 1, /* r8 */ \ ++ 0, /* r7 */ \ ++ 0, /* r6 */ \ ++ 0, /* r5 */ \ ++ 0, /* r4 */ \ ++ 0, /* r3 */ \ ++ 0, /* r2 */ \ ++ 0, /* r1 */ \ ++ 0, /* r0 */ \ ++} ++ ++/* Interrupt functions can only use registers that have already been ++ saved by the prologue, even if they would normally be ++ call-clobbered. */ ++#define HARD_REGNO_RENAME_OK(SRC, DST) \ ++ (! IS_INTERRUPT (cfun->machine->func_type) || \ ++ df_regs_ever_live_p (DST)) ++ ++ ++/* ++Zero or more C statements that may conditionally modify five variables ++fixed_regs, call_used_regs, global_regs, ++reg_names, and reg_class_contents, to take into account ++any dependence of these register sets on target flags. The first three ++of these are of type char [] (interpreted as Boolean vectors). ++global_regs is a const char *[], and ++reg_class_contents is a HARD_REG_SET. Before the macro is ++called, fixed_regs, call_used_regs, ++reg_class_contents, and reg_names have been initialized ++from FIXED_REGISTERS, CALL_USED_REGISTERS, ++REG_CLASS_CONTENTS, and REGISTER_NAMES, respectively. ++global_regs has been cleared, and any -ffixed-[reg], ++-fcall-used-[reg] and -fcall-saved-[reg] ++command options have been applied. ++ ++You need not define this macro if it has no work to do. ++ ++If the usage of an entire class of registers depends on the target ++flags, you may indicate this to GCC by using this macro to modify ++fixed_regs and call_used_regs to 1 for each of the ++registers in the classes which should not be used by GCC. Also define ++the macro REG_CLASS_FROM_LETTER to return NO_REGS if it ++is called with a letter for a class that shouldn't be used. ++ ++ (However, if this class is not included in GENERAL_REGS and all ++of the insn patterns whose constraints permit this class are ++controlled by target switches, then GCC will automatically avoid using ++these registers when the target switches are opposed to them.) ++*/ ++#define CONDITIONAL_REGISTER_USAGE \ ++ do \ ++ { \ ++ if (flag_pic) \ ++ { \ ++ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ ++ call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ ++ } \ ++ } \ ++ while (0) ++ ++ ++/* ++If the program counter has a register number, define this as that ++register number. Otherwise, do not define it. ++*/ ++ ++#define LAST_AVR32_REGNUM 16 ++ ++ ++/** Order of Allocation of Registers **/ ++ ++/* ++If defined, an initializer for a vector of integers, containing the ++numbers of hard registers in the order in which GCC should prefer ++to use them (from most preferred to least). ++ ++If this macro is not defined, registers are used lowest numbered first ++(all else being equal). ++ ++One use of this macro is on machines where the highest numbered ++registers must always be saved and the save-multiple-registers ++instruction supports only sequences of consecutive registers. On such ++machines, define REG_ALLOC_ORDER to be an initializer that lists ++the highest numbered allocable register first. ++*/ ++#define REG_ALLOC_ORDER \ ++{ \ ++ INTERNAL_REGNUM(8), \ ++ INTERNAL_REGNUM(9), \ ++ INTERNAL_REGNUM(10), \ ++ INTERNAL_REGNUM(11), \ ++ INTERNAL_REGNUM(12), \ ++ LR_REGNUM, \ ++ INTERNAL_REGNUM(7), \ ++ INTERNAL_REGNUM(6), \ ++ INTERNAL_REGNUM(5), \ ++ INTERNAL_REGNUM(4), \ ++ INTERNAL_REGNUM(3), \ ++ INTERNAL_REGNUM(2), \ ++ INTERNAL_REGNUM(1), \ ++ INTERNAL_REGNUM(0), \ ++ SP_REGNUM, \ ++ PC_REGNUM \ ++} ++ ++ ++/** How Values Fit in Registers **/ ++ ++/* ++A C expression for the number of consecutive hard registers, starting ++at register number REGNO, required to hold a value of mode ++MODE. ++ ++On a machine where all registers are exactly one word, a suitable ++definition of this macro is ++ ++#define HARD_REGNO_NREGS(REGNO, MODE) \ ++ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \ ++ / UNITS_PER_WORD) ++*/ ++#define HARD_REGNO_NREGS(REGNO, MODE) \ ++ ((unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD -1 ) / UNITS_PER_WORD)) ++ ++/* ++A C expression that is nonzero if it is permissible to store a value ++of mode MODE in hard register number REGNO (or in several ++registers starting with that one). For a machine where all registers ++are equivalent, a suitable definition is ++ ++ #define HARD_REGNO_MODE_OK(REGNO, MODE) 1 ++ ++You need not include code to check for the numbers of fixed registers, ++because the allocation mechanism considers them to be always occupied. ++ ++On some machines, double-precision values must be kept in even/odd ++register pairs. You can implement that by defining this macro to reject ++odd register numbers for such modes. ++ ++The minimum requirement for a mode to be OK in a register is that the ++mov[mode] instruction pattern support moves between the ++register and other hard register in the same class and that moving a ++value into the register and back out not alter it. ++ ++Since the same instruction used to move word_mode will work for ++all narrower integer modes, it is not necessary on any machine for ++HARD_REGNO_MODE_OK to distinguish between these modes, provided ++you define patterns movhi, etc., to take advantage of this. This ++is useful because of the interaction between HARD_REGNO_MODE_OK ++and MODES_TIEABLE_P; it is very desirable for all integer modes ++to be tieable. ++ ++Many machines have special registers for floating point arithmetic. ++Often people assume that floating point machine modes are allowed only ++in floating point registers. This is not true. Any registers that ++can hold integers can safely hold a floating point machine ++mode, whether or not floating arithmetic can be done on it in those ++registers. Integer move instructions can be used to move the values. ++ ++On some machines, though, the converse is true: fixed-point machine ++modes may not go in floating registers. This is true if the floating ++registers normalize any value stored in them, because storing a ++non-floating value there would garble it. In this case, ++HARD_REGNO_MODE_OK should reject fixed-point machine modes in ++floating registers. But if the floating registers do not automatically ++normalize, if you can store any bit pattern in one and retrieve it ++unchanged without a trap, then any machine mode may go in a floating ++register, so you can define this macro to say so. ++ ++The primary significance of special floating registers is rather that ++they are the registers acceptable in floating point arithmetic ++instructions. However, this is of no concern to ++HARD_REGNO_MODE_OK. You handle it by writing the proper ++constraints for those instructions. ++ ++On some machines, the floating registers are especially slow to access, ++so that it is better to store a value in a stack frame than in such a ++register if floating point arithmetic is not being done. As long as the ++floating registers are not in class GENERAL_REGS, they will not ++be used unless some pattern's constraint asks for one. ++*/ ++#define HARD_REGNO_MODE_OK(REGNO, MODE) avr32_hard_regno_mode_ok(REGNO, MODE) ++ ++/* ++A C expression that is nonzero if a value of mode ++MODE1 is accessible in mode MODE2 without copying. ++ ++If HARD_REGNO_MODE_OK(R, MODE1) and ++HARD_REGNO_MODE_OK(R, MODE2) are always the same for ++any R, then MODES_TIEABLE_P(MODE1, MODE2) ++should be nonzero. If they differ for any R, you should define ++this macro to return zero unless some other mechanism ensures the ++accessibility of the value in a narrower mode. ++ ++You should define this macro to return nonzero in as many cases as ++possible since doing so will allow GCC to perform better register ++allocation. ++*/ ++#define MODES_TIEABLE_P(MODE1, MODE2) \ ++ (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)) ++ ++ ++ ++/****************************************************************************** ++ * Register Classes ++ *****************************************************************************/ ++ ++/* ++An enumeral type that must be defined with all the register class names ++as enumeral values. NO_REGS must be first. ALL_REGS ++must be the last register class, followed by one more enumeral value, ++LIM_REG_CLASSES, which is not a register class but rather ++tells how many classes there are. ++ ++Each register class has a number, which is the value of casting ++the class name to type int. The number serves as an index ++in many of the tables described below. ++*/ ++enum reg_class ++{ ++ NO_REGS, ++ GENERAL_REGS, ++ ALL_REGS, ++ LIM_REG_CLASSES ++}; ++ ++/* ++The number of distinct register classes, defined as follows: ++ #define N_REG_CLASSES (int) LIM_REG_CLASSES ++*/ ++#define N_REG_CLASSES (int)LIM_REG_CLASSES ++ ++/* ++An initializer containing the names of the register classes as C string ++constants. These names are used in writing some of the debugging dumps. ++*/ ++#define REG_CLASS_NAMES \ ++{ \ ++ "NO_REGS", \ ++ "GENERAL_REGS", \ ++ "ALL_REGS" \ ++} ++ ++/* ++An initializer containing the contents of the register classes, as integers ++which are bit masks. The nth integer specifies the contents of class ++n. The way the integer mask is interpreted is that ++register r is in the class if mask & (1 << r) is 1. ++ ++When the machine has more than 32 registers, an integer does not suffice. ++Then the integers are replaced by sub-initializers, braced groupings containing ++several integers. Each sub-initializer must be suitable as an initializer ++for the type HARD_REG_SET which is defined in hard-reg-set.h. ++In this situation, the first integer in each sub-initializer corresponds to ++registers 0 through 31, the second integer to registers 32 through 63, and ++so on. ++*/ ++#define REG_CLASS_CONTENTS { \ ++ {0x00000000}, /* NO_REGS */ \ ++ {0x0000FFFF}, /* GENERAL_REGS */ \ ++ {0x7FFFFFFF}, /* ALL_REGS */ \ ++} ++ ++ ++/* ++A C expression whose value is a register class containing hard register ++REGNO. In general there is more than one such class; choose a class ++which is minimal, meaning that no smaller class also contains the ++register. ++*/ ++#define REGNO_REG_CLASS(REGNO) (GENERAL_REGS) ++ ++/* ++A macro whose definition is the name of the class to which a valid ++base register must belong. A base register is one used in an address ++which is the register value plus a displacement. ++*/ ++#define BASE_REG_CLASS GENERAL_REGS ++ ++/* ++This is a variation of the BASE_REG_CLASS macro which allows ++the selection of a base register in a mode depenedent manner. If ++mode is VOIDmode then it should return the same value as ++BASE_REG_CLASS. ++*/ ++#define MODE_BASE_REG_CLASS(MODE) BASE_REG_CLASS ++ ++/* ++A macro whose definition is the name of the class to which a valid ++index register must belong. An index register is one used in an ++address where its value is either multiplied by a scale factor or ++added to another register (as well as added to a displacement). ++*/ ++#define INDEX_REG_CLASS BASE_REG_CLASS ++ ++/* ++A C expression which defines the machine-dependent operand constraint ++letters for register classes. If CHAR is such a letter, the ++value should be the register class corresponding to it. Otherwise, ++the value should be NO_REGS. The register letter r, ++corresponding to class GENERAL_REGS, will not be passed ++to this macro; you do not need to handle it. ++*/ ++#define REG_CLASS_FROM_LETTER(CHAR) NO_REGS ++ ++/* These assume that REGNO is a hard or pseudo reg number. ++ They give nonzero only if REGNO is a hard reg of the suitable class ++ or a pseudo reg currently allocated to a suitable hard reg. ++ Since they use reg_renumber, they are safe only once reg_renumber ++ has been allocated, which happens in local-alloc.c. */ ++#define TEST_REGNO(R, TEST, VALUE) \ ++ ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE)) ++ ++/* ++A C expression which is nonzero if register number num is suitable for use as a base ++register in operand addresses. It may be either a suitable hard register or a pseudo ++register that has been allocated such a hard register. ++*/ ++#define REGNO_OK_FOR_BASE_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM) ++ ++/* The following macro defines cover classes for Integrated Register ++ Allocator. Cover classes is a set of non-intersected register ++ classes covering all hard registers used for register allocation ++ purpose. Any move between two registers of a cover class should be ++ cheaper than load or store of the registers. The macro value is ++ array of register classes with LIM_REG_CLASSES used as the end ++ marker. */ ++ ++#define IRA_COVER_CLASSES \ ++{ \ ++ GENERAL_REGS, LIM_REG_CLASSES \ ++} ++ ++/* ++A C expression which is nonzero if register number NUM is ++suitable for use as an index register in operand addresses. It may be ++either a suitable hard register or a pseudo register that has been ++allocated such a hard register. ++ ++The difference between an index register and a base register is that ++the index register may be scaled. If an address involves the sum of ++two registers, neither one of them scaled, then either one may be ++labeled the ``base'' and the other the ``index''; but whichever ++labeling is used must fit the machine's constraints of which registers ++may serve in each capacity. The compiler will try both labelings, ++looking for one that is valid, and will reload one or both registers ++only if neither labeling works. ++*/ ++#define REGNO_OK_FOR_INDEX_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM) ++ ++/* ++A C expression that places additional restrictions on the register class ++to use when it is necessary to copy value X into a register in class ++CLASS. The value is a register class; perhaps CLASS, or perhaps ++another, smaller class. On many machines, the following definition is ++safe: #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS ++ ++Sometimes returning a more restrictive class makes better code. For ++example, on the 68000, when X is an integer constant that is in range ++for a 'moveq' instruction, the value of this macro is always ++DATA_REGS as long as CLASS includes the data registers. ++Requiring a data register guarantees that a 'moveq' will be used. ++ ++If X is a const_double, by returning NO_REGS ++you can force X into a memory constant. This is useful on ++certain machines where immediate floating values cannot be loaded into ++certain kinds of registers. ++*/ ++#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS ++ ++ ++ ++/* ++A C expression for the maximum number of consecutive registers ++of class CLASS needed to hold a value of mode MODE. ++ ++This is closely related to the macro HARD_REGNO_NREGS. In fact, ++the value of the macro CLASS_MAX_NREGS(CLASS, MODE) ++should be the maximum value of HARD_REGNO_NREGS(REGNO, MODE) ++for all REGNO values in the class CLASS. ++ ++This macro helps control the handling of multiple-word values ++in the reload pass. ++*/ ++#define CLASS_MAX_NREGS(CLASS, MODE) /* ToDo:fixme */ \ ++ (unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) ++ ++ ++/* ++ Using CONST_OK_FOR_CONSTRAINT_P instead of CONS_OK_FOR_LETTER_P ++ in order to support constraints with more than one letter. ++ Only two letters are then used for constant constraints, ++ the letter 'K' and the letter 'I'. The constraint starting with ++ these letters must consist of four characters. The character following ++ 'K' or 'I' must be either 'u' (unsigned) or 's' (signed) to specify ++ if the constant is zero or sign extended. The last two characters specify ++ the length in bits of the constant. The base constraint letter 'I' means ++ that this is an negated constant, meaning that actually -VAL should be ++ checked to lie withing the valid range instead of VAL which is used when ++ 'K' is the base constraint letter. ++ ++*/ ++ ++#define CONSTRAINT_LEN(C, STR) \ ++ ( ((C) == 'K' || (C) == 'I') ? 4 : \ ++ ((C) == 'R') ? 5 : \ ++ ((C) == 'P') ? -1 : \ ++ DEFAULT_CONSTRAINT_LEN((C), (STR)) ) ++ ++#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \ ++ avr32_const_ok_for_constraint_p(VALUE, C, STR) ++ ++/* ++A C expression that defines the machine-dependent operand constraint ++letters that specify particular ranges of const_double values ('G' or 'H'). ++ ++If C is one of those letters, the expression should check that ++VALUE, an RTX of code const_double, is in the appropriate ++range and return 1 if so, 0 otherwise. If C is not one of those ++letters, the value should be 0 regardless of VALUE. ++ ++const_double is used for all floating-point constants and for ++DImode fixed-point constants. A given letter can accept either ++or both kinds of values. It can use GET_MODE to distinguish ++between these kinds. ++*/ ++#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \ ++ ((C) == 'G' ? avr32_const_double_immediate(OP) : 0) ++ ++/* ++A C expression that defines the optional machine-dependent constraint ++letters that can be used to segregate specific types of operands, usually ++memory references, for the target machine. Any letter that is not ++elsewhere defined and not matched by REG_CLASS_FROM_LETTER ++may be used. Normally this macro will not be defined. ++ ++If it is required for a particular target machine, it should return 1 ++if VALUE corresponds to the operand type represented by the ++constraint letter C. If C is not defined as an extra ++constraint, the value returned should be 0 regardless of VALUE. ++ ++For example, on the ROMP, load instructions cannot have their output ++in r0 if the memory reference contains a symbolic address. Constraint ++letter 'Q' is defined as representing a memory address that does ++not contain a symbolic address. An alternative is specified with ++a 'Q' constraint on the input and 'r' on the output. The next ++alternative specifies 'm' on the input and a register class that ++does not include r0 on the output. ++*/ ++#define EXTRA_CONSTRAINT_STR(OP, C, STR) \ ++ ((C) == 'W' ? avr32_address_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'R' ? (avr32_indirect_register_operand(OP, GET_MODE(OP)) || \ ++ (avr32_imm_disp_memory_operand(OP, GET_MODE(OP)) \ ++ && avr32_const_ok_for_constraint_p( \ ++ INTVAL(XEXP(XEXP(OP, 0), 1)), \ ++ (STR)[1], &(STR)[1]))) : \ ++ (C) == 'S' ? avr32_indexed_memory_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'T' ? avr32_const_pool_ref_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'U' ? SYMBOL_REF_RCALL_FUNCTION_P(OP) : \ ++ (C) == 'Z' ? avr32_cop_memory_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'Q' ? avr32_non_rmw_memory_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'Y' ? avr32_rmw_memory_operand(OP, GET_MODE(OP)) : \ ++ 0) ++ ++ ++#define EXTRA_MEMORY_CONSTRAINT(C, STR) ( ((C) == 'R') || \ ++ ((C) == 'Q') || \ ++ ((C) == 'S') || \ ++ ((C) == 'Y') || \ ++ ((C) == 'Z') ) ++ ++ ++/* Returns nonzero if op is a function SYMBOL_REF which ++ can be called using an rcall instruction */ ++#define SYMBOL_REF_RCALL_FUNCTION_P(op) \ ++ ( GET_CODE(op) == SYMBOL_REF \ ++ && SYMBOL_REF_FUNCTION_P(op) \ ++ && SYMBOL_REF_LOCAL_P(op) \ ++ && !SYMBOL_REF_EXTERNAL_P(op) \ ++ && !TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ ++/****************************************************************************** ++ * Stack Layout and Calling Conventions ++ *****************************************************************************/ ++ ++/** Basic Stack Layout **/ ++ ++/* ++Define this macro if pushing a word onto the stack moves the stack ++pointer to a smaller address. ++ ++When we say, ``define this macro if ...,'' it means that the ++compiler checks this macro only with #ifdef so the precise ++definition used does not matter. ++*/ ++/* pushm decrece SP: *(--SP) <-- Rx */ ++#define STACK_GROWS_DOWNWARD ++ ++/* ++This macro defines the operation used when something is pushed ++on the stack. In RTL, a push operation will be ++(set (mem (STACK_PUSH_CODE (reg sp))) ...) ++ ++The choices are PRE_DEC, POST_DEC, PRE_INC, ++and POST_INC. Which of these is correct depends on ++the stack direction and on whether the stack pointer points ++to the last item on the stack or whether it points to the ++space for the next item on the stack. ++ ++The default is PRE_DEC when STACK_GROWS_DOWNWARD is ++defined, which is almost always right, and PRE_INC otherwise, ++which is often wrong. ++*/ ++/* pushm: *(--SP) <-- Rx */ ++#define STACK_PUSH_CODE PRE_DEC ++ ++/* Define this to nonzero if the nominal address of the stack frame ++ is at the high-address end of the local variables; ++ that is, each additional local variable allocated ++ goes at a more negative offset in the frame. */ ++#define FRAME_GROWS_DOWNWARD 1 ++ ++ ++/* ++Offset from the frame pointer to the first local variable slot to be allocated. ++ ++If FRAME_GROWS_DOWNWARD, find the next slot's offset by ++subtracting the first slot's length from STARTING_FRAME_OFFSET. ++Otherwise, it is found by adding the length of the first slot to the ++value STARTING_FRAME_OFFSET. ++ (i'm not sure if the above is still correct.. had to change it to get ++ rid of an overfull. --mew 2feb93 ) ++*/ ++#define STARTING_FRAME_OFFSET 0 ++ ++/* ++Offset from the stack pointer register to the first location at which ++outgoing arguments are placed. If not specified, the default value of ++zero is used. This is the proper value for most machines. ++ ++If ARGS_GROW_DOWNWARD, this is the offset to the location above ++the first location at which outgoing arguments are placed. ++*/ ++#define STACK_POINTER_OFFSET 0 ++ ++/* ++Offset from the argument pointer register to the first argument's ++address. On some machines it may depend on the data type of the ++function. ++ ++If ARGS_GROW_DOWNWARD, this is the offset to the location above ++the first argument's address. ++*/ ++#define FIRST_PARM_OFFSET(FUNDECL) 0 ++ ++ ++/* ++A C expression whose value is RTL representing the address in a stack ++frame where the pointer to the caller's frame is stored. Assume that ++FRAMEADDR is an RTL expression for the address of the stack frame ++itself. ++ ++If you don't define this macro, the default is to return the value ++of FRAMEADDR - that is, the stack frame address is also the ++address of the stack word that points to the previous frame. ++*/ ++#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) plus_constant ((FRAMEADDR), 4) ++ ++ ++/* ++A C expression whose value is RTL representing the value of the return ++address for the frame COUNT steps up from the current frame, after ++the prologue. FRAMEADDR is the frame pointer of the COUNT ++frame, or the frame pointer of the COUNT - 1 frame if ++RETURN_ADDR_IN_PREVIOUS_FRAME is defined. ++ ++The value of the expression must always be the correct address when ++COUNT is zero, but may be NULL_RTX if there is not way to ++determine the return address of other frames. ++*/ ++#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) avr32_return_addr(COUNT, FRAMEADDR) ++ ++ ++/* ++A C expression whose value is RTL representing the location of the ++incoming return address at the beginning of any function, before the ++prologue. This RTL is either a REG, indicating that the return ++value is saved in 'REG', or a MEM representing a location in ++the stack. ++ ++You only need to define this macro if you want to support call frame ++debugging information like that provided by DWARF 2. ++ ++If this RTL is a REG, you should also define ++DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). ++*/ ++#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM) ++ ++/* ++A C expression whose value is an integer giving the offset, in bytes, ++from the value of the stack pointer register to the top of the stack ++frame at the beginning of any function, before the prologue. The top of ++the frame is defined to be the value of the stack pointer in the ++previous frame, just before the call instruction. ++ ++You only need to define this macro if you want to support call frame ++debugging information like that provided by DWARF 2. ++*/ ++#define INCOMING_FRAME_SP_OFFSET 0 ++ ++ ++/** Exception Handling Support **/ ++ ++/* Use setjump/longjump for exception handling. */ ++#define DWARF2_UNWIND_INFO 0 ++#define MUST_USE_SJLJ_EXCEPTIONS 1 ++ ++/* ++A C expression whose value is the Nth register number used for ++data by exception handlers, or INVALID_REGNUM if fewer than ++N registers are usable. ++ ++The exception handling library routines communicate with the exception ++handlers via a set of agreed upon registers. Ideally these registers ++should be call-clobbered; it is possible to use call-saved registers, ++but may negatively impact code size. The target must support at least ++2 data registers, but should define 4 if there are enough free registers. ++ ++You must define this macro if you want to support call frame exception ++handling like that provided by DWARF 2. ++*/ ++/* ++ Use r9-r11 ++*/ ++#define EH_RETURN_DATA_REGNO(N) \ ++ ((N<3) ? INTERNAL_REGNUM(N+9) : INVALID_REGNUM) ++ ++/* ++A C expression whose value is RTL representing a location in which ++to store a stack adjustment to be applied before function return. ++This is used to unwind the stack to an exception handler's call frame. ++It will be assigned zero on code paths that return normally. ++ ++Typically this is a call-clobbered hard register that is otherwise ++untouched by the epilogue, but could also be a stack slot. ++ ++You must define this macro if you want to support call frame exception ++handling like that provided by DWARF 2. ++*/ ++/* ++ Use r8 ++*/ ++#define EH_RETURN_STACKADJ_REGNO INTERNAL_REGNUM(8) ++#define EH_RETURN_STACKADJ_RTX gen_rtx_REG(SImode, EH_RETURN_STACKADJ_REGNO) ++ ++/* ++A C expression whose value is RTL representing a location in which ++to store the address of an exception handler to which we should ++return. It will not be assigned on code paths that return normally. ++ ++Typically this is the location in the call frame at which the normal ++return address is stored. For targets that return by popping an ++address off the stack, this might be a memory address just below ++the target call frame rather than inside the current call ++frame. EH_RETURN_STACKADJ_RTX will have already been assigned, ++so it may be used to calculate the location of the target call frame. ++ ++Some targets have more complex requirements than storing to an ++address calculable during initial code generation. In that case ++the eh_return instruction pattern should be used instead. ++ ++If you want to support call frame exception handling, you must ++define either this macro or the eh_return instruction pattern. ++*/ ++/* ++ We define the eh_return instruction pattern, so this isn't needed. ++*/ ++/* #define EH_RETURN_HANDLER_RTX gen_rtx_REG(Pmode, RET_REGISTER) */ ++ ++/* ++ This macro chooses the encoding of pointers embedded in the ++ exception handling sections. If at all possible, this should be ++ defined such that the exception handling section will not require ++ dynamic relocations, and so may be read-only. ++ ++ code is 0 for data, 1 for code labels, 2 for function ++ pointers. global is true if the symbol may be affected by dynamic ++ relocations. The macro should return a combination of the DW_EH_PE_* ++ defines as found in dwarf2.h. ++ ++ If this macro is not defined, pointers will not be encoded but ++ represented directly. ++*/ ++#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ ++ ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \ ++ | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \ ++ | DW_EH_PE_sdata4) ++ ++/* ToDo: The rest of this subsection */ ++ ++/** Specifying How Stack Checking is Done **/ ++/* ToDo: All in this subsection */ ++ ++/** Registers That Address the Stack Frame **/ ++ ++/* ++The register number of the stack pointer register, which must also be a ++fixed register according to FIXED_REGISTERS. On most machines, ++the hardware determines which register this is. ++*/ ++/* Using r13 as stack pointer. */ ++#define STACK_POINTER_REGNUM INTERNAL_REGNUM(13) ++ ++/* ++The register number of the frame pointer register, which is used to ++access automatic variables in the stack frame. On some machines, the ++hardware determines which register this is. On other machines, you can ++choose any register you wish for this purpose. ++*/ ++/* Use r7 */ ++#define FRAME_POINTER_REGNUM INTERNAL_REGNUM(7) ++ ++/* ++The register number of the arg pointer register, which is used to access ++the function's argument list. On some machines, this is the same as the ++frame pointer register. On some machines, the hardware determines which ++register this is. On other machines, you can choose any register you ++wish for this purpose. If this is not the same register as the frame ++pointer register, then you must mark it as a fixed register according to ++FIXED_REGISTERS, or arrange to be able to eliminate it (see Section ++10.10.5 [Elimination], page 224). ++*/ ++/* Using r5 */ ++#define ARG_POINTER_REGNUM INTERNAL_REGNUM(4) ++ ++ ++/* ++Register numbers used for passing a function's static chain pointer. If ++register windows are used, the register number as seen by the called ++function is STATIC_CHAIN_INCOMING_REGNUM, while the register ++number as seen by the calling function is STATIC_CHAIN_REGNUM. If ++these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need ++not be defined. ++ ++The static chain register need not be a fixed register. ++ ++If the static chain is passed in memory, these macros should not be ++defined; instead, the next two macros should be defined. ++*/ ++/* Using r0 */ ++#define STATIC_CHAIN_REGNUM INTERNAL_REGNUM(0) ++ ++/** Eliminating Frame Pointer and Arg Pointer **/ ++ ++/* ++A C expression which is nonzero if a function must have and use a frame ++pointer. This expression is evaluated in the reload pass. If its value is ++nonzero the function will have a frame pointer. ++ ++The expression can in principle examine the current function and decide ++according to the facts, but on most machines the constant 0 or the ++constant 1 suffices. Use 0 when the machine allows code to be generated ++with no frame pointer, and doing so saves some time or space. Use 1 ++when there is no possible advantage to avoiding a frame pointer. ++ ++In certain cases, the compiler does not know how to produce valid code ++without a frame pointer. The compiler recognizes those cases and ++automatically gives the function a frame pointer regardless of what ++FRAME_POINTER_REQUIRED says. You don't need to worry about ++them. ++ ++In a function that does not require a frame pointer, the frame pointer ++register can be allocated for ordinary usage, unless you mark it as a ++fixed register. See FIXED_REGISTERS for more information. ++*/ ++/* We need the frame pointer when compiling for profiling */ ++#define FRAME_POINTER_REQUIRED (crtl->profile) ++ ++/* ++A C statement to store in the variable DEPTH_VAR the difference ++between the frame pointer and the stack pointer values immediately after ++the function prologue. The value would be computed from information ++such as the result of get_frame_size () and the tables of ++registers regs_ever_live and call_used_regs. ++ ++If ELIMINABLE_REGS is defined, this macro will be not be used and ++need not be defined. Otherwise, it must be defined even if ++FRAME_POINTER_REQUIRED is defined to always be true; in that ++case, you may set DEPTH_VAR to anything. ++*/ ++#define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) ((DEPTH_VAR) = get_frame_size()) ++ ++/* ++If defined, this macro specifies a table of register pairs used to ++eliminate unneeded registers that point into the stack frame. If it is not ++defined, the only elimination attempted by the compiler is to replace ++references to the frame pointer with references to the stack pointer. ++ ++The definition of this macro is a list of structure initializations, each ++of which specifies an original and replacement register. ++ ++On some machines, the position of the argument pointer is not known until ++the compilation is completed. In such a case, a separate hard register ++must be used for the argument pointer. This register can be eliminated by ++replacing it with either the frame pointer or the argument pointer, ++depending on whether or not the frame pointer has been eliminated. ++ ++In this case, you might specify: ++ #define ELIMINABLE_REGS \ ++ {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ ++ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ ++ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} ++ ++Note that the elimination of the argument pointer with the stack pointer is ++specified first since that is the preferred elimination. ++*/ ++#define ELIMINABLE_REGS \ ++{ \ ++ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ ++ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ ++ { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM } \ ++} ++ ++/* ++A C expression that returns nonzero if the compiler is allowed to try ++to replace register number FROM with register number ++TO. This macro need only be defined if ELIMINABLE_REGS ++is defined, and will usually be the constant 1, since most of the cases ++preventing register elimination are things that the compiler already ++knows about. ++*/ ++#define CAN_ELIMINATE(FROM, TO) 1 ++ ++/* ++This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It ++specifies the initial difference between the specified pair of ++registers. This macro must be defined if ELIMINABLE_REGS is ++defined. ++*/ ++#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ ++ ((OFFSET) = avr32_initial_elimination_offset(FROM, TO)) ++ ++/** Passing Function Arguments on the Stack **/ ++ ++ ++/* ++A C expression. If nonzero, push insns will be used to pass ++outgoing arguments. ++If the target machine does not have a push instruction, set it to zero. ++That directs GCC to use an alternate strategy: to ++allocate the entire argument block and then store the arguments into ++it. When PUSH_ARGS is nonzero, PUSH_ROUNDING must be defined too. ++*/ ++#define PUSH_ARGS 1 ++ ++/* ++A C expression that is the number of bytes actually pushed onto the ++stack when an instruction attempts to push NPUSHED bytes. ++ ++On some machines, the definition ++ ++ #define PUSH_ROUNDING(BYTES) (BYTES) ++ ++will suffice. But on other machines, instructions that appear ++to push one byte actually push two bytes in an attempt to maintain ++alignment. Then the definition should be ++ ++ #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1) ++*/ ++/* Push 4 bytes at the time. */ ++#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3) ++ ++/* ++A C expression. If nonzero, the maximum amount of space required for ++outgoing arguments will be computed and placed into the variable ++current_function_outgoing_args_size. No space will be pushed ++onto the stack for each call; instead, the function prologue should ++increase the stack frame size by this amount. ++ ++Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper. ++*/ ++#define ACCUMULATE_OUTGOING_ARGS 0 ++ ++/* ++A C expression that should indicate the number of bytes of its own ++arguments that a function pops on returning, or 0 if the ++function pops no arguments and the caller must therefore pop them all ++after the function returns. ++ ++FUNDECL is a C variable whose value is a tree node that describes ++the function in question. Normally it is a node of type ++FUNCTION_DECL that describes the declaration of the function. ++From this you can obtain the DECL_ATTRIBUTES of the function. ++ ++FUNTYPE is a C variable whose value is a tree node that ++describes the function in question. Normally it is a node of type ++FUNCTION_TYPE that describes the data type of the function. ++From this it is possible to obtain the data types of the value and ++arguments (if known). ++ ++When a call to a library function is being considered, FUNDECL ++will contain an identifier node for the library function. Thus, if ++you need to distinguish among various library functions, you can do so ++by their names. Note that ``library function'' in this context means ++a function used to perform arithmetic, whose name is known specially ++in the compiler and was not mentioned in the C code being compiled. ++ ++STACK_SIZE is the number of bytes of arguments passed on the ++stack. If a variable number of bytes is passed, it is zero, and ++argument popping will always be the responsibility of the calling function. ++ ++On the VAX, all functions always pop their arguments, so the definition ++of this macro is STACK_SIZE. On the 68000, using the standard ++calling convention, no functions pop their arguments, so the value of ++the macro is always 0 in this case. But an alternative calling ++convention is available in which functions that take a fixed number of ++arguments pop them but other functions (such as printf) pop ++nothing (the caller pops all). When this convention is in use, ++FUNTYPE is examined to determine whether a function takes a fixed ++number of arguments. ++*/ ++#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0 ++ ++ ++/*Return true if this function can we use a single return instruction*/ ++#define USE_RETURN_INSN(ISCOND) avr32_use_return_insn(ISCOND) ++ ++/* ++A C expression that should indicate the number of bytes a call sequence ++pops off the stack. It is added to the value of RETURN_POPS_ARGS ++when compiling a function call. ++ ++CUM is the variable in which all arguments to the called function ++have been accumulated. ++ ++On certain architectures, such as the SH5, a call trampoline is used ++that pops certain registers off the stack, depending on the arguments ++that have been passed to the function. Since this is a property of the ++call site, not of the called function, RETURN_POPS_ARGS is not ++appropriate. ++*/ ++#define CALL_POPS_ARGS(CUM) 0 ++ ++/* Passing Arguments in Registers */ ++ ++/* ++A C expression that controls whether a function argument is passed ++in a register, and which register. ++ ++The arguments are CUM, which summarizes all the previous ++arguments; MODE, the machine mode of the argument; TYPE, ++the data type of the argument as a tree node or 0 if that is not known ++(which happens for C support library functions); and NAMED, ++which is 1 for an ordinary argument and 0 for nameless arguments that ++correspond to '...' in the called function's prototype. ++TYPE can be an incomplete type if a syntax error has previously ++occurred. ++ ++The value of the expression is usually either a reg RTX for the ++hard register in which to pass the argument, or zero to pass the ++argument on the stack. ++ ++For machines like the VAX and 68000, where normally all arguments are ++pushed, zero suffices as a definition. ++ ++The value of the expression can also be a parallel RTX. This is ++used when an argument is passed in multiple locations. The mode of the ++of the parallel should be the mode of the entire argument. The ++parallel holds any number of expr_list pairs; each one ++describes where part of the argument is passed. In each ++expr_list the first operand must be a reg RTX for the hard ++register in which to pass this part of the argument, and the mode of the ++register RTX indicates how large this part of the argument is. The ++second operand of the expr_list is a const_int which gives ++the offset in bytes into the entire argument of where this part starts. ++As a special exception the first expr_list in the parallel ++RTX may have a first operand of zero. This indicates that the entire ++argument is also stored on the stack. ++ ++The last time this macro is called, it is called with MODE == VOIDmode, ++and its result is passed to the call or call_value ++pattern as operands 2 and 3 respectively. ++ ++The usual way to make the ISO library 'stdarg.h' work on a machine ++where some arguments are usually passed in registers, is to cause ++nameless arguments to be passed on the stack instead. This is done ++by making FUNCTION_ARG return 0 whenever NAMED is 0. ++ ++You may use the macro MUST_PASS_IN_STACK (MODE, TYPE) ++in the definition of this macro to determine if this argument is of a ++type that must be passed in the stack. If REG_PARM_STACK_SPACE ++is not defined and FUNCTION_ARG returns nonzero for such an ++argument, the compiler will abort. If REG_PARM_STACK_SPACE is ++defined, the argument will be computed in the stack and then loaded into ++a register. */ ++ ++#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ ++ avr32_function_arg(&(CUM), MODE, TYPE, NAMED) ++ ++/* ++A C type for declaring a variable that is used as the first argument of ++FUNCTION_ARG and other related values. For some target machines, ++the type int suffices and can hold the number of bytes of ++argument so far. ++ ++There is no need to record in CUMULATIVE_ARGS anything about the ++arguments that have been passed on the stack. The compiler has other ++variables to keep track of that. For target machines on which all ++arguments are passed on the stack, there is no need to store anything in ++CUMULATIVE_ARGS; however, the data structure must exist and ++should not be empty, so use int. ++*/ ++typedef struct avr32_args ++{ ++ /* Index representing the argument register the current function argument ++ will occupy */ ++ int index; ++ /* A mask with bits representing the argument registers: if a bit is set ++ then this register is used for an argument */ ++ int used_index; ++ /* TRUE if this function has anonymous arguments */ ++ int uses_anonymous_args; ++ /* The size in bytes of the named arguments pushed on the stack */ ++ int stack_pushed_args_size; ++ /* Set to true if this function needs a Return Value Pointer */ ++ int use_rvp; ++ /* Set to true if function is a flashvault function. */ ++ int flashvault_func; ++ ++} CUMULATIVE_ARGS; ++ ++ ++#define FIRST_CUM_REG_INDEX 0 ++#define LAST_CUM_REG_INDEX 4 ++#define GET_REG_INDEX(CUM) ((CUM)->index) ++#define SET_REG_INDEX(CUM, INDEX) ((CUM)->index = (INDEX)); ++#define GET_USED_INDEX(CUM, INDEX) ((CUM)->used_index & (1 << (INDEX))) ++#define SET_USED_INDEX(CUM, INDEX) \ ++ do \ ++ { \ ++ if (INDEX >= 0) \ ++ (CUM)->used_index |= (1 << (INDEX)); \ ++ } \ ++ while (0) ++#define SET_INDEXES_UNUSED(CUM) ((CUM)->used_index = 0) ++ ++/* ++ A C statement (sans semicolon) for initializing the variable cum for the ++ state at the beginning of the argument list. The variable has type ++ CUMULATIVE_ARGS. The value of FNTYPE is the tree node for the data type of ++ the function which will receive the args, or 0 if the args are to a compiler ++ support library function. For direct calls that are not libcalls, FNDECL ++ contain the declaration node of the function. FNDECL is also set when ++ INIT_CUMULATIVE_ARGS is used to find arguments for the function being ++ compiled. N_NAMED_ARGS is set to the number of named arguments, including a ++ structure return address if it is passed as a parameter, when making a call. ++ When processing incoming arguments, N_NAMED_ARGS is set to -1. ++ ++ When processing a call to a compiler support library function, LIBNAME ++ identifies which one. It is a symbol_ref rtx which contains the name of the ++ function, as a string. LIBNAME is 0 when an ordinary C function call is ++ being processed. Thus, each time this macro is called, either LIBNAME or ++ FNTYPE is nonzero, but never both of them at once. ++*/ ++#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ ++ avr32_init_cumulative_args(&(CUM), FNTYPE, LIBNAME, FNDECL) ++ ++/* ++A C statement (sans semicolon) to update the summarizer variable ++CUM to advance past an argument in the argument list. The ++values MODE, TYPE and NAMED describe that argument. ++Once this is done, the variable CUM is suitable for analyzing ++the following argument with FUNCTION_ARG, etc. ++ ++This macro need not do anything if the argument in question was passed ++on the stack. The compiler knows how to track the amount of stack space ++used for arguments without any special help. ++*/ ++#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ ++ avr32_function_arg_advance(&(CUM), MODE, TYPE, NAMED) ++ ++/* ++If defined, a C expression which determines whether, and in which direction, ++to pad out an argument with extra space. The value should be of type ++enum direction: either 'upward' to pad above the argument, ++'downward' to pad below, or 'none' to inhibit padding. ++ ++The amount of padding is always just enough to reach the next ++multiple of FUNCTION_ARG_BOUNDARY; this macro does not control ++it. ++ ++This macro has a default definition which is right for most systems. ++For little-endian machines, the default is to pad upward. For ++big-endian machines, the default is to pad downward for an argument of ++constant size shorter than an int, and upward otherwise. ++*/ ++#define FUNCTION_ARG_PADDING(MODE, TYPE) \ ++ avr32_function_arg_padding(MODE, TYPE) ++ ++/* ++ Specify padding for the last element of a block move between registers ++ and memory. First is nonzero if this is the only element. Defining ++ this macro allows better control of register function parameters on ++ big-endian machines, without using PARALLEL rtl. In particular, ++ MUST_PASS_IN_STACK need not test padding and mode of types in registers, ++ as there is no longer a "wrong" part of a register; For example, a three ++ byte aggregate may be passed in the high part of a register if so required. ++*/ ++#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ ++ avr32_function_arg_padding(MODE, TYPE) ++ ++/* ++If defined, a C expression which determines whether the default ++implementation of va_arg will attempt to pad down before reading the ++next argument, if that argument is smaller than its aligned space as ++controlled by PARM_BOUNDARY. If this macro is not defined, all such ++arguments are padded down if BYTES_BIG_ENDIAN is true. ++*/ ++#define PAD_VARARGS_DOWN \ ++ (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward) ++ ++/* ++A C expression that is nonzero if REGNO is the number of a hard ++register in which function arguments are sometimes passed. This does ++not include implicit arguments such as the static chain and ++the structure-value address. On many machines, no registers can be ++used for this purpose since all function arguments are pushed on the ++stack. ++*/ ++/* ++ Use r8 - r12 for function arguments. ++*/ ++#define FUNCTION_ARG_REGNO_P(REGNO) \ ++ (REGNO >= 3 && REGNO <= 7) ++ ++/* Number of registers used for passing function arguments */ ++#define NUM_ARG_REGS 5 ++ ++/* ++If defined, the order in which arguments are loaded into their ++respective argument registers is reversed so that the last ++argument is loaded first. This macro only affects arguments ++passed in registers. ++*/ ++/* #define LOAD_ARGS_REVERSED */ ++ ++/** How Scalar Function Values Are Returned **/ ++ ++/* AVR32 is using r12 as return register. */ ++#define RET_REGISTER (15 - 12) ++ ++/* ++A C expression to create an RTX representing the place where a library ++function returns a value of mode MODE. If the precise function ++being called is known, FUNC is a tree node ++(FUNCTION_DECL) for it; otherwise, func is a null ++pointer. This makes it possible to use a different value-returning ++convention for specific functions when all their calls are ++known. ++ ++Note that "library function" in this context means a compiler ++support routine, used to perform arithmetic, whose name is known ++specially by the compiler and was not mentioned in the C code being ++compiled. ++ ++The definition of LIBRARY_VALUE need not be concerned aggregate ++data types, because none of the library functions returns such types. ++*/ ++#define LIBCALL_VALUE(MODE) avr32_libcall_value(MODE) ++ ++/* ++A C expression that is nonzero if REGNO is the number of a hard ++register in which the values of called function may come back. ++ ++A register whose use for returning values is limited to serving as the ++second of a pair (for a value of type double, say) need not be ++recognized by this macro. So for most machines, this definition ++suffices: ++ #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0) ++ ++If the machine has register windows, so that the caller and the called ++function use different registers for the return value, this macro ++should recognize only the caller's register numbers. ++*/ ++/* ++ When returning a value of mode DImode, r11:r10 is used, else r12 is used. ++*/ ++#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RET_REGISTER \ ++ || (REGNO) == INTERNAL_REGNUM(11)) ++ ++ ++/** How Large Values Are Returned **/ ++ ++ ++/* ++Define this macro to be 1 if all structure and union return values must be ++in memory. Since this results in slower code, this should be defined ++only if needed for compatibility with other compilers or with an ABI. ++If you define this macro to be 0, then the conventions used for structure ++and union return values are decided by the RETURN_IN_MEMORY macro. ++ ++If not defined, this defaults to the value 1. ++*/ ++#define DEFAULT_PCC_STRUCT_RETURN 0 ++ ++ ++ ++ ++/** Generating Code for Profiling **/ ++ ++/* ++A C statement or compound statement to output to FILE some ++assembler code to call the profiling subroutine mcount. ++ ++The details of how mcount expects to be called are determined by ++your operating system environment, not by GCC. To figure them out, ++compile a small program for profiling using the system's installed C ++compiler and look at the assembler code that results. ++ ++Older implementations of mcount expect the address of a counter ++variable to be loaded into some register. The name of this variable is ++'LP' followed by the number LABELNO, so you would generate ++the name using 'LP%d' in a fprintf. ++*/ ++/* ToDo: fixme */ ++#ifndef FUNCTION_PROFILER ++#define FUNCTION_PROFILER(FILE, LABELNO) \ ++ fprintf((FILE), "/* profiler %d */", (LABELNO)) ++#endif ++ ++ ++/***************************************************************************** ++ * Trampolines for Nested Functions * ++ *****************************************************************************/ ++ ++/* ++A C statement to output, on the stream FILE, assembler code for a ++block of data that contains the constant parts of a trampoline. This ++code should not include a label - the label is taken care of ++automatically. ++ ++If you do not define this macro, it means no template is needed ++for the target. Do not define this macro on systems where the block move ++code to copy the trampoline into place would be larger than the code ++to generate it on the spot. ++*/ ++/* ToDo: correct? */ ++#define TRAMPOLINE_TEMPLATE(FILE) avr32_trampoline_template(FILE); ++ ++ ++/* ++A C expression for the size in bytes of the trampoline, as an integer. ++*/ ++/* ToDo: fixme */ ++#define TRAMPOLINE_SIZE 0x0C ++ ++/* ++Alignment required for trampolines, in bits. ++ ++If you don't define this macro, the value of BIGGEST_ALIGNMENT ++is used for aligning trampolines. ++*/ ++#define TRAMPOLINE_ALIGNMENT 16 ++ ++/* ++A C statement to initialize the variable parts of a trampoline. ++ADDR is an RTX for the address of the trampoline; FNADDR is ++an RTX for the address of the nested function; STATIC_CHAIN is an ++RTX for the static chain value that should be passed to the function ++when it is called. ++*/ ++#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \ ++ avr32_initialize_trampoline(ADDR, FNADDR, STATIC_CHAIN) ++ ++ ++/****************************************************************************** ++ * Implicit Calls to Library Routines ++ *****************************************************************************/ ++ ++/* Tail calling. */ ++ ++/* A C expression that evaluates to true if it is ok to perform a sibling ++ call to DECL. */ ++#define FUNCTION_OK_FOR_SIBCALL(DECL) 0 ++ ++#define OVERRIDE_OPTIONS avr32_override_options () ++ ++#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) avr32_optimization_options (LEVEL, SIZE) ++ ++/****************************************************************************** ++ * Addressing Modes ++ *****************************************************************************/ ++ ++/* ++A C expression that is nonzero if the machine supports pre-increment, ++pre-decrement, post-increment, or post-decrement addressing respectively. ++*/ ++/* ++ AVR32 supports Rp++ and --Rp ++*/ ++#define HAVE_PRE_INCREMENT 0 ++#define HAVE_PRE_DECREMENT 1 ++#define HAVE_POST_INCREMENT 1 ++#define HAVE_POST_DECREMENT 0 ++ ++/* ++A C expression that is nonzero if the machine supports pre- or ++post-address side-effect generation involving constants other than ++the size of the memory operand. ++*/ ++#define HAVE_PRE_MODIFY_DISP 0 ++#define HAVE_POST_MODIFY_DISP 0 ++ ++/* ++A C expression that is nonzero if the machine supports pre- or ++post-address side-effect generation involving a register displacement. ++*/ ++#define HAVE_PRE_MODIFY_REG 0 ++#define HAVE_POST_MODIFY_REG 0 ++ ++/* ++A C expression that is 1 if the RTX X is a constant which ++is a valid address. On most machines, this can be defined as ++CONSTANT_P (X), but a few machines are more restrictive ++in which constant addresses are supported. ++ ++CONSTANT_P accepts integer-values expressions whose values are ++not explicitly known, such as symbol_ref, label_ref, and ++high expressions and const arithmetic expressions, in ++addition to const_int and const_double expressions. ++*/ ++#define CONSTANT_ADDRESS_P(X) CONSTANT_P(X) ++ ++/* ++A number, the maximum number of registers that can appear in a valid ++memory address. Note that it is up to you to specify a value equal to ++the maximum number that GO_IF_LEGITIMATE_ADDRESS would ever ++accept. ++*/ ++#define MAX_REGS_PER_ADDRESS 2 ++ ++/* ++A C compound statement with a conditional goto LABEL; ++executed if X (an RTX) is a legitimate memory address on the ++target machine for a memory operand of mode MODE. ++ ++It usually pays to define several simpler macros to serve as ++subroutines for this one. Otherwise it may be too complicated to ++understand. ++ ++This macro must exist in two variants: a strict variant and a ++non-strict one. The strict variant is used in the reload pass. It ++must be defined so that any pseudo-register that has not been ++allocated a hard register is considered a memory reference. In ++contexts where some kind of register is required, a pseudo-register ++with no hard register must be rejected. ++ ++The non-strict variant is used in other passes. It must be defined to ++accept all pseudo-registers in every context where some kind of ++register is required. ++ ++Compiler source files that want to use the strict variant of this ++macro define the macro REG_OK_STRICT. You should use an ++#ifdef REG_OK_STRICT conditional to define the strict variant ++in that case and the non-strict variant otherwise. ++ ++Subroutines to check for acceptable registers for various purposes (one ++for base registers, one for index registers, and so on) are typically ++among the subroutines used to define GO_IF_LEGITIMATE_ADDRESS. ++Then only these subroutine macros need have two variants; the higher ++levels of macros may be the same whether strict or not. ++ ++Normally, constant addresses which are the sum of a symbol_ref ++and an integer are stored inside a const RTX to mark them as ++constant. Therefore, there is no need to recognize such sums ++specifically as legitimate addresses. Normally you would simply ++recognize any const as legitimate. ++ ++Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant ++sums that are not marked with const. It assumes that a naked ++plus indicates indexing. If so, then you must reject such ++naked constant sums as illegitimate addresses, so that none of them will ++be given to PRINT_OPERAND_ADDRESS. ++ ++On some machines, whether a symbolic address is legitimate depends on ++the section that the address refers to. On these machines, define the ++macro ENCODE_SECTION_INFO to store the information into the ++symbol_ref, and then check for it here. When you see a ++const, you will have to look inside it to find the ++symbol_ref in order to determine the section. ++ ++The best way to modify the name string is by adding text to the ++beginning, with suitable punctuation to prevent any ambiguity. Allocate ++the new name in saveable_obstack. You will have to modify ++ASM_OUTPUT_LABELREF to remove and decode the added text and ++output the name accordingly, and define STRIP_NAME_ENCODING to ++access the original name string. ++ ++You can check the information stored here into the symbol_ref in ++the definitions of the macros GO_IF_LEGITIMATE_ADDRESS and ++PRINT_OPERAND_ADDRESS. ++*/ ++#ifdef REG_OK_STRICT ++# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \ ++ do \ ++ { \ ++ if (avr32_legitimate_address(MODE, X, 1)) \ ++ goto LABEL; \ ++ } \ ++ while (0) ++#else ++# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \ ++ do \ ++ { \ ++ if (avr32_legitimate_address(MODE, X, 0)) \ ++ goto LABEL; \ ++ } \ ++ while (0) ++#endif ++ ++ ++ ++/* ++A C compound statement that attempts to replace X with a valid ++memory address for an operand of mode MODE. win will be a ++C statement label elsewhere in the code; the macro definition may use ++ ++ GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); ++ ++to avoid further processing if the address has become legitimate. ++ ++X will always be the result of a call to break_out_memory_refs, ++and OLDX will be the operand that was given to that function to produce ++X. ++ ++The code generated by this macro should not alter the substructure of ++X. If it transforms X into a more legitimate form, it ++should assign X (which will always be a C variable) a new value. ++ ++It is not necessary for this macro to come up with a legitimate ++address. The compiler has standard ways of doing so in all cases. In ++fact, it is safe for this macro to do nothing. But often a ++machine-dependent strategy can generate better code. ++*/ ++#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ ++ do \ ++ { \ ++ if (GET_CODE(X) == PLUS \ ++ && GET_CODE(XEXP(X, 0)) == REG \ ++ && GET_CODE(XEXP(X, 1)) == CONST_INT \ ++ && !CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(X, 1)), \ ++ 'K', "Ks16")) \ ++ { \ ++ rtx index = force_reg(SImode, XEXP(X, 1)); \ ++ X = gen_rtx_PLUS( SImode, XEXP(X, 0), index); \ ++ } \ ++ GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN); \ ++ } \ ++ while(0) ++ ++ ++/* ++A C statement or compound statement with a conditional ++goto LABEL; executed if memory address X (an RTX) can have ++different meanings depending on the machine mode of the memory ++reference it is used for or if the address is valid for some modes ++but not others. ++ ++Autoincrement and autodecrement addresses typically have mode-dependent ++effects because the amount of the increment or decrement is the size ++of the operand being addressed. Some machines have other mode-dependent ++addresses. Many RISC machines have no mode-dependent addresses. ++ ++You may assume that ADDR is a valid address for the machine. ++*/ ++#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ ++ do \ ++ { \ ++ if (GET_CODE (ADDR) == POST_INC \ ++ || GET_CODE (ADDR) == PRE_DEC) \ ++ goto LABEL; \ ++ } \ ++ while (0) ++ ++/* ++A C expression that is nonzero if X is a legitimate constant for ++an immediate operand on the target machine. You can assume that ++X satisfies CONSTANT_P, so you need not check this. In fact, ++'1' is a suitable definition for this macro on machines where ++anything CONSTANT_P is valid. ++*/ ++#define LEGITIMATE_CONSTANT_P(X) avr32_legitimate_constant_p(X) ++ ++ ++/****************************************************************************** ++ * Condition Code Status ++ *****************************************************************************/ ++ ++/* ++C code for a data type which is used for declaring the mdep ++component of cc_status. It defaults to int. ++ ++This macro is not used on machines that do not use cc0. ++*/ ++ ++typedef struct ++{ ++ int flags; ++ rtx value; ++ int cond_exec_cmp_clobbered; ++} avr32_status_reg; ++ ++ ++#define CC_STATUS_MDEP avr32_status_reg ++ ++/* ++A C expression to initialize the mdep field to "empty". ++The default definition does nothing, since most machines don't use ++the field anyway. If you want to use the field, you should probably ++define this macro to initialize it. ++ ++This macro is not used on machines that do not use cc0. ++*/ ++ ++#define CC_STATUS_MDEP_INIT \ ++ (cc_status.mdep.flags = CC_NONE , cc_status.mdep.cond_exec_cmp_clobbered = 0, cc_status.mdep.value = 0) ++ ++/* ++A C compound statement to set the components of cc_status ++appropriately for an insn INSN whose body is EXP. It is ++this macro's responsibility to recognize insns that set the condition ++code as a byproduct of other activity as well as those that explicitly ++set (cc0). ++ ++This macro is not used on machines that do not use cc0. ++ ++If there are insns that do not set the condition code but do alter ++other machine registers, this macro must check to see whether they ++invalidate the expressions that the condition code is recorded as ++reflecting. For example, on the 68000, insns that store in address ++registers do not set the condition code, which means that usually ++NOTICE_UPDATE_CC can leave cc_status unaltered for such ++insns. But suppose that the previous insn set the condition code ++based on location 'a4@@(102)' and the current insn stores a new ++value in 'a4'. Although the condition code is not changed by ++this, it will no longer be true that it reflects the contents of ++'a4@@(102)'. Therefore, NOTICE_UPDATE_CC must alter ++cc_status in this case to say that nothing is known about the ++condition code value. ++ ++The definition of NOTICE_UPDATE_CC must be prepared to deal ++with the results of peephole optimization: insns whose patterns are ++parallel RTXs containing various reg, mem or ++constants which are just the operands. The RTL structure of these ++insns is not sufficient to indicate what the insns actually do. What ++NOTICE_UPDATE_CC should do when it sees one is just to run ++CC_STATUS_INIT. ++ ++A possible definition of NOTICE_UPDATE_CC is to call a function ++that looks at an attribute (see Insn Attributes) named, for example, ++'cc'. This avoids having detailed information about patterns in ++two places, the 'md' file and in NOTICE_UPDATE_CC. ++*/ ++ ++#define NOTICE_UPDATE_CC(EXP, INSN) avr32_notice_update_cc(EXP, INSN) ++ ++ ++ ++ ++/****************************************************************************** ++ * Describing Relative Costs of Operations ++ *****************************************************************************/ ++ ++ ++ ++/* ++A C expression for the cost of moving data of mode MODE from a ++register in class FROM to one in class TO. The classes are ++expressed using the enumeration values such as GENERAL_REGS. A ++value of 2 is the default; other values are interpreted relative to ++that. ++ ++It is not required that the cost always equal 2 when FROM is the ++same as TO; on some machines it is expensive to move between ++registers if they are not general registers. ++ ++If reload sees an insn consisting of a single set between two ++hard registers, and if REGISTER_MOVE_COST applied to their ++classes returns a value of 2, reload does not check to ensure that the ++constraints of the insn are met. Setting a cost of other than 2 will ++allow reload to verify that the constraints are met. You should do this ++if the movm pattern's constraints do not allow such copying. ++*/ ++#define REGISTER_MOVE_COST(MODE, FROM, TO) \ ++ ((GET_MODE_SIZE(MODE) <= 4) ? 2: \ ++ (GET_MODE_SIZE(MODE) <= 8) ? 3: \ ++ 4) ++ ++/* ++A C expression for the cost of moving data of mode MODE between a ++register of class CLASS and memory; IN is zero if the value ++is to be written to memory, nonzero if it is to be read in. This cost ++is relative to those in REGISTER_MOVE_COST. If moving between ++registers and memory is more expensive than between two registers, you ++should define this macro to express the relative cost. ++ ++If you do not define this macro, GCC uses a default cost of 4 plus ++the cost of copying via a secondary reload register, if one is ++needed. If your machine requires a secondary reload register to copy ++between memory and a register of CLASS but the reload mechanism is ++more complex than copying via an intermediate, define this macro to ++reflect the actual cost of the move. ++ ++GCC defines the function memory_move_secondary_cost if ++secondary reloads are needed. It computes the costs due to copying via ++a secondary register. If your machine copies from memory using a ++secondary register in the conventional way but the default base value of ++4 is not correct for your machine, define this macro to add some other ++value to the result of that function. The arguments to that function ++are the same as to this macro. ++*/ ++/* ++ Memory moves are costly ++*/ ++#define MEMORY_MOVE_COST(MODE, CLASS, IN) \ ++ (((IN) ? ((GET_MODE_SIZE(MODE) < 4) ? 4 : \ ++ (GET_MODE_SIZE(MODE) > 8) ? 6 : \ ++ 3) \ ++ : ((GET_MODE_SIZE(MODE) > 8) ? 6 : 3))) ++ ++/* ++A C expression for the cost of a branch instruction. A value of 1 is ++the default; other values are interpreted relative to that. ++*/ ++ /* Try to use conditionals as much as possible */ ++#define BRANCH_COST(speed_p, predictable_p) (TARGET_BRANCH_PRED ? 3 : 4) ++ ++/*A C expression for the maximum number of instructions to execute via conditional ++ execution instructions instead of a branch. A value of BRANCH_COST+1 is the default ++ if the machine does not use cc0, and 1 if it does use cc0.*/ ++#define MAX_CONDITIONAL_EXECUTE 4 ++ ++/* ++Define this macro as a C expression which is nonzero if accessing less ++than a word of memory (i.e.: a char or a short) is no ++faster than accessing a word of memory, i.e., if such access ++require more than one instruction or if there is no difference in cost ++between byte and (aligned) word loads. ++ ++When this macro is not defined, the compiler will access a field by ++finding the smallest containing object; when it is defined, a fullword ++load will be used if alignment permits. Unless bytes accesses are ++faster than word accesses, using word accesses is preferable since it ++may eliminate subsequent memory access if subsequent accesses occur to ++other fields in the same word of the structure, but to different bytes. ++*/ ++#define SLOW_BYTE_ACCESS 1 ++ ++ ++/* ++Define this macro if it is as good or better to call a constant ++function address than to call an address kept in a register. ++*/ ++#define NO_FUNCTION_CSE ++ ++ ++/****************************************************************************** ++ * Adjusting the Instruction Scheduler ++ *****************************************************************************/ ++ ++/***************************************************************************** ++ * Dividing the Output into Sections (Texts, Data, ...) * ++ *****************************************************************************/ ++ ++/* ++A C expression whose value is a string, including spacing, containing the ++assembler operation that should precede instructions and read-only data. ++Normally "\t.text" is right. ++*/ ++#define TEXT_SECTION_ASM_OP "\t.text" ++/* ++A C statement that switches to the default section containing instructions. ++Normally this is not needed, as simply defining TEXT_SECTION_ASM_OP ++is enough. The MIPS port uses this to sort all functions after all data ++declarations. ++*/ ++/* #define TEXT_SECTION */ ++ ++/* ++A C expression whose value is a string, including spacing, containing the ++assembler operation to identify the following data as writable initialized ++data. Normally "\t.data" is right. ++*/ ++#define DATA_SECTION_ASM_OP "\t.data" ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++shared data. If not defined, DATA_SECTION_ASM_OP will be used. ++*/ ++ ++/* ++A C expression whose value is a string, including spacing, containing ++the assembler operation to identify the following data as read-only ++initialized data. ++*/ ++#undef READONLY_DATA_SECTION_ASM_OP ++#define READONLY_DATA_SECTION_ASM_OP \ ++ ((TARGET_USE_RODATA_SECTION) ? \ ++ "\t.section\t.rodata" : \ ++ TEXT_SECTION_ASM_OP ) ++ ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++uninitialized global data. If not defined, and neither ++ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_BSS are defined, ++uninitialized global data will be output in the data section if ++-fno-common is passed, otherwise ASM_OUTPUT_COMMON will be ++used. ++*/ ++#define BSS_SECTION_ASM_OP "\t.section\t.bss" ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++uninitialized global shared data. If not defined, and ++BSS_SECTION_ASM_OP is, the latter will be used. ++*/ ++/*#define SHARED_BSS_SECTION_ASM_OP "\trseg\tshared_bbs_section:data:noroot(0)\n"*/ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++initialization code. If not defined, GCC will assume such a section does ++not exist. ++*/ ++#undef INIT_SECTION_ASM_OP ++#define INIT_SECTION_ASM_OP "\t.section\t.init" ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++finalization code. If not defined, GCC will assume such a section does ++not exist. ++*/ ++#undef FINI_SECTION_ASM_OP ++#define FINI_SECTION_ASM_OP "\t.section\t.fini" ++ ++/* ++If defined, an ASM statement that switches to a different section ++via SECTION_OP, calls FUNCTION, and switches back to ++the text section. This is used in crtstuff.c if ++INIT_SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls ++to initialization and finalization functions from the init and fini ++sections. By default, this macro uses a simple function call. Some ++ports need hand-crafted assembly code to avoid dependencies on ++registers initialized in the function prologue or to ensure that ++constant pools don't end up too far way in the text section. ++*/ ++#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ ++ asm ( SECTION_OP "\n" \ ++ "mcall r6[" USER_LABEL_PREFIX #FUNC "@got]\n" \ ++ TEXT_SECTION_ASM_OP); ++ ++ ++/* ++Define this macro to be an expression with a nonzero value if jump ++tables (for tablejump insns) should be output in the text ++section, along with the assembler instructions. Otherwise, the ++readonly data section is used. ++ ++This macro is irrelevant if there is no separate readonly data section. ++*/ ++/* Put jump tables in text section if we have caches. Otherwise assume that ++ loading data from code memory is slow. */ ++#define JUMP_TABLES_IN_TEXT_SECTION \ ++ (TARGET_CACHES ? 1 : 0) ++ ++ ++/****************************************************************************** ++ * Position Independent Code (PIC) ++ *****************************************************************************/ ++ ++#ifndef AVR32_ALWAYS_PIC ++#define AVR32_ALWAYS_PIC 0 ++#endif ++ ++/* GOT is set to r6 */ ++#define PIC_OFFSET_TABLE_REGNUM INTERNAL_REGNUM(6) ++ ++/* ++A C expression that is nonzero if X is a legitimate immediate ++operand on the target machine when generating position independent code. ++You can assume that X satisfies CONSTANT_P, so you need not ++check this. You can also assume flag_pic is true, so you need not ++check it either. You need not define this macro if all constants ++(including SYMBOL_REF) can be immediate operands when generating ++position independent code. ++*/ ++/* We can't directly access anything that contains a symbol, ++ nor can we indirect via the constant pool. */ ++#define LEGITIMATE_PIC_OPERAND_P(X) avr32_legitimate_pic_operand_p(X) ++ ++ ++/* We need to know when we are making a constant pool; this determines ++ whether data needs to be in the GOT or can be referenced via a GOT ++ offset. */ ++extern int making_const_table; ++ ++/****************************************************************************** ++ * Defining the Output Assembler Language ++ *****************************************************************************/ ++ ++ ++/* ++A C string constant describing how to begin a comment in the target ++assembler language. The compiler assumes that the comment will end at ++the end of the line. ++*/ ++#define ASM_COMMENT_START "# " ++ ++/* ++A C string constant for text to be output before each asm ++statement or group of consecutive ones. Normally this is ++"#APP", which is a comment that has no effect on most ++assemblers but tells the GNU assembler that it must check the lines ++that follow for all valid assembler constructs. ++*/ ++#undef ASM_APP_ON ++#define ASM_APP_ON "#APP\n" ++ ++/* ++A C string constant for text to be output after each asm ++statement or group of consecutive ones. Normally this is ++"#NO_APP", which tells the GNU assembler to resume making the ++time-saving assumptions that are valid for ordinary compiler output. ++*/ ++#undef ASM_APP_OFF ++#define ASM_APP_OFF "#NO_APP\n" ++ ++ ++ ++#define FILE_ASM_OP "\t.file\n" ++#define IDENT_ASM_OP "\t.ident\t" ++#define SET_ASM_OP "\t.set\t" ++ ++ ++/* ++ * Output assembly directives to switch to section name. The section ++ * should have attributes as specified by flags, which is a bit mask ++ * of the SECTION_* flags defined in 'output.h'. If align is nonzero, ++ * it contains an alignment in bytes to be used for the section, ++ * otherwise some target default should be used. Only targets that ++ * must specify an alignment within the section directive need pay ++ * attention to align -- we will still use ASM_OUTPUT_ALIGN. ++ * ++ * NOTE: This one must not be moved to avr32.c ++ */ ++#undef TARGET_ASM_NAMED_SECTION ++#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section ++ ++ ++/* ++You may define this macro as a C expression. You should define the ++expression to have a nonzero value if GCC should output the constant ++pool for a function before the code for the function, or a zero value if ++GCC should output the constant pool after the function. If you do ++not define this macro, the usual case, GCC will output the constant ++pool before the function. ++*/ ++#define CONSTANT_POOL_BEFORE_FUNCTION 0 ++ ++ ++/* ++Define this macro as a C expression which is nonzero if the constant ++EXP, of type tree, should be output after the code for a ++function. The compiler will normally output all constants before the ++function; you need not define this macro if this is OK. ++*/ ++#define CONSTANT_AFTER_FUNCTION_P(EXP) 1 ++ ++ ++/* ++Define this macro as a C expression which is nonzero if C is ++as a logical line separator by the assembler. STR points to the ++position in the string where C was found; this can be used if a ++line separator uses multiple characters. ++ ++If you do not define this macro, the default is that only ++the character ';' is treated as a logical line separator. ++*/ ++#define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) (((C) == '\n') || ((C) == ';')) ++ ++ ++/** Output of Uninitialized Variables **/ ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM the assembler definition of a common-label named ++NAME whose size is SIZE bytes. The variable ROUNDED ++is the size rounded up to whatever alignment the caller wants. ++ ++Use the expression assemble_name(STREAM, NAME) to ++output the name itself; before and after that, output the additional ++assembler syntax for defining the name, and a newline. ++ ++This macro controls how the assembler definitions of uninitialized ++common global variables are output. ++*/ ++/* ++#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \ ++ avr32_asm_output_common(STREAM, NAME, SIZE, ROUNDED) ++*/ ++ ++#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ++ do \ ++ { \ ++ fputs ("\t.comm ", (FILE)); \ ++ assemble_name ((FILE), (NAME)); \ ++ fprintf ((FILE), ",%d\n", (SIZE)); \ ++ } \ ++ while (0) ++ ++/* ++ * Like ASM_OUTPUT_BSS except takes the required alignment as a ++ * separate, explicit argument. If you define this macro, it is used ++ * in place of ASM_OUTPUT_BSS, and gives you more flexibility in ++ * handling the required alignment of the variable. The alignment is ++ * specified as the number of bits. ++ * ++ * Try to use function asm_output_aligned_bss defined in file varasm.c ++ * when defining this macro. ++ */ ++#define ASM_OUTPUT_ALIGNED_BSS(STREAM, DECL, NAME, SIZE, ALIGNMENT) \ ++ asm_output_aligned_bss (STREAM, DECL, NAME, SIZE, ALIGNMENT) ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM the assembler definition of a local-common-label named ++NAME whose size is SIZE bytes. The variable ROUNDED ++is the size rounded up to whatever alignment the caller wants. ++ ++Use the expression assemble_name(STREAM, NAME) to ++output the name itself; before and after that, output the additional ++assembler syntax for defining the name, and a newline. ++ ++This macro controls how the assembler definitions of uninitialized ++static variables are output. ++*/ ++#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ ++ do \ ++ { \ ++ fputs ("\t.lcomm ", (FILE)); \ ++ assemble_name ((FILE), (NAME)); \ ++ fprintf ((FILE), ",%d, %d\n", (SIZE), 2); \ ++ } \ ++ while (0) ++ ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM the assembler definition of a label named NAME. ++Use the expression assemble_name(STREAM, NAME) to ++output the name itself; before and after that, output the additional ++assembler syntax for defining the name, and a newline. ++*/ ++#define ASM_OUTPUT_LABEL(STREAM, NAME) avr32_asm_output_label(STREAM, NAME) ++ ++/* A C string containing the appropriate assembler directive to ++ * specify the size of a symbol, without any arguments. On systems ++ * that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"'; ++ * on other systems, the default is not to define this macro. ++ * ++ * Define this macro only if it is correct to use the default ++ * definitions of ASM_ OUTPUT_SIZE_DIRECTIVE and ++ * ASM_OUTPUT_MEASURED_SIZE for your system. If you need your own ++ * custom definitions of those macros, or if you do not need explicit ++ * symbol sizes at all, do not define this macro. ++ */ ++#define SIZE_ASM_OP "\t.size\t" ++ ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM some commands that will make the label NAME global; ++that is, available for reference from other files. Use the expression ++assemble_name(STREAM, NAME) to output the name ++itself; before and after that, output the additional assembler syntax ++for making that name global, and a newline. ++*/ ++#define GLOBAL_ASM_OP "\t.global\t" ++ ++ ++ ++/* ++A C expression which evaluates to true if the target supports weak symbols. ++ ++If you don't define this macro, defaults.h provides a default ++definition. If either ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL ++is defined, the default definition is '1'; otherwise, it is ++'0'. Define this macro if you want to control weak symbol support ++with a compiler flag such as -melf. ++*/ ++#define SUPPORTS_WEAK 1 ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM a reference in assembler syntax to a label named ++NAME. This should add '_' to the front of the name, if that ++is customary on your operating system, as it is in most Berkeley Unix ++systems. This macro is used in assemble_name. ++*/ ++#define ASM_OUTPUT_LABELREF(STREAM, NAME) \ ++ avr32_asm_output_labelref(STREAM, NAME) ++ ++ ++ ++/* ++A C expression to assign to OUTVAR (which is a variable of type ++char *) a newly allocated string made from the string ++NAME and the number NUMBER, with some suitable punctuation ++added. Use alloca to get space for the string. ++ ++The string will be used as an argument to ASM_OUTPUT_LABELREF to ++produce an assembler label for an internal static variable whose name is ++NAME. Therefore, the string must be such as to result in valid ++assembler code. The argument NUMBER is different each time this ++macro is executed; it prevents conflicts between similarly-named ++internal static variables in different scopes. ++ ++Ideally this string should not be a valid C identifier, to prevent any ++conflict with the user's own symbols. Most assemblers allow periods ++or percent signs in assembler symbols; putting at least one of these ++between the name and the number will suffice. ++*/ ++#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \ ++ do \ ++ { \ ++ (OUTVAR) = (char *) alloca (strlen ((NAME)) + 10); \ ++ sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)); \ ++ } \ ++ while (0) ++ ++ ++/** Macros Controlling Initialization Routines **/ ++ ++ ++/* ++If defined, main will not call __main as described above. ++This macro should be defined for systems that control start-up code ++on a symbol-by-symbol basis, such as OSF/1, and should not ++be defined explicitly for systems that support INIT_SECTION_ASM_OP. ++*/ ++/* ++ __main is not defined when debugging. ++*/ ++#define HAS_INIT_SECTION ++ ++ ++/** Output of Assembler Instructions **/ ++ ++/* ++A C initializer containing the assembler's names for the machine ++registers, each one as a C string constant. This is what translates ++register numbers in the compiler into assembler language. ++*/ ++ ++#define REGISTER_NAMES \ ++{ \ ++ "pc", "lr", \ ++ "sp", "r12", \ ++ "r11", "r10", \ ++ "r9", "r8", \ ++ "r7", "r6", \ ++ "r5", "r4", \ ++ "r3", "r2", \ ++ "r1", "r0", \ ++} ++ ++/* ++A C compound statement to output to stdio stream STREAM the ++assembler syntax for an instruction operand X. X is an ++RTL expression. ++ ++CODE is a value that can be used to specify one of several ways ++of printing the operand. It is used when identical operands must be ++printed differently depending on the context. CODE comes from ++the '%' specification that was used to request printing of the ++operand. If the specification was just '%digit' then ++CODE is 0; if the specification was '%ltr digit' ++then CODE is the ASCII code for ltr. ++ ++If X is a register, this macro should print the register's name. ++The names can be found in an array reg_names whose type is ++char *[]. reg_names is initialized from REGISTER_NAMES. ++ ++When the machine description has a specification '%punct' ++(a '%' followed by a punctuation character), this macro is called ++with a null pointer for X and the punctuation character for ++CODE. ++*/ ++#define PRINT_OPERAND(STREAM, X, CODE) avr32_print_operand(STREAM, X, CODE) ++ ++/* A C statement to be executed just prior to the output of ++ assembler code for INSN, to modify the extracted operands so ++ they will be output differently. ++ ++ Here the argument OPVEC is the vector containing the operands ++ extracted from INSN, and NOPERANDS is the number of elements of ++ the vector which contain meaningful data for this insn. ++ The contents of this vector are what will be used to convert the insn ++ template into assembler code, so you can change the assembler output ++ by changing the contents of the vector. */ ++#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \ ++ avr32_final_prescan_insn ((INSN), (OPVEC), (NOPERANDS)) ++ ++/* ++A C expression which evaluates to true if CODE is a valid ++punctuation character for use in the PRINT_OPERAND macro. If ++PRINT_OPERAND_PUNCT_VALID_P is not defined, it means that no ++punctuation characters (except for the standard one, '%') are used ++in this way. ++*/ ++#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ ++ (((CODE) == '?') \ ++ || ((CODE) == '!')) ++ ++/* ++A C compound statement to output to stdio stream STREAM the ++assembler syntax for an instruction operand that is a memory reference ++whose address is X. X is an RTL expression. ++ ++On some machines, the syntax for a symbolic address depends on the ++section that the address refers to. On these machines, define the macro ++ENCODE_SECTION_INFO to store the information into the ++symbol_ref, and then check for it here. (see Assembler Format.) ++*/ ++#define PRINT_OPERAND_ADDRESS(STREAM, X) avr32_print_operand_address(STREAM, X) ++ ++ ++/** Output of Dispatch Tables **/ ++ ++/* ++ * A C statement to output to the stdio stream stream an assembler ++ * pseudo-instruction to generate a difference between two ++ * labels. value and rel are the numbers of two internal labels. The ++ * definitions of these labels are output using ++ * (*targetm.asm_out.internal_label), and they must be printed in the ++ * same way here. For example, ++ * ++ * fprintf (stream, "\t.word L%d-L%d\n", ++ * value, rel) ++ * ++ * You must provide this macro on machines where the addresses in a ++ * dispatch table are relative to the table's own address. If defined, ++ * GCC will also use this macro on all machines when producing ++ * PIC. body is the body of the ADDR_DIFF_VEC; it is provided so that ++ * the mode and flags can be read. ++ */ ++#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \ ++ fprintf(STREAM, "\tbral\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE) ++ ++/* ++This macro should be provided on machines where the addresses ++in a dispatch table are absolute. ++ ++The definition should be a C statement to output to the stdio stream ++STREAM an assembler pseudo-instruction to generate a reference to ++a label. VALUE is the number of an internal label whose ++definition is output using ASM_OUTPUT_INTERNAL_LABEL. ++For example, ++ ++fprintf(STREAM, "\t.word L%d\n", VALUE) ++*/ ++ ++#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ ++ fprintf(STREAM, "\t.long %sL%d\n", LOCAL_LABEL_PREFIX, VALUE) ++ ++/** Assembler Commands for Exception Regions */ ++ ++/* ToDo: All of this subsection */ ++ ++/** Assembler Commands for Alignment */ ++ ++ ++/* ++A C statement to output to the stdio stream STREAM an assembler ++command to advance the location counter to a multiple of 2 to the ++POWER bytes. POWER will be a C expression of type int. ++*/ ++#define ASM_OUTPUT_ALIGN(STREAM, POWER) \ ++ do \ ++ { \ ++ if ((POWER) != 0) \ ++ fprintf(STREAM, "\t.align\t%d\n", POWER); \ ++ } \ ++ while (0) ++ ++/* ++Like ASM_OUTPUT_ALIGN, except that the \nop" instruction is used for padding, if ++necessary. ++*/ ++#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \ ++ fprintf(STREAM, "\t.balignw\t%d, 0xd703\n", (1 << POWER)) ++ ++ ++ ++/****************************************************************************** ++ * Controlling Debugging Information Format ++ *****************************************************************************/ ++ ++/* How to renumber registers for dbx and gdb. */ ++#define DBX_REGISTER_NUMBER(REGNO) ASM_REGNUM (REGNO) ++ ++/* The DWARF 2 CFA column which tracks the return address. */ ++#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM(LR_REGNUM) ++ ++/* ++Define this macro if GCC should produce dwarf version 2 format ++debugging output in response to the -g option. ++ ++To support optional call frame debugging information, you must also ++define INCOMING_RETURN_ADDR_RTX and either set ++RTX_FRAME_RELATED_P on the prologue insns if you use RTL for the ++prologue, or call dwarf2out_def_cfa and dwarf2out_reg_save ++as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you don't. ++*/ ++#define DWARF2_DEBUGGING_INFO 1 ++ ++ ++#define DWARF2_ASM_LINE_DEBUG_INFO 1 ++#define DWARF2_FRAME_INFO 1 ++ ++ ++/****************************************************************************** ++ * Miscellaneous Parameters ++ *****************************************************************************/ ++ ++/* ToDo: a lot */ ++ ++/* ++An alias for a machine mode name. This is the machine mode that ++elements of a jump-table should have. ++*/ ++#define CASE_VECTOR_MODE SImode ++ ++/* ++Define this macro to be a C expression to indicate when jump-tables ++should contain relative addresses. If jump-tables never contain ++relative addresses, then you need not define this macro. ++*/ ++#define CASE_VECTOR_PC_RELATIVE 0 ++ ++/* Increase the threshold for using table jumps on the UC arch. */ ++#define CASE_VALUES_THRESHOLD (TARGET_BRANCH_PRED ? 4 : 7) ++ ++/* ++The maximum number of bytes that a single instruction can move quickly ++between memory and registers or between two memory locations. ++*/ ++#define MOVE_MAX (2*UNITS_PER_WORD) ++ ++ ++/* A C expression that is nonzero if on this machine the number of bits actually used ++ for the count of a shift operation is equal to the number of bits needed to represent ++ the size of the object being shifted. When this macro is nonzero, the compiler will ++ assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise 'and' ++ instructions that truncates the count of a shift operation. On machines that have ++ instructions that act on bit-fields at variable positions, which may include 'bit test' ++ 378 GNU Compiler Collection (GCC) Internals ++ instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations ++ of the values that serve as arguments to bit-field instructions. ++ If both types of instructions truncate the count (for shifts) and position (for bit-field ++ operations), or if no variable-position bit-field instructions exist, you should define ++ this macro. ++ However, on some machines, such as the 80386 and the 680x0, truncation only applies ++ to shift operations and not the (real or pretended) bit-field operations. Define SHIFT_ ++ COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the 'md' file ++ that include the implied truncation of the shift instructions. ++ You need not de ne this macro if it would always have the value of zero. */ ++#define SHIFT_COUNT_TRUNCATED 1 ++ ++/* ++A C expression which is nonzero if on this machine it is safe to ++convert an integer of INPREC bits to one of OUTPREC ++bits (where OUTPREC is smaller than INPREC) by merely ++operating on it as if it had only OUTPREC bits. ++ ++On many machines, this expression can be 1. ++ ++When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for ++modes for which MODES_TIEABLE_P is 0, suboptimal code can result. ++If this is the case, making TRULY_NOOP_TRUNCATION return 0 in ++such cases may improve things. ++*/ ++#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 ++ ++/* ++An alias for the machine mode for pointers. On most machines, define ++this to be the integer mode corresponding to the width of a hardware ++pointer; SImode on 32-bit machine or DImode on 64-bit machines. ++On some machines you must define this to be one of the partial integer ++modes, such as PSImode. ++ ++The width of Pmode must be at least as large as the value of ++POINTER_SIZE. If it is not equal, you must define the macro ++POINTERS_EXTEND_UNSIGNED to specify how pointers are extended ++to Pmode. ++*/ ++#define Pmode SImode ++ ++/* ++An alias for the machine mode used for memory references to functions ++being called, in call RTL expressions. On most machines this ++should be QImode. ++*/ ++#define FUNCTION_MODE SImode ++ ++ ++#define REG_S_P(x) \ ++ (REG_P (x) || (GET_CODE (x) == SUBREG && REG_P (XEXP (x, 0)))) ++ ++ ++/* If defined, modifies the length assigned to instruction INSN as a ++ function of the context in which it is used. LENGTH is an lvalue ++ that contains the initially computed length of the insn and should ++ be updated with the correct length of the insn. */ ++#define ADJUST_INSN_LENGTH(INSN, LENGTH) \ ++ ((LENGTH) = avr32_adjust_insn_length ((INSN), (LENGTH))) ++ ++ ++#define CLZ_DEFINED_VALUE_AT_ZERO(mode, value) \ ++ (value = 32, (mode == SImode)) ++ ++#define CTZ_DEFINED_VALUE_AT_ZERO(mode, value) \ ++ (value = 32, (mode == SImode)) ++ ++#define UNITS_PER_SIMD_WORD(mode) UNITS_PER_WORD ++ ++#define STORE_FLAG_VALUE 1 ++ ++ ++/* IF-conversion macros. */ ++#define IFCVT_MODIFY_INSN( CE_INFO, PATTERN, INSN ) \ ++ { \ ++ (PATTERN) = avr32_ifcvt_modify_insn (CE_INFO, PATTERN, INSN, &num_true_changes); \ ++ } ++ ++#define IFCVT_EXTRA_FIELDS \ ++ int num_cond_clobber_insns; \ ++ int num_extra_move_insns; \ ++ rtx extra_move_insns[MAX_CONDITIONAL_EXECUTE]; \ ++ rtx moved_insns[MAX_CONDITIONAL_EXECUTE]; ++ ++#define IFCVT_INIT_EXTRA_FIELDS( CE_INFO ) \ ++ { \ ++ (CE_INFO)->num_cond_clobber_insns = 0; \ ++ (CE_INFO)->num_extra_move_insns = 0; \ ++ } ++ ++ ++#define IFCVT_MODIFY_CANCEL( CE_INFO ) avr32_ifcvt_modify_cancel (CE_INFO, &num_true_changes) ++ ++#define IFCVT_ALLOW_MODIFY_TEST_IN_INSN 1 ++#define IFCVT_COND_EXEC_BEFORE_RELOAD (TARGET_COND_EXEC_BEFORE_RELOAD) ++ ++enum avr32_builtins ++{ ++ AVR32_BUILTIN_MTSR, ++ AVR32_BUILTIN_MFSR, ++ AVR32_BUILTIN_MTDR, ++ AVR32_BUILTIN_MFDR, ++ AVR32_BUILTIN_CACHE, ++ AVR32_BUILTIN_SYNC, ++ AVR32_BUILTIN_SSRF, ++ AVR32_BUILTIN_CSRF, ++ AVR32_BUILTIN_TLBR, ++ AVR32_BUILTIN_TLBS, ++ AVR32_BUILTIN_TLBW, ++ AVR32_BUILTIN_BREAKPOINT, ++ AVR32_BUILTIN_XCHG, ++ AVR32_BUILTIN_LDXI, ++ AVR32_BUILTIN_BSWAP16, ++ AVR32_BUILTIN_BSWAP32, ++ AVR32_BUILTIN_COP, ++ AVR32_BUILTIN_MVCR_W, ++ AVR32_BUILTIN_MVRC_W, ++ AVR32_BUILTIN_MVCR_D, ++ AVR32_BUILTIN_MVRC_D, ++ AVR32_BUILTIN_MULSATHH_H, ++ AVR32_BUILTIN_MULSATHH_W, ++ AVR32_BUILTIN_MULSATRNDHH_H, ++ AVR32_BUILTIN_MULSATRNDWH_W, ++ AVR32_BUILTIN_MULSATWH_W, ++ AVR32_BUILTIN_MACSATHH_W, ++ AVR32_BUILTIN_SATADD_H, ++ AVR32_BUILTIN_SATSUB_H, ++ AVR32_BUILTIN_SATADD_W, ++ AVR32_BUILTIN_SATSUB_W, ++ AVR32_BUILTIN_MULWH_D, ++ AVR32_BUILTIN_MULNWH_D, ++ AVR32_BUILTIN_MACWH_D, ++ AVR32_BUILTIN_MACHH_D, ++ AVR32_BUILTIN_MUSFR, ++ AVR32_BUILTIN_MUSTR, ++ AVR32_BUILTIN_SATS, ++ AVR32_BUILTIN_SATU, ++ AVR32_BUILTIN_SATRNDS, ++ AVR32_BUILTIN_SATRNDU, ++ AVR32_BUILTIN_MEMS, ++ AVR32_BUILTIN_MEMC, ++ AVR32_BUILTIN_MEMT, ++ AVR32_BUILTIN_SLEEP, ++ AVR32_BUILTIN_DELAY_CYCLES ++}; ++ ++ ++#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) \ ++ ((MODE == SFmode) || (MODE == DFmode)) ++ ++#define RENAME_LIBRARY_SET ".set" ++ ++/* Make ABI_NAME an alias for __GCC_NAME. */ ++#define RENAME_LIBRARY(GCC_NAME, ABI_NAME) \ ++ __asm__ (".globl\t__avr32_" #ABI_NAME "\n" \ ++ ".set\t__avr32_" #ABI_NAME \ ++ ", __" #GCC_NAME "\n"); ++ ++/* Give libgcc functions avr32 ABI name. */ ++#ifdef L_muldi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (muldi3, mul64) ++#endif ++#ifdef L_divdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (divdi3, sdiv64) ++#endif ++#ifdef L_udivdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (udivdi3, udiv64) ++#endif ++#ifdef L_moddi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (moddi3, smod64) ++#endif ++#ifdef L_umoddi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (umoddi3, umod64) ++#endif ++#ifdef L_ashldi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashldi3, lsl64) ++#endif ++#ifdef L_lshrdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (lshrdi3, lsr64) ++#endif ++#ifdef L_ashrdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashrdi3, asr64) ++#endif ++ ++#ifdef L_fixsfdi ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixsfdi, f32_to_s64) ++#endif ++#ifdef L_fixunssfdi ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixunssfdi, f32_to_u64) ++#endif ++#ifdef L_floatdidf ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdidf, s64_to_f64) ++#endif ++#ifdef L_floatdisf ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdisf, s64_to_f32) ++#endif ++ ++#endif +--- /dev/null ++++ b/gcc/config/avr32/avr32.md +@@ -0,0 +1,5198 @@ ++;; AVR32 machine description file. ++;; Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++;; -*- Mode: Scheme -*- ++ ++(define_attr "type" "alu,alu2,alu_sat,mulhh,mulwh,mulww_w,mulww_d,div,machh_w,macww_w,macww_d,branch,call,load,load_rm,store,load2,load4,store2,store4,fmul,fcmps,fcmpd,fcast,fmv,fmvcpu,fldd,fstd,flds,fsts,fstm" ++ (const_string "alu")) ++ ++ ++(define_attr "cc" "none,set_vncz,set_ncz,set_cz,set_z,set_z_if_not_v2,bld,compare,cmp_cond_insn,clobber,call_set,fpcompare,from_fpcc" ++ (const_string "none")) ++ ++ ++; NB! Keep this in sync with enum architecture_type in avr32.h ++(define_attr "pipeline" "ap,ucr1,ucr2,ucr2nomul,ucr3,ucr3fp" ++ (const (symbol_ref "avr32_arch->arch_type"))) ++ ++; Insn length in bytes ++(define_attr "length" "" ++ (const_int 4)) ++ ++; Signal if an insn is predicable and hence can be conditionally executed. ++(define_attr "predicable" "no,yes" (const_string "no")) ++ ++;; Uses of UNSPEC in this file: ++(define_constants ++ [(UNSPEC_PUSHM 0) ++ (UNSPEC_POPM 1) ++ (UNSPEC_UDIVMODSI4_INTERNAL 2) ++ (UNSPEC_DIVMODSI4_INTERNAL 3) ++ (UNSPEC_STM 4) ++ (UNSPEC_LDM 5) ++ (UNSPEC_MOVSICC 6) ++ (UNSPEC_ADDSICC 7) ++ (UNSPEC_COND_MI 8) ++ (UNSPEC_COND_PL 9) ++ (UNSPEC_PIC_SYM 10) ++ (UNSPEC_PIC_BASE 11) ++ (UNSPEC_STORE_MULTIPLE 12) ++ (UNSPEC_STMFP 13) ++ (UNSPEC_FRCPA 14) ++ (UNSPEC_REG_TO_CC 15) ++ (UNSPEC_FORCE_MINIPOOL 16) ++ (UNSPEC_SATS 17) ++ (UNSPEC_SATU 18) ++ (UNSPEC_SATRNDS 19) ++ (UNSPEC_SATRNDU 20) ++ ]) ++ ++(define_constants ++ [(VUNSPEC_EPILOGUE 0) ++ (VUNSPEC_CACHE 1) ++ (VUNSPEC_MTSR 2) ++ (VUNSPEC_MFSR 3) ++ (VUNSPEC_BLOCKAGE 4) ++ (VUNSPEC_SYNC 5) ++ (VUNSPEC_TLBR 6) ++ (VUNSPEC_TLBW 7) ++ (VUNSPEC_TLBS 8) ++ (VUNSPEC_BREAKPOINT 9) ++ (VUNSPEC_MTDR 10) ++ (VUNSPEC_MFDR 11) ++ (VUNSPEC_MVCR 12) ++ (VUNSPEC_MVRC 13) ++ (VUNSPEC_COP 14) ++ (VUNSPEC_ALIGN 15) ++ (VUNSPEC_POOL_START 16) ++ (VUNSPEC_POOL_END 17) ++ (VUNSPEC_POOL_4 18) ++ (VUNSPEC_POOL_8 19) ++ (VUNSPEC_POOL_16 20) ++ (VUNSPEC_MUSFR 21) ++ (VUNSPEC_MUSTR 22) ++ (VUNSPEC_SYNC_CMPXCHG 23) ++ (VUNSPEC_SYNC_SET_LOCK_AND_LOAD 24) ++ (VUNSPEC_SYNC_STORE_IF_LOCK 25) ++ (VUNSPEC_EH_RETURN 26) ++ (VUNSPEC_FRS 27) ++ (VUNSPEC_CSRF 28) ++ (VUNSPEC_SSRF 29) ++ (VUNSPEC_SLEEP 30) ++ (VUNSPEC_DELAY_CYCLES 31) ++ (VUNSPEC_DELAY_CYCLES_1 32) ++ (VUNSPEC_DELAY_CYCLES_2 33) ++ (VUNSPEC_NOP 34) ++ (VUNSPEC_NOP3 35) ++ ]) ++ ++(define_constants ++ [ ++ ;; R7 = 15-7 = 8 ++ (FP_REGNUM 8) ++ ;; Return Register = R12 = 15 - 12 = 3 ++ (RETVAL_REGNUM 3) ++ ;; SP = R13 = 15 - 13 = 2 ++ (SP_REGNUM 2) ++ ;; LR = R14 = 15 - 14 = 1 ++ (LR_REGNUM 1) ++ ;; PC = R15 = 15 - 15 = 0 ++ (PC_REGNUM 0) ++ ;; FPSR = GENERAL_REGS + 1 = 17 ++ (FPCC_REGNUM 17) ++ ]) ++ ++ ++ ++ ++;;****************************************************************************** ++;; Macros ++;;****************************************************************************** ++ ++;; Integer Modes for basic alu insns ++(define_mode_iterator INTM [SI HI QI]) ++(define_mode_attr alu_cc_attr [(SI "set_vncz") (HI "clobber") (QI "clobber")]) ++ ++;; Move word modes ++(define_mode_iterator MOVM [SI V2HI V4QI]) ++ ++;; For mov/addcc insns ++(define_mode_iterator ADDCC [SI HI QI]) ++(define_mode_iterator MOVCC [SF SI HI QI]) ++(define_mode_iterator CMP [DI SI HI QI]) ++(define_mode_attr store_postfix [(SF ".w") (SI ".w") (HI ".h") (QI ".b")]) ++(define_mode_attr load_postfix [(SF ".w") (SI ".w") (HI ".sh") (QI ".ub")]) ++(define_mode_attr load_postfix_s [(SI ".w") (HI ".sh") (QI ".sb")]) ++(define_mode_attr load_postfix_u [(SI ".w") (HI ".uh") (QI ".ub")]) ++(define_mode_attr pred_mem_constraint [(SF "RKu11") (SI "RKu11") (HI "RKu10") (QI "RKu09")]) ++(define_mode_attr cmp_constraint [(DI "rKu20") (SI "rKs21") (HI "r") (QI "r")]) ++(define_mode_attr cmp_predicate [(DI "register_immediate_operand") ++ (SI "register_const_int_operand") ++ (HI "register_operand") ++ (QI "register_operand")]) ++(define_mode_attr cmp_length [(DI "6") ++ (SI "4") ++ (HI "4") ++ (QI "4")]) ++ ++;; For all conditional insns ++(define_code_iterator any_cond_b [ge lt geu ltu]) ++(define_code_iterator any_cond [gt ge lt le gtu geu ltu leu]) ++(define_code_iterator any_cond4 [gt le gtu leu]) ++(define_code_attr cond [(eq "eq") (ne "ne") (gt "gt") (ge "ge") (lt "lt") (le "le") ++ (gtu "hi") (geu "hs") (ltu "lo") (leu "ls")]) ++(define_code_attr invcond [(eq "ne") (ne "eq") (gt "le") (ge "lt") (lt "ge") (le "gt") ++ (gtu "ls") (geu "lo") (ltu "hs") (leu "hi")]) ++ ++;; For logical operations ++(define_code_iterator logical [and ior xor]) ++(define_code_attr logical_insn [(and "and") (ior "or") (xor "eor")]) ++ ++;; Predicable operations with three register operands ++(define_code_iterator predicable_op3 [and ior xor plus minus]) ++(define_code_attr predicable_insn3 [(and "and") (ior "or") (xor "eor") (plus "add") (minus "sub")]) ++(define_code_attr predicable_commutative3 [(and "%") (ior "%") (xor "%") (plus "%") (minus "")]) ++ ++;; Load the predicates ++(include "predicates.md") ++ ++ ++;;****************************************************************************** ++;; Automaton pipeline description for avr32 ++;;****************************************************************************** ++ ++(define_automaton "avr32_ap") ++ ++ ++(define_cpu_unit "is" "avr32_ap") ++(define_cpu_unit "a1,m1,da" "avr32_ap") ++(define_cpu_unit "a2,m2,d" "avr32_ap") ++ ++;;Alu instructions ++(define_insn_reservation "alu_op" 1 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "alu")) ++ "is,a1,a2") ++ ++(define_insn_reservation "alu2_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "alu2")) ++ "is,is+a1,a1+a2,a2") ++ ++(define_insn_reservation "alu_sat_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "alu_sat")) ++ "is,a1,a2") ++ ++ ++;;Mul instructions ++(define_insn_reservation "mulhh_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "mulhh,mulwh")) ++ "is,m1,m2") ++ ++(define_insn_reservation "mulww_w_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "mulww_w")) ++ "is,m1,m1+m2,m2") ++ ++(define_insn_reservation "mulww_d_op" 5 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "mulww_d")) ++ "is,m1,m1+m2,m1+m2,m2,m2") ++ ++(define_insn_reservation "div_op" 33 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "div")) ++ "is,m1,m1*31 + m2*31,m2") ++ ++(define_insn_reservation "machh_w_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "machh_w")) ++ "is*2,m1,m2") ++ ++ ++(define_insn_reservation "macww_w_op" 4 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "macww_w")) ++ "is*2,m1,m1,m2") ++ ++ ++(define_insn_reservation "macww_d_op" 6 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "macww_d")) ++ "is*2,m1,m1+m2,m1+m2,m2") ++ ++;;Bypasses for Mac instructions, because of accumulator cache. ++;;Set latency as low as possible in order to let the compiler let ++;;mul -> mac and mac -> mac combinations which use the same ++;;accumulator cache be placed close together to avoid any ++;;instructions which can ruin the accumulator cache come inbetween. ++(define_bypass 4 "machh_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 5 "macww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 7 "macww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++ ++(define_bypass 3 "mulhh_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 4 "mulww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 6 "mulww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++ ++ ++;;Bypasses for all mul/mac instructions followed by an instruction ++;;which reads the output AND writes the result to the same register. ++;;This will generate an Write After Write hazard which gives an ++;;extra cycle before the result is ready. ++(define_bypass 0 "machh_w_op" "machh_w_op" "avr32_valid_macmac_bypass") ++(define_bypass 0 "macww_w_op" "macww_w_op" "avr32_valid_macmac_bypass") ++(define_bypass 0 "macww_d_op" "macww_d_op" "avr32_valid_macmac_bypass") ++ ++(define_bypass 0 "mulhh_op" "machh_w_op" "avr32_valid_mulmac_bypass") ++(define_bypass 0 "mulww_w_op" "macww_w_op" "avr32_valid_mulmac_bypass") ++(define_bypass 0 "mulww_d_op" "macww_d_op" "avr32_valid_mulmac_bypass") ++ ++;;Branch and call instructions ++;;We assume that all branches and rcalls are predicted correctly :-) ++;;while calls use a lot of cycles. ++(define_insn_reservation "branch_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "branch")) ++ "nothing") ++ ++(define_insn_reservation "call_op" 10 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "call")) ++ "nothing") ++ ++ ++;;Load store instructions ++(define_insn_reservation "load_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load")) ++ "is,da,d") ++ ++(define_insn_reservation "load_rm_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load_rm")) ++ "is,da,d") ++ ++ ++(define_insn_reservation "store_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "store")) ++ "is,da,d") ++ ++ ++(define_insn_reservation "load_double_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load2")) ++ "is,da,da+d,d") ++ ++(define_insn_reservation "load_quad_op" 4 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load4")) ++ "is,da,da+d,da+d,d") ++ ++(define_insn_reservation "store_double_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "store2")) ++ "is,da,da+d,d") ++ ++ ++(define_insn_reservation "store_quad_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "store4")) ++ "is,da,da+d,da+d,d") ++ ++;;For store the operand to write to memory is read in d and ++;;the real latency between any instruction and a store is therefore ++;;one less than for the instructions which reads the operands in the first ++;;excecution stage ++(define_bypass 2 "load_double_op" "store_double_op" "avr32_store_bypass") ++(define_bypass 3 "load_quad_op" "store_quad_op" "avr32_store_bypass") ++(define_bypass 1 "load_op" "store_op" "avr32_store_bypass") ++(define_bypass 2 "load_rm_op" "store_op" "avr32_store_bypass") ++(define_bypass 1 "alu_sat_op" "store_op" "avr32_store_bypass") ++(define_bypass 1 "alu2_op" "store_op" "avr32_store_bypass") ++(define_bypass 1 "mulhh_op" "store_op" "avr32_store_bypass") ++(define_bypass 2 "mulww_w_op" "store_op" "avr32_store_bypass") ++(define_bypass 4 "mulww_d_op" "store_op" "avr32_store_bypass" ) ++(define_bypass 2 "machh_w_op" "store_op" "avr32_store_bypass") ++(define_bypass 3 "macww_w_op" "store_op" "avr32_store_bypass") ++(define_bypass 5 "macww_d_op" "store_op" "avr32_store_bypass") ++ ++ ++; Bypass for load double operation. If only the first loaded word is needed ++; then the latency is 2 ++(define_bypass 2 "load_double_op" ++ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op, ++ mulww_d_op, machh_w_op, macww_w_op, macww_d_op" ++ "avr32_valid_load_double_bypass") ++ ++; Bypass for load quad operation. If only the first or second loaded word is needed ++; we set the latency to 2 ++(define_bypass 2 "load_quad_op" ++ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op, ++ mulww_d_op, machh_w_op, macww_w_op, macww_d_op" ++ "avr32_valid_load_quad_bypass") ++ ++ ++;;****************************************************************************** ++;; End of Automaton pipeline description for avr32 ++;;****************************************************************************** ++ ++(define_cond_exec ++ [(match_operator 0 "avr32_comparison_operator" ++ [(match_operand:CMP 1 "register_operand" "r") ++ (match_operand:CMP 2 "" "")])] ++ "TARGET_V2_INSNS" ++ "%!" ++) ++ ++(define_cond_exec ++ [(match_operator 0 "avr32_comparison_operator" ++ [(and:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "one_bit_set_operand" "i")) ++ (const_int 0)])] ++ "TARGET_V2_INSNS" ++ "%!" ++ ) ++ ++;;============================================================================= ++;; move ++;;----------------------------------------------------------------------------- ++ ++ ++;;== char - 8 bits ============================================================ ++(define_expand "movqi" ++ [(set (match_operand:QI 0 "nonimmediate_operand" "") ++ (match_operand:QI 1 "general_operand" ""))] ++ "" ++ { ++ if ( can_create_pseudo_p () ){ ++ if (GET_CODE (operands[1]) == MEM && optimize){ ++ rtx reg = gen_reg_rtx (SImode); ++ ++ emit_insn (gen_zero_extendqisi2 (reg, operands[1])); ++ operands[1] = gen_lowpart (QImode, reg); ++ } ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) == MEM) ++ operands[1] = force_reg (QImode, operands[1]); ++ } ++ ++ }) ++ ++(define_insn "*movqi_internal" ++ [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m,r") ++ (match_operand:QI 1 "general_operand" "rKs08,m,r,i"))] ++ "register_operand (operands[0], QImode) ++ || register_operand (operands[1], QImode)" ++ "@ ++ mov\t%0, %1 ++ ld.ub\t%0, %1 ++ st.b\t%0, %1 ++ mov\t%0, %1" ++ [(set_attr "length" "2,4,4,4") ++ (set_attr "type" "alu,load_rm,store,alu")]) ++ ++ ++ ++;;== short - 16 bits ========================================================== ++(define_expand "movhi" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "") ++ (match_operand:HI 1 "general_operand" ""))] ++ "" ++ { ++ if ( can_create_pseudo_p () ){ ++ if (GET_CODE (operands[1]) == MEM && optimize){ ++ rtx reg = gen_reg_rtx (SImode); ++ ++ emit_insn (gen_extendhisi2 (reg, operands[1])); ++ operands[1] = gen_lowpart (HImode, reg); ++ } ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) == MEM) ++ operands[1] = force_reg (HImode, operands[1]); ++ } ++ ++ }) ++ ++ ++(define_insn "*movhi_internal" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,m,r") ++ (match_operand:HI 1 "general_operand" "rKs08,m,r,i"))] ++ "register_operand (operands[0], HImode) ++ || register_operand (operands[1], HImode)" ++ "@ ++ mov\t%0, %1 ++ ld.sh\t%0, %1 ++ st.h\t%0, %1 ++ mov\t%0, %1" ++ [(set_attr "length" "2,4,4,4") ++ (set_attr "type" "alu,load_rm,store,alu")]) ++ ++ ++;;== int - 32 bits ============================================================ ++ ++(define_expand "movmisalignsi" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "nonimmediate_operand" ""))] ++ "TARGET_UNALIGNED_WORD" ++ { ++ } ++) ++ ++(define_expand "mov" ++ [(set (match_operand:MOVM 0 "avr32_non_rmw_nonimmediate_operand" "") ++ (match_operand:MOVM 1 "avr32_non_rmw_general_operand" ""))] ++ "" ++ { ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) == MEM) ++ operands[1] = force_reg (mode, operands[1]); ++ ++ /* Check for out of range immediate constants as these may ++ occur during reloading, since it seems like reload does ++ not check if the immediate is legitimate. Don't know if ++ this is a bug? */ ++ if ( reload_in_progress ++ && avr32_imm_in_const_pool ++ && GET_CODE(operands[1]) == CONST_INT ++ && !avr32_const_ok_for_constraint_p(INTVAL(operands[1]), 'K', "Ks21") ){ ++ operands[1] = force_const_mem(SImode, operands[1]); ++ } ++ /* Check for RMW memory operands. They are not allowed for mov operations ++ only the atomic memc/s/t operations */ ++ if ( !reload_in_progress ++ && avr32_rmw_memory_operand (operands[0], mode) ){ ++ operands[0] = copy_rtx (operands[0]); ++ XEXP(operands[0], 0) = force_reg (mode, XEXP(operands[0], 0)); ++ } ++ ++ if ( !reload_in_progress ++ && avr32_rmw_memory_operand (operands[1], mode) ){ ++ operands[1] = copy_rtx (operands[1]); ++ XEXP(operands[1], 0) = force_reg (mode, XEXP(operands[1], 0)); ++ } ++ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS) ++ && !avr32_legitimate_pic_operand_p(operands[1]) ) ++ operands[1] = legitimize_pic_address (operands[1], mode, ++ (can_create_pseudo_p () ? 0: operands[0])); ++ else if ( flag_pic && avr32_address_operand(operands[1], GET_MODE(operands[1])) ) ++ /* If we have an address operand then this function uses the pic register. */ ++ crtl->uses_pic_offset_table = 1; ++ }) ++ ++ ++(define_insn "mov_internal" ++ [(set (match_operand:MOVM 0 "avr32_non_rmw_nonimmediate_operand" "=r, r, r,r,r,Q,r") ++ (match_operand:MOVM 1 "avr32_non_rmw_general_operand" "rKs08,Ks21,J,n,Q,r,W"))] ++ "(register_operand (operands[0], mode) ++ || register_operand (operands[1], mode)) ++ && !avr32_rmw_memory_operand (operands[0], mode) ++ && !avr32_rmw_memory_operand (operands[1], mode)" ++ { ++ switch (which_alternative) { ++ case 0: ++ case 1: return "mov\t%0, %1"; ++ case 2: ++ if ( TARGET_V2_INSNS ) ++ return "movh\t%0, hi(%1)"; ++ /* Fallthrough */ ++ case 3: return "mov\t%0, lo(%1)\;orh\t%0,hi(%1)"; ++ case 4: ++ if ( (REG_P(XEXP(operands[1], 0)) ++ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[1], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) ) ++ return "lddsp\t%0, %1"; ++ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) ) ++ return "lddpc\t%0, %1"; ++ else ++ return "ld.w\t%0, %1"; ++ case 5: ++ if ( (REG_P(XEXP(operands[0], 0)) ++ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[0], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) ) ++ return "stdsp\t%0, %1"; ++ else ++ return "st.w\t%0, %1"; ++ case 6: ++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ return "lda.w\t%0, %1"; ++ else ++ return "ld.w\t%0, r6[%1@got]"; ++ default: ++ abort(); ++ } ++ } ++ ++ [(set_attr "length" "2,4,4,8,4,4,8") ++ (set_attr "type" "alu,alu,alu,alu2,load,store,load") ++ (set_attr "cc" "none,none,set_z_if_not_v2,set_z,none,none,clobber")]) ++ ++ ++(define_expand "reload_out_rmw_memory_operand" ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (match_operand:SI 0 "address_operand" "")) ++ (set (mem:SI (match_dup 2)) ++ (match_operand:SI 1 "register_operand" ""))] ++ "" ++ { ++ operands[0] = XEXP(operands[0], 0); ++ } ++) ++ ++(define_expand "reload_in_rmw_memory_operand" ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (match_operand:SI 1 "address_operand" "")) ++ (set (match_operand:SI 0 "register_operand" "") ++ (mem:SI (match_dup 2)))] ++ "" ++ { ++ operands[1] = XEXP(operands[1], 0); ++ } ++) ++ ++ ++;; These instructions are for loading constants which cannot be loaded ++;; directly from the constant pool because the offset is too large ++;; high and lo_sum are used even tough for our case it should be ++;; low and high sum :-) ++(define_insn "mov_symbol_lo" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (high:SI (match_operand:SI 1 "immediate_operand" "i" )))] ++ "" ++ "mov\t%0, lo(%1)" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4")] ++) ++ ++(define_insn "add_symbol_hi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (lo_sum:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" "i" )))] ++ "" ++ "orh\t%0, hi(%1)" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4")] ++) ++ ++ ++ ++;; When generating pic, we need to load the symbol offset into a register. ++;; So that the optimizer does not confuse this with a normal symbol load ++;; we use an unspec. The offset will be loaded from a constant pool entry, ++;; since that is the only type of relocation we can use. ++(define_insn "pic_load_addr" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(match_operand:SI 1 "" "")] UNSPEC_PIC_SYM))] ++ "flag_pic && CONSTANT_POOL_ADDRESS_P(XEXP(operands[1], 0))" ++ "lddpc\t%0, %1" ++ [(set_attr "type" "load") ++ (set_attr "length" "4")] ++) ++ ++(define_insn "pic_compute_got_from_pc" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(minus:SI (pc) ++ (match_dup 0))] UNSPEC_PIC_BASE)) ++ (use (label_ref (match_operand 1 "" "")))] ++ "flag_pic" ++ { ++ (*targetm.asm_out.internal_label) (asm_out_file, "L", ++ CODE_LABEL_NUMBER (operands[1])); ++ return \"rsub\t%0, pc\"; ++ } ++ [(set_attr "cc" "clobber") ++ (set_attr "length" "2")] ++) ++ ++;;== long long int - 64 bits ================================================== ++ ++(define_expand "movdi" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "") ++ (match_operand:DI 1 "general_operand" ""))] ++ "" ++ { ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG) ++ operands[1] = force_reg (DImode, operands[1]); ++ ++ }) ++ ++ ++(define_insn_and_split "*movdi_internal" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r, r, r,r,r,m") ++ (match_operand:DI 1 "general_operand" "r, Ks08,Ks21,G,n,m,r"))] ++ "register_operand (operands[0], DImode) ++ || register_operand (operands[1], DImode)" ++ { ++ switch (which_alternative ){ ++ case 0: ++ case 1: ++ case 2: ++ case 3: ++ case 4: ++ return "#"; ++ case 5: ++ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1]))) ++ return "ld.d\t%0, pc[%1 - .]"; ++ else ++ return "ld.d\t%0, %1"; ++ case 6: ++ return "st.d\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++;; Lets split all reg->reg or imm->reg transfers into two SImode transfers ++ "reload_completed && ++ (REG_P (operands[0]) && ++ (REG_P (operands[1]) ++ || GET_CODE (operands[1]) == CONST_INT ++ || GET_CODE (operands[1]) == CONST_DOUBLE))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 2) (match_dup 3))] ++ { ++ operands[2] = gen_highpart (SImode, operands[0]); ++ operands[0] = gen_lowpart (SImode, operands[0]); ++ if ( REG_P(operands[1]) ){ ++ operands[3] = gen_highpart(SImode, operands[1]); ++ operands[1] = gen_lowpart(SImode, operands[1]); ++ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE ++ || GET_CODE(operands[1]) == CONST_INT ){ ++ rtx split_const[2]; ++ avr32_split_const_expr (DImode, SImode, operands[1], split_const); ++ operands[3] = split_const[1]; ++ operands[1] = split_const[0]; ++ } else { ++ internal_error("Illegal operand[1] for movdi split!"); ++ } ++ } ++ ++ [(set_attr "length" "*,*,*,*,*,4,4") ++ (set_attr "type" "*,*,*,*,*,load2,store2") ++ (set_attr "cc" "*,*,*,*,*,none,none")]) ++ ++ ++;;== 128 bits ================================================== ++(define_expand "movti" ++ [(set (match_operand:TI 0 "nonimmediate_operand" "") ++ (match_operand:TI 1 "nonimmediate_operand" ""))] ++ "TARGET_ARCH_AP" ++ { ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG) ++ operands[1] = force_reg (TImode, operands[1]); ++ ++ /* We must fix any pre_dec for loads and post_inc stores */ ++ if ( GET_CODE (operands[0]) == MEM ++ && GET_CODE (XEXP(operands[0],0)) == POST_INC ){ ++ emit_move_insn(gen_rtx_MEM(TImode, XEXP(XEXP(operands[0],0),0)), operands[1]); ++ emit_insn(gen_addsi3(XEXP(XEXP(operands[0],0),0), XEXP(XEXP(operands[0],0),0), GEN_INT(GET_MODE_SIZE(TImode)))); ++ DONE; ++ } ++ ++ if ( GET_CODE (operands[1]) == MEM ++ && GET_CODE (XEXP(operands[1],0)) == PRE_DEC ){ ++ emit_insn(gen_addsi3(XEXP(XEXP(operands[1],0),0), XEXP(XEXP(operands[1],0),0), GEN_INT(-GET_MODE_SIZE(TImode)))); ++ emit_move_insn(operands[0], gen_rtx_MEM(TImode, XEXP(XEXP(operands[1],0),0))); ++ DONE; ++ } ++ }) ++ ++ ++(define_insn_and_split "*movti_internal" ++ [(set (match_operand:TI 0 "avr32_movti_dst_operand" "=r,&r, r, ,RKu00,r, n,T"))] ++ "(register_operand (operands[0], TImode) ++ || register_operand (operands[1], TImode))" ++ { ++ switch (which_alternative ){ ++ case 0: ++ case 2: ++ case 4: ++ return "#"; ++ case 1: ++ return "ldm\t%p1, %0"; ++ case 3: ++ return "stm\t%p0, %1"; ++ case 5: ++ return "ld.d\t%U0, pc[%1 - .]\;ld.d\t%B0, pc[%1 - . + 8]"; ++ } ++ } ++ ++ "reload_completed && ++ (REG_P (operands[0]) && ++ (REG_P (operands[1]) ++ /* If this is a load from the constant pool we split it into ++ two double loads. */ ++ || (GET_CODE (operands[1]) == MEM ++ && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF ++ && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0))) ++ /* If this is a load where the pointer register is a part ++ of the register list, we must split it into two double ++ loads in order for it to be exception safe. */ ++ || (GET_CODE (operands[1]) == MEM ++ && register_operand (XEXP (operands[1], 0), SImode) ++ && reg_overlap_mentioned_p (operands[0], XEXP (operands[1], 0))) ++ || GET_CODE (operands[1]) == CONST_INT ++ || GET_CODE (operands[1]) == CONST_DOUBLE))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 2) (match_dup 3))] ++ { ++ operands[2] = simplify_gen_subreg ( DImode, operands[0], ++ TImode, 0 ); ++ operands[0] = simplify_gen_subreg ( DImode, operands[0], ++ TImode, 8 ); ++ if ( REG_P(operands[1]) ){ ++ operands[3] = simplify_gen_subreg ( DImode, operands[1], ++ TImode, 0 ); ++ operands[1] = simplify_gen_subreg ( DImode, operands[1], ++ TImode, 8 ); ++ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE ++ || GET_CODE(operands[1]) == CONST_INT ){ ++ rtx split_const[2]; ++ avr32_split_const_expr (TImode, DImode, operands[1], split_const); ++ operands[3] = split_const[1]; ++ operands[1] = split_const[0]; ++ } else if (avr32_const_pool_ref_operand (operands[1], GET_MODE(operands[1]))){ ++ rtx split_const[2]; ++ rtx cop = avoid_constant_pool_reference (operands[1]); ++ if (operands[1] == cop) ++ cop = get_pool_constant (XEXP (operands[1], 0)); ++ avr32_split_const_expr (TImode, DImode, cop, split_const); ++ operands[3] = force_const_mem (DImode, split_const[1]); ++ operands[1] = force_const_mem (DImode, split_const[0]); ++ } else { ++ rtx ptr_reg = XEXP (operands[1], 0); ++ operands[1] = gen_rtx_MEM (DImode, ++ gen_rtx_PLUS ( SImode, ++ ptr_reg, ++ GEN_INT (8) )); ++ operands[3] = gen_rtx_MEM (DImode, ++ ptr_reg); ++ ++ /* Check if the first load will clobber the pointer. ++ If so, we must switch the order of the operations. */ ++ if ( reg_overlap_mentioned_p (operands[0], ptr_reg) ) ++ { ++ /* We need to switch the order of the operations ++ so that the pointer register does not get clobbered ++ after the first double word load. */ ++ rtx tmp; ++ tmp = operands[0]; ++ operands[0] = operands[2]; ++ operands[2] = tmp; ++ tmp = operands[1]; ++ operands[1] = operands[3]; ++ operands[3] = tmp; ++ } ++ ++ ++ } ++ } ++ [(set_attr "length" "*,*,4,4,*,8") ++ (set_attr "type" "*,*,load4,store4,*,load4")]) ++ ++ ++;;== float - 32 bits ========================================================== ++(define_expand "movsf" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "") ++ (match_operand:SF 1 "general_operand" ""))] ++ "" ++ { ++ ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG) ++ operands[1] = force_reg (SFmode, operands[1]); ++ ++ }) ++ ++(define_insn "*movsf_internal" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,r,m") ++ (match_operand:SF 1 "general_operand" "r, G,F,m,r"))] ++ "(register_operand (operands[0], SFmode) ++ || register_operand (operands[1], SFmode))" ++ { ++ switch (which_alternative) { ++ case 0: ++ case 1: return "mov\t%0, %1"; ++ case 2: ++ { ++ HOST_WIDE_INT target_float[2]; ++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (operands[1]), SFmode); ++ if ( TARGET_V2_INSNS ++ && avr32_hi16_immediate_operand (GEN_INT (target_float[0]), VOIDmode) ) ++ return "movh\t%0, hi(%1)"; ++ else ++ return "mov\t%0, lo(%1)\;orh\t%0, hi(%1)"; ++ } ++ case 3: ++ if ( (REG_P(XEXP(operands[1], 0)) ++ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[1], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) ) ++ return "lddsp\t%0, %1"; ++ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) ) ++ return "lddpc\t%0, %1"; ++ else ++ return "ld.w\t%0, %1"; ++ case 4: ++ if ( (REG_P(XEXP(operands[0], 0)) ++ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[0], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) ) ++ return "stdsp\t%0, %1"; ++ else ++ return "st.w\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ ++ [(set_attr "length" "2,4,8,4,4") ++ (set_attr "type" "alu,alu,alu2,load,store") ++ (set_attr "cc" "none,none,clobber,none,none")]) ++ ++ ++ ++;;== double - 64 bits ========================================================= ++(define_expand "movdf" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "") ++ (match_operand:DF 1 "general_operand" ""))] ++ "" ++ { ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG){ ++ operands[1] = force_reg (DFmode, operands[1]); ++ } ++ }) ++ ++ ++(define_insn_and_split "*movdf_internal" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,r,r,m") ++ (match_operand:DF 1 "general_operand" " r,G,F,m,r"))] ++ "(register_operand (operands[0], DFmode) ++ || register_operand (operands[1], DFmode))" ++ { ++ switch (which_alternative ){ ++ case 0: ++ case 1: ++ case 2: ++ return "#"; ++ case 3: ++ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1]))) ++ return "ld.d\t%0, pc[%1 - .]"; ++ else ++ return "ld.d\t%0, %1"; ++ case 4: ++ return "st.d\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ "reload_completed ++ && (REG_P (operands[0]) ++ && (REG_P (operands[1]) ++ || GET_CODE (operands[1]) == CONST_DOUBLE))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 2) (match_dup 3))] ++ " ++ { ++ operands[2] = gen_highpart (SImode, operands[0]); ++ operands[0] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_highpart(SImode, operands[1]); ++ operands[1] = gen_lowpart(SImode, operands[1]); ++ } ++ " ++ ++ [(set_attr "length" "*,*,*,4,4") ++ (set_attr "type" "*,*,*,load2,store2") ++ (set_attr "cc" "*,*,*,none,none")]) ++ ++ ++;;============================================================================= ++;; Conditional Moves ++;;============================================================================= ++(define_insn "ld_predicable" ++ [(set (match_operand:MOVCC 0 "register_operand" "=r") ++ (match_operand:MOVCC 1 "avr32_non_rmw_memory_operand" ""))] ++ "TARGET_V2_INSNS" ++ "ld%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++ ++(define_insn "st_predicable" ++ [(set (match_operand:MOVCC 0 "avr32_non_rmw_memory_operand" "=") ++ (match_operand:MOVCC 1 "register_operand" "r"))] ++ "TARGET_V2_INSNS" ++ "st%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "store") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "mov_predicable" ++ [(set (match_operand:MOVCC 0 "register_operand" "=r") ++ (match_operand:MOVCC 1 "avr32_cond_register_immediate_operand" "rKs08"))] ++ "" ++ "mov%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "alu") ++ (set_attr "predicable" "yes")] ++) ++ ++ ++;;============================================================================= ++;; Move chunks of memory ++;;============================================================================= ++ ++(define_expand "movmemsi" ++ [(match_operand:BLK 0 "general_operand" "") ++ (match_operand:BLK 1 "general_operand" "") ++ (match_operand:SI 2 "const_int_operand" "") ++ (match_operand:SI 3 "const_int_operand" "")] ++ "" ++ " ++ if (avr32_gen_movmemsi (operands)) ++ DONE; ++ FAIL; ++ " ++ ) ++ ++ ++ ++ ++;;============================================================================= ++;; Bit field instructions ++;;----------------------------------------------------------------------------- ++;; Instructions to insert or extract bit-fields ++;;============================================================================= ++ ++(define_insn "insv" ++ [ (set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r") ++ (match_operand:SI 1 "immediate_operand" "Ku05") ++ (match_operand:SI 2 "immediate_operand" "Ku05")) ++ (match_operand 3 "register_operand" "r"))] ++ "" ++ "bfins\t%0, %3, %2, %1" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++ ++(define_expand "extv" ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (sign_extract:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "") ++ (match_operand:SI 3 "immediate_operand" "")))] ++ "" ++ { ++ if ( INTVAL(operands[2]) >= 32 ) ++ FAIL; ++ } ++) ++ ++(define_expand "extzv" ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "") ++ (match_operand:SI 3 "immediate_operand" "")))] ++ "" ++ { ++ if ( INTVAL(operands[2]) >= 32 ) ++ FAIL; ++ } ++) ++ ++(define_insn "extv_internal" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extract:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku05") ++ (match_operand:SI 3 "immediate_operand" "Ku05")))] ++ "INTVAL(operands[2]) < 32" ++ "bfexts\t%0, %1, %3, %2" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++(define_insn "extzv_internal" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku05") ++ (match_operand:SI 3 "immediate_operand" "Ku05")))] ++ "INTVAL(operands[2]) < 32" ++ "bfextu\t%0, %1, %3, %2" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++ ++;;============================================================================= ++;; Some peepholes for avoiding unnecessary cast instructions ++;; followed by bfins. ++;;----------------------------------------------------------------------------- ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:QI 1 "register_operand" ""))) ++ (set (zero_extract:SI (match_operand 2 "register_operand" "") ++ (match_operand:SI 3 "immediate_operand" "") ++ (match_operand:SI 4 "immediate_operand" "")) ++ (match_dup 0))] ++ "((peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[3]) <= 8)))" ++ [(set (zero_extract:SI (match_dup 2) ++ (match_dup 3) ++ (match_dup 4)) ++ (match_dup 1))] ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:HI 1 "register_operand" ""))) ++ (set (zero_extract:SI (match_operand 2 "register_operand" "") ++ (match_operand:SI 3 "immediate_operand" "") ++ (match_operand:SI 4 "immediate_operand" "")) ++ (match_dup 0))] ++ "((peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[3]) <= 16)))" ++ [(set (zero_extract:SI (match_dup 2) ++ (match_dup 3) ++ (match_dup 4)) ++ (match_dup 1))] ++ ) ++ ++;;============================================================================= ++;; push bytes ++;;----------------------------------------------------------------------------- ++;; Implements the push instruction ++;;============================================================================= ++(define_insn "pushm" ++ [(set (mem:BLK (pre_dec:BLK (reg:SI SP_REGNUM))) ++ (unspec:BLK [(match_operand 0 "const_int_operand" "")] ++ UNSPEC_PUSHM))] ++ "" ++ { ++ if (INTVAL(operands[0])) { ++ return "pushm\t%r0"; ++ } else { ++ return ""; ++ } ++ } ++ [(set_attr "type" "store") ++ (set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++(define_insn "stm" ++ [(unspec [(match_operand 0 "register_operand" "r") ++ (match_operand 1 "const_int_operand" "") ++ (match_operand 2 "const_int_operand" "")] ++ UNSPEC_STM)] ++ "" ++ { ++ if (INTVAL(operands[1])) { ++ if (INTVAL(operands[2]) != 0) ++ return "stm\t--%0, %s1"; ++ else ++ return "stm\t%0, %s1"; ++ } else { ++ return ""; ++ } ++ } ++ [(set_attr "type" "store") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++(define_insn "popm" ++ [(unspec [(match_operand 0 "const_int_operand" "")] ++ UNSPEC_POPM)] ++ "" ++ { ++ if (INTVAL(operands[0])) { ++ return "popm %r0"; ++ } else { ++ return ""; ++ } ++ } ++ [(set_attr "type" "load") ++ (set_attr "length" "2")]) ++ ++ ++ ++;;============================================================================= ++;; add ++;;----------------------------------------------------------------------------- ++;; Adds reg1 with reg2 and puts the result in reg0. ++;;============================================================================= ++(define_insn "add3" ++ [(set (match_operand:INTM 0 "register_operand" "=r,r,r,r,r") ++ (plus:INTM (match_operand:INTM 1 "register_operand" "%0,r,0,r,0") ++ (match_operand:INTM 2 "avr32_add_operand" "r,r,Is08,Is16,Is21")))] ++ "" ++ "@ ++ add %0, %2 ++ add %0, %1, %2 ++ sub %0, %n2 ++ sub %0, %1, %n2 ++ sub %0, %n2" ++ ++ [(set_attr "length" "2,4,2,4,4") ++ (set_attr "cc" "")]) ++ ++(define_insn "add3_lsl" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (ashift:INTM (match_operand:INTM 1 "register_operand" "r") ++ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02")) ++ (match_operand:INTM 2 "register_operand" "r")))] ++ "" ++ "add %0, %2, %1 << %3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "")]) ++ ++(define_insn "add3_lsl2" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (ashift:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02"))))] ++ "" ++ "add %0, %1, %2 << %3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "")]) ++ ++ ++(define_insn "add3_mul" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (mult:INTM (match_operand:INTM 1 "register_operand" "r") ++ (match_operand:INTM 3 "immediate_operand" "Ku04" )) ++ (match_operand:INTM 2 "register_operand" "r")))] ++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || ++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" ++ "add %0, %2, %1 << %p3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "")]) ++ ++(define_insn "add3_mul2" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (mult:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:INTM 3 "immediate_operand" "Ku04" ))))] ++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || ++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" ++ "add %0, %1, %2 << %p3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "")]) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (ashift:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_dup 0) ++ (match_operand:SI 4 "register_operand" "")))] ++ "(peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))" ++ [(set (match_dup 3) ++ (plus:SI (ashift:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 4)))] ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (ashift:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_operand:SI 4 "register_operand" "") ++ (match_dup 0)))] ++ "(peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))" ++ [(set (match_dup 3) ++ (plus:SI (ashift:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 4)))] ++ ) ++ ++(define_insn "adddi3" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (plus:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "@ ++ add %0, %2\;adc %m0, %m0, %m2 ++ add %0, %1, %2\;adc %m0, %m1, %m2" ++ [(set_attr "length" "6,8") ++ (set_attr "type" "alu2") ++ (set_attr "cc" "set_vncz")]) ++ ++ ++(define_insn "add_imm_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "+r") ++ (plus:INTM (match_dup 0) ++ (match_operand:INTM 1 "avr32_cond_immediate_operand" "%Is08")))] ++ "" ++ "sub%?\t%0, -%1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++) ++ ++;;============================================================================= ++;; subtract ++;;----------------------------------------------------------------------------- ++;; Subtract reg2 or immediate value from reg0 and puts the result in reg0. ++;;============================================================================= ++ ++(define_insn "sub3" ++ [(set (match_operand:INTM 0 "general_operand" "=r,r,r,r,r,r,r") ++ (minus:INTM (match_operand:INTM 1 "register_const_int_operand" "0,r,0,r,0,r,Ks08") ++ (match_operand:INTM 2 "register_const_int_operand" "r,r,Ks08,Ks16,Ks21,0,r")))] ++ "" ++ "@ ++ sub %0, %2 ++ sub %0, %1, %2 ++ sub %0, %2 ++ sub %0, %1, %2 ++ sub %0, %2 ++ rsub %0, %1 ++ rsub %0, %2, %1" ++ [(set_attr "length" "2,4,2,4,4,2,4") ++ (set_attr "cc" "")]) ++ ++(define_insn "*sub3_mul" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (minus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (mult:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:SI 3 "immediate_operand" "Ku04" ))))] ++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || ++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" ++ "sub %0, %1, %2 << %p3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "")]) ++ ++(define_insn "*sub3_lsl" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (minus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (ashift:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:SI 3 "avr32_add_shift_immediate_operand" "Ku02"))))] ++ "" ++ "sub %0, %1, %2 << %3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "")]) ++ ++ ++(define_insn "subdi3" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (minus:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "@ ++ sub %0, %2\;sbc %m0, %m0, %m2 ++ sub %0, %1, %2\;sbc %m0, %m1, %m2" ++ [(set_attr "length" "6,8") ++ (set_attr "type" "alu2") ++ (set_attr "cc" "set_vncz")]) ++ ++ ++(define_insn "sub_imm_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "+r") ++ (minus:INTM (match_dup 0) ++ (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08")))] ++ "" ++ "sub%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++(define_insn "rsub_imm_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "+r") ++ (minus:INTM (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08") ++ (match_dup 0)))] ++ "" ++ "rsub%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++;;============================================================================= ++;; multiply ++;;----------------------------------------------------------------------------- ++;; Multiply op1 and op2 and put the value in op0. ++;;============================================================================= ++ ++ ++(define_insn "mulqi3" ++ [(set (match_operand:QI 0 "register_operand" "=r,r,r") ++ (mult:QI (match_operand:QI 1 "register_operand" "%0,r,r") ++ (match_operand:QI 2 "avr32_mul_operand" "r,r,Ks08")))] ++ "!TARGET_NO_MUL_INSNS" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mul %0, %2"; ++ case 1: ++ return "mul %0, %1, %2"; ++ case 2: ++ return "mul %0, %1, %2"; ++ default: ++ gcc_unreachable(); ++ } ++ } ++ [(set_attr "type" "mulww_w,mulww_w,mulwh") ++ (set_attr "length" "2,4,4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "mulsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (mult:SI (match_operand:SI 1 "register_operand" "%0,r,r") ++ (match_operand:SI 2 "avr32_mul_operand" "r,r,Ks08")))] ++ "!TARGET_NO_MUL_INSNS" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mul %0, %2"; ++ case 1: ++ return "mul %0, %1, %2"; ++ case 2: ++ return "mul %0, %1, %2"; ++ default: ++ gcc_unreachable(); ++ } ++ } ++ [(set_attr "type" "mulww_w,mulww_w,mulwh") ++ (set_attr "length" "2,4,4") ++ (set_attr "cc" "none")]) ++ ++ ++(define_insn "mulhisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI ++ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulhh.w %0, %1:b, %2:b" ++ [(set_attr "type" "mulhh") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_peephole2 ++ [(match_scratch:DI 6 "r") ++ (set (match_operand:SI 0 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_operand:HI 1 "register_operand" "")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "")))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (ashiftrt:SI (match_dup 0) ++ (const_int 16)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP ++ && (peep2_reg_dead_p(1, operands[0]) || (REGNO(operands[0]) == REGNO(operands[3])))" ++ [(set (match_dup 4) (sign_extend:SI (match_dup 1))) ++ (set (match_dup 6) ++ (ashift:DI (mult:DI (sign_extend:DI (match_dup 4)) ++ (sign_extend:DI (match_dup 2))) ++ (const_int 16))) ++ (set (match_dup 3) (match_dup 5))] ++ ++ "{ ++ operands[4] = gen_rtx_REG(SImode, REGNO(operands[1])); ++ operands[5] = gen_highpart (SImode, operands[4]); ++ }" ++ ) ++ ++(define_insn "mulnhisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI ++ (sign_extend:SI (neg:HI (match_operand:HI 1 "register_operand" "r"))) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulnhh.w %0, %1:b, %2:b" ++ [(set_attr "type" "mulhh") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "machisi3" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (plus:SI (mult:SI ++ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "machh.w %0, %1:b, %2:b" ++ [(set_attr "type" "machh_w") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++(define_insn "mulsidi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI ++ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS" ++ "muls.d %0, %1, %2" ++ [(set_attr "type" "mulww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "umulsidi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI ++ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS" ++ "mulu.d %0, %1, %2" ++ [(set_attr "type" "mulww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "*mulaccsi3" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r") ++ (match_operand:SI 2 "register_operand" "r")) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS" ++ "mac %0, %1, %2" ++ [(set_attr "type" "macww_w") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "*mulaccsidi3" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (mult:DI ++ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS" ++ "macs.d %0, %1, %2" ++ [(set_attr "type" "macww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "*umulaccsidi3" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (mult:DI ++ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS" ++ "macu.d %0, %1, %2" ++ [(set_attr "type" "macww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++;; Try to avoid Write-After-Write hazards for mul operations ++;; if it can be done ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_operand 1 "general_operand" "")) ++ (sign_extend:SI (match_operand 2 "general_operand" "")))) ++ (set (match_dup 0) ++ (match_operator:SI 3 "alu_operator" [(match_dup 0) ++ (match_operand 4 "general_operand" "")]))] ++ "peep2_reg_dead_p(1, operands[2])" ++ [(set (match_dup 5) ++ (mult:SI ++ (sign_extend:SI (match_dup 1)) ++ (sign_extend:SI (match_dup 2)))) ++ (set (match_dup 0) ++ (match_op_dup 3 [(match_dup 5) ++ (match_dup 4)]))] ++ "{operands[5] = gen_rtx_REG(SImode, REGNO(operands[2]));}" ++ ) ++ ++ ++ ++;;============================================================================= ++;; DSP instructions ++;;============================================================================= ++(define_insn "mulsathh_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_truncate:HI (ashiftrt:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsathh.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++(define_insn "mulsatrndhh_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_truncate:HI (ashiftrt:SI ++ (plus:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1073741824)) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsatrndhh.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++(define_insn "mulsathh_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsathh.w\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++(define_insn "mulsatwh_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_truncate:SI (ashiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsatwh.w\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "mulsatrndwh_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_truncate:SI (ashiftrt:DI (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1073741824)) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsatrndwh.w\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "macsathh_w" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (plus:SI (match_dup 0) ++ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1)))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "macsathh.w\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++ ++(define_insn "mulwh_d" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 16)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulwh.d\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++ ++(define_insn "mulnwh_d" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashift:DI (mult:DI (not:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 16)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulnwh.d\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "macwh_d" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (match_dup 0) ++ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 16))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "macwh.d\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "machh_d" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (match_dup 0) ++ (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "machh.d\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "satadd_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_plus:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satadd.w\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++(define_insn "satsub_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_minus:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satsub.w\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++(define_insn "satadd_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_plus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satadd.h\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++(define_insn "satsub_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_minus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satsub.h\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++ ++;;============================================================================= ++;; smin ++;;----------------------------------------------------------------------------- ++;; Set reg0 to the smallest value of reg1 and reg2. It is used for signed ++;; values in the registers. ++;;============================================================================= ++(define_insn "sminsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (smin:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "" ++ "min %0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++;;============================================================================= ++;; smax ++;;----------------------------------------------------------------------------- ++;; Set reg0 to the largest value of reg1 and reg2. It is used for signed ++;; values in the registers. ++;;============================================================================= ++(define_insn "smaxsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (smax:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "" ++ "max %0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++;;============================================================================= ++;; Logical operations ++;;----------------------------------------------------------------------------- ++ ++ ++;; Split up simple DImode logical operations. Simply perform the logical ++;; operation on the upper and lower halves of the registers. ++(define_split ++ [(set (match_operand:DI 0 "register_operand" "") ++ (match_operator:DI 6 "logical_binary_operator" ++ [(match_operand:DI 1 "register_operand" "") ++ (match_operand:DI 2 "register_operand" "")]))] ++ "reload_completed" ++ [(set (match_dup 0) (match_op_dup:SI 6 [(match_dup 1) (match_dup 2)])) ++ (set (match_dup 3) (match_op_dup:SI 6 [(match_dup 4) (match_dup 5)]))] ++ " ++ { ++ operands[3] = gen_highpart (SImode, operands[0]); ++ operands[0] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_highpart (SImode, operands[1]); ++ operands[1] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_highpart (SImode, operands[2]); ++ operands[2] = gen_lowpart (SImode, operands[2]); ++ }" ++) ++ ++;;============================================================================= ++;; Logical operations with shifted operand ++;;============================================================================= ++(define_insn "si_lshift" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (logical:SI (match_operator:SI 4 "logical_shift_operator" ++ [(match_operand:SI 2 "register_operand" "r") ++ (match_operand:SI 3 "immediate_operand" "Ku05")]) ++ (match_operand:SI 1 "register_operand" "r")))] ++ "" ++ { ++ if ( GET_CODE(operands[4]) == ASHIFT ) ++ return "\t%0, %1, %2 << %3"; ++ else ++ return "\t%0, %1, %2 >> %3"; ++ } ++ ++ [(set_attr "cc" "set_z")] ++) ++ ++ ++;;************************************************ ++;; Peepholes for detecting logical operantions ++;; with shifted operands ++;;************************************************ ++ ++(define_peephole ++ [(set (match_operand:SI 3 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 0 "register_operand" "") ++ (logical:SI (match_operand:SI 4 "register_operand" "") ++ (match_dup 3)))] ++ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ { ++ if ( GET_CODE(operands[5]) == ASHIFT ) ++ return "\t%0, %4, %1 << %2"; ++ else ++ return "\t%0, %4, %1 >> %2"; ++ } ++ [(set_attr "cc" "set_z")] ++ ) ++ ++(define_peephole ++ [(set (match_operand:SI 3 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 0 "register_operand" "") ++ (logical:SI (match_dup 3) ++ (match_operand:SI 4 "register_operand" "")))] ++ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ { ++ if ( GET_CODE(operands[5]) == ASHIFT ) ++ return "\t%0, %4, %1 << %2"; ++ else ++ return "\t%0, %4, %1 >> %2"; ++ } ++ [(set_attr "cc" "set_z")] ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 3 "register_operand" "") ++ (logical:SI (match_operand:SI 4 "register_operand" "") ++ (match_dup 0)))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ ++ [(set (match_dup 3) ++ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)]) ++ (match_dup 4)))] ++ ++ "" ++) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 3 "register_operand" "") ++ (logical:SI (match_dup 0) ++ (match_operand:SI 4 "register_operand" "")))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ ++ [(set (match_dup 3) ++ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)]) ++ (match_dup 4)))] ++ ++ "" ++) ++ ++ ++;;============================================================================= ++;; and ++;;----------------------------------------------------------------------------- ++;; Store the result after a bitwise logical-and between reg0 and reg2 in reg0. ++;;============================================================================= ++ ++(define_insn "andnsi" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (and:SI (match_dup 0) ++ (not:SI (match_operand:SI 1 "register_operand" "r"))))] ++ "" ++ "andn %0, %1" ++ [(set_attr "cc" "set_z") ++ (set_attr "length" "2")] ++) ++ ++ ++(define_insn "andsi3" ++ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r,r,r, r, r,r,r,r,r") ++ (and:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,r,0,0, 0, 0,0,0,0,r" ) ++ (match_operand:SI 2 "nonmemory_operand" " N,M,N,Ku16,Ks17,J,L,r,i,r")))] ++ "" ++ "@ ++ memc\t%0, %z2 ++ bfextu\t%0, %1, 0, %z2 ++ cbr\t%0, %z2 ++ andl\t%0, %2, COH ++ andl\t%0, lo(%2) ++ andh\t%0, hi(%2), COH ++ andh\t%0, hi(%2) ++ and\t%0, %2 ++ andh\t%0, hi(%2)\;andl\t%0, lo(%2) ++ and\t%0, %1, %2" ++ ++ [(set_attr "length" "4,4,2,4,4,4,4,2,8,4") ++ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z,set_z,set_z,set_z,set_z")]) ++ ++ ++ ++(define_insn "anddi3" ++ [(set (match_operand:DI 0 "register_operand" "=&r,&r") ++ (and:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "#" ++ [(set_attr "length" "8") ++ (set_attr "cc" "clobber")] ++) ++ ++;;============================================================================= ++;; or ++;;----------------------------------------------------------------------------- ++;; Store the result after a bitwise inclusive-or between reg0 and reg2 in reg0. ++;;============================================================================= ++ ++(define_insn "iorsi3" ++ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r,r, r,r,r,r") ++ (ior:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,0,0, 0,0,0,r" ) ++ (match_operand:SI 2 "nonmemory_operand" " O,O,Ku16,J,r,i,r")))] ++ "" ++ "@ ++ mems\t%0, %p2 ++ sbr\t%0, %p2 ++ orl\t%0, %2 ++ orh\t%0, hi(%2) ++ or\t%0, %2 ++ orh\t%0, hi(%2)\;orl\t%0, lo(%2) ++ or\t%0, %1, %2" ++ ++ [(set_attr "length" "4,2,4,4,2,8,4") ++ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z,set_z")]) ++ ++ ++(define_insn "iordi3" ++ [(set (match_operand:DI 0 "register_operand" "=&r,&r") ++ (ior:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "#" ++ [(set_attr "length" "8") ++ (set_attr "cc" "clobber")] ++) ++ ++;;============================================================================= ++;; xor bytes ++;;----------------------------------------------------------------------------- ++;; Store the result after a bitwise exclusive-or between reg0 and reg2 in reg0. ++;;============================================================================= ++ ++(define_insn "xorsi3" ++ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r, r,r,r,r") ++ (xor:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,0, 0,0,0,r" ) ++ (match_operand:SI 2 "nonmemory_operand" " O,Ku16,J,r,i,r")))] ++ "" ++ "@ ++ memt\t%0, %p2 ++ eorl\t%0, %2 ++ eorh\t%0, hi(%2) ++ eor\t%0, %2 ++ eorh\t%0, hi(%2)\;eorl\t%0, lo(%2) ++ eor\t%0, %1, %2" ++ ++ [(set_attr "length" "4,4,4,2,8,4") ++ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z")]) ++ ++(define_insn "xordi3" ++ [(set (match_operand:DI 0 "register_operand" "=&r,&r") ++ (xor:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "#" ++ [(set_attr "length" "8") ++ (set_attr "cc" "clobber")] ++) ++ ++;;============================================================================= ++;; Three operand predicable insns ++;;============================================================================= ++ ++(define_insn "_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "r") ++ (match_operand:INTM 2 "register_operand" "r")))] ++ "TARGET_V2_INSNS" ++ "%?\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn_and_split "_imm_clobber_predicable" ++ [(parallel ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "r") ++ (match_operand:INTM 2 "avr32_mov_immediate_operand" "JKs21"))) ++ (clobber (match_operand:INTM 3 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") ) ++ return "%! mov%?\t%3, %2\;%?\t%0, %1, %3"; ++ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") ) ++ return "%! mov\t%3, %2\;%?\t%0, %1, %3"; ++ else ++ return "%! movh\t%3, hi(%2)\;%?\t%0, %1, %3"; ++ } ++ else ++ { ++ if ( !avr32_cond_imm_clobber_splittable (insn, operands) ) ++ { ++ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") ) ++ return "mov%?\t%3, %2\;%?\t%0, %1, %3"; ++ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") ) ++ return "mov\t%3, %2\;%?\t%0, %1, %3"; ++ else ++ return "movh\t%3, hi(%2)\;%?\t%0, %1, %3"; ++ } ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload ++ && avr32_cond_imm_clobber_splittable (insn, operands))" ++ [(set (match_dup 0) ++ (predicable_op3:INTM (match_dup 1) ++ (match_dup 2)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++ ++ ++;;============================================================================= ++;; Zero extend predicable insns ++;;============================================================================= ++(define_insn_and_split "zero_extendhisi_clobber_predicable" ++ [(parallel ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))) ++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ return "%! mov\t%2, 0xffff\;and%?\t%0, %1, %2"; ++ } ++ else ++ { ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload)" ++ [(set (match_dup 0) ++ (zero_extend:SI (match_dup 1)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++ ++(define_insn_and_split "zero_extendqisi_clobber_predicable" ++ [(parallel ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (match_operand:QI 1 "register_operand" "r"))) ++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2"; ++ } ++ else ++ { ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload)" ++ [(set (match_dup 0) ++ (zero_extend:SI (match_dup 1)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++ ++(define_insn_and_split "zero_extendqihi_clobber_predicable" ++ [(parallel ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (zero_extend:HI (match_operand:QI 1 "register_operand" "r"))) ++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2"; ++ } ++ else ++ { ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload)" ++ [(set (match_dup 0) ++ (zero_extend:HI (match_dup 1)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++;;============================================================================= ++;; divmod ++;;----------------------------------------------------------------------------- ++;; Signed division that produces both a quotient and a remainder. ++;;============================================================================= ++ ++(define_expand "divmodsi4" ++ [(parallel [ ++ (parallel [ ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (div:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r"))) ++ (set (match_operand:SI 3 "register_operand" "=r") ++ (mod:SI (match_dup 1) ++ (match_dup 2)))]) ++ (use (match_dup 4))])] ++ "" ++ { ++ if (can_create_pseudo_p ()) { ++ operands[4] = gen_reg_rtx (DImode); ++ emit_insn(gen_divmodsi4_internal(operands[4],operands[1],operands[2])); ++ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4)); ++ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0)); ++ DONE; ++ } else { ++ FAIL; ++ } ++ }) ++ ++ ++(define_insn "divmodsi4_internal" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unspec:DI [(match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")] ++ UNSPEC_DIVMODSI4_INTERNAL))] ++ "" ++ "divs %0, %1, %2" ++ [(set_attr "type" "div") ++ (set_attr "cc" "none")]) ++ ++ ++;;============================================================================= ++;; udivmod ++;;----------------------------------------------------------------------------- ++;; Unsigned division that produces both a quotient and a remainder. ++;;============================================================================= ++(define_expand "udivmodsi4" ++ [(parallel [ ++ (parallel [ ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (udiv:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r"))) ++ (set (match_operand:SI 3 "register_operand" "=r") ++ (umod:SI (match_dup 1) ++ (match_dup 2)))]) ++ (use (match_dup 4))])] ++ "" ++ { ++ if (can_create_pseudo_p ()) { ++ operands[4] = gen_reg_rtx (DImode); ++ ++ emit_insn(gen_udivmodsi4_internal(operands[4],operands[1],operands[2])); ++ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4)); ++ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0)); ++ ++ DONE; ++ } else { ++ FAIL; ++ } ++ }) ++ ++(define_insn "udivmodsi4_internal" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unspec:DI [(match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")] ++ UNSPEC_UDIVMODSI4_INTERNAL))] ++ "" ++ "divu %0, %1, %2" ++ [(set_attr "type" "div") ++ (set_attr "cc" "none")]) ++ ++ ++;;============================================================================= ++;; Arithmetic-shift left ++;;----------------------------------------------------------------------------- ++;; Arithmetic-shift reg0 left by reg2 or immediate value. ++;;============================================================================= ++ ++(define_insn "ashlsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (ashift:SI (match_operand:SI 1 "register_operand" "r,0,r") ++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] ++ "" ++ "@ ++ lsl %0, %1, %2 ++ lsl %0, %2 ++ lsl %0, %1, %2" ++ [(set_attr "length" "4,2,4") ++ (set_attr "cc" "set_ncz")]) ++ ++;;============================================================================= ++;; Arithmetic-shift right ++;;----------------------------------------------------------------------------- ++;; Arithmetic-shift reg0 right by an immediate value. ++;;============================================================================= ++ ++(define_insn "ashrsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (ashiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r") ++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] ++ "" ++ "@ ++ asr %0, %1, %2 ++ asr %0, %2 ++ asr %0, %1, %2" ++ [(set_attr "length" "4,2,4") ++ (set_attr "cc" "set_ncz")]) ++ ++;;============================================================================= ++;; Logical shift right ++;;----------------------------------------------------------------------------- ++;; Logical shift reg0 right by an immediate value. ++;;============================================================================= ++ ++(define_insn "lshrsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (lshiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r") ++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] ++ "" ++ "@ ++ lsr %0, %1, %2 ++ lsr %0, %2 ++ lsr %0, %1, %2" ++ [(set_attr "length" "4,2,4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++;;============================================================================= ++;; neg ++;;----------------------------------------------------------------------------- ++;; Negate operand 1 and store the result in operand 0. ++;;============================================================================= ++(define_insn "negsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (neg:SI (match_operand:SI 1 "register_operand" "0,r")))] ++ "" ++ "@ ++ neg\t%0 ++ rsub\t%0, %1, 0" ++ [(set_attr "length" "2,4") ++ (set_attr "cc" "set_vncz")]) ++ ++(define_insn "negsi2_predicable" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (neg:SI (match_dup 0)))] ++ "TARGET_V2_INSNS" ++ "rsub%?\t%0, 0" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++;;============================================================================= ++;; abs ++;;----------------------------------------------------------------------------- ++;; Store the absolute value of operand 1 into operand 0. ++;;============================================================================= ++(define_insn "abssi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (abs:SI (match_operand:SI 1 "register_operand" "0")))] ++ "" ++ "abs\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "set_z")]) ++ ++ ++;;============================================================================= ++;; one_cmpl ++;;----------------------------------------------------------------------------- ++;; Store the bitwise-complement of operand 1 into operand 0. ++;;============================================================================= ++ ++(define_insn "one_cmplsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (not:SI (match_operand:SI 1 "register_operand" "0,r")))] ++ "" ++ "@ ++ com\t%0 ++ rsub\t%0, %1, -1" ++ [(set_attr "length" "2,4") ++ (set_attr "cc" "set_z")]) ++ ++ ++(define_insn "one_cmplsi2_predicable" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (not:SI (match_dup 0)))] ++ "TARGET_V2_INSNS" ++ "rsub%?\t%0, -1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++ ++;;============================================================================= ++;; Bit load ++;;----------------------------------------------------------------------------- ++;; Load a bit into Z and C flags ++;;============================================================================= ++(define_insn "bldsi" ++ [(set (cc0) ++ (and:SI (match_operand:SI 0 "register_operand" "r") ++ (match_operand:SI 1 "one_bit_set_operand" "i")))] ++ "" ++ "bld\t%0, %p1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "bld")] ++ ) ++ ++ ++;;============================================================================= ++;; Compare ++;;----------------------------------------------------------------------------- ++;; Compare reg0 with reg1 or an immediate value. ++;;============================================================================= ++ ++(define_expand "cmp" ++ [(set (cc0) ++ (compare:CMP ++ (match_operand:CMP 0 "register_operand" "") ++ (match_operand:CMP 1 "" "")))] ++ "" ++ "{ ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = operands[1]; ++ }" ++) ++ ++(define_insn "cmp_internal" ++ [(set (cc0) ++ (compare:CMP ++ (match_operand:CMP 0 "register_operand" "r") ++ (match_operand:CMP 1 "" "")))] ++ "" ++ { ++switch(GET_MODE(operands[0])) ++ { ++ case QImode: ++ avr32_branch_type = CMP_QI; ++ break; ++ case HImode: ++ avr32_branch_type = CMP_HI; ++ break; ++ case SImode: ++ avr32_branch_type = CMP_SI; ++ break; ++ case DImode: ++ avr32_branch_type = CMP_DI; ++ break; ++ default: ++ abort(); ++ } ++ /* Check if the next insn already will output a compare. */ ++ if (!next_insn_emits_cmp (insn)) ++ set_next_insn_cond(insn, ++ avr32_output_cmp(get_next_insn_cond(insn), GET_MODE (operands[0]), operands[0], operands[1])); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "cc" "compare")]) ++ ++(define_expand "cmpsf" ++ [(set (cc0) ++ (compare:SF ++ (match_operand:SF 0 "general_operand" "") ++ (match_operand:SF 1 "general_operand" "")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "{ ++ if ( !REG_P(operands[0]) ) ++ operands[0] = force_reg(SFmode, operands[0]); ++ ++ if ( !REG_P(operands[1]) ) ++ operands[1] = force_reg(SFmode, operands[1]); ++ ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = operands[1]; ++ emit_insn(gen_cmpsf_internal_uc3fp(operands[0], operands[1])); ++ DONE; ++ }" ++) ++ ++;;;============================================================================= ++;; Test if zero ++;;----------------------------------------------------------------------------- ++;; Compare reg against zero and set the condition codes. ++;;============================================================================= ++ ++ ++(define_expand "tstsi" ++ [(set (cc0) ++ (match_operand:SI 0 "register_operand" ""))] ++ "" ++ { ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = const0_rtx; ++ } ++) ++ ++(define_insn "tstsi_internal" ++ [(set (cc0) ++ (match_operand:SI 0 "register_operand" "r"))] ++ "" ++ { ++ /* Check if the next insn already will output a compare. */ ++ if (!next_insn_emits_cmp (insn)) ++ set_next_insn_cond(insn, ++ avr32_output_cmp(get_next_insn_cond(insn), SImode, operands[0], const0_rtx)); ++ ++ return ""; ++ } ++ [(set_attr "length" "2") ++ (set_attr "cc" "compare")]) ++ ++ ++(define_expand "tstdi" ++ [(set (cc0) ++ (match_operand:DI 0 "register_operand" ""))] ++ "" ++ { ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = const0_rtx; ++ } ++) ++ ++(define_insn "tstdi_internal" ++ [(set (cc0) ++ (match_operand:DI 0 "register_operand" "r"))] ++ "" ++ { ++ /* Check if the next insn already will output a compare. */ ++ if (!next_insn_emits_cmp (insn)) ++ set_next_insn_cond(insn, ++ avr32_output_cmp(get_next_insn_cond(insn), DImode, operands[0], const0_rtx)); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "type" "alu2") ++ (set_attr "cc" "compare")]) ++ ++ ++ ++;;============================================================================= ++;; Convert operands ++;;----------------------------------------------------------------------------- ++;; ++;;============================================================================= ++(define_insn "truncdisi2" ++ [(set (match_operand:SI 0 "general_operand" "") ++ (truncate:SI (match_operand:DI 1 "general_operand" "")))] ++ "" ++ "truncdisi2") ++ ++;;============================================================================= ++;; Extend ++;;----------------------------------------------------------------------------- ++;; ++;;============================================================================= ++ ++ ++(define_insn "extendhisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "casts.h\t%0"; ++ case 1: ++ return "bfexts\t%0, %1, 0, 16"; ++ case 2: ++ case 3: ++ return "ld.sh\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++(define_insn "extendqisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (sign_extend:SI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "casts.b\t%0"; ++ case 1: ++ return "bfexts\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.sb\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++(define_insn "extendqihi2" ++ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r") ++ (sign_extend:HI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "casts.b\t%0"; ++ case 1: ++ return "bfexts\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.sb\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++ ++;;============================================================================= ++;; Zero-extend ++;;----------------------------------------------------------------------------- ++;; ++;;============================================================================= ++ ++(define_insn "zero_extendhisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "castu.h\t%0"; ++ case 1: ++ return "bfextu\t%0, %1, 0, 16"; ++ case 2: ++ case 3: ++ return "ld.uh\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++(define_insn "zero_extendqisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "0,r,,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "castu.b\t%0"; ++ case 1: ++ return "bfextu\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.ub\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz, set_ncz, none, none") ++ (set_attr "type" "alu, alu, load_rm, load_rm")]) ++ ++(define_insn "zero_extendqihi2" ++ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r") ++ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,r,,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "castu.b\t%0"; ++ case 1: ++ return "bfextu\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.ub\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz, set_ncz, none, none") ++ (set_attr "type" "alu, alu, load_rm, load_rm")]) ++ ++ ++;;============================================================================= ++;; Conditional load and extend insns ++;;============================================================================= ++(define_insn "ldsi_predicable_se" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extend:SI ++ (match_operand:INTM 1 "memory_operand" "")))] ++ "TARGET_V2_INSNS" ++ "ld%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "ldsi_predicable_ze" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI ++ (match_operand:INTM 1 "memory_operand" "")))] ++ "TARGET_V2_INSNS" ++ "ld%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "ldhi_predicable_ze" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (zero_extend:HI ++ (match_operand:QI 1 "memory_operand" "RKs10")))] ++ "TARGET_V2_INSNS" ++ "ld.ub%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "ldhi_predicable_se" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (sign_extend:HI ++ (match_operand:QI 1 "memory_operand" "RKs10")))] ++ "TARGET_V2_INSNS" ++ "ld.sb%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++;;============================================================================= ++;; Conditional set register ++;; sr{cond4} rd ++;;----------------------------------------------------------------------------- ++ ++;;Because of the same issue as with conditional moves and adds we must ++;;not separate the compare instrcution from the scc instruction as ++;;they might be sheduled "badly". ++ ++(define_expand "s" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (any_cond:SI (cc0) ++ (const_int 0)))] ++"" ++{ ++ if(TARGET_HARD_FLOAT && TARGET_ARCH_FPU) ++ FAIL; ++}) ++ ++(define_insn "*s" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (any_cond:SI (cc0) ++ (const_int 0)))] ++ "" ++{ ++ return "sr\t%0"; ++} ++[(set_attr "length" "2") ++(set_attr "cc" "none")]) ++ ++(define_insn "seq" ++[(set (match_operand:SI 0 "register_operand" "=r") ++(eq:SI (cc0) ++ (const_int 0)))] ++ "" ++"sreq\t%0" ++[(set_attr "length" "2") ++(set_attr "cc" "none")]) ++ ++(define_insn "sne" ++[(set (match_operand:SI 0 "register_operand" "=r") ++(ne:SI (cc0) ++ (const_int 0)))] ++ "" ++"srne\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++(define_insn "smi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(cc0) ++ (const_int 0)] UNSPEC_COND_MI))] ++ "" ++ "srmi\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++(define_insn "spl" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(cc0) ++ (const_int 0)] UNSPEC_COND_PL))] ++ "" ++ "srpl\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++ ++;;============================================================================= ++;; Conditional branch ++;;----------------------------------------------------------------------------- ++;; Branch to label if the specified condition codes are set. ++;;============================================================================= ++; branch if negative ++(define_insn "bmi" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "brmi %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*bmi-reverse" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "brpl %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++; branch if positive ++(define_insn "bpl" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "brpl %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*bpl-reverse" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "brmi %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++; branch if equal ++(define_insn "b" ++ [(set (pc) ++ (if_then_else (any_cond_b:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ { ++ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return get_attr_length(insn) == 6 ? "brvs .+6\;br %0" : "brvs .+8\;br %0"; ++ else ++ return "br %0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (if_then_else (eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 6) ++ (const_int 8)) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2) ++ (const_int 4)))) ++ (set_attr "cc" "none")]) ++ ++(define_insn "beq" ++ [(set (pc) ++ (if_then_else (eq:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "breq %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "bne" ++ [(set (pc) ++ (if_then_else (ne:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "brne %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "b" ++ [(set (pc) ++ (if_then_else (any_cond4:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ { ++ if(TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return "brvs .+8\;br %l0"; ++ else ++ return "br %l0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (const_int 8)] ++ (const_int 4))) ++ (set_attr "cc" "none")]) ++ ++(define_insn "*b-reverse" ++ [(set (pc) ++ (if_then_else (any_cond_b:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ { ++ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return "brvs %0\;br %0"; ++ else ++ return "br %0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (if_then_else (eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 6) ++ (const_int 8)) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2) ++ (const_int 4)))) ++ (set_attr "cc" "none")]) ++ ++(define_insn "*beq-reverse" ++ [(set (pc) ++ (if_then_else (eq:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "brne %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*bne-reverse" ++ [(set (pc) ++ (if_then_else (ne:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "breq %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*b-reverse" ++ [(set (pc) ++ (if_then_else (any_cond4:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ { ++ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return "brvs %l0\;br %l0"; ++ else ++ return "br %0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (const_int 8)] ++ (const_int 4))) ++ (set_attr "cc" "none")]) ++ ++;============================================================================= ++; Conditional Add/Subtract ++;----------------------------------------------------------------------------- ++; sub{cond4} Rd, imm ++;============================================================================= ++ ++ ++(define_expand "addcc" ++ [(set (match_operand:ADDCC 0 "register_operand" "") ++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" ++ [(match_dup 4) ++ (match_dup 5)]) ++ (match_operand:ADDCC 2 "register_operand" "") ++ (plus:ADDCC ++ (match_dup 2) ++ (match_operand:ADDCC 3 "" ""))))] ++ "" ++ { ++ if ( !(GET_CODE (operands[3]) == CONST_INT ++ || (TARGET_V2_INSNS && REG_P(operands[3]))) ){ ++ FAIL; ++ } ++ ++ /* Delete compare instruction as it is merged into this instruction */ ++ remove_insn (get_last_insn_anywhere ()); ++ ++ operands[4] = avr32_compare_op0; ++ operands[5] = avr32_compare_op1; ++ ++ if ( TARGET_V2_INSNS ++ && REG_P(operands[3]) ++ && REGNO(operands[0]) != REGNO(operands[2]) ){ ++ emit_move_insn (operands[0], operands[2]); ++ operands[2] = operands[0]; ++ } ++ } ++ ) ++ ++(define_insn "addcc_cmp_reg" ++ [(set (match_operand:ADDCC 0 "register_operand" "=r") ++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" ++ [(match_operand:CMP 4 "register_operand" "r") ++ (match_operand:CMP 5 "" "")]) ++ (match_dup 0) ++ (plus:ADDCC ++ (match_operand:ADDCC 2 "register_operand" "r") ++ (match_operand:ADDCC 3 "register_operand" "r"))))] ++ "TARGET_V2_INSNS" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ return "add%i1\t%0, %2, %3"; ++ } ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn")]) ++ ++(define_insn "addcc_cmp" ++ [(set (match_operand:ADDCC 0 "register_operand" "=r") ++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" ++ [(match_operand:CMP 4 "register_operand" "r") ++ (match_operand:CMP 5 "" "")]) ++ (match_operand:ADDCC 2 "register_operand" "0") ++ (plus:ADDCC ++ (match_dup 2) ++ (match_operand:ADDCC 3 "avr32_cond_immediate_operand" "Is08"))))] ++ "" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ return "sub%i1\t%0, -%3"; ++ } ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn")]) ++ ++;============================================================================= ++; Conditional Move ++;----------------------------------------------------------------------------- ++; mov{cond4} Rd, (Rs/imm) ++;============================================================================= ++(define_expand "movcc" ++ [(set (match_operand:MOVCC 0 "register_operand" "") ++ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator" ++ [(match_dup 4) ++ (match_dup 5)]) ++ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "") ++ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "")))] ++ "" ++ { ++ /* Delete compare instruction as it is merged into this instruction */ ++ remove_insn (get_last_insn_anywhere ()); ++ ++ operands[4] = avr32_compare_op0; ++ operands[5] = avr32_compare_op1; ++ } ++ ) ++ ++ ++(define_insn "movcc_cmp" ++ [(set (match_operand:MOVCC 0 "register_operand" "=r,r,r") ++ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator" ++ [(match_operand:CMP 4 "register_operand" "r,r,r") ++ (match_operand:CMP 5 "" ",,")]) ++ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "0, rKs08,rKs08") ++ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "rKs08,0,rKs08")))] ++ "" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ ++ switch( which_alternative ){ ++ case 0: ++ return "mov%i1 %0, %3"; ++ case 1: ++ return "mov%1 %0, %2"; ++ case 2: ++ return "mov%1 %0, %2\;mov%i1 %0, %3"; ++ default: ++ abort(); ++ } ++ ++ } ++ [(set_attr "length" "8,8,12") ++ (set_attr "cc" "cmp_cond_insn")]) ++ ++ ++ ++ ++;;============================================================================= ++;; jump ++;;----------------------------------------------------------------------------- ++;; Jump inside a function; an unconditional branch to a label. ++;;============================================================================= ++(define_insn "jump" ++ [(set (pc) ++ (label_ref (match_operand 0 "" "")))] ++ "" ++ { ++ if (get_attr_length(insn) > 4) ++ return "Can't jump this far"; ++ return (get_attr_length(insn) == 2 ? ++ "rjmp %0" : "bral %0"); ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 1022)) ++ (le (minus (pc) (match_dup 0)) (const_int 1024))) ++ (const_int 2) ; use rjmp ++ (le (match_dup 0) (const_int 1048575)) ++ (const_int 4)] ; use bral ++ (const_int 8))) ; do something else ++ (set_attr "cc" "none")]) ++ ++;;============================================================================= ++;; call ++;;----------------------------------------------------------------------------- ++;; Subroutine call instruction returning no value. ++;;============================================================================= ++(define_insn "call_internal" ++ [(parallel [(call (mem:SI (match_operand:SI 0 "avr32_call_operand" "r,U,T,W")) ++ (match_operand 1 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++ { ++ ++ /* Check for a flashvault call. */ ++ if (avr32_flashvault_call (SYMBOL_REF_DECL (operands[0]))) ++ { ++ /* Assembly is already emitted. */ ++ return ""; ++ } ++ ++ switch (which_alternative) { ++ case 0: ++ return "icall\t%0"; ++ case 1: ++ return "rcall\t%0"; ++ case 2: ++ return "mcall\t%0"; ++ case 3: ++ if (TARGET_HAS_ASM_ADDR_PSEUDOS) ++ return "call\t%0"; ++ else ++ return "mcall\tr6[%0@got]"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "type" "call") ++ (set_attr "length" "2,4,4,10") ++ (set_attr "cc" "clobber")]) ++ ++ ++(define_expand "call" ++ [(parallel [(call (match_operand:SI 0 "" "") ++ (match_operand 1 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++ { ++ rtx call_address; ++ if ( GET_CODE(operands[0]) != MEM ) ++ FAIL; ++ ++ call_address = XEXP(operands[0], 0); ++ ++ /* If assembler supports call pseudo insn and the call address is a symbol then nothing special needs to be done. */ ++ if (TARGET_HAS_ASM_ADDR_PSEUDOS && (GET_CODE(call_address) == SYMBOL_REF) ) ++ { ++ /* We must however mark the function as using the GOT if flag_pic is set, since the call insn might turn into a mcall using the GOT ptr register. */ ++ if (flag_pic) ++ { ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_internal(call_address, operands[1])); ++ DONE; ++ } ++ } ++ else ++ { ++ if (flag_pic && GET_CODE(call_address) == SYMBOL_REF ) ++ { ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_internal(call_address, operands[1])); ++ DONE; ++ } ++ ++ if (!SYMBOL_REF_RCALL_FUNCTION_P(operands[0]) ) ++ { ++ if (optimize_size && GET_CODE(call_address) == SYMBOL_REF ) ++ { ++ call_address = force_const_mem(SImode, call_address); ++ } ++ else ++ { ++ call_address = force_reg(SImode, call_address); ++ } ++ } ++ } ++ emit_call_insn(gen_call_internal(call_address, operands[1])); ++ DONE; ++ ++ } ++) ++ ++;;============================================================================= ++;; call_value ++;;----------------------------------------------------------------------------- ++;; Subroutine call instruction returning a value. ++;;============================================================================= ++(define_expand "call_value" ++ [(parallel [(set (match_operand:SI 0 "" "") ++ (call (match_operand:SI 1 "" "") ++ (match_operand 2 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++ { ++ rtx call_address; ++ if ( GET_CODE(operands[1]) != MEM ) ++ FAIL; ++ ++ call_address = XEXP(operands[1], 0); ++ ++ /* Check for a flashvault call. ++ if (GET_CODE (call_address) == SYMBOL_REF ++ && avr32_flashvault_call (SYMBOL_REF_DECL (call_address))) ++ DONE; ++ ++ */ ++ ++ /* If assembler supports call pseudo insn and the call ++ address is a symbol then nothing special needs to be done. */ ++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ++ && (GET_CODE(call_address) == SYMBOL_REF) ){ ++ /* We must however mark the function as using the GOT if ++ flag_pic is set, since the call insn might turn into ++ a mcall using the GOT ptr register. */ ++ if ( flag_pic ) { ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2])); ++ DONE; ++ } ++ } else { ++ if ( flag_pic && ++ GET_CODE(call_address) == SYMBOL_REF ){ ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2])); ++ DONE; ++ } ++ ++ if ( !SYMBOL_REF_RCALL_FUNCTION_P(operands[1]) ){ ++ if ( optimize_size && ++ GET_CODE(call_address) == SYMBOL_REF){ ++ call_address = force_const_mem(SImode, call_address); ++ } else { ++ call_address = force_reg(SImode, call_address); ++ } ++ } ++ } ++ emit_call_insn(gen_call_value_internal(operands[0], call_address, ++ operands[2])); ++ DONE; ++ ++ }) ++ ++(define_insn "call_value_internal" ++ [(parallel [(set (match_operand 0 "register_operand" "=r,r,r,r") ++ (call (mem:SI (match_operand:SI 1 "avr32_call_operand" "r,U,T,W")) ++ (match_operand 2 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ ;; Operand 2 not used on the AVR32. ++ "" ++ { ++ /* Check for a flashvault call. */ ++ if (avr32_flashvault_call (SYMBOL_REF_DECL (operands[1]))) ++ { ++ /* Assembly is already emitted. */ ++ return ""; ++ } ++ ++ ++ switch (which_alternative) { ++ case 0: ++ return "icall\t%1"; ++ case 1: ++ return "rcall\t%1"; ++ case 2: ++ return "mcall\t%1"; ++ case 3: ++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ return "call\t%1"; ++ else ++ return "mcall\tr6[%1@got]"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "type" "call") ++ (set_attr "length" "2,4,4,10") ++ (set_attr "cc" "call_set")]) ++ ++ ++;;============================================================================= ++;; untyped_call ++;;----------------------------------------------------------------------------- ++;; Subrutine call instruction returning a value of any type. ++;; The code is copied from m68k.md (except gen_blockage is removed) ++;; Fixme! ++;;============================================================================= ++(define_expand "untyped_call" ++ [(parallel [(call (match_operand 0 "avr32_call_operand" "") ++ (const_int 0)) ++ (match_operand 1 "" "") ++ (match_operand 2 "" "")])] ++ "" ++ { ++ int i; ++ ++ emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx)); ++ ++ for (i = 0; i < XVECLEN (operands[2], 0); i++) { ++ rtx set = XVECEXP (operands[2], 0, i); ++ emit_move_insn (SET_DEST (set), SET_SRC (set)); ++ } ++ ++ /* The optimizer does not know that the call sets the function value ++ registers we stored in the result block. We avoid problems by ++ claiming that all hard registers are used and clobbered at this ++ point. */ ++ emit_insn (gen_blockage ()); ++ ++ DONE; ++ }) ++ ++ ++;;============================================================================= ++;; return ++;;============================================================================= ++ ++(define_insn "return" ++ [(return)] ++ "USE_RETURN_INSN (FALSE)" ++ { ++ avr32_output_return_instruction(TRUE, FALSE, NULL, NULL); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "type" "call")] ++ ) ++ ++ ++(define_insn "return_cond" ++ [(set (pc) ++ (if_then_else (match_operand 0 "avr32_comparison_operand" "") ++ (return) ++ (pc)))] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%0\tr12"; ++ [(set_attr "type" "call")]) ++ ++(define_insn "return_cond_predicable" ++ [(return)] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%?\tr12"; ++ [(set_attr "type" "call") ++ (set_attr "predicable" "yes")]) ++ ++ ++(define_insn "return_imm" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (return)])] ++ "USE_RETURN_INSN (FALSE) && ++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ { ++ avr32_output_return_instruction(TRUE, FALSE, NULL, operands[0]); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "type" "call")] ++ ) ++ ++(define_insn "return_imm_cond" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (set (pc) ++ (if_then_else (match_operand 1 "avr32_comparison_operand" "") ++ (return) ++ (pc)))])] ++ "USE_RETURN_INSN (TRUE) && ++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ "ret%1\t%0"; ++ [(set_attr "type" "call")] ++ ) ++ ++(define_insn "return_imm_predicable" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (return)])] ++ "USE_RETURN_INSN (TRUE) && ++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ "ret%?\t%0"; ++ [(set_attr "type" "call") ++ (set_attr "predicable" "yes")]) ++ ++(define_insn "return_reg" ++ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r")) ++ (use (reg RETVAL_REGNUM)) ++ (return)] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%?\t%0"; ++ [(set_attr "type" "call") ++ (set_attr "predicable" "yes")]) ++ ++(define_insn "return_reg_cond" ++ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r")) ++ (use (reg RETVAL_REGNUM)) ++ (set (pc) ++ (if_then_else (match_operator 1 "avr32_comparison_operator" ++ [(cc0) (const_int 0)]) ++ (return) ++ (pc)))] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%1\t%0"; ++ [(set_attr "type" "call")]) ++ ++;;============================================================================= ++;; nonlocal_goto_receiver ++;;----------------------------------------------------------------------------- ++;; For targets with a return stack we must make sure to flush the return stack ++;; since it will be corrupt after a nonlocal goto. ++;;============================================================================= ++(define_expand "nonlocal_goto_receiver" ++ [(const_int 0)] ++ "TARGET_RETURN_STACK" ++ " ++ { ++ emit_insn ( gen_frs() ); ++ DONE; ++ } ++ " ++ ) ++ ++ ++;;============================================================================= ++;; builtin_setjmp_receiver ++;;----------------------------------------------------------------------------- ++;; For pic code we need to reload the pic register. ++;; For targets with a return stack we must make sure to flush the return stack ++;; since it will probably be corrupted. ++;;============================================================================= ++(define_expand "builtin_setjmp_receiver" ++ [(label_ref (match_operand 0 "" ""))] ++ "flag_pic" ++ " ++ { ++ if ( TARGET_RETURN_STACK ) ++ emit_insn ( gen_frs() ); ++ ++ avr32_load_pic_register (); ++ DONE; ++ } ++ " ++) ++ ++ ++;;============================================================================= ++;; indirect_jump ++;;----------------------------------------------------------------------------- ++;; Jump to an address in reg or memory. ++;;============================================================================= ++(define_expand "indirect_jump" ++ [(set (pc) ++ (match_operand:SI 0 "general_operand" ""))] ++ "" ++ { ++ /* One of the ops has to be in a register. */ ++ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ && !avr32_legitimate_pic_operand_p(operands[0]) ) ++ operands[0] = legitimize_pic_address (operands[0], SImode, 0); ++ else if ( flag_pic && avr32_address_operand(operands[0], GET_MODE(operands[0])) ) ++ /* If we have an address operand then this function uses the pic register. */ ++ crtl->uses_pic_offset_table = 1; ++ }) ++ ++ ++(define_insn "indirect_jump_internal" ++ [(set (pc) ++ (match_operand:SI 0 "avr32_non_rmw_general_operand" "r,m,W"))] ++ "" ++ { ++ switch( which_alternative ){ ++ case 0: ++ return "mov\tpc, %0"; ++ case 1: ++ if ( avr32_const_pool_ref_operand(operands[0], GET_MODE(operands[0])) ) ++ return "lddpc\tpc, %0"; ++ else ++ return "ld.w\tpc, %0"; ++ case 2: ++ if ( flag_pic ) ++ return "ld.w\tpc, r6[%0@got]"; ++ else ++ return "lda.w\tpc, %0"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,8") ++ (set_attr "type" "call,call,call") ++ (set_attr "cc" "none,none,clobber")]) ++ ++ ++ ++;;============================================================================= ++;; casesi and tablejump ++;;============================================================================= ++(define_insn "tablejump_add" ++ [(set (pc) ++ (plus:SI (match_operand:SI 0 "register_operand" "r") ++ (mult:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04" )))) ++ (use (label_ref (match_operand 3 "" "")))] ++ "flag_pic && ++ ((INTVAL(operands[2]) == 0) || (INTVAL(operands[2]) == 2) || ++ (INTVAL(operands[2]) == 4) || (INTVAL(operands[2]) == 8))" ++ "add\tpc, %0, %1 << %p2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_insn "tablejump_insn" ++ [(set (pc) (match_operand:SI 0 "memory_operand" "m")) ++ (use (label_ref (match_operand 1 "" "")))] ++ "!flag_pic" ++ "ld.w\tpc, %0" ++ [(set_attr "length" "4") ++ (set_attr "type" "call") ++ (set_attr "cc" "none")]) ++ ++(define_expand "casesi" ++ [(match_operand:SI 0 "register_operand" "") ; index to jump on ++ (match_operand:SI 1 "const_int_operand" "") ; lower bound ++ (match_operand:SI 2 "const_int_operand" "") ; total range ++ (match_operand:SI 3 "" "") ; table label ++ (match_operand:SI 4 "" "")] ; Out of range label ++ "" ++ " ++ { ++ rtx reg; ++ rtx index = operands[0]; ++ rtx low_bound = operands[1]; ++ rtx range = operands[2]; ++ rtx table_label = operands[3]; ++ rtx oor_label = operands[4]; ++ ++ index = force_reg ( SImode, index ); ++ if (low_bound != const0_rtx) ++ { ++ if (!avr32_const_ok_for_constraint_p(INTVAL (low_bound), 'I', \"Is21\")){ ++ reg = force_reg(SImode, GEN_INT (INTVAL (low_bound))); ++ emit_insn (gen_subsi3 (reg, index, ++ reg)); ++ } else { ++ reg = gen_reg_rtx (SImode); ++ emit_insn (gen_addsi3 (reg, index, ++ GEN_INT (-INTVAL (low_bound)))); ++ } ++ index = reg; ++ } ++ ++ if (!avr32_const_ok_for_constraint_p (INTVAL (range), 'K', \"Ks21\")) ++ range = force_reg (SImode, range); ++ ++ emit_cmp_and_jump_insns ( index, range, GTU, NULL_RTX, SImode, 1, oor_label ); ++ reg = gen_reg_rtx (SImode); ++ emit_move_insn ( reg, gen_rtx_LABEL_REF (VOIDmode, table_label)); ++ ++ if ( flag_pic ) ++ emit_jump_insn ( gen_tablejump_add ( reg, index, GEN_INT(4), table_label)); ++ else ++ emit_jump_insn ( ++ gen_tablejump_insn ( gen_rtx_MEM ( SImode, ++ gen_rtx_PLUS ( SImode, ++ reg, ++ gen_rtx_MULT ( SImode, ++ index, ++ GEN_INT(4)))), ++ table_label)); ++ DONE; ++ }" ++) ++ ++ ++ ++(define_insn "prefetch" ++ [(prefetch (match_operand:SI 0 "avr32_ks16_address_operand" "p") ++ (match_operand 1 "const_int_operand" "") ++ (match_operand 2 "const_int_operand" ""))] ++ "" ++ { ++ return "pref\t%0"; ++ } ++ ++ [(set_attr "length" "4") ++ (set_attr "type" "load") ++ (set_attr "cc" "none")]) ++ ++ ++ ++;;============================================================================= ++;; prologue ++;;----------------------------------------------------------------------------- ++;; This pattern, if defined, emits RTL for entry to a function. The function ++;; entry i responsible for setting up the stack frame, initializing the frame ++;; pointer register, saving callee saved registers, etc. ++;;============================================================================= ++(define_expand "prologue" ++ [(clobber (const_int 0))] ++ "" ++ " ++ avr32_expand_prologue(); ++ DONE; ++ " ++ ) ++ ++;;============================================================================= ++;; eh_return ++;;----------------------------------------------------------------------------- ++;; This pattern, if defined, affects the way __builtin_eh_return, and ++;; thence the call frame exception handling library routines, are ++;; built. It is intended to handle non-trivial actions needed along ++;; the abnormal return path. ++;; ++;; The address of the exception handler to which the function should ++;; return is passed as operand to this pattern. It will normally need ++;; to copied by the pattern to some special register or memory ++;; location. If the pattern needs to determine the location of the ++;; target call frame in order to do so, it may use ++;; EH_RETURN_STACKADJ_RTX, if defined; it will have already been ++;; assigned. ++;; ++;; If this pattern is not defined, the default action will be to ++;; simply copy the return address to EH_RETURN_HANDLER_RTX. Either ++;; that macro or this pattern needs to be defined if call frame ++;; exception handling is to be used. ++ ++;; We can't expand this before we know where the link register is stored. ++(define_insn_and_split "eh_return" ++ [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")] ++ VUNSPEC_EH_RETURN) ++ (clobber (match_scratch:SI 1 "=&r"))] ++ "" ++ "#" ++ "reload_completed" ++ [(const_int 0)] ++ " ++ { ++ avr32_set_return_address (operands[0], operands[1]); ++ DONE; ++ }" ++ ) ++ ++ ++;;============================================================================= ++;; ffssi2 ++;;----------------------------------------------------------------------------- ++(define_insn "ffssi2" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (ffs:SI (match_operand:SI 1 "register_operand" "r"))) ] ++ "" ++ "mov %0, %1 ++ brev %0 ++ clz %0, %0 ++ sub %0, -1 ++ cp %0, 33 ++ moveq %0, 0" ++ [(set_attr "length" "18") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++ ++;;============================================================================= ++;; swap_h ++;;----------------------------------------------------------------------------- ++(define_insn "*swap_h" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (ior:SI (ashift:SI (match_dup 0) (const_int 16)) ++ (lshiftrt:SI (match_dup 0) (const_int 16))))] ++ "" ++ "swap.h %0" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn_and_split "bswap_16" ++ [ (set (match_operand:HI 0 "avr32_bswap_operand" "=r,RKs13,r") ++ (ior:HI (and:HI (lshiftrt:HI (match_operand:HI 1 "avr32_bswap_operand" "r,r,RKs13") ++ (const_int 8)) ++ (const_int 255)) ++ (ashift:HI (and:HI (match_dup 1) ++ (const_int 255)) ++ (const_int 8))))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ if ( REGNO(operands[0]) == REGNO(operands[1])) ++ return "swap.bh\t%0"; ++ else ++ return "mov\t%0, %1\;swap.bh\t%0"; ++ case 1: ++ return "stswp.h\t%0, %1"; ++ case 2: ++ return "ldswp.sh\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ ++ "(reload_completed && ++ REG_P(operands[0]) && REG_P(operands[1]) ++ && (REGNO(operands[0]) != REGNO(operands[1])))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 0) ++ (ior:HI (and:HI (lshiftrt:HI (match_dup 0) ++ (const_int 8)) ++ (const_int 255)) ++ (ashift:HI (and:HI (match_dup 0) ++ (const_int 255)) ++ (const_int 8))))] ++ "" ++ ++ [(set_attr "length" "4,4,4") ++ (set_attr "type" "alu,store,load_rm")] ++ ) ++ ++(define_insn_and_split "bswap_32" ++ [ (set (match_operand:SI 0 "avr32_bswap_operand" "=r,RKs14,r") ++ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_operand:SI 1 "avr32_bswap_operand" "r,r,RKs14") ++ (const_int -16777216)) ++ (const_int 24)) ++ (lshiftrt:SI (and:SI (match_dup 1) ++ (const_int 16711680)) ++ (const_int 8))) ++ (ior:SI (ashift:SI (and:SI (match_dup 1) ++ (const_int 65280)) ++ (const_int 8)) ++ (ashift:SI (and:SI (match_dup 1) ++ (const_int 255)) ++ (const_int 24)))))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ if ( REGNO(operands[0]) == REGNO(operands[1])) ++ return "swap.b\t%0"; ++ else ++ return "#"; ++ case 1: ++ return "stswp.w\t%0, %1"; ++ case 2: ++ return "ldswp.w\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ "(reload_completed && ++ REG_P(operands[0]) && REG_P(operands[1]) ++ && (REGNO(operands[0]) != REGNO(operands[1])))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 0) ++ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_dup 0) ++ (const_int -16777216)) ++ (const_int 24)) ++ (lshiftrt:SI (and:SI (match_dup 0) ++ (const_int 16711680)) ++ (const_int 8))) ++ (ior:SI (ashift:SI (and:SI (match_dup 0) ++ (const_int 65280)) ++ (const_int 8)) ++ (ashift:SI (and:SI (match_dup 0) ++ (const_int 255)) ++ (const_int 24)))))] ++ "" ++ ++ [(set_attr "length" "4,4,4") ++ (set_attr "type" "alu,store,load_rm")] ++ ) ++ ++ ++;;============================================================================= ++;; blockage ++;;----------------------------------------------------------------------------- ++;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ++;; all of memory. This blocks insns from being moved across this point. ++ ++(define_insn "blockage" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_BLOCKAGE)] ++ "" ++ "" ++ [(set_attr "length" "0")] ++) ++ ++;;============================================================================= ++;; clzsi2 ++;;----------------------------------------------------------------------------- ++(define_insn "clzsi2" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (clz:SI (match_operand:SI 1 "register_operand" "r"))) ] ++ "" ++ "clz %0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "set_z")] ++ ) ++ ++;;============================================================================= ++;; ctzsi2 ++;;----------------------------------------------------------------------------- ++(define_insn "ctzsi2" ++ [ (set (match_operand:SI 0 "register_operand" "=r,r") ++ (ctz:SI (match_operand:SI 1 "register_operand" "0,r"))) ] ++ "" ++ "@ ++ brev\t%0\;clz\t%0, %0 ++ mov\t%0, %1\;brev\t%0\;clz\t%0, %0" ++ [(set_attr "length" "8") ++ (set_attr "cc" "set_z")] ++ ) ++ ++;;============================================================================= ++;; cache instructions ++;;----------------------------------------------------------------------------- ++(define_insn "cache" ++ [ (unspec_volatile [(match_operand:SI 0 "avr32_ks11_address_operand" "p") ++ (match_operand:SI 1 "immediate_operand" "Ku05")] VUNSPEC_CACHE)] ++ "" ++ "cache %0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "sync" ++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku08")] VUNSPEC_SYNC)] ++ "" ++ "sync %0" ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; TLB instructions ++;;----------------------------------------------------------------------------- ++(define_insn "tlbr" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBR)] ++ "" ++ "tlbr" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn "tlbw" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBW)] ++ "" ++ "tlbw" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn "tlbs" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBS)] ++ "" ++ "tlbs" ++ [(set_attr "length" "2")] ++ ) ++ ++;;============================================================================= ++;; Breakpoint instruction ++;;----------------------------------------------------------------------------- ++(define_insn "breakpoint" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_BREAKPOINT)] ++ "" ++ "breakpoint" ++ [(set_attr "length" "2")] ++ ) ++ ++ ++;;============================================================================= ++;; mtsr/mfsr instruction ++;;----------------------------------------------------------------------------- ++(define_insn "mtsr" ++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i") ++ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTSR)] ++ "" ++ "mtsr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mfsr" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFSR)) ] ++ "" ++ "mfsr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; mtdr/mfdr instruction ++;;----------------------------------------------------------------------------- ++(define_insn "mtdr" ++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i") ++ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTDR)] ++ "" ++ "mtdr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mfdr" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFDR)) ] ++ "" ++ "mfdr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; musfr ++;;----------------------------------------------------------------------------- ++(define_insn "musfr" ++ [ (unspec_volatile [(match_operand:SI 0 "register_operand" "r")] VUNSPEC_MUSFR)] ++ "" ++ "musfr\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "clobber")] ++ ) ++ ++(define_insn "mustr" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (unspec_volatile:SI [(const_int 0)] VUNSPEC_MUSTR)) ] ++ "" ++ "mustr\t%0" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn "ssrf" ++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_SSRF)] ++ "" ++ "ssrf %0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "clobber")] ++ ) ++ ++(define_insn "csrf" ++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_CSRF)] ++ "" ++ "csrf %0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "clobber")] ++ ) ++ ++;;============================================================================= ++;; Flush Return Stack instruction ++;;----------------------------------------------------------------------------- ++(define_insn "frs" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_FRS)] ++ "" ++ "frs" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")] ++ ) ++ ++ ++;;============================================================================= ++;; Saturation Round Scale instruction ++;;----------------------------------------------------------------------------- ++(define_insn "sats" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATS)) ] ++ "TARGET_DSP" ++ "sats\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "satu" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATU)) ] ++ "TARGET_DSP" ++ "satu\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "satrnds" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATRNDS)) ] ++ "TARGET_DSP" ++ "satrnds\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "satrndu" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATRNDU)) ] ++ "TARGET_DSP" ++ "sats\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "sleep" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_SLEEP) ++ (match_operand:SI 0 "const_int_operand" "")] ++ "" ++ "sleep %0" ++ [(set_attr "length" "1") ++ (set_attr "cc" "none") ++ ]) ++ ++(define_expand "delay_cycles" ++ [(unspec_volatile [(match_operand:SI 0 "const_int_operand" "i")] ++ VUNSPEC_DELAY_CYCLES)] ++ "" ++ " ++ unsigned int cycles = UINTVAL (operands[0]); ++ if (IN_RANGE(cycles,0x10000 ,0xFFFFFFFF)) ++ { ++ unsigned int msb = (cycles & 0xFFFF0000); ++ unsigned int shift = 16; ++ msb = (msb >> shift); ++ unsigned int cycles_used = (msb*0x10000); ++ emit_insn (gen_delay_cycles_2 (gen_int_mode (msb, SImode))); ++ cycles -= cycles_used; ++ } ++ if (IN_RANGE(cycles, 4, 0xFFFF)) ++ { ++ unsigned int loop_count = (cycles/ 4); ++ unsigned int cycles_used = (loop_count*4); ++ emit_insn (gen_delay_cycles_1 (gen_int_mode (loop_count, SImode))); ++ cycles -= cycles_used; ++ } ++ while (cycles >= 3) ++ { ++ emit_insn (gen_nop3 ()); ++ cycles -= 3; ++ } ++ if (cycles == 1 || cycles == 2) ++ { ++ while (cycles--) ++ emit_insn (gen_nop ()); ++ } ++ DONE; ++ ") ++ ++(define_insn "delay_cycles_1" ++[(unspec_volatile [(const_int 0)] VUNSPEC_DELAY_CYCLES_1) ++ (match_operand:SI 0 "immediate_operand" "") ++ (clobber (match_scratch:SI 1 "=&r"))] ++ "" ++ "mov\t%1, %0 ++ 1: sub\t%1, 1 ++ brne\t1b ++ nop" ++) ++ ++(define_insn "delay_cycles_2" ++[(unspec_volatile [(const_int 0)] VUNSPEC_DELAY_CYCLES_2) ++ (match_operand:SI 0 "immediate_operand" "") ++ (clobber (match_scratch:SI 1 "=&r")) ++ (clobber (match_scratch:SI 2 "=&r"))] ++ "" ++ "mov\t%1, %0 ++ 1: mov\t%2, 16383 ++ 2: sub\t%2, 1 ++ brne\t2b ++ nop ++ sub\t%1, 1 ++ brne\t1b ++ nop" ++) ++ ++;; CPU instructions ++ ++;;============================================================================= ++;; nop ++;;----------------------------------------------------------------------------- ++;; No-op instruction. ++;;============================================================================= ++(define_insn "nop" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_NOP)] ++ "" ++ "nop" ++ [(set_attr "length" "1") ++ (set_attr "type" "alu") ++ (set_attr "cc" "none")]) ++ ++;; NOP3 ++(define_insn "nop3" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_NOP3)] ++ "" ++ "rjmp\t2" ++ [(set_attr "length" "3") ++ (set_attr "type" "alu") ++ (set_attr "cc" "none")]) ++ ++;; Special patterns for dealing with the constant pool ++ ++(define_insn "align_4" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_ALIGN)] ++ "" ++ { ++ assemble_align (32); ++ return ""; ++ } ++ [(set_attr "length" "2")] ++) ++ ++ ++(define_insn "consttable_start" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_START)] ++ "" ++ { ++ return ".cpool"; ++ } ++ [(set_attr "length" "0")] ++ ) ++ ++(define_insn "consttable_end" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_END)] ++ "" ++ { ++ making_const_table = FALSE; ++ return ""; ++ } ++ [(set_attr "length" "0")] ++) ++ ++ ++(define_insn "consttable_4" ++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_4)] ++ "" ++ { ++ making_const_table = TRUE; ++ switch (GET_MODE_CLASS (GET_MODE (operands[0]))) ++ { ++ case MODE_FLOAT: ++ { ++ REAL_VALUE_TYPE r; ++ char real_string[1024]; ++ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]); ++ real_to_decimal(real_string, &r, 1024, 0, 1); ++ asm_fprintf (asm_out_file, "\t.float\t%s\n", real_string); ++ break; ++ } ++ default: ++ assemble_integer (operands[0], 4, 0, 1); ++ break; ++ } ++ return ""; ++ } ++ [(set_attr "length" "4")] ++) ++ ++(define_insn "consttable_8" ++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_8)] ++ "" ++ { ++ making_const_table = TRUE; ++ switch (GET_MODE_CLASS (GET_MODE (operands[0]))) ++ { ++ case MODE_FLOAT: ++ { ++ REAL_VALUE_TYPE r; ++ char real_string[1024]; ++ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]); ++ real_to_decimal(real_string, &r, 1024, 0, 1); ++ asm_fprintf (asm_out_file, "\t.double\t%s\n", real_string); ++ break; ++ } ++ default: ++ assemble_integer(operands[0], 8, 0, 1); ++ break; ++ } ++ return ""; ++ } ++ [(set_attr "length" "8")] ++) ++ ++(define_insn "consttable_16" ++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_16)] ++ "" ++ { ++ making_const_table = TRUE; ++ assemble_integer(operands[0], 16, 0, 1); ++ return ""; ++ } ++ [(set_attr "length" "16")] ++) ++ ++;;============================================================================= ++;; coprocessor instructions ++;;----------------------------------------------------------------------------- ++(define_insn "cop" ++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "Ku03") ++ (match_operand 1 "immediate_operand" "Ku04") ++ (match_operand 2 "immediate_operand" "Ku04") ++ (match_operand 3 "immediate_operand" "Ku04") ++ (match_operand 4 "immediate_operand" "Ku07")] VUNSPEC_COP)] ++ "" ++ "cop\tcp%0, cr%1, cr%2, cr%3, %4" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvcrsi" ++ [ (set (match_operand:SI 0 "avr32_cop_move_operand" "=r,<,Z") ++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")] ++ VUNSPEC_MVCR)) ] ++ "" ++ "@ ++ mvcr.w\tcp%1, %0, cr%2 ++ stcm.w\tcp%1, %0, cr%2 ++ stc.w\tcp%1, %0, cr%2" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvcrdi" ++ [ (set (match_operand:DI 0 "avr32_cop_move_operand" "=r,<,Z") ++ (unspec_volatile:DI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")] ++ VUNSPEC_MVCR)) ] ++ "" ++ "@ ++ mvcr.d\tcp%1, %0, cr%2 ++ stcm.d\tcp%1, %0, cr%2-cr%i2 ++ stc.d\tcp%1, %0, cr%2" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvrcsi" ++ [ (unspec_volatile:SI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04") ++ (match_operand:SI 2 "avr32_cop_move_operand" "r,>,Z")] ++ VUNSPEC_MVRC)] ++ "" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mvrc.w\tcp%0, cr%1, %2"; ++ case 1: ++ return "ldcm.w\tcp%0, %2, cr%1"; ++ case 2: ++ return "ldc.w\tcp%0, cr%1, %2"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvrcdi" ++ [ (unspec_volatile:DI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04") ++ (match_operand:DI 2 "avr32_cop_move_operand" "r,>,Z")] ++ VUNSPEC_MVRC)] ++ "" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mvrc.d\tcp%0, cr%1, %2"; ++ case 1: ++ return "ldcm.d\tcp%0, %2, cr%1-cr%i1"; ++ case 2: ++ return "ldc.d\tcp%0, cr%1, %2"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; epilogue ++;;----------------------------------------------------------------------------- ++;; This pattern emits RTL for exit from a function. The function exit is ++;; responsible for deallocating the stack frame, restoring callee saved ++;; registers and emitting the return instruction. ++;; ToDo: using TARGET_ASM_FUNCTION_PROLOGUE instead. ++;;============================================================================= ++(define_expand "epilogue" ++ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)] ++ "" ++ " ++ if (USE_RETURN_INSN (FALSE)){ ++ emit_jump_insn (gen_return ()); ++ DONE; ++ } ++ emit_jump_insn (gen_rtx_UNSPEC_VOLATILE (VOIDmode, ++ gen_rtvec (1, ++ gen_rtx_RETURN (VOIDmode)), ++ VUNSPEC_EPILOGUE)); ++ DONE; ++ " ++ ) ++ ++(define_insn "*epilogue_insns" ++ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)] ++ "" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "*epilogue_insns_ret_imm" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)])] ++ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "sibcall_epilogue" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)] ++ "" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL); ++ return ""; ++ } ++;; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "*sibcall_epilogue_insns_ret_imm" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)])] ++ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "ldxi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mem:SI (plus:SI ++ (match_operand:SI 1 "register_operand" "r") ++ (mult:SI (zero_extract:SI (match_operand:SI 2 "register_operand" "r") ++ (const_int 8) ++ (match_operand:SI 3 "immediate_operand" "Ku05")) ++ (const_int 4)))))] ++ "(INTVAL(operands[3]) == 24 || INTVAL(operands[3]) == 16 || INTVAL(operands[3]) == 8 ++ || INTVAL(operands[3]) == 0)" ++ { ++ switch ( INTVAL(operands[3]) ){ ++ case 0: ++ return "ld.w %0, %1[%2:b << 2]"; ++ case 8: ++ return "ld.w %0, %1[%2:l << 2]"; ++ case 16: ++ return "ld.w %0, %1[%2:u << 2]"; ++ case 24: ++ return "ld.w %0, %1[%2:t << 2]"; ++ default: ++ internal_error("illegal operand for ldxi"); ++ } ++ } ++ [(set_attr "type" "load") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++ ++ ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; sub r8, r7, 8 ++;; st.w r8[0x0], r12 ++;; to ++;; sub r8, r7, 8 ++;; st.w r7[-0x8], r12 ++;;============================================================================= ++; (set (reg:SI 9 r8) ++; (plus:SI (reg/f:SI 6 r7) ++; (const_int ...))) ++; (set (mem:SI (reg:SI 9 r8)) ++; (reg:SI 12 r12)) ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (plus:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (mem:SI (match_dup 0)) ++ (match_operand:SI 3 "register_operand" ""))] ++ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")" ++ [(set (match_dup 0) ++ (plus:SI (match_dup 1) ++ (match_dup 2))) ++ (set (mem:SI (plus:SI (match_dup 1) ++ (match_dup 2))) ++ (match_dup 3))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; sub r6, r7, 4 ++;; ld.w r6, r6[0x0] ++;; to ++;; sub r6, r7, 4 ++;; ld.w r6, r7[-0x4] ++;;============================================================================= ++; (set (reg:SI 7 r6) ++; (plus:SI (reg/f:SI 6 r7) ++; (const_int -4 [0xfffffffc]))) ++; (set (reg:SI 7 r6) ++; (mem:SI (reg:SI 7 r6))) ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (plus:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (mem:SI (match_dup 0)))] ++ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")" ++ [(set (match_dup 0) ++ (plus:SI (match_dup 1) ++ (match_dup 2))) ++ (set (match_dup 3) ++ (mem:SI (plus:SI (match_dup 1) ++ (match_dup 2))))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.sb r0, r7[-0x6] ++;; cashs.b r0 ++;; to ++;; ld.sb r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:QI 0 "register_operand" "") ++ (match_operand:QI 1 "load_sb_memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (sign_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2]) || peep2_reg_dead_p(2, operands[0]))" ++ [(set (match_dup 2) ++ (sign_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.ub r0, r7[-0x6] ++;; cashu.b r0 ++;; to ++;; ld.ub r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:QI 0 "register_operand" "") ++ (match_operand:QI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (zero_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 2) ++ (zero_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.sh r0, r7[-0x6] ++;; casts.h r0 ++;; to ++;; ld.sh r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (match_operand:HI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (sign_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 2) ++ (sign_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.uh r0, r7[-0x6] ++;; castu.h r0 ++;; to ++;; ld.uh r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (match_operand:HI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (zero_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 2) ++ (zero_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; mul rd, rx, ry ++;; add rd2, rd ++;; or ++;; add rd2, rd, rd2 ++;; to ++;; mac rd2, rx, ry ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mult:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "register_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_dup 3) ++ (match_dup 0)))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 3) ++ (plus:SI (mult:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 3)))] ++ "") ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mult:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "register_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_dup 0) ++ (match_dup 3)))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 3) ++ (plus:SI (mult:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 3)))] ++ "") ++ ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; bfextu rd, rs, k5, 1 or and(h/l) rd, one_bit_set_mask ++;; to ++;; bld rs, k5 ++;; ++;; If rd is dead after the operation. ++;;============================================================================= ++(define_peephole2 ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 1) ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (cc0) ++ (match_dup 0))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (cc0) ++ (and:SI (match_dup 1) ++ (match_dup 2)))] ++ "operands[2] = GEN_INT(1 << INTVAL(operands[2]));") ++ ++(define_peephole2 ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (and:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "one_bit_set_operand" ""))) ++ (set (cc0) ++ (match_dup 0))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (cc0) ++ (and:SI (match_dup 1) ++ (match_dup 2)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Load with extracted index: ld.w Rd, Rb[Ri:{t/u/b/l} << 2] ++;; ++;;============================================================================= ++ ++ ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 8) ++ (match_operand:SI 2 "avr32_extract_shift_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 4 "register_operand" ""))))] ++ ++ "(dead_or_set_p(insn, operands[0]))" ++ { ++ switch ( INTVAL(operands[2]) ){ ++ case 0: ++ return "ld.w %3, %4[%1:b << 2]"; ++ case 8: ++ return "ld.w %3, %4[%1:l << 2]"; ++ case 16: ++ return "ld.w %3, %4[%1:u << 2]"; ++ case 24: ++ return "ld.w %3, %4[%1:t << 2]"; ++ default: ++ internal_error("illegal operand for ldxi"); ++ } ++ } ++ [(set_attr "type" "load") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++ ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "") ++ (and:SI (match_operand:SI 1 "register_operand" "") (const_int 255))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(dead_or_set_p(insn, operands[0]))" ++ ++ "ld.w %2, %3[%1:b << 2]" ++ [(set_attr "type" "load") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 8) ++ (match_operand:SI 2 "avr32_extract_shift_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 4 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[3]))" ++ [(set (match_dup 3) ++ (mem:SI (plus:SI ++ (match_dup 4) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (match_dup 2)) ++ (const_int 4)))))] ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:QI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[2]))" ++ [(set (match_dup 2) ++ (mem:SI (plus:SI ++ (match_dup 3) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (const_int 0)) ++ (const_int 4)))))] ++ "operands[1] = gen_rtx_REG(SImode, REGNO(operands[1]));" ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (and:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 255))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[2]))" ++ [(set (match_dup 2) ++ (mem:SI (plus:SI ++ (match_dup 3) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (const_int 0)) ++ (const_int 4)))))] ++ "" ++ ) ++ ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (lshiftrt:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 24))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[2]))" ++ [(set (match_dup 2) ++ (mem:SI (plus:SI ++ (match_dup 3) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (const_int 24)) ++ (const_int 4)))))] ++ "" ++ ) ++ ++ ++;;************************************************ ++;; ANDN ++;; ++;;************************************************ ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (not:SI (match_operand:SI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (and:SI (match_dup 2) ++ (match_dup 0)))] ++ "peep2_reg_dead_p(2, operands[0])" ++ ++ [(set (match_dup 2) ++ (and:SI (match_dup 2) ++ (not:SI (match_dup 1)) ++ ))] ++ "" ++) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (not:SI (match_operand:SI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (and:SI (match_dup 0) ++ (match_dup 2) ++ ))] ++ "peep2_reg_dead_p(2, operands[0])" ++ ++ [(set (match_dup 2) ++ (and:SI (match_dup 2) ++ (not:SI (match_dup 1)) ++ ))] ++ ++ "" ++) ++ ++ ++;;================================================================= ++;; Addabs peephole ++;;================================================================= ++ ++(define_peephole ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (abs:SI (match_operand:SI 1 "register_operand" "r"))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_operand:SI 3 "register_operand" "r") ++ (match_dup 2)))] ++ "dead_or_set_p(insn, operands[2])" ++ "addabs %0, %3, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "set_z")]) ++ ++(define_peephole ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (abs:SI (match_operand:SI 1 "register_operand" "r"))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_dup 2) ++ (match_operand:SI 3 "register_operand" "r")))] ++ "dead_or_set_p(insn, operands[2])" ++ "addabs %0, %3, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "set_z")]) ++ ++ ++;;================================================================= ++;; Detect roundings ++;;================================================================= ++ ++(define_insn "*round" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (ashiftrt:SI (plus:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" "i")) ++ (match_operand:SI 2 "immediate_operand" "i")))] ++ "avr32_rnd_operands(operands[1], operands[2])" ++ ++ "satrnds %0 >> %2, 31" ++ ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (plus:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" ""))) ++ (set (match_dup 0) ++ (ashiftrt:SI (match_dup 0) ++ (match_operand:SI 2 "immediate_operand" "")))] ++ "avr32_rnd_operands(operands[1], operands[2])" ++ ++ [(set (match_dup 0) ++ (ashiftrt:SI (plus:SI (match_dup 0) ++ (match_dup 1)) ++ (match_dup 2)))] ++ ) ++ ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "r") ++ (plus:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" "i"))) ++ (set (match_dup 0) ++ (ashiftrt:SI (match_dup 0) ++ (match_operand:SI 2 "immediate_operand" "i")))] ++ "avr32_rnd_operands(operands[1], operands[2])" ++ ++ "satrnds %0 >> %2, 31" ++ ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++ ++ ) ++ ++ ++;;================================================================= ++;; mcall ++;;================================================================= ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(call (mem:SI (match_dup 0)) ++ (match_operand 2 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "dead_or_set_p(insn, operands[0])" ++ "mcall %1" ++ [(set_attr "type" "call") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++) ++ ++(define_peephole ++ [(set (match_operand:SI 2 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(set (match_operand 0 "register_operand" "") ++ (call (mem:SI (match_dup 2)) ++ (match_operand 3 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "dead_or_set_p(insn, operands[2])" ++ "mcall %1" ++ [(set_attr "type" "call") ++ (set_attr "length" "4") ++ (set_attr "cc" "call_set")] ++) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(call (mem:SI (match_dup 0)) ++ (match_operand 2 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(parallel [(call (mem:SI (match_dup 1)) ++ (match_dup 2)) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(set (match_operand 2 "register_operand" "") ++ (call (mem:SI (match_dup 0)) ++ (match_operand 3 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "(peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[2]) == REGNO(operands[0])))" ++ [(parallel [(set (match_dup 2) ++ (call (mem:SI (match_dup 1)) ++ (match_dup 3))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++) ++ ++;;================================================================= ++;; Returning a value ++;;================================================================= ++ ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "") ++ (match_operand 1 "register_operand" "")) ++ (return)] ++ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM) ++ && (REGNO(operands[1]) != LR_REGNUM) ++ && (REGNO_REG_CLASS(REGNO(operands[1])) == GENERAL_REGS)" ++ "retal %1" ++ [(set_attr "type" "call") ++ (set_attr "length" "2")] ++ ) ++ ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "r") ++ (match_operand 1 "immediate_operand" "i")) ++ (return)] ++ "(USE_RETURN_INSN (FALSE) && (REGNO(operands[0]) == RETVAL_REGNUM) && ++ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1)))" ++ { ++ avr32_output_return_instruction (TRUE, FALSE, NULL, operands[1]); ++ return ""; ++ } ++ [(set_attr "type" "call") ++ (set_attr "length" "4")] ++ ) ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "r") ++ (match_operand 1 "immediate_operand" "i")) ++ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)] ++ "(REGNO(operands[0]) == RETVAL_REGNUM) && ++ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1))" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[1]); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "=r") ++ (if_then_else (match_operator 1 "avr32_comparison_operator" ++ [(match_operand 4 "register_operand" "r") ++ (match_operand 5 "register_immediate_operand" "rKs21")]) ++ (match_operand 2 "avr32_cond_register_immediate_operand" "rKs08") ++ (match_operand 3 "avr32_cond_register_immediate_operand" "rKs08"))) ++ (return)] ++ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM)" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ ++ if ( GET_CODE(operands[2]) == REG ++ && GET_CODE(operands[3]) == REG ++ && REGNO(operands[2]) != LR_REGNUM ++ && REGNO(operands[3]) != LR_REGNUM ){ ++ return "ret%1 %2\;ret%i1 %3"; ++ } else if ( GET_CODE(operands[2]) == REG ++ && GET_CODE(operands[3]) == CONST_INT ){ ++ if ( INTVAL(operands[3]) == -1 ++ || INTVAL(operands[3]) == 0 ++ || INTVAL(operands[3]) == 1 ){ ++ return "ret%1 %2\;ret%i1 %d3"; ++ } else { ++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; ++ } ++ } else if ( GET_CODE(operands[2]) == CONST_INT ++ && GET_CODE(operands[3]) == REG ){ ++ if ( INTVAL(operands[2]) == -1 ++ || INTVAL(operands[2]) == 0 ++ || INTVAL(operands[2]) == 1 ){ ++ return "ret%1 %d2\;ret%i1 %3"; ++ } else { ++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; ++ } ++ } else { ++ if ( (INTVAL(operands[2]) == -1 ++ || INTVAL(operands[2]) == 0 ++ || INTVAL(operands[2]) == 1 ) ++ && (INTVAL(operands[3]) == -1 ++ || INTVAL(operands[3]) == 0 ++ || INTVAL(operands[3]) == 1 )){ ++ return "ret%1 %d2\;ret%i1 %d3"; ++ } else { ++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; ++ } ++ } ++ } ++ ++ [(set_attr "length" "10") ++ (set_attr "cc" "none") ++ (set_attr "type" "call")]) ++ ++ ++ ++;;================================================================= ++;; mulnhh.w ++;;================================================================= ++ ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (neg:HI (match_operand:HI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_dup 0)) ++ (sign_extend:SI (match_operand:HI 3 "register_operand" ""))))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))" ++ [ (set (match_dup 2) ++ (mult:SI ++ (sign_extend:SI (neg:HI (match_dup 1))) ++ (sign_extend:SI (match_dup 3))))] ++ "" ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (neg:HI (match_operand:HI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_operand:HI 3 "register_operand" "")) ++ (sign_extend:SI (match_dup 0))))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))" ++ [ (set (match_dup 2) ++ (mult:SI ++ (sign_extend:SI (neg:HI (match_dup 1))) ++ (sign_extend:SI (match_dup 3))))] ++ "" ++ ) ++ ++ ++ ++;;================================================================= ++;; Vector set and extract operations ++;;================================================================= ++(define_insn "vec_setv2hi_hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (vec_merge:V2HI ++ (match_dup 0) ++ (vec_duplicate:V2HI ++ (match_operand:HI 1 "register_operand" "r")) ++ (const_int 1)))] ++ "" ++ "bfins\t%0, %1, 16, 16" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_insn "vec_setv2hi_lo" ++ [(set (match_operand:V2HI 0 "register_operand" "+r") ++ (vec_merge:V2HI ++ (match_dup 0) ++ (vec_duplicate:V2HI ++ (match_operand:HI 1 "register_operand" "r")) ++ (const_int 2)))] ++ "" ++ "bfins\t%0, %1, 0, 16" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_expand "vec_setv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "") ++ (vec_merge:V2HI ++ (match_dup 0) ++ (vec_duplicate:V2HI ++ (match_operand:HI 1 "register_operand" "")) ++ (match_operand 2 "immediate_operand" "")))] ++ "" ++ { operands[2] = GEN_INT(INTVAL(operands[2]) + 1); } ++ ) ++ ++(define_insn "vec_extractv2hi" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (vec_select:HI ++ (match_operand:V2HI 1 "register_operand" "r") ++ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))] ++ "" ++ { ++ if ( INTVAL(operands[2]) == 0 ) ++ return "bfextu\t%0, %1, 16, 16"; ++ else ++ return "bfextu\t%0, %1, 0, 16"; ++ } ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_insn "vec_extractv4qi" ++ [(set (match_operand:QI 0 "register_operand" "=r") ++ (vec_select:QI ++ (match_operand:V4QI 1 "register_operand" "r") ++ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))] ++ "" ++ { ++ switch ( INTVAL(operands[2]) ){ ++ case 0: ++ return "bfextu\t%0, %1, 24, 8"; ++ case 1: ++ return "bfextu\t%0, %1, 16, 8"; ++ case 2: ++ return "bfextu\t%0, %1, 8, 8"; ++ case 3: ++ return "bfextu\t%0, %1, 0, 8"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++ ++(define_insn "concatv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r, r, r") ++ (vec_concat:V2HI ++ (match_operand:HI 1 "register_operand" "r, r, 0") ++ (match_operand:HI 2 "register_operand" "r, 0, r")))] ++ "" ++ "@ ++ mov\t%0, %1\;bfins\t%0, %2, 0, 16 ++ bfins\t%0, %2, 0, 16 ++ bfins\t%0, %1, 16, 16" ++ [(set_attr "length" "6, 4, 4") ++ (set_attr "type" "alu")]) ++ ++ ++;; Load the atomic operation description ++(include "sync.md") ++ ++;; Load the SIMD description ++(include "simd.md") ++ ++;; Include the FPU for uc3 ++(include "uc3fpu.md") +--- /dev/null ++++ b/gcc/config/avr32/avr32-modes.def +@@ -0,0 +1 @@ ++VECTOR_MODES (INT, 4); /* V4QI V2HI */ +--- /dev/null ++++ b/gcc/config/avr32/avr32.opt +@@ -0,0 +1,93 @@ ++; Options for the ATMEL AVR32 port of the compiler. ++ ++; Copyright 2007 Atmel Corporation. ++; ++; This file is part of GCC. ++; ++; GCC is free software; you can redistribute it and/or modify it under ++; the terms of the GNU General Public License as published by the Free ++; Software Foundation; either version 2, or (at your option) any later ++; version. ++; ++; GCC is distributed in the hope that it will be useful, but WITHOUT ANY ++; WARRANTY; without even the implied warranty of MERCHANTABILITY or ++; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ++; for more details. ++; ++; You should have received a copy of the GNU General Public License ++; along with GCC; see the file COPYING. If not, write to the Free ++; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA ++; 02110-1301, USA. ++ ++muse-rodata-section ++Target Report Mask(USE_RODATA_SECTION) ++Use section .rodata for read-only data instead of .text. ++ ++mhard-float ++Target Report Mask(HARD_FLOAT) ++Use FPU instructions instead of floating point emulation. ++ ++msoft-float ++Target Report InverseMask(HARD_FLOAT, SOFT_FLOAT) ++Use floating point emulation for floating point operations. ++ ++mforce-double-align ++Target Report RejectNegative Mask(FORCE_DOUBLE_ALIGN) ++Force double-word alignment for double-word memory accesses. ++ ++mno-init-got ++Target Report RejectNegative Mask(NO_INIT_GOT) ++Do not initialize GOT register before using it when compiling PIC code. ++ ++mrelax ++Target Report Mask(RELAX) ++Let invoked assembler and linker do relaxing (Enabled by default when optimization level is >1). ++ ++mmd-reorg-opt ++Target Report Undocumented Mask(MD_REORG_OPTIMIZATION) ++Perform machine dependent optimizations in reorg stage. ++ ++masm-addr-pseudos ++Target Report Mask(HAS_ASM_ADDR_PSEUDOS) ++Use assembler pseudo-instructions lda.w and call for handling direct addresses. (Enabled by default) ++ ++mpart= ++Target Report RejectNegative Joined Var(avr32_part_name) ++Specify the AVR32 part name ++ ++mcpu= ++Target Report RejectNegative Joined Undocumented Var(avr32_part_name) ++Specify the AVR32 part name (deprecated) ++ ++march= ++Target Report RejectNegative Joined Var(avr32_arch_name) ++Specify the AVR32 architecture name ++ ++mfast-float ++Target Report Mask(FAST_FLOAT) ++Enable fast floating-point library. Enabled by default if the -funsafe-math-optimizations switch is specified. ++ ++mimm-in-const-pool ++Target Report Var(avr32_imm_in_const_pool) Init(-1) ++Put large immediates in constant pool. This is enabled by default for archs with insn-cache. ++ ++mno-pic ++Target Report RejectNegative Mask(NO_PIC) ++Do not generate position-independent code. (deprecated, use -fno-pic instead) ++ ++mcond-exec-before-reload ++Target Report Undocumented Mask(COND_EXEC_BEFORE_RELOAD) ++Enable experimental conditional execution preparation before the reload stage. ++ ++mrmw-addressable-data ++Target Report Mask(RMW_ADDRESSABLE_DATA) ++Signal that all data is in range for the Atomic Read-Modify-Write memory instructions, and that ++gcc can safely generate these whenever possible. ++ ++mflashvault ++Target Var(TARGET_FLASHVAULT) ++Generate code for flashvault ++ ++mlist-devices ++Target RejectNegative Var(avr32_list_supported_parts) ++Print the list of parts supported while printing --target-help. +--- /dev/null ++++ b/gcc/config/avr32/avr32-protos.h +@@ -0,0 +1,196 @@ ++/* ++ Prototypes for exported functions defined in avr32.c ++ Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++#ifndef AVR32_PROTOS_H ++#define AVR32_PROTOS_H ++ ++extern const int swap_reg[]; ++ ++extern int avr32_valid_macmac_bypass (rtx, rtx); ++extern int avr32_valid_mulmac_bypass (rtx, rtx); ++ ++extern int avr32_decode_lcomm_symbol_offset (rtx, int *); ++extern void avr32_encode_lcomm_symbol_offset (tree, char *, int); ++ ++extern const char *avr32_strip_name_encoding (const char *); ++ ++extern rtx avr32_get_note_reg_equiv (rtx insn); ++ ++extern int avr32_use_return_insn (int iscond); ++ ++extern void avr32_make_reglist16 (int reglist16_vect, char *reglist16_string); ++ ++extern void avr32_make_reglist8 (int reglist8_vect, char *reglist8_string); ++extern void avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string); ++extern void avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string); ++ ++extern void avr32_output_return_instruction (int single_ret_inst, ++ int iscond, rtx cond, ++ rtx r12_imm); ++extern void avr32_expand_prologue (void); ++extern void avr32_set_return_address (rtx source, rtx scratch); ++ ++extern int avr32_hard_regno_mode_ok (int regno, enum machine_mode mode); ++extern int avr32_extra_constraint_s (rtx value, const int strict); ++extern int avr32_eh_return_data_regno (const int n); ++extern int avr32_initial_elimination_offset (const int from, const int to); ++extern rtx avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, ++ tree type, int named); ++extern void avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype, ++ rtx libname, tree fndecl); ++extern void avr32_function_arg_advance (CUMULATIVE_ARGS * cum, ++ enum machine_mode mode, ++ tree type, int named); ++#ifdef ARGS_SIZE_RTX ++/* expr.h defines ARGS_SIZE_RTX and `enum direction'. */ ++extern enum direction avr32_function_arg_padding (enum machine_mode mode, ++ tree type); ++#endif /* ARGS_SIZE_RTX */ ++extern rtx avr32_function_value (tree valtype, tree func, bool outgoing); ++extern rtx avr32_libcall_value (enum machine_mode mode); ++extern int avr32_sched_use_dfa_pipeline_interface (void); ++extern bool avr32_return_in_memory (tree type, tree fntype); ++extern void avr32_regs_to_save (char *operand); ++extern void avr32_target_asm_function_prologue (FILE * file, ++ HOST_WIDE_INT size); ++extern void avr32_target_asm_function_epilogue (FILE * file, ++ HOST_WIDE_INT size); ++extern void avr32_trampoline_template (FILE * file); ++extern void avr32_initialize_trampoline (rtx addr, rtx fnaddr, ++ rtx static_chain); ++extern int avr32_legitimate_address (enum machine_mode mode, rtx x, ++ int strict); ++extern int avr32_legitimate_constant_p (rtx x); ++ ++extern int avr32_legitimate_pic_operand_p (rtx x); ++ ++extern rtx avr32_find_symbol (rtx x); ++extern void avr32_select_section (rtx exp, int reloc, int align); ++extern void avr32_encode_section_info (tree decl, rtx rtl, int first); ++extern void avr32_asm_file_end (FILE * stream); ++extern void avr32_asm_output_ascii (FILE * stream, char *ptr, int len); ++extern void avr32_asm_output_common (FILE * stream, const char *name, ++ int size, int rounded); ++extern void avr32_asm_output_label (FILE * stream, const char *name); ++extern void avr32_asm_declare_object_name (FILE * stream, char *name, ++ tree decl); ++extern void avr32_asm_globalize_label (FILE * stream, const char *name); ++extern void avr32_asm_weaken_label (FILE * stream, const char *name); ++extern void avr32_asm_output_external (FILE * stream, tree decl, ++ const char *name); ++extern void avr32_asm_output_external_libcall (FILE * stream, rtx symref); ++extern void avr32_asm_output_labelref (FILE * stream, const char *name); ++extern void avr32_notice_update_cc (rtx exp, rtx insn); ++extern void avr32_print_operand (FILE * stream, rtx x, int code); ++extern void avr32_print_operand_address (FILE * stream, rtx x); ++ ++extern int avr32_symbol (rtx x); ++ ++extern void avr32_select_rtx_section (enum machine_mode mode, rtx x, ++ unsigned HOST_WIDE_INT align); ++ ++extern int avr32_load_multiple_operation (rtx op, enum machine_mode mode); ++extern int avr32_store_multiple_operation (rtx op, enum machine_mode mode); ++ ++extern int avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, ++ const char *str); ++ ++extern bool avr32_cannot_force_const_mem (rtx x); ++ ++extern void avr32_init_builtins (void); ++ ++extern rtx avr32_expand_builtin (tree exp, rtx target, rtx subtarget, ++ enum machine_mode mode, int ignore); ++ ++extern bool avr32_must_pass_in_stack (enum machine_mode mode, tree type); ++ ++extern bool avr32_strict_argument_naming (CUMULATIVE_ARGS * ca); ++ ++extern bool avr32_pass_by_reference (CUMULATIVE_ARGS * cum, ++ enum machine_mode mode, ++ tree type, bool named); ++ ++extern rtx avr32_gen_load_multiple (rtx * regs, int count, rtx from, ++ int write_back, int in_struct_p, ++ int scalar_p); ++extern rtx avr32_gen_store_multiple (rtx * regs, int count, rtx to, ++ int in_struct_p, int scalar_p); ++extern int avr32_gen_movmemsi (rtx * operands); ++ ++extern int avr32_rnd_operands (rtx add, rtx shift); ++extern int avr32_adjust_insn_length (rtx insn, int length); ++ ++extern int symbol_mentioned_p (rtx x); ++extern int label_mentioned_p (rtx x); ++extern rtx legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg); ++extern int avr32_address_register_rtx_p (rtx x, int strict_p); ++extern int avr32_legitimate_index_p (enum machine_mode mode, rtx index, ++ int strict_p); ++ ++extern int avr32_const_double_immediate (rtx value); ++extern void avr32_init_expanders (void); ++extern rtx avr32_return_addr (int count, rtx frame); ++extern bool avr32_got_mentioned_p (rtx addr); ++ ++extern void avr32_final_prescan_insn (rtx insn, rtx * opvec, int noperands); ++ ++extern int avr32_expand_movcc (enum machine_mode mode, rtx operands[]); ++extern int avr32_expand_addcc (enum machine_mode mode, rtx operands[]); ++#ifdef RTX_CODE ++extern int avr32_expand_scc (RTX_CODE cond, rtx * operands); ++#endif ++ ++extern int avr32_store_bypass (rtx insn_out, rtx insn_in); ++extern int avr32_mul_waw_bypass (rtx insn_out, rtx insn_in); ++extern int avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in); ++extern int avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in); ++extern rtx avr32_output_cmp (rtx cond, enum machine_mode mode, ++ rtx op0, rtx op1); ++ ++rtx get_next_insn_cond (rtx cur_insn); ++int set_next_insn_cond (rtx cur_insn, rtx cond); ++rtx next_insn_emits_cmp (rtx cur_insn); ++void avr32_override_options (void); ++void avr32_load_pic_register (void); ++#ifdef GCC_BASIC_BLOCK_H ++rtx avr32_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn, ++ int *num_true_changes); ++rtx avr32_ifcvt_modify_test (ce_if_block_t *ce_info, rtx test ); ++void avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info, int *num_true_changes); ++#endif ++void avr32_optimization_options (int level, int size); ++int avr32_const_ok_for_move (HOST_WIDE_INT c); ++ ++void avr32_split_const_expr (enum machine_mode mode, ++ enum machine_mode new_mode, ++ rtx expr, ++ rtx *split_expr); ++void avr32_get_intval (enum machine_mode mode, ++ rtx const_expr, ++ HOST_WIDE_INT *val); ++ ++int avr32_cond_imm_clobber_splittable (rtx insn, ++ rtx operands[]); ++ ++bool avr32_flashvault_call(tree decl); ++extern void avr32_emit_swdivsf (rtx, rtx, rtx); ++ ++#endif /* AVR32_PROTOS_H */ +--- /dev/null ++++ b/gcc/config/avr32/crti.asm +@@ -0,0 +1,64 @@ ++/* ++ Init/fini stuff for AVR32. ++ Copyright 2003-2006 Atmel Corporation. ++ ++ Written by Ronny Pedersen, Atmel Norway, ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++/* The code in sections .init and .fini is supposed to be a single ++ regular function. The function in .init is called directly from ++ start in crt1.asm. The function in .fini is atexit()ed in crt1.asm ++ too. ++ ++ crti.asm contributes the prologue of a function to these sections, ++ and crtn.asm comes up the epilogue. STARTFILE_SPEC should list ++ crti.o before any other object files that might add code to .init ++ or .fini sections, and ENDFILE_SPEC should list crtn.o after any ++ such object files. */ ++ ++ .file "crti.asm" ++ ++ .section ".init" ++/* Just load the GOT */ ++ .align 2 ++ .global _init ++_init: ++ stm --sp, r6, lr ++ lddpc r6, 1f ++0: ++ rsub r6, pc ++ rjmp 2f ++ .align 2 ++1: .long 0b - _GLOBAL_OFFSET_TABLE_ ++2: ++ ++ .section ".fini" ++/* Just load the GOT */ ++ .align 2 ++ .global _fini ++_fini: ++ stm --sp, r6, lr ++ lddpc r6, 1f ++0: ++ rsub r6, pc ++ rjmp 2f ++ .align 2 ++1: .long 0b - _GLOBAL_OFFSET_TABLE_ ++2: ++ +--- /dev/null ++++ b/gcc/config/avr32/crtn.asm +@@ -0,0 +1,44 @@ ++/* Copyright (C) 2001 Free Software Foundation, Inc. ++ Written By Nick Clifton ++ ++ This file is free software; you can redistribute it and/or modify it ++ under the terms of the GNU General Public License as published by the ++ Free Software Foundation; either version 2, or (at your option) any ++ later version. ++ ++ In addition to the permissions in the GNU General Public License, the ++ Free Software Foundation gives you unlimited permission to link the ++ compiled version of this file with other programs, and to distribute ++ those programs without any restriction coming from the use of this ++ file. (The General Public License restrictions do apply in other ++ respects; for example, they cover modification of the file, and ++ distribution when not linked into another program.) ++ ++ This file is distributed in the hope that it will be useful, but ++ WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ++ General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; see the file COPYING. If not, write to ++ the Free Software Foundation, 59 Temple Place - Suite 330, ++ Boston, MA 02111-1307, USA. ++ ++ As a special exception, if you link this library with files ++ compiled with GCC to produce an executable, this does not cause ++ the resulting executable to be covered by the GNU General Public License. ++ This exception does not however invalidate any other reasons why ++ the executable file might be covered by the GNU General Public License. ++*/ ++ ++ ++ ++ ++ .file "crtn.asm" ++ ++ .section ".init" ++ ldm sp++, r6, pc ++ ++ .section ".fini" ++ ldm sp++, r6, pc ++ +--- /dev/null ++++ b/gcc/config/avr32/lib1funcs.S +@@ -0,0 +1,2903 @@ ++/* Macro for moving immediate value to register. */ ++.macro mov_imm reg, imm ++.if (((\imm & 0xfffff) == \imm) || ((\imm | 0xfff00000) == \imm)) ++ mov \reg, \imm ++#if __AVR32_UC__ >= 2 ++.elseif ((\imm & 0xffff) == 0) ++ movh \reg, hi(\imm) ++ ++#endif ++.else ++ mov \reg, lo(\imm) ++ orh \reg, hi(\imm) ++.endif ++.endm ++ ++ ++ ++/* Adjust the unpacked double number if it is a subnormal number. ++ The exponent and mantissa pair are stored ++ in [mant_hi,mant_lo] and [exp]. A register with the correct sign bit in ++ the MSB is passed in [sign]. Needs two scratch ++ registers [scratch1] and [scratch2]. An adjusted and packed double float ++ is present in [mant_hi,mant_lo] after macro has executed */ ++.macro adjust_subnormal_df exp, mant_lo, mant_hi, sign, scratch1, scratch2 ++ /* We have an exponent which is <=0 indicating a subnormal number ++ As it should be stored as if the exponent was 1 (although the ++ exponent field is all zeros to indicate a subnormal number) ++ we have to shift down the mantissa to its correct position. */ ++ neg \exp ++ sub \exp,-1 /* amount to shift down */ ++ cp.w \exp,54 ++ brlo 50f /* if more than 53 shift steps, the ++ entire mantissa will disappear ++ without any rounding to occur */ ++ mov \mant_hi, 0 ++ mov \mant_lo, 0 ++ rjmp 52f ++50: ++ sub \exp,-10 /* do the shift to position the ++ mantissa at the same time ++ note! this does not include the ++ final 1 step shift to add the sign */ ++ ++ /* when shifting, save all shifted out bits in [scratch2]. we may need to ++ look at them to make correct rounding. */ ++ ++ rsub \scratch1,\exp,32 /* get inverted shift count */ ++ cp.w \exp,32 /* handle shifts >= 32 separately */ ++ brhs 51f ++ ++ /* small (<32) shift amount, both words are part of the shift */ ++ lsl \scratch2,\mant_lo,\scratch1 /* save bits to shift out from lsw*/ ++ lsl \scratch1,\mant_hi,\scratch1 /* get bits from msw destined for lsw*/ ++ lsr \mant_lo,\mant_lo,\exp /* shift down lsw */ ++ lsr \mant_hi,\mant_hi,\exp /* shift down msw */ ++ or \mant_hi,\scratch1 /* add bits from msw with prepared lsw */ ++ rjmp 50f ++ ++ /* large (>=32) shift amount, only lsw will have bits left after shift. ++ note that shift operations will use ((shift count) mod 32) so ++ we do not need to subtract 32 from shift count. */ ++51: ++ lsl \scratch2,\mant_hi,\scratch1 /* save bits to shift out from msw */ ++ or \scratch2,\mant_lo /* also save all bits from lsw */ ++ mov \mant_lo,\mant_hi /* msw -> lsw (i.e. "shift 32 first") */ ++ mov \mant_hi,0 /* clear msw */ ++ lsr \mant_lo,\mant_lo,\exp /* make rest of shift inside lsw */ ++ ++50: ++ /* result is almost ready to return, except that least significant bit ++ and the part we already shifted out may cause the result to be ++ rounded */ ++ bld \mant_lo,0 /* get bit to be shifted out */ ++ brcc 51f /* if bit was 0, no rounding */ ++ ++ /* msb of part to remove is 1, so rounding depends on rest of bits */ ++ tst \scratch2,\scratch2 /* get shifted out tail */ ++ brne 50f /* if rest > 0, do round */ ++ bld \mant_lo,1 /* we have to look at lsb in result */ ++ brcc 51f /* if lsb is 0, don't round */ ++ ++50: ++ /* subnormal result requires rounding ++ rounding may cause subnormal to become smallest normal number ++ luckily, smallest normal number has exactly the representation ++ we got by rippling a one bit up from mantissa into exponent field. */ ++ sub \mant_lo,-1 ++ subcc \mant_hi,-1 ++ ++51: ++ /* shift and return packed double with correct sign */ ++ rol \sign ++ ror \mant_hi ++ ror \mant_lo ++52: ++.endm ++ ++ ++/* Adjust subnormal single float number with exponent [exp] ++ and mantissa [mant] and round. */ ++.macro adjust_subnormal_sf sf, exp, mant, sign, scratch ++ /* subnormal number */ ++ rsub \exp,\exp, 1 /* shift amount */ ++ cp.w \exp, 25 ++ movhs \mant, 0 ++ brhs 90f /* Return zero */ ++ rsub \scratch, \exp, 32 ++ lsl \scratch, \mant,\scratch/* Check if there are any bits set ++ in the bits discarded in the mantissa */ ++ srne \scratch /* If so set the lsb of the shifted mantissa */ ++ lsr \mant,\mant,\exp /* Shift the mantissa */ ++ or \mant, \scratch /* Round lsb if any bits were shifted out */ ++ /* Rounding : For explaination, see round_sf. */ ++ mov \scratch, 0x7f /* Set rounding constant */ ++ bld \mant, 8 ++ subeq \scratch, -1 /* For odd numbers use rounding constant 0x80 */ ++ add \mant, \scratch /* Add rounding constant to mantissa */ ++ /* We can't overflow because mantissa is at least shifted one position ++ to the right so the implicit bit is zero. We can however get the implicit ++ bit set after rounding which means that we have the lowest normal number ++ but this is ok since this bit has the same position as the LSB of the ++ exponent */ ++ lsr \sf, \mant, 7 ++ /* Rotate in sign */ ++ lsl \sign, 1 ++ ror \sf ++90: ++.endm ++ ++ ++/* Round the unpacked df number with exponent [exp] and ++ mantissa [mant_hi, mant_lo]. Uses scratch register ++ [scratch] */ ++.macro round_df exp, mant_lo, mant_hi, scratch ++ mov \scratch, 0x3ff /* Rounding constant */ ++ bld \mant_lo,11 /* Check if lsb in the final result is ++ set */ ++ subeq \scratch, -1 /* Adjust rounding constant to 0x400 ++ if rounding 0.5 upwards */ ++ add \mant_lo, \scratch /* Round */ ++ acr \mant_hi /* If overflowing we know that ++ we have all zeros in the bits not ++ scaled out so we can leave them ++ but we must increase the exponent with ++ two since we had an implicit bit ++ which is lost + the extra overflow bit */ ++ subcs \exp, -2 /* Update exponent */ ++.endm ++ ++/* Round single float number stored in [mant] and [exp] */ ++.macro round_sf exp, mant, scratch ++ /* Round: ++ For 0.5 we round to nearest even integer ++ for all other cases we round to nearest integer. ++ This means that if the digit left of the "point" (.) ++ is 1 we can add 0x80 to the mantissa since the ++ corner case 0x180 will round up to 0x200. If the ++ digit left of the "point" is 0 we will have to ++ add 0x7f since this will give 0xff and hence a ++ truncation/rounding downwards for the corner ++ case when the 9 lowest bits are 0x080 */ ++ mov \scratch, 0x7f /* Set rounding constant */ ++ /* Check if the mantissa is even or odd */ ++ bld \mant, 8 ++ subeq \scratch, -1 /* Rounding constant should be 0x80 */ ++ add \mant, \scratch ++ subcs \exp, -2 /* Adjust exponent if we overflowed */ ++.endm ++ ++ ++ ++/* Pack a single float number stored in [mant] and [exp] ++ into a single float number in [sf] */ ++.macro pack_sf sf, exp, mant ++ bld \mant,31 /* implicit bit to z */ ++ subne \exp,1 /* if subnormal (implicit bit 0) ++ adjust exponent to storage format */ ++ ++ lsr \sf, \mant, 7 ++ bfins \sf, \exp, 24, 8 ++.endm ++ ++/* Pack exponent [exp] and mantissa [mant_hi, mant_lo] ++ into [df_hi, df_lo]. [df_hi] is shifted ++ one bit up so the sign bit can be shifted into it */ ++ ++.macro pack_df exp, mant_lo, mant_hi, df_lo, df_hi ++ bld \mant_hi,31 /* implicit bit to z */ ++ subne \exp,1 /* if subnormal (implicit bit 0) ++ adjust exponent to storage format */ ++ ++ lsr \mant_lo,11 /* shift back lsw */ ++ or \df_lo,\mant_lo,\mant_hi<<21 /* combine with low bits from msw */ ++ lsl \mant_hi,1 /* get rid of implicit bit */ ++ lsr \mant_hi,11 /* shift back msw except for one step*/ ++ or \df_hi,\mant_hi,\exp<<21 /* combine msw with exponent */ ++.endm ++ ++/* Normalize single float number stored in [mant] and [exp] ++ using scratch register [scratch] */ ++.macro normalize_sf exp, mant, scratch ++ /* Adjust exponent and mantissa */ ++ clz \scratch, \mant ++ sub \exp, \scratch ++ lsl \mant, \mant, \scratch ++.endm ++ ++/* Normalize the exponent and mantissa pair stored ++ in [mant_hi,mant_lo] and [exp]. Needs two scratch ++ registers [scratch1] and [scratch2]. */ ++.macro normalize_df exp, mant_lo, mant_hi, scratch1, scratch2 ++ clz \scratch1,\mant_hi /* Check if we have zeros in high bits */ ++ breq 80f /* No need for scaling if no zeros in high bits */ ++ brcs 81f /* Check for all zeros */ ++ ++ /* shift amount is smaller than 32, and involves both msw and lsw*/ ++ rsub \scratch2,\scratch1,32 /* shift mantissa */ ++ lsl \mant_hi,\mant_hi,\scratch1 ++ lsr \scratch2,\mant_lo,\scratch2 ++ or \mant_hi,\scratch2 ++ lsl \mant_lo,\mant_lo,\scratch1 ++ sub \exp,\scratch1 /* adjust exponent */ ++ rjmp 80f /* Finished */ ++81: ++ /* shift amount is greater than 32 */ ++ clz \scratch1,\mant_lo /* shift mantissa */ ++ movcs \scratch1, 0 ++ subcc \scratch1,-32 ++ lsl \mant_hi,\mant_lo,\scratch1 ++ mov \mant_lo,0 ++ sub \exp,\scratch1 /* adjust exponent */ ++80: ++.endm ++ ++ ++/* Fast but approximate multiply of two 64-bit numbers to give a 64 bit result. ++ The multiplication of [al]x[bl] is discarded. ++ Operands in [ah], [al], [bh], [bl]. ++ Scratch registers in [sh], [sl]. ++ Returns results in registers [rh], [rl].*/ ++.macro mul_approx_df ah, al, bh, bl, rh, rl, sh, sl ++ mulu.d \sl, \ah, \bl ++ macu.d \sl, \al, \bh ++ mulu.d \rl, \ah, \bh ++ add \rl, \sh ++ acr \rh ++.endm ++ ++ ++ ++#if defined(L_avr32_f64_mul) || defined(L_avr32_f64_mul_fast) ++ .align 2 ++#if defined(L_avr32_f64_mul) ++ .global __avr32_f64_mul ++ .type __avr32_f64_mul,@function ++__avr32_f64_mul: ++#else ++ .global __avr32_f64_mul_fast ++ .type __avr32_f64_mul_fast,@function ++__avr32_f64_mul_fast: ++#endif ++ or r12, r10, r11 << 1 ++ breq __avr32_f64_mul_op1_zero ++ ++#if defined(L_avr32_f64_mul) ++ pushm r4-r7, lr ++#else ++ stm --sp, r5,r6,r7,lr ++#endif ++ ++#define AVR32_F64_MUL_OP1_INT_BITS 1 ++#define AVR32_F64_MUL_OP2_INT_BITS 10 ++#define AVR32_F64_MUL_RES_INT_BITS 11 ++ ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */ ++ ++ /* Unpack op1 to 1.63 format*/ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ bfextu r7, r11, 20, 11 /* Extract exponent */ ++ ++ mov r5, 1 ++ ++ /* Check if normalization is needed */ ++ breq __avr32_f64_mul_op1_subnormal /*If number is subnormal, normalize it */ ++ ++ lsl r11, (12-AVR32_F64_MUL_OP1_INT_BITS-1) /* Extract mantissa, leave room for implicit bit */ ++ or r11, r11, r10>>(32-(12-AVR32_F64_MUL_OP1_INT_BITS-1)) ++ lsl r10, (12-AVR32_F64_MUL_OP1_INT_BITS-1) ++ bfins r11, r5, 32 - (1 + AVR32_F64_MUL_OP1_INT_BITS), 1 + AVR32_F64_MUL_OP1_INT_BITS /* Insert implicit bit */ ++ ++ ++22: ++ /* Unpack op2 to 10.54 format */ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ bfextu r6, r9, 20, 11 /* Extract exponent */ ++ ++ /* Check if normalization is needed */ ++ breq __avr32_f64_mul_op2_subnormal /*If number is subnormal, normalize it */ ++ ++ lsl r8, 1 /* Extract mantissa, leave room for implicit bit */ ++ rol r9 ++ bfins r9, r5, 32 - (1 + AVR32_F64_MUL_OP2_INT_BITS), 1 + AVR32_F64_MUL_OP2_INT_BITS /* Insert implicit bit */ ++ ++23: ++ ++ /* Check if any operands are NaN or INF */ ++ cp r7, 0x7ff ++ breq __avr32_f64_mul_op_nan_or_inf /* Check op1 for NaN or Inf */ ++ cp r6, 0x7ff ++ breq __avr32_f64_mul_op_nan_or_inf /* Check op2 for NaN or Inf */ ++ ++ ++ /* Calculate new exponent in r12*/ ++ add r12, r7, r6 ++ sub r12, (1023-1) ++ ++#if defined(L_avr32_f64_mul) ++ /* Do the multiplication. ++ Place result in [r11, r10, r7, r6]. The result is in 11.117 format. */ ++ mulu.d r4, r11, r8 ++ macu.d r4, r10, r9 ++ mulu.d r6, r10, r8 ++ mulu.d r10, r11, r9 ++ add r7, r4 ++ adc r10, r10, r5 ++ acr r11 ++#else ++ /* Do the multiplication using approximate calculation. discard the al x bl ++ calculation. ++ Place result in [r11, r10, r7]. The result is in 11.85 format. */ ++ ++ /* Do the multiplication using approximate calculation. ++ Place result in r11, r10. Use r7, r6 as scratch registers */ ++ mulu.d r6, r11, r8 ++ macu.d r6, r10, r9 ++ mulu.d r10, r11, r9 ++ add r10, r7 ++ acr r11 ++#endif ++ /* Adjust exponent and mantissa */ ++ /* [r12]:exp, [r11, r10]:mant [r7, r6]:sticky bits */ ++ /* Mantissa may be of the format 00000000000.0xxx or 00000000000.1xxx. */ ++ /* In the first case, shift one pos to left.*/ ++ bld r11, 32-AVR32_F64_MUL_RES_INT_BITS-1 ++ breq 0f ++ lsl r7, 1 ++ rol r10 ++ rol r11 ++ sub r12, 1 ++0: ++ cp r12, 0 ++ brle __avr32_f64_mul_res_subnormal /*Result was subnormal.*/ ++ ++ /* Check for Inf. */ ++ cp.w r12, 0x7ff ++ brge __avr32_f64_mul_res_inf ++ ++ /* Insert exponent. */ ++ bfins r11, r12, 20, 11 ++ ++ /* Result was not subnormal. Perform rounding. */ ++ /* For the fast version we discard the sticky bits and always round ++ the halfwaycase up. */ ++24: ++#if defined(L_avr32_f64_mul) ++ or r6, r6, r10 << 31 /* Or in parity bit into stickybits */ ++ or r7, r7, r6 >> 1 /* Or together sticky and still make the msb ++ of r7 represent the halfway bit. */ ++ eorh r7, 0x8000 /* Toggle halfway bit. */ ++ /* We should now round up by adding one for the following cases: ++ ++ halfway sticky|parity round-up ++ 0 x no ++ 1 0 no ++ 1 1 yes ++ ++ Since we have inverted the halfway bit we can use the satu instruction ++ by saturating to 1 bit to implement this. ++ */ ++ satu r7 >> 0, 1 ++#else ++ lsr r7, 31 ++#endif ++ add r10, r7 ++ acr r11 ++ ++ /* Insert sign bit*/ ++ bld lr, 31 ++ bst r11, 31 ++ ++ /* Return result in [r11,r10] */ ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++ ++__avr32_f64_mul_op1_subnormal: ++ andh r11, 0x000f /* Remove sign bit and exponent */ ++ clz r12, r10 /* Count leading zeros in lsw */ ++ clz r6, r11 /* Count leading zeros in msw */ ++ subcs r12, -32 + AVR32_F64_MUL_OP1_INT_BITS ++ movcs r6, r12 ++ subcc r6, AVR32_F64_MUL_OP1_INT_BITS ++ cp.w r6, 32 ++ brge 0f ++ ++ /* shifting involves both msw and lsw*/ ++ rsub r12, r6, 32 /* shift mantissa */ ++ lsl r11, r11, r6 ++ lsr r12, r10, r12 ++ or r11, r12 ++ lsl r10, r10, r6 ++ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS ++ sub r7, r6 /* adjust exponent */ ++ rjmp 22b /* Finished */ ++0: ++ /* msw is zero so only need to consider lsw */ ++ lsl r11, r10, r6 ++ breq __avr32_f64_mul_res_zero ++ mov r10, 0 ++ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS ++ sub r7, r6 /* adjust exponent */ ++ rjmp 22b ++ ++ ++__avr32_f64_mul_op2_subnormal: ++ andh r9, 0x000f /* Remove sign bit and exponent */ ++ clz r12, r8 /* Count leading zeros in lsw */ ++ clz r5, r9 /* Count leading zeros in msw */ ++ subcs r12, -32 + AVR32_F64_MUL_OP2_INT_BITS ++ movcs r5, r12 ++ subcc r5, AVR32_F64_MUL_OP2_INT_BITS ++ cp.w r5, 32 ++ brge 0f ++ ++ /* shifting involves both msw and lsw*/ ++ rsub r12, r5, 32 /* shift mantissa */ ++ lsl r9, r9, r5 ++ lsr r12, r8, r12 ++ or r9, r12 ++ lsl r8, r8, r5 ++ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS ++ sub r6, r5 /* adjust exponent */ ++ rjmp 23b /* Finished */ ++0: ++ /* msw is zero so only need to consider lsw */ ++ lsl r9, r8, r5 ++ breq __avr32_f64_mul_res_zero ++ mov r8, 0 ++ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS ++ sub r6, r5 /* adjust exponent */ ++ rjmp 23b ++ ++ ++__avr32_f64_mul_op_nan_or_inf: ++ /* Same code for OP1 and OP2*/ ++ /* Since we are here, at least one of the OPs were NaN or INF*/ ++ andh r9, 0x000f /* Remove sign bit and exponent */ ++ andh r11, 0x000f /* Remove sign bit and exponent */ ++ /* Merge the regs in each operand to check for zero*/ ++ or r11, r10 /* op1 */ ++ or r9, r8 /* op2 */ ++ /* Check if op1 is NaN or INF */ ++ cp r7, 0x7ff ++ brne __avr32_f64_mul_op1_not_naninf ++ /* op1 was NaN or INF.*/ ++ cp r11, 0 ++ brne __avr32_f64_mul_res_nan /* op1 was NaN. Result will be NaN*/ ++ /*op1 was INF. check if op2 is NaN or INF*/ ++ cp r6, 0x7ff ++ brne __avr32_f64_mul_res_inf /*op1 was INF, op2 was neither NaN nor INF*/ ++ /* op1 is INF, op2 is either NaN or INF*/ ++ cp r9, 0 ++ breq __avr32_f64_mul_res_inf /*op2 was also INF*/ ++ rjmp __avr32_f64_mul_res_nan /*op2 was NaN*/ ++ ++__avr32_f64_mul_op1_not_naninf: ++ /* op1 was not NaN nor INF. Then op2 must be NaN or INF*/ ++ cp r9, 0 ++ breq __avr32_f64_mul_res_inf /*op2 was INF, return INF*/ ++ rjmp __avr32_f64_mul_res_nan /*else return NaN*/ ++ ++__avr32_f64_mul_res_subnormal:/* Multiply result was subnormal. */ ++#if defined(L_avr32_f64_mul) ++ /* Check how much we must scale down the mantissa. */ ++ neg r12 ++ sub r12, -1 /* We do no longer have an implicit bit. */ ++ satu r12 >> 0, 6 /* Saturate shift amount to max 63. */ ++ cp.w r12, 32 ++ brge 0f ++ /* Shift amount <32 */ ++ rsub r8, r12, 32 ++ or r6, r7 ++ lsr r7, r7, r12 ++ lsl r9, r10, r8 ++ or r7, r9 ++ lsr r10, r10, r12 ++ lsl r9, r11, r8 ++ or r10, r9 ++ lsr r11, r11, r12 ++ rjmp 24b ++0: ++ /* Shift amount >=32 */ ++ rsub r8, r12, 32 ++ moveq r9, 0 ++ breq 0f ++ lsl r9, r11, r8 ++0: ++ or r6, r7 ++ or r6, r6, r10 << 1 ++ lsr r10, r10, r12 ++ or r7, r9, r10 ++ lsr r10, r11, r12 ++ mov r11, 0 ++ rjmp 24b ++#else ++ /* Flush to zero for the fast version. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ mov r10, 0 ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_res_zero:/* Multiply result is zero. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ mov r10, 0 ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_res_nan: /* Return NaN. */ ++ mov r11, -1 ++ mov r10, -1 ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_res_inf: /* Return INF. */ ++ mov r11, 0xfff00000 ++ bld lr, 31 ++ bst r11, 31 ++ mov r10, 0 ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_op1_zero: ++ /* Get sign */ ++ eor r11, r11, r9 ++ andh r11, 0x8000, COH ++ /* Check if op2 is Inf or NaN. */ ++ bfextu r12, r9, 20, 11 ++ cp.w r12, 0x7ff ++ retne r12 /* Return 0.0 */ ++ /* Return NaN */ ++ mov r10, -1 ++ mov r11, -1 ++ ret r12 ++ ++ ++ ++#endif ++ ++ ++#if defined(L_avr32_f64_addsub) || defined(L_avr32_f64_addsub_fast) ++ .align 2 ++ ++__avr32_f64_sub_from_add: ++ /* Switch sign on op2 */ ++ eorh r9, 0x8000 ++ ++#if defined(L_avr32_f64_addsub_fast) ++ .global __avr32_f64_sub_fast ++ .type __avr32_f64_sub_fast,@function ++__avr32_f64_sub_fast: ++#else ++ .global __avr32_f64_sub ++ .type __avr32_f64_sub,@function ++__avr32_f64_sub: ++#endif ++ ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ ++#if defined(L_avr32_f64_addsub_fast) ++ /* If op2 is zero just return op1 */ ++ or r12, r8, r9 << 1 ++ reteq r12 ++#endif ++ ++ /* Check signs */ ++ eor r12, r11, r9 ++ /* Different signs, use addition. */ ++ brmi __avr32_f64_add_from_sub ++ ++ stm --sp, r5, r6, r7, lr ++ ++ /* Get sign of op1 into r12 */ ++ mov r12, r11 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++ cbr r9, 31 ++ ++ /* Put the largest number in [r11, r10] ++ and the smallest number in [r9, r8] */ ++ cp r10, r8 ++ cpc r11, r9 ++ brhs 1f /* Skip swap if operands already correctly ordered*/ ++ /* Operands were not correctly ordered, swap them*/ ++ mov r7, r11 ++ mov r11, r9 ++ mov r9, r7 ++ mov r7, r10 ++ mov r10, r8 ++ mov r8, r7 ++ eorh r12, 0x8000 /* Invert sign in r12*/ ++1: ++ /* Unpack largest operand - opH */ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ lsr r7, r11, 20 /* Extract exponent */ ++ lsl r11, 11 /* Extract mantissa, leave room for implicit bit */ ++ or r11, r11, r10>>21 ++ lsl r10, 11 ++ sbr r11, 31 /* Insert implicit bit */ ++ ++ ++ /* Unpack smallest operand - opL */ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ lsr r6, r9, 20 /* Extract exponent */ ++ breq __avr32_f64_sub_opL_subnormal /* If either zero or subnormal */ ++ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */ ++ or r9, r9, r8>>21 ++ lsl r8, 11 ++ sbr r9, 31 /* Insert implicit bit */ ++ ++ ++__avr32_f64_sub_opL_subnormal_done: ++ /* opH is NaN or Inf. */ ++ cp.w r7, 0x7ff ++ breq __avr32_f64_sub_opH_nan_or_inf ++ ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r6, r7 ++ breq __avr32_f64_sub_shift_done /* No need to shift, exponents are equal*/ ++ ++ /* Scale mantissa [r9, r8] with amount [r6]. ++ Uses scratch registers [r5] and [lr]. ++ In IEEE mode:Must not forget the sticky bits we intend to shift out. */ ++ ++ rsub r5,r6,32 /* get (32 - shift count) ++ (if shift count > 32 we get a ++ negative value, but that will ++ work as well in the code below.) */ ++ ++ cp.w r6,32 /* handle shifts >= 32 separately */ ++ brhs __avr32_f64_sub_longshift ++ ++ /* small (<32) shift amount, both words are part of the shift ++ first remember whether part that is lost contains any 1 bits ... */ ++ lsl lr,r8,r5 /* shift away bits that are part of ++ final mantissa. only part that goes ++ to lr are bits that will be lost */ ++ ++ /* ... and now to the actual shift */ ++ lsl r5,r9,r5 /* get bits from msw destined for lsw*/ ++ lsr r8,r8,r6 /* shift down lsw of mantissa */ ++ lsr r9,r9,r6 /* shift down msw of mantissa */ ++ or r8,r5 /* combine these bits with prepared lsw*/ ++#if defined(L_avr32_f64_addsub) ++ cp.w lr,0 /* if any '1' bit in part we lost ...*/ ++ srne lr ++ or r8, lr /* ... we need to set sticky bit*/ ++#endif ++ ++__avr32_f64_sub_shift_done: ++ /* Now subtract the mantissas. */ ++ sub r10, r8 ++ sbc r11, r11, r9 ++ ++ /* Normalize the exponent and mantissa pair stored in ++ [r11,r10] and exponent in [r7]. Needs two scratch registers [r6] and [lr]. */ ++ clz r6,r11 /* Check if we have zeros in high bits */ ++ breq __avr32_f64_sub_longnormalize_done /* No need for scaling if no zeros in high bits */ ++ brcs __avr32_f64_sub_longnormalize ++ ++ ++ /* shift amount is smaller than 32, and involves both msw and lsw*/ ++ rsub lr,r6,32 /* shift mantissa */ ++ lsl r11,r11,r6 ++ lsr lr,r10,lr ++ or r11,lr ++ lsl r10,r10,r6 ++ ++ sub r7,r6 /* adjust exponent */ ++ brle __avr32_f64_sub_subnormal_result ++__avr32_f64_sub_longnormalize_done: ++ ++#if defined(L_avr32_f64_addsub) ++ /* Insert the bits we will remove from the mantissa r9[31:21] */ ++ lsl r9, r10, (32 - 11) ++#else ++ /* Keep the last bit shifted out. */ ++ bfextu r9, r10, 10, 1 ++#endif ++ ++ /* Pack final result*/ ++ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */ ++ /* Result in [r11,r10] */ ++ /* Insert mantissa */ ++ lsr r10, 11 ++ or r10, r10, r11<<21 ++ lsr r11, 11 ++ /* Insert exponent and sign bit*/ ++ bfins r11, r7, 20, 11 ++ or r11, r12 ++ ++ /* Round */ ++__avr32_f64_sub_round: ++#if defined(L_avr32_f64_addsub) ++ mov_imm r7, 0x80000000 ++ bld r10, 0 ++ subne r7, -1 ++ ++ cp.w r9, r7 ++ srhs r9 ++#endif ++ add r10, r9 ++ acr r11 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r5, r6, r7,pc ++ ++ ++ ++__avr32_f64_sub_opL_subnormal: ++ /* Extract the of mantissa */ ++ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */ ++ or r9, r9, r8>>21 ++ lsl r8, 11 ++ ++ /* Set exponent to 1 if we do not have a zero. */ ++ or lr, r9, r8 ++ movne r6,1 ++ ++ /* Check if opH is also subnormal. If so, clear implicit bit in r11*/ ++ rsub lr, r7, 0 ++ moveq r7,1 ++ bst r11, 31 ++ ++ /* Check if op1 is zero, if so set exponent to 0. */ ++ or lr, r11, r10 ++ moveq r7,0 ++ ++ rjmp __avr32_f64_sub_opL_subnormal_done ++ ++__avr32_f64_sub_opH_nan_or_inf: ++ /* Check if opH is NaN, if so return NaN */ ++ cbr r11, 31 ++ or lr, r11, r10 ++ brne __avr32_f64_sub_return_nan ++ ++ /* opH is Inf. */ ++ /* Check if opL is Inf. or NaN */ ++ cp.w r6, 0x7ff ++ breq __avr32_f64_sub_return_nan ++ /* Return infinity with correct sign. */ ++ or r11, r12, r7 << 20 ++ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */ ++__avr32_f64_sub_return_nan: ++ mov r10, -1 /* Generate NaN in r11, r10 */ ++ mov r11, -1 ++ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */ ++ ++ ++__avr32_f64_sub_subnormal_result: ++#if defined(L_avr32_f64_addsub) ++ /* Check how much we must scale down the mantissa. */ ++ neg r7 ++ sub r7, -1 /* We do no longer have an implicit bit. */ ++ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */ ++ cp.w r7, 32 ++ brge 0f ++ /* Shift amount <32 */ ++ rsub r8, r7, 32 ++ lsl r9, r10, r8 ++ srne r6 ++ lsr r10, r10, r7 ++ or r10, r6 /* Sticky bit from the ++ part that was shifted out. */ ++ lsl r9, r11, r8 ++ or r10, r10, r9 ++ lsr r11, r10, r7 ++ /* Set exponent */ ++ mov r7, 0 ++ rjmp __avr32_f64_sub_longnormalize_done ++0: ++ /* Shift amount >=32 */ ++ rsub r8, r7, 64 ++ lsl r9, r11, r8 ++ or r9, r10 ++ srne r6 ++ lsr r10, r11, r7 ++ or r10, r6 /* Sticky bit from the ++ part that was shifted out. */ ++ mov r11, 0 ++ /* Set exponent */ ++ mov r7, 0 ++ rjmp __avr32_f64_sub_longnormalize_done ++#else ++ /* Just flush subnormals to zero. */ ++ mov r10, 0 ++ mov r11, 0 ++#endif ++ ldm sp++, r5, r6, r7, pc ++ ++__avr32_f64_sub_longshift: ++ /* large (>=32) shift amount, only lsw will have bits left after shift. ++ note that shift operations will use ((shift count=r6) mod 32) so ++ we do not need to subtract 32 from shift count. */ ++ /* Saturate the shift amount to 63. If the amount ++ is any larger op2 is insignificant. */ ++ satu r6 >> 0, 6 ++ ++#if defined(L_avr32_f64_addsub) ++ /* first remember whether part that is lost contains any 1 bits ... */ ++ moveq lr, r8 /* If shift amount is 32, no bits from msw are lost. */ ++ breq 0f ++ lsl lr,r9,r5 /* save all lost bits from msw */ ++ or lr,r8 /* also save lost bits (all) from lsw ++ now lr != 0 if we lose any bits */ ++#endif ++0: ++ /* ... and now to the actual shift */ ++ lsr r8,r9,r6 /* Move msw to lsw and shift. */ ++ mov r9,0 /* clear msw */ ++#if defined(L_avr32_f64_addsub) ++ cp.w lr,0 /* if any '1' bit in part we lost ...*/ ++ srne lr ++ or r8, lr /* ... we need to set sticky bit*/ ++#endif ++ rjmp __avr32_f64_sub_shift_done ++ ++__avr32_f64_sub_longnormalize: ++ /* shift amount is greater than 32 */ ++ clz r6,r10 /* shift mantissa */ ++ /* If the resulting mantissa is zero the result is ++ zero so force exponent to zero. */ ++ movcs r7, 0 ++ movcs r6, 0 ++ movcs r12, 0 /* Also clear sign bit. A zero result from subtraction ++ always is +0.0 */ ++ subcc r6,-32 ++ lsl r11,r10,r6 ++ mov r10,0 ++ sub r7,r6 /* adjust exponent */ ++ brle __avr32_f64_sub_subnormal_result ++ rjmp __avr32_f64_sub_longnormalize_done ++ ++ ++ ++ .align 2 ++__avr32_f64_add_from_sub: ++ /* Switch sign on op2 */ ++ eorh r9, 0x8000 ++ ++#if defined(L_avr32_f64_addsub_fast) ++ .global __avr32_f64_add_fast ++ .type __avr32_f64_add_fast,@function ++__avr32_f64_add_fast: ++#else ++ .global __avr32_f64_add ++ .type __avr32_f64_add,@function ++__avr32_f64_add: ++#endif ++ ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ ++#if defined(L_avr32_f64_addsub_fast) ++ /* If op2 is zero just return op1 */ ++ or r12, r8, r9 << 1 ++ reteq r12 ++#endif ++ ++ /* Check signs */ ++ eor r12, r11, r9 ++ /* Different signs, use subtraction. */ ++ brmi __avr32_f64_sub_from_add ++ ++ stm --sp, r5, r6, r7, lr ++ ++ /* Get sign of op1 into r12 */ ++ mov r12, r11 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++ cbr r9, 31 ++ ++ /* Put the number with the largest exponent in [r11, r10] ++ and the number with the smallest exponent in [r9, r8] */ ++ cp r11, r9 ++ brhs 1f /* Skip swap if operands already correctly ordered */ ++ /* Operands were not correctly ordered, swap them */ ++ mov r7, r11 ++ mov r11, r9 ++ mov r9, r7 ++ mov r7, r10 ++ mov r10, r8 ++ mov r8, r7 ++1: ++ mov lr, 0 /* Set sticky bits to zero */ ++ /* Unpack largest operand - opH */ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ bfextu R7, R11, 20, 11 /* Extract exponent */ ++ bfextu r11, r11, 0, 20 /* Extract mantissa */ ++ sbr r11, 20 /* Insert implicit bit */ ++ ++ /* Unpack smallest operand - opL */ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ bfextu R6, R9, 20, 11 /* Extract exponent */ ++ breq __avr32_f64_add_op2_subnormal ++ bfextu r9, r9, 0, 20 /* Extract mantissa */ ++ sbr r9, 20 /* Insert implicit bit */ ++ ++2: ++ /* opH is NaN or Inf. */ ++ cp.w r7, 0x7ff ++ breq __avr32_f64_add_opH_nan_or_inf ++ ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r6, r7 ++ breq __avr32_f64_add_shift_done /* No need to shift, exponents are equal*/ ++ ++ /* Scale mantissa [r9, r8] with amount [r6]. ++ Uses scratch registers [r5] and [lr]. ++ In IEEE mode:Must not forget the sticky bits we intend to shift out. */ ++ rsub r5,r6,32 /* get (32 - shift count) ++ (if shift count > 32 we get a ++ negative value, but that will ++ work as well in the code below.) */ ++ ++ cp.w r6,32 /* handle shifts >= 32 separately */ ++ brhs __avr32_f64_add_longshift ++ ++ /* small (<32) shift amount, both words are part of the shift ++ first remember whether part that is lost contains any 1 bits ... */ ++ lsl lr,r8,r5 /* shift away bits that are part of ++ final mantissa. only part that goes ++ to lr are bits that will be lost */ ++ ++ /* ... and now to the actual shift */ ++ lsl r5,r9,r5 /* get bits from msw destined for lsw*/ ++ lsr r8,r8,r6 /* shift down lsw of mantissa */ ++ lsr r9,r9,r6 /* shift down msw of mantissa */ ++ or r8,r5 /* combine these bits with prepared lsw*/ ++ ++__avr32_f64_add_shift_done: ++ /* Now add the mantissas. */ ++ add r10, r8 ++ adc r11, r11, r9 ++ ++ /* Check if we overflowed. */ ++ bld r11, 21 ++ breq __avr32_f64_add_res_of: ++ ++__avr32_f64_add_res_of_done: ++ ++ /* Pack final result*/ ++ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */ ++ /* Result in [r11,r10] */ ++ /* Insert exponent and sign bit*/ ++ bfins r11, r7, 20, 11 ++ or r11, r12 ++ ++ /* Round */ ++__avr32_f64_add_round: ++#if defined(L_avr32_f64_addsub) ++ bfextu r12, r10, 0, 1 /* Extract parity bit.*/ ++ or lr, r12 /* or it together with the sticky bits. */ ++ eorh lr, 0x8000 /* Toggle round bit. */ ++ /* We should now round up by adding one for the following cases: ++ ++ halfway sticky|parity round-up ++ 0 x no ++ 1 0 no ++ 1 1 yes ++ ++ Since we have inverted the halfway bit we can use the satu instruction ++ by saturating to 1 bit to implement this. ++ */ ++ satu lr >> 0, 1 ++#else ++ lsr lr, 31 ++#endif ++ add r10, lr ++ acr r11 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r5, r6, r7,pc ++ ++ ++__avr32_f64_add_opH_nan_or_inf: ++ /* Check if opH is NaN, if so return NaN */ ++ cbr r11, 20 ++ or lr, r11, r10 ++ brne __avr32_f64_add_return_nan ++ ++ /* opH is Inf. */ ++ /* Check if opL is Inf. or NaN */ ++ cp.w r6, 0x7ff ++ breq __avr32_f64_add_opL_nan_or_inf ++ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */ ++__avr32_f64_add_opL_nan_or_inf: ++ cbr r9, 20 ++ or lr, r9, r8 ++ brne __avr32_f64_add_return_nan ++ mov r10, 0 /* Generate Inf in r11, r10 */ ++ mov_imm r11, 0x7ff00000 ++ or r11, r12 /* Put sign bit back */ ++ ldm sp++, r5, r6, r7, pc/* opL Inf, return Inf */ ++__avr32_f64_add_return_nan: ++ mov r10, -1 /* Generate NaN in r11, r10 */ ++ mov r11, -1 ++ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */ ++ ++ ++__avr32_f64_add_longshift: ++ /* large (>=32) shift amount, only lsw will have bits left after shift. ++ note that shift operations will use ((shift count=r6) mod 32) so ++ we do not need to subtract 32 from shift count. */ ++ /* Saturate the shift amount to 63. If the amount ++ is any larger op2 is insignificant. */ ++ satu r6 >> 0, 6 ++ /* If shift amount is 32 there are no bits from the msw that are lost. */ ++ moveq lr, r8 ++ breq 0f ++ /* first remember whether part that is lost contains any 1 bits ... */ ++ lsl lr,r9,r5 /* save all lost bits from msw */ ++#if defined(L_avr32_f64_addsub) ++ cp.w r8, 0 ++ srne r8 ++ or lr,r8 /* also save lost bits (all) from lsw ++ now lr != 0 if we lose any bits */ ++#endif ++0: ++ /* ... and now to the actual shift */ ++ lsr r8,r9,r6 /* msw -> lsw and make rest of shift inside lsw*/ ++ mov r9,0 /* clear msw */ ++ rjmp __avr32_f64_add_shift_done ++ ++__avr32_f64_add_res_of: ++ /* We overflowed. Scale down mantissa by shifting right one position. */ ++ or lr, lr, lr << 1 /* Remember stickybits*/ ++ lsr r11, 1 ++ ror r10 ++ ror lr ++ sub r7, -1 /* Increment exponent */ ++ ++ /* Clear mantissa to set result to Inf if the exponent is 255. */ ++ cp.w r7, 0x7ff ++ moveq r10, 0 ++ moveq r11, 0 ++ moveq lr, 0 ++ rjmp __avr32_f64_add_res_of_done ++ ++__avr32_f64_add_op2_subnormal: ++ /* Set epxponent to 1 */ ++ mov r6, 1 ++ ++ /* Check if op2 is also subnormal. */ ++ cp.w r7, 0 ++ brne 2b ++ ++ cbr r11, 20 ++ /* Both operands are subnormal. Just addd the mantissas ++ and the exponent will automatically be set to 1 if ++ we overflow into a normal number. */ ++ add r10, r8 ++ adc r11, r11, r9 ++ ++ /* Add sign bit */ ++ or r11, r12 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r5, r6, r7,pc ++ ++ ++ ++#endif ++ ++#ifdef L_avr32_f64_to_u32 ++ /* This goes into L_fixdfsi */ ++#endif ++ ++ ++#ifdef L_avr32_f64_to_s32 ++ .global __avr32_f64_to_u32 ++ .type __avr32_f64_to_u32,@function ++__avr32_f64_to_u32: ++ cp.w r11, 0 ++ retmi 0 /* Negative returns 0 */ ++ ++ /* Fallthrough to df to signed si conversion */ ++ .global __avr32_f64_to_s32 ++ .type __avr32_f64_to_s32,@function ++__avr32_f64_to_s32: ++ lsl r12,r11,1 ++ lsr r12,21 /* extract exponent*/ ++ sub r12,1023 /* convert to unbiased exponent.*/ ++ retlo 0 /* too small exponent implies zero. */ ++ ++1: ++ rsub r12,r12,31 /* shift count = 31 - exponent */ ++ mov r9,r11 /* save sign for later...*/ ++ lsl r11,11 /* remove exponent and sign*/ ++ sbr r11,31 /* add implicit bit*/ ++ or r11,r11,r10>>21 /* get rest of bits from lsw of double */ ++ lsr r11,r11,r12 /* shift down mantissa to final place */ ++ lsl r9,1 /* sign -> carry */ ++ retcc r11 /* if positive, we are done */ ++ neg r11 /* if negative float, negate result */ ++ ret r11 ++ ++#endif /* L_fixdfsi*/ ++ ++#ifdef L_avr32_f64_to_u64 ++ /* Actual function is in L_fixdfdi */ ++#endif ++ ++#ifdef L_avr32_f64_to_s64 ++ .global __avr32_f64_to_u64 ++ .type __avr32_f64_to_u64,@function ++__avr32_f64_to_u64: ++ cp.w r11,0 ++ /* Negative numbers return zero */ ++ movmi r10, 0 ++ movmi r11, 0 ++ retmi r11 ++ ++ ++ ++ /* Fallthrough */ ++ .global __avr32_f64_to_s64 ++ .type __avr32_f64_to_s64,@function ++__avr32_f64_to_s64: ++ lsl r9,r11,1 ++ lsr r9,21 /* get exponent*/ ++ sub r9,1023 /* convert to correct range*/ ++ /* Return zero if exponent to small */ ++ movlo r10, 0 ++ movlo r11, 0 ++ retlo r11 ++ ++ mov r8,r11 /* save sign for later...*/ ++1: ++ lsl r11,11 /* remove exponent */ ++ sbr r11,31 /* add implicit bit*/ ++ or r11,r11,r10>>21 /* get rest of bits from lsw of double*/ ++ lsl r10,11 /* align lsw correctly as well */ ++ rsub r9,r9,63 /* shift count = 63 - exponent */ ++ breq 1f ++ ++ cp.w r9,32 /* is shift count more than one reg? */ ++ brhs 0f ++ ++ mov r12,r11 /* save msw */ ++ lsr r10,r10,r9 /* small shift count, shift down lsw */ ++ lsr r11,r11,r9 /* small shift count, shift down msw */ ++ rsub r9,r9,32 /* get 32-size of shifted out tail */ ++ lsl r12,r12,r9 /* align part to move from msw to lsw */ ++ or r10,r12 /* combine to get new lsw */ ++ rjmp 1f ++ ++0: ++ lsr r10,r11,r9 /* large shift count,only lsw get bits ++ note that shift count is modulo 32*/ ++ mov r11,0 /* msw will be 0 */ ++ ++1: ++ lsl r8,1 /* sign -> carry */ ++ retcc r11 /* if positive, we are done */ ++ ++ neg r11 /* if negative float, negate result */ ++ neg r10 ++ scr r11 ++ ret r11 ++ ++#endif ++ ++#ifdef L_avr32_u32_to_f64 ++ /* Code located in L_floatsidf */ ++#endif ++ ++#ifdef L_avr32_s32_to_f64 ++ .global __avr32_u32_to_f64 ++ .type __avr32_u32_to_f64,@function ++__avr32_u32_to_f64: ++ sub r11, r12, 0 /* Move to r11 and force Z flag to be updated */ ++ mov r12, 0 /* always positive */ ++ rjmp 0f /* Jump to common code for floatsidf */ ++ ++ .global __avr32_s32_to_f64 ++ .type __avr32_s32_to_f64,@function ++__avr32_s32_to_f64: ++ mov r11, r12 /* Keep original value in r12 for sign */ ++ abs r11 /* Absolute value if r12 */ ++0: ++ mov r10,0 /* let remaining bits be zero */ ++ reteq r11 /* zero long will return zero float */ ++ ++ pushm lr ++ mov r9,31+1023 /* set exponent */ ++ ++ normalize_df r9 /*exp*/, r10, r11 /* mantissa */, r8, lr /* scratch */ ++ ++ /* Check if a subnormal result was created */ ++ cp.w r9, 0 ++ brgt 0f ++ ++ adjust_subnormal_df r9 /* exp */, r10, r11 /* Mantissa */, r12 /*sign*/, r8, lr /* scratch */ ++ popm pc ++0: ++ ++ /* Round result */ ++ round_df r9 /*exp*/, r10, r11 /* Mantissa */, r8 /*scratch*/ ++ cp.w r9,0x7ff ++ brlt 0f ++ /*Return infinity */ ++ mov r10, 0 ++ mov_imm r11, 0xffe00000 ++ rjmp __floatsidf_return_op1 ++ ++0: ++ ++ /* Pack */ ++ pack_df r9 /*exp*/, r10, r11 /* mantissa */, r10, r11 /* Output df number*/ ++__floatsidf_return_op1: ++ lsl r12,1 /* shift in sign bit */ ++ ror r11 ++ ++ popm pc ++#endif ++ ++ ++#ifdef L_avr32_f32_cmp_eq ++ .global __avr32_f32_cmp_eq ++ .type __avr32_f32_cmp_eq,@function ++__avr32_f32_cmp_eq: ++ cp.w r12, r11 ++ breq 0f ++ /* If not equal check for +/-0 */ ++ /* Or together the two values and shift out the sign bit. ++ If the result is zero, then the two values are both zero. */ ++ or r12, r11 ++ lsl r12, 1 ++ reteq 1 ++ ret 0 ++0: ++ /* Numbers were equal. Check for NaN or Inf */ ++ mov_imm r11, 0xff000000 ++ lsl r12, 1 ++ cp.w r12, r11 ++ retls 1 /* 0 if NaN, 1 otherwise */ ++ ret 0 ++#endif ++ ++#if defined(L_avr32_f32_cmp_ge) || defined(L_avr32_f32_cmp_lt) ++#ifdef L_avr32_f32_cmp_ge ++ .global __avr32_f32_cmp_ge ++ .type __avr32_f32_cmp_ge,@function ++__avr32_f32_cmp_ge: ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ .global __avr32_f32_cmp_lt ++ .type __avr32_f32_cmp_lt,@function ++__avr32_f32_cmp_lt: ++#endif ++ lsl r10, r12, 1 /* Remove sign bits */ ++ lsl r9, r11, 1 ++ subfeq r10, 0 ++#ifdef L_avr32_f32_cmp_ge ++ reteq 1 /* Both number are zero. Return true. */ ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ reteq 0 /* Both number are zero. Return false. */ ++#endif ++ mov_imm r8, 0xff000000 ++ cp.w r10, r8 ++ rethi 0 /* Op0 is NaN */ ++ cp.w r9, r8 ++ rethi 0 /* Op1 is Nan */ ++ ++ eor r8, r11, r12 ++ bld r12, 31 ++#ifdef L_avr32_f32_cmp_ge ++ srcc r8 /* Set result to true if op0 is positive*/ ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ srcs r8 /* Set result to true if op0 is negative*/ ++#endif ++ retmi r8 /* Return if signs are different */ ++ brcs 0f /* Both signs negative? */ ++ ++ /* Both signs positive */ ++ cp.w r12, r11 ++#ifdef L_avr32_f32_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++0: ++ /* Both signs negative */ ++ cp.w r11, r12 ++#ifdef L_avr32_f32_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++#endif ++ ++ ++#ifdef L_avr32_f64_cmp_eq ++ .global __avr32_f64_cmp_eq ++ .type __avr32_f64_cmp_eq,@function ++__avr32_f64_cmp_eq: ++ cp.w r10,r8 ++ cpc r11,r9 ++ breq 0f ++ ++ /* Args were not equal*/ ++ /* Both args could be zero with different sign bits */ ++ lsl r11,1 /* get rid of sign bits */ ++ lsl r9,1 ++ or r11,r10 /* Check if all bits are zero */ ++ or r11,r9 ++ or r11,r8 ++ reteq 1 /* If all zeros the arguments are equal ++ so return 1 else return 0 */ ++ ret 0 ++0: ++ /* check for NaN */ ++ lsl r11,1 ++ mov_imm r12, 0xffe00000 ++ cp.w r10,0 ++ cpc r11,r12 /* check if nan or inf */ ++ retls 1 /* If Arg is NaN return 0 else 1*/ ++ ret 0 /* Return */ ++ ++#endif ++ ++ ++#if defined(L_avr32_f64_cmp_ge) || defined(L_avr32_f64_cmp_lt) ++ ++#ifdef L_avr32_f64_cmp_ge ++ .global __avr32_f64_cmp_ge ++ .type __avr32_f64_cmp_ge,@function ++__avr32_f64_cmp_ge: ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ .global __avr32_f64_cmp_lt ++ .type __avr32_f64_cmp_lt,@function ++__avr32_f64_cmp_lt: ++#endif ++ ++ /* compare magnitude of op1 and op2 */ ++ st.w --sp, lr ++ st.w --sp, r7 ++ lsl r11,1 /* Remove sign bit of op1 */ ++ srcs r12 /* Sign op1 to lsb of r12*/ ++ lsl r9,1 /* Remove sign bit of op2 */ ++ srcs r7 ++ rol r12 /* Sign op2 to lsb of lr, sign bit op1 bit 1 of r12*/ ++ ++ ++ /* Check for Nan */ ++ mov_imm lr, 0xffe00000 ++ cp.w r10,0 ++ cpc r11,lr ++ brhi 0f /* We have NaN */ ++ cp.w r8,0 ++ cpc r9,lr ++ brhi 0f /* We have NaN */ ++ ++ cp.w r11, 0 ++ subfeq r10, 0 ++ breq 3f /* op1 zero */ ++ ld.w r7, sp++ ++ ld.w lr, sp++ ++ ++ cp.w r12,3 /* both operands negative ?*/ ++ breq 1f ++ ++ cp.w r12,1 /* both operands positive? */ ++ brlo 2f ++ ++ /* Different signs. If sign of op1 is negative the difference ++ between op1 and op2 will always be negative, and if op1 is ++ positive the difference will always be positive */ ++#ifdef L_avr32_f64_cmp_ge ++ reteq 1 ++ retne 0 ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reteq 0 ++ retne 1 ++#endif ++ ++2: ++ /* Both operands positive. Just compute the difference */ ++ cp.w r10,r8 ++ cpc r11,r9 ++#ifdef L_avr32_f64_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++ ++1: ++ /* Both operands negative. Compute the difference with operands switched */ ++ cp r8,r10 ++ cpc r9,r11 ++#ifdef L_avr32_f64_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++ ++0: ++ ld.w r7, sp++ ++ popm pc, r12=0 ++#endif ++ ++3: ++ cp.w r7, 1 /* Check sign bit from r9 */ ++#ifdef L_avr32_f64_cmp_ge ++ sreq r12 /* If op2 is negative then op1 >= op2. */ ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ srne r12 /* If op2 is positve then op1 <= op2. */ ++#endif ++ cp.w r9, 0 ++ subfeq r8, 0 ++ ld.w r7, sp++ ++ ld.w lr, sp++ ++#ifdef L_avr32_f64_cmp_ge ++ reteq 1 /* Both operands are zero. Return true. */ ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reteq 0 /* Both operands are zero. Return false. */ ++#endif ++ ret r12 ++ ++ ++#if defined(L_avr32_f64_div) || defined(L_avr32_f64_div_fast) ++ .align 2 ++ ++#if defined(L_avr32_f64_div_fast) ++ .global __avr32_f64_div_fast ++ .type __avr32_f64_div_fast,@function ++__avr32_f64_div_fast: ++#else ++ .global __avr32_f64_div ++ .type __avr32_f64_div,@function ++__avr32_f64_div: ++#endif ++ stm --sp, r0, r1, r2, r3, r4, r5, r6, r7,lr ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */ ++ ++ ++ /* Unpack op1 to 2.62 format*/ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ lsr r7, r11, 20 /* Extract exponent */ ++ ++ lsl r11, 9 /* Extract mantissa, leave room for implicit bit */ ++ or r11, r11, r10>>23 ++ lsl r10, 9 ++ sbr r11, 29 /* Insert implicit bit */ ++ andh r11, 0x3fff /*Mask last part of exponent since we use 2.62 format*/ ++ ++ cbr r7, 11 /* Clear sign bit */ ++ /* Check if normalization is needed */ ++ breq 11f /*If number is subnormal, normalize it */ ++22: ++ cp r7, 0x7ff ++ brge 2f /* Check op1 for NaN or Inf */ ++ ++ /* Unpack op2 to 2.62 format*/ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ lsr r6, r9, 20 /* Extract exponent */ ++ ++ lsl r9, 9 /* Extract mantissa, leave room for implicit bit */ ++ or r9, r9, r8>>23 ++ lsl r8, 9 ++ sbr r9, 29 /* Insert implicit bit */ ++ andh r9, 0x3fff /*Mask last part of exponent since we use 2.62 format*/ ++ ++ cbr r6, 11 /* Clear sign bit */ ++ /* Check if normalization is needed */ ++ breq 13f /*If number is subnormal, normalize it */ ++23: ++ cp r6, 0x7ff ++ brge 3f /* Check op2 for NaN or Inf */ ++ ++ /* Calculate new exponent */ ++ sub r7, r6 ++ sub r7,-1023 ++ ++ /* Divide */ ++ /* Approximating 1/d with the following recurrence: */ ++ /* R[j+1] = R[j]*(2-R[j]*d) */ ++ /* Using 2.62 format */ ++ /* TWO: r12 */ ++ /* d = op2 = divisor (2.62 format): r9,r8 */ ++ /* Multiply result : r5, r4 */ ++ /* Initial guess : r3, r2 */ ++ /* New approximations : r3, r2 */ ++ /* op1 = Dividend (2.62 format) : r11, r10 */ ++ ++ mov_imm r12, 0x80000000 ++ ++ /* Load initial guess, using look-up table */ ++ /* Initial guess is of format 01.XY, where XY is constructed as follows: */ ++ /* Let d be of following format: 00.1xy....., then XY=~xy */ ++ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */ ++ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */ ++ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */ ++ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */ ++ /* r2 is also part of the reg pair forming initial guess, but it*/ ++ /* is kept uninitialized to save one cycle since it has so low significance*/ ++ ++ lsr r3, r12, 1 ++ bfextu r4, r9, 27, 2 ++ com r4 ++ bfins r3, r4, 28, 2 ++ ++ /* First approximation */ ++ /* Approximating to 32 bits */ ++ /* r5 = R[j]*d */ ++ mulu.d r4, r3, r9 ++ /* r5 = 2-R[j]*d */ ++ sub r5, r12, r5<<2 ++ /* r3 = R[j]*(2-R[j]*d) */ ++ mulu.d r4, r3, r5 ++ lsl r3, r5, 2 ++ ++ /* Second approximation */ ++ /* Approximating to 32 bits */ ++ /* r5 = R[j]*d */ ++ mulu.d r4, r3, r9 ++ /* r5 = 2-R[j]*d */ ++ sub r5, r12, r5<<2 ++ /* r3 = R[j]*(2-R[j]*d) */ ++ mulu.d r4, r3, r5 ++ lsl r3, r5, 2 ++ ++ /* Third approximation */ ++ /* Approximating to 32 bits */ ++ /* r5 = R[j]*d */ ++ mulu.d r4, r3, r9 ++ /* r5 = 2-R[j]*d */ ++ sub r5, r12, r5<<2 ++ /* r3 = R[j]*(2-R[j]*d) */ ++ mulu.d r4, r3, r5 ++ lsl r3, r5, 2 ++ ++ /* Fourth approximation */ ++ /* Approximating to 64 bits */ ++ /* r5,r4 = R[j]*d */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r5, 2 ++ or r5, r5, r4>>30 ++ lsl r4, 2 ++ /* r5,r4 = 2-R[j]*d */ ++ neg r4 ++ sbc r5, r12, r5 ++ /* r3,r2 = R[j]*(2-R[j]*d) */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r3, r5, 2 ++ or r3, r3, r4>>30 ++ lsl r2, r4, 2 ++ ++ ++ /* Fifth approximation */ ++ /* Approximating to 64 bits */ ++ /* r5,r4 = R[j]*d */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r5, 2 ++ or r5, r5, r4>>30 ++ lsl r4, 2 ++ /* r5,r4 = 2-R[j]*d */ ++ neg r4 ++ sbc r5, r12, r5 ++ /* r3,r2 = R[j]*(2-R[j]*d) */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r3, r5, 2 ++ or r3, r3, r4>>30 ++ lsl r2, r4, 2 ++ ++ ++ /* Multiply with dividend to get quotient */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r11 /*bh*/, r10 /*bl*/, r3 /*rh*/, r2 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ ++ ++ /* To increase speed, this result is not corrected before final rounding.*/ ++ /* This may give a difference to IEEE compliant code of 1 ULP.*/ ++ ++ ++ /* Adjust exponent and mantissa */ ++ /* r7:exp, [r3, r2]:mant, [r5, r4]:scratch*/ ++ /* Mantissa may be of the format 0.xxxx or 1.xxxx. */ ++ /* In the first case, shift one pos to left.*/ ++ bld r3, 31-3 ++ breq 0f ++ lsl r2, 1 ++ rol r3 ++ sub r7, 1 ++#if defined(L_avr32_f64_div) ++ /* We must scale down the dividend to 5.59 format. */ ++ lsr r10, 3 ++ or r10, r10, r11 << 29 ++ lsr r11, 3 ++ rjmp 1f ++#endif ++0: ++#if defined(L_avr32_f64_div) ++ /* We must scale down the dividend to 6.58 format. */ ++ lsr r10, 4 ++ or r10, r10, r11 << 28 ++ lsr r11, 4 ++1: ++#endif ++ cp r7, 0 ++ brle __avr32_f64_div_res_subnormal /* Result was subnormal. */ ++ ++ ++#if defined(L_avr32_f64_div) ++ /* In order to round correctly we calculate the remainder: ++ Remainder = dividend[11:r10] - divisor[r9:r8]*quotient[r3:r2] ++ for the case when the quotient is halfway between the round-up ++ value and the round down value. If the remainder then is negative ++ it means that the quotient was to big and that it should not be ++ rounded up, if the remainder is positive the quotient was to small ++ and we need to round up. If the remainder is zero it means that the ++ quotient is exact but since we need to remove the guard bit we should ++ round to even. */ ++ ++ /* Truncate and add guard bit. */ ++ andl r2, 0xff00 ++ orl r2, 0x0080 ++ ++ ++ /* Now do the multiplication. The quotient has the format 4.60 ++ while the divisor has the format 2.62 which gives a result ++ of 6.58 */ ++ mulu.d r0, r3, r8 ++ macu.d r0, r2, r9 ++ mulu.d r4, r2, r8 ++ mulu.d r8, r3, r9 ++ add r5, r0 ++ adc r8, r8, r1 ++ acr r9 ++ ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */ ++ cp r4, 0 ++ cpc r5 ++__avr32_f64_div_round_subnormal: ++ cpc r8, r10 ++ cpc r9, r11 ++ srlo r6 /* Remainder positive: we need to round up.*/ ++ moveq r6, r12 /* Remainder zero: round up if mantissa odd. */ ++#else ++ bfextu r6, r2, 7, 1 /* Get guard bit */ ++#endif ++ /* Final packing, scale down mantissa. */ ++ lsr r10, r2, 8 ++ or r10, r10, r3<<24 ++ lsr r11, r3, 8 ++ /* Insert exponent and sign bit*/ ++ bfins r11, r7, 20, 11 ++ bld lr, 31 ++ bst r11, 31 ++ ++ /* Final rounding */ ++ add r10, r6 ++ acr r11 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++ ++2: ++ /* Op1 is NaN or inf */ ++ andh r11, 0x000f /* Extract mantissa */ ++ or r11, r10 ++ brne 16f /* Return NaN if op1 is NaN */ ++ /* Op1 is inf check op2 */ ++ lsr r6, r9, 20 /* Extract exponent */ ++ cbr r6, 11 /* Clear sign bit */ ++ cp r6, 0x7ff ++ brne 17f /* Inf/number gives inf, return inf */ ++ rjmp 16f /* The rest gives NaN*/ ++ ++3: ++ /* Op1 is a valid number. Op 2 is NaN or inf */ ++ andh r9, 0x000f /* Extract mantissa */ ++ or r9, r8 ++ brne 16f /* Return NaN if op2 is NaN */ ++ rjmp 15f /* Op2 was inf, return zero*/ ++ ++11: /* Op1 was denormal. Fix it. */ ++ lsl r11, 3 ++ or r11, r11, r10 >> 29 ++ lsl r10, 3 ++ /* Check if op1 is zero. */ ++ or r4, r10, r11 ++ breq __avr32_f64_div_op1_zero ++ normalize_df r7 /*exp*/, r10, r11 /*Mantissa*/, r4, r5 /*scratch*/ ++ lsr r10, 2 ++ or r10, r10, r11 << 30 ++ lsr r11, 2 ++ rjmp 22b ++ ++ ++13: /* Op2 was denormal. Fix it */ ++ lsl r9, 3 ++ or r9, r9, r8 >> 29 ++ lsl r8, 3 ++ /* Check if op2 is zero. */ ++ or r4, r9, r8 ++ breq 17f /* Divisor is zero -> return Inf */ ++ normalize_df r6 /*exp*/, r8, r9 /*Mantissa*/, r4, r5 /*scratch*/ ++ lsr r8, 2 ++ or r8, r8, r9 << 30 ++ lsr r9, 2 ++ rjmp 23b ++ ++ ++__avr32_f64_div_res_subnormal:/* Divide result was subnormal. */ ++#if defined(L_avr32_f64_div) ++ /* Check how much we must scale down the mantissa. */ ++ neg r7 ++ sub r7, -1 /* We do no longer have an implicit bit. */ ++ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */ ++ cp.w r7, 32 ++ brge 0f ++ /* Shift amount <32 */ ++ /* Scale down quotient */ ++ rsub r6, r7, 32 ++ lsr r2, r2, r7 ++ lsl r12, r3, r6 ++ or r2, r12 ++ lsr r3, r3, r7 ++ /* Scale down the dividend to match the scaling of the quotient. */ ++ lsl r1, r10, r6 ++ lsr r10, r10, r7 ++ lsl r12, r11, r6 ++ or r10, r12 ++ lsr r11, r11, r7 ++ mov r0, 0 ++ rjmp 1f ++0: ++ /* Shift amount >=32 */ ++ rsub r6, r7, 32 ++ moveq r0, 0 ++ moveq r12, 0 ++ breq 0f ++ lsl r0, r10, r6 ++ lsl r12, r11, r6 ++0: ++ lsr r2, r3, r7 ++ mov r3, 0 ++ /* Scale down the dividend to match the scaling of the quotient. */ ++ lsr r1, r10, r7 ++ or r1, r12 ++ lsr r10, r11, r7 ++ mov r11, 0 ++1: ++ /* Start performing the same rounding as done for normal numbers ++ but this time we have scaled the quotient and dividend and hence ++ need a little different comparison. */ ++ /* Truncate and add guard bit. */ ++ andl r2, 0xff00 ++ orl r2, 0x0080 ++ ++ /* Now do the multiplication. */ ++ mulu.d r6, r3, r8 ++ macu.d r6, r2, r9 ++ mulu.d r4, r2, r8 ++ mulu.d r8, r3, r9 ++ add r5, r6 ++ adc r8, r8, r7 ++ acr r9 ++ ++ /* Set exponent to 0 */ ++ mov r7, 0 ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */ ++ cp r4, r0 ++ cpc r5, r1 ++ /* Now the rest of the rounding is the same as for normals. */ ++ rjmp __avr32_f64_div_round_subnormal ++ ++#endif ++15: ++ /* Flush to zero for the fast version. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ mov r10, 0 ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++16: /* Return NaN. */ ++ mov r11, -1 ++ mov r10, 0 ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++17: ++ /* Check if op1 is zero. */ ++ or r4, r10, r11 ++ breq __avr32_f64_div_op1_zero ++ /* Return INF. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ orh r11, 0x7ff0 ++ mov r10, 0 ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++__avr32_f64_div_op1_zero: ++ or r5, r8, r9 << 1 ++ breq 16b /* 0.0/0.0 -> NaN */ ++ bfextu r4, r9, 20, 11 ++ cp r4, 0x7ff ++ brne 15b /* Return zero */ ++ /* Check if divisor is Inf or NaN */ ++ or r5, r8, r9 << 12 ++ breq 15b /* Divisor is inf -> return zero */ ++ rjmp 16b /* Return NaN */ ++ ++ ++ ++ ++#endif ++ ++#if defined(L_avr32_f32_addsub) || defined(L_avr32_f32_addsub_fast) ++ ++ .align 2 ++__avr32_f32_sub_from_add: ++ /* Switch sign on op2 */ ++ eorh r11, 0x8000 ++ ++#if defined(L_avr32_f32_addsub_fast) ++ .global __avr32_f32_sub_fast ++ .type __avr32_f32_sub_fast,@function ++__avr32_f32_sub_fast: ++#else ++ .global __avr32_f32_sub ++ .type __avr32_f32_sub,@function ++__avr32_f32_sub: ++#endif ++ ++ /* Check signs */ ++ eor r8, r11, r12 ++ /* Different signs, use subtraction. */ ++ brmi __avr32_f32_add_from_sub ++ ++ /* Get sign of op1 */ ++ mov r8, r12 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++#if defined(L_avr32_f32_addsub_fast) ++ reteq r8 /* If op2 is zero return op1 */ ++#endif ++ cbr r8, 31 ++ ++ /* Put the number with the largest exponent in r10 ++ and the number with the smallest exponent in r9 */ ++ max r10, r8, r11 ++ min r9, r8, r11 ++ cp r10, r8 /*If largest operand (in R10) is not equal to op1*/ ++ subne r12, 1 /* Subtract 1 from sign, which will invert MSB of r12*/ ++ andh r12, 0x8000, COH /*Mask all but MSB*/ ++ ++ /* Unpack exponent and mantissa of op1 */ ++ lsl r8, r10, 8 ++ sbr r8, 31 /* Set implicit bit. */ ++ lsr r10, 23 ++ ++ /* op1 is NaN or Inf. */ ++ cp.w r10, 0xff ++ breq __avr32_f32_sub_op1_nan_or_inf ++ ++ /* Unpack exponent and mantissa of op2 */ ++ lsl r11, r9, 8 ++ sbr r11, 31 /* Set implicit bit. */ ++ lsr r9, 23 ++ ++#if defined(L_avr32_f32_addsub) ++ /* Keep sticky bit for correct IEEE rounding */ ++ st.w --sp, r12 ++ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_sub_op2_subnormal ++0: ++ /* Get shift amount to scale mantissa of op2. */ ++ sub r12, r10, r9 ++ ++ breq __avr32_f32_sub_shift_done ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r12 >> 0, 5 ++ ++ /* Put the remaining bits into r9.*/ ++ rsub r9, r12, 32 ++ lsl r9, r11, r9 ++ ++ /* If the remaining bits are non-zero then we must subtract one ++ more from opL. */ ++ subne r8, 1 ++ srne r9 /* LSB of r9 represents sticky bits. */ ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r11, r11, r12 ++ ++ ++__avr32_f32_sub_shift_done: ++ /* Now subtract the mantissas. */ ++ sub r8, r11 ++ ++ ld.w r12, sp++ ++ ++ /* Normalize resulting mantissa. */ ++ clz r11, r8 ++ ++ retcs 0 ++ lsl r8, r8, r11 ++ sub r10, r11 ++ brle __avr32_f32_sub_subnormal_result ++ ++ /* Insert the bits we will remove from the mantissa into r9[31:24] */ ++ or r9, r9, r8 << 24 ++#else ++ /* Ignore sticky bit to simplify and speed up rounding */ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_sub_op2_subnormal ++0: ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r9, r10 ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r9 >> 0, 5 ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r11, r11, r9 ++ ++ /* Now subtract the mantissas. */ ++ sub r8, r11 ++ ++ /* Normalize resulting mantissa. */ ++ clz r9, r8 ++ retcs 0 ++ lsl r8, r8, r9 ++ sub r10, r9 ++ brle __avr32_f32_sub_subnormal_result ++#endif ++ ++ /* Pack result. */ ++ or r12, r12, r8 >> 8 ++ bfins r12, r10, 23, 8 ++ ++ /* Round */ ++__avr32_f32_sub_round: ++#if defined(L_avr32_f32_addsub) ++ mov_imm r10, 0x80000000 ++ bld r12, 0 ++ subne r10, -1 ++ cp.w r9, r10 ++ subhs r12, -1 ++#else ++ bld r8, 7 ++ acr r12 ++#endif ++ ++ ret r12 ++ ++ ++__avr32_f32_sub_op2_subnormal: ++ /* Fix implicit bit and adjust exponent of subnormals. */ ++ cbr r11, 31 ++ /* Set exponent to 1 if we do not have a zero. */ ++ movne r9,1 ++ ++ /* Check if op1 is also subnormal. */ ++ cp.w r10, 0 ++ brne 0b ++ ++ cbr r8, 31 ++ /* If op1 is not zero set exponent to 1. */ ++ movne r10,1 ++ ++ rjmp 0b ++ ++__avr32_f32_sub_op1_nan_or_inf: ++ /* Check if op1 is NaN, if so return NaN */ ++ lsl r11, r8, 1 ++ retne -1 ++ ++ /* op1 is Inf. */ ++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ ++ ++ /* Check if op2 is Inf. or NaN */ ++ lsr r11, r9, 23 ++ cp.w r11, 0xff ++ retne r12 /* op2 not Inf or NaN, return op1 */ ++ ++ ret -1 /* op2 Inf or NaN, return NaN */ ++ ++__avr32_f32_sub_subnormal_result: ++ /* Check if the number is so small that ++ it will be represented with zero. */ ++ rsub r10, r10, 9 ++ rsub r11, r10, 32 ++ retcs 0 ++ ++ /* Shift the mantissa into the correct position.*/ ++ lsr r10, r8, r10 ++ /* Add sign bit. */ ++ or r12, r10 ++ ++ /* Put the shifted out bits in the most significant part ++ of r8. */ ++ lsl r8, r8, r11 ++ ++#if defined(L_avr32_f32_addsub) ++ /* Add all the remainder bits used for rounding into r9 */ ++ or r9, r8 ++#else ++ lsr r8, 24 ++#endif ++ rjmp __avr32_f32_sub_round ++ ++ ++ .align 2 ++ ++__avr32_f32_add_from_sub: ++ /* Switch sign on op2 */ ++ eorh r11, 0x8000 ++ ++#if defined(L_avr32_f32_addsub_fast) ++ .global __avr32_f32_add_fast ++ .type __avr32_f32_add_fast,@function ++__avr32_f32_add_fast: ++#else ++ .global __avr32_f32_add ++ .type __avr32_f32_add,@function ++__avr32_f32_add: ++#endif ++ ++ /* Check signs */ ++ eor r8, r11, r12 ++ /* Different signs, use subtraction. */ ++ brmi __avr32_f32_sub_from_add ++ ++ /* Get sign of op1 */ ++ mov r8, r12 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++#if defined(L_avr32_f32_addsub_fast) ++ reteq r8 /* If op2 is zero return op1 */ ++#endif ++ cbr r8, 31 ++ ++ /* Put the number with the largest exponent in r10 ++ and the number with the smallest exponent in r9 */ ++ max r10, r8, r11 ++ min r9, r8, r11 ++ ++ /* Unpack exponent and mantissa of op1 */ ++ lsl r8, r10, 8 ++ sbr r8, 31 /* Set implicit bit. */ ++ lsr r10, 23 ++ ++ /* op1 is NaN or Inf. */ ++ cp.w r10, 0xff ++ breq __avr32_f32_add_op1_nan_or_inf ++ ++ /* Unpack exponent and mantissa of op2 */ ++ lsl r11, r9, 8 ++ sbr r11, 31 /* Set implicit bit. */ ++ lsr r9, 23 ++ ++#if defined(L_avr32_f32_addsub) ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_add_op2_subnormal ++0: ++ /* Keep sticky bit for correct IEEE rounding */ ++ st.w --sp, r12 ++ ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r9, r10 ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r9 >> 0, 5 ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r12, r11, r9 ++ ++ /* Put the remainding bits into r11[23:..].*/ ++ rsub r9, r9, (32-8) ++ lsl r11, r11, r9 ++ /* Insert the bits we will remove from the mantissa into r11[31:24] */ ++ bfins r11, r12, 24, 8 ++ ++ /* Now add the mantissas. */ ++ add r8, r12 ++ ++ ld.w r12, sp++ ++#else ++ /* Ignore sticky bit to simplify and speed up rounding */ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_add_op2_subnormal ++0: ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r9, r10 ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r9 >> 0, 5 ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r11, r11, r9 ++ ++ /* Now add the mantissas. */ ++ add r8, r11 ++ ++#endif ++ /* Check if we overflowed. */ ++ brcs __avr32_f32_add_res_of ++1: ++ /* Pack result. */ ++ or r12, r12, r8 >> 8 ++ bfins r12, r10, 23, 8 ++ ++ /* Round */ ++#if defined(L_avr32_f32_addsub) ++ mov_imm r10, 0x80000000 ++ bld r12, 0 ++ subne r10, -1 ++ cp.w r11, r10 ++ subhs r12, -1 ++#else ++ bld r8, 7 ++ acr r12 ++#endif ++ ++ ret r12 ++ ++__avr32_f32_add_op2_subnormal: ++ /* Fix implicit bit and adjust exponent of subnormals. */ ++ cbr r11, 31 ++ /* Set exponent to 1 if we do not have a zero. */ ++ movne r9,1 ++ ++ /* Check if op1 is also subnormal. */ ++ cp.w r10, 0 ++ brne 0b ++ /* Both operands subnormal, just add the mantissas and ++ pack. If the addition of the subnormal numbers results ++ in a normal number then the exponent will automatically ++ be set to 1 by the addition. */ ++ cbr r8, 31 ++ add r11, r8 ++ or r12, r12, r11 >> 8 ++ ret r12 ++ ++__avr32_f32_add_op1_nan_or_inf: ++ /* Check if op1 is NaN, if so return NaN */ ++ lsl r11, r8, 1 ++ retne -1 ++ ++ /* op1 is Inf. */ ++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ ++ ++ /* Check if op2 is Inf. or NaN */ ++ lsr r11, r9, 23 ++ cp.w r11, 0xff ++ retne r12 /* op2 not Inf or NaN, return op1 */ ++ ++ lsl r9, 9 ++ reteq r12 /* op2 Inf return op1 */ ++ ret -1 /* op2 is NaN, return NaN */ ++ ++__avr32_f32_add_res_of: ++ /* We overflowed. Increase exponent and shift mantissa.*/ ++ lsr r8, 1 ++ sub r10, -1 ++ ++ /* Clear mantissa to set result to Inf if the exponent is 255. */ ++ cp.w r10, 255 ++ moveq r8, 0 ++ moveq r11, 0 ++ rjmp 1b ++ ++ ++#endif ++ ++ ++#if defined(L_avr32_f32_div) || defined(L_avr32_f32_div_fast) ++ .align 2 ++ ++#if defined(L_avr32_f32_div_fast) ++ .global __avr32_f32_div_fast ++ .type __avr32_f32_div_fast,@function ++__avr32_f32_div_fast: ++#else ++ .global __avr32_f32_div ++ .type __avr32_f32_div,@function ++__avr32_f32_div: ++#endif ++ ++ eor r8, r11, r12 /* MSB(r8) = Sign(op1) ^ Sign(op2) */ ++ ++ /* Unpack */ ++ lsl r12,1 ++ lsl r11,1 ++ breq 4f /* Check op2 for zero */ ++ ++ tst r12, r12 ++ moveq r9, 0 ++ breq 12f ++ ++ /* Unpack op1*/ ++ /* exp: r9 */ ++ /* sf: r12 */ ++ lsr r9, r12, 24 ++ breq 11f /*If number is subnormal*/ ++ cp r9, 0xff ++ brhs 2f /* Check op1 for NaN or Inf */ ++ lsl r12, 7 ++ sbr r12, 31 /*Implicit bit*/ ++12: ++ ++ /* Unpack op2*/ ++ /* exp: r10 */ ++ /* sf: r11 */ ++ lsr r10, r11, 24 ++ breq 13f /*If number is subnormal*/ ++ cp r10, 0xff ++ brhs 3f /* Check op2 for NaN or Inf */ ++ lsl r11,7 ++ sbr r11, 31 /*Implicit bit*/ ++ ++ cp.w r9, 0 ++ subfeq r12, 0 ++ reteq 0 /* op1 is zero and op2 is not zero */ ++ /* or NaN so return zero */ ++ ++14: ++ ++ /* For UC3, store with predecrement is faster than stm */ ++ st.w --sp, r5 ++ st.d --sp, r6 ++ ++ /* Calculate new exponent */ ++ sub r9, r10 ++ sub r9,-127 ++ ++ /* Divide */ ++ /* Approximating 1/d with the following recurrence: */ ++ /* R[j+1] = R[j]*(2-R[j]*d) */ ++ /* Using 2.30 format */ ++ /* TWO: r10 */ ++ /* d: r5 */ ++ /* Multiply result : r6, r7 */ ++ /* Initial guess : r11 */ ++ /* New approximations : r11 */ ++ /* Dividend : r12 */ ++ ++ /* Load TWO */ ++ mov_imm r10, 0x80000000 ++ ++ lsr r12, 2 /* Get significand of Op1 in 2.30 format */ ++ lsr r5, r11, 2 /* Get significand of Op2 (=d) in 2.30 format */ ++ ++ /* Load initial guess, using look-up table */ ++ /* Initial guess is of format 01.XY, where XY is constructed as follows: */ ++ /* Let d be of following format: 00.1xy....., then XY=~xy */ ++ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */ ++ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */ ++ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */ ++ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */ ++ ++ lsr r11, r10, 1 ++ bfextu r6, r5, 27, 2 ++ com r6 ++ bfins r11, r6, 28, 2 ++ ++ /* First approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ /* Second approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ /* Third approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ /* Fourth approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ ++ /* Multiply with dividend to get quotient, r7 = sf(op1)/sf(op2) */ ++ mulu.d r6, r11, r12 ++ ++ /* Shift by 3 to get result in 1.31 format, as required by the exponent. */ ++ /* Note that 1.31 format is already used by the exponent in r9, since */ ++ /* a bias of 127 was added to the result exponent, even though the implicit */ ++ /* bit was inserted. This gives the exponent an additional bias of 1, which */ ++ /* supports 1.31 format. */ ++ //lsl r10, r7, 3 ++ ++ /* Adjust exponent and mantissa in case the result is of format ++ 0000.1xxx to 0001.xxx*/ ++#if defined(L_avr32_f32_div) ++ lsr r12, 4 /* Scale dividend to 6.26 format to match the ++ result of the multiplication of the divisor and ++ quotient to get the remainder. */ ++#endif ++ bld r7, 31-3 ++ breq 0f ++ lsl r7, 1 ++ sub r9, 1 ++#if defined(L_avr32_f32_div) ++ lsl r12, 1 /* Scale dividend to 5.27 format to match the ++ result of the multiplication of the divisor and ++ quotient to get the remainder. */ ++#endif ++0: ++ cp r9, 0 ++ brle __avr32_f32_div_res_subnormal /* Result was subnormal. */ ++ ++ ++#if defined(L_avr32_f32_div) ++ /* In order to round correctly we calculate the remainder: ++ Remainder = dividend[r12] - divisor[r5]*quotient[r7] ++ for the case when the quotient is halfway between the round-up ++ value and the round down value. If the remainder then is negative ++ it means that the quotient was to big and that it should not be ++ rounded up, if the remainder is positive the quotient was to small ++ and we need to round up. If the remainder is zero it means that the ++ quotient is exact but since we need to remove the guard bit we should ++ round to even. */ ++ andl r7, 0xffe0 ++ orl r7, 0x0010 ++ ++ /* Now do the multiplication. The quotient has the format 4.28 ++ while the divisor has the format 2.30 which gives a result ++ of 6.26 */ ++ mulu.d r10, r5, r7 ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */ ++ cp r10, 0 ++__avr32_f32_div_round_subnormal: ++ cpc r11, r12 ++ srlo r11 /* Remainder positive: we need to round up.*/ ++ moveq r11, r5 /* Remainder zero: round up if mantissa odd. */ ++#else ++ bfextu r11, r7, 4, 1 /* Get guard bit */ ++#endif ++ ++ /* Pack final result*/ ++ lsr r12, r7, 5 ++ bfins r12, r9, 23, 8 ++ /* For UC3, load with postincrement is faster than ldm */ ++ ld.d r6, sp++ ++ ld.w r5, sp++ ++ bld r8, 31 ++ bst r12, 31 ++ /* Rounding add. */ ++ add r12, r11 ++ ret r12 ++ ++__divsf_return_op1: ++ lsl r8, 1 ++ ror r12 ++ ret r12 ++ ++ ++2: ++ /* Op1 is NaN or inf */ ++ retne -1 /* Return NaN if op1 is NaN */ ++ /* Op1 is inf check op2 */ ++ mov_imm r9, 0xff000000 ++ cp r11, r9 ++ brlo __divsf_return_op1 /* inf/number gives inf */ ++ ret -1 /* The rest gives NaN*/ ++3: ++ /* Op2 is NaN or inf */ ++ reteq 0 /* Return zero if number/inf*/ ++ ret -1 /* Return NaN*/ ++4: ++ /* Op1 is zero ? */ ++ tst r12,r12 ++ reteq -1 /* 0.0/0.0 is NaN */ ++ /* Op1 is Nan? */ ++ lsr r9, r12, 24 ++ breq 11f /*If number is subnormal*/ ++ cp r9, 0xff ++ brhs 2b /* Check op1 for NaN or Inf */ ++ /* Nonzero/0.0 is Inf. Sign bit will be shifted in before returning*/ ++ mov_imm r12, 0xff000000 ++ rjmp __divsf_return_op1 ++ ++11: /* Op1 was denormal. Fix it. */ ++ lsl r12,7 ++ clz r9,r12 ++ lsl r12,r12,r9 ++ rsub r9,r9,1 ++ rjmp 12b ++ ++13: /* Op2 was denormal. Fix it. */ ++ lsl r11,7 ++ clz r10,r11 ++ lsl r11,r11,r10 ++ rsub r10,r10,1 ++ rjmp 14b ++ ++ ++__avr32_f32_div_res_subnormal: /* Divide result was subnormal */ ++#if defined(L_avr32_f32_div) ++ /* Check how much we must scale down the mantissa. */ ++ neg r9 ++ sub r9, -1 /* We do no longer have an implicit bit. */ ++ satu r9 >> 0, 5 /* Saturate shift amount to max 32. */ ++ /* Scale down quotient */ ++ rsub r10, r9, 32 ++ lsr r7, r7, r9 ++ /* Scale down the dividend to match the scaling of the quotient. */ ++ lsl r6, r12, r10 /* Make the divident 64-bit and put the lsw in r6 */ ++ lsr r12, r12, r9 ++ ++ /* Start performing the same rounding as done for normal numbers ++ but this time we have scaled the quotient and dividend and hence ++ need a little different comparison. */ ++ andl r7, 0xffe0 ++ orl r7, 0x0010 ++ ++ /* Now do the multiplication. The quotient has the format 4.28 ++ while the divisor has the format 2.30 which gives a result ++ of 6.26 */ ++ mulu.d r10, r5, r7 ++ ++ /* Set exponent to 0 */ ++ mov r9, 0 ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */ ++ cp r10, r6 ++ rjmp __avr32_f32_div_round_subnormal ++ ++#else ++ ld.d r6, sp++ ++ ld.w r5, sp++ ++ /*Flush to zero*/ ++ ret 0 ++#endif ++#endif ++ ++#ifdef L_avr32_f32_mul ++ .global __avr32_f32_mul ++ .type __avr32_f32_mul,@function ++ ++ ++__avr32_f32_mul: ++ mov r8, r12 ++ eor r12, r11 /* MSB(r8) = Sign(op1) ^ Sign(op2) */ ++ andh r12, 0x8000, COH ++ ++ /* arrange operands so that that op1 >= op2 */ ++ cbr r8, 31 ++ breq __avr32_f32_mul_op1_zero ++ cbr r11, 31 ++ ++ /* Put the number with the largest exponent in r10 ++ and the number with the smallest exponent in r9 */ ++ max r10, r8, r11 ++ min r9, r8, r11 ++ ++ /* Unpack exponent and mantissa of op1 */ ++ lsl r8, r10, 8 ++ sbr r8, 31 /* Set implicit bit. */ ++ lsr r10, 23 ++ ++ /* op1 is NaN or Inf. */ ++ cp.w r10, 0xff ++ breq __avr32_f32_mul_op1_nan_or_inf ++ ++ /* Unpack exponent and mantissa of op2 */ ++ lsl r11, r9, 8 ++ sbr r11, 31 /* Set implicit bit. */ ++ lsr r9, 23 ++ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_mul_op2_subnormal ++0: ++ /* Calculate new exponent */ ++ add r9,r10 ++ ++ /* Do the multiplication */ ++ mulu.d r10,r8,r11 ++ ++ /* We might need to scale up by two if the MSB of the result is ++ zero. */ ++ lsl r8, r11, 1 ++ movcc r11, r8 ++ subcc r9, 1 ++ ++ /* Put the shifted out bits of the mantissa into r10 */ ++ lsr r10, 8 ++ bfins r10, r11, 24, 8 ++ ++ sub r9,(127-1) /* remove extra exponent bias */ ++ brle __avr32_f32_mul_res_subnormal ++ ++ /* Check for Inf. */ ++ cp.w r9, 0xff ++ brge 1f ++ ++ /* Pack result. */ ++ or r12, r12, r11 >> 8 ++ bfins r12, r9, 23, 8 ++ ++ /* Round */ ++__avr32_f32_mul_round: ++ mov_imm r8, 0x80000000 ++ bld r12, 0 ++ subne r8, -1 ++ ++ cp.w r10, r8 ++ subhs r12, -1 ++ ++ ret r12 ++ ++1: ++ /* Return Inf */ ++ orh r12, 0x7f80 ++ ret r12 ++ ++__avr32_f32_mul_op2_subnormal: ++ cbr r11, 31 ++ clz r9, r11 ++ retcs 0 /* op2 is zero. Return 0 */ ++ sub r9, 8 ++ lsl r11, r11, r9 ++ rsub r9, r9, 1 ++ ++ /* Check if op2 is subnormal. */ ++ tst r10, r10 ++ brne 0b ++ ++ /* op2 is subnormal */ ++ cbr r8, 31 ++ clz r10, r11 ++ retcs 0 /* op1 is zero. Return 0 */ ++ lsl r8, r8, r10 ++ rsub r10, r10, 1 ++ ++ rjmp 0b ++ ++ ++__avr32_f32_mul_op1_nan_or_inf: ++ /* Check if op1 is NaN, if so return NaN */ ++ lsl r11, r8, 1 ++ retne -1 ++ ++ /* op1 is Inf. */ ++ tst r9, r9 ++ reteq -1 /* Inf * 0 -> NaN */ ++ ++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ ++ ++ /* Check if op2 is Inf. or NaN */ ++ lsr r11, r9, 23 ++ cp.w r11, 0xff ++ retne r12 /* op2 not Inf or NaN, return Info */ ++ ++ lsl r9, 9 ++ reteq r12 /* op2 Inf return Inf */ ++ ret -1 /* op2 is NaN, return NaN */ ++ ++__avr32_f32_mul_res_subnormal: ++ /* Check if the number is so small that ++ it will be represented with zero. */ ++ rsub r9, r9, 9 ++ rsub r8, r9, 32 ++ retcs 0 ++ ++ /* Shift the mantissa into the correct position.*/ ++ lsr r9, r11, r9 ++ /* Add sign bit. */ ++ or r12, r9 ++ /* Put the shifted out bits in the most significant part ++ of r8. */ ++ lsl r11, r11, r8 ++ ++ /* Add all the remainder bits used for rounding into r11 */ ++ andh r10, 0x00FF ++ or r10, r11 ++ rjmp __avr32_f32_mul_round ++ ++__avr32_f32_mul_op1_zero: ++ bfextu r10, r11, 23, 8 ++ cp.w r10, 0xff ++ retne r12 ++ reteq -1 ++ ++#endif ++ ++ ++#ifdef L_avr32_s32_to_f32 ++ .global __avr32_s32_to_f32 ++ .type __avr32_s32_to_f32,@function ++__avr32_s32_to_f32: ++ cp r12, 0 ++ reteq r12 /* If zero then return zero float */ ++ mov r11, r12 /* Keep the sign */ ++ abs r12 /* Compute the absolute value */ ++ mov r10, 31 + 127 /* Set the correct exponent */ ++ ++ /* Normalize */ ++ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ ++ /* Check for subnormal result */ ++ cp.w r10, 0 ++ brle __avr32_s32_to_f32_subnormal ++ ++ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/ ++ lsl r11, 1 ++ ror r12 ++ ret r12 ++ ++__avr32_s32_to_f32_subnormal: ++ /* Adjust a subnormal result */ ++ adjust_subnormal_sf r12/*sf*/, r10 /*exp*/, r12 /*mant*/, r11/*sign*/, r9 /*scratch*/ ++ ret r12 ++ ++#endif ++ ++#ifdef L_avr32_u32_to_f32 ++ .global __avr32_u32_to_f32 ++ .type __avr32_u32_to_f32,@function ++__avr32_u32_to_f32: ++ cp r12, 0 ++ reteq r12 /* If zero then return zero float */ ++ mov r10, 31 + 127 /* Set the correct exponent */ ++ ++ /* Normalize */ ++ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ ++ /* Check for subnormal result */ ++ cp.w r10, 0 ++ brle __avr32_u32_to_f32_subnormal ++ ++ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/ ++ lsr r12,1 /* Sign bit is 0 for unsigned int */ ++ ret r12 ++ ++__avr32_u32_to_f32_subnormal: ++ /* Adjust a subnormal result */ ++ mov r8, 0 ++ adjust_subnormal_sf r12/*sf*/,r10 /*exp*/, r12 /*mant*/,r8/*sign*/, r9 /*scratch*/ ++ ret r12 ++ ++ ++#endif ++ ++ ++#ifdef L_avr32_f32_to_s32 ++ .global __avr32_f32_to_s32 ++ .type __avr32_f32_to_s32,@function ++__avr32_f32_to_s32: ++ bfextu r11, r12, 23, 8 ++ sub r11,127 /* Fix bias */ ++ retlo 0 /* Negative exponent yields zero integer */ ++ ++ /* Shift mantissa into correct position */ ++ rsub r11,r11,31 /* Shift amount */ ++ lsl r10,r12,8 /* Get mantissa */ ++ sbr r10,31 /* Add implicit bit */ ++ lsr r10,r10,r11 /* Perform shift */ ++ lsl r12,1 /* Check sign */ ++ retcc r10 /* if positive, we are done */ ++ neg r10 /* if negative float, negate result */ ++ ret r10 ++ ++#endif ++ ++#ifdef L_avr32_f32_to_u32 ++ .global __avr32_f32_to_u32 ++ .type __avr32_f32_to_u32,@function ++__avr32_f32_to_u32: ++ cp r12,0 ++ retmi 0 /* Negative numbers gives 0 */ ++ bfextu r11, r12, 23, 8 /* Extract exponent */ ++ sub r11,127 /* Fix bias */ ++ retlo 0 /* Negative exponent yields zero integer */ ++ ++ /* Shift mantissa into correct position */ ++ rsub r11,r11,31 /* Shift amount */ ++ lsl r12,8 /* Get mantissa */ ++ sbr r12,31 /* Add implicit bit */ ++ lsr r12,r12,r11 /* Perform shift */ ++ ret r12 ++ ++#endif ++ ++#ifdef L_avr32_f32_to_f64 ++ .global __avr32_f32_to_f64 ++ .type __avr32_f32_to_f64,@function ++ ++__avr32_f32_to_f64: ++ lsl r11,r12,1 /* Remove sign bit, keep original value in r12*/ ++ moveq r10, 0 ++ reteq r11 /* Return zero if input is zero */ ++ ++ bfextu r9,r11,24,8 /* Get exponent */ ++ cp.w r9,0xff /* check for NaN or inf */ ++ breq 0f ++ ++ lsl r11,7 /* Convert sf mantissa to df format */ ++ mov r10,0 ++ ++ /* Check if implicit bit should be set */ ++ cp.w r9, 0 ++ subeq r9,-1 /* Adjust exponent if it was 0 */ ++ srne r8 ++ or r11, r11, r8 << 31 /* Set implicit bit if needed */ ++ sub r9,(127-0x3ff) /* Convert exponent to df format exponent */ ++ ++ /*We know that low register of mantissa is 0, and will be unaffected by normalization.*/ ++ /*We can therefore use the faster normalize_sf function instead of normalize_df.*/ ++ normalize_sf r9 /*exp*/, r11 /*mantissa*/, r8 /*scratch*/ ++ pack_df r9 /*exp*/, r10, r11 /*mantissa*/, r10, r11 /*df*/ ++ ++__extendsfdf_return_op1: ++ /* Rotate in sign bit */ ++ lsl r12, 1 ++ ror r11 ++ ret r11 ++ ++0: ++ /* Inf or NaN*/ ++ mov_imm r10, 0xffe00000 ++ lsl r11,8 /* check mantissa */ ++ movne r11, -1 /* Return NaN */ ++ moveq r11, r10 /* Return inf */ ++ mov r10, 0 ++ rjmp __extendsfdf_return_op1 ++#endif ++ ++ ++#ifdef L_avr32_f64_to_f32 ++ .global __avr32_f64_to_f32 ++ .type __avr32_f64_to_f32,@function ++ ++__avr32_f64_to_f32: ++ /* Unpack */ ++ lsl r9,r11,1 /* Unpack exponent */ ++ lsr r9,21 ++ ++ reteq 0 /* If exponent is 0 the number is so small ++ that the conversion to single float gives ++ zero */ ++ ++ lsl r8,r11,10 /* Adjust mantissa */ ++ or r12,r8,r10>>22 ++ ++ lsl r10,10 /* Check if there are any remaining bits ++ in the low part of the mantissa.*/ ++ neg r10 ++ rol r12 /* If there were remaining bits then set lsb ++ of mantissa to 1 */ ++ ++ cp r9,0x7ff ++ breq 2f /* Check for NaN or inf */ ++ ++ sub r9,(0x3ff-127) /* Adjust bias of exponent */ ++ sbr r12,31 /* set the implicit bit.*/ ++ ++ cp.w r9, 0 /* Check for subnormal number */ ++ brle 3f ++ ++ round_sf r9 /*exp*/, r12 /*mant*/, r10 /*scratch*/ ++ pack_sf r12 /*sf*/, r9 /*exp*/, r12 /*mant*/ ++__truncdfsf_return_op1: ++ /* Rotate in sign bit */ ++ lsl r11, 1 ++ ror r12 ++ ret r12 ++ ++2: ++ /* NaN or inf */ ++ cbr r12,31 /* clear implicit bit */ ++ retne -1 /* Return NaN if mantissa not zero */ ++ mov_imm r12, 0x7f800000 ++ ret r12 /* Return inf */ ++ ++3: /* Result is subnormal. Adjust it.*/ ++ adjust_subnormal_sf r12/*sf*/,r9 /*exp*/, r12 /*mant*/, r11/*sign*/, r10 /*scratch*/ ++ ret r12 ++ ++ ++#endif ++ ++#if defined(L_mulsi3) && defined(__AVR32_NO_MUL__) ++ .global __mulsi3 ++ .type __mulsi3,@function ++ ++__mulsi3: ++ mov r9, 0 ++0: ++ lsr r11, 1 ++ addcs r9, r9, r12 ++ breq 1f ++ lsl r12, 1 ++ rjmp 0b ++1: ++ ret r9 ++#endif +--- /dev/null ++++ b/gcc/config/avr32/lib2funcs.S +@@ -0,0 +1,21 @@ ++ .align 4 ++ .global __nonlocal_goto ++ .type __nonlocal_goto,@function ++ ++/* __nonlocal_goto: This function handles nonlocal_goto's in gcc. ++ ++ parameter 0 (r12) = New Frame Pointer ++ parameter 1 (r11) = Address to goto ++ parameter 2 (r10) = New Stack Pointer ++ ++ This function invalidates the return stack, since it returns from a ++ function without using a return instruction. ++*/ ++__nonlocal_goto: ++ mov r7, r12 ++ mov sp, r10 ++ frs # Flush return stack ++ mov pc, r11 ++ ++ ++ +--- /dev/null ++++ b/gcc/config/avr32/linux-elf.h +@@ -0,0 +1,151 @@ ++/* ++ Linux/Elf specific definitions. ++ Copyright 2003-2006 Atmel Corporation. ++ ++ Written by Ronny Pedersen, Atmel Norway, ++ and H�vard Skinnemoen, Atmel Norway, ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++ ++/* elfos.h should have already been included. Now just override ++ any conflicting definitions and add any extras. */ ++ ++/* Run-time Target Specification. */ ++#undef TARGET_VERSION ++#define TARGET_VERSION fputs (" (AVR32 GNU/Linux with ELF)", stderr); ++ ++/* Do not assume anything about header files. */ ++#define NO_IMPLICIT_EXTERN_C ++ ++/* The GNU C++ standard library requires that these macros be defined. */ ++#undef CPLUSPLUS_CPP_SPEC ++#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)" ++ ++/* Now we define the strings used to build the spec file. */ ++#undef LIB_SPEC ++#define LIB_SPEC \ ++ "%{pthread:-lpthread} \ ++ %{shared:-lc} \ ++ %{!shared:%{profile:-lc_p}%{!profile:-lc}}" ++ ++/* Provide a STARTFILE_SPEC appropriate for GNU/Linux. Here we add ++ the GNU/Linux magical crtbegin.o file (see crtstuff.c) which ++ provides part of the support for getting C++ file-scope static ++ object constructed before entering `main'. */ ++ ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC \ ++ "%{!shared: \ ++ %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} \ ++ %{!p:%{profile:gcrt1.o%s} \ ++ %{!profile:crt1.o%s}}}} \ ++ crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}" ++ ++/* Provide a ENDFILE_SPEC appropriate for GNU/Linux. Here we tack on ++ the GNU/Linux magical crtend.o file (see crtstuff.c) which ++ provides part of the support for getting C++ file-scope static ++ object constructed before entering `main', followed by a normal ++ GNU/Linux "finalizer" file, `crtn.o'. */ ++ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC \ ++ "%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s" ++ ++#undef ASM_SPEC ++#define ASM_SPEC "%{!mno-pic:%{!fno-pic:--pic}} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{mcpu=*:-mcpu=%*}" ++ ++#undef LINK_SPEC ++#define LINK_SPEC "%{version:-v} \ ++ %{static:-Bstatic} \ ++ %{shared:-shared} \ ++ %{symbolic:-Bsymbolic} \ ++ %{rdynamic:-export-dynamic} \ ++ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0} \ ++ %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}}" ++ ++#define TARGET_OS_CPP_BUILTINS() LINUX_TARGET_OS_CPP_BUILTINS() ++ ++/* This is how we tell the assembler that two symbols have the same value. */ ++#define ASM_OUTPUT_DEF(FILE, NAME1, NAME2) \ ++ do \ ++ { \ ++ assemble_name (FILE, NAME1); \ ++ fputs (" = ", FILE); \ ++ assemble_name (FILE, NAME2); \ ++ fputc ('\n', FILE); \ ++ } \ ++ while (0) ++ ++ ++ ++#undef CC1_SPEC ++#define CC1_SPEC "%{profile:-p}" ++ ++/* Target CPU builtins. */ ++#define TARGET_CPU_CPP_BUILTINS() \ ++ do \ ++ { \ ++ builtin_define ("__avr32__"); \ ++ builtin_define ("__AVR32__"); \ ++ builtin_define ("__AVR32_LINUX__"); \ ++ builtin_define (avr32_part->macro); \ ++ builtin_define (avr32_arch->macro); \ ++ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \ ++ builtin_define ("__AVR32_AVR32A__"); \ ++ else \ ++ builtin_define ("__AVR32_AVR32B__"); \ ++ if (TARGET_UNALIGNED_WORD) \ ++ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \ ++ if (TARGET_SIMD) \ ++ builtin_define ("__AVR32_HAS_SIMD__"); \ ++ if (TARGET_DSP) \ ++ builtin_define ("__AVR32_HAS_DSP__"); \ ++ if (TARGET_RMW) \ ++ builtin_define ("__AVR32_HAS_RMW__"); \ ++ if (TARGET_BRANCH_PRED) \ ++ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \ ++ if (TARGET_FAST_FLOAT) \ ++ builtin_define ("__AVR32_FAST_FLOAT__"); \ ++ } \ ++ while (0) ++ ++ ++ ++/* Call the function profiler with a given profile label. */ ++#undef FUNCTION_PROFILER ++#define FUNCTION_PROFILER(STREAM, LABELNO) \ ++ do \ ++ { \ ++ fprintf (STREAM, "\tmov\tlr, lo(mcount)\n\torh\tlr, hi(mcount)\n"); \ ++ fprintf (STREAM, "\ticall lr\n"); \ ++ } \ ++ while (0) ++ ++#define NO_PROFILE_COUNTERS 1 ++ ++/* For dynamic libraries to work */ ++/* #define PLT_REG_CALL_CLOBBERED 1 */ ++#define AVR32_ALWAYS_PIC 1 ++ ++/* uclibc does not implement sinf, cosf etc. */ ++#undef TARGET_C99_FUNCTIONS ++#define TARGET_C99_FUNCTIONS 0 ++ ++#define LINK_GCC_C_SEQUENCE_SPEC \ ++ "%{static:--start-group} %G %L %{static:--end-group}%{!static:%G}" +--- /dev/null ++++ b/gcc/config/avr32/predicates.md +@@ -0,0 +1,422 @@ ++;; AVR32 predicates file. ++;; Copyright 2003-2006 Atmel Corporation. ++;; ++;; Written by Ronny Pedersen, Atmel Norway, ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++ ++;; True if the operand is a memory reference which contains an ++;; Address consisting of a single pointer register ++(define_predicate "avr32_indirect_register_operand" ++ (and (match_code "mem") ++ (match_test "register_operand(XEXP(op, 0), SImode)"))) ++ ++ ++ ++;; Address expression with a base pointer offset with ++;; a register displacement ++(define_predicate "avr32_indexed_memory_operand" ++ (and (match_code "mem") ++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS")) ++ { ++ ++ rtx op0 = XEXP(XEXP(op, 0), 0); ++ rtx op1 = XEXP(XEXP(op, 0), 1); ++ ++ return ((avr32_address_register_rtx_p (op0, 0) ++ && avr32_legitimate_index_p (GET_MODE(op), op1, 0)) ++ || (avr32_address_register_rtx_p (op1, 0) ++ && avr32_legitimate_index_p (GET_MODE(op), op0, 0))); ++ ++ }) ++ ++;; Operand suitable for the ld.sb instruction ++(define_predicate "load_sb_memory_operand" ++ (ior (match_operand 0 "avr32_indirect_register_operand") ++ (match_operand 0 "avr32_indexed_memory_operand"))) ++ ++ ++;; Operand suitable as operand to insns sign extending QI values ++(define_predicate "extendqi_operand" ++ (ior (match_operand 0 "load_sb_memory_operand") ++ (match_operand 0 "register_operand"))) ++ ++(define_predicate "post_inc_memory_operand" ++ (and (match_code "mem") ++ (match_test "(GET_CODE(XEXP(op, 0)) == POST_INC) ++ && REG_P(XEXP(XEXP(op, 0), 0))"))) ++ ++(define_predicate "pre_dec_memory_operand" ++ (and (match_code "mem") ++ (match_test "(GET_CODE(XEXP(op, 0)) == PRE_DEC) ++ && REG_P(XEXP(XEXP(op, 0), 0))"))) ++ ++;; Operand suitable for add instructions ++(define_predicate "avr32_add_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is21\")")))) ++ ++;; Operand is a power of two immediate ++(define_predicate "power_of_two_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op); ++ ++ return value != 0 && (value & (value - 1)) == 0; ++}) ++ ++;; Operand is a multiple of 8 immediate ++(define_predicate "multiple_of_8_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op); ++ ++ return (value & 0x7) == 0 ; ++}) ++ ++;; Operand is a multiple of 16 immediate ++(define_predicate "multiple_of_16_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op); ++ ++ return (value & 0xf) == 0 ; ++}) ++ ++;; Operand is a mask used for masking away upper bits of a reg ++(define_predicate "avr32_mask_upper_bits_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op) + 1; ++ ++ return value != 1 && value != 0 && (value & (value - 1)) == 0; ++}) ++ ++ ++;; Operand suitable for mul instructions ++(define_predicate "avr32_mul_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")")))) ++ ++;; True for logical binary operators. ++(define_predicate "logical_binary_operator" ++ (match_code "ior,xor,and")) ++ ++;; True for logical shift operators ++(define_predicate "logical_shift_operator" ++ (match_code "ashift,lshiftrt")) ++ ++;; True for shift operand for logical and, or and eor insns ++(define_predicate "avr32_logical_shift_operand" ++ (and (match_code "ashift,lshiftrt") ++ (ior (and (match_test "GET_CODE(XEXP(op, 1)) == CONST_INT") ++ (match_test "register_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))")) ++ (and (match_test "GET_CODE(XEXP(op, 0)) == CONST_INT") ++ (match_test "register_operand(XEXP(op, 1), GET_MODE(XEXP(op, 1)))")))) ++ ) ++ ++ ++;; Predicate for second operand to and, ior and xor insn patterns ++(define_predicate "avr32_logical_insn_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "avr32_logical_shift_operand")) ++) ++ ++ ++;; True for avr32 comparison operators ++(define_predicate "avr32_comparison_operator" ++ (ior (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu") ++ (and (match_code "unspec") ++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) ++ || (XINT(op, 1) == UNSPEC_COND_PL)")))) ++ ++(define_predicate "avr32_cond3_comparison_operator" ++ (ior (match_code "eq, ne, ge, lt, geu, ltu") ++ (and (match_code "unspec") ++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) ++ || (XINT(op, 1) == UNSPEC_COND_PL)")))) ++ ++;; True for avr32 comparison operand ++(define_predicate "avr32_comparison_operand" ++ (ior (and (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu") ++ (match_test "(CC0_P (XEXP(op,0)) && rtx_equal_p (XEXP(op,1), const0_rtx))")) ++ (and (match_code "unspec") ++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) ++ || (XINT(op, 1) == UNSPEC_COND_PL)")))) ++ ++;; True if this is a const_int with one bit set ++(define_predicate "one_bit_set_operand" ++ (match_code "const_int") ++ { ++ int i; ++ int value; ++ int ones = 0; ++ ++ value = INTVAL(op); ++ for ( i = 0 ; i < 32; i++ ){ ++ if ( value & ( 1 << i ) ){ ++ ones++; ++ } ++ } ++ ++ return ( ones == 1 ); ++ }) ++ ++ ++;; True if this is a const_int with one bit cleared ++(define_predicate "one_bit_cleared_operand" ++ (match_code "const_int") ++ { ++ int i; ++ int value; ++ int zeroes = 0; ++ ++ value = INTVAL(op); ++ for ( i = 0 ; i < 32; i++ ){ ++ if ( !(value & ( 1 << i )) ){ ++ zeroes++; ++ } ++ } ++ ++ return ( zeroes == 1 ); ++ }) ++ ++ ++;; Immediate all the low 16-bits cleared ++(define_predicate "avr32_hi16_immediate_operand" ++ (match_code "const_int") ++ { ++ /* If the low 16-bits are zero then this ++ is a hi16 immediate. */ ++ return ((INTVAL(op) & 0xffff) == 0); ++ } ++) ++ ++;; True if this is a register or immediate operand ++(define_predicate "register_immediate_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "immediate_operand"))) ++ ++;; True if this is a register or const_int operand ++(define_predicate "register_const_int_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "const_int_operand") ++ (match_operand 0 "immediate_operand")))) ++ ++;; True if this is a register or const_double operand ++(define_predicate "register_const_double_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "const_double_operand"))) ++ ++;; True if this is an operand containing a label_ref. ++(define_predicate "avr32_label_ref_operand" ++ (and (match_code "mem") ++ (match_test "avr32_find_symbol(op) ++ && (GET_CODE(avr32_find_symbol(op)) == LABEL_REF)"))) ++ ++;; True if this is a valid symbol pointing to the constant pool. ++(define_predicate "avr32_const_pool_operand" ++ (and (match_code "symbol_ref") ++ (match_test "CONSTANT_POOL_ADDRESS_P(op)")) ++ { ++ return (flag_pic ? (!(symbol_mentioned_p (get_pool_constant (op)) ++ || label_mentioned_p (get_pool_constant (op))) ++ || avr32_got_mentioned_p(get_pool_constant (op))) ++ : true); ++ } ++) ++ ++;; True if this is a memory reference to the constant or mini pool. ++(define_predicate "avr32_const_pool_ref_operand" ++ (ior (match_operand 0 "avr32_label_ref_operand") ++ (and (match_code "mem") ++ (match_test "avr32_const_pool_operand(XEXP(op,0), GET_MODE(XEXP(op,0)))")))) ++ ++ ++;; Legal source operand for movti insns ++(define_predicate "avr32_movti_src_operand" ++ (ior (match_operand 0 "avr32_const_pool_ref_operand") ++ (ior (ior (match_operand 0 "register_immediate_operand") ++ (match_operand 0 "avr32_indirect_register_operand")) ++ (match_operand 0 "post_inc_memory_operand")))) ++ ++;; Legal destination operand for movti insns ++(define_predicate "avr32_movti_dst_operand" ++ (ior (ior (match_operand 0 "register_operand") ++ (match_operand 0 "avr32_indirect_register_operand")) ++ (match_operand 0 "pre_dec_memory_operand"))) ++ ++ ++;; True if this is a k12 offseted memory operand. ++(define_predicate "avr32_k12_memory_operand" ++ (and (match_code "mem") ++ (ior (match_test "REG_P(XEXP(op, 0))") ++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS ++ && REG_P(XEXP(XEXP(op, 0), 0)) ++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT) ++ && (CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), ++ 'K', (mode == SImode) ? \"Ks14\" : ((mode == HImode) ? \"Ks13\" : \"Ks12\")))")))) ++ ++;; True if this is a memory operand with an immediate displacement. ++(define_predicate "avr32_imm_disp_memory_operand" ++ (and (match_code "mem") ++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS ++ && REG_P(XEXP(XEXP(op, 0), 0)) ++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)"))) ++ ++;; True if this is a bswap operand. ++(define_predicate "avr32_bswap_operand" ++ (ior (match_operand 0 "avr32_k12_memory_operand") ++ (match_operand 0 "register_operand"))) ++ ++;; True if this is a valid coprocessor insn memory operand. ++(define_predicate "avr32_cop_memory_operand" ++ (and (match_operand 0 "memory_operand") ++ (not (match_test "GET_CODE(XEXP(op, 0)) == PLUS ++ && REG_P(XEXP(XEXP(op, 0), 0)) ++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT) ++ && !(CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), 'K', \"Ku10\"))")))) ++ ++;; True if this is a valid source/destination operand. ++;; for moving values to/from a coprocessor ++(define_predicate "avr32_cop_move_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "avr32_cop_memory_operand"))) ++ ++ ++;; True if this is a valid extract byte offset for use in ++;; load extracted index insns. ++(define_predicate "avr32_extract_shift_operand" ++ (and (match_operand 0 "const_int_operand") ++ (match_test "(INTVAL(op) == 0) || (INTVAL(op) == 8) ++ || (INTVAL(op) == 16) || (INTVAL(op) == 24)"))) ++ ++;; True if this is a valid avr32 symbol operand. ++(define_predicate "avr32_symbol_operand" ++ (and (match_code "label_ref, symbol_ref, const") ++ (match_test "avr32_find_symbol(op)"))) ++ ++;; True if this is a valid operand for the lda.w and call pseudo insns. ++(define_predicate "avr32_address_operand" ++ (and (and (match_code "label_ref, symbol_ref") ++ (match_test "avr32_find_symbol(op)")) ++ (ior (match_test "TARGET_HAS_ASM_ADDR_PSEUDOS") ++ (match_test "flag_pic")) )) ++ ++;; An immediate k16 address operand ++(define_predicate "avr32_ks16_address_operand" ++ (and (match_operand 0 "address_operand") ++ (ior (match_test "REG_P(op)") ++ (match_test "GET_CODE(op) == PLUS ++ && ((GET_CODE(XEXP(op,0)) == CONST_INT) ++ || (GET_CODE(XEXP(op,1)) == CONST_INT))")) )) ++ ++;; An offset k16 memory operand ++(define_predicate "avr32_ks16_memory_operand" ++ (and (match_code "mem") ++ (match_test "avr32_ks16_address_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))"))) ++ ++;; An immediate k11 address operand ++(define_predicate "avr32_ks11_address_operand" ++ (and (match_operand 0 "address_operand") ++ (ior (match_test "REG_P(op)") ++ (match_test "GET_CODE(op) == PLUS ++ && (((GET_CODE(XEXP(op,0)) == CONST_INT) ++ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,0)), 'K', \"Ks11\")) ++ || ((GET_CODE(XEXP(op,1)) == CONST_INT) ++ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,1)), 'K', \"Ks11\")))")) )) ++ ++;; True if this is a avr32 call operand ++(define_predicate "avr32_call_operand" ++ (ior (ior (match_operand 0 "register_operand") ++ (ior (match_operand 0 "avr32_const_pool_ref_operand") ++ (match_operand 0 "avr32_address_operand"))) ++ (match_test "SYMBOL_REF_RCALL_FUNCTION_P(op)"))) ++ ++;; Return true for operators performing ALU operations ++ ++(define_predicate "alu_operator" ++ (match_code "ior, xor, and, plus, minus, ashift, lshiftrt, ashiftrt")) ++ ++(define_predicate "avr32_add_shift_immediate_operand" ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ku02\")"))) ++ ++(define_predicate "avr32_cond_register_immediate_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")")))) ++ ++(define_predicate "avr32_cond_immediate_operand" ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is08\")"))) ++ ++ ++(define_predicate "avr32_cond_move_operand" ++ (ior (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")"))) ++ (and (match_test "TARGET_V2_INSNS") ++ (match_operand 0 "memory_operand")))) ++ ++(define_predicate "avr32_mov_immediate_operand" ++ (and (match_operand 0 "immediate_operand") ++ (match_test "avr32_const_ok_for_move(INTVAL(op))"))) ++ ++ ++(define_predicate "avr32_rmw_address_operand" ++ (ior (and (match_code "symbol_ref") ++ (match_test "({rtx symbol = avr32_find_symbol(op); \ ++ symbol && (GET_CODE (symbol) == SYMBOL_REF) && SYMBOL_REF_RMW_ADDR(symbol);})")) ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks17\")"))) ++ { ++ return TARGET_RMW && !flag_pic; ++ } ++) ++ ++(define_predicate "avr32_rmw_memory_operand" ++ (and (match_code "mem") ++ (match_test "!volatile_refs_p(op) && (GET_MODE(op) == SImode) && ++ avr32_rmw_address_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))"))) ++ ++(define_predicate "avr32_rmw_memory_or_register_operand" ++ (ior (match_operand 0 "avr32_rmw_memory_operand") ++ (match_operand 0 "register_operand"))) ++ ++(define_predicate "avr32_non_rmw_memory_operand" ++ (and (not (match_operand 0 "avr32_rmw_memory_operand")) ++ (match_operand 0 "memory_operand"))) ++ ++(define_predicate "avr32_non_rmw_general_operand" ++ (and (not (match_operand 0 "avr32_rmw_memory_operand")) ++ (match_operand 0 "general_operand"))) ++ ++(define_predicate "avr32_non_rmw_nonimmediate_operand" ++ (and (not (match_operand 0 "avr32_rmw_memory_operand")) ++ (match_operand 0 "nonimmediate_operand"))) ++ ++;; Return true if the operand is the 1.0f constant. ++ ++(define_predicate "const_1f_operand" ++ (match_code "const_int,const_double") ++{ ++ return (op == CONST1_RTX (SFmode)); ++}) +--- /dev/null ++++ b/gcc/config/avr32/simd.md +@@ -0,0 +1,145 @@ ++;; AVR32 machine description file for SIMD instructions. ++;; Copyright 2003-2006 Atmel Corporation. ++;; ++;; Written by Ronny Pedersen, Atmel Norway, ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++;; -*- Mode: Scheme -*- ++ ++ ++;; Vector modes ++(define_mode_iterator VECM [V2HI V4QI]) ++(define_mode_attr size [(V2HI "h") (V4QI "b")]) ++ ++(define_insn "add3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (plus:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:VECM 2 "register_operand" "r")))] ++ "TARGET_SIMD" ++ "padd.\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++ ++(define_insn "sub3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (minus:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:VECM 2 "register_operand" "r")))] ++ "TARGET_SIMD" ++ "psub.\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++ ++(define_insn "abs2" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (abs:VECM (match_operand:VECM 1 "register_operand" "r")))] ++ "TARGET_SIMD" ++ "pabs.s\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "ashl3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (ashift:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04")))] ++ "TARGET_SIMD" ++ "plsl.\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "ashr3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (ashiftrt:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04")))] ++ "TARGET_SIMD" ++ "pasr.\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "lshr3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (lshiftrt:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04")))] ++ "TARGET_SIMD" ++ "plsr.\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "smaxv2hi3" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (smax:V2HI (match_operand:V2HI 1 "register_operand" "r") ++ (match_operand:V2HI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmax.sh\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "sminv2hi3" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (smin:V2HI (match_operand:V2HI 1 "register_operand" "r") ++ (match_operand:V2HI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmin.sh\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "umaxv4qi3" ++ [(set (match_operand:V4QI 0 "register_operand" "=r") ++ (umax:V4QI (match_operand:V4QI 1 "register_operand" "r") ++ (match_operand:V4QI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmax.ub\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "uminv4qi3" ++ [(set (match_operand:V4QI 0 "register_operand" "=r") ++ (umin:V4QI (match_operand:V4QI 1 "register_operand" "r") ++ (match_operand:V4QI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmin.ub\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++ ++(define_insn "addsubv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (vec_concat:V2HI ++ (plus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")) ++ (minus:HI (match_dup 1) (match_dup 2))))] ++ "TARGET_SIMD" ++ "paddsub.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "subaddv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (vec_concat:V2HI ++ (minus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")) ++ (plus:HI (match_dup 1) (match_dup 2))))] ++ "TARGET_SIMD" ++ "psubadd.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) +--- /dev/null ++++ b/gcc/config/avr32/sync.md +@@ -0,0 +1,244 @@ ++;;================================================================= ++;; Atomic operations ++;;================================================================= ++ ++ ++(define_insn "sync_compare_and_swapsi" ++ [(set (match_operand:SI 0 "register_operand" "=&r,&r") ++ (match_operand:SI 1 "memory_operand" "+RKs16,+RKs16")) ++ (set (match_dup 1) ++ (unspec_volatile:SI ++ [(match_dup 1) ++ (match_operand:SI 2 "register_immediate_operand" "r,Ks21") ++ (match_operand:SI 3 "register_operand" "r,r")] ++ VUNSPEC_SYNC_CMPXCHG)) ] ++ "" ++ "0: ++ ssrf\t5 ++ ld.w\t%0,%1 ++ cp.w\t%0,%2 ++ brne\t0f ++ stcond\t%1, %3 ++ brne\t0b ++ 0: ++ " ++ [(set_attr "length" "16,18") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++(define_code_iterator atomic_op [plus minus and ior xor]) ++(define_code_attr atomic_asm_insn [(plus "add") (minus "sub") (and "and") (ior "or") (xor "eor")]) ++(define_code_attr atomic_insn [(plus "add") (minus "sub") (and "and") (ior "ior") (xor "xor")]) ++ ++(define_insn "sync_loadsi" ++ ; NB! Put an early clobber on the destination operand to ++ ; avoid gcc using the same register in the source and ++ ; destination. This is done in order to avoid gcc to ++ ; clobber the source operand since these instructions ++ ; are actually inside a "loop". ++ [(set (match_operand:SI 0 "register_operand" "=&r") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "RKs16") ++ (label_ref (match_operand 2 "" ""))] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD) )] ++ "" ++ "%2: ++ ssrf\t5 ++ ld.w\t%0,%1" ++ [(set_attr "length" "6") ++ (set_attr "cc" "clobber")] ++ ) ++ ++(define_insn "sync_store_if_lock" ++ [(set (match_operand:SI 0 "avr32_ks16_memory_operand" "=RKs16") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "register_operand" "r") ++ (label_ref (match_operand 2 "" ""))] ++ VUNSPEC_SYNC_STORE_IF_LOCK) )] ++ "" ++ "stcond\t%0, %1 ++ brne\t%2" ++ [(set_attr "length" "6") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++(define_expand "sync_si" ++ [(set (match_dup 2) ++ (unspec_volatile:SI ++ [(match_operand:SI 0 "avr32_ks16_memory_operand" "") ++ (match_dup 3)] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) ++ (set (match_dup 2) ++ (atomic_op:SI (match_dup 2) ++ (match_operand:SI 1 "register_immediate_operand" ""))) ++ (set (match_dup 0) ++ (unspec_volatile:SI ++ [(match_dup 2) ++ (match_dup 3)] ++ VUNSPEC_SYNC_STORE_IF_LOCK) ) ++ (use (match_dup 1)) ++ (use (match_dup 4))] ++ "" ++ { ++ rtx *mem_expr = &operands[0]; ++ rtx ptr_reg; ++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) ++ { ++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); ++ XEXP (*mem_expr, 0) = ptr_reg; ++ } ++ else ++ { ++ rtx address = XEXP (*mem_expr, 0); ++ if ( REG_P (address) ) ++ ptr_reg = address; ++ else if ( REG_P (XEXP (address, 0)) ) ++ ptr_reg = XEXP (address, 0); ++ else ++ ptr_reg = XEXP (address, 1); ++ } ++ ++ operands[2] = gen_reg_rtx (SImode); ++ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); ++ operands[4] = ptr_reg; ++ ++ } ++ ) ++ ++ ++ ++(define_expand "sync_old_si" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "") ++ (match_dup 4)] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) ++ (set (match_dup 3) ++ (atomic_op:SI (match_dup 0) ++ (match_operand:SI 2 "register_immediate_operand" ""))) ++ (set (match_dup 1) ++ (unspec_volatile:SI ++ [(match_dup 3) ++ (match_dup 4)] ++ VUNSPEC_SYNC_STORE_IF_LOCK) ) ++ (use (match_dup 2)) ++ (use (match_dup 5))] ++ "" ++ { ++ rtx *mem_expr = &operands[1]; ++ rtx ptr_reg; ++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) ++ { ++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); ++ XEXP (*mem_expr, 0) = ptr_reg; ++ } ++ else ++ { ++ rtx address = XEXP (*mem_expr, 0); ++ if ( REG_P (address) ) ++ ptr_reg = address; ++ else if ( REG_P (XEXP (address, 0)) ) ++ ptr_reg = XEXP (address, 0); ++ else ++ ptr_reg = XEXP (address, 1); ++ } ++ ++ operands[3] = gen_reg_rtx (SImode); ++ operands[4] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); ++ operands[5] = ptr_reg; ++ } ++ ) ++ ++(define_expand "sync_new_si" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "") ++ (match_dup 3)] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) ++ (set (match_dup 0) ++ (atomic_op:SI (match_dup 0) ++ (match_operand:SI 2 "register_immediate_operand" ""))) ++ (set (match_dup 1) ++ (unspec_volatile:SI ++ [(match_dup 0) ++ (match_dup 3)] ++ VUNSPEC_SYNC_STORE_IF_LOCK) ) ++ (use (match_dup 2)) ++ (use (match_dup 4))] ++ "" ++ { ++ rtx *mem_expr = &operands[1]; ++ rtx ptr_reg; ++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) ++ { ++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); ++ XEXP (*mem_expr, 0) = ptr_reg; ++ } ++ else ++ { ++ rtx address = XEXP (*mem_expr, 0); ++ if ( REG_P (address) ) ++ ptr_reg = address; ++ else if ( REG_P (XEXP (address, 0)) ) ++ ptr_reg = XEXP (address, 0); ++ else ++ ptr_reg = XEXP (address, 1); ++ } ++ ++ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); ++ operands[4] = ptr_reg; ++ } ++ ) ++ ++ ++;(define_insn "sync_si" ++; [(set (match_operand:SI 0 "memory_operand" "+RKs16") ++; (unspec_volatile:SI ++; [(atomic_op:SI (match_dup 0) ++; (match_operand:SI 1 "register_operand" "r"))] ++; VUNSPEC_SYNC_CMPXCHG)) ++; (clobber (match_scratch:SI 2 "=&r"))] ++; "" ++; "0: ++; ssrf\t5 ++; ld.w\t%2,%0 ++; \t%2,%1 ++; stcond\t%0, %2 ++; brne\t0b ++; " ++; [(set_attr "length" "14") ++; (set_attr "cc" "clobber")] ++; ) ++; ++;(define_insn "sync_new_si" ++; [(set (match_operand:SI 1 "memory_operand" "+RKs16") ++; (unspec_volatile:SI ++; [(atomic_op:SI (match_dup 1) ++; (match_operand:SI 2 "register_operand" "r"))] ++; VUNSPEC_SYNC_CMPXCHG)) ++; (set (match_operand:SI 0 "register_operand" "=&r") ++; (atomic_op:SI (match_dup 1) ++; (match_dup 2)))] ++; "" ++; "0: ++; ssrf\t5 ++; ld.w\t%0,%1 ++; \t%0,%2 ++; stcond\t%1, %0 ++; brne\t0b ++; " ++; [(set_attr "length" "14") ++; (set_attr "cc" "clobber")] ++; ) ++ ++(define_insn "sync_lock_test_and_setsi" ++ [ (set (match_operand:SI 0 "register_operand" "=&r") ++ (match_operand:SI 1 "memory_operand" "+RKu00")) ++ (set (match_dup 1) ++ (match_operand:SI 2 "register_operand" "r")) ] ++ "" ++ "xchg\t%0, %p1, %2" ++ [(set_attr "length" "4")] ++ ) +--- /dev/null ++++ b/gcc/config/avr32/t-avr32 +@@ -0,0 +1,118 @@ ++ ++MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \ ++ $(srcdir)/config/avr32/sync.md \ ++ $(srcdir)/config/avr32/simd.md \ ++ $(srcdir)/config/avr32/predicates.md ++ ++s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \ ++ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES) ++ ++# We want fine grained libraries, so use the new code ++# to build the floating point emulation libraries. ++FPBIT = fp-bit.c ++DPBIT = dp-bit.c ++ ++LIB1ASMSRC = avr32/lib1funcs.S ++LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \ ++ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \ ++ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \ ++ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \ ++ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \ ++ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \ ++ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3 ++ ++#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S ++ ++MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul/march=ucr3/march=ucr3fp ++MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul ucr3 ucr3fp ++MULTILIB_EXCEPTIONS = ++MULTILIB_MATCHES += march?ap=mpart?ap7000 ++MULTILIB_MATCHES += march?ap=mpart?ap7001 ++MULTILIB_MATCHES += march?ap=mpart?ap7002 ++MULTILIB_MATCHES += march?ap=mpart?ap7200 ++MULTILIB_MATCHES += march?ucr1=march?uc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512 ++MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256s ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b064 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512revc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b164 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512revc ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0256 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0128 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l032 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l016 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064revb ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l4u ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c064c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c164c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c264c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2512c ++MULTILIB_MATCHES += march?ucr3=mpart?mxt768e ++ ++ ++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o ++ ++CRTSTUFF_T_CFLAGS = -mrelax ++CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC ++TARGET_LIBGCC2_CFLAGS += -mrelax ++ ++LIBGCC = stmp-multilib ++INSTALL_LIBGCC = install-multilib ++ ++fp-bit.c: $(srcdir)/config/fp-bit.c ++ echo '#define FLOAT' > fp-bit.c ++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c ++ ++dp-bit.c: $(srcdir)/config/fp-bit.c ++ cat $(srcdir)/config/fp-bit.c > dp-bit.c ++ ++ ++ +--- /dev/null ++++ b/gcc/config/avr32/t-avr32-linux +@@ -0,0 +1,118 @@ ++ ++MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \ ++ $(srcdir)/config/avr32/sync.md \ ++ $(srcdir)/config/avr32/simd.md \ ++ $(srcdir)/config/avr32/predicates.md ++ ++s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \ ++ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES) ++ ++# We want fine grained libraries, so use the new code ++# to build the floating point emulation libraries. ++FPBIT = fp-bit.c ++DPBIT = dp-bit.c ++ ++LIB1ASMSRC = avr32/lib1funcs.S ++LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \ ++ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \ ++ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \ ++ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \ ++ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \ ++ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \ ++ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3 ++ ++#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S ++ ++MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul/march=ucr3/march=ucr3fp ++MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul ucr3 ucr3fp ++MULTILIB_EXCEPTIONS = ++MULTILIB_MATCHES += march?ap=mpart?ap7000 ++MULTILIB_MATCHES += march?ap=mpart?ap7001 ++MULTILIB_MATCHES += march?ap=mpart?ap7002 ++MULTILIB_MATCHES += march?ap=mpart?ap7200 ++MULTILIB_MATCHES += march?ucr1=march?uc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512 ++MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256s ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b064 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512revc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b164 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512revc ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0256 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0128 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l032 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l016 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064revb ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l4u ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c064c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c164c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c264c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2512c ++MULTILIB_MATCHES += march?ucr3=mpart?mxt768e ++ ++ ++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o ++ ++CRTSTUFF_T_CFLAGS = -mrelax ++CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC ++TARGET_LIBGCC2_CFLAGS += -mrelax ++ ++LIBGCC = stmp-multilib ++INSTALL_LIBGCC = install-multilib ++ ++fp-bit.c: $(srcdir)/config/fp-bit.c ++ echo '#define FLOAT' > fp-bit.c ++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c ++ ++dp-bit.c: $(srcdir)/config/fp-bit.c ++ cat $(srcdir)/config/fp-bit.c > dp-bit.c ++ ++ ++ +--- /dev/null ++++ b/gcc/config/avr32/t-elf +@@ -0,0 +1,16 @@ ++ ++# Assemble startup files. ++$(T)crti.o: $(srcdir)/config/avr32/crti.asm $(GCC_PASSES) ++ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \ ++ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/avr32/crti.asm ++ ++$(T)crtn.o: $(srcdir)/config/avr32/crtn.asm $(GCC_PASSES) ++ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \ ++ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/avr32/crtn.asm ++ ++ ++# Build the libraries for both hard and soft floating point ++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o ++ ++LIBGCC = stmp-multilib ++INSTALL_LIBGCC = install-multilib +--- /dev/null ++++ b/gcc/config/avr32/uc3fpu.md +@@ -0,0 +1,199 @@ ++;; AVR32 machine description file for Floating-Point instructions. ++;; Copyright 2003-2006 Atmel Corporation. ++;; ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++(define_insn "*movsf_uc3fp" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,m") ++ (match_operand:SF 1 "general_operand" "r,G,m,r"))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "@ ++ mov\t%0, %1 ++ mov\t%0, %1 ++ ld.w\t%0, %1 ++ st.w\t%0, %1" ++ [(set_attr "length" "2,4,4,4") ++ (set_attr "type" "alu,alu,load,store")]) ++ ++(define_insn "mulsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fmul.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "nmulsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (neg:SF (mult:SF (match_operand:SF 1 "register_operand" "%r") ++ (match_operand:SF 2 "register_operand" "r"))))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fnmul.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "macsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (plus:SF (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")) ++ (match_operand:SF 3 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fmac.s\t%0, %3, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++;(define_insn "nmacsf3" ++; [(set (match_operand:SF 0 "register_operand" "=r") ++; (plus:SF (neg:SF (match_operand:SF 1 "register_operand" "r")) ++; (mult:SF(match_operand:SF 2 "register_operand" "r") ++; (match_operand:SF 3 "register_operand" "r"))))] ++; "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++; "fnmac.s\t%0, %1, %2, %3" ++; [(set_attr "length" "4") ++; (set_attr "type" "fmul")]) ++ ++(define_insn "nmacsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (mult:SF (match_operand:SF 2 "register_operand" "r") ++ (match_operand:SF 3 "register_operand" "r")) ++ (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fnmac.s\t%0, %1, %2, %3" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "msubacsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (match_operand:SF 3 "register_operand" "r") ++ (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r"))))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fmsc.s\t%0, %3, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "nmsubacsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (neg:SF (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r"))) ++ (match_operand:SF 3 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fnmsc.s\t%0, %3, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "addsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (plus:SF (match_operand:SF 1 "register_operand" "%r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fadd.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "subsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fsub.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "fixuns_truncsfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unsigned_fix:SI (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastrs.uw\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "fix_truncsfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (fix:SI (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastrs.sw\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "floatunssisf2" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (unsigned_float:SF (match_operand:SI 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastuw.s\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "floatsisf2" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (float:SF (match_operand:SI 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastsw.s\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "cmpsf_internal_uc3fp" ++ [(set (cc0) ++ (compare:CC ++ (match_operand:SF 0 "register_operand" "r") ++ (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ { ++ avr32_branch_type = CMP_SF; ++ if (!rtx_equal_p(cc_prev_status.mdep.value, SET_SRC(PATTERN (insn))) ) ++ return "fcmp.s\t%0, %1"; ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "cc" "compare")]) ++ ++(define_expand "divsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (div:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT && flag_unsafe_math_optimizations" ++ "{ ++ emit_insn(gen_frcpa_internal(operands[0],operands[2])); ++ emit_insn(gen_mulsf3(operands[0],operands[0],operands[1])); ++ DONE; ++ }" ++) ++ ++(define_insn "frcpa_internal" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (unspec:SF [(match_operand:SF 1 "register_operand" "r")] UNSPEC_FRCPA))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "frcpa.s %0,%1" ++ [(set_attr "length" "4")]) ++ ++(define_expand "sqrtsf2" ++ [(set (match_operand:SF 0 "register_operand" "") ++ (sqrt:SF (match_operand:SF 1 "register_operand" "")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT && flag_unsafe_math_optimizations" ++ " ++{ ++ rtx scratch = gen_reg_rtx (SFmode); ++ emit_insn (gen_rsqrtsf2 (scratch, operands[1], CONST1_RTX (SFmode))); ++ emit_insn (gen_divsf3(operands[0], force_reg (SFmode, CONST1_RTX (SFmode)), ++ scratch)); ++ DONE; ++}") ++ ++(define_insn "rsqrtsf2" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (div:SF (match_operand:SF 2 "const_1f_operand" "F") ++ (sqrt:SF (match_operand:SF 1 "register_operand" "?r"))))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "frsqrta.s %1, %0") +--- /dev/null ++++ b/gcc/config/avr32/uclinux-elf.h +@@ -0,0 +1,20 @@ ++ ++/* Run-time Target Specification. */ ++#undef TARGET_VERSION ++#define TARGET_VERSION fputs (" (AVR32 uClinux with ELF)", stderr) ++ ++/* We don't want a .jcr section on uClinux. As if this makes a difference... */ ++#define TARGET_USE_JCR_SECTION 0 ++ ++/* Here we go. Drop the crtbegin/crtend stuff completely. */ ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC \ ++ "%{!shared: %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s}" \ ++ " %{!p:%{profile:gcrt1.o%s}" \ ++ " %{!profile:crt1.o%s}}}} crti.o%s" ++ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC "crtn.o%s" ++ ++#undef TARGET_DEFAULT ++#define TARGET_DEFAULT (AVR32_FLAG_NO_INIT_GOT) +--- a/gcc/config/host-linux.c ++++ b/gcc/config/host-linux.c +@@ -25,6 +25,9 @@ + #include "hosthooks.h" + #include "hosthooks-def.h" + ++#ifndef SSIZE_MAX ++#define SSIZE_MAX LONG_MAX ++#endif + + /* Linux has a feature called exec-shield-randomize that perturbs the + address of non-fixed mapped segments by a (relatively) small amount. +--- a/gcc/config.gcc ++++ b/gcc/config.gcc +@@ -810,6 +810,24 @@ avr-*-rtems*) + avr-*-*) + tm_file="avr/avr.h dbxelf.h" + ;; ++avr32*-*-linux*) ++ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/avr32.h " ++ tmake_file="t-linux avr32/t-avr32-linux" ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ extra_modes=avr32/avr32-modes.def ++ gnu_ld=yes ++ ;; ++avr32*-*-uclinux*) ++ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/uclinux-elf.h avr32/avr32.h" ++ tmake_file="t-linux avr32/t-avr32-linux" ++ extra_modes=avr32/avr32-modes.def ++ gnu_ld=yes ++ ;; ++avr32-*-*) ++ tm_file="dbxelf.h elfos.h avr32/avr32.h avr32/avr32-elf.h" ++ tmake_file="avr32/t-avr32 avr32/t-elf" ++ extra_modes=avr32/avr32-modes.def ++ ;; + bfin*-elf*) + tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h" + tmake_file=bfin/t-bfin-elf +@@ -2764,6 +2782,32 @@ case "${target}" in + fi + ;; + ++ avr32*-*-*) ++ supported_defaults="part arch" ++ ++ case "$with_part" in ++ "" \ ++ | "ap7000" | "ap7010" | "ap7020" | "uc3a0256" | "uc3a0512" | "uc3a1128" | "uc3a1256" | "uc3a1512" ) ++ # OK ++ ;; ++ *) ++ echo "Unknown part used in --with-part=$with_part" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case "$with_arch" in ++ "" \ ++ | "ap" | "uc") ++ # OK ++ ;; ++ *) ++ echo "Unknown arch used in --with-arch=$with_arch" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ + fr*-*-*linux*) + supported_defaults=cpu + case "$with_cpu" in +--- a/gcc/configure.ac ++++ b/gcc/configure.ac +@@ -2240,10 +2240,9 @@ L2:], + as_ver=`$gcc_cv_as --version 2>/dev/null | sed 1q` + if echo "$as_ver" | grep GNU > /dev/null; then + changequote(,)dnl +- as_vers=`echo $as_ver | sed -n \ +- -e 's,^.*[ ]\([0-9][0-9]*\.[0-9][0-9]*.*\)$,\1,p'` +- as_major=`expr "$as_vers" : '\([0-9]*\)'` +- as_minor=`expr "$as_vers" : '[0-9]*\.\([0-9]*\)'` ++ as_ver=`echo $as_ver | sed -e 's/GNU assembler\( (GNU Binutils)\)\? \([0-9.][0-9.]*\).*/\2/'` ++ as_major=`echo $as_ver | sed 's/\..*//'` ++ as_minor=`echo $as_ver | sed 's/[^.]*\.\([0-9]*\).*/\1/'` + changequote([,])dnl + if test $as_major -eq 2 && test $as_minor -lt 11 + then : +@@ -3308,7 +3307,7 @@ case "$target" in + i?86*-*-* | mips*-*-* | alpha*-*-* | powerpc*-*-* | sparc*-*-* | m68*-*-* \ + | x86_64*-*-* | hppa*-*-* | arm*-*-* \ + | xstormy16*-*-* | cris-*-* | crisv32-*-* | xtensa*-*-* | bfin-*-* | score*-*-* \ +- | spu-*-* | fido*-*-* | m32c-*-*) ++ | spu-*-* | fido*-*-* | m32c-*-* | avr32-*-*) + insn="nop" + ;; + ia64*-*-* | s390*-*-*) +--- a/gcc/doc/extend.texi ++++ b/gcc/doc/extend.texi +@@ -2397,7 +2397,7 @@ This attribute is ignored for R8C target + + @item interrupt + @cindex interrupt handler functions +-Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k, ++Use this attribute on the ARM, AVR, AVR32, CRX, M32C, M32R/D, m68k, + and Xstormy16 ports to indicate that the specified function is an + interrupt handler. The compiler will generate function entry and exit + sequences suitable for use in an interrupt handler when this attribute +@@ -2417,6 +2417,15 @@ void f () __attribute__ ((interrupt ("IR + + Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@. + ++Note, for the AVR32, you can specify which banking scheme is used for ++the interrupt mode this interrupt handler is used in like this: ++ ++@smallexample ++void f () __attribute__ ((interrupt ("FULL"))); ++@end smallexample ++ ++Permissible values for this parameter are: FULL, HALF, NONE and UNDEF. ++ + On ARMv7-M the interrupt type is ignored, and the attribute means the function + may be called with a word aligned stack pointer. + +@@ -4188,6 +4197,23 @@ placed in either the @code{.bss_below100 + + @end table + ++@subsection AVR32 Variable Attributes ++ ++One attribute is currently defined for AVR32 configurations: ++@code{rmw_addressable} ++ ++@table @code ++@item rmw_addressable ++@cindex @code{rmw_addressable} attribute ++ ++This attribute can be used to signal that a variable can be accessed ++with the addressing mode of the AVR32 Atomic Read-Modify-Write memory ++instructions and hence make it possible for gcc to generate these ++instructions without using built-in functions or inline assembly statements. ++Variables used within the AVR32 Atomic Read-Modify-Write built-in ++functions will automatically get the @code{rmw_addressable} attribute. ++@end table ++ + @subsection AVR Variable Attributes + + @table @code +@@ -7042,6 +7068,7 @@ instructions, but allow the compiler to + * Alpha Built-in Functions:: + * ARM iWMMXt Built-in Functions:: + * ARM NEON Intrinsics:: ++* AVR32 Built-in Functions:: + * Blackfin Built-in Functions:: + * FR-V Built-in Functions:: + * X86 Built-in Functions:: +@@ -7284,6 +7311,7 @@ long long __builtin_arm_wxor (long long, + long long __builtin_arm_wzero () + @end smallexample + ++ + @node ARM NEON Intrinsics + @subsection ARM NEON Intrinsics + +@@ -7292,6 +7320,74 @@ when the @option{-mfpu=neon} switch is u + + @include arm-neon-intrinsics.texi + ++@node AVR32 Built-in Functions ++@subsection AVR32 Built-in Functions ++ ++Built-in functions for atomic memory (RMW) instructions. Note that these ++built-ins will fail for targets where the RMW instructions are not ++implemented. Also note that these instructions only that a Ks15 << 2 ++memory address and will therefor not work with any runtime computed ++memory addresses. The user is responsible for making sure that any ++pointers used within these functions points to a valid memory address. ++ ++@smallexample ++void __builtin_mems(int */*ptr*/, int /*bit*/) ++void __builtin_memc(int */*ptr*/, int /*bit*/) ++void __builtin_memt(int */*ptr*/, int /*bit*/) ++@end smallexample ++ ++Built-in functions for DSP instructions. Note that these built-ins will ++fail for targets where the DSP instructions are not implemented. ++ ++@smallexample ++int __builtin_sats (int /*Rd*/,int /*sa*/, int /*bn*/) ++int __builtin_satu (int /*Rd*/,int /*sa*/, int /*bn*/) ++int __builtin_satrnds (int /*Rd*/,int /*sa*/, int /*bn*/) ++int __builtin_satrndu (int /*Rd*/,int /*sa*/, int /*bn*/) ++short __builtin_mulsathh_h (short, short) ++int __builtin_mulsathh_w (short, short) ++short __builtin_mulsatrndhh_h (short, short) ++int __builtin_mulsatrndwh_w (int, short) ++int __builtin_mulsatwh_w (int, short) ++int __builtin_macsathh_w (int, short, short) ++short __builtin_satadd_h (short, short) ++short __builtin_satsub_h (short, short) ++int __builtin_satadd_w (int, int) ++int __builtin_satsub_w (int, int) ++long long __builtin_mulwh_d(int, short) ++long long __builtin_mulnwh_d(int, short) ++long long __builtin_macwh_d(long long, int, short) ++long long __builtin_machh_d(long long, short, short) ++@end smallexample ++ ++Other built-in functions for instructions that cannot easily be ++generated by the compiler. ++ ++@smallexample ++void __builtin_ssrf(int); ++void __builtin_csrf(int); ++void __builtin_musfr(int); ++int __builtin_mustr(void); ++int __builtin_mfsr(int /*Status Register Address*/) ++void __builtin_mtsr(int /*Status Register Address*/, int /*Value*/) ++int __builtin_mfdr(int /*Debug Register Address*/) ++void __builtin_mtdr(int /*Debug Register Address*/, int /*Value*/) ++void __builtin_cache(void * /*Address*/, int /*Cache Operation*/) ++void __builtin_sync(int /*Sync Operation*/) ++void __builtin_tlbr(void) ++void __builtin_tlbs(void) ++void __builtin_tlbw(void) ++void __builtin_breakpoint(void) ++int __builtin_xchg(void * /*Address*/, int /*Value*/ ) ++short __builtin_bswap_16(short) ++int __builtin_bswap_32(int) ++void __builtin_cop(int/*cpnr*/, int/*crd*/, int/*crx*/, int/*cry*/, int/*op*/) ++int __builtin_mvcr_w(int/*cpnr*/, int/*crs*/) ++void __builtin_mvrc_w(int/*cpnr*/, int/*crd*/, int/*value*/) ++long long __builtin_mvcr_d(int/*cpnr*/, int/*crs*/) ++void __builtin_mvrc_d(int/*cpnr*/, int/*crd*/, long long/*value*/) ++@end smallexample ++ + @node Blackfin Built-in Functions + @subsection Blackfin Built-in Functions + +--- a/gcc/doc/invoke.texi ++++ b/gcc/doc/invoke.texi +@@ -195,7 +195,7 @@ in the following sections. + -fvisibility-ms-compat @gol + -Wabi -Wctor-dtor-privacy @gol + -Wnon-virtual-dtor -Wreorder @gol +--Weffc++ -Wstrict-null-sentinel @gol ++-Weffc++ -Wno-deprecated @gol + -Wno-non-template-friend -Wold-style-cast @gol + -Woverloaded-virtual -Wno-pmf-conversions @gol + -Wsign-promo} +@@ -641,6 +641,12 @@ Objective-C and Objective-C++ Dialects}. + -mauto-incdec -minmax -mlong-calls -mshort @gol + -msoft-reg-count=@var{count}} + ++@emph{AVR32 Options} ++@gccoptlist{-muse-rodata-section -mhard-float -msoft-float -mrelax @gol ++-mforce-double-align -mno-init-got -mrelax -mmd-reorg-opt -masm-addr-pseudos @gol ++-mpart=@var{part} -mcpu=@var{cpu} -march=@var{arch} @gol ++-mfast-float -mimm-in-const-pool} ++ + @emph{MCore Options} + @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol + -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol +@@ -3256,13 +3262,11 @@ appears in a class without constructors. + If you want to warn about code which uses the uninitialized value of the + variable in its own initializer, use the @option{-Winit-self} option. + +-These warnings occur for individual uninitialized or clobbered +-elements of structure, union or array variables as well as for +-variables which are uninitialized or clobbered as a whole. They do +-not occur for variables or elements declared @code{volatile}. Because +-these warnings depend on optimization, the exact variables or elements +-for which there are warnings will depend on the precise optimization +-options and version of GCC used. ++These warnings occur only for variables that are candidates for ++register allocation. Therefore, they do not occur for a variable that ++is declared @code{volatile}, or whose address is taken, or whose size ++is other than 1, 2, 4 or 8 bytes. Also, they do not occur for ++structures, unions or arrays, even when they are in registers. + + Note that there may be no warning about a variable that is used only + to compute a value that itself is never used, because such +@@ -7461,10 +7465,6 @@ If number of candidates in the set is sm + we always try to remove unnecessary ivs from the set during its + optimization when a new iv is added to the set. + +-@item scev-max-expr-size +-Bound on size of expressions used in the scalar evolutions analyzer. +-Large expressions slow the analyzer. +- + @item omega-max-vars + The maximum number of variables in an Omega constraint system. + The default value is 128. +@@ -8860,6 +8860,7 @@ platform. + * ARC Options:: + * ARM Options:: + * AVR Options:: ++* AVR32 Options:: + * Blackfin Options:: + * CRIS Options:: + * CRX Options:: +@@ -9348,6 +9349,145 @@ comply to the C standards, but it will p + size. + @end table + ++@node AVR32 Options ++@subsection AVR32 Options ++@cindex AVR32 Options ++ ++These options are defined for AVR32 implementations: ++ ++@table @gcctabopt ++@item -muse-rodata-section ++@opindex muse-rodata-section ++Use section @samp{.rodata} for read-only data instead of @samp{.text}. ++ ++@item -mhard-float ++@opindex mhard-float ++Use floating point coprocessor instructions. ++ ++@item -msoft-float ++@opindex msoft-float ++Use software floating-point library for floating-point operations. ++ ++@item -mforce-double-align ++@opindex mforce-double-align ++Force double-word alignment for double-word memory accesses. ++ ++@item -masm-addr-pseudos ++@opindex masm-addr-pseudos ++Use assembler pseudo-instructions lda.w and call for handling direct ++addresses. (Enabled by default) ++ ++@item -mno-init-got ++@opindex mno-init-got ++Do not initialize the GOT register before using it when compiling PIC ++code. ++ ++@item -mrelax ++@opindex mrelax ++Let invoked assembler and linker do relaxing ++(Enabled by default when optimization level is >1). ++This means that when the address of symbols are known at link time, ++the linker can optimize @samp{icall} and @samp{mcall} ++instructions into a @samp{rcall} instruction if possible. ++Loading the address of a symbol can also be optimized. ++ ++@item -mmd-reorg-opt ++@opindex mmd-reorg-opt ++Perform machine dependent optimizations in reorg stage. ++ ++@item -mpart=@var{part} ++@opindex mpart ++Generate code for the specified part. Permissible parts are: ++@samp{ap7000}, ++@samp{ap7001}, ++@samp{ap7002}, ++@samp{ap7200}, ++@samp{uc3a0128}, ++@samp{uc3a0256}, ++@samp{uc3a0512}, ++@samp{uc3a0512es}, ++@samp{uc3a1128}, ++@samp{uc3a1256}, ++@samp{uc3a1512}, ++@samp{uc3a1512es}, ++@samp{uc3a3revd}, ++@samp{uc3a364}, ++@samp{uc3a364s}, ++@samp{uc3a3128}, ++@samp{uc3a3128s}, ++@samp{uc3a3256}, ++@samp{uc3a3256s}, ++@samp{uc3a464}, ++@samp{uc3a464s}, ++@samp{uc3a4128}, ++@samp{uc3a4128s}, ++@samp{uc3a4256}, ++@samp{uc3a4256s}, ++@samp{uc3b064}, ++@samp{uc3b0128}, ++@samp{uc3b0256}, ++@samp{uc3b0256es}, ++@samp{uc3b0512}, ++@samp{uc3b0512revc}, ++@samp{uc3b164}, ++@samp{uc3b1128}, ++@samp{uc3b1256}, ++@samp{uc3b1256es}, ++@samp{uc3b1512}, ++@samp{uc3b1512revc} ++@samp{uc64d3}, ++@samp{uc128d3}, ++@samp{uc64d4}, ++@samp{uc128d4}, ++@samp{uc3c0512crevc}, ++@samp{uc3c1512crevc}, ++@samp{uc3c2512crevc}, ++@samp{uc3l0256}, ++@samp{uc3l0128}, ++@samp{uc3l064}, ++@samp{uc3l032}, ++@samp{uc3l016}, ++@samp{uc3l064revb}, ++@samp{uc64l3u}, ++@samp{uc128l3u}, ++@samp{uc256l3u}, ++@samp{uc64l4u}, ++@samp{uc128l4u}, ++@samp{uc256l4u}, ++@samp{uc3c064c}, ++@samp{uc3c0128c}, ++@samp{uc3c0256c}, ++@samp{uc3c0512c}, ++@samp{uc3c164c}, ++@samp{uc3c1128c}, ++@samp{uc3c1256c}, ++@samp{uc3c1512c}, ++@samp{uc3c264c}, ++@samp{uc3c2128c}, ++@samp{uc3c2256c}, ++@samp{uc3c2512c}, ++@samp{mxt768e}. ++ ++@item -mcpu=@var{cpu-type} ++@opindex mcpu ++Same as -mpart. Obsolete. ++ ++@item -march=@var{arch} ++@opindex march ++Generate code for the specified architecture. Permissible architectures are: ++@samp{ap}, @samp{uc} and @samp{ucr2}. ++ ++@item -mfast-float ++@opindex mfast-float ++Enable fast floating-point library that does not conform to IEEE-754 but is still good enough ++for most applications. The fast floating-point library does not round to the nearest even ++but away from zero. Enabled by default if the -funsafe-math-optimizations switch is specified. ++ ++@item -mimm-in-const-pool ++@opindex mimm-in-const-pool ++Put large immediates in constant pool. This is enabled by default for archs with insn-cache. ++@end table ++ + @node Blackfin Options + @subsection Blackfin Options + @cindex Blackfin Options +@@ -9403,29 +9543,12 @@ When enabled, the compiler will ensure t + contain speculative loads after jump instructions. If this option is used, + @code{__WORKAROUND_SPECULATIVE_LOADS} is defined. + +-@item -mno-specld-anomaly +-@opindex mno-specld-anomaly +-Don't generate extra code to prevent speculative loads from occurring. +- + @item -mcsync-anomaly + @opindex mcsync-anomaly + When enabled, the compiler will ensure that the generated code does not + contain CSYNC or SSYNC instructions too soon after conditional branches. + If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined. + +-@item -mno-csync-anomaly +-@opindex mno-csync-anomaly +-Don't generate extra code to prevent CSYNC or SSYNC instructions from +-occurring too soon after a conditional branch. +- +-@item -mlow-64k +-@opindex mlow-64k +-When enabled, the compiler is free to take advantage of the knowledge that +-the entire program fits into the low 64k of memory. +- +-@item -mno-low-64k +-@opindex mno-low-64k +-Assume that the program is arbitrarily large. This is the default. + + @item -mstack-check-l1 + @opindex mstack-check-l1 +@@ -9439,11 +9562,6 @@ This allows for execute in place and sha + without virtual memory management. This option implies @option{-fPIC}. + With a @samp{bfin-elf} target, this option implies @option{-msim}. + +-@item -mno-id-shared-library +-@opindex mno-id-shared-library +-Generate code that doesn't assume ID based shared libraries are being used. +-This is the default. +- + @item -mleaf-id-shared-library + @opindex mleaf-id-shared-library + Generate code that supports shared libraries via the library ID method, +@@ -9485,11 +9603,6 @@ call on this register. This switch is n + will lie outside of the 24 bit addressing range of the offset based + version of subroutine call instruction. + +-This feature is not enabled by default. Specifying +-@option{-mno-long-calls} will restore the default behavior. Note these +-switches have no effect on how the compiler generates code to handle +-function calls via function pointers. +- + @item -mfast-fp + @opindex mfast-fp + Link with the fast floating-point library. This library relaxes some of +--- a/gcc/doc/md.texi ++++ b/gcc/doc/md.texi +@@ -4,6 +4,7 @@ + @c This is part of the GCC manual. + @c For copying conditions, see the file gcc.texi. + ++ + @ifset INTERNALS + @node Machine Desc + @chapter Machine Descriptions +@@ -1685,6 +1686,58 @@ A memory reference suitable for iWMMXt l + A memory reference suitable for the ARMv4 ldrsb instruction. + @end table + ++@item AVR32 family---@file{avr32.h} ++@table @code ++@item f ++Floating-point registers (f0 to f15) ++ ++@item Ku@var{bits} ++Unsigned constant representable with @var{bits} number of bits (Must be ++two digits). I.e: An unsigned 8-bit constant is written as @samp{Ku08} ++ ++@item Ks@var{bits} ++Signed constant representable with @var{bits} number of bits (Must be ++two digits). I.e: A signed 12-bit constant is written as @samp{Ks12} ++ ++@item Is@var{bits} ++The negated range of a signed constant representable with @var{bits} ++number of bits. The same as @samp{Ks@var{bits}} with a negated range. ++This means that the constant must be in the range @math{-2^{bits-1}-1} to @math{2^{bits-1}} ++ ++@item G ++A single/double precision floating-point immediate or 64-bit integer ++immediate where the least and most significant words both can be ++loaded with a move instruction. That is the the integer form of the ++values in the least and most significant words both are in the range ++@math{-2^{20}} to @math{2^{20}-1}. ++ ++@item RKs@var{bits} ++A memory reference where the address consists of a base register ++plus a signed immediate displacement with range given by @samp{Ks@var{bits}} ++which has the same format as for the signed immediate integer constraint ++given above. ++ ++@item RKu@var{bits} ++A memory reference where the address consists of a base register ++plus an unsigned immediate displacement with range given by @samp{Ku@var{bits}} ++which has the same format as for the unsigned immediate integer constraint ++given above. ++ ++@item S ++A memory reference with an immediate or register offset ++ ++@item T ++A memory reference to a constant pool entry ++ ++@item W ++A valid operand for use in the @samp{lda.w} instruction macro when ++relaxing is enabled ++ ++@item Z ++A memory reference valid for coprocessor memory instructions ++ ++@end table ++ + @item AVR family---@file{config/avr/constraints.md} + @table @code + @item l +--- a/gcc/expmed.c ++++ b/gcc/expmed.c +@@ -472,9 +472,9 @@ store_bit_field_1 (rtx str_rtx, unsigned + ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD + || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode)) + && byte_offset % GET_MODE_SIZE (fieldmode) == 0) +- : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0)) ++ : ( (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0)) + || (offset * BITS_PER_UNIT % bitsize == 0 +- && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0)))) ++ && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))) + { + if (MEM_P (op0)) + op0 = adjust_address (op0, fieldmode, offset); +--- a/gcc/expr.c ++++ b/gcc/expr.c +@@ -52,6 +52,7 @@ along with GCC; see the file COPYING3. + #include "tree-flow.h" + #include "target.h" + #include "timevar.h" ++#include "c-common.h" + #include "df.h" + #include "diagnostic.h" + +@@ -3647,16 +3648,17 @@ emit_single_push_insn (enum machine_mode + } + else + { ++ emit_move_insn (stack_pointer_rtx, ++ expand_binop (Pmode, + #ifdef STACK_GROWS_DOWNWARD +- /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */ +- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, +- GEN_INT (-(HOST_WIDE_INT) rounded_size)); ++ sub_optab, + #else +- /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */ +- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, +- GEN_INT (rounded_size)); ++ add_optab, + #endif +- dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr); ++ stack_pointer_rtx, ++ GEN_INT (rounded_size), ++ NULL_RTX, 0, OPTAB_LIB_WIDEN)); ++ dest_addr = stack_pointer_rtx; + } + + dest = gen_rtx_MEM (mode, dest_addr); +@@ -5775,7 +5777,8 @@ store_field (rtx target, HOST_WIDE_INT b + is a bit field, we cannot use addressing to access it. + Use bit-field techniques or SUBREG to store in it. */ + +- if (mode == VOIDmode ++ if ( ++ mode == VOIDmode + || (mode != BLKmode && ! direct_store[(int) mode] + && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT + && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT) +@@ -5932,7 +5935,18 @@ get_inner_reference (tree exp, HOST_WIDE + { + tree field = TREE_OPERAND (exp, 1); + size_tree = DECL_SIZE (field); +- if (!DECL_BIT_FIELD (field)) ++ if (!DECL_BIT_FIELD (field) ++ /* Added for AVR32: ++ Bitfields with a size equal to a target storage ++ type might not cause DECL_BIT_FIELD to return ++ true since it can be optimized into a normal array ++ access operation. But for volatile bitfields we do ++ not allow this when targetm.narrow_volatile_bitfield () ++ is false. We can use DECL_C_BIT_FIELD to check if this ++ really is a c-bitfield. */ ++ && !(TREE_THIS_VOLATILE (exp) ++ && !targetm.narrow_volatile_bitfield () ++ && DECL_C_BIT_FIELD (field)) ) + mode = DECL_MODE (field); + else if (DECL_MODE (field) == BLKmode) + blkmode_bitfield = true; +@@ -7915,7 +7929,8 @@ expand_expr_real_1 (tree exp, rtx target + by doing the extract into an object as wide as the field + (which we know to be the width of a basic mode), then + storing into memory, and changing the mode to BLKmode. */ +- if (mode1 == VOIDmode ++ if ( ++ mode1 == VOIDmode + || REG_P (op0) || GET_CODE (op0) == SUBREG + || (mode1 != BLKmode && ! direct_load[(int) mode1] + && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT +--- a/gcc/function.c ++++ b/gcc/function.c +@@ -2810,7 +2810,11 @@ assign_parm_setup_reg (struct assign_par + assign_parm_remove_parallels (data); + + /* Copy the value into the register. */ +- if (data->nominal_mode != data->passed_mode ++ if ( (data->nominal_mode != data->passed_mode ++ /* Added for AVR32: If passed_mode is equal ++ to promoted nominal mode why should be convert? ++ The conversion should make no difference. */ ++ && data->passed_mode != promoted_nominal_mode) + || promoted_nominal_mode != data->promoted_mode) + { + int save_tree_used; +--- a/gcc/genemit.c ++++ b/gcc/genemit.c +@@ -121,6 +121,24 @@ max_operand_vec (rtx insn, int arg) + } + + static void ++gen_vararg_prologue(int operands) ++{ ++ int i; ++ ++ if (operands > 1) ++ { ++ for (i = 1; i < operands; i++) ++ printf(" rtx operand%d ATTRIBUTE_UNUSED;\n", i); ++ ++ printf(" va_list args;\n\n"); ++ printf(" va_start(args, operand0);\n"); ++ for (i = 1; i < operands; i++) ++ printf(" operand%d = va_arg(args, rtx);\n", i); ++ printf(" va_end(args);\n\n"); ++ } ++} ++ ++static void + print_code (RTX_CODE code) + { + const char *p1; +@@ -406,18 +424,16 @@ gen_insn (rtx insn, int lineno) + fatal ("match_dup operand number has no match_operand"); + + /* Output the function name and argument declarations. */ +- printf ("rtx\ngen_%s (", XSTR (insn, 0)); ++ printf ("rtx\ngen_%s ", XSTR (insn, 0)); ++ + if (operands) +- for (i = 0; i < operands; i++) +- if (i) +- printf (",\n\trtx operand%d ATTRIBUTE_UNUSED", i); ++ printf("(rtx operand0 ATTRIBUTE_UNUSED, ...)\n"); + else +- printf ("rtx operand%d ATTRIBUTE_UNUSED", i); +- else +- printf ("void"); +- printf (")\n"); ++ printf("(void)\n"); + printf ("{\n"); + ++ gen_vararg_prologue(operands); ++ + /* Output code to construct and return the rtl for the instruction body. */ + + if (XVECLEN (insn, 1) == 1) +@@ -461,16 +477,12 @@ gen_expand (rtx expand) + operands = max_operand_vec (expand, 1); + + /* Output the function name and argument declarations. */ +- printf ("rtx\ngen_%s (", XSTR (expand, 0)); ++ printf ("rtx\ngen_%s ", XSTR (expand, 0)); + if (operands) +- for (i = 0; i < operands; i++) +- if (i) +- printf (",\n\trtx operand%d", i); +- else +- printf ("rtx operand%d", i); ++ printf("(rtx operand0 ATTRIBUTE_UNUSED, ...)\n"); + else +- printf ("void"); +- printf (")\n"); ++ printf("(void)\n"); ++ + printf ("{\n"); + + /* If we don't have any C code to write, only one insn is being written, +@@ -480,6 +492,8 @@ gen_expand (rtx expand) + && operands > max_dup_opno + && XVECLEN (expand, 1) == 1) + { ++ gen_vararg_prologue(operands); ++ + printf (" return "); + gen_exp (XVECEXP (expand, 1, 0), DEFINE_EXPAND, NULL); + printf (";\n}\n\n"); +@@ -493,6 +507,7 @@ gen_expand (rtx expand) + for (; i <= max_scratch_opno; i++) + printf (" rtx operand%d ATTRIBUTE_UNUSED;\n", i); + printf (" rtx _val = 0;\n"); ++ gen_vararg_prologue(operands); + printf (" start_sequence ();\n"); + + /* The fourth operand of DEFINE_EXPAND is some code to be executed +--- a/gcc/genflags.c ++++ b/gcc/genflags.c +@@ -127,7 +127,6 @@ static void + gen_proto (rtx insn) + { + int num = num_operands (insn); +- int i; + const char *name = XSTR (insn, 0); + int truth = maybe_eval_c_test (XSTR (insn, 2)); + +@@ -158,12 +157,7 @@ gen_proto (rtx insn) + if (num == 0) + fputs ("void", stdout); + else +- { +- for (i = 1; i < num; i++) +- fputs ("rtx, ", stdout); +- +- fputs ("rtx", stdout); +- } ++ fputs("rtx, ...", stdout); + + puts (");"); + +@@ -173,12 +167,7 @@ gen_proto (rtx insn) + { + printf ("static inline rtx\ngen_%s", name); + if (num > 0) +- { +- putchar ('('); +- for (i = 0; i < num-1; i++) +- printf ("rtx ARG_UNUSED (%c), ", 'a' + i); +- printf ("rtx ARG_UNUSED (%c))\n", 'a' + i); +- } ++ puts("(rtx ARG_UNUSED(a), ...)"); + else + puts ("(void)"); + puts ("{\n return 0;\n}"); +--- a/gcc/genoutput.c ++++ b/gcc/genoutput.c +@@ -386,7 +386,7 @@ output_insn_data (void) + } + + if (d->name && d->name[0] != '*') +- printf (" (insn_gen_fn) gen_%s,\n", d->name); ++ printf (" gen_%s,\n", d->name); + else + printf (" 0,\n"); + +--- a/gcc/ifcvt.c ++++ b/gcc/ifcvt.c +@@ -84,7 +84,7 @@ static int num_possible_if_blocks; + static int num_updated_if_blocks; + + /* # of changes made. */ +-static int num_true_changes; ++int num_true_changes; + + /* Whether conditional execution changes were made. */ + static int cond_exec_changed_p; +@@ -290,6 +290,9 @@ cond_exec_process_insns (ce_if_block_t * + if (must_be_last) + return FALSE; + ++#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN ++ if ( !IFCVT_ALLOW_MODIFY_TEST_IN_INSN ) ++#endif + if (modified_in_p (test, insn)) + { + if (!mod_ok) +@@ -570,15 +573,18 @@ cond_exec_process_if_block (ce_if_block_ + IFCVT_MODIFY_FINAL (ce_info); + #endif + ++ /* Merge the blocks! */ ++ if ( reload_completed ){ + /* Conversion succeeded. */ + if (dump_file) + fprintf (dump_file, "%d insn%s converted to conditional execution.\n", + n_insns, (n_insns == 1) ? " was" : "s were"); + +- /* Merge the blocks! */ + merge_if_block (ce_info); + cond_exec_changed_p = TRUE; + return TRUE; ++ } ++ return FALSE; + + fail: + #ifdef IFCVT_MODIFY_CANCEL +@@ -1087,7 +1093,11 @@ noce_try_addcc (struct noce_if_info *if_ + != UNKNOWN)) + { + rtx cond = if_info->cond; +- enum rtx_code code = reversed_comparison_code (cond, if_info->jump); ++ /* This generates wrong code for AVR32. The cond code need not be reversed ++ since the addmodecc patterns add if the condition is NOT met. */ ++ /* enum rtx_code code = reversed_comparison_code (cond, if_info->jump);*/ ++ enum rtx_code code = GET_CODE(cond); ++ + + /* First try to use addcc pattern. */ + if (general_operand (XEXP (cond, 0), VOIDmode) +@@ -3039,7 +3049,12 @@ find_if_header (basic_block test_bb, int + && noce_find_if_block (test_bb, then_edge, else_edge, pass)) + goto success; + +- if (HAVE_conditional_execution && reload_completed ++ if (HAVE_conditional_execution && ++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD ++ (reload_completed || IFCVT_COND_EXEC_BEFORE_RELOAD) ++#else ++ reload_completed ++#endif + && cond_exec_find_if_block (&ce_info)) + goto success; + +@@ -3154,7 +3169,11 @@ cond_exec_find_if_block (struct ce_if_bl + + /* We only ever should get here after reload, + and only if we have conditional execution. */ ++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD ++ gcc_assert (HAVE_conditional_execution && (reload_completed||IFCVT_COND_EXEC_BEFORE_RELOAD)); ++#else + gcc_assert (HAVE_conditional_execution && reload_completed); ++#endif + + /* Discover if any fall through predecessors of the current test basic block + were && tests (which jump to the else block) or || tests (which jump to +@@ -4259,6 +4278,14 @@ gate_handle_if_after_reload (void) + static unsigned int + rest_of_handle_if_after_reload (void) + { ++ /* Hack for the AVR32 experimental ifcvt processing before reload. ++ The AVR32 specific ifcvt code needs to know when ifcvt after reload ++ has begun. */ ++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD ++ if ( IFCVT_COND_EXEC_BEFORE_RELOAD ) ++ cfun->machine->ifcvt_after_reload = 1; ++#endif ++ + if_convert (); + return 0; + } +--- a/gcc/longlong.h ++++ b/gcc/longlong.h +@@ -250,6 +250,41 @@ UDItype __umulsidi3 (USItype, USItype); + #define COUNT_LEADING_ZEROS_0 32 + #endif + ++#if defined (__avr32__) && W_TYPE_SIZE == 32 ++#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ ++ __asm__ ("add\t%1, %4, %5\n\tadc\t%0, %2, %3" \ ++ : "=r" ((USItype) (sh)), \ ++ "=&r" ((USItype) (sl)) \ ++ : "r" ((USItype) (ah)), \ ++ "r" ((USItype) (bh)), \ ++ "r" ((USItype) (al)), \ ++ "r" ((USItype) (bl)) __CLOBBER_CC) ++#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ ++ __asm__ ("sub\t%1, %4, %5\n\tsbc\t%0, %2, %3" \ ++ : "=r" ((USItype) (sh)), \ ++ "=&r" ((USItype) (sl)) \ ++ : "r" ((USItype) (ah)), \ ++ "r" ((USItype) (bh)), \ ++ "r" ((USItype) (al)), \ ++ "r" ((USItype) (bl)) __CLOBBER_CC) ++ ++#if !defined (__AVR32_NO_MUL__) ++#define __umulsidi3(a,b) ((UDItype)(a) * (UDItype)(b)) ++ ++#define umul_ppmm(w1, w0, u, v) \ ++{ \ ++ DWunion __w; \ ++ __w.ll = __umulsidi3 (u, v); \ ++ w1 = __w.s.high; \ ++ w0 = __w.s.low; \ ++} ++#endif ++ ++#define count_leading_zeros(COUNT,X) ((COUNT) = __builtin_clz (X)) ++#define count_trailing_zeros(COUNT,X) ((COUNT) = __builtin_ctz (X)) ++#define COUNT_LEADING_ZEROS_0 32 ++#endif ++ + #if defined (__CRIS__) && __CRIS_arch_version >= 3 + #define count_leading_zeros(COUNT, X) ((COUNT) = __builtin_clz (X)) + #if __CRIS_arch_version >= 8 +--- a/gcc/optabs.h ++++ b/gcc/optabs.h +@@ -603,7 +603,7 @@ extern enum insn_code reload_out_optab[N + extern optab code_to_optab[NUM_RTX_CODE + 1]; + + +-typedef rtx (*rtxfun) (rtx); ++typedef rtx (*rtxfun) (rtx, ...); + + /* Indexed by the rtx-code for a conditional (e.g. EQ, LT,...) + gives the gen_function to make a branch to test that condition. */ +--- a/gcc/regrename.c ++++ b/gcc/regrename.c +@@ -1582,6 +1582,9 @@ copyprop_hardreg_forward_1 (basic_block + bool changed = false; + rtx insn; + ++ rtx prev_pred_test; ++ int prev_pred_insn_skipped = 0; ++ + for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn)) + { + int n_ops, i, alt, predicated; +@@ -1621,6 +1624,58 @@ copyprop_hardreg_forward_1 (basic_block + recog_data.operand_type[i] = OP_INOUT; + } + ++ ++ /* Added for targets (AVR32) which supports test operands to be modified ++ in cond_exec instruction. For these targets we cannot make a change to ++ the test operands if one of the test operands is an output operand This beacuse ++ changing the test operands might cause the need for inserting a new test ++ insns in the middle of a sequence of cond_exec insns and if the test operands ++ are modified these tests will fail. ++ */ ++ if ( IFCVT_ALLOW_MODIFY_TEST_IN_INSN ++ && predicated ) ++ { ++ int insn_skipped = 0; ++ rtx test = COND_EXEC_TEST (PATTERN (insn)); ++ ++ /* Check if the previous insn was a skipped predicated insn with the same ++ test as this predicated insns. If so we cannot do any modification to ++ this insn either since we cannot emit the test insn because the operands ++ are clobbered. */ ++ if ( prev_pred_insn_skipped ++ && (rtx_equal_p (test, prev_pred_test) ++ || rtx_equal_p (test, reversed_condition (prev_pred_test))) ) ++ { ++ insn_skipped = 1; ++ } ++ else ++ { ++ /* Check if the output operand is used in the test expression. */ ++ for (i = 0; i < n_ops; ++i) ++ if ( recog_data.operand_type[i] == OP_INOUT ++ && reg_mentioned_p (recog_data.operand[i], test) ) ++ { ++ insn_skipped = 1; ++ break; ++ } ++ ++ } ++ ++ prev_pred_test = test; ++ prev_pred_insn_skipped = insn_skipped; ++ if ( insn_skipped ) ++ { ++ if (insn == BB_END (bb)) ++ break; ++ else ++ continue; ++ } ++ } ++ else ++ { ++ prev_pred_insn_skipped = 0; ++ } ++ + /* For each earlyclobber operand, zap the value data. */ + for (i = 0; i < n_ops; i++) + if (recog_op_alt[i][alt].earlyclobber) +--- a/gcc/sched-deps.c ++++ b/gcc/sched-deps.c +@@ -1473,7 +1473,14 @@ fixup_sched_groups (rtx insn) + + prev_nonnote = prev_nonnote_insn (insn); + if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote) +- && ! sched_insns_conditions_mutex_p (insn, prev_nonnote)) ++ /* Modification for AVR32 by RP: Why is this here, this will ++ cause instruction to be without any dependencies which might ++ cause it to be moved anywhere. For the AVR32 we try to keep ++ a group of conditionals together even if they are mutual exclusive. ++ */ ++ && (! sched_insns_conditions_mutex_p (insn, prev_nonnote) ++ || GET_CODE (PATTERN (insn)) == COND_EXEC ) ++ ) + add_dependence (insn, prev_nonnote, REG_DEP_ANTI); + } + +@@ -2230,8 +2237,29 @@ sched_analyze_insn (struct deps *deps, r + + if (code == COND_EXEC) + { ++#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN ++ if (IFCVT_ALLOW_MODIFY_TEST_IN_INSN) ++ { ++ /* Check if we have a group og conditional instructions with the same test. ++ If so we must make sure that they are not scheduled apart in order to ++ avoid unnecesarry tests and if one of the registers in the test is modified ++ in the instruction this is needed to ensure correct code. */ ++ if ( prev_nonnote_insn (insn) ++ && INSN_P (prev_nonnote_insn (insn)) ++ && GET_CODE (PATTERN (prev_nonnote_insn (insn))) == COND_EXEC ++ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 0), XEXP (COND_EXEC_TEST (x), 0)) ++ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 1), XEXP (COND_EXEC_TEST (x), 1)) ++ && ( GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == GET_CODE (COND_EXEC_TEST (x)) ++ || GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == reversed_comparison_code (COND_EXEC_TEST (x), insn))) ++ { ++ SCHED_GROUP_P (insn) = 1; ++ //CANT_MOVE (prev_nonnote_insn (insn)) = 1; ++ } ++ } ++#endif + sched_analyze_2 (deps, COND_EXEC_TEST (x), insn); + ++ + /* ??? Should be recording conditions so we reduce the number of + false dependencies. */ + x = COND_EXEC_CODE (x); +--- a/gcc/testsuite/gcc.dg/sibcall-3.c ++++ b/gcc/testsuite/gcc.dg/sibcall-3.c +@@ -5,7 +5,7 @@ + Copyright (C) 2002 Free Software Foundation Inc. + Contributed by Hans-Peter Nilsson */ + +-/* { dg-do run { xfail { { arc-*-* avr-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ ++/* { dg-do run { xfail { { arc-*-* avr-*-* avr32-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ + /* -mlongcall disables sibcall patterns. */ + /* { dg-skip-if "" { powerpc*-*-* } { "-mlongcall" } { "" } } */ + /* { dg-options "-O2 -foptimize-sibling-calls" } */ +--- a/gcc/testsuite/gcc.dg/sibcall-4.c ++++ b/gcc/testsuite/gcc.dg/sibcall-4.c +@@ -5,7 +5,7 @@ + Copyright (C) 2002 Free Software Foundation Inc. + Contributed by Hans-Peter Nilsson */ + +-/* { dg-do run { xfail { { arc-*-* avr-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ ++/* { dg-do run { xfail { { arc-*-* avr-*-* avr32-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ + /* -mlongcall disables sibcall patterns. */ + /* { dg-skip-if "" { powerpc*-*-* } { "-mlongcall" } { "" } } */ + /* { dg-options "-O2 -foptimize-sibling-calls" } */ +--- a/gcc/testsuite/gcc.dg/trampoline-1.c ++++ b/gcc/testsuite/gcc.dg/trampoline-1.c +@@ -47,6 +47,8 @@ void foo (void) + + int main (void) + { ++#ifndef NO_TRAMPOLINES + foo (); ++#endif + return 0; + } +--- a/libgcc/config.host ++++ b/libgcc/config.host +@@ -218,6 +218,13 @@ arm*-wince-pe*) + ;; + arm-*-pe*) + ;; ++avr32-*-linux*) ++ # No need to build crtbeginT.o on uClibc systems. Should probably be ++ # moved to the OS specific section above. ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ ;; ++avr32-*-*) ++ ;; + avr-*-rtems*) + ;; + avr-*-*) +--- a/libstdc++-v3/config/os/gnu-linux/ctype_base.h ++++ b/libstdc++-v3/config/os/gnu-linux/ctype_base.h +@@ -26,6 +26,8 @@ + // + // ISO C++ 14882: 22.1 Locales + // ++#include ++#include + + /** @file ctype_base.h + * This is an internal header file, included by other library headers. +@@ -40,7 +42,11 @@ _GLIBCXX_BEGIN_NAMESPACE(std) + struct ctype_base + { + // Non-standard typedefs. ++#ifdef __UCLIBC__ ++ typedef const __ctype_touplow_t* __to_type; ++#else + typedef const int* __to_type; ++#endif + + // NB: Offsets into ctype::_M_table force a particular size + // on the mask type. Because of this, we don't use an enum. +--- a/libstdc++-v3/include/Makefile.in ++++ b/libstdc++-v3/include/Makefile.in +@@ -36,6 +36,7 @@ POST_UNINSTALL = : + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ + $(top_srcdir)/fragment.am + subdir = include +--- a/libstdc++-v3/libsupc++/Makefile.in ++++ b/libstdc++-v3/libsupc++/Makefile.in +@@ -38,6 +38,7 @@ POST_UNINSTALL = : + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(glibcxxinstall_HEADERS) $(srcdir)/Makefile.am \ + $(srcdir)/Makefile.in $(top_srcdir)/fragment.am + subdir = libsupc++ +--- a/libstdc++-v3/Makefile.in ++++ b/libstdc++-v3/Makefile.in +@@ -36,6 +36,7 @@ POST_UNINSTALL = : + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(top_srcdir)/fragment.am $(srcdir)/../config.guess \ + $(srcdir)/../config.sub README ChangeLog $(srcdir)/Makefile.in \ + $(srcdir)/Makefile.am $(top_srcdir)/configure \ +--- a/libstdc++-v3/po/Makefile.in ++++ b/libstdc++-v3/po/Makefile.in +@@ -36,6 +36,7 @@ POST_UNINSTALL = : + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ + $(top_srcdir)/fragment.am + subdir = po +--- a/libstdc++-v3/src/Makefile.in ++++ b/libstdc++-v3/src/Makefile.in +@@ -37,6 +37,7 @@ POST_UNINSTALL = : + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ + $(top_srcdir)/fragment.am + subdir = src diff --git a/toolchain/gcc/patches/4.4.7/931-avr32_disable_shifted_data_opt.patch b/toolchain/gcc/patches/4.4.7/931-avr32_disable_shifted_data_opt.patch new file mode 100644 index 0000000000..2003e97ae0 --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/931-avr32_disable_shifted_data_opt.patch @@ -0,0 +1,32 @@ +--- a/gcc/config/avr32/avr32.c ++++ b/gcc/config/avr32/avr32.c +@@ -6726,7 +6726,28 @@ avr32_reorg_optimization (void) + } + } + +- if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ /* Disabled this optimization since it has a bug */ ++ /* In the case where the data instruction the shifted insn gets folded ++ * into is a branch destination, this breaks, i.e. ++ * ++ * add r8, r10, r8 << 2 ++ * 1: ++ * ld.w r11, r8[0] ++ * ... ++ * mov r8, sp ++ * rjmp 1b ++ * ++ * gets folded to: ++ * ++ * 1: ++ * ld.w r11, r10[r8 << 2] ++ * ... ++ * mov r8, sp ++ * rjmp 1b ++ * ++ * which is clearly wrong.. ++ */ ++ if (0 && TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) + { + + /* Scan through all insns looking for shifted add operations */ diff --git a/toolchain/gcc/patches/4.4.7/933-avr32_bug_7435.patch b/toolchain/gcc/patches/4.4.7/933-avr32_bug_7435.patch new file mode 100644 index 0000000000..78106619c5 --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/933-avr32_bug_7435.patch @@ -0,0 +1,32 @@ +--- a/gcc/config/avr32/avr32.c ++++ b/gcc/config/avr32/avr32.c +@@ -243,14 +243,14 @@ void + avr32_override_options (void) + { + const struct part_type_s *part; +- const struct arch_type_s *arch; ++ const struct arch_type_s *arch, *part_arch; + + /*Add backward compability*/ + if (strcmp ("uc", avr32_arch_name)== 0) + { + fprintf (stderr, "Warning: Deprecated arch `%s' specified. " + "Please use '-march=ucr1' instead. " +- "Converting to arch 'ucr1'\n", ++ "Using arch 'ucr1'\n", + avr32_arch_name); + avr32_arch_name="ucr1"; + } +@@ -298,6 +298,12 @@ avr32_override_options (void) + if (!arch->name) + avr32_arch = &avr32_arch_types[avr32_part->arch_type]; + ++ /* When architecture implied by -mpart and one passed in -march are ++ * conflicting, issue an error message */ ++ part_arch = &avr32_arch_types[avr32_part->arch_type]; ++ if (strcmp("none",avr32_part_name) && strcmp("none", avr32_arch_name) && strcmp(avr32_arch_name,part_arch->name)) ++ error ("Conflicting architectures implied by -mpart and -march\n"); ++ + /* If optimization level is two or greater, then align start of loops to a + word boundary since this will allow folding the first insn of the loop. + Do this only for targets supporting branch prediction. */ diff --git a/toolchain/gcc/patches/4.4.7/934-avr32_bug_9675.patch b/toolchain/gcc/patches/4.4.7/934-avr32_bug_9675.patch new file mode 100644 index 0000000000..3690e2d04c --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/934-avr32_bug_9675.patch @@ -0,0 +1,21 @@ +--- a/gcc/config/avr32/lib1funcs.S ++++ b/gcc/config/avr32/lib1funcs.S +@@ -1460,7 +1460,6 @@ __avr32_f64_cmp_lt: + 0: + ld.w r7, sp++ + popm pc, r12=0 +-#endif + + 3: + cp.w r7, 1 /* Check sign bit from r9 */ +@@ -1481,8 +1480,8 @@ __avr32_f64_cmp_lt: + reteq 0 /* Both operands are zero. Return false. */ + #endif + ret r12 +- +- ++#endif ++ + #if defined(L_avr32_f64_div) || defined(L_avr32_f64_div_fast) + .align 2 + diff --git a/toolchain/gcc/patches/4.4.7/993-arm_insn-opinit-RTX_CODE-fixup.patch b/toolchain/gcc/patches/4.4.7/993-arm_insn-opinit-RTX_CODE-fixup.patch new file mode 100644 index 0000000000..b769f932c4 --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/993-arm_insn-opinit-RTX_CODE-fixup.patch @@ -0,0 +1,14 @@ +--- a/gcc/config/arm/arm-protos.h ++++ b/gcc/config/arm/arm-protos.h +@@ -43,10 +43,10 @@ extern unsigned int arm_dbx_register_num + extern void arm_output_fn_unwind (FILE *, bool); + + +-#ifdef RTX_CODE + extern bool arm_vector_mode_supported_p (enum machine_mode); + extern int arm_hard_regno_mode_ok (unsigned int, enum machine_mode); + extern int const_ok_for_arm (HOST_WIDE_INT); ++#ifdef RTX_CODE + extern int arm_split_constant (RTX_CODE, enum machine_mode, rtx, + HOST_WIDE_INT, rtx, rtx, int); + extern RTX_CODE arm_canonicalize_comparison (RTX_CODE, enum machine_mode, diff --git a/toolchain/gcc/patches/4.4.7/999-coldfire.patch b/toolchain/gcc/patches/4.4.7/999-coldfire.patch new file mode 100644 index 0000000000..bce2177e8a --- /dev/null +++ b/toolchain/gcc/patches/4.4.7/999-coldfire.patch @@ -0,0 +1,10 @@ +--- a/gcc/config.gcc ++++ b/gcc/config.gcc +@@ -1537,6 +1537,7 @@ m68k-*-linux*) # Motorola m68k's runnin + if test x$sjlj != x1; then + tmake_file="$tmake_file m68k/t-slibgcc-elf-ver" + fi ++ tmake_file="m68k/t-floatlib m68k/t-m68kbare m68k/t-m68kelf" + ;; + m68k-*-rtems*) + default_m68k_cpu=68020