From: DENG Qingfang Date: Wed, 1 Apr 2020 03:19:12 +0000 (+0800) Subject: ramips: mt7621: add new NAND driver X-Git-Url: http://git.lede-project.org./?a=commitdiff_plain;h=10f27c6f00ecfe75fa5a0a5817f3d66f15f847ea;p=openwrt%2Fstaging%2Fnoltari.git ramips: mt7621: add new NAND driver Add new NAND driver for MT7621 Signed-off-by: DENG Qingfang --- diff --git a/target/linux/ramips/dts/mt7621.dtsi b/target/linux/ramips/dts/mt7621.dtsi index cc387519e4..63befa1fdc 100644 --- a/target/linux/ramips/dts/mt7621.dtsi +++ b/target/linux/ramips/dts/mt7621.dtsi @@ -414,13 +414,23 @@ }; }; + nficlock: nficlock { + #clock-cells = <0>; + compatible = "fixed-clock"; + + clock-frequency = <125000000>; + }; + nand: nand@1e003000 { status = "disabled"; - compatible = "mtk,mt7621-nand"; - bank-width = <2>; + compatible = "mediatek,mt7621-nfc"; reg = <0x1e003000 0x800 0x1e003800 0x800>; + reg-names = "nfi", "ecc"; + + clocks = <&nficlock>; + clock-names = "nfi_clk"; }; ethsys: syscon@1e000000 { diff --git a/target/linux/ramips/mt7621/config-5.4 b/target/linux/ramips/mt7621/config-5.4 index 20fb53c69c..9fb90b8625 100644 --- a/target/linux/ramips/mt7621/config-5.4 +++ b/target/linux/ramips/mt7621/config-5.4 @@ -202,6 +202,7 @@ CONFIG_MT7621_WDT=y CONFIG_MTD_CMDLINE_PARTS=y CONFIG_MTD_NAND_CORE=y CONFIG_MTD_NAND_ECC_SW_HAMMING=y +CONFIG_MTD_NAND_MT7621=y CONFIG_MTD_PHYSMAP=y CONFIG_MTD_RAW_NAND=y CONFIG_MTD_SPI_NOR=y diff --git a/target/linux/ramips/patches-5.4/0300-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch b/target/linux/ramips/patches-5.4/0300-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch new file mode 100644 index 0000000000..f65092afb1 --- /dev/null +++ b/target/linux/ramips/patches-5.4/0300-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch @@ -0,0 +1,1398 @@ +From e84e2430ee0e483842b4ff013ae8a6e7e2fa2734 Mon Sep 17 00:00:00 2001 +From: Weijie Gao +Date: Wed, 1 Apr 2020 02:07:58 +0800 +Subject: [PATCH 1/2] mtd: rawnand: add driver support for MT7621 nand + flash controller + +This patch adds NAND flash controller driver for MediaTek MT7621 SoC. + +The NAND flash controller is similar with controllers described in +mtk_nand.c, except that the controller from MT7621 doesn't support DMA +transmission, and some registers' offset and fields are different. + +Signed-off-by: Weijie Gao +--- + drivers/mtd/nand/raw/Kconfig | 8 + + drivers/mtd/nand/raw/Makefile | 1 + + drivers/mtd/nand/raw/mt7621_nand.c | 1348 ++++++++++++++++++++++++++++++++++++ + 3 files changed, 1357 insertions(+) + create mode 100644 drivers/mtd/nand/raw/mt7621_nand.c + +--- a/drivers/mtd/nand/raw/Kconfig ++++ b/drivers/mtd/nand/raw/Kconfig +@@ -391,6 +391,14 @@ config MTD_NAND_QCOM + Enables support for NAND flash chips on SoCs containing the EBI2 NAND + controller. This controller is found on IPQ806x SoC. + ++config MTD_NAND_MT7621 ++ tristate "MT7621 NAND controller" ++ depends on SOC_MT7621 || COMPILE_TEST ++ depends on HAS_IOMEM ++ help ++ Enables support for NAND controller on MT7621 SoC. ++ This driver uses PIO mode for data transmission instead of DMA mode. ++ + config MTD_NAND_MTK + tristate "MTK NAND controller" + depends on ARCH_MEDIATEK || COMPILE_TEST +--- a/drivers/mtd/nand/raw/Makefile ++++ b/drivers/mtd/nand/raw/Makefile +@@ -52,6 +52,7 @@ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_n + obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o + obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ + obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o ++obj-$(CONFIG_MTD_NAND_MT7621) += mt7621_nand.o + obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o + obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o + obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o +--- /dev/null ++++ b/drivers/mtd/nand/raw/mt7621_nand.c +@@ -0,0 +1,1348 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * MediaTek MT7621 NAND Flash Controller driver ++ * ++ * Copyright (C) 2020 MediaTek Inc. All Rights Reserved. ++ * ++ * Author: Weijie Gao ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++/* NFI core registers */ ++#define NFI_CNFG 0x000 ++#define CNFG_OP_MODE_S 12 ++#define CNFG_OP_MODE_M GENMASK(14, 12) ++#define CNFG_OP_CUSTOM 6 ++#define CNFG_AUTO_FMT_EN BIT(9) ++#define CNFG_HW_ECC_EN BIT(8) ++#define CNFG_BYTE_RW BIT(6) ++#define CNFG_READ_MODE BIT(1) ++ ++#define NFI_PAGEFMT 0x004 ++#define PAGEFMT_FDM_ECC_S 12 ++#define PAGEFMT_FDM_ECC_M GENMASK(15, 12) ++#define PAGEFMT_FDM_S 8 ++#define PAGEFMT_FDM_M GENMASK(11, 8) ++#define PAGEFMT_SPARE_S 4 ++#define PAGEFMT_SPARE_M GENMASK(5, 4) ++#define PAGEFMT_PAGE_S 0 ++#define PAGEFMT_PAGE_M GENMASK(1, 0) ++ ++#define NFI_CON 0x008 ++#define CON_NFI_SEC_S 12 ++#define CON_NFI_SEC_M GENMASK(15, 12) ++#define CON_NFI_BWR BIT(9) ++#define CON_NFI_BRD BIT(8) ++#define CON_NFI_RST BIT(1) ++#define CON_FIFO_FLUSH BIT(0) ++ ++#define NFI_ACCCON 0x00c ++#define ACCCON_POECS_S 28 ++#define ACCCON_POECS_MAX 0x0f ++#define ACCCON_POECS_DEF 3 ++#define ACCCON_PRECS_S 22 ++#define ACCCON_PRECS_MAX 0x3f ++#define ACCCON_PRECS_DEF 3 ++#define ACCCON_C2R_S 16 ++#define ACCCON_C2R_MAX 0x3f ++#define ACCCON_C2R_DEF 7 ++#define ACCCON_W2R_S 12 ++#define ACCCON_W2R_MAX 0x0f ++#define ACCCON_W2R_DEF 7 ++#define ACCCON_WH_S 8 ++#define ACCCON_WH_MAX 0x0f ++#define ACCCON_WH_DEF 15 ++#define ACCCON_WST_S 4 ++#define ACCCON_WST_MAX 0x0f ++#define ACCCON_WST_DEF 15 ++#define ACCCON_WST_MIN 3 ++#define ACCCON_RLT_S 0 ++#define ACCCON_RLT_MAX 0x0f ++#define ACCCON_RLT_DEF 15 ++#define ACCCON_RLT_MIN 3 ++ ++#define NFI_CMD 0x020 ++ ++#define NFI_ADDRNOB 0x030 ++#define ADDR_ROW_NOB_S 4 ++#define ADDR_ROW_NOB_M GENMASK(6, 4) ++#define ADDR_COL_NOB_S 0 ++#define ADDR_COL_NOB_M GENMASK(2, 0) ++ ++#define NFI_COLADDR 0x034 ++#define NFI_ROWADDR 0x038 ++ ++#define NFI_STRDATA 0x040 ++#define STR_DATA BIT(0) ++ ++#define NFI_CNRNB 0x044 ++#define CB2R_TIME_S 4 ++#define CB2R_TIME_M GENMASK(7, 4) ++#define STR_CNRNB BIT(0) ++ ++#define NFI_DATAW 0x050 ++#define NFI_DATAR 0x054 ++ ++#define NFI_PIO_DIRDY 0x058 ++#define PIO_DIRDY BIT(0) ++ ++#define NFI_STA 0x060 ++#define STA_NFI_FSM_S 16 ++#define STA_NFI_FSM_M GENMASK(19, 16) ++#define STA_FSM_CUSTOM_DATA 14 ++#define STA_BUSY BIT(8) ++#define STA_ADDR BIT(1) ++#define STA_CMD BIT(0) ++ ++#define NFI_ADDRCNTR 0x070 ++#define SEC_CNTR_S 12 ++#define SEC_CNTR_M GENMASK(15, 12) ++#define SEC_ADDR_S 0 ++#define SEC_ADDR_M GENMASK(9, 0) ++ ++#define NFI_CSEL 0x090 ++#define CSEL_S 0 ++#define CSEL_M GENMASK(1, 0) ++ ++#define NFI_FDM0L 0x0a0 ++#define NFI_FDML(n) (0x0a0 + ((n) << 3)) ++ ++#define NFI_FDM0M 0x0a4 ++#define NFI_FDMM(n) (0x0a4 + ((n) << 3)) ++ ++#define NFI_MASTER_STA 0x210 ++#define MAS_ADDR GENMASK(11, 9) ++#define MAS_RD GENMASK(8, 6) ++#define MAS_WR GENMASK(5, 3) ++#define MAS_RDDLY GENMASK(2, 0) ++ ++/* ECC engine registers */ ++#define ECC_ENCCON 0x000 ++#define ENC_EN BIT(0) ++ ++#define ECC_ENCCNFG 0x004 ++#define ENC_CNFG_MSG_S 16 ++#define ENC_CNFG_MSG_M GENMASK(28, 16) ++#define ENC_MODE_S 4 ++#define ENC_MODE_M GENMASK(5, 4) ++#define ENC_MODE_NFI 1 ++#define ENC_TNUM_S 0 ++#define ENC_TNUM_M GENMASK(2, 0) ++ ++#define ECC_ENCIDLE 0x00c ++#define ENC_IDLE BIT(0) ++ ++#define ECC_DECCON 0x100 ++#define DEC_EN BIT(0) ++ ++#define ECC_DECCNFG 0x104 ++#define DEC_EMPTY_EN BIT(31) ++#define DEC_CS_S 16 ++#define DEC_CS_M GENMASK(28, 16) ++#define DEC_CON_S 12 ++#define DEC_CON_M GENMASK(13, 12) ++#define DEC_CON_EL 2 ++#define DEC_MODE_S 4 ++#define DEC_MODE_M GENMASK(5, 4) ++#define DEC_MODE_NFI 1 ++#define DEC_TNUM_S 0 ++#define DEC_TNUM_M GENMASK(2, 0) ++ ++#define ECC_DECIDLE 0x10c ++#define DEC_IDLE BIT(1) ++ ++#define ECC_DECENUM 0x114 ++#define ERRNUM_S 2 ++#define ERRNUM_M GENMASK(3, 0) ++ ++#define ECC_DECDONE 0x118 ++#define DEC_DONE7 BIT(7) ++#define DEC_DONE6 BIT(6) ++#define DEC_DONE5 BIT(5) ++#define DEC_DONE4 BIT(4) ++#define DEC_DONE3 BIT(3) ++#define DEC_DONE2 BIT(2) ++#define DEC_DONE1 BIT(1) ++#define DEC_DONE0 BIT(0) ++ ++#define ECC_DECEL(n) (0x11c + (n) * 4) ++#define DEC_EL_ODD_S 16 ++#define DEC_EL_EVEN_S 0 ++#define DEC_EL_M 0x1fff ++#define DEC_EL_BYTE_POS_S 3 ++#define DEC_EL_BIT_POS_M GENMASK(3, 0) ++ ++#define ECC_FDMADDR 0x13c ++ ++/* ENCIDLE and DECIDLE */ ++#define ECC_IDLE BIT(0) ++ ++#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \ ++ ((tpoecs) << ACCCON_POECS_S | (tprecs) << ACCCON_PRECS_S | \ ++ (tc2r) << ACCCON_C2R_S | (tw2r) << ACCCON_W2R_S | \ ++ (twh) << ACCCON_WH_S | (twst) << ACCCON_WST_S | (trlt)) ++ ++#define MASTER_STA_MASK (MAS_ADDR | MAS_RD | MAS_WR | \ ++ MAS_RDDLY) ++#define NFI_RESET_TIMEOUT 1000000 ++#define NFI_CORE_TIMEOUT 500000 ++#define ECC_ENGINE_TIMEOUT 500000 ++ ++#define ECC_SECTOR_SIZE 512 ++#define ECC_PARITY_BITS 13 ++ ++#define NFI_FDM_SIZE 8 ++ ++#define MT7621_NFC_NAME "mt7621-nand" ++ ++struct mt7621_nfc { ++ struct nand_controller controller; ++ struct nand_chip nand; ++ struct clk *nfi_clk; ++ struct device *dev; ++ ++ void __iomem *nfi_regs; ++ void __iomem *ecc_regs; ++ ++ u32 spare_per_sector; ++}; ++ ++static const u16 mt7621_nfi_page_size[] = { SZ_512, SZ_2K, SZ_4K }; ++static const u8 mt7621_nfi_spare_size[] = { 16, 26, 27, 28 }; ++static const u8 mt7621_ecc_strength[] = { 4, 6, 8, 10, 12 }; ++ ++static inline u32 nfi_read32(struct mt7621_nfc *nfc, u32 reg) ++{ ++ return readl(nfc->nfi_regs + reg); ++} ++ ++static inline void nfi_write32(struct mt7621_nfc *nfc, u32 reg, u32 val) ++{ ++ writel(val, nfc->nfi_regs + reg); ++} ++ ++static inline u16 nfi_read16(struct mt7621_nfc *nfc, u32 reg) ++{ ++ return readw(nfc->nfi_regs + reg); ++} ++ ++static inline void nfi_write16(struct mt7621_nfc *nfc, u32 reg, u16 val) ++{ ++ writew(val, nfc->nfi_regs + reg); ++} ++ ++static inline void ecc_write16(struct mt7621_nfc *nfc, u32 reg, u16 val) ++{ ++ writew(val, nfc->ecc_regs + reg); ++} ++ ++static inline u32 ecc_read32(struct mt7621_nfc *nfc, u32 reg) ++{ ++ return readl(nfc->ecc_regs + reg); ++} ++ ++static inline void ecc_write32(struct mt7621_nfc *nfc, u32 reg, u32 val) ++{ ++ return writel(val, nfc->ecc_regs + reg); ++} ++ ++static inline u8 *oob_fdm_ptr(struct nand_chip *nand, int sect) ++{ ++ return nand->oob_poi + sect * NFI_FDM_SIZE; ++} ++ ++static inline u8 *oob_ecc_ptr(struct mt7621_nfc *nfc, int sect) ++{ ++ struct nand_chip *nand = &nfc->nand; ++ ++ return nand->oob_poi + nand->ecc.steps * NFI_FDM_SIZE + ++ sect * (nfc->spare_per_sector - NFI_FDM_SIZE); ++} ++ ++static inline u8 *page_data_ptr(struct nand_chip *nand, const u8 *buf, ++ int sect) ++{ ++ return (u8 *)buf + sect * nand->ecc.size; ++} ++ ++static int mt7621_ecc_wait_idle(struct mt7621_nfc *nfc, u32 reg) ++{ ++ struct device *dev = nfc->dev; ++ u32 val; ++ int ret; ++ ++ ret = readw_poll_timeout_atomic(nfc->ecc_regs + reg, val, ++ val & ECC_IDLE, 10, ++ ECC_ENGINE_TIMEOUT); ++ if (ret) { ++ dev_warn(dev, "ECC engine timed out entering idle mode\n"); ++ return -EIO; ++ } ++ ++ return 0; ++} ++ ++static int mt7621_ecc_decoder_wait_done(struct mt7621_nfc *nfc, u32 sect) ++{ ++ struct device *dev = nfc->dev; ++ u32 val; ++ int ret; ++ ++ ret = readw_poll_timeout_atomic(nfc->ecc_regs + ECC_DECDONE, val, ++ val & (1 << sect), 10, ++ ECC_ENGINE_TIMEOUT); ++ ++ if (ret) { ++ dev_warn(dev, "ECC decoder for sector %d timed out\n", ++ sect); ++ return -ETIMEDOUT; ++ } ++ ++ return 0; ++} ++ ++static void mt7621_ecc_encoder_op(struct mt7621_nfc *nfc, bool enable) ++{ ++ mt7621_ecc_wait_idle(nfc, ECC_ENCIDLE); ++ ecc_write16(nfc, ECC_ENCCON, enable ? ENC_EN : 0); ++} ++ ++static void mt7621_ecc_decoder_op(struct mt7621_nfc *nfc, bool enable) ++{ ++ mt7621_ecc_wait_idle(nfc, ECC_DECIDLE); ++ ecc_write16(nfc, ECC_DECCON, enable ? DEC_EN : 0); ++} ++ ++static int mt7621_ecc_correct_check(struct mt7621_nfc *nfc, u8 *sector_buf, ++ u8 *fdm_buf, u32 sect) ++{ ++ struct nand_chip *nand = &nfc->nand; ++ u32 decnum, num_error_bits, fdm_end_bits; ++ u32 error_locations, error_bit_loc; ++ u32 error_byte_pos, error_bit_pos; ++ int bitflips = 0; ++ u32 i; ++ ++ decnum = ecc_read32(nfc, ECC_DECENUM); ++ num_error_bits = (decnum >> (sect << ERRNUM_S)) & ERRNUM_M; ++ fdm_end_bits = (nand->ecc.size + NFI_FDM_SIZE) << 3; ++ ++ if (!num_error_bits) ++ return 0; ++ ++ if (num_error_bits == ERRNUM_M) ++ return -1; ++ ++ for (i = 0; i < num_error_bits; i++) { ++ error_locations = ecc_read32(nfc, ECC_DECEL(i / 2)); ++ error_bit_loc = (error_locations >> ((i % 2) * DEC_EL_ODD_S)) & ++ DEC_EL_M; ++ error_byte_pos = error_bit_loc >> DEC_EL_BYTE_POS_S; ++ error_bit_pos = error_bit_loc & DEC_EL_BIT_POS_M; ++ ++ if (error_bit_loc < (nand->ecc.size << 3)) { ++ if (sector_buf) { ++ sector_buf[error_byte_pos] ^= ++ (1 << error_bit_pos); ++ } ++ } else if (error_bit_loc < fdm_end_bits) { ++ if (fdm_buf) { ++ fdm_buf[error_byte_pos - nand->ecc.size] ^= ++ (1 << error_bit_pos); ++ } ++ } ++ ++ bitflips++; ++ } ++ ++ return bitflips; ++} ++ ++static int mt7621_nfc_wait_write_completion(struct mt7621_nfc *nfc, ++ struct nand_chip *nand) ++{ ++ struct device *dev = nfc->dev; ++ u16 val; ++ int ret; ++ ++ ret = readw_poll_timeout_atomic(nfc->nfi_regs + NFI_ADDRCNTR, val, ++ ((val & SEC_CNTR_M) >> SEC_CNTR_S) >= nand->ecc.steps, 10, ++ NFI_CORE_TIMEOUT); ++ ++ if (ret) { ++ dev_warn(dev, "NFI core write operation timed out\n"); ++ return -ETIMEDOUT; ++ } ++ ++ return ret; ++} ++ ++static void mt7621_nfc_hw_reset(struct mt7621_nfc *nfc) ++{ ++ u32 val; ++ int ret; ++ ++ /* reset all registers and force the NFI master to terminate */ ++ nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); ++ ++ /* wait for the master to finish the last transaction */ ++ ret = readw_poll_timeout(nfc->nfi_regs + NFI_MASTER_STA, val, ++ !(val & MASTER_STA_MASK), 50, ++ NFI_RESET_TIMEOUT); ++ if (ret) { ++ dev_warn(nfc->dev, "Failed to reset NFI master in %dms\n", ++ NFI_RESET_TIMEOUT); ++ } ++ ++ /* ensure any status register affected by the NFI master is reset */ ++ nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); ++ nfi_write16(nfc, NFI_STRDATA, 0); ++} ++ ++static inline void mt7621_nfc_hw_init(struct mt7621_nfc *nfc) ++{ ++ u32 acccon; ++ ++ /* ++ * CNRNB: nand ready/busy register ++ * ------------------------------- ++ * 7:4: timeout register for polling the NAND busy/ready signal ++ * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles. ++ */ ++ nfi_write16(nfc, NFI_CNRNB, CB2R_TIME_M | STR_CNRNB); ++ ++ mt7621_nfc_hw_reset(nfc); ++ ++ /* Apply default access timing */ ++ acccon = ACCTIMING(ACCCON_POECS_DEF, ACCCON_PRECS_DEF, ACCCON_C2R_DEF, ++ ACCCON_W2R_DEF, ACCCON_WH_DEF, ACCCON_WST_DEF, ++ ACCCON_RLT_DEF); ++ ++ nfi_write32(nfc, NFI_ACCCON, acccon); ++} ++ ++static int mt7621_nfc_send_command(struct mt7621_nfc *nfc, u8 command) ++{ ++ struct device *dev = nfc->dev; ++ u32 val; ++ int ret; ++ ++ nfi_write32(nfc, NFI_CMD, command); ++ ++ ret = readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val, ++ !(val & STA_CMD), 10, ++ NFI_CORE_TIMEOUT); ++ if (ret) { ++ dev_warn(dev, "NFI core timed out entering command mode\n"); ++ return -EIO; ++ } ++ ++ return 0; ++} ++ ++static int mt7621_nfc_send_address_byte(struct mt7621_nfc *nfc, int addr) ++{ ++ struct device *dev = nfc->dev; ++ u32 val; ++ int ret; ++ ++ nfi_write32(nfc, NFI_COLADDR, addr); ++ nfi_write32(nfc, NFI_ROWADDR, 0); ++ nfi_write16(nfc, NFI_ADDRNOB, 1); ++ ++ ret = readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val, ++ !(val & STA_ADDR), 10, ++ NFI_CORE_TIMEOUT); ++ if (ret) { ++ dev_warn(dev, "NFI core timed out entering address mode\n"); ++ return -EIO; ++ } ++ ++ return 0; ++} ++ ++static int mt7621_nfc_send_address(struct mt7621_nfc *nfc, const u8 *addr, ++ unsigned int naddrs) ++{ ++ int ret; ++ ++ while (naddrs) { ++ ret = mt7621_nfc_send_address_byte(nfc, *addr); ++ if (ret) ++ return ret; ++ ++ addr++; ++ naddrs--; ++ } ++ ++ return 0; ++} ++ ++static void mt7621_nfc_wait_pio_ready(struct mt7621_nfc *nfc) ++{ ++ struct device *dev = nfc->dev; ++ int ret; ++ u16 val; ++ ++ ret = readw_poll_timeout_atomic(nfc->nfi_regs + NFI_PIO_DIRDY, val, ++ val & PIO_DIRDY, 10, ++ NFI_CORE_TIMEOUT); ++ if (ret < 0) ++ dev_err(dev, "NFI core PIO mode not ready\n"); ++} ++ ++static u32 mt7621_nfc_pio_read(struct mt7621_nfc *nfc, bool br) ++{ ++ u32 reg; ++ ++ /* after each byte read, the NFI_STA reg is reset by the hardware */ ++ reg = (nfi_read32(nfc, NFI_STA) & STA_NFI_FSM_M) >> STA_NFI_FSM_S; ++ if (reg != STA_FSM_CUSTOM_DATA) { ++ reg = nfi_read16(nfc, NFI_CNFG); ++ reg |= CNFG_READ_MODE | CNFG_BYTE_RW; ++ if (!br) ++ reg &= ~CNFG_BYTE_RW; ++ nfi_write16(nfc, NFI_CNFG, reg); ++ ++ /* ++ * set to max sector to allow the HW to continue reading over ++ * unaligned accesses ++ */ ++ nfi_write16(nfc, NFI_CON, CON_NFI_SEC_M | CON_NFI_BRD); ++ ++ /* trigger to fetch data */ ++ nfi_write16(nfc, NFI_STRDATA, STR_DATA); ++ } ++ ++ mt7621_nfc_wait_pio_ready(nfc); ++ ++ return nfi_read32(nfc, NFI_DATAR); ++} ++ ++static void mt7621_nfc_read_data(struct mt7621_nfc *nfc, u8 *buf, u32 len) ++{ ++ while (((uintptr_t)buf & 3) && len) { ++ *buf = mt7621_nfc_pio_read(nfc, true); ++ buf++; ++ len--; ++ } ++ ++ while (len >= 4) { ++ *(u32 *)buf = mt7621_nfc_pio_read(nfc, false); ++ buf += 4; ++ len -= 4; ++ } ++ ++ while (len) { ++ *buf = mt7621_nfc_pio_read(nfc, true); ++ buf++; ++ len--; ++ } ++} ++ ++static void mt7621_nfc_read_data_discard(struct mt7621_nfc *nfc, u32 len) ++{ ++ while (len >= 4) { ++ mt7621_nfc_pio_read(nfc, false); ++ len -= 4; ++ } ++ ++ while (len) { ++ mt7621_nfc_pio_read(nfc, true); ++ len--; ++ } ++} ++ ++static void mt7621_nfc_pio_write(struct mt7621_nfc *nfc, u32 val, bool bw) ++{ ++ u32 reg; ++ ++ reg = (nfi_read32(nfc, NFI_STA) & STA_NFI_FSM_M) >> STA_NFI_FSM_S; ++ if (reg != STA_FSM_CUSTOM_DATA) { ++ reg = nfi_read16(nfc, NFI_CNFG); ++ reg &= ~(CNFG_READ_MODE | CNFG_BYTE_RW); ++ if (bw) ++ reg |= CNFG_BYTE_RW; ++ nfi_write16(nfc, NFI_CNFG, reg); ++ ++ nfi_write16(nfc, NFI_CON, CON_NFI_SEC_M | CON_NFI_BWR); ++ nfi_write16(nfc, NFI_STRDATA, STR_DATA); ++ } ++ ++ mt7621_nfc_wait_pio_ready(nfc); ++ nfi_write32(nfc, NFI_DATAW, val); ++} ++ ++static void mt7621_nfc_write_data(struct mt7621_nfc *nfc, const u8 *buf, ++ u32 len) ++{ ++ while (((uintptr_t)buf & 3) && len) { ++ mt7621_nfc_pio_write(nfc, *buf, true); ++ buf++; ++ len--; ++ } ++ ++ while (len >= 4) { ++ mt7621_nfc_pio_write(nfc, *(const u32 *)buf, false); ++ buf += 4; ++ len -= 4; ++ } ++ ++ while (len) { ++ mt7621_nfc_pio_write(nfc, *buf, true); ++ buf++; ++ len--; ++ } ++} ++ ++static void mt7621_nfc_write_data_empty(struct mt7621_nfc *nfc, u32 len) ++{ ++ while (len >= 4) { ++ mt7621_nfc_pio_write(nfc, 0xffffffff, false); ++ len -= 4; ++ } ++ ++ while (len) { ++ mt7621_nfc_pio_write(nfc, 0xff, true); ++ len--; ++ } ++} ++ ++static int mt7621_nfc_dev_ready(struct mt7621_nfc *nfc, ++ unsigned int timeout_ms) ++{ ++ u32 val; ++ ++ return readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val, ++ !(val & STA_BUSY), 10, ++ timeout_ms * 1000); ++} ++ ++static int mt7621_nfc_exec_instr(struct nand_chip *nand, ++ const struct nand_op_instr *instr) ++{ ++ struct mt7621_nfc *nfc = nand_get_controller_data(nand); ++ ++ switch (instr->type) { ++ case NAND_OP_CMD_INSTR: ++ mt7621_nfc_hw_reset(nfc); ++ nfi_write16(nfc, NFI_CNFG, CNFG_OP_CUSTOM << CNFG_OP_MODE_S); ++ return mt7621_nfc_send_command(nfc, instr->ctx.cmd.opcode); ++ case NAND_OP_ADDR_INSTR: ++ return mt7621_nfc_send_address(nfc, instr->ctx.addr.addrs, ++ instr->ctx.addr.naddrs); ++ case NAND_OP_DATA_IN_INSTR: ++ mt7621_nfc_read_data(nfc, instr->ctx.data.buf.in, ++ instr->ctx.data.len); ++ return 0; ++ case NAND_OP_DATA_OUT_INSTR: ++ mt7621_nfc_write_data(nfc, instr->ctx.data.buf.out, ++ instr->ctx.data.len); ++ return 0; ++ case NAND_OP_WAITRDY_INSTR: ++ return mt7621_nfc_dev_ready(nfc, ++ instr->ctx.waitrdy.timeout_ms); ++ default: ++ WARN_ONCE(1, "unsupported NAND instruction type: %d\n", ++ instr->type); ++ ++ return -EINVAL; ++ } ++} ++ ++static int mt7621_nfc_exec_op(struct nand_chip *nand, ++ const struct nand_operation *op, bool check_only) ++{ ++ struct mt7621_nfc *nfc = nand_get_controller_data(nand); ++ int i, ret; ++ ++ if (check_only) ++ return 0; ++ ++ /* Only CS0 available */ ++ nfi_write16(nfc, NFI_CSEL, 0); ++ ++ for (i = 0; i < op->ninstrs; i++) { ++ ret = mt7621_nfc_exec_instr(nand, &op->instrs[i]); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static int mt7621_nfc_setup_data_interface(struct nand_chip *nand, int csline, ++ const struct nand_data_interface *conf) ++{ ++ struct mt7621_nfc *nfc = nand_get_controller_data(nand); ++ const struct nand_sdr_timings *timings; ++ u32 acccon, temp, rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt; ++ ++ if (!nfc->nfi_clk) ++ return -ENOTSUPP; ++ ++ timings = nand_get_sdr_timings(conf); ++ if (IS_ERR(timings)) ++ return -ENOTSUPP; ++ ++ rate = clk_get_rate(nfc->nfi_clk); ++ ++ /* turn clock rate into KHZ */ ++ rate /= 1000; ++ ++ tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000; ++ tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000); ++ tpoecs = min_t(u32, tpoecs, ACCCON_POECS_MAX); ++ ++ tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000; ++ tprecs = DIV_ROUND_UP(tprecs * rate, 1000000); ++ tprecs = min_t(u32, tprecs, ACCCON_PRECS_MAX); ++ ++ /* sdr interface has no tCR which means CE# low to RE# low */ ++ tc2r = 0; ++ ++ tw2r = timings->tWHR_min / 1000; ++ tw2r = DIV_ROUND_UP(tw2r * rate, 1000000); ++ tw2r = DIV_ROUND_UP(tw2r - 1, 2); ++ tw2r = min_t(u32, tw2r, ACCCON_W2R_MAX); ++ ++ twh = max(timings->tREH_min, timings->tWH_min) / 1000; ++ twh = DIV_ROUND_UP(twh * rate, 1000000) - 1; ++ twh = min_t(u32, twh, ACCCON_WH_MAX); ++ ++ /* Calculate real WE#/RE# hold time in nanosecond */ ++ temp = (twh + 1) * 1000000 / rate; ++ /* nanosecond to picosecond */ ++ temp *= 1000; ++ ++ /* ++ * WE# low level time should be expaned to meet WE# pulse time ++ * and WE# cycle time at the same time. ++ */ ++ if (temp < timings->tWC_min) ++ twst = timings->tWC_min - temp; ++ else ++ twst = 0; ++ twst = max(timings->tWP_min, twst) / 1000; ++ twst = DIV_ROUND_UP(twst * rate, 1000000) - 1; ++ twst = min_t(u32, twst, ACCCON_WST_MAX); ++ ++ /* ++ * RE# low level time should be expaned to meet RE# pulse time ++ * and RE# cycle time at the same time. ++ */ ++ if (temp < timings->tRC_min) ++ trlt = timings->tRC_min - temp; ++ else ++ trlt = 0; ++ trlt = max(trlt, timings->tRP_min) / 1000; ++ trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1; ++ trlt = min_t(u32, trlt, ACCCON_RLT_MAX); ++ ++ if (csline == NAND_DATA_IFACE_CHECK_ONLY) { ++ if (twst < ACCCON_WST_MIN || trlt < ACCCON_RLT_MIN) ++ return -ENOTSUPP; ++ } ++ ++ acccon = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt); ++ ++ dev_info(nfc->dev, "Using programmed access timing: %08x\n", acccon); ++ ++ nfi_write32(nfc, NFI_ACCCON, acccon); ++ ++ return 0; ++} ++ ++static int mt7621_nfc_calc_ecc_strength(struct mt7621_nfc *nfc, ++ u32 avail_ecc_bytes) ++{ ++ struct nand_chip *nand = &nfc->nand; ++ struct mtd_info *mtd = nand_to_mtd(nand); ++ u32 strength; ++ int i; ++ ++ strength = avail_ecc_bytes * 8 / ECC_PARITY_BITS; ++ ++ /* Find the closest supported ecc strength */ ++ for (i = ARRAY_SIZE(mt7621_ecc_strength) - 1; i >= 0; i--) { ++ if (mt7621_ecc_strength[i] <= strength) ++ break; ++ } ++ ++ if (unlikely(i < 0)) { ++ dev_err(nfc->dev, "OOB size (%u) is not supported\n", ++ mtd->oobsize); ++ return -EINVAL; ++ } ++ ++ nand->ecc.strength = mt7621_ecc_strength[i]; ++ nand->ecc.bytes = ++ DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8); ++ ++ dev_info(nfc->dev, "ECC strength adjusted to %u bits\n", ++ nand->ecc.strength); ++ ++ return i; ++} ++ ++static int mt7621_nfc_set_spare_per_sector(struct mt7621_nfc *nfc) ++{ ++ struct nand_chip *nand = &nfc->nand; ++ struct mtd_info *mtd = nand_to_mtd(nand); ++ u32 size; ++ int i; ++ ++ size = nand->ecc.bytes + NFI_FDM_SIZE; ++ ++ /* Find the closest supported spare size */ ++ for (i = 0; i < ARRAY_SIZE(mt7621_nfi_spare_size); i++) { ++ if (mt7621_nfi_spare_size[i] >= size) ++ break; ++ } ++ ++ if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_spare_size))) { ++ dev_err(nfc->dev, "OOB size (%u) is not supported\n", ++ mtd->oobsize); ++ return -EINVAL; ++ } ++ ++ nfc->spare_per_sector = mt7621_nfi_spare_size[i]; ++ ++ return i; ++} ++ ++static int mt7621_nfc_ecc_init(struct mt7621_nfc *nfc) ++{ ++ struct nand_chip *nand = &nfc->nand; ++ struct mtd_info *mtd = nand_to_mtd(nand); ++ u32 spare_per_sector, encode_block_size, decode_block_size; ++ u32 ecc_enccfg, ecc_deccfg; ++ int ecc_cap; ++ ++ /* Only hardware ECC mode is supported */ ++ if (nand->ecc.mode != NAND_ECC_HW_SYNDROME) { ++ dev_err(nfc->dev, "Only hardware ECC mode is supported\n"); ++ return -EINVAL; ++ } ++ ++ nand->ecc.size = ECC_SECTOR_SIZE; ++ nand->ecc.steps = mtd->writesize / nand->ecc.size; ++ ++ spare_per_sector = mtd->oobsize / nand->ecc.steps; ++ ++ ecc_cap = mt7621_nfc_calc_ecc_strength(nfc, ++ spare_per_sector - NFI_FDM_SIZE); ++ if (ecc_cap < 0) ++ return ecc_cap; ++ ++ /* Sector + FDM */ ++ encode_block_size = (nand->ecc.size + NFI_FDM_SIZE) * 8; ++ ecc_enccfg = ecc_cap | (ENC_MODE_NFI << ENC_MODE_S) | ++ (encode_block_size << ENC_CNFG_MSG_S); ++ ++ /* Sector + FDM + ECC parity bits */ ++ decode_block_size = ((nand->ecc.size + NFI_FDM_SIZE) * 8) + ++ nand->ecc.strength * ECC_PARITY_BITS; ++ ecc_deccfg = ecc_cap | (DEC_MODE_NFI << DEC_MODE_S) | ++ (decode_block_size << DEC_CS_S) | ++ (DEC_CON_EL << DEC_CON_S) | DEC_EMPTY_EN; ++ ++ mt7621_ecc_encoder_op(nfc, false); ++ ecc_write32(nfc, ECC_ENCCNFG, ecc_enccfg); ++ ++ mt7621_ecc_decoder_op(nfc, false); ++ ecc_write32(nfc, ECC_DECCNFG, ecc_deccfg); ++ ++ return 0; ++} ++ ++static int mt7621_nfc_set_page_format(struct mt7621_nfc *nfc) ++{ ++ struct nand_chip *nand = &nfc->nand; ++ struct mtd_info *mtd = nand_to_mtd(nand); ++ int i, spare_size; ++ u32 pagefmt; ++ ++ spare_size = mt7621_nfc_set_spare_per_sector(nfc); ++ if (spare_size < 0) ++ return spare_size; ++ ++ for (i = 0; i < ARRAY_SIZE(mt7621_nfi_page_size); i++) { ++ if (mt7621_nfi_page_size[i] == mtd->writesize) ++ break; ++ } ++ ++ if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_page_size))) { ++ dev_err(nfc->dev, "Page size (%u) is not supported\n", ++ mtd->writesize); ++ return -EINVAL; ++ } ++ ++ pagefmt = i | (spare_size << PAGEFMT_SPARE_S) | ++ (NFI_FDM_SIZE << PAGEFMT_FDM_S) | ++ (NFI_FDM_SIZE << PAGEFMT_FDM_ECC_S); ++ ++ nfi_write16(nfc, NFI_PAGEFMT, pagefmt); ++ ++ return 0; ++} ++ ++static int mt7621_nfc_attach_chip(struct nand_chip *nand) ++{ ++ struct mt7621_nfc *nfc = nand_get_controller_data(nand); ++ int ret; ++ ++ if (nand->options & NAND_BUSWIDTH_16) { ++ dev_err(nfc->dev, "16-bit buswidth is not supported"); ++ return -EINVAL; ++ } ++ ++ ret = mt7621_nfc_ecc_init(nfc); ++ if (ret) ++ return ret; ++ ++ return mt7621_nfc_set_page_format(nfc); ++} ++ ++static const struct nand_controller_ops mt7621_nfc_controller_ops = { ++ .attach_chip = mt7621_nfc_attach_chip, ++ .exec_op = mt7621_nfc_exec_op, ++ .setup_data_interface = mt7621_nfc_setup_data_interface, ++}; ++ ++static int mt7621_nfc_ooblayout_free(struct mtd_info *mtd, int section, ++ struct mtd_oob_region *oob_region) ++{ ++ struct nand_chip *nand = mtd_to_nand(mtd); ++ ++ if (section >= nand->ecc.steps) ++ return -ERANGE; ++ ++ oob_region->length = NFI_FDM_SIZE - 1; ++ oob_region->offset = section * NFI_FDM_SIZE + 1; ++ ++ return 0; ++} ++ ++static int mt7621_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, ++ struct mtd_oob_region *oob_region) ++{ ++ struct nand_chip *nand = mtd_to_nand(mtd); ++ ++ if (section) ++ return -ERANGE; ++ ++ oob_region->offset = NFI_FDM_SIZE * nand->ecc.steps; ++ oob_region->length = mtd->oobsize - oob_region->offset; ++ ++ return 0; ++} ++ ++static const struct mtd_ooblayout_ops mt7621_nfc_ooblayout_ops = { ++ .free = mt7621_nfc_ooblayout_free, ++ .ecc = mt7621_nfc_ooblayout_ecc, ++}; ++ ++static void mt7621_nfc_write_fdm(struct mt7621_nfc *nfc) ++{ ++ struct nand_chip *nand = &nfc->nand; ++ u32 vall, valm; ++ u8 *oobptr; ++ int i, j; ++ ++ for (i = 0; i < nand->ecc.steps; i++) { ++ vall = 0; ++ valm = 0; ++ oobptr = oob_fdm_ptr(nand, i); ++ ++ for (j = 0; j < 4; j++) ++ vall |= (u32)oobptr[j] << (j * 8); ++ ++ for (j = 0; j < 4; j++) ++ valm |= (u32)oobptr[j + 4] << ((j - 4) * 8); ++ ++ nfi_write32(nfc, NFI_FDML(i), vall); ++ nfi_write32(nfc, NFI_FDMM(i), valm); ++ } ++} ++ ++static void mt7621_nfc_read_sector_fdm(struct mt7621_nfc *nfc, u32 sect) ++{ ++ struct nand_chip *nand = &nfc->nand; ++ u32 vall, valm; ++ u8 *oobptr; ++ int i; ++ ++ vall = nfi_read32(nfc, NFI_FDML(sect)); ++ valm = nfi_read32(nfc, NFI_FDMM(sect)); ++ oobptr = oob_fdm_ptr(nand, sect); ++ ++ for (i = 0; i < 4; i++) ++ oobptr[i] = (vall >> (i * 8)) & 0xff; ++ ++ for (i = 0; i < 4; i++) ++ oobptr[i + 4] = (valm >> (i * 8)) & 0xff; ++} ++ ++static int mt7621_nfc_read_page_hwecc(struct nand_chip *nand, uint8_t *buf, ++ int oob_required, int page) ++{ ++ struct mt7621_nfc *nfc = nand_get_controller_data(nand); ++ struct mtd_info *mtd = nand_to_mtd(nand); ++ int bitflips = 0; ++ int rc, i; ++ ++ nand_read_page_op(nand, page, 0, NULL, 0); ++ ++ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) | ++ CNFG_READ_MODE | CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); ++ ++ mt7621_ecc_decoder_op(nfc, true); ++ ++ nfi_write16(nfc, NFI_CON, ++ CON_NFI_BRD | (nand->ecc.steps << CON_NFI_SEC_S)); ++ ++ for (i = 0; i < nand->ecc.steps; i++) { ++ if (buf) ++ mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i), ++ nand->ecc.size); ++ else ++ mt7621_nfc_read_data_discard(nfc, nand->ecc.size); ++ ++ rc = mt7621_ecc_decoder_wait_done(nfc, i); ++ ++ mt7621_nfc_read_sector_fdm(nfc, i); ++ ++ if (rc < 0) { ++ bitflips = -EIO; ++ continue; ++ } ++ ++ rc = mt7621_ecc_correct_check(nfc, ++ buf ? page_data_ptr(nand, buf, i) : NULL, ++ oob_fdm_ptr(nand, i), i); ++ ++ if (rc < 0) { ++ dev_warn(nfc->dev, ++ "Uncorrectable ECC error at page %d.%d\n", ++ page, i); ++ bitflips = -EBADMSG; ++ mtd->ecc_stats.failed++; ++ } else if (bitflips >= 0) { ++ bitflips += rc; ++ mtd->ecc_stats.corrected += rc; ++ } ++ } ++ ++ mt7621_ecc_decoder_op(nfc, false); ++ ++ nfi_write16(nfc, NFI_CON, 0); ++ ++ return bitflips; ++} ++ ++static int mt7621_nfc_read_page_raw(struct nand_chip *nand, uint8_t *buf, ++ int oob_required, int page) ++{ ++ struct mt7621_nfc *nfc = nand_get_controller_data(nand); ++ int i; ++ ++ nand_read_page_op(nand, page, 0, NULL, 0); ++ ++ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) | ++ CNFG_READ_MODE); ++ ++ nfi_write16(nfc, NFI_CON, ++ CON_NFI_BRD | (nand->ecc.steps << CON_NFI_SEC_S)); ++ ++ for (i = 0; i < nand->ecc.steps; i++) { ++ /* Read data */ ++ if (buf) ++ mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i), ++ nand->ecc.size); ++ else ++ mt7621_nfc_read_data_discard(nfc, nand->ecc.size); ++ ++ /* Read FDM */ ++ mt7621_nfc_read_data(nfc, oob_fdm_ptr(nand, i), NFI_FDM_SIZE); ++ ++ /* Read ECC parity data */ ++ mt7621_nfc_read_data(nfc, oob_ecc_ptr(nfc, i), ++ nfc->spare_per_sector - NFI_FDM_SIZE); ++ } ++ ++ nfi_write16(nfc, NFI_CON, 0); ++ ++ return 0; ++} ++ ++static int mt7621_nfc_read_oob_hwecc(struct nand_chip *nand, int page) ++{ ++ return mt7621_nfc_read_page_hwecc(nand, NULL, 1, page); ++} ++ ++static int mt7621_nfc_read_oob_raw(struct nand_chip *nand, int page) ++{ ++ return mt7621_nfc_read_page_raw(nand, NULL, 1, page); ++} ++ ++static int mt7621_nfc_check_empty_page(struct nand_chip *nand, const u8 *buf) ++{ ++ struct mtd_info *mtd = nand_to_mtd(nand); ++ uint32_t i, j; ++ u8 *oobptr; ++ ++ for (i = 0; i < mtd->writesize; i++) ++ if (buf[i] != 0xff) ++ return 0; ++ ++ for (i = 0; i < nand->ecc.steps; i++) { ++ oobptr = oob_fdm_ptr(nand, i); ++ for (j = 0; j < NFI_FDM_SIZE; j++) ++ if (oobptr[j] != 0xff) ++ return 0; ++ } ++ ++ return 1; ++} ++ ++static int mt7621_nfc_write_page_hwecc(struct nand_chip *nand, ++ const uint8_t *buf, int oob_required, ++ int page) ++{ ++ struct mt7621_nfc *nfc = nand_get_controller_data(nand); ++ struct mtd_info *mtd = nand_to_mtd(nand); ++ ++ if (mt7621_nfc_check_empty_page(nand, buf)) { ++ /* ++ * MT7621 ECC engine always generates parity code for input ++ * pages, even for empty pages. Doing so will write back ECC ++ * parity code to the oob region, which means such pages will ++ * no longer be empty pages. ++ * ++ * To avoid this, stop write operation if current page is an ++ * empty page. ++ */ ++ return 0; ++ } ++ ++ nand_prog_page_begin_op(nand, page, 0, NULL, 0); ++ ++ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) | ++ CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); ++ ++ mt7621_ecc_encoder_op(nfc, true); ++ ++ mt7621_nfc_write_fdm(nfc); ++ ++ nfi_write16(nfc, NFI_CON, ++ CON_NFI_BWR | (nand->ecc.steps << CON_NFI_SEC_S)); ++ ++ if (buf) ++ mt7621_nfc_write_data(nfc, buf, mtd->writesize); ++ else ++ mt7621_nfc_write_data_empty(nfc, mtd->writesize); ++ ++ mt7621_nfc_wait_write_completion(nfc, nand); ++ ++ mt7621_ecc_encoder_op(nfc, false); ++ ++ nfi_write16(nfc, NFI_CON, 0); ++ ++ return nand_prog_page_end_op(nand); ++} ++ ++static int mt7621_nfc_write_page_raw(struct nand_chip *nand, ++ const uint8_t *buf, int oob_required, ++ int page) ++{ ++ struct mt7621_nfc *nfc = nand_get_controller_data(nand); ++ int i; ++ ++ nand_prog_page_begin_op(nand, page, 0, NULL, 0); ++ ++ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S)); ++ ++ nfi_write16(nfc, NFI_CON, ++ CON_NFI_BWR | (nand->ecc.steps << CON_NFI_SEC_S)); ++ ++ for (i = 0; i < nand->ecc.steps; i++) { ++ /* Write data */ ++ if (buf) ++ mt7621_nfc_write_data(nfc, page_data_ptr(nand, buf, i), ++ nand->ecc.size); ++ else ++ mt7621_nfc_write_data_empty(nfc, nand->ecc.size); ++ ++ /* Write FDM */ ++ mt7621_nfc_write_data(nfc, oob_fdm_ptr(nand, i), ++ NFI_FDM_SIZE); ++ ++ /* Write dummy ECC parity data */ ++ mt7621_nfc_write_data_empty(nfc, nfc->spare_per_sector - ++ NFI_FDM_SIZE); ++ } ++ ++ mt7621_nfc_wait_write_completion(nfc, nand); ++ ++ nfi_write16(nfc, NFI_CON, 0); ++ ++ return nand_prog_page_end_op(nand); ++} ++ ++static int mt7621_nfc_write_oob_hwecc(struct nand_chip *nand, int page) ++{ ++ return mt7621_nfc_write_page_hwecc(nand, NULL, 1, page); ++} ++ ++static int mt7621_nfc_write_oob_raw(struct nand_chip *nand, int page) ++{ ++ return mt7621_nfc_write_page_raw(nand, NULL, 1, page); ++} ++ ++static int mt7621_nfc_init_chip(struct mt7621_nfc *nfc) ++{ ++ struct nand_chip *nand = &nfc->nand; ++ struct mtd_info *mtd; ++ int ret; ++ ++ nand->controller = &nfc->controller; ++ nand_set_controller_data(nand, (void *)nfc); ++ nand_set_flash_node(nand, nfc->dev->of_node); ++ ++ nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_NO_SUBPAGE_WRITE; ++ if (!nfc->nfi_clk) ++ nand->options |= NAND_KEEP_TIMINGS; ++ ++ nand->ecc.mode = NAND_ECC_HW_SYNDROME; ++ nand->ecc.read_page = mt7621_nfc_read_page_hwecc; ++ nand->ecc.read_page_raw = mt7621_nfc_read_page_raw; ++ nand->ecc.write_page = mt7621_nfc_write_page_hwecc; ++ nand->ecc.write_page_raw = mt7621_nfc_write_page_raw; ++ nand->ecc.read_oob = mt7621_nfc_read_oob_hwecc; ++ nand->ecc.read_oob_raw = mt7621_nfc_read_oob_raw; ++ nand->ecc.write_oob = mt7621_nfc_write_oob_hwecc; ++ nand->ecc.write_oob_raw = mt7621_nfc_write_oob_raw; ++ ++ mtd = nand_to_mtd(nand); ++ mtd->owner = THIS_MODULE; ++ mtd->dev.parent = nfc->dev; ++ mtd->name = MT7621_NFC_NAME; ++ mtd_set_ooblayout(mtd, &mt7621_nfc_ooblayout_ops); ++ ++ mt7621_nfc_hw_init(nfc); ++ ++ ret = nand_scan(nand, 1); ++ if (ret) ++ return ret; ++ ++ ret = mtd_device_register(mtd, NULL, 0); ++ if (ret) { ++ dev_err(nfc->dev, "Failed to register MTD: %d\n", ret); ++ nand_release(nand); ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static int mt7621_nfc_probe(struct platform_device *pdev) ++{ ++ struct device *dev = &pdev->dev; ++ struct mt7621_nfc *nfc; ++ struct resource *res; ++ int ret; ++ ++ nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); ++ if (!nfc) ++ return -ENOMEM; ++ ++ nand_controller_init(&nfc->controller); ++ nfc->controller.ops = &mt7621_nfc_controller_ops; ++ nfc->dev = dev; ++ ++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nfi"); ++ nfc->nfi_regs = devm_ioremap_resource(dev, res); ++ if (IS_ERR(nfc->nfi_regs)) { ++ ret = PTR_ERR(nfc->nfi_regs); ++ return ret; ++ } ++ ++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ecc"); ++ nfc->ecc_regs = devm_ioremap_resource(dev, res); ++ if (IS_ERR(nfc->ecc_regs)) { ++ ret = PTR_ERR(nfc->ecc_regs); ++ return ret; ++ } ++ ++ nfc->nfi_clk = devm_clk_get(dev, "nfi_clk"); ++ if (IS_ERR(nfc->nfi_clk)) { ++ dev_warn(dev, "nfi clk not provided\n"); ++ nfc->nfi_clk = NULL; ++ } else { ++ ret = clk_prepare_enable(nfc->nfi_clk); ++ if (ret) { ++ dev_err(dev, "Failed to enable nfi core clock\n"); ++ return ret; ++ } ++ } ++ ++ platform_set_drvdata(pdev, nfc); ++ ++ ret = mt7621_nfc_init_chip(nfc); ++ if (ret) { ++ dev_err(dev, "Failed to initialize nand chip\n"); ++ goto clk_disable; ++ } ++ ++ return 0; ++ ++clk_disable: ++ clk_disable_unprepare(nfc->nfi_clk); ++ ++ return ret; ++} ++ ++static int mt7621_nfc_remove(struct platform_device *pdev) ++{ ++ struct mt7621_nfc *nfc = platform_get_drvdata(pdev); ++ ++ nand_release(&nfc->nand); ++ clk_disable_unprepare(nfc->nfi_clk); ++ ++ return 0; ++} ++ ++static const struct of_device_id mt7621_nfc_id_table[] = { ++ { .compatible = "mediatek,mt7621-nfc" }, ++ { }, ++}; ++MODULE_DEVICE_TABLE(of, match); ++ ++static struct platform_driver mt7621_nfc_driver = { ++ .probe = mt7621_nfc_probe, ++ .remove = mt7621_nfc_remove, ++ .driver = { ++ .name = MT7621_NFC_NAME, ++ .owner = THIS_MODULE, ++ .of_match_table = mt7621_nfc_id_table, ++ }, ++}; ++module_platform_driver(mt7621_nfc_driver); ++ ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("Weijie Gao "); ++MODULE_DESCRIPTION("MediaTek MT7621 NAND Flash Controller driver"); diff --git a/target/linux/ramips/patches-5.4/0301-dt-bindings-add-documentation-for-mt7621-nand-driver.patch b/target/linux/ramips/patches-5.4/0301-dt-bindings-add-documentation-for-mt7621-nand-driver.patch new file mode 100644 index 0000000000..3d122c10c0 --- /dev/null +++ b/target/linux/ramips/patches-5.4/0301-dt-bindings-add-documentation-for-mt7621-nand-driver.patch @@ -0,0 +1,85 @@ +From 3d5f4da8296b23eb3abf8b13122b0d06a215e79c Mon Sep 17 00:00:00 2001 +From: Weijie Gao +Date: Wed, 1 Apr 2020 02:07:59 +0800 +Subject: [PATCH 2/2] dt-bindings: add documentation for mt7621-nand driver + +This patch adds documentation for MediaTek MT7621 NAND flash controller +driver. + +Signed-off-by: Weijie Gao +--- + .../bindings/mtd/mediatek,mt7621-nfc.yaml | 68 ++++++++++++++++++++++ + 1 file changed, 68 insertions(+) + create mode 100644 Documentation/devicetree/bindings/mtd/mediatek,mt7621-nfc.yaml + +--- /dev/null ++++ b/Documentation/devicetree/bindings/mtd/mediatek,mt7621-nfc.yaml +@@ -0,0 +1,68 @@ ++# SPDX-License-Identifier: GPL-2.0 ++%YAML 1.2 ++--- ++$id: http://devicetree.org/schemas/mtd/mediatek,mt7621-nfc.yaml# ++$schema: http://devicetree.org/meta-schemas/core.yaml# ++ ++title: MediaTek MT7621 SoC NAND Flash Controller (NFC) DT binding ++ ++maintainers: ++ - Weijie Gao ++ ++description: | ++ This driver uses a single node to describe both NAND Flash controller ++ interface (NFI) and ECC engine for MT7621 SoC. ++ MT7621 supports only one chip select. ++ ++properties: ++ "#address-cells": false ++ "#size-cells": false ++ ++ compatible: ++ enum: ++ - mediatek,mt7621-nfc ++ ++ reg: ++ items: ++ - description: Register base of NFI core ++ - description: Register base of ECC engine ++ ++ reg-names: ++ items: ++ - const: nfi ++ - const: ecc ++ ++ clocks: ++ items: ++ - description: Source clock for NFI core, fixed 125MHz ++ ++ clock-names: ++ items: ++ - const: nfi_clk ++ ++required: ++ - compatible ++ - reg ++ - reg-names ++ - clocks ++ - clock-names ++ ++examples: ++ - | ++ nficlock: nficlock { ++ #clock-cells = <0>; ++ compatible = "fixed-clock"; ++ ++ clock-frequency = <125000000>; ++ }; ++ ++ nand@1e003000 { ++ compatible = "mediatek,mt7621-nfc"; ++ ++ reg = <0x1e003000 0x800 ++ 0x1e003800 0x800>; ++ reg-names = "nfi", "ecc"; ++ ++ clocks = <&nficlock>; ++ clock-names = "nfi_clk"; ++ };