From: Thomas Gleixner Date: Thu, 11 Oct 2007 09:11:42 +0000 (+0200) Subject: i386: prepare shared crypto/aes-i586-asm.S X-Git-Url: http://git.lede-project.org./?a=commitdiff_plain;h=018977f6e7f11b08a5928641454f4c43a9b1ca43;p=openwrt%2Fstaging%2Fblogic.git i386: prepare shared crypto/aes-i586-asm.S Signed-off-by: Thomas Gleixner Signed-off-by: Ingo Molnar --- diff --git a/arch/i386/crypto/Makefile b/arch/i386/crypto/Makefile index 57fcb333c9c1..cd1038a22dd3 100644 --- a/arch/i386/crypto/Makefile +++ b/arch/i386/crypto/Makefile @@ -7,6 +7,6 @@ obj-$(CONFIG_CRYPTO_AES_586) += aes-i586.o obj-$(CONFIG_CRYPTO_TWOFISH_586) += twofish-i586.o -aes-i586-y := aes-i586-asm.o aes.o +aes-i586-y := aes-i586-asm_32.o aes.o twofish-i586-y := twofish-i586-asm.o twofish_32.o diff --git a/arch/i386/crypto/aes-i586-asm.S b/arch/i386/crypto/aes-i586-asm.S deleted file mode 100644 index f942f0c8f630..000000000000 --- a/arch/i386/crypto/aes-i586-asm.S +++ /dev/null @@ -1,373 +0,0 @@ -// ------------------------------------------------------------------------- -// Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK. -// All rights reserved. -// -// LICENSE TERMS -// -// The free distribution and use of this software in both source and binary -// form is allowed (with or without changes) provided that: -// -// 1. distributions of this source code include the above copyright -// notice, this list of conditions and the following disclaimer// -// -// 2. distributions in binary form include the above copyright -// notice, this list of conditions and the following disclaimer -// in the documentation and/or other associated materials// -// -// 3. the copyright holder's name is not used to endorse products -// built using this software without specific written permission. -// -// -// ALTERNATIVELY, provided that this notice is retained in full, this product -// may be distributed under the terms of the GNU General Public License (GPL), -// in which case the provisions of the GPL apply INSTEAD OF those given above. -// -// Copyright (c) 2004 Linus Torvalds -// Copyright (c) 2004 Red Hat, Inc., James Morris - -// DISCLAIMER -// -// This software is provided 'as is' with no explicit or implied warranties -// in respect of its properties including, but not limited to, correctness -// and fitness for purpose. -// ------------------------------------------------------------------------- -// Issue Date: 29/07/2002 - -.file "aes-i586-asm.S" -.text - -#include - -#define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) - -/* offsets to parameters with one register pushed onto stack */ -#define tfm 8 -#define out_blk 12 -#define in_blk 16 - -/* offsets in crypto_tfm structure */ -#define ekey (crypto_tfm_ctx_offset + 0) -#define nrnd (crypto_tfm_ctx_offset + 256) -#define dkey (crypto_tfm_ctx_offset + 260) - -// register mapping for encrypt and decrypt subroutines - -#define r0 eax -#define r1 ebx -#define r2 ecx -#define r3 edx -#define r4 esi -#define r5 edi - -#define eaxl al -#define eaxh ah -#define ebxl bl -#define ebxh bh -#define ecxl cl -#define ecxh ch -#define edxl dl -#define edxh dh - -#define _h(reg) reg##h -#define h(reg) _h(reg) - -#define _l(reg) reg##l -#define l(reg) _l(reg) - -// This macro takes a 32-bit word representing a column and uses -// each of its four bytes to index into four tables of 256 32-bit -// words to obtain values that are then xored into the appropriate -// output registers r0, r1, r4 or r5. - -// Parameters: -// table table base address -// %1 out_state[0] -// %2 out_state[1] -// %3 out_state[2] -// %4 out_state[3] -// idx input register for the round (destroyed) -// tmp scratch register for the round -// sched key schedule - -#define do_col(table, a1,a2,a3,a4, idx, tmp) \ - movzx %l(idx),%tmp; \ - xor table(,%tmp,4),%a1; \ - movzx %h(idx),%tmp; \ - shr $16,%idx; \ - xor table+tlen(,%tmp,4),%a2; \ - movzx %l(idx),%tmp; \ - movzx %h(idx),%idx; \ - xor table+2*tlen(,%tmp,4),%a3; \ - xor table+3*tlen(,%idx,4),%a4; - -// initialise output registers from the key schedule -// NB1: original value of a3 is in idx on exit -// NB2: original values of a1,a2,a4 aren't used -#define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ - mov 0 sched,%a1; \ - movzx %l(idx),%tmp; \ - mov 12 sched,%a2; \ - xor table(,%tmp,4),%a1; \ - mov 4 sched,%a4; \ - movzx %h(idx),%tmp; \ - shr $16,%idx; \ - xor table+tlen(,%tmp,4),%a2; \ - movzx %l(idx),%tmp; \ - movzx %h(idx),%idx; \ - xor table+3*tlen(,%idx,4),%a4; \ - mov %a3,%idx; \ - mov 8 sched,%a3; \ - xor table+2*tlen(,%tmp,4),%a3; - -// initialise output registers from the key schedule -// NB1: original value of a3 is in idx on exit -// NB2: original values of a1,a2,a4 aren't used -#define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ - mov 0 sched,%a1; \ - movzx %l(idx),%tmp; \ - mov 4 sched,%a2; \ - xor table(,%tmp,4),%a1; \ - mov 12 sched,%a4; \ - movzx %h(idx),%tmp; \ - shr $16,%idx; \ - xor table+tlen(,%tmp,4),%a2; \ - movzx %l(idx),%tmp; \ - movzx %h(idx),%idx; \ - xor table+3*tlen(,%idx,4),%a4; \ - mov %a3,%idx; \ - mov 8 sched,%a3; \ - xor table+2*tlen(,%tmp,4),%a3; - - -// original Gladman had conditional saves to MMX regs. -#define save(a1, a2) \ - mov %a2,4*a1(%esp) - -#define restore(a1, a2) \ - mov 4*a2(%esp),%a1 - -// These macros perform a forward encryption cycle. They are entered with -// the first previous round column values in r0,r1,r4,r5 and -// exit with the final values in the same registers, using stack -// for temporary storage. - -// round column values -// on entry: r0,r1,r4,r5 -// on exit: r2,r1,r4,r5 -#define fwd_rnd1(arg, table) \ - save (0,r1); \ - save (1,r5); \ - \ - /* compute new column values */ \ - do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ - do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ - restore(r0,0); \ - do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ - restore(r0,1); \ - do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */ - -// round column values -// on entry: r2,r1,r4,r5 -// on exit: r0,r1,r4,r5 -#define fwd_rnd2(arg, table) \ - save (0,r1); \ - save (1,r5); \ - \ - /* compute new column values */ \ - do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ - do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ - restore(r2,0); \ - do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ - restore(r2,1); \ - do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */ - -// These macros performs an inverse encryption cycle. They are entered with -// the first previous round column values in r0,r1,r4,r5 and -// exit with the final values in the same registers, using stack -// for temporary storage - -// round column values -// on entry: r0,r1,r4,r5 -// on exit: r2,r1,r4,r5 -#define inv_rnd1(arg, table) \ - save (0,r1); \ - save (1,r5); \ - \ - /* compute new column values */ \ - do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ - do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ - restore(r0,0); \ - do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ - restore(r0,1); \ - do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */ - -// round column values -// on entry: r2,r1,r4,r5 -// on exit: r0,r1,r4,r5 -#define inv_rnd2(arg, table) \ - save (0,r1); \ - save (1,r5); \ - \ - /* compute new column values */ \ - do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ - do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ - restore(r2,0); \ - do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ - restore(r2,1); \ - do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */ - -// AES (Rijndael) Encryption Subroutine -/* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ - -.global aes_enc_blk - -.extern ft_tab -.extern fl_tab - -.align 4 - -aes_enc_blk: - push %ebp - mov tfm(%esp),%ebp - -// CAUTION: the order and the values used in these assigns -// rely on the register mappings - -1: push %ebx - mov in_blk+4(%esp),%r2 - push %esi - mov nrnd(%ebp),%r3 // number of rounds - push %edi -#if ekey != 0 - lea ekey(%ebp),%ebp // key pointer -#endif - -// input four columns and xor in first round key - - mov (%r2),%r0 - mov 4(%r2),%r1 - mov 8(%r2),%r4 - mov 12(%r2),%r5 - xor (%ebp),%r0 - xor 4(%ebp),%r1 - xor 8(%ebp),%r4 - xor 12(%ebp),%r5 - - sub $8,%esp // space for register saves on stack - add $16,%ebp // increment to next round key - cmp $12,%r3 - jb 4f // 10 rounds for 128-bit key - lea 32(%ebp),%ebp - je 3f // 12 rounds for 192-bit key - lea 32(%ebp),%ebp - -2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 256-bit key - fwd_rnd2( -48(%ebp) ,ft_tab) -3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 192-bit key - fwd_rnd2( -16(%ebp) ,ft_tab) -4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key - fwd_rnd2( +16(%ebp) ,ft_tab) - fwd_rnd1( +32(%ebp) ,ft_tab) - fwd_rnd2( +48(%ebp) ,ft_tab) - fwd_rnd1( +64(%ebp) ,ft_tab) - fwd_rnd2( +80(%ebp) ,ft_tab) - fwd_rnd1( +96(%ebp) ,ft_tab) - fwd_rnd2(+112(%ebp) ,ft_tab) - fwd_rnd1(+128(%ebp) ,ft_tab) - fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table - -// move final values to the output array. CAUTION: the -// order of these assigns rely on the register mappings - - add $8,%esp - mov out_blk+12(%esp),%ebp - mov %r5,12(%ebp) - pop %edi - mov %r4,8(%ebp) - pop %esi - mov %r1,4(%ebp) - pop %ebx - mov %r0,(%ebp) - pop %ebp - mov $1,%eax - ret - -// AES (Rijndael) Decryption Subroutine -/* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ - -.global aes_dec_blk - -.extern it_tab -.extern il_tab - -.align 4 - -aes_dec_blk: - push %ebp - mov tfm(%esp),%ebp - -// CAUTION: the order and the values used in these assigns -// rely on the register mappings - -1: push %ebx - mov in_blk+4(%esp),%r2 - push %esi - mov nrnd(%ebp),%r3 // number of rounds - push %edi -#if dkey != 0 - lea dkey(%ebp),%ebp // key pointer -#endif - mov %r3,%r0 - shl $4,%r0 - add %r0,%ebp - -// input four columns and xor in first round key - - mov (%r2),%r0 - mov 4(%r2),%r1 - mov 8(%r2),%r4 - mov 12(%r2),%r5 - xor (%ebp),%r0 - xor 4(%ebp),%r1 - xor 8(%ebp),%r4 - xor 12(%ebp),%r5 - - sub $8,%esp // space for register saves on stack - sub $16,%ebp // increment to next round key - cmp $12,%r3 - jb 4f // 10 rounds for 128-bit key - lea -32(%ebp),%ebp - je 3f // 12 rounds for 192-bit key - lea -32(%ebp),%ebp - -2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 256-bit key - inv_rnd2( +48(%ebp), it_tab) -3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 192-bit key - inv_rnd2( +16(%ebp), it_tab) -4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key - inv_rnd2( -16(%ebp), it_tab) - inv_rnd1( -32(%ebp), it_tab) - inv_rnd2( -48(%ebp), it_tab) - inv_rnd1( -64(%ebp), it_tab) - inv_rnd2( -80(%ebp), it_tab) - inv_rnd1( -96(%ebp), it_tab) - inv_rnd2(-112(%ebp), it_tab) - inv_rnd1(-128(%ebp), it_tab) - inv_rnd2(-144(%ebp), il_tab) // last round uses a different table - -// move final values to the output array. CAUTION: the -// order of these assigns rely on the register mappings - - add $8,%esp - mov out_blk+12(%esp),%ebp - mov %r5,12(%ebp) - pop %edi - mov %r4,8(%ebp) - pop %esi - mov %r1,4(%ebp) - pop %ebx - mov %r0,(%ebp) - pop %ebp - mov $1,%eax - ret - diff --git a/arch/i386/crypto/aes-i586-asm_32.S b/arch/i386/crypto/aes-i586-asm_32.S new file mode 100644 index 000000000000..f942f0c8f630 --- /dev/null +++ b/arch/i386/crypto/aes-i586-asm_32.S @@ -0,0 +1,373 @@ +// ------------------------------------------------------------------------- +// Copyright (c) 2001, Dr Brian Gladman < >, Worcester, UK. +// All rights reserved. +// +// LICENSE TERMS +// +// The free distribution and use of this software in both source and binary +// form is allowed (with or without changes) provided that: +// +// 1. distributions of this source code include the above copyright +// notice, this list of conditions and the following disclaimer// +// +// 2. distributions in binary form include the above copyright +// notice, this list of conditions and the following disclaimer +// in the documentation and/or other associated materials// +// +// 3. the copyright holder's name is not used to endorse products +// built using this software without specific written permission. +// +// +// ALTERNATIVELY, provided that this notice is retained in full, this product +// may be distributed under the terms of the GNU General Public License (GPL), +// in which case the provisions of the GPL apply INSTEAD OF those given above. +// +// Copyright (c) 2004 Linus Torvalds +// Copyright (c) 2004 Red Hat, Inc., James Morris + +// DISCLAIMER +// +// This software is provided 'as is' with no explicit or implied warranties +// in respect of its properties including, but not limited to, correctness +// and fitness for purpose. +// ------------------------------------------------------------------------- +// Issue Date: 29/07/2002 + +.file "aes-i586-asm.S" +.text + +#include + +#define tlen 1024 // length of each of 4 'xor' arrays (256 32-bit words) + +/* offsets to parameters with one register pushed onto stack */ +#define tfm 8 +#define out_blk 12 +#define in_blk 16 + +/* offsets in crypto_tfm structure */ +#define ekey (crypto_tfm_ctx_offset + 0) +#define nrnd (crypto_tfm_ctx_offset + 256) +#define dkey (crypto_tfm_ctx_offset + 260) + +// register mapping for encrypt and decrypt subroutines + +#define r0 eax +#define r1 ebx +#define r2 ecx +#define r3 edx +#define r4 esi +#define r5 edi + +#define eaxl al +#define eaxh ah +#define ebxl bl +#define ebxh bh +#define ecxl cl +#define ecxh ch +#define edxl dl +#define edxh dh + +#define _h(reg) reg##h +#define h(reg) _h(reg) + +#define _l(reg) reg##l +#define l(reg) _l(reg) + +// This macro takes a 32-bit word representing a column and uses +// each of its four bytes to index into four tables of 256 32-bit +// words to obtain values that are then xored into the appropriate +// output registers r0, r1, r4 or r5. + +// Parameters: +// table table base address +// %1 out_state[0] +// %2 out_state[1] +// %3 out_state[2] +// %4 out_state[3] +// idx input register for the round (destroyed) +// tmp scratch register for the round +// sched key schedule + +#define do_col(table, a1,a2,a3,a4, idx, tmp) \ + movzx %l(idx),%tmp; \ + xor table(,%tmp,4),%a1; \ + movzx %h(idx),%tmp; \ + shr $16,%idx; \ + xor table+tlen(,%tmp,4),%a2; \ + movzx %l(idx),%tmp; \ + movzx %h(idx),%idx; \ + xor table+2*tlen(,%tmp,4),%a3; \ + xor table+3*tlen(,%idx,4),%a4; + +// initialise output registers from the key schedule +// NB1: original value of a3 is in idx on exit +// NB2: original values of a1,a2,a4 aren't used +#define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \ + mov 0 sched,%a1; \ + movzx %l(idx),%tmp; \ + mov 12 sched,%a2; \ + xor table(,%tmp,4),%a1; \ + mov 4 sched,%a4; \ + movzx %h(idx),%tmp; \ + shr $16,%idx; \ + xor table+tlen(,%tmp,4),%a2; \ + movzx %l(idx),%tmp; \ + movzx %h(idx),%idx; \ + xor table+3*tlen(,%idx,4),%a4; \ + mov %a3,%idx; \ + mov 8 sched,%a3; \ + xor table+2*tlen(,%tmp,4),%a3; + +// initialise output registers from the key schedule +// NB1: original value of a3 is in idx on exit +// NB2: original values of a1,a2,a4 aren't used +#define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \ + mov 0 sched,%a1; \ + movzx %l(idx),%tmp; \ + mov 4 sched,%a2; \ + xor table(,%tmp,4),%a1; \ + mov 12 sched,%a4; \ + movzx %h(idx),%tmp; \ + shr $16,%idx; \ + xor table+tlen(,%tmp,4),%a2; \ + movzx %l(idx),%tmp; \ + movzx %h(idx),%idx; \ + xor table+3*tlen(,%idx,4),%a4; \ + mov %a3,%idx; \ + mov 8 sched,%a3; \ + xor table+2*tlen(,%tmp,4),%a3; + + +// original Gladman had conditional saves to MMX regs. +#define save(a1, a2) \ + mov %a2,4*a1(%esp) + +#define restore(a1, a2) \ + mov 4*a2(%esp),%a1 + +// These macros perform a forward encryption cycle. They are entered with +// the first previous round column values in r0,r1,r4,r5 and +// exit with the final values in the same registers, using stack +// for temporary storage. + +// round column values +// on entry: r0,r1,r4,r5 +// on exit: r2,r1,r4,r5 +#define fwd_rnd1(arg, table) \ + save (0,r1); \ + save (1,r5); \ + \ + /* compute new column values */ \ + do_fcol(table, r2,r5,r4,r1, r0,r3, arg); /* idx=r0 */ \ + do_col (table, r4,r1,r2,r5, r0,r3); /* idx=r4 */ \ + restore(r0,0); \ + do_col (table, r1,r2,r5,r4, r0,r3); /* idx=r1 */ \ + restore(r0,1); \ + do_col (table, r5,r4,r1,r2, r0,r3); /* idx=r5 */ + +// round column values +// on entry: r2,r1,r4,r5 +// on exit: r0,r1,r4,r5 +#define fwd_rnd2(arg, table) \ + save (0,r1); \ + save (1,r5); \ + \ + /* compute new column values */ \ + do_fcol(table, r0,r5,r4,r1, r2,r3, arg); /* idx=r2 */ \ + do_col (table, r4,r1,r0,r5, r2,r3); /* idx=r4 */ \ + restore(r2,0); \ + do_col (table, r1,r0,r5,r4, r2,r3); /* idx=r1 */ \ + restore(r2,1); \ + do_col (table, r5,r4,r1,r0, r2,r3); /* idx=r5 */ + +// These macros performs an inverse encryption cycle. They are entered with +// the first previous round column values in r0,r1,r4,r5 and +// exit with the final values in the same registers, using stack +// for temporary storage + +// round column values +// on entry: r0,r1,r4,r5 +// on exit: r2,r1,r4,r5 +#define inv_rnd1(arg, table) \ + save (0,r1); \ + save (1,r5); \ + \ + /* compute new column values */ \ + do_icol(table, r2,r1,r4,r5, r0,r3, arg); /* idx=r0 */ \ + do_col (table, r4,r5,r2,r1, r0,r3); /* idx=r4 */ \ + restore(r0,0); \ + do_col (table, r1,r4,r5,r2, r0,r3); /* idx=r1 */ \ + restore(r0,1); \ + do_col (table, r5,r2,r1,r4, r0,r3); /* idx=r5 */ + +// round column values +// on entry: r2,r1,r4,r5 +// on exit: r0,r1,r4,r5 +#define inv_rnd2(arg, table) \ + save (0,r1); \ + save (1,r5); \ + \ + /* compute new column values */ \ + do_icol(table, r0,r1,r4,r5, r2,r3, arg); /* idx=r2 */ \ + do_col (table, r4,r5,r0,r1, r2,r3); /* idx=r4 */ \ + restore(r2,0); \ + do_col (table, r1,r4,r5,r0, r2,r3); /* idx=r1 */ \ + restore(r2,1); \ + do_col (table, r5,r0,r1,r4, r2,r3); /* idx=r5 */ + +// AES (Rijndael) Encryption Subroutine +/* void aes_enc_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ + +.global aes_enc_blk + +.extern ft_tab +.extern fl_tab + +.align 4 + +aes_enc_blk: + push %ebp + mov tfm(%esp),%ebp + +// CAUTION: the order and the values used in these assigns +// rely on the register mappings + +1: push %ebx + mov in_blk+4(%esp),%r2 + push %esi + mov nrnd(%ebp),%r3 // number of rounds + push %edi +#if ekey != 0 + lea ekey(%ebp),%ebp // key pointer +#endif + +// input four columns and xor in first round key + + mov (%r2),%r0 + mov 4(%r2),%r1 + mov 8(%r2),%r4 + mov 12(%r2),%r5 + xor (%ebp),%r0 + xor 4(%ebp),%r1 + xor 8(%ebp),%r4 + xor 12(%ebp),%r5 + + sub $8,%esp // space for register saves on stack + add $16,%ebp // increment to next round key + cmp $12,%r3 + jb 4f // 10 rounds for 128-bit key + lea 32(%ebp),%ebp + je 3f // 12 rounds for 192-bit key + lea 32(%ebp),%ebp + +2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 256-bit key + fwd_rnd2( -48(%ebp) ,ft_tab) +3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 192-bit key + fwd_rnd2( -16(%ebp) ,ft_tab) +4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key + fwd_rnd2( +16(%ebp) ,ft_tab) + fwd_rnd1( +32(%ebp) ,ft_tab) + fwd_rnd2( +48(%ebp) ,ft_tab) + fwd_rnd1( +64(%ebp) ,ft_tab) + fwd_rnd2( +80(%ebp) ,ft_tab) + fwd_rnd1( +96(%ebp) ,ft_tab) + fwd_rnd2(+112(%ebp) ,ft_tab) + fwd_rnd1(+128(%ebp) ,ft_tab) + fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table + +// move final values to the output array. CAUTION: the +// order of these assigns rely on the register mappings + + add $8,%esp + mov out_blk+12(%esp),%ebp + mov %r5,12(%ebp) + pop %edi + mov %r4,8(%ebp) + pop %esi + mov %r1,4(%ebp) + pop %ebx + mov %r0,(%ebp) + pop %ebp + mov $1,%eax + ret + +// AES (Rijndael) Decryption Subroutine +/* void aes_dec_blk(struct crypto_tfm *tfm, u8 *out_blk, const u8 *in_blk) */ + +.global aes_dec_blk + +.extern it_tab +.extern il_tab + +.align 4 + +aes_dec_blk: + push %ebp + mov tfm(%esp),%ebp + +// CAUTION: the order and the values used in these assigns +// rely on the register mappings + +1: push %ebx + mov in_blk+4(%esp),%r2 + push %esi + mov nrnd(%ebp),%r3 // number of rounds + push %edi +#if dkey != 0 + lea dkey(%ebp),%ebp // key pointer +#endif + mov %r3,%r0 + shl $4,%r0 + add %r0,%ebp + +// input four columns and xor in first round key + + mov (%r2),%r0 + mov 4(%r2),%r1 + mov 8(%r2),%r4 + mov 12(%r2),%r5 + xor (%ebp),%r0 + xor 4(%ebp),%r1 + xor 8(%ebp),%r4 + xor 12(%ebp),%r5 + + sub $8,%esp // space for register saves on stack + sub $16,%ebp // increment to next round key + cmp $12,%r3 + jb 4f // 10 rounds for 128-bit key + lea -32(%ebp),%ebp + je 3f // 12 rounds for 192-bit key + lea -32(%ebp),%ebp + +2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 256-bit key + inv_rnd2( +48(%ebp), it_tab) +3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 192-bit key + inv_rnd2( +16(%ebp), it_tab) +4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key + inv_rnd2( -16(%ebp), it_tab) + inv_rnd1( -32(%ebp), it_tab) + inv_rnd2( -48(%ebp), it_tab) + inv_rnd1( -64(%ebp), it_tab) + inv_rnd2( -80(%ebp), it_tab) + inv_rnd1( -96(%ebp), it_tab) + inv_rnd2(-112(%ebp), it_tab) + inv_rnd1(-128(%ebp), it_tab) + inv_rnd2(-144(%ebp), il_tab) // last round uses a different table + +// move final values to the output array. CAUTION: the +// order of these assigns rely on the register mappings + + add $8,%esp + mov out_blk+12(%esp),%ebp + mov %r5,12(%ebp) + pop %edi + mov %r4,8(%ebp) + pop %esi + mov %r1,4(%ebp) + pop %ebx + mov %r0,(%ebp) + pop %ebp + mov $1,%eax + ret +