#include <linux/jiffies.h>
#include <linux/mutex.h>
#include <linux/err.h>
+#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#define ABIT_UGURU_IN_SENSOR 0
#define ABIT_UGURU_TEMP_SENSOR 1
#define ABIT_UGURU_NC 2
-/* Timeouts / Retries, if these turn out to need a lot of fiddling we could
- convert them to params. */
-/* 250 was determined by trial and error, 200 works most of the time, but not
- always. I assume this is cpu-speed independent, since the ISA-bus and not
- the CPU should be the bottleneck. Note that 250 sometimes is still not
- enough (only reported on AN7 mb) this is handled by a higher layer. */
-#define ABIT_UGURU_WAIT_TIMEOUT 250
+/* In many cases we need to wait for the uGuru to reach a certain status, most
+ of the time it will reach this status within 30 - 90 ISA reads, and thus we
+ can best busy wait. This define gives the total amount of reads to try. */
+#define ABIT_UGURU_WAIT_TIMEOUT 125
+/* However sometimes older versions of the uGuru seem to be distracted and they
+ do not respond for a long time. To handle this we sleep before each of the
+ last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. */
+#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
/* Normally all expected status in abituguru_ready, are reported after the
- first read, but sometimes not and we need to poll, 5 polls was not enough
- 50 sofar is. */
-#define ABIT_UGURU_READY_TIMEOUT 50
+ first read, but sometimes not and we need to poll. */
+#define ABIT_UGURU_READY_TIMEOUT 5
/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
#define ABIT_UGURU_MAX_RETRIES 3
#define ABIT_UGURU_RETRY_DELAY (HZ/5)
timeout--;
if (timeout == 0)
return -EBUSY;
+ /* sleep a bit before our last few tries, see the comment on
+ this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. */
+ if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
+ msleep(0);
}
return 0;
}
"CMD reg does not hold 0xAC after ready command\n");
return -EIO;
}
+ msleep(0);
}
/* After this the ABIT_UGURU_DATA port should contain
"state != more input after ready command\n");
return -EIO;
}
+ msleep(0);
}
data->uguru_ready = 1;
/* And read the data */
for (i = 0; i < count; i++) {
if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
- ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
+ ABIT_UGURU_DEBUG(retries ? 1 : 3,
+ "timeout exceeded waiting for "
"read state (bank: %d, sensor: %d)\n",
(int)bank_addr, (int)sensor_addr);
break;
static int abituguru_write(struct abituguru_data *data,
u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
{
- int i;
+ /* We use the ready timeout as we have to wait for 0xAC just like the
+ ready function */
+ int i, timeout = ABIT_UGURU_READY_TIMEOUT;
/* Send the address */
i = abituguru_send_address(data, bank_addr, sensor_addr,
}
/* Now we need to wait till the chip is ready to be read again,
- don't ask why */
+ so that we can read 0xAC as confirmation that our write has
+ succeeded. */
if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
}
/* Cmd port MUST be read now and should contain 0xAC */
- if (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
- ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after write "
- "(bank: %d, sensor: %d)\n", (int)bank_addr,
- (int)sensor_addr);
- return -EIO;
+ while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
+ timeout--;
+ if (timeout == 0) {
+ ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
+ "write (bank: %d, sensor: %d)\n",
+ (int)bank_addr, (int)sensor_addr);
+ return -EIO;
+ }
+ msleep(0);
}
/* Last put the chip back in ready state */
u8 sensor_addr)
{
u8 val, buf[3];
- int ret = ABIT_UGURU_NC;
+ int i, ret = -ENODEV; /* error is the most common used retval :| */
/* If overriden by the user return the user selected type */
if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
buf[2] = 250;
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
buf, 3) != 3)
- return -ENODEV;
+ goto abituguru_detect_bank1_sensor_type_exit;
/* Now we need 20 ms to give the uguru time to read the sensors
and raise a voltage alarm */
set_current_state(TASK_UNINTERRUPTIBLE);
/* Check for alarm and check the alarm is a volt low alarm. */
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
- return -ENODEV;
+ goto abituguru_detect_bank1_sensor_type_exit;
if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
sensor_addr, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
- return -ENODEV;
+ goto abituguru_detect_bank1_sensor_type_exit;
if (buf[0] & ABIT_UGURU_VOLT_LOW_ALARM_FLAG) {
- /* Restore original settings */
- if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
- sensor_addr,
- data->bank1_settings[sensor_addr],
- 3) != 3)
- return -ENODEV;
ABIT_UGURU_DEBUG(2, " found volt sensor\n");
- return ABIT_UGURU_IN_SENSOR;
+ ret = ABIT_UGURU_IN_SENSOR;
+ goto abituguru_detect_bank1_sensor_type_exit;
} else
ABIT_UGURU_DEBUG(2, " alarm raised during volt "
"sensor test, but volt low flag not set\n");
buf[2] = 10;
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
buf, 3) != 3)
- return -ENODEV;
+ goto abituguru_detect_bank1_sensor_type_exit;
/* Now we need 50 ms to give the uguru time to read the sensors
and raise a temp alarm */
set_current_state(TASK_UNINTERRUPTIBLE);
/* Check for alarm and check the alarm is a temp high alarm. */
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
- return -ENODEV;
+ goto abituguru_detect_bank1_sensor_type_exit;
if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
sensor_addr, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
- return -ENODEV;
+ goto abituguru_detect_bank1_sensor_type_exit;
if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
- ret = ABIT_UGURU_TEMP_SENSOR;
ABIT_UGURU_DEBUG(2, " found temp sensor\n");
+ ret = ABIT_UGURU_TEMP_SENSOR;
+ goto abituguru_detect_bank1_sensor_type_exit;
} else
ABIT_UGURU_DEBUG(2, " alarm raised during temp "
"sensor test, but temp high flag not set\n");
ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
"test\n");
- /* Restore original settings */
- if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
- data->bank1_settings[sensor_addr], 3) != 3)
+ ret = ABIT_UGURU_NC;
+abituguru_detect_bank1_sensor_type_exit:
+ /* Restore original settings, failing here is really BAD, it has been
+ reported that some BIOS-es hang when entering the uGuru menu with
+ invalid settings present in the uGuru, so we try this 3 times. */
+ for (i = 0; i < 3; i++)
+ if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
+ sensor_addr, data->bank1_settings[sensor_addr],
+ 3) == 3)
+ break;
+ if (i == 3) {
+ printk(KERN_ERR ABIT_UGURU_NAME
+ ": Fatal error could not restore original settings. "
+ "This should never happen please report this to the "
+ "abituguru maintainer (see MAINTAINERS)\n");
return -ENODEV;
-
+ }
return ret;
}
data->update_timeouts = 0;
LEAVE_UPDATE:
/* handle timeout condition */
- if (err == -EBUSY) {
+ if (!success && (err == -EBUSY || err >= 0)) {
/* No overflow please */
if (data->update_timeouts < 255u)
data->update_timeouts++;