i386: prepare shared kernel/efi.c
authorThomas Gleixner <tglx@linutronix.de>
Thu, 11 Oct 2007 09:12:09 +0000 (11:12 +0200)
committerThomas Gleixner <tglx@linutronix.de>
Thu, 11 Oct 2007 09:12:09 +0000 (11:12 +0200)
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
arch/i386/kernel/Makefile
arch/i386/kernel/efi.c [deleted file]
arch/i386/kernel/efi_32.c [new file with mode: 0644]

index 199060e588dc16e5996e5dc25e1d3281bfc48137..75b201b56074923623cb7cacbfb207db8e0a861a 100644 (file)
@@ -33,7 +33,7 @@ obj-$(CONFIG_KPROBES)         += kprobes.o
 obj-$(CONFIG_MODULES)          += module.o
 obj-y                          += sysenter.o vsyscall.o
 obj-$(CONFIG_ACPI_SRAT)        += srat_32.o
-obj-$(CONFIG_EFI)              += efi.o efi_stub_32.o
+obj-$(CONFIG_EFI)              += efi_32.o efi_stub_32.o
 obj-$(CONFIG_DOUBLEFAULT)      += doublefault.o
 obj-$(CONFIG_VM86)             += vm86_32.o
 obj-$(CONFIG_EARLY_PRINTK)     += early_printk.o
diff --git a/arch/i386/kernel/efi.c b/arch/i386/kernel/efi.c
deleted file mode 100644 (file)
index 2452c6f..0000000
+++ /dev/null
@@ -1,712 +0,0 @@
-/*
- * Extensible Firmware Interface
- *
- * Based on Extensible Firmware Interface Specification version 1.0
- *
- * Copyright (C) 1999 VA Linux Systems
- * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
- * Copyright (C) 1999-2002 Hewlett-Packard Co.
- *     David Mosberger-Tang <davidm@hpl.hp.com>
- *     Stephane Eranian <eranian@hpl.hp.com>
- *
- * All EFI Runtime Services are not implemented yet as EFI only
- * supports physical mode addressing on SoftSDV. This is to be fixed
- * in a future version.  --drummond 1999-07-20
- *
- * Implemented EFI runtime services and virtual mode calls.  --davidm
- *
- * Goutham Rao: <goutham.rao@intel.com>
- *     Skip non-WB memory and ignore empty memory ranges.
- */
-
-#include <linux/kernel.h>
-#include <linux/init.h>
-#include <linux/mm.h>
-#include <linux/types.h>
-#include <linux/time.h>
-#include <linux/spinlock.h>
-#include <linux/bootmem.h>
-#include <linux/ioport.h>
-#include <linux/module.h>
-#include <linux/efi.h>
-#include <linux/kexec.h>
-
-#include <asm/setup.h>
-#include <asm/io.h>
-#include <asm/page.h>
-#include <asm/pgtable.h>
-#include <asm/processor.h>
-#include <asm/desc.h>
-#include <asm/tlbflush.h>
-
-#define EFI_DEBUG      0
-#define PFX            "EFI: "
-
-extern efi_status_t asmlinkage efi_call_phys(void *, ...);
-
-struct efi efi;
-EXPORT_SYMBOL(efi);
-static struct efi efi_phys;
-struct efi_memory_map memmap;
-
-/*
- * We require an early boot_ioremap mapping mechanism initially
- */
-extern void * boot_ioremap(unsigned long, unsigned long);
-
-/*
- * To make EFI call EFI runtime service in physical addressing mode we need
- * prelog/epilog before/after the invocation to disable interrupt, to
- * claim EFI runtime service handler exclusively and to duplicate a memory in
- * low memory space say 0 - 3G.
- */
-
-static unsigned long efi_rt_eflags;
-static DEFINE_SPINLOCK(efi_rt_lock);
-static pgd_t efi_bak_pg_dir_pointer[2];
-
-static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
-{
-       unsigned long cr4;
-       unsigned long temp;
-       struct Xgt_desc_struct gdt_descr;
-
-       spin_lock(&efi_rt_lock);
-       local_irq_save(efi_rt_eflags);
-
-       /*
-        * If I don't have PSE, I should just duplicate two entries in page
-        * directory. If I have PSE, I just need to duplicate one entry in
-        * page directory.
-        */
-       cr4 = read_cr4();
-
-       if (cr4 & X86_CR4_PSE) {
-               efi_bak_pg_dir_pointer[0].pgd =
-                   swapper_pg_dir[pgd_index(0)].pgd;
-               swapper_pg_dir[0].pgd =
-                   swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
-       } else {
-               efi_bak_pg_dir_pointer[0].pgd =
-                   swapper_pg_dir[pgd_index(0)].pgd;
-               efi_bak_pg_dir_pointer[1].pgd =
-                   swapper_pg_dir[pgd_index(0x400000)].pgd;
-               swapper_pg_dir[pgd_index(0)].pgd =
-                   swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
-               temp = PAGE_OFFSET + 0x400000;
-               swapper_pg_dir[pgd_index(0x400000)].pgd =
-                   swapper_pg_dir[pgd_index(temp)].pgd;
-       }
-
-       /*
-        * After the lock is released, the original page table is restored.
-        */
-       local_flush_tlb();
-
-       gdt_descr.address = __pa(get_cpu_gdt_table(0));
-       gdt_descr.size = GDT_SIZE - 1;
-       load_gdt(&gdt_descr);
-}
-
-static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
-{
-       unsigned long cr4;
-       struct Xgt_desc_struct gdt_descr;
-
-       gdt_descr.address = (unsigned long)get_cpu_gdt_table(0);
-       gdt_descr.size = GDT_SIZE - 1;
-       load_gdt(&gdt_descr);
-
-       cr4 = read_cr4();
-
-       if (cr4 & X86_CR4_PSE) {
-               swapper_pg_dir[pgd_index(0)].pgd =
-                   efi_bak_pg_dir_pointer[0].pgd;
-       } else {
-               swapper_pg_dir[pgd_index(0)].pgd =
-                   efi_bak_pg_dir_pointer[0].pgd;
-               swapper_pg_dir[pgd_index(0x400000)].pgd =
-                   efi_bak_pg_dir_pointer[1].pgd;
-       }
-
-       /*
-        * After the lock is released, the original page table is restored.
-        */
-       local_flush_tlb();
-
-       local_irq_restore(efi_rt_eflags);
-       spin_unlock(&efi_rt_lock);
-}
-
-static efi_status_t
-phys_efi_set_virtual_address_map(unsigned long memory_map_size,
-                                unsigned long descriptor_size,
-                                u32 descriptor_version,
-                                efi_memory_desc_t *virtual_map)
-{
-       efi_status_t status;
-
-       efi_call_phys_prelog();
-       status = efi_call_phys(efi_phys.set_virtual_address_map,
-                                    memory_map_size, descriptor_size,
-                                    descriptor_version, virtual_map);
-       efi_call_phys_epilog();
-       return status;
-}
-
-static efi_status_t
-phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
-{
-       efi_status_t status;
-
-       efi_call_phys_prelog();
-       status = efi_call_phys(efi_phys.get_time, tm, tc);
-       efi_call_phys_epilog();
-       return status;
-}
-
-inline int efi_set_rtc_mmss(unsigned long nowtime)
-{
-       int real_seconds, real_minutes;
-       efi_status_t    status;
-       efi_time_t      eft;
-       efi_time_cap_t  cap;
-
-       spin_lock(&efi_rt_lock);
-       status = efi.get_time(&eft, &cap);
-       spin_unlock(&efi_rt_lock);
-       if (status != EFI_SUCCESS)
-               panic("Ooops, efitime: can't read time!\n");
-       real_seconds = nowtime % 60;
-       real_minutes = nowtime / 60;
-
-       if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
-               real_minutes += 30;
-       real_minutes %= 60;
-
-       eft.minute = real_minutes;
-       eft.second = real_seconds;
-
-       if (status != EFI_SUCCESS) {
-               printk("Ooops: efitime: can't read time!\n");
-               return -1;
-       }
-       return 0;
-}
-/*
- * This is used during kernel init before runtime
- * services have been remapped and also during suspend, therefore,
- * we'll need to call both in physical and virtual modes.
- */
-inline unsigned long efi_get_time(void)
-{
-       efi_status_t status;
-       efi_time_t eft;
-       efi_time_cap_t cap;
-
-       if (efi.get_time) {
-               /* if we are in virtual mode use remapped function */
-               status = efi.get_time(&eft, &cap);
-       } else {
-               /* we are in physical mode */
-               status = phys_efi_get_time(&eft, &cap);
-       }
-
-       if (status != EFI_SUCCESS)
-               printk("Oops: efitime: can't read time status: 0x%lx\n",status);
-
-       return mktime(eft.year, eft.month, eft.day, eft.hour,
-                       eft.minute, eft.second);
-}
-
-int is_available_memory(efi_memory_desc_t * md)
-{
-       if (!(md->attribute & EFI_MEMORY_WB))
-               return 0;
-
-       switch (md->type) {
-               case EFI_LOADER_CODE:
-               case EFI_LOADER_DATA:
-               case EFI_BOOT_SERVICES_CODE:
-               case EFI_BOOT_SERVICES_DATA:
-               case EFI_CONVENTIONAL_MEMORY:
-                       return 1;
-       }
-       return 0;
-}
-
-/*
- * We need to map the EFI memory map again after paging_init().
- */
-void __init efi_map_memmap(void)
-{
-       memmap.map = NULL;
-
-       memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
-                       (memmap.nr_map * memmap.desc_size));
-       if (memmap.map == NULL)
-               printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
-
-       memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
-}
-
-#if EFI_DEBUG
-static void __init print_efi_memmap(void)
-{
-       efi_memory_desc_t *md;
-       void *p;
-       int i;
-
-       for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
-               md = p;
-               printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
-                       "range=[0x%016llx-0x%016llx) (%lluMB)\n",
-                       i, md->type, md->attribute, md->phys_addr,
-                       md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
-                       (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
-       }
-}
-#endif  /*  EFI_DEBUG  */
-
-/*
- * Walks the EFI memory map and calls CALLBACK once for each EFI
- * memory descriptor that has memory that is available for kernel use.
- */
-void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
-{
-       int prev_valid = 0;
-       struct range {
-               unsigned long start;
-               unsigned long end;
-       } uninitialized_var(prev), curr;
-       efi_memory_desc_t *md;
-       unsigned long start, end;
-       void *p;
-
-       for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
-               md = p;
-
-               if ((md->num_pages == 0) || (!is_available_memory(md)))
-                       continue;
-
-               curr.start = md->phys_addr;
-               curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
-
-               if (!prev_valid) {
-                       prev = curr;
-                       prev_valid = 1;
-               } else {
-                       if (curr.start < prev.start)
-                               printk(KERN_INFO PFX "Unordered memory map\n");
-                       if (prev.end == curr.start)
-                               prev.end = curr.end;
-                       else {
-                               start =
-                                   (unsigned long) (PAGE_ALIGN(prev.start));
-                               end = (unsigned long) (prev.end & PAGE_MASK);
-                               if ((end > start)
-                                   && (*callback) (start, end, arg) < 0)
-                                       return;
-                               prev = curr;
-                       }
-               }
-       }
-       if (prev_valid) {
-               start = (unsigned long) PAGE_ALIGN(prev.start);
-               end = (unsigned long) (prev.end & PAGE_MASK);
-               if (end > start)
-                       (*callback) (start, end, arg);
-       }
-}
-
-void __init efi_init(void)
-{
-       efi_config_table_t *config_tables;
-       efi_runtime_services_t *runtime;
-       efi_char16_t *c16;
-       char vendor[100] = "unknown";
-       unsigned long num_config_tables;
-       int i = 0;
-
-       memset(&efi, 0, sizeof(efi) );
-       memset(&efi_phys, 0, sizeof(efi_phys));
-
-       efi_phys.systab = EFI_SYSTAB;
-       memmap.phys_map = EFI_MEMMAP;
-       memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
-       memmap.desc_version = EFI_MEMDESC_VERSION;
-       memmap.desc_size = EFI_MEMDESC_SIZE;
-
-       efi.systab = (efi_system_table_t *)
-               boot_ioremap((unsigned long) efi_phys.systab,
-                       sizeof(efi_system_table_t));
-       /*
-        * Verify the EFI Table
-        */
-       if (efi.systab == NULL)
-               printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
-       if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
-               printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
-       if ((efi.systab->hdr.revision >> 16) == 0)
-               printk(KERN_ERR PFX "Warning: EFI system table version "
-                      "%d.%02d, expected 1.00 or greater\n",
-                      efi.systab->hdr.revision >> 16,
-                      efi.systab->hdr.revision & 0xffff);
-
-       /*
-        * Grab some details from the system table
-        */
-       num_config_tables = efi.systab->nr_tables;
-       config_tables = (efi_config_table_t *)efi.systab->tables;
-       runtime = efi.systab->runtime;
-
-       /*
-        * Show what we know for posterity
-        */
-       c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
-       if (c16) {
-               for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
-                       vendor[i] = *c16++;
-               vendor[i] = '\0';
-       } else
-               printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
-
-       printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
-              efi.systab->hdr.revision >> 16,
-              efi.systab->hdr.revision & 0xffff, vendor);
-
-       /*
-        * Let's see what config tables the firmware passed to us.
-        */
-       config_tables = (efi_config_table_t *)
-                               boot_ioremap((unsigned long) config_tables,
-                               num_config_tables * sizeof(efi_config_table_t));
-
-       if (config_tables == NULL)
-               printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
-
-       efi.mps        = EFI_INVALID_TABLE_ADDR;
-       efi.acpi       = EFI_INVALID_TABLE_ADDR;
-       efi.acpi20     = EFI_INVALID_TABLE_ADDR;
-       efi.smbios     = EFI_INVALID_TABLE_ADDR;
-       efi.sal_systab = EFI_INVALID_TABLE_ADDR;
-       efi.boot_info  = EFI_INVALID_TABLE_ADDR;
-       efi.hcdp       = EFI_INVALID_TABLE_ADDR;
-       efi.uga        = EFI_INVALID_TABLE_ADDR;
-
-       for (i = 0; i < num_config_tables; i++) {
-               if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
-                       efi.mps = config_tables[i].table;
-                       printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
-               } else
-                   if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
-                       efi.acpi20 = config_tables[i].table;
-                       printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
-               } else
-                   if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
-                       efi.acpi = config_tables[i].table;
-                       printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
-               } else
-                   if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
-                       efi.smbios = config_tables[i].table;
-                       printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
-               } else
-                   if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
-                       efi.hcdp = config_tables[i].table;
-                       printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
-               } else
-                   if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
-                       efi.uga = config_tables[i].table;
-                       printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
-               }
-       }
-       printk("\n");
-
-       /*
-        * Check out the runtime services table. We need to map
-        * the runtime services table so that we can grab the physical
-        * address of several of the EFI runtime functions, needed to
-        * set the firmware into virtual mode.
-        */
-
-       runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
-                                               runtime,
-                                               sizeof(efi_runtime_services_t));
-       if (runtime != NULL) {
-               /*
-                * We will only need *early* access to the following
-                * two EFI runtime services before set_virtual_address_map
-                * is invoked.
-                */
-               efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
-               efi_phys.set_virtual_address_map =
-                       (efi_set_virtual_address_map_t *)
-                               runtime->set_virtual_address_map;
-       } else
-               printk(KERN_ERR PFX "Could not map the runtime service table!\n");
-
-       /* Map the EFI memory map for use until paging_init() */
-       memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
-       if (memmap.map == NULL)
-               printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
-
-       memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
-
-#if EFI_DEBUG
-       print_efi_memmap();
-#endif
-}
-
-static inline void __init check_range_for_systab(efi_memory_desc_t *md)
-{
-       if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
-               ((unsigned long)efi_phys.systab < md->phys_addr +
-               ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
-               unsigned long addr;
-
-               addr = md->virt_addr - md->phys_addr +
-                       (unsigned long)efi_phys.systab;
-               efi.systab = (efi_system_table_t *)addr;
-       }
-}
-
-/*
- * Wrap all the virtual calls in a way that forces the parameters on the stack.
- */
-
-#define efi_call_virt(f, args...) \
-     ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
-
-static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
-{
-       return efi_call_virt(get_time, tm, tc);
-}
-
-static efi_status_t virt_efi_set_time (efi_time_t *tm)
-{
-       return efi_call_virt(set_time, tm);
-}
-
-static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled,
-                                             efi_bool_t *pending,
-                                             efi_time_t *tm)
-{
-       return efi_call_virt(get_wakeup_time, enabled, pending, tm);
-}
-
-static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled,
-                                             efi_time_t *tm)
-{
-       return efi_call_virt(set_wakeup_time, enabled, tm);
-}
-
-static efi_status_t virt_efi_get_variable (efi_char16_t *name,
-                                          efi_guid_t *vendor, u32 *attr,
-                                          unsigned long *data_size, void *data)
-{
-       return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
-}
-
-static efi_status_t virt_efi_get_next_variable (unsigned long *name_size,
-                                               efi_char16_t *name,
-                                               efi_guid_t *vendor)
-{
-       return efi_call_virt(get_next_variable, name_size, name, vendor);
-}
-
-static efi_status_t virt_efi_set_variable (efi_char16_t *name,
-                                          efi_guid_t *vendor,
-                                          unsigned long attr,
-                                          unsigned long data_size, void *data)
-{
-       return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
-}
-
-static efi_status_t virt_efi_get_next_high_mono_count (u32 *count)
-{
-       return efi_call_virt(get_next_high_mono_count, count);
-}
-
-static void virt_efi_reset_system (int reset_type, efi_status_t status,
-                                  unsigned long data_size,
-                                  efi_char16_t *data)
-{
-       efi_call_virt(reset_system, reset_type, status, data_size, data);
-}
-
-/*
- * This function will switch the EFI runtime services to virtual mode.
- * Essentially, look through the EFI memmap and map every region that
- * has the runtime attribute bit set in its memory descriptor and update
- * that memory descriptor with the virtual address obtained from ioremap().
- * This enables the runtime services to be called without having to
- * thunk back into physical mode for every invocation.
- */
-
-void __init efi_enter_virtual_mode(void)
-{
-       efi_memory_desc_t *md;
-       efi_status_t status;
-       void *p;
-
-       efi.systab = NULL;
-
-       for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
-               md = p;
-
-               if (!(md->attribute & EFI_MEMORY_RUNTIME))
-                       continue;
-
-               md->virt_addr = (unsigned long)ioremap(md->phys_addr,
-                       md->num_pages << EFI_PAGE_SHIFT);
-               if (!(unsigned long)md->virt_addr) {
-                       printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
-                               (unsigned long)md->phys_addr);
-               }
-               /* update the virtual address of the EFI system table */
-               check_range_for_systab(md);
-       }
-
-       BUG_ON(!efi.systab);
-
-       status = phys_efi_set_virtual_address_map(
-                       memmap.desc_size * memmap.nr_map,
-                       memmap.desc_size,
-                       memmap.desc_version,
-                       memmap.phys_map);
-
-       if (status != EFI_SUCCESS) {
-               printk (KERN_ALERT "You are screwed! "
-                       "Unable to switch EFI into virtual mode "
-                       "(status=%lx)\n", status);
-               panic("EFI call to SetVirtualAddressMap() failed!");
-       }
-
-       /*
-        * Now that EFI is in virtual mode, update the function
-        * pointers in the runtime service table to the new virtual addresses.
-        */
-
-       efi.get_time = virt_efi_get_time;
-       efi.set_time = virt_efi_set_time;
-       efi.get_wakeup_time = virt_efi_get_wakeup_time;
-       efi.set_wakeup_time = virt_efi_set_wakeup_time;
-       efi.get_variable = virt_efi_get_variable;
-       efi.get_next_variable = virt_efi_get_next_variable;
-       efi.set_variable = virt_efi_set_variable;
-       efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
-       efi.reset_system = virt_efi_reset_system;
-}
-
-void __init
-efi_initialize_iomem_resources(struct resource *code_resource,
-                              struct resource *data_resource)
-{
-       struct resource *res;
-       efi_memory_desc_t *md;
-       void *p;
-
-       for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
-               md = p;
-
-               if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
-                   0x100000000ULL)
-                       continue;
-               res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
-               switch (md->type) {
-               case EFI_RESERVED_TYPE:
-                       res->name = "Reserved Memory";
-                       break;
-               case EFI_LOADER_CODE:
-                       res->name = "Loader Code";
-                       break;
-               case EFI_LOADER_DATA:
-                       res->name = "Loader Data";
-                       break;
-               case EFI_BOOT_SERVICES_DATA:
-                       res->name = "BootServices Data";
-                       break;
-               case EFI_BOOT_SERVICES_CODE:
-                       res->name = "BootServices Code";
-                       break;
-               case EFI_RUNTIME_SERVICES_CODE:
-                       res->name = "Runtime Service Code";
-                       break;
-               case EFI_RUNTIME_SERVICES_DATA:
-                       res->name = "Runtime Service Data";
-                       break;
-               case EFI_CONVENTIONAL_MEMORY:
-                       res->name = "Conventional Memory";
-                       break;
-               case EFI_UNUSABLE_MEMORY:
-                       res->name = "Unusable Memory";
-                       break;
-               case EFI_ACPI_RECLAIM_MEMORY:
-                       res->name = "ACPI Reclaim";
-                       break;
-               case EFI_ACPI_MEMORY_NVS:
-                       res->name = "ACPI NVS";
-                       break;
-               case EFI_MEMORY_MAPPED_IO:
-                       res->name = "Memory Mapped IO";
-                       break;
-               case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
-                       res->name = "Memory Mapped IO Port Space";
-                       break;
-               default:
-                       res->name = "Reserved";
-                       break;
-               }
-               res->start = md->phys_addr;
-               res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
-               res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
-               if (request_resource(&iomem_resource, res) < 0)
-                       printk(KERN_ERR PFX "Failed to allocate res %s : "
-                               "0x%llx-0x%llx\n", res->name,
-                               (unsigned long long)res->start,
-                               (unsigned long long)res->end);
-               /*
-                * We don't know which region contains kernel data so we try
-                * it repeatedly and let the resource manager test it.
-                */
-               if (md->type == EFI_CONVENTIONAL_MEMORY) {
-                       request_resource(res, code_resource);
-                       request_resource(res, data_resource);
-#ifdef CONFIG_KEXEC
-                       request_resource(res, &crashk_res);
-#endif
-               }
-       }
-}
-
-/*
- * Convenience functions to obtain memory types and attributes
- */
-
-u32 efi_mem_type(unsigned long phys_addr)
-{
-       efi_memory_desc_t *md;
-       void *p;
-
-       for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
-               md = p;
-               if ((md->phys_addr <= phys_addr) && (phys_addr <
-                       (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
-                       return md->type;
-       }
-       return 0;
-}
-
-u64 efi_mem_attributes(unsigned long phys_addr)
-{
-       efi_memory_desc_t *md;
-       void *p;
-
-       for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
-               md = p;
-               if ((md->phys_addr <= phys_addr) && (phys_addr <
-                       (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
-                       return md->attribute;
-       }
-       return 0;
-}
diff --git a/arch/i386/kernel/efi_32.c b/arch/i386/kernel/efi_32.c
new file mode 100644 (file)
index 0000000..2452c6f
--- /dev/null
@@ -0,0 +1,712 @@
+/*
+ * Extensible Firmware Interface
+ *
+ * Based on Extensible Firmware Interface Specification version 1.0
+ *
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ * Copyright (C) 1999-2002 Hewlett-Packard Co.
+ *     David Mosberger-Tang <davidm@hpl.hp.com>
+ *     Stephane Eranian <eranian@hpl.hp.com>
+ *
+ * All EFI Runtime Services are not implemented yet as EFI only
+ * supports physical mode addressing on SoftSDV. This is to be fixed
+ * in a future version.  --drummond 1999-07-20
+ *
+ * Implemented EFI runtime services and virtual mode calls.  --davidm
+ *
+ * Goutham Rao: <goutham.rao@intel.com>
+ *     Skip non-WB memory and ignore empty memory ranges.
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/types.h>
+#include <linux/time.h>
+#include <linux/spinlock.h>
+#include <linux/bootmem.h>
+#include <linux/ioport.h>
+#include <linux/module.h>
+#include <linux/efi.h>
+#include <linux/kexec.h>
+
+#include <asm/setup.h>
+#include <asm/io.h>
+#include <asm/page.h>
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/desc.h>
+#include <asm/tlbflush.h>
+
+#define EFI_DEBUG      0
+#define PFX            "EFI: "
+
+extern efi_status_t asmlinkage efi_call_phys(void *, ...);
+
+struct efi efi;
+EXPORT_SYMBOL(efi);
+static struct efi efi_phys;
+struct efi_memory_map memmap;
+
+/*
+ * We require an early boot_ioremap mapping mechanism initially
+ */
+extern void * boot_ioremap(unsigned long, unsigned long);
+
+/*
+ * To make EFI call EFI runtime service in physical addressing mode we need
+ * prelog/epilog before/after the invocation to disable interrupt, to
+ * claim EFI runtime service handler exclusively and to duplicate a memory in
+ * low memory space say 0 - 3G.
+ */
+
+static unsigned long efi_rt_eflags;
+static DEFINE_SPINLOCK(efi_rt_lock);
+static pgd_t efi_bak_pg_dir_pointer[2];
+
+static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
+{
+       unsigned long cr4;
+       unsigned long temp;
+       struct Xgt_desc_struct gdt_descr;
+
+       spin_lock(&efi_rt_lock);
+       local_irq_save(efi_rt_eflags);
+
+       /*
+        * If I don't have PSE, I should just duplicate two entries in page
+        * directory. If I have PSE, I just need to duplicate one entry in
+        * page directory.
+        */
+       cr4 = read_cr4();
+
+       if (cr4 & X86_CR4_PSE) {
+               efi_bak_pg_dir_pointer[0].pgd =
+                   swapper_pg_dir[pgd_index(0)].pgd;
+               swapper_pg_dir[0].pgd =
+                   swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
+       } else {
+               efi_bak_pg_dir_pointer[0].pgd =
+                   swapper_pg_dir[pgd_index(0)].pgd;
+               efi_bak_pg_dir_pointer[1].pgd =
+                   swapper_pg_dir[pgd_index(0x400000)].pgd;
+               swapper_pg_dir[pgd_index(0)].pgd =
+                   swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
+               temp = PAGE_OFFSET + 0x400000;
+               swapper_pg_dir[pgd_index(0x400000)].pgd =
+                   swapper_pg_dir[pgd_index(temp)].pgd;
+       }
+
+       /*
+        * After the lock is released, the original page table is restored.
+        */
+       local_flush_tlb();
+
+       gdt_descr.address = __pa(get_cpu_gdt_table(0));
+       gdt_descr.size = GDT_SIZE - 1;
+       load_gdt(&gdt_descr);
+}
+
+static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
+{
+       unsigned long cr4;
+       struct Xgt_desc_struct gdt_descr;
+
+       gdt_descr.address = (unsigned long)get_cpu_gdt_table(0);
+       gdt_descr.size = GDT_SIZE - 1;
+       load_gdt(&gdt_descr);
+
+       cr4 = read_cr4();
+
+       if (cr4 & X86_CR4_PSE) {
+               swapper_pg_dir[pgd_index(0)].pgd =
+                   efi_bak_pg_dir_pointer[0].pgd;
+       } else {
+               swapper_pg_dir[pgd_index(0)].pgd =
+                   efi_bak_pg_dir_pointer[0].pgd;
+               swapper_pg_dir[pgd_index(0x400000)].pgd =
+                   efi_bak_pg_dir_pointer[1].pgd;
+       }
+
+       /*
+        * After the lock is released, the original page table is restored.
+        */
+       local_flush_tlb();
+
+       local_irq_restore(efi_rt_eflags);
+       spin_unlock(&efi_rt_lock);
+}
+
+static efi_status_t
+phys_efi_set_virtual_address_map(unsigned long memory_map_size,
+                                unsigned long descriptor_size,
+                                u32 descriptor_version,
+                                efi_memory_desc_t *virtual_map)
+{
+       efi_status_t status;
+
+       efi_call_phys_prelog();
+       status = efi_call_phys(efi_phys.set_virtual_address_map,
+                                    memory_map_size, descriptor_size,
+                                    descriptor_version, virtual_map);
+       efi_call_phys_epilog();
+       return status;
+}
+
+static efi_status_t
+phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
+{
+       efi_status_t status;
+
+       efi_call_phys_prelog();
+       status = efi_call_phys(efi_phys.get_time, tm, tc);
+       efi_call_phys_epilog();
+       return status;
+}
+
+inline int efi_set_rtc_mmss(unsigned long nowtime)
+{
+       int real_seconds, real_minutes;
+       efi_status_t    status;
+       efi_time_t      eft;
+       efi_time_cap_t  cap;
+
+       spin_lock(&efi_rt_lock);
+       status = efi.get_time(&eft, &cap);
+       spin_unlock(&efi_rt_lock);
+       if (status != EFI_SUCCESS)
+               panic("Ooops, efitime: can't read time!\n");
+       real_seconds = nowtime % 60;
+       real_minutes = nowtime / 60;
+
+       if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
+               real_minutes += 30;
+       real_minutes %= 60;
+
+       eft.minute = real_minutes;
+       eft.second = real_seconds;
+
+       if (status != EFI_SUCCESS) {
+               printk("Ooops: efitime: can't read time!\n");
+               return -1;
+       }
+       return 0;
+}
+/*
+ * This is used during kernel init before runtime
+ * services have been remapped and also during suspend, therefore,
+ * we'll need to call both in physical and virtual modes.
+ */
+inline unsigned long efi_get_time(void)
+{
+       efi_status_t status;
+       efi_time_t eft;
+       efi_time_cap_t cap;
+
+       if (efi.get_time) {
+               /* if we are in virtual mode use remapped function */
+               status = efi.get_time(&eft, &cap);
+       } else {
+               /* we are in physical mode */
+               status = phys_efi_get_time(&eft, &cap);
+       }
+
+       if (status != EFI_SUCCESS)
+               printk("Oops: efitime: can't read time status: 0x%lx\n",status);
+
+       return mktime(eft.year, eft.month, eft.day, eft.hour,
+                       eft.minute, eft.second);
+}
+
+int is_available_memory(efi_memory_desc_t * md)
+{
+       if (!(md->attribute & EFI_MEMORY_WB))
+               return 0;
+
+       switch (md->type) {
+               case EFI_LOADER_CODE:
+               case EFI_LOADER_DATA:
+               case EFI_BOOT_SERVICES_CODE:
+               case EFI_BOOT_SERVICES_DATA:
+               case EFI_CONVENTIONAL_MEMORY:
+                       return 1;
+       }
+       return 0;
+}
+
+/*
+ * We need to map the EFI memory map again after paging_init().
+ */
+void __init efi_map_memmap(void)
+{
+       memmap.map = NULL;
+
+       memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
+                       (memmap.nr_map * memmap.desc_size));
+       if (memmap.map == NULL)
+               printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
+
+       memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
+}
+
+#if EFI_DEBUG
+static void __init print_efi_memmap(void)
+{
+       efi_memory_desc_t *md;
+       void *p;
+       int i;
+
+       for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
+               md = p;
+               printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
+                       "range=[0x%016llx-0x%016llx) (%lluMB)\n",
+                       i, md->type, md->attribute, md->phys_addr,
+                       md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
+                       (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
+       }
+}
+#endif  /*  EFI_DEBUG  */
+
+/*
+ * Walks the EFI memory map and calls CALLBACK once for each EFI
+ * memory descriptor that has memory that is available for kernel use.
+ */
+void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
+{
+       int prev_valid = 0;
+       struct range {
+               unsigned long start;
+               unsigned long end;
+       } uninitialized_var(prev), curr;
+       efi_memory_desc_t *md;
+       unsigned long start, end;
+       void *p;
+
+       for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+               md = p;
+
+               if ((md->num_pages == 0) || (!is_available_memory(md)))
+                       continue;
+
+               curr.start = md->phys_addr;
+               curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
+
+               if (!prev_valid) {
+                       prev = curr;
+                       prev_valid = 1;
+               } else {
+                       if (curr.start < prev.start)
+                               printk(KERN_INFO PFX "Unordered memory map\n");
+                       if (prev.end == curr.start)
+                               prev.end = curr.end;
+                       else {
+                               start =
+                                   (unsigned long) (PAGE_ALIGN(prev.start));
+                               end = (unsigned long) (prev.end & PAGE_MASK);
+                               if ((end > start)
+                                   && (*callback) (start, end, arg) < 0)
+                                       return;
+                               prev = curr;
+                       }
+               }
+       }
+       if (prev_valid) {
+               start = (unsigned long) PAGE_ALIGN(prev.start);
+               end = (unsigned long) (prev.end & PAGE_MASK);
+               if (end > start)
+                       (*callback) (start, end, arg);
+       }
+}
+
+void __init efi_init(void)
+{
+       efi_config_table_t *config_tables;
+       efi_runtime_services_t *runtime;
+       efi_char16_t *c16;
+       char vendor[100] = "unknown";
+       unsigned long num_config_tables;
+       int i = 0;
+
+       memset(&efi, 0, sizeof(efi) );
+       memset(&efi_phys, 0, sizeof(efi_phys));
+
+       efi_phys.systab = EFI_SYSTAB;
+       memmap.phys_map = EFI_MEMMAP;
+       memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
+       memmap.desc_version = EFI_MEMDESC_VERSION;
+       memmap.desc_size = EFI_MEMDESC_SIZE;
+
+       efi.systab = (efi_system_table_t *)
+               boot_ioremap((unsigned long) efi_phys.systab,
+                       sizeof(efi_system_table_t));
+       /*
+        * Verify the EFI Table
+        */
+       if (efi.systab == NULL)
+               printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
+       if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
+               printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
+       if ((efi.systab->hdr.revision >> 16) == 0)
+               printk(KERN_ERR PFX "Warning: EFI system table version "
+                      "%d.%02d, expected 1.00 or greater\n",
+                      efi.systab->hdr.revision >> 16,
+                      efi.systab->hdr.revision & 0xffff);
+
+       /*
+        * Grab some details from the system table
+        */
+       num_config_tables = efi.systab->nr_tables;
+       config_tables = (efi_config_table_t *)efi.systab->tables;
+       runtime = efi.systab->runtime;
+
+       /*
+        * Show what we know for posterity
+        */
+       c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
+       if (c16) {
+               for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
+                       vendor[i] = *c16++;
+               vendor[i] = '\0';
+       } else
+               printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
+
+       printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
+              efi.systab->hdr.revision >> 16,
+              efi.systab->hdr.revision & 0xffff, vendor);
+
+       /*
+        * Let's see what config tables the firmware passed to us.
+        */
+       config_tables = (efi_config_table_t *)
+                               boot_ioremap((unsigned long) config_tables,
+                               num_config_tables * sizeof(efi_config_table_t));
+
+       if (config_tables == NULL)
+               printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
+
+       efi.mps        = EFI_INVALID_TABLE_ADDR;
+       efi.acpi       = EFI_INVALID_TABLE_ADDR;
+       efi.acpi20     = EFI_INVALID_TABLE_ADDR;
+       efi.smbios     = EFI_INVALID_TABLE_ADDR;
+       efi.sal_systab = EFI_INVALID_TABLE_ADDR;
+       efi.boot_info  = EFI_INVALID_TABLE_ADDR;
+       efi.hcdp       = EFI_INVALID_TABLE_ADDR;
+       efi.uga        = EFI_INVALID_TABLE_ADDR;
+
+       for (i = 0; i < num_config_tables; i++) {
+               if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
+                       efi.mps = config_tables[i].table;
+                       printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
+               } else
+                   if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
+                       efi.acpi20 = config_tables[i].table;
+                       printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
+               } else
+                   if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
+                       efi.acpi = config_tables[i].table;
+                       printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
+               } else
+                   if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
+                       efi.smbios = config_tables[i].table;
+                       printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
+               } else
+                   if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
+                       efi.hcdp = config_tables[i].table;
+                       printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
+               } else
+                   if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
+                       efi.uga = config_tables[i].table;
+                       printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
+               }
+       }
+       printk("\n");
+
+       /*
+        * Check out the runtime services table. We need to map
+        * the runtime services table so that we can grab the physical
+        * address of several of the EFI runtime functions, needed to
+        * set the firmware into virtual mode.
+        */
+
+       runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
+                                               runtime,
+                                               sizeof(efi_runtime_services_t));
+       if (runtime != NULL) {
+               /*
+                * We will only need *early* access to the following
+                * two EFI runtime services before set_virtual_address_map
+                * is invoked.
+                */
+               efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
+               efi_phys.set_virtual_address_map =
+                       (efi_set_virtual_address_map_t *)
+                               runtime->set_virtual_address_map;
+       } else
+               printk(KERN_ERR PFX "Could not map the runtime service table!\n");
+
+       /* Map the EFI memory map for use until paging_init() */
+       memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
+       if (memmap.map == NULL)
+               printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
+
+       memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
+
+#if EFI_DEBUG
+       print_efi_memmap();
+#endif
+}
+
+static inline void __init check_range_for_systab(efi_memory_desc_t *md)
+{
+       if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
+               ((unsigned long)efi_phys.systab < md->phys_addr +
+               ((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
+               unsigned long addr;
+
+               addr = md->virt_addr - md->phys_addr +
+                       (unsigned long)efi_phys.systab;
+               efi.systab = (efi_system_table_t *)addr;
+       }
+}
+
+/*
+ * Wrap all the virtual calls in a way that forces the parameters on the stack.
+ */
+
+#define efi_call_virt(f, args...) \
+     ((efi_##f##_t __attribute__((regparm(0)))*)efi.systab->runtime->f)(args)
+
+static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
+{
+       return efi_call_virt(get_time, tm, tc);
+}
+
+static efi_status_t virt_efi_set_time (efi_time_t *tm)
+{
+       return efi_call_virt(set_time, tm);
+}
+
+static efi_status_t virt_efi_get_wakeup_time (efi_bool_t *enabled,
+                                             efi_bool_t *pending,
+                                             efi_time_t *tm)
+{
+       return efi_call_virt(get_wakeup_time, enabled, pending, tm);
+}
+
+static efi_status_t virt_efi_set_wakeup_time (efi_bool_t enabled,
+                                             efi_time_t *tm)
+{
+       return efi_call_virt(set_wakeup_time, enabled, tm);
+}
+
+static efi_status_t virt_efi_get_variable (efi_char16_t *name,
+                                          efi_guid_t *vendor, u32 *attr,
+                                          unsigned long *data_size, void *data)
+{
+       return efi_call_virt(get_variable, name, vendor, attr, data_size, data);
+}
+
+static efi_status_t virt_efi_get_next_variable (unsigned long *name_size,
+                                               efi_char16_t *name,
+                                               efi_guid_t *vendor)
+{
+       return efi_call_virt(get_next_variable, name_size, name, vendor);
+}
+
+static efi_status_t virt_efi_set_variable (efi_char16_t *name,
+                                          efi_guid_t *vendor,
+                                          unsigned long attr,
+                                          unsigned long data_size, void *data)
+{
+       return efi_call_virt(set_variable, name, vendor, attr, data_size, data);
+}
+
+static efi_status_t virt_efi_get_next_high_mono_count (u32 *count)
+{
+       return efi_call_virt(get_next_high_mono_count, count);
+}
+
+static void virt_efi_reset_system (int reset_type, efi_status_t status,
+                                  unsigned long data_size,
+                                  efi_char16_t *data)
+{
+       efi_call_virt(reset_system, reset_type, status, data_size, data);
+}
+
+/*
+ * This function will switch the EFI runtime services to virtual mode.
+ * Essentially, look through the EFI memmap and map every region that
+ * has the runtime attribute bit set in its memory descriptor and update
+ * that memory descriptor with the virtual address obtained from ioremap().
+ * This enables the runtime services to be called without having to
+ * thunk back into physical mode for every invocation.
+ */
+
+void __init efi_enter_virtual_mode(void)
+{
+       efi_memory_desc_t *md;
+       efi_status_t status;
+       void *p;
+
+       efi.systab = NULL;
+
+       for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+               md = p;
+
+               if (!(md->attribute & EFI_MEMORY_RUNTIME))
+                       continue;
+
+               md->virt_addr = (unsigned long)ioremap(md->phys_addr,
+                       md->num_pages << EFI_PAGE_SHIFT);
+               if (!(unsigned long)md->virt_addr) {
+                       printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
+                               (unsigned long)md->phys_addr);
+               }
+               /* update the virtual address of the EFI system table */
+               check_range_for_systab(md);
+       }
+
+       BUG_ON(!efi.systab);
+
+       status = phys_efi_set_virtual_address_map(
+                       memmap.desc_size * memmap.nr_map,
+                       memmap.desc_size,
+                       memmap.desc_version,
+                       memmap.phys_map);
+
+       if (status != EFI_SUCCESS) {
+               printk (KERN_ALERT "You are screwed! "
+                       "Unable to switch EFI into virtual mode "
+                       "(status=%lx)\n", status);
+               panic("EFI call to SetVirtualAddressMap() failed!");
+       }
+
+       /*
+        * Now that EFI is in virtual mode, update the function
+        * pointers in the runtime service table to the new virtual addresses.
+        */
+
+       efi.get_time = virt_efi_get_time;
+       efi.set_time = virt_efi_set_time;
+       efi.get_wakeup_time = virt_efi_get_wakeup_time;
+       efi.set_wakeup_time = virt_efi_set_wakeup_time;
+       efi.get_variable = virt_efi_get_variable;
+       efi.get_next_variable = virt_efi_get_next_variable;
+       efi.set_variable = virt_efi_set_variable;
+       efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
+       efi.reset_system = virt_efi_reset_system;
+}
+
+void __init
+efi_initialize_iomem_resources(struct resource *code_resource,
+                              struct resource *data_resource)
+{
+       struct resource *res;
+       efi_memory_desc_t *md;
+       void *p;
+
+       for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+               md = p;
+
+               if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
+                   0x100000000ULL)
+                       continue;
+               res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
+               switch (md->type) {
+               case EFI_RESERVED_TYPE:
+                       res->name = "Reserved Memory";
+                       break;
+               case EFI_LOADER_CODE:
+                       res->name = "Loader Code";
+                       break;
+               case EFI_LOADER_DATA:
+                       res->name = "Loader Data";
+                       break;
+               case EFI_BOOT_SERVICES_DATA:
+                       res->name = "BootServices Data";
+                       break;
+               case EFI_BOOT_SERVICES_CODE:
+                       res->name = "BootServices Code";
+                       break;
+               case EFI_RUNTIME_SERVICES_CODE:
+                       res->name = "Runtime Service Code";
+                       break;
+               case EFI_RUNTIME_SERVICES_DATA:
+                       res->name = "Runtime Service Data";
+                       break;
+               case EFI_CONVENTIONAL_MEMORY:
+                       res->name = "Conventional Memory";
+                       break;
+               case EFI_UNUSABLE_MEMORY:
+                       res->name = "Unusable Memory";
+                       break;
+               case EFI_ACPI_RECLAIM_MEMORY:
+                       res->name = "ACPI Reclaim";
+                       break;
+               case EFI_ACPI_MEMORY_NVS:
+                       res->name = "ACPI NVS";
+                       break;
+               case EFI_MEMORY_MAPPED_IO:
+                       res->name = "Memory Mapped IO";
+                       break;
+               case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
+                       res->name = "Memory Mapped IO Port Space";
+                       break;
+               default:
+                       res->name = "Reserved";
+                       break;
+               }
+               res->start = md->phys_addr;
+               res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
+               res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
+               if (request_resource(&iomem_resource, res) < 0)
+                       printk(KERN_ERR PFX "Failed to allocate res %s : "
+                               "0x%llx-0x%llx\n", res->name,
+                               (unsigned long long)res->start,
+                               (unsigned long long)res->end);
+               /*
+                * We don't know which region contains kernel data so we try
+                * it repeatedly and let the resource manager test it.
+                */
+               if (md->type == EFI_CONVENTIONAL_MEMORY) {
+                       request_resource(res, code_resource);
+                       request_resource(res, data_resource);
+#ifdef CONFIG_KEXEC
+                       request_resource(res, &crashk_res);
+#endif
+               }
+       }
+}
+
+/*
+ * Convenience functions to obtain memory types and attributes
+ */
+
+u32 efi_mem_type(unsigned long phys_addr)
+{
+       efi_memory_desc_t *md;
+       void *p;
+
+       for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+               md = p;
+               if ((md->phys_addr <= phys_addr) && (phys_addr <
+                       (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
+                       return md->type;
+       }
+       return 0;
+}
+
+u64 efi_mem_attributes(unsigned long phys_addr)
+{
+       efi_memory_desc_t *md;
+       void *p;
+
+       for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+               md = p;
+               if ((md->phys_addr <= phys_addr) && (phys_addr <
+                       (md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
+                       return md->attribute;
+       }
+       return 0;
+}