mediatek: rename some patches
authorDaniel Golle <daniel@makrotopia.org>
Thu, 8 Sep 2022 20:14:32 +0000 (21:14 +0100)
committerDaniel Golle <daniel@makrotopia.org>
Fri, 9 Sep 2022 20:08:37 +0000 (21:08 +0100)
To ease maintainance rename patches to contain the kernel version they
have first been part of.

Signed-off-by: Daniel Golle <daniel@makrotopia.org>
target/linux/mediatek/patches-5.15/120-11-mtd-nand-make-mtk_ecc.c-a-separated-module.patch [deleted file]
target/linux/mediatek/patches-5.15/120-11-v5.19-mtd-nand-make-mtk_ecc.c-a-separated-module.patch [new file with mode: 0644]
target/linux/mediatek/patches-5.15/120-12-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch [deleted file]
target/linux/mediatek/patches-5.15/120-12-v5.19-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch [new file with mode: 0644]
target/linux/mediatek/patches-5.15/120-13-mtd-nand-mtk-ecc-also-parse-nand-ecc-engine-if-avail.patch [deleted file]
target/linux/mediatek/patches-5.15/120-13-v5.19-mtd-nand-mtk-ecc-also-parse-nand-ecc-engine-if-avail.patch [new file with mode: 0644]
target/linux/mediatek/patches-5.15/120-14-arm64-dts-mediatek-add-mtk-snfi-for-mt7622.patch [deleted file]
target/linux/mediatek/patches-5.15/120-14-v5.19-arm64-dts-mediatek-add-mtk-snfi-for-mt7622.patch [new file with mode: 0644]

diff --git a/target/linux/mediatek/patches-5.15/120-11-mtd-nand-make-mtk_ecc.c-a-separated-module.patch b/target/linux/mediatek/patches-5.15/120-11-mtd-nand-make-mtk_ecc.c-a-separated-module.patch
deleted file mode 100644 (file)
index fd9098e..0000000
+++ /dev/null
@@ -1,1383 +0,0 @@
-From ebb9653d4a87c64fb679e4c339e867556dada719 Mon Sep 17 00:00:00 2001
-From: Chuanhong Guo <gch981213@gmail.com>
-Date: Tue, 22 Mar 2022 18:44:21 +0800
-Subject: [PATCH 11/15] mtd: nand: make mtk_ecc.c a separated module
-
-this code will be used in mediatek snfi spi-mem controller with
-pipelined ECC engine.
-
-Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
-(cherry picked from commit 316f47cec4ce5b81aa8006de202d8769c117a52d)
----
- drivers/mtd/nand/Kconfig                                   | 7 +++++++
- drivers/mtd/nand/Makefile                                  | 1 +
- drivers/mtd/nand/{raw/mtk_ecc.c => ecc-mtk.c}              | 3 +--
- drivers/mtd/nand/raw/Kconfig                               | 1 +
- drivers/mtd/nand/raw/Makefile                              | 2 +-
- drivers/mtd/nand/raw/mtk_nand.c                            | 2 +-
- .../nand/raw/mtk_ecc.h => include/linux/mtd/nand-ecc-mtk.h | 0
- 7 files changed, 12 insertions(+), 4 deletions(-)
- rename drivers/mtd/nand/{raw/mtk_ecc.c => ecc-mtk.c} (99%)
- rename drivers/mtd/nand/raw/mtk_ecc.h => include/linux/mtd/nand-ecc-mtk.h (100%)
-
---- a/drivers/mtd/nand/Kconfig
-+++ b/drivers/mtd/nand/Kconfig
-@@ -50,6 +50,13 @@ config MTD_NAND_MTK_BMT
-       bool "Support MediaTek NAND Bad-block Management Table"
-       default n
-+config MTD_NAND_ECC_MEDIATEK
-+      tristate "Mediatek hardware ECC engine"
-+      depends on HAS_IOMEM
-+      select MTD_NAND_ECC
-+      help
-+        This enables support for the hardware ECC engine from Mediatek.
-+
- endmenu
- endmenu
---- a/drivers/mtd/nand/Makefile
-+++ b/drivers/mtd/nand/Makefile
-@@ -3,6 +3,7 @@
- nandcore-objs := core.o bbt.o
- obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o
- obj-$(CONFIG_MTD_NAND_MTK_BMT)        += mtk_bmt.o mtk_bmt_v2.o mtk_bmt_bbt.o mtk_bmt_nmbm.o
-+obj-$(CONFIG_MTD_NAND_ECC_MEDIATEK) += ecc-mtk.o
- obj-y += onenand/
- obj-y += raw/
---- a/drivers/mtd/nand/raw/mtk_ecc.c
-+++ /dev/null
-@@ -1,599 +0,0 @@
--// SPDX-License-Identifier: GPL-2.0 OR MIT
--/*
-- * MTK ECC controller driver.
-- * Copyright (C) 2016  MediaTek Inc.
-- * Authors:   Xiaolei Li              <xiaolei.li@mediatek.com>
-- *            Jorge Ramirez-Ortiz     <jorge.ramirez-ortiz@linaro.org>
-- */
--
--#include <linux/platform_device.h>
--#include <linux/dma-mapping.h>
--#include <linux/interrupt.h>
--#include <linux/clk.h>
--#include <linux/module.h>
--#include <linux/iopoll.h>
--#include <linux/of.h>
--#include <linux/of_platform.h>
--#include <linux/mutex.h>
--
--#include "mtk_ecc.h"
--
--#define ECC_IDLE_MASK         BIT(0)
--#define ECC_IRQ_EN            BIT(0)
--#define ECC_PG_IRQ_SEL                BIT(1)
--#define ECC_OP_ENABLE         (1)
--#define ECC_OP_DISABLE                (0)
--
--#define ECC_ENCCON            (0x00)
--#define ECC_ENCCNFG           (0x04)
--#define               ECC_MS_SHIFT            (16)
--#define ECC_ENCDIADDR         (0x08)
--#define ECC_ENCIDLE           (0x0C)
--#define ECC_DECCON            (0x100)
--#define ECC_DECCNFG           (0x104)
--#define               DEC_EMPTY_EN            BIT(31)
--#define               DEC_CNFG_CORRECT        (0x3 << 12)
--#define ECC_DECIDLE           (0x10C)
--#define ECC_DECENUM0          (0x114)
--
--#define ECC_TIMEOUT           (500000)
--
--#define ECC_IDLE_REG(op)      ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
--#define ECC_CTL_REG(op)               ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
--
--struct mtk_ecc_caps {
--      u32 err_mask;
--      u32 err_shift;
--      const u8 *ecc_strength;
--      const u32 *ecc_regs;
--      u8 num_ecc_strength;
--      u8 ecc_mode_shift;
--      u32 parity_bits;
--      int pg_irq_sel;
--};
--
--struct mtk_ecc {
--      struct device *dev;
--      const struct mtk_ecc_caps *caps;
--      void __iomem *regs;
--      struct clk *clk;
--
--      struct completion done;
--      struct mutex lock;
--      u32 sectors;
--
--      u8 *eccdata;
--};
--
--/* ecc strength that each IP supports */
--static const u8 ecc_strength_mt2701[] = {
--      4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
--      40, 44, 48, 52, 56, 60
--};
--
--static const u8 ecc_strength_mt2712[] = {
--      4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
--      40, 44, 48, 52, 56, 60, 68, 72, 80
--};
--
--static const u8 ecc_strength_mt7622[] = {
--      4, 6, 8, 10, 12
--};
--
--enum mtk_ecc_regs {
--      ECC_ENCPAR00,
--      ECC_ENCIRQ_EN,
--      ECC_ENCIRQ_STA,
--      ECC_DECDONE,
--      ECC_DECIRQ_EN,
--      ECC_DECIRQ_STA,
--};
--
--static int mt2701_ecc_regs[] = {
--      [ECC_ENCPAR00] =        0x10,
--      [ECC_ENCIRQ_EN] =       0x80,
--      [ECC_ENCIRQ_STA] =      0x84,
--      [ECC_DECDONE] =         0x124,
--      [ECC_DECIRQ_EN] =       0x200,
--      [ECC_DECIRQ_STA] =      0x204,
--};
--
--static int mt2712_ecc_regs[] = {
--      [ECC_ENCPAR00] =        0x300,
--      [ECC_ENCIRQ_EN] =       0x80,
--      [ECC_ENCIRQ_STA] =      0x84,
--      [ECC_DECDONE] =         0x124,
--      [ECC_DECIRQ_EN] =       0x200,
--      [ECC_DECIRQ_STA] =      0x204,
--};
--
--static int mt7622_ecc_regs[] = {
--      [ECC_ENCPAR00] =        0x10,
--      [ECC_ENCIRQ_EN] =       0x30,
--      [ECC_ENCIRQ_STA] =      0x34,
--      [ECC_DECDONE] =         0x11c,
--      [ECC_DECIRQ_EN] =       0x140,
--      [ECC_DECIRQ_STA] =      0x144,
--};
--
--static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
--                                   enum mtk_ecc_operation op)
--{
--      struct device *dev = ecc->dev;
--      u32 val;
--      int ret;
--
--      ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
--                                      val & ECC_IDLE_MASK,
--                                      10, ECC_TIMEOUT);
--      if (ret)
--              dev_warn(dev, "%s NOT idle\n",
--                       op == ECC_ENCODE ? "encoder" : "decoder");
--}
--
--static irqreturn_t mtk_ecc_irq(int irq, void *id)
--{
--      struct mtk_ecc *ecc = id;
--      u32 dec, enc;
--
--      dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
--                  & ECC_IRQ_EN;
--      if (dec) {
--              dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
--              if (dec & ecc->sectors) {
--                      /*
--                       * Clear decode IRQ status once again to ensure that
--                       * there will be no extra IRQ.
--                       */
--                      readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
--                      ecc->sectors = 0;
--                      complete(&ecc->done);
--              } else {
--                      return IRQ_HANDLED;
--              }
--      } else {
--              enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
--                    & ECC_IRQ_EN;
--              if (enc)
--                      complete(&ecc->done);
--              else
--                      return IRQ_NONE;
--      }
--
--      return IRQ_HANDLED;
--}
--
--static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
--{
--      u32 ecc_bit, dec_sz, enc_sz;
--      u32 reg, i;
--
--      for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
--              if (ecc->caps->ecc_strength[i] == config->strength)
--                      break;
--      }
--
--      if (i == ecc->caps->num_ecc_strength) {
--              dev_err(ecc->dev, "invalid ecc strength %d\n",
--                      config->strength);
--              return -EINVAL;
--      }
--
--      ecc_bit = i;
--
--      if (config->op == ECC_ENCODE) {
--              /* configure ECC encoder (in bits) */
--              enc_sz = config->len << 3;
--
--              reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
--              reg |= (enc_sz << ECC_MS_SHIFT);
--              writel(reg, ecc->regs + ECC_ENCCNFG);
--
--              if (config->mode != ECC_NFI_MODE)
--                      writel(lower_32_bits(config->addr),
--                             ecc->regs + ECC_ENCDIADDR);
--
--      } else {
--              /* configure ECC decoder (in bits) */
--              dec_sz = (config->len << 3) +
--                       config->strength * ecc->caps->parity_bits;
--
--              reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
--              reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
--              reg |= DEC_EMPTY_EN;
--              writel(reg, ecc->regs + ECC_DECCNFG);
--
--              if (config->sectors)
--                      ecc->sectors = 1 << (config->sectors - 1);
--      }
--
--      return 0;
--}
--
--void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
--                     int sectors)
--{
--      u32 offset, i, err;
--      u32 bitflips = 0;
--
--      stats->corrected = 0;
--      stats->failed = 0;
--
--      for (i = 0; i < sectors; i++) {
--              offset = (i >> 2) << 2;
--              err = readl(ecc->regs + ECC_DECENUM0 + offset);
--              err = err >> ((i % 4) * ecc->caps->err_shift);
--              err &= ecc->caps->err_mask;
--              if (err == ecc->caps->err_mask) {
--                      /* uncorrectable errors */
--                      stats->failed++;
--                      continue;
--              }
--
--              stats->corrected += err;
--              bitflips = max_t(u32, bitflips, err);
--      }
--
--      stats->bitflips = bitflips;
--}
--EXPORT_SYMBOL(mtk_ecc_get_stats);
--
--void mtk_ecc_release(struct mtk_ecc *ecc)
--{
--      clk_disable_unprepare(ecc->clk);
--      put_device(ecc->dev);
--}
--EXPORT_SYMBOL(mtk_ecc_release);
--
--static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
--{
--      mtk_ecc_wait_idle(ecc, ECC_ENCODE);
--      writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
--
--      mtk_ecc_wait_idle(ecc, ECC_DECODE);
--      writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
--}
--
--static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
--{
--      struct platform_device *pdev;
--      struct mtk_ecc *ecc;
--
--      pdev = of_find_device_by_node(np);
--      if (!pdev)
--              return ERR_PTR(-EPROBE_DEFER);
--
--      ecc = platform_get_drvdata(pdev);
--      if (!ecc) {
--              put_device(&pdev->dev);
--              return ERR_PTR(-EPROBE_DEFER);
--      }
--
--      clk_prepare_enable(ecc->clk);
--      mtk_ecc_hw_init(ecc);
--
--      return ecc;
--}
--
--struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
--{
--      struct mtk_ecc *ecc = NULL;
--      struct device_node *np;
--
--      np = of_parse_phandle(of_node, "ecc-engine", 0);
--      if (np) {
--              ecc = mtk_ecc_get(np);
--              of_node_put(np);
--      }
--
--      return ecc;
--}
--EXPORT_SYMBOL(of_mtk_ecc_get);
--
--int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
--{
--      enum mtk_ecc_operation op = config->op;
--      u16 reg_val;
--      int ret;
--
--      ret = mutex_lock_interruptible(&ecc->lock);
--      if (ret) {
--              dev_err(ecc->dev, "interrupted when attempting to lock\n");
--              return ret;
--      }
--
--      mtk_ecc_wait_idle(ecc, op);
--
--      ret = mtk_ecc_config(ecc, config);
--      if (ret) {
--              mutex_unlock(&ecc->lock);
--              return ret;
--      }
--
--      if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
--              init_completion(&ecc->done);
--              reg_val = ECC_IRQ_EN;
--              /*
--               * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
--               * means this chip can only generate one ecc irq during page
--               * read / write. If is 0, generate one ecc irq each ecc step.
--               */
--              if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
--                      reg_val |= ECC_PG_IRQ_SEL;
--              if (op == ECC_ENCODE)
--                      writew(reg_val, ecc->regs +
--                             ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
--              else
--                      writew(reg_val, ecc->regs +
--                             ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
--      }
--
--      writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
--
--      return 0;
--}
--EXPORT_SYMBOL(mtk_ecc_enable);
--
--void mtk_ecc_disable(struct mtk_ecc *ecc)
--{
--      enum mtk_ecc_operation op = ECC_ENCODE;
--
--      /* find out the running operation */
--      if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
--              op = ECC_DECODE;
--
--      /* disable it */
--      mtk_ecc_wait_idle(ecc, op);
--      if (op == ECC_DECODE) {
--              /*
--               * Clear decode IRQ status in case there is a timeout to wait
--               * decode IRQ.
--               */
--              readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
--              writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
--      } else {
--              writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
--      }
--
--      writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
--
--      mutex_unlock(&ecc->lock);
--}
--EXPORT_SYMBOL(mtk_ecc_disable);
--
--int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
--{
--      int ret;
--
--      ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
--      if (!ret) {
--              dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
--                      (op == ECC_ENCODE) ? "encoder" : "decoder");
--              return -ETIMEDOUT;
--      }
--
--      return 0;
--}
--EXPORT_SYMBOL(mtk_ecc_wait_done);
--
--int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
--                 u8 *data, u32 bytes)
--{
--      dma_addr_t addr;
--      u32 len;
--      int ret;
--
--      addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
--      ret = dma_mapping_error(ecc->dev, addr);
--      if (ret) {
--              dev_err(ecc->dev, "dma mapping error\n");
--              return -EINVAL;
--      }
--
--      config->op = ECC_ENCODE;
--      config->addr = addr;
--      ret = mtk_ecc_enable(ecc, config);
--      if (ret) {
--              dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
--              return ret;
--      }
--
--      ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
--      if (ret)
--              goto timeout;
--
--      mtk_ecc_wait_idle(ecc, ECC_ENCODE);
--
--      /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
--      len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
--
--      /* write the parity bytes generated by the ECC back to temp buffer */
--      __ioread32_copy(ecc->eccdata,
--                      ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
--                      round_up(len, 4));
--
--      /* copy into possibly unaligned OOB region with actual length */
--      memcpy(data + bytes, ecc->eccdata, len);
--timeout:
--
--      dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
--      mtk_ecc_disable(ecc);
--
--      return ret;
--}
--EXPORT_SYMBOL(mtk_ecc_encode);
--
--void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
--{
--      const u8 *ecc_strength = ecc->caps->ecc_strength;
--      int i;
--
--      for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
--              if (*p <= ecc_strength[i]) {
--                      if (!i)
--                              *p = ecc_strength[i];
--                      else if (*p != ecc_strength[i])
--                              *p = ecc_strength[i - 1];
--                      return;
--              }
--      }
--
--      *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
--}
--EXPORT_SYMBOL(mtk_ecc_adjust_strength);
--
--unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
--{
--      return ecc->caps->parity_bits;
--}
--EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
--
--static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
--      .err_mask = 0x3f,
--      .err_shift = 8,
--      .ecc_strength = ecc_strength_mt2701,
--      .ecc_regs = mt2701_ecc_regs,
--      .num_ecc_strength = 20,
--      .ecc_mode_shift = 5,
--      .parity_bits = 14,
--      .pg_irq_sel = 0,
--};
--
--static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
--      .err_mask = 0x7f,
--      .err_shift = 8,
--      .ecc_strength = ecc_strength_mt2712,
--      .ecc_regs = mt2712_ecc_regs,
--      .num_ecc_strength = 23,
--      .ecc_mode_shift = 5,
--      .parity_bits = 14,
--      .pg_irq_sel = 1,
--};
--
--static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
--      .err_mask = 0x1f,
--      .err_shift = 5,
--      .ecc_strength = ecc_strength_mt7622,
--      .ecc_regs = mt7622_ecc_regs,
--      .num_ecc_strength = 5,
--      .ecc_mode_shift = 4,
--      .parity_bits = 13,
--      .pg_irq_sel = 0,
--};
--
--static const struct of_device_id mtk_ecc_dt_match[] = {
--      {
--              .compatible = "mediatek,mt2701-ecc",
--              .data = &mtk_ecc_caps_mt2701,
--      }, {
--              .compatible = "mediatek,mt2712-ecc",
--              .data = &mtk_ecc_caps_mt2712,
--      }, {
--              .compatible = "mediatek,mt7622-ecc",
--              .data = &mtk_ecc_caps_mt7622,
--      },
--      {},
--};
--
--static int mtk_ecc_probe(struct platform_device *pdev)
--{
--      struct device *dev = &pdev->dev;
--      struct mtk_ecc *ecc;
--      struct resource *res;
--      u32 max_eccdata_size;
--      int irq, ret;
--
--      ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
--      if (!ecc)
--              return -ENOMEM;
--
--      ecc->caps = of_device_get_match_data(dev);
--
--      max_eccdata_size = ecc->caps->num_ecc_strength - 1;
--      max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
--      max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
--      max_eccdata_size = round_up(max_eccdata_size, 4);
--      ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
--      if (!ecc->eccdata)
--              return -ENOMEM;
--
--      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
--      ecc->regs = devm_ioremap_resource(dev, res);
--      if (IS_ERR(ecc->regs))
--              return PTR_ERR(ecc->regs);
--
--      ecc->clk = devm_clk_get(dev, NULL);
--      if (IS_ERR(ecc->clk)) {
--              dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
--              return PTR_ERR(ecc->clk);
--      }
--
--      irq = platform_get_irq(pdev, 0);
--      if (irq < 0)
--              return irq;
--
--      ret = dma_set_mask(dev, DMA_BIT_MASK(32));
--      if (ret) {
--              dev_err(dev, "failed to set DMA mask\n");
--              return ret;
--      }
--
--      ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
--      if (ret) {
--              dev_err(dev, "failed to request irq\n");
--              return -EINVAL;
--      }
--
--      ecc->dev = dev;
--      mutex_init(&ecc->lock);
--      platform_set_drvdata(pdev, ecc);
--      dev_info(dev, "probed\n");
--
--      return 0;
--}
--
--#ifdef CONFIG_PM_SLEEP
--static int mtk_ecc_suspend(struct device *dev)
--{
--      struct mtk_ecc *ecc = dev_get_drvdata(dev);
--
--      clk_disable_unprepare(ecc->clk);
--
--      return 0;
--}
--
--static int mtk_ecc_resume(struct device *dev)
--{
--      struct mtk_ecc *ecc = dev_get_drvdata(dev);
--      int ret;
--
--      ret = clk_prepare_enable(ecc->clk);
--      if (ret) {
--              dev_err(dev, "failed to enable clk\n");
--              return ret;
--      }
--
--      return 0;
--}
--
--static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
--#endif
--
--MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
--
--static struct platform_driver mtk_ecc_driver = {
--      .probe  = mtk_ecc_probe,
--      .driver = {
--              .name  = "mtk-ecc",
--              .of_match_table = of_match_ptr(mtk_ecc_dt_match),
--#ifdef CONFIG_PM_SLEEP
--              .pm = &mtk_ecc_pm_ops,
--#endif
--      },
--};
--
--module_platform_driver(mtk_ecc_driver);
--
--MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
--MODULE_DESCRIPTION("MTK Nand ECC Driver");
--MODULE_LICENSE("Dual MIT/GPL");
---- /dev/null
-+++ b/drivers/mtd/nand/ecc-mtk.c
-@@ -0,0 +1,598 @@
-+// SPDX-License-Identifier: GPL-2.0 OR MIT
-+/*
-+ * MTK ECC controller driver.
-+ * Copyright (C) 2016  MediaTek Inc.
-+ * Authors:   Xiaolei Li              <xiaolei.li@mediatek.com>
-+ *            Jorge Ramirez-Ortiz     <jorge.ramirez-ortiz@linaro.org>
-+ */
-+
-+#include <linux/platform_device.h>
-+#include <linux/dma-mapping.h>
-+#include <linux/interrupt.h>
-+#include <linux/clk.h>
-+#include <linux/module.h>
-+#include <linux/iopoll.h>
-+#include <linux/of.h>
-+#include <linux/of_platform.h>
-+#include <linux/mutex.h>
-+#include <linux/mtd/nand-ecc-mtk.h>
-+
-+#define ECC_IDLE_MASK         BIT(0)
-+#define ECC_IRQ_EN            BIT(0)
-+#define ECC_PG_IRQ_SEL                BIT(1)
-+#define ECC_OP_ENABLE         (1)
-+#define ECC_OP_DISABLE                (0)
-+
-+#define ECC_ENCCON            (0x00)
-+#define ECC_ENCCNFG           (0x04)
-+#define               ECC_MS_SHIFT            (16)
-+#define ECC_ENCDIADDR         (0x08)
-+#define ECC_ENCIDLE           (0x0C)
-+#define ECC_DECCON            (0x100)
-+#define ECC_DECCNFG           (0x104)
-+#define               DEC_EMPTY_EN            BIT(31)
-+#define               DEC_CNFG_CORRECT        (0x3 << 12)
-+#define ECC_DECIDLE           (0x10C)
-+#define ECC_DECENUM0          (0x114)
-+
-+#define ECC_TIMEOUT           (500000)
-+
-+#define ECC_IDLE_REG(op)      ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
-+#define ECC_CTL_REG(op)               ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
-+
-+struct mtk_ecc_caps {
-+      u32 err_mask;
-+      u32 err_shift;
-+      const u8 *ecc_strength;
-+      const u32 *ecc_regs;
-+      u8 num_ecc_strength;
-+      u8 ecc_mode_shift;
-+      u32 parity_bits;
-+      int pg_irq_sel;
-+};
-+
-+struct mtk_ecc {
-+      struct device *dev;
-+      const struct mtk_ecc_caps *caps;
-+      void __iomem *regs;
-+      struct clk *clk;
-+
-+      struct completion done;
-+      struct mutex lock;
-+      u32 sectors;
-+
-+      u8 *eccdata;
-+};
-+
-+/* ecc strength that each IP supports */
-+static const u8 ecc_strength_mt2701[] = {
-+      4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
-+      40, 44, 48, 52, 56, 60
-+};
-+
-+static const u8 ecc_strength_mt2712[] = {
-+      4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
-+      40, 44, 48, 52, 56, 60, 68, 72, 80
-+};
-+
-+static const u8 ecc_strength_mt7622[] = {
-+      4, 6, 8, 10, 12
-+};
-+
-+enum mtk_ecc_regs {
-+      ECC_ENCPAR00,
-+      ECC_ENCIRQ_EN,
-+      ECC_ENCIRQ_STA,
-+      ECC_DECDONE,
-+      ECC_DECIRQ_EN,
-+      ECC_DECIRQ_STA,
-+};
-+
-+static int mt2701_ecc_regs[] = {
-+      [ECC_ENCPAR00] =        0x10,
-+      [ECC_ENCIRQ_EN] =       0x80,
-+      [ECC_ENCIRQ_STA] =      0x84,
-+      [ECC_DECDONE] =         0x124,
-+      [ECC_DECIRQ_EN] =       0x200,
-+      [ECC_DECIRQ_STA] =      0x204,
-+};
-+
-+static int mt2712_ecc_regs[] = {
-+      [ECC_ENCPAR00] =        0x300,
-+      [ECC_ENCIRQ_EN] =       0x80,
-+      [ECC_ENCIRQ_STA] =      0x84,
-+      [ECC_DECDONE] =         0x124,
-+      [ECC_DECIRQ_EN] =       0x200,
-+      [ECC_DECIRQ_STA] =      0x204,
-+};
-+
-+static int mt7622_ecc_regs[] = {
-+      [ECC_ENCPAR00] =        0x10,
-+      [ECC_ENCIRQ_EN] =       0x30,
-+      [ECC_ENCIRQ_STA] =      0x34,
-+      [ECC_DECDONE] =         0x11c,
-+      [ECC_DECIRQ_EN] =       0x140,
-+      [ECC_DECIRQ_STA] =      0x144,
-+};
-+
-+static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
-+                                   enum mtk_ecc_operation op)
-+{
-+      struct device *dev = ecc->dev;
-+      u32 val;
-+      int ret;
-+
-+      ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
-+                                      val & ECC_IDLE_MASK,
-+                                      10, ECC_TIMEOUT);
-+      if (ret)
-+              dev_warn(dev, "%s NOT idle\n",
-+                       op == ECC_ENCODE ? "encoder" : "decoder");
-+}
-+
-+static irqreturn_t mtk_ecc_irq(int irq, void *id)
-+{
-+      struct mtk_ecc *ecc = id;
-+      u32 dec, enc;
-+
-+      dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
-+                  & ECC_IRQ_EN;
-+      if (dec) {
-+              dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
-+              if (dec & ecc->sectors) {
-+                      /*
-+                       * Clear decode IRQ status once again to ensure that
-+                       * there will be no extra IRQ.
-+                       */
-+                      readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
-+                      ecc->sectors = 0;
-+                      complete(&ecc->done);
-+              } else {
-+                      return IRQ_HANDLED;
-+              }
-+      } else {
-+              enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
-+                    & ECC_IRQ_EN;
-+              if (enc)
-+                      complete(&ecc->done);
-+              else
-+                      return IRQ_NONE;
-+      }
-+
-+      return IRQ_HANDLED;
-+}
-+
-+static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
-+{
-+      u32 ecc_bit, dec_sz, enc_sz;
-+      u32 reg, i;
-+
-+      for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
-+              if (ecc->caps->ecc_strength[i] == config->strength)
-+                      break;
-+      }
-+
-+      if (i == ecc->caps->num_ecc_strength) {
-+              dev_err(ecc->dev, "invalid ecc strength %d\n",
-+                      config->strength);
-+              return -EINVAL;
-+      }
-+
-+      ecc_bit = i;
-+
-+      if (config->op == ECC_ENCODE) {
-+              /* configure ECC encoder (in bits) */
-+              enc_sz = config->len << 3;
-+
-+              reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
-+              reg |= (enc_sz << ECC_MS_SHIFT);
-+              writel(reg, ecc->regs + ECC_ENCCNFG);
-+
-+              if (config->mode != ECC_NFI_MODE)
-+                      writel(lower_32_bits(config->addr),
-+                             ecc->regs + ECC_ENCDIADDR);
-+
-+      } else {
-+              /* configure ECC decoder (in bits) */
-+              dec_sz = (config->len << 3) +
-+                       config->strength * ecc->caps->parity_bits;
-+
-+              reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
-+              reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
-+              reg |= DEC_EMPTY_EN;
-+              writel(reg, ecc->regs + ECC_DECCNFG);
-+
-+              if (config->sectors)
-+                      ecc->sectors = 1 << (config->sectors - 1);
-+      }
-+
-+      return 0;
-+}
-+
-+void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
-+                     int sectors)
-+{
-+      u32 offset, i, err;
-+      u32 bitflips = 0;
-+
-+      stats->corrected = 0;
-+      stats->failed = 0;
-+
-+      for (i = 0; i < sectors; i++) {
-+              offset = (i >> 2) << 2;
-+              err = readl(ecc->regs + ECC_DECENUM0 + offset);
-+              err = err >> ((i % 4) * ecc->caps->err_shift);
-+              err &= ecc->caps->err_mask;
-+              if (err == ecc->caps->err_mask) {
-+                      /* uncorrectable errors */
-+                      stats->failed++;
-+                      continue;
-+              }
-+
-+              stats->corrected += err;
-+              bitflips = max_t(u32, bitflips, err);
-+      }
-+
-+      stats->bitflips = bitflips;
-+}
-+EXPORT_SYMBOL(mtk_ecc_get_stats);
-+
-+void mtk_ecc_release(struct mtk_ecc *ecc)
-+{
-+      clk_disable_unprepare(ecc->clk);
-+      put_device(ecc->dev);
-+}
-+EXPORT_SYMBOL(mtk_ecc_release);
-+
-+static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
-+{
-+      mtk_ecc_wait_idle(ecc, ECC_ENCODE);
-+      writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
-+
-+      mtk_ecc_wait_idle(ecc, ECC_DECODE);
-+      writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
-+}
-+
-+static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
-+{
-+      struct platform_device *pdev;
-+      struct mtk_ecc *ecc;
-+
-+      pdev = of_find_device_by_node(np);
-+      if (!pdev)
-+              return ERR_PTR(-EPROBE_DEFER);
-+
-+      ecc = platform_get_drvdata(pdev);
-+      if (!ecc) {
-+              put_device(&pdev->dev);
-+              return ERR_PTR(-EPROBE_DEFER);
-+      }
-+
-+      clk_prepare_enable(ecc->clk);
-+      mtk_ecc_hw_init(ecc);
-+
-+      return ecc;
-+}
-+
-+struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
-+{
-+      struct mtk_ecc *ecc = NULL;
-+      struct device_node *np;
-+
-+      np = of_parse_phandle(of_node, "ecc-engine", 0);
-+      if (np) {
-+              ecc = mtk_ecc_get(np);
-+              of_node_put(np);
-+      }
-+
-+      return ecc;
-+}
-+EXPORT_SYMBOL(of_mtk_ecc_get);
-+
-+int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
-+{
-+      enum mtk_ecc_operation op = config->op;
-+      u16 reg_val;
-+      int ret;
-+
-+      ret = mutex_lock_interruptible(&ecc->lock);
-+      if (ret) {
-+              dev_err(ecc->dev, "interrupted when attempting to lock\n");
-+              return ret;
-+      }
-+
-+      mtk_ecc_wait_idle(ecc, op);
-+
-+      ret = mtk_ecc_config(ecc, config);
-+      if (ret) {
-+              mutex_unlock(&ecc->lock);
-+              return ret;
-+      }
-+
-+      if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
-+              init_completion(&ecc->done);
-+              reg_val = ECC_IRQ_EN;
-+              /*
-+               * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
-+               * means this chip can only generate one ecc irq during page
-+               * read / write. If is 0, generate one ecc irq each ecc step.
-+               */
-+              if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
-+                      reg_val |= ECC_PG_IRQ_SEL;
-+              if (op == ECC_ENCODE)
-+                      writew(reg_val, ecc->regs +
-+                             ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
-+              else
-+                      writew(reg_val, ecc->regs +
-+                             ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
-+      }
-+
-+      writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
-+
-+      return 0;
-+}
-+EXPORT_SYMBOL(mtk_ecc_enable);
-+
-+void mtk_ecc_disable(struct mtk_ecc *ecc)
-+{
-+      enum mtk_ecc_operation op = ECC_ENCODE;
-+
-+      /* find out the running operation */
-+      if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
-+              op = ECC_DECODE;
-+
-+      /* disable it */
-+      mtk_ecc_wait_idle(ecc, op);
-+      if (op == ECC_DECODE) {
-+              /*
-+               * Clear decode IRQ status in case there is a timeout to wait
-+               * decode IRQ.
-+               */
-+              readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
-+              writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
-+      } else {
-+              writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
-+      }
-+
-+      writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
-+
-+      mutex_unlock(&ecc->lock);
-+}
-+EXPORT_SYMBOL(mtk_ecc_disable);
-+
-+int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
-+{
-+      int ret;
-+
-+      ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
-+      if (!ret) {
-+              dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
-+                      (op == ECC_ENCODE) ? "encoder" : "decoder");
-+              return -ETIMEDOUT;
-+      }
-+
-+      return 0;
-+}
-+EXPORT_SYMBOL(mtk_ecc_wait_done);
-+
-+int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
-+                 u8 *data, u32 bytes)
-+{
-+      dma_addr_t addr;
-+      u32 len;
-+      int ret;
-+
-+      addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
-+      ret = dma_mapping_error(ecc->dev, addr);
-+      if (ret) {
-+              dev_err(ecc->dev, "dma mapping error\n");
-+              return -EINVAL;
-+      }
-+
-+      config->op = ECC_ENCODE;
-+      config->addr = addr;
-+      ret = mtk_ecc_enable(ecc, config);
-+      if (ret) {
-+              dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
-+              return ret;
-+      }
-+
-+      ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
-+      if (ret)
-+              goto timeout;
-+
-+      mtk_ecc_wait_idle(ecc, ECC_ENCODE);
-+
-+      /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
-+      len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
-+
-+      /* write the parity bytes generated by the ECC back to temp buffer */
-+      __ioread32_copy(ecc->eccdata,
-+                      ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
-+                      round_up(len, 4));
-+
-+      /* copy into possibly unaligned OOB region with actual length */
-+      memcpy(data + bytes, ecc->eccdata, len);
-+timeout:
-+
-+      dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
-+      mtk_ecc_disable(ecc);
-+
-+      return ret;
-+}
-+EXPORT_SYMBOL(mtk_ecc_encode);
-+
-+void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
-+{
-+      const u8 *ecc_strength = ecc->caps->ecc_strength;
-+      int i;
-+
-+      for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
-+              if (*p <= ecc_strength[i]) {
-+                      if (!i)
-+                              *p = ecc_strength[i];
-+                      else if (*p != ecc_strength[i])
-+                              *p = ecc_strength[i - 1];
-+                      return;
-+              }
-+      }
-+
-+      *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
-+}
-+EXPORT_SYMBOL(mtk_ecc_adjust_strength);
-+
-+unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
-+{
-+      return ecc->caps->parity_bits;
-+}
-+EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
-+
-+static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
-+      .err_mask = 0x3f,
-+      .err_shift = 8,
-+      .ecc_strength = ecc_strength_mt2701,
-+      .ecc_regs = mt2701_ecc_regs,
-+      .num_ecc_strength = 20,
-+      .ecc_mode_shift = 5,
-+      .parity_bits = 14,
-+      .pg_irq_sel = 0,
-+};
-+
-+static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
-+      .err_mask = 0x7f,
-+      .err_shift = 8,
-+      .ecc_strength = ecc_strength_mt2712,
-+      .ecc_regs = mt2712_ecc_regs,
-+      .num_ecc_strength = 23,
-+      .ecc_mode_shift = 5,
-+      .parity_bits = 14,
-+      .pg_irq_sel = 1,
-+};
-+
-+static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
-+      .err_mask = 0x1f,
-+      .err_shift = 5,
-+      .ecc_strength = ecc_strength_mt7622,
-+      .ecc_regs = mt7622_ecc_regs,
-+      .num_ecc_strength = 5,
-+      .ecc_mode_shift = 4,
-+      .parity_bits = 13,
-+      .pg_irq_sel = 0,
-+};
-+
-+static const struct of_device_id mtk_ecc_dt_match[] = {
-+      {
-+              .compatible = "mediatek,mt2701-ecc",
-+              .data = &mtk_ecc_caps_mt2701,
-+      }, {
-+              .compatible = "mediatek,mt2712-ecc",
-+              .data = &mtk_ecc_caps_mt2712,
-+      }, {
-+              .compatible = "mediatek,mt7622-ecc",
-+              .data = &mtk_ecc_caps_mt7622,
-+      },
-+      {},
-+};
-+
-+static int mtk_ecc_probe(struct platform_device *pdev)
-+{
-+      struct device *dev = &pdev->dev;
-+      struct mtk_ecc *ecc;
-+      struct resource *res;
-+      u32 max_eccdata_size;
-+      int irq, ret;
-+
-+      ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
-+      if (!ecc)
-+              return -ENOMEM;
-+
-+      ecc->caps = of_device_get_match_data(dev);
-+
-+      max_eccdata_size = ecc->caps->num_ecc_strength - 1;
-+      max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
-+      max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
-+      max_eccdata_size = round_up(max_eccdata_size, 4);
-+      ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
-+      if (!ecc->eccdata)
-+              return -ENOMEM;
-+
-+      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-+      ecc->regs = devm_ioremap_resource(dev, res);
-+      if (IS_ERR(ecc->regs))
-+              return PTR_ERR(ecc->regs);
-+
-+      ecc->clk = devm_clk_get(dev, NULL);
-+      if (IS_ERR(ecc->clk)) {
-+              dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
-+              return PTR_ERR(ecc->clk);
-+      }
-+
-+      irq = platform_get_irq(pdev, 0);
-+      if (irq < 0)
-+              return irq;
-+
-+      ret = dma_set_mask(dev, DMA_BIT_MASK(32));
-+      if (ret) {
-+              dev_err(dev, "failed to set DMA mask\n");
-+              return ret;
-+      }
-+
-+      ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
-+      if (ret) {
-+              dev_err(dev, "failed to request irq\n");
-+              return -EINVAL;
-+      }
-+
-+      ecc->dev = dev;
-+      mutex_init(&ecc->lock);
-+      platform_set_drvdata(pdev, ecc);
-+      dev_info(dev, "probed\n");
-+
-+      return 0;
-+}
-+
-+#ifdef CONFIG_PM_SLEEP
-+static int mtk_ecc_suspend(struct device *dev)
-+{
-+      struct mtk_ecc *ecc = dev_get_drvdata(dev);
-+
-+      clk_disable_unprepare(ecc->clk);
-+
-+      return 0;
-+}
-+
-+static int mtk_ecc_resume(struct device *dev)
-+{
-+      struct mtk_ecc *ecc = dev_get_drvdata(dev);
-+      int ret;
-+
-+      ret = clk_prepare_enable(ecc->clk);
-+      if (ret) {
-+              dev_err(dev, "failed to enable clk\n");
-+              return ret;
-+      }
-+
-+      return 0;
-+}
-+
-+static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
-+#endif
-+
-+MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
-+
-+static struct platform_driver mtk_ecc_driver = {
-+      .probe  = mtk_ecc_probe,
-+      .driver = {
-+              .name  = "mtk-ecc",
-+              .of_match_table = of_match_ptr(mtk_ecc_dt_match),
-+#ifdef CONFIG_PM_SLEEP
-+              .pm = &mtk_ecc_pm_ops,
-+#endif
-+      },
-+};
-+
-+module_platform_driver(mtk_ecc_driver);
-+
-+MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
-+MODULE_DESCRIPTION("MTK Nand ECC Driver");
-+MODULE_LICENSE("Dual MIT/GPL");
---- a/drivers/mtd/nand/raw/Kconfig
-+++ b/drivers/mtd/nand/raw/Kconfig
-@@ -360,6 +360,7 @@ config MTD_NAND_QCOM
- config MTD_NAND_MTK
-       tristate "MTK NAND controller"
-+      depends on MTD_NAND_ECC_MEDIATEK
-       depends on ARCH_MEDIATEK || COMPILE_TEST
-       depends on HAS_IOMEM
-       help
---- a/drivers/mtd/nand/raw/Makefile
-+++ b/drivers/mtd/nand/raw/Makefile
-@@ -48,7 +48,7 @@ obj-$(CONFIG_MTD_NAND_SUNXI)         += sunxi_n
- obj-$(CONFIG_MTD_NAND_HISI504)                += hisi504_nand.o
- obj-$(CONFIG_MTD_NAND_BRCMNAND)               += brcmnand/
- obj-$(CONFIG_MTD_NAND_QCOM)           += qcom_nandc.o
--obj-$(CONFIG_MTD_NAND_MTK)            += mtk_ecc.o mtk_nand.o
-+obj-$(CONFIG_MTD_NAND_MTK)            += mtk_nand.o
- obj-$(CONFIG_MTD_NAND_MXIC)           += mxic_nand.o
- obj-$(CONFIG_MTD_NAND_TEGRA)          += tegra_nand.o
- obj-$(CONFIG_MTD_NAND_STM32_FMC2)     += stm32_fmc2_nand.o
---- a/drivers/mtd/nand/raw/mtk_nand.c
-+++ b/drivers/mtd/nand/raw/mtk_nand.c
-@@ -17,7 +17,7 @@
- #include <linux/iopoll.h>
- #include <linux/of.h>
- #include <linux/of_device.h>
--#include "mtk_ecc.h"
-+#include <linux/mtd/nand-ecc-mtk.h>
- /* NAND controller register definition */
- #define NFI_CNFG              (0x00)
---- a/drivers/mtd/nand/raw/mtk_ecc.h
-+++ /dev/null
-@@ -1,47 +0,0 @@
--/* SPDX-License-Identifier: GPL-2.0 OR MIT */
--/*
-- * MTK SDG1 ECC controller
-- *
-- * Copyright (c) 2016 Mediatek
-- * Authors:   Xiaolei Li              <xiaolei.li@mediatek.com>
-- *            Jorge Ramirez-Ortiz     <jorge.ramirez-ortiz@linaro.org>
-- */
--
--#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
--#define __DRIVERS_MTD_NAND_MTK_ECC_H__
--
--#include <linux/types.h>
--
--enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
--enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
--
--struct device_node;
--struct mtk_ecc;
--
--struct mtk_ecc_stats {
--      u32 corrected;
--      u32 bitflips;
--      u32 failed;
--};
--
--struct mtk_ecc_config {
--      enum mtk_ecc_operation op;
--      enum mtk_ecc_mode mode;
--      dma_addr_t addr;
--      u32 strength;
--      u32 sectors;
--      u32 len;
--};
--
--int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
--void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
--int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
--int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
--void mtk_ecc_disable(struct mtk_ecc *);
--void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
--unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc);
--
--struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
--void mtk_ecc_release(struct mtk_ecc *);
--
--#endif
---- /dev/null
-+++ b/include/linux/mtd/nand-ecc-mtk.h
-@@ -0,0 +1,47 @@
-+/* SPDX-License-Identifier: GPL-2.0 OR MIT */
-+/*
-+ * MTK SDG1 ECC controller
-+ *
-+ * Copyright (c) 2016 Mediatek
-+ * Authors:   Xiaolei Li              <xiaolei.li@mediatek.com>
-+ *            Jorge Ramirez-Ortiz     <jorge.ramirez-ortiz@linaro.org>
-+ */
-+
-+#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
-+#define __DRIVERS_MTD_NAND_MTK_ECC_H__
-+
-+#include <linux/types.h>
-+
-+enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
-+enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
-+
-+struct device_node;
-+struct mtk_ecc;
-+
-+struct mtk_ecc_stats {
-+      u32 corrected;
-+      u32 bitflips;
-+      u32 failed;
-+};
-+
-+struct mtk_ecc_config {
-+      enum mtk_ecc_operation op;
-+      enum mtk_ecc_mode mode;
-+      dma_addr_t addr;
-+      u32 strength;
-+      u32 sectors;
-+      u32 len;
-+};
-+
-+int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
-+void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
-+int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
-+int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
-+void mtk_ecc_disable(struct mtk_ecc *);
-+void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
-+unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc);
-+
-+struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
-+void mtk_ecc_release(struct mtk_ecc *);
-+
-+#endif
diff --git a/target/linux/mediatek/patches-5.15/120-11-v5.19-mtd-nand-make-mtk_ecc.c-a-separated-module.patch b/target/linux/mediatek/patches-5.15/120-11-v5.19-mtd-nand-make-mtk_ecc.c-a-separated-module.patch
new file mode 100644 (file)
index 0000000..fd9098e
--- /dev/null
@@ -0,0 +1,1383 @@
+From ebb9653d4a87c64fb679e4c339e867556dada719 Mon Sep 17 00:00:00 2001
+From: Chuanhong Guo <gch981213@gmail.com>
+Date: Tue, 22 Mar 2022 18:44:21 +0800
+Subject: [PATCH 11/15] mtd: nand: make mtk_ecc.c a separated module
+
+this code will be used in mediatek snfi spi-mem controller with
+pipelined ECC engine.
+
+Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
+(cherry picked from commit 316f47cec4ce5b81aa8006de202d8769c117a52d)
+---
+ drivers/mtd/nand/Kconfig                                   | 7 +++++++
+ drivers/mtd/nand/Makefile                                  | 1 +
+ drivers/mtd/nand/{raw/mtk_ecc.c => ecc-mtk.c}              | 3 +--
+ drivers/mtd/nand/raw/Kconfig                               | 1 +
+ drivers/mtd/nand/raw/Makefile                              | 2 +-
+ drivers/mtd/nand/raw/mtk_nand.c                            | 2 +-
+ .../nand/raw/mtk_ecc.h => include/linux/mtd/nand-ecc-mtk.h | 0
+ 7 files changed, 12 insertions(+), 4 deletions(-)
+ rename drivers/mtd/nand/{raw/mtk_ecc.c => ecc-mtk.c} (99%)
+ rename drivers/mtd/nand/raw/mtk_ecc.h => include/linux/mtd/nand-ecc-mtk.h (100%)
+
+--- a/drivers/mtd/nand/Kconfig
++++ b/drivers/mtd/nand/Kconfig
+@@ -50,6 +50,13 @@ config MTD_NAND_MTK_BMT
+       bool "Support MediaTek NAND Bad-block Management Table"
+       default n
++config MTD_NAND_ECC_MEDIATEK
++      tristate "Mediatek hardware ECC engine"
++      depends on HAS_IOMEM
++      select MTD_NAND_ECC
++      help
++        This enables support for the hardware ECC engine from Mediatek.
++
+ endmenu
+ endmenu
+--- a/drivers/mtd/nand/Makefile
++++ b/drivers/mtd/nand/Makefile
+@@ -3,6 +3,7 @@
+ nandcore-objs := core.o bbt.o
+ obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o
+ obj-$(CONFIG_MTD_NAND_MTK_BMT)        += mtk_bmt.o mtk_bmt_v2.o mtk_bmt_bbt.o mtk_bmt_nmbm.o
++obj-$(CONFIG_MTD_NAND_ECC_MEDIATEK) += ecc-mtk.o
+ obj-y += onenand/
+ obj-y += raw/
+--- a/drivers/mtd/nand/raw/mtk_ecc.c
++++ /dev/null
+@@ -1,599 +0,0 @@
+-// SPDX-License-Identifier: GPL-2.0 OR MIT
+-/*
+- * MTK ECC controller driver.
+- * Copyright (C) 2016  MediaTek Inc.
+- * Authors:   Xiaolei Li              <xiaolei.li@mediatek.com>
+- *            Jorge Ramirez-Ortiz     <jorge.ramirez-ortiz@linaro.org>
+- */
+-
+-#include <linux/platform_device.h>
+-#include <linux/dma-mapping.h>
+-#include <linux/interrupt.h>
+-#include <linux/clk.h>
+-#include <linux/module.h>
+-#include <linux/iopoll.h>
+-#include <linux/of.h>
+-#include <linux/of_platform.h>
+-#include <linux/mutex.h>
+-
+-#include "mtk_ecc.h"
+-
+-#define ECC_IDLE_MASK         BIT(0)
+-#define ECC_IRQ_EN            BIT(0)
+-#define ECC_PG_IRQ_SEL                BIT(1)
+-#define ECC_OP_ENABLE         (1)
+-#define ECC_OP_DISABLE                (0)
+-
+-#define ECC_ENCCON            (0x00)
+-#define ECC_ENCCNFG           (0x04)
+-#define               ECC_MS_SHIFT            (16)
+-#define ECC_ENCDIADDR         (0x08)
+-#define ECC_ENCIDLE           (0x0C)
+-#define ECC_DECCON            (0x100)
+-#define ECC_DECCNFG           (0x104)
+-#define               DEC_EMPTY_EN            BIT(31)
+-#define               DEC_CNFG_CORRECT        (0x3 << 12)
+-#define ECC_DECIDLE           (0x10C)
+-#define ECC_DECENUM0          (0x114)
+-
+-#define ECC_TIMEOUT           (500000)
+-
+-#define ECC_IDLE_REG(op)      ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
+-#define ECC_CTL_REG(op)               ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
+-
+-struct mtk_ecc_caps {
+-      u32 err_mask;
+-      u32 err_shift;
+-      const u8 *ecc_strength;
+-      const u32 *ecc_regs;
+-      u8 num_ecc_strength;
+-      u8 ecc_mode_shift;
+-      u32 parity_bits;
+-      int pg_irq_sel;
+-};
+-
+-struct mtk_ecc {
+-      struct device *dev;
+-      const struct mtk_ecc_caps *caps;
+-      void __iomem *regs;
+-      struct clk *clk;
+-
+-      struct completion done;
+-      struct mutex lock;
+-      u32 sectors;
+-
+-      u8 *eccdata;
+-};
+-
+-/* ecc strength that each IP supports */
+-static const u8 ecc_strength_mt2701[] = {
+-      4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
+-      40, 44, 48, 52, 56, 60
+-};
+-
+-static const u8 ecc_strength_mt2712[] = {
+-      4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
+-      40, 44, 48, 52, 56, 60, 68, 72, 80
+-};
+-
+-static const u8 ecc_strength_mt7622[] = {
+-      4, 6, 8, 10, 12
+-};
+-
+-enum mtk_ecc_regs {
+-      ECC_ENCPAR00,
+-      ECC_ENCIRQ_EN,
+-      ECC_ENCIRQ_STA,
+-      ECC_DECDONE,
+-      ECC_DECIRQ_EN,
+-      ECC_DECIRQ_STA,
+-};
+-
+-static int mt2701_ecc_regs[] = {
+-      [ECC_ENCPAR00] =        0x10,
+-      [ECC_ENCIRQ_EN] =       0x80,
+-      [ECC_ENCIRQ_STA] =      0x84,
+-      [ECC_DECDONE] =         0x124,
+-      [ECC_DECIRQ_EN] =       0x200,
+-      [ECC_DECIRQ_STA] =      0x204,
+-};
+-
+-static int mt2712_ecc_regs[] = {
+-      [ECC_ENCPAR00] =        0x300,
+-      [ECC_ENCIRQ_EN] =       0x80,
+-      [ECC_ENCIRQ_STA] =      0x84,
+-      [ECC_DECDONE] =         0x124,
+-      [ECC_DECIRQ_EN] =       0x200,
+-      [ECC_DECIRQ_STA] =      0x204,
+-};
+-
+-static int mt7622_ecc_regs[] = {
+-      [ECC_ENCPAR00] =        0x10,
+-      [ECC_ENCIRQ_EN] =       0x30,
+-      [ECC_ENCIRQ_STA] =      0x34,
+-      [ECC_DECDONE] =         0x11c,
+-      [ECC_DECIRQ_EN] =       0x140,
+-      [ECC_DECIRQ_STA] =      0x144,
+-};
+-
+-static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
+-                                   enum mtk_ecc_operation op)
+-{
+-      struct device *dev = ecc->dev;
+-      u32 val;
+-      int ret;
+-
+-      ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
+-                                      val & ECC_IDLE_MASK,
+-                                      10, ECC_TIMEOUT);
+-      if (ret)
+-              dev_warn(dev, "%s NOT idle\n",
+-                       op == ECC_ENCODE ? "encoder" : "decoder");
+-}
+-
+-static irqreturn_t mtk_ecc_irq(int irq, void *id)
+-{
+-      struct mtk_ecc *ecc = id;
+-      u32 dec, enc;
+-
+-      dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
+-                  & ECC_IRQ_EN;
+-      if (dec) {
+-              dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
+-              if (dec & ecc->sectors) {
+-                      /*
+-                       * Clear decode IRQ status once again to ensure that
+-                       * there will be no extra IRQ.
+-                       */
+-                      readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
+-                      ecc->sectors = 0;
+-                      complete(&ecc->done);
+-              } else {
+-                      return IRQ_HANDLED;
+-              }
+-      } else {
+-              enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
+-                    & ECC_IRQ_EN;
+-              if (enc)
+-                      complete(&ecc->done);
+-              else
+-                      return IRQ_NONE;
+-      }
+-
+-      return IRQ_HANDLED;
+-}
+-
+-static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
+-{
+-      u32 ecc_bit, dec_sz, enc_sz;
+-      u32 reg, i;
+-
+-      for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
+-              if (ecc->caps->ecc_strength[i] == config->strength)
+-                      break;
+-      }
+-
+-      if (i == ecc->caps->num_ecc_strength) {
+-              dev_err(ecc->dev, "invalid ecc strength %d\n",
+-                      config->strength);
+-              return -EINVAL;
+-      }
+-
+-      ecc_bit = i;
+-
+-      if (config->op == ECC_ENCODE) {
+-              /* configure ECC encoder (in bits) */
+-              enc_sz = config->len << 3;
+-
+-              reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
+-              reg |= (enc_sz << ECC_MS_SHIFT);
+-              writel(reg, ecc->regs + ECC_ENCCNFG);
+-
+-              if (config->mode != ECC_NFI_MODE)
+-                      writel(lower_32_bits(config->addr),
+-                             ecc->regs + ECC_ENCDIADDR);
+-
+-      } else {
+-              /* configure ECC decoder (in bits) */
+-              dec_sz = (config->len << 3) +
+-                       config->strength * ecc->caps->parity_bits;
+-
+-              reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
+-              reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
+-              reg |= DEC_EMPTY_EN;
+-              writel(reg, ecc->regs + ECC_DECCNFG);
+-
+-              if (config->sectors)
+-                      ecc->sectors = 1 << (config->sectors - 1);
+-      }
+-
+-      return 0;
+-}
+-
+-void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
+-                     int sectors)
+-{
+-      u32 offset, i, err;
+-      u32 bitflips = 0;
+-
+-      stats->corrected = 0;
+-      stats->failed = 0;
+-
+-      for (i = 0; i < sectors; i++) {
+-              offset = (i >> 2) << 2;
+-              err = readl(ecc->regs + ECC_DECENUM0 + offset);
+-              err = err >> ((i % 4) * ecc->caps->err_shift);
+-              err &= ecc->caps->err_mask;
+-              if (err == ecc->caps->err_mask) {
+-                      /* uncorrectable errors */
+-                      stats->failed++;
+-                      continue;
+-              }
+-
+-              stats->corrected += err;
+-              bitflips = max_t(u32, bitflips, err);
+-      }
+-
+-      stats->bitflips = bitflips;
+-}
+-EXPORT_SYMBOL(mtk_ecc_get_stats);
+-
+-void mtk_ecc_release(struct mtk_ecc *ecc)
+-{
+-      clk_disable_unprepare(ecc->clk);
+-      put_device(ecc->dev);
+-}
+-EXPORT_SYMBOL(mtk_ecc_release);
+-
+-static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
+-{
+-      mtk_ecc_wait_idle(ecc, ECC_ENCODE);
+-      writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
+-
+-      mtk_ecc_wait_idle(ecc, ECC_DECODE);
+-      writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
+-}
+-
+-static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
+-{
+-      struct platform_device *pdev;
+-      struct mtk_ecc *ecc;
+-
+-      pdev = of_find_device_by_node(np);
+-      if (!pdev)
+-              return ERR_PTR(-EPROBE_DEFER);
+-
+-      ecc = platform_get_drvdata(pdev);
+-      if (!ecc) {
+-              put_device(&pdev->dev);
+-              return ERR_PTR(-EPROBE_DEFER);
+-      }
+-
+-      clk_prepare_enable(ecc->clk);
+-      mtk_ecc_hw_init(ecc);
+-
+-      return ecc;
+-}
+-
+-struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
+-{
+-      struct mtk_ecc *ecc = NULL;
+-      struct device_node *np;
+-
+-      np = of_parse_phandle(of_node, "ecc-engine", 0);
+-      if (np) {
+-              ecc = mtk_ecc_get(np);
+-              of_node_put(np);
+-      }
+-
+-      return ecc;
+-}
+-EXPORT_SYMBOL(of_mtk_ecc_get);
+-
+-int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
+-{
+-      enum mtk_ecc_operation op = config->op;
+-      u16 reg_val;
+-      int ret;
+-
+-      ret = mutex_lock_interruptible(&ecc->lock);
+-      if (ret) {
+-              dev_err(ecc->dev, "interrupted when attempting to lock\n");
+-              return ret;
+-      }
+-
+-      mtk_ecc_wait_idle(ecc, op);
+-
+-      ret = mtk_ecc_config(ecc, config);
+-      if (ret) {
+-              mutex_unlock(&ecc->lock);
+-              return ret;
+-      }
+-
+-      if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
+-              init_completion(&ecc->done);
+-              reg_val = ECC_IRQ_EN;
+-              /*
+-               * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
+-               * means this chip can only generate one ecc irq during page
+-               * read / write. If is 0, generate one ecc irq each ecc step.
+-               */
+-              if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
+-                      reg_val |= ECC_PG_IRQ_SEL;
+-              if (op == ECC_ENCODE)
+-                      writew(reg_val, ecc->regs +
+-                             ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
+-              else
+-                      writew(reg_val, ecc->regs +
+-                             ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
+-      }
+-
+-      writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
+-
+-      return 0;
+-}
+-EXPORT_SYMBOL(mtk_ecc_enable);
+-
+-void mtk_ecc_disable(struct mtk_ecc *ecc)
+-{
+-      enum mtk_ecc_operation op = ECC_ENCODE;
+-
+-      /* find out the running operation */
+-      if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
+-              op = ECC_DECODE;
+-
+-      /* disable it */
+-      mtk_ecc_wait_idle(ecc, op);
+-      if (op == ECC_DECODE) {
+-              /*
+-               * Clear decode IRQ status in case there is a timeout to wait
+-               * decode IRQ.
+-               */
+-              readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
+-              writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
+-      } else {
+-              writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
+-      }
+-
+-      writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
+-
+-      mutex_unlock(&ecc->lock);
+-}
+-EXPORT_SYMBOL(mtk_ecc_disable);
+-
+-int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
+-{
+-      int ret;
+-
+-      ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
+-      if (!ret) {
+-              dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
+-                      (op == ECC_ENCODE) ? "encoder" : "decoder");
+-              return -ETIMEDOUT;
+-      }
+-
+-      return 0;
+-}
+-EXPORT_SYMBOL(mtk_ecc_wait_done);
+-
+-int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
+-                 u8 *data, u32 bytes)
+-{
+-      dma_addr_t addr;
+-      u32 len;
+-      int ret;
+-
+-      addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
+-      ret = dma_mapping_error(ecc->dev, addr);
+-      if (ret) {
+-              dev_err(ecc->dev, "dma mapping error\n");
+-              return -EINVAL;
+-      }
+-
+-      config->op = ECC_ENCODE;
+-      config->addr = addr;
+-      ret = mtk_ecc_enable(ecc, config);
+-      if (ret) {
+-              dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
+-              return ret;
+-      }
+-
+-      ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
+-      if (ret)
+-              goto timeout;
+-
+-      mtk_ecc_wait_idle(ecc, ECC_ENCODE);
+-
+-      /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
+-      len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
+-
+-      /* write the parity bytes generated by the ECC back to temp buffer */
+-      __ioread32_copy(ecc->eccdata,
+-                      ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
+-                      round_up(len, 4));
+-
+-      /* copy into possibly unaligned OOB region with actual length */
+-      memcpy(data + bytes, ecc->eccdata, len);
+-timeout:
+-
+-      dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
+-      mtk_ecc_disable(ecc);
+-
+-      return ret;
+-}
+-EXPORT_SYMBOL(mtk_ecc_encode);
+-
+-void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
+-{
+-      const u8 *ecc_strength = ecc->caps->ecc_strength;
+-      int i;
+-
+-      for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
+-              if (*p <= ecc_strength[i]) {
+-                      if (!i)
+-                              *p = ecc_strength[i];
+-                      else if (*p != ecc_strength[i])
+-                              *p = ecc_strength[i - 1];
+-                      return;
+-              }
+-      }
+-
+-      *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
+-}
+-EXPORT_SYMBOL(mtk_ecc_adjust_strength);
+-
+-unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
+-{
+-      return ecc->caps->parity_bits;
+-}
+-EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
+-
+-static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
+-      .err_mask = 0x3f,
+-      .err_shift = 8,
+-      .ecc_strength = ecc_strength_mt2701,
+-      .ecc_regs = mt2701_ecc_regs,
+-      .num_ecc_strength = 20,
+-      .ecc_mode_shift = 5,
+-      .parity_bits = 14,
+-      .pg_irq_sel = 0,
+-};
+-
+-static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
+-      .err_mask = 0x7f,
+-      .err_shift = 8,
+-      .ecc_strength = ecc_strength_mt2712,
+-      .ecc_regs = mt2712_ecc_regs,
+-      .num_ecc_strength = 23,
+-      .ecc_mode_shift = 5,
+-      .parity_bits = 14,
+-      .pg_irq_sel = 1,
+-};
+-
+-static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
+-      .err_mask = 0x1f,
+-      .err_shift = 5,
+-      .ecc_strength = ecc_strength_mt7622,
+-      .ecc_regs = mt7622_ecc_regs,
+-      .num_ecc_strength = 5,
+-      .ecc_mode_shift = 4,
+-      .parity_bits = 13,
+-      .pg_irq_sel = 0,
+-};
+-
+-static const struct of_device_id mtk_ecc_dt_match[] = {
+-      {
+-              .compatible = "mediatek,mt2701-ecc",
+-              .data = &mtk_ecc_caps_mt2701,
+-      }, {
+-              .compatible = "mediatek,mt2712-ecc",
+-              .data = &mtk_ecc_caps_mt2712,
+-      }, {
+-              .compatible = "mediatek,mt7622-ecc",
+-              .data = &mtk_ecc_caps_mt7622,
+-      },
+-      {},
+-};
+-
+-static int mtk_ecc_probe(struct platform_device *pdev)
+-{
+-      struct device *dev = &pdev->dev;
+-      struct mtk_ecc *ecc;
+-      struct resource *res;
+-      u32 max_eccdata_size;
+-      int irq, ret;
+-
+-      ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
+-      if (!ecc)
+-              return -ENOMEM;
+-
+-      ecc->caps = of_device_get_match_data(dev);
+-
+-      max_eccdata_size = ecc->caps->num_ecc_strength - 1;
+-      max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
+-      max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
+-      max_eccdata_size = round_up(max_eccdata_size, 4);
+-      ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
+-      if (!ecc->eccdata)
+-              return -ENOMEM;
+-
+-      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+-      ecc->regs = devm_ioremap_resource(dev, res);
+-      if (IS_ERR(ecc->regs))
+-              return PTR_ERR(ecc->regs);
+-
+-      ecc->clk = devm_clk_get(dev, NULL);
+-      if (IS_ERR(ecc->clk)) {
+-              dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
+-              return PTR_ERR(ecc->clk);
+-      }
+-
+-      irq = platform_get_irq(pdev, 0);
+-      if (irq < 0)
+-              return irq;
+-
+-      ret = dma_set_mask(dev, DMA_BIT_MASK(32));
+-      if (ret) {
+-              dev_err(dev, "failed to set DMA mask\n");
+-              return ret;
+-      }
+-
+-      ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
+-      if (ret) {
+-              dev_err(dev, "failed to request irq\n");
+-              return -EINVAL;
+-      }
+-
+-      ecc->dev = dev;
+-      mutex_init(&ecc->lock);
+-      platform_set_drvdata(pdev, ecc);
+-      dev_info(dev, "probed\n");
+-
+-      return 0;
+-}
+-
+-#ifdef CONFIG_PM_SLEEP
+-static int mtk_ecc_suspend(struct device *dev)
+-{
+-      struct mtk_ecc *ecc = dev_get_drvdata(dev);
+-
+-      clk_disable_unprepare(ecc->clk);
+-
+-      return 0;
+-}
+-
+-static int mtk_ecc_resume(struct device *dev)
+-{
+-      struct mtk_ecc *ecc = dev_get_drvdata(dev);
+-      int ret;
+-
+-      ret = clk_prepare_enable(ecc->clk);
+-      if (ret) {
+-              dev_err(dev, "failed to enable clk\n");
+-              return ret;
+-      }
+-
+-      return 0;
+-}
+-
+-static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
+-#endif
+-
+-MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
+-
+-static struct platform_driver mtk_ecc_driver = {
+-      .probe  = mtk_ecc_probe,
+-      .driver = {
+-              .name  = "mtk-ecc",
+-              .of_match_table = of_match_ptr(mtk_ecc_dt_match),
+-#ifdef CONFIG_PM_SLEEP
+-              .pm = &mtk_ecc_pm_ops,
+-#endif
+-      },
+-};
+-
+-module_platform_driver(mtk_ecc_driver);
+-
+-MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
+-MODULE_DESCRIPTION("MTK Nand ECC Driver");
+-MODULE_LICENSE("Dual MIT/GPL");
+--- /dev/null
++++ b/drivers/mtd/nand/ecc-mtk.c
+@@ -0,0 +1,598 @@
++// SPDX-License-Identifier: GPL-2.0 OR MIT
++/*
++ * MTK ECC controller driver.
++ * Copyright (C) 2016  MediaTek Inc.
++ * Authors:   Xiaolei Li              <xiaolei.li@mediatek.com>
++ *            Jorge Ramirez-Ortiz     <jorge.ramirez-ortiz@linaro.org>
++ */
++
++#include <linux/platform_device.h>
++#include <linux/dma-mapping.h>
++#include <linux/interrupt.h>
++#include <linux/clk.h>
++#include <linux/module.h>
++#include <linux/iopoll.h>
++#include <linux/of.h>
++#include <linux/of_platform.h>
++#include <linux/mutex.h>
++#include <linux/mtd/nand-ecc-mtk.h>
++
++#define ECC_IDLE_MASK         BIT(0)
++#define ECC_IRQ_EN            BIT(0)
++#define ECC_PG_IRQ_SEL                BIT(1)
++#define ECC_OP_ENABLE         (1)
++#define ECC_OP_DISABLE                (0)
++
++#define ECC_ENCCON            (0x00)
++#define ECC_ENCCNFG           (0x04)
++#define               ECC_MS_SHIFT            (16)
++#define ECC_ENCDIADDR         (0x08)
++#define ECC_ENCIDLE           (0x0C)
++#define ECC_DECCON            (0x100)
++#define ECC_DECCNFG           (0x104)
++#define               DEC_EMPTY_EN            BIT(31)
++#define               DEC_CNFG_CORRECT        (0x3 << 12)
++#define ECC_DECIDLE           (0x10C)
++#define ECC_DECENUM0          (0x114)
++
++#define ECC_TIMEOUT           (500000)
++
++#define ECC_IDLE_REG(op)      ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
++#define ECC_CTL_REG(op)               ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
++
++struct mtk_ecc_caps {
++      u32 err_mask;
++      u32 err_shift;
++      const u8 *ecc_strength;
++      const u32 *ecc_regs;
++      u8 num_ecc_strength;
++      u8 ecc_mode_shift;
++      u32 parity_bits;
++      int pg_irq_sel;
++};
++
++struct mtk_ecc {
++      struct device *dev;
++      const struct mtk_ecc_caps *caps;
++      void __iomem *regs;
++      struct clk *clk;
++
++      struct completion done;
++      struct mutex lock;
++      u32 sectors;
++
++      u8 *eccdata;
++};
++
++/* ecc strength that each IP supports */
++static const u8 ecc_strength_mt2701[] = {
++      4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
++      40, 44, 48, 52, 56, 60
++};
++
++static const u8 ecc_strength_mt2712[] = {
++      4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
++      40, 44, 48, 52, 56, 60, 68, 72, 80
++};
++
++static const u8 ecc_strength_mt7622[] = {
++      4, 6, 8, 10, 12
++};
++
++enum mtk_ecc_regs {
++      ECC_ENCPAR00,
++      ECC_ENCIRQ_EN,
++      ECC_ENCIRQ_STA,
++      ECC_DECDONE,
++      ECC_DECIRQ_EN,
++      ECC_DECIRQ_STA,
++};
++
++static int mt2701_ecc_regs[] = {
++      [ECC_ENCPAR00] =        0x10,
++      [ECC_ENCIRQ_EN] =       0x80,
++      [ECC_ENCIRQ_STA] =      0x84,
++      [ECC_DECDONE] =         0x124,
++      [ECC_DECIRQ_EN] =       0x200,
++      [ECC_DECIRQ_STA] =      0x204,
++};
++
++static int mt2712_ecc_regs[] = {
++      [ECC_ENCPAR00] =        0x300,
++      [ECC_ENCIRQ_EN] =       0x80,
++      [ECC_ENCIRQ_STA] =      0x84,
++      [ECC_DECDONE] =         0x124,
++      [ECC_DECIRQ_EN] =       0x200,
++      [ECC_DECIRQ_STA] =      0x204,
++};
++
++static int mt7622_ecc_regs[] = {
++      [ECC_ENCPAR00] =        0x10,
++      [ECC_ENCIRQ_EN] =       0x30,
++      [ECC_ENCIRQ_STA] =      0x34,
++      [ECC_DECDONE] =         0x11c,
++      [ECC_DECIRQ_EN] =       0x140,
++      [ECC_DECIRQ_STA] =      0x144,
++};
++
++static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
++                                   enum mtk_ecc_operation op)
++{
++      struct device *dev = ecc->dev;
++      u32 val;
++      int ret;
++
++      ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
++                                      val & ECC_IDLE_MASK,
++                                      10, ECC_TIMEOUT);
++      if (ret)
++              dev_warn(dev, "%s NOT idle\n",
++                       op == ECC_ENCODE ? "encoder" : "decoder");
++}
++
++static irqreturn_t mtk_ecc_irq(int irq, void *id)
++{
++      struct mtk_ecc *ecc = id;
++      u32 dec, enc;
++
++      dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
++                  & ECC_IRQ_EN;
++      if (dec) {
++              dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
++              if (dec & ecc->sectors) {
++                      /*
++                       * Clear decode IRQ status once again to ensure that
++                       * there will be no extra IRQ.
++                       */
++                      readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
++                      ecc->sectors = 0;
++                      complete(&ecc->done);
++              } else {
++                      return IRQ_HANDLED;
++              }
++      } else {
++              enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
++                    & ECC_IRQ_EN;
++              if (enc)
++                      complete(&ecc->done);
++              else
++                      return IRQ_NONE;
++      }
++
++      return IRQ_HANDLED;
++}
++
++static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
++{
++      u32 ecc_bit, dec_sz, enc_sz;
++      u32 reg, i;
++
++      for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
++              if (ecc->caps->ecc_strength[i] == config->strength)
++                      break;
++      }
++
++      if (i == ecc->caps->num_ecc_strength) {
++              dev_err(ecc->dev, "invalid ecc strength %d\n",
++                      config->strength);
++              return -EINVAL;
++      }
++
++      ecc_bit = i;
++
++      if (config->op == ECC_ENCODE) {
++              /* configure ECC encoder (in bits) */
++              enc_sz = config->len << 3;
++
++              reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
++              reg |= (enc_sz << ECC_MS_SHIFT);
++              writel(reg, ecc->regs + ECC_ENCCNFG);
++
++              if (config->mode != ECC_NFI_MODE)
++                      writel(lower_32_bits(config->addr),
++                             ecc->regs + ECC_ENCDIADDR);
++
++      } else {
++              /* configure ECC decoder (in bits) */
++              dec_sz = (config->len << 3) +
++                       config->strength * ecc->caps->parity_bits;
++
++              reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
++              reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
++              reg |= DEC_EMPTY_EN;
++              writel(reg, ecc->regs + ECC_DECCNFG);
++
++              if (config->sectors)
++                      ecc->sectors = 1 << (config->sectors - 1);
++      }
++
++      return 0;
++}
++
++void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
++                     int sectors)
++{
++      u32 offset, i, err;
++      u32 bitflips = 0;
++
++      stats->corrected = 0;
++      stats->failed = 0;
++
++      for (i = 0; i < sectors; i++) {
++              offset = (i >> 2) << 2;
++              err = readl(ecc->regs + ECC_DECENUM0 + offset);
++              err = err >> ((i % 4) * ecc->caps->err_shift);
++              err &= ecc->caps->err_mask;
++              if (err == ecc->caps->err_mask) {
++                      /* uncorrectable errors */
++                      stats->failed++;
++                      continue;
++              }
++
++              stats->corrected += err;
++              bitflips = max_t(u32, bitflips, err);
++      }
++
++      stats->bitflips = bitflips;
++}
++EXPORT_SYMBOL(mtk_ecc_get_stats);
++
++void mtk_ecc_release(struct mtk_ecc *ecc)
++{
++      clk_disable_unprepare(ecc->clk);
++      put_device(ecc->dev);
++}
++EXPORT_SYMBOL(mtk_ecc_release);
++
++static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
++{
++      mtk_ecc_wait_idle(ecc, ECC_ENCODE);
++      writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
++
++      mtk_ecc_wait_idle(ecc, ECC_DECODE);
++      writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
++}
++
++static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
++{
++      struct platform_device *pdev;
++      struct mtk_ecc *ecc;
++
++      pdev = of_find_device_by_node(np);
++      if (!pdev)
++              return ERR_PTR(-EPROBE_DEFER);
++
++      ecc = platform_get_drvdata(pdev);
++      if (!ecc) {
++              put_device(&pdev->dev);
++              return ERR_PTR(-EPROBE_DEFER);
++      }
++
++      clk_prepare_enable(ecc->clk);
++      mtk_ecc_hw_init(ecc);
++
++      return ecc;
++}
++
++struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
++{
++      struct mtk_ecc *ecc = NULL;
++      struct device_node *np;
++
++      np = of_parse_phandle(of_node, "ecc-engine", 0);
++      if (np) {
++              ecc = mtk_ecc_get(np);
++              of_node_put(np);
++      }
++
++      return ecc;
++}
++EXPORT_SYMBOL(of_mtk_ecc_get);
++
++int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
++{
++      enum mtk_ecc_operation op = config->op;
++      u16 reg_val;
++      int ret;
++
++      ret = mutex_lock_interruptible(&ecc->lock);
++      if (ret) {
++              dev_err(ecc->dev, "interrupted when attempting to lock\n");
++              return ret;
++      }
++
++      mtk_ecc_wait_idle(ecc, op);
++
++      ret = mtk_ecc_config(ecc, config);
++      if (ret) {
++              mutex_unlock(&ecc->lock);
++              return ret;
++      }
++
++      if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
++              init_completion(&ecc->done);
++              reg_val = ECC_IRQ_EN;
++              /*
++               * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
++               * means this chip can only generate one ecc irq during page
++               * read / write. If is 0, generate one ecc irq each ecc step.
++               */
++              if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
++                      reg_val |= ECC_PG_IRQ_SEL;
++              if (op == ECC_ENCODE)
++                      writew(reg_val, ecc->regs +
++                             ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
++              else
++                      writew(reg_val, ecc->regs +
++                             ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
++      }
++
++      writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
++
++      return 0;
++}
++EXPORT_SYMBOL(mtk_ecc_enable);
++
++void mtk_ecc_disable(struct mtk_ecc *ecc)
++{
++      enum mtk_ecc_operation op = ECC_ENCODE;
++
++      /* find out the running operation */
++      if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
++              op = ECC_DECODE;
++
++      /* disable it */
++      mtk_ecc_wait_idle(ecc, op);
++      if (op == ECC_DECODE) {
++              /*
++               * Clear decode IRQ status in case there is a timeout to wait
++               * decode IRQ.
++               */
++              readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
++              writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
++      } else {
++              writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
++      }
++
++      writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
++
++      mutex_unlock(&ecc->lock);
++}
++EXPORT_SYMBOL(mtk_ecc_disable);
++
++int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
++{
++      int ret;
++
++      ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
++      if (!ret) {
++              dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
++                      (op == ECC_ENCODE) ? "encoder" : "decoder");
++              return -ETIMEDOUT;
++      }
++
++      return 0;
++}
++EXPORT_SYMBOL(mtk_ecc_wait_done);
++
++int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
++                 u8 *data, u32 bytes)
++{
++      dma_addr_t addr;
++      u32 len;
++      int ret;
++
++      addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
++      ret = dma_mapping_error(ecc->dev, addr);
++      if (ret) {
++              dev_err(ecc->dev, "dma mapping error\n");
++              return -EINVAL;
++      }
++
++      config->op = ECC_ENCODE;
++      config->addr = addr;
++      ret = mtk_ecc_enable(ecc, config);
++      if (ret) {
++              dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
++              return ret;
++      }
++
++      ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
++      if (ret)
++              goto timeout;
++
++      mtk_ecc_wait_idle(ecc, ECC_ENCODE);
++
++      /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
++      len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
++
++      /* write the parity bytes generated by the ECC back to temp buffer */
++      __ioread32_copy(ecc->eccdata,
++                      ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
++                      round_up(len, 4));
++
++      /* copy into possibly unaligned OOB region with actual length */
++      memcpy(data + bytes, ecc->eccdata, len);
++timeout:
++
++      dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
++      mtk_ecc_disable(ecc);
++
++      return ret;
++}
++EXPORT_SYMBOL(mtk_ecc_encode);
++
++void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
++{
++      const u8 *ecc_strength = ecc->caps->ecc_strength;
++      int i;
++
++      for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
++              if (*p <= ecc_strength[i]) {
++                      if (!i)
++                              *p = ecc_strength[i];
++                      else if (*p != ecc_strength[i])
++                              *p = ecc_strength[i - 1];
++                      return;
++              }
++      }
++
++      *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
++}
++EXPORT_SYMBOL(mtk_ecc_adjust_strength);
++
++unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
++{
++      return ecc->caps->parity_bits;
++}
++EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
++
++static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
++      .err_mask = 0x3f,
++      .err_shift = 8,
++      .ecc_strength = ecc_strength_mt2701,
++      .ecc_regs = mt2701_ecc_regs,
++      .num_ecc_strength = 20,
++      .ecc_mode_shift = 5,
++      .parity_bits = 14,
++      .pg_irq_sel = 0,
++};
++
++static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
++      .err_mask = 0x7f,
++      .err_shift = 8,
++      .ecc_strength = ecc_strength_mt2712,
++      .ecc_regs = mt2712_ecc_regs,
++      .num_ecc_strength = 23,
++      .ecc_mode_shift = 5,
++      .parity_bits = 14,
++      .pg_irq_sel = 1,
++};
++
++static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
++      .err_mask = 0x1f,
++      .err_shift = 5,
++      .ecc_strength = ecc_strength_mt7622,
++      .ecc_regs = mt7622_ecc_regs,
++      .num_ecc_strength = 5,
++      .ecc_mode_shift = 4,
++      .parity_bits = 13,
++      .pg_irq_sel = 0,
++};
++
++static const struct of_device_id mtk_ecc_dt_match[] = {
++      {
++              .compatible = "mediatek,mt2701-ecc",
++              .data = &mtk_ecc_caps_mt2701,
++      }, {
++              .compatible = "mediatek,mt2712-ecc",
++              .data = &mtk_ecc_caps_mt2712,
++      }, {
++              .compatible = "mediatek,mt7622-ecc",
++              .data = &mtk_ecc_caps_mt7622,
++      },
++      {},
++};
++
++static int mtk_ecc_probe(struct platform_device *pdev)
++{
++      struct device *dev = &pdev->dev;
++      struct mtk_ecc *ecc;
++      struct resource *res;
++      u32 max_eccdata_size;
++      int irq, ret;
++
++      ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
++      if (!ecc)
++              return -ENOMEM;
++
++      ecc->caps = of_device_get_match_data(dev);
++
++      max_eccdata_size = ecc->caps->num_ecc_strength - 1;
++      max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
++      max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
++      max_eccdata_size = round_up(max_eccdata_size, 4);
++      ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
++      if (!ecc->eccdata)
++              return -ENOMEM;
++
++      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++      ecc->regs = devm_ioremap_resource(dev, res);
++      if (IS_ERR(ecc->regs))
++              return PTR_ERR(ecc->regs);
++
++      ecc->clk = devm_clk_get(dev, NULL);
++      if (IS_ERR(ecc->clk)) {
++              dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
++              return PTR_ERR(ecc->clk);
++      }
++
++      irq = platform_get_irq(pdev, 0);
++      if (irq < 0)
++              return irq;
++
++      ret = dma_set_mask(dev, DMA_BIT_MASK(32));
++      if (ret) {
++              dev_err(dev, "failed to set DMA mask\n");
++              return ret;
++      }
++
++      ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
++      if (ret) {
++              dev_err(dev, "failed to request irq\n");
++              return -EINVAL;
++      }
++
++      ecc->dev = dev;
++      mutex_init(&ecc->lock);
++      platform_set_drvdata(pdev, ecc);
++      dev_info(dev, "probed\n");
++
++      return 0;
++}
++
++#ifdef CONFIG_PM_SLEEP
++static int mtk_ecc_suspend(struct device *dev)
++{
++      struct mtk_ecc *ecc = dev_get_drvdata(dev);
++
++      clk_disable_unprepare(ecc->clk);
++
++      return 0;
++}
++
++static int mtk_ecc_resume(struct device *dev)
++{
++      struct mtk_ecc *ecc = dev_get_drvdata(dev);
++      int ret;
++
++      ret = clk_prepare_enable(ecc->clk);
++      if (ret) {
++              dev_err(dev, "failed to enable clk\n");
++              return ret;
++      }
++
++      return 0;
++}
++
++static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
++#endif
++
++MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
++
++static struct platform_driver mtk_ecc_driver = {
++      .probe  = mtk_ecc_probe,
++      .driver = {
++              .name  = "mtk-ecc",
++              .of_match_table = of_match_ptr(mtk_ecc_dt_match),
++#ifdef CONFIG_PM_SLEEP
++              .pm = &mtk_ecc_pm_ops,
++#endif
++      },
++};
++
++module_platform_driver(mtk_ecc_driver);
++
++MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
++MODULE_DESCRIPTION("MTK Nand ECC Driver");
++MODULE_LICENSE("Dual MIT/GPL");
+--- a/drivers/mtd/nand/raw/Kconfig
++++ b/drivers/mtd/nand/raw/Kconfig
+@@ -360,6 +360,7 @@ config MTD_NAND_QCOM
+ config MTD_NAND_MTK
+       tristate "MTK NAND controller"
++      depends on MTD_NAND_ECC_MEDIATEK
+       depends on ARCH_MEDIATEK || COMPILE_TEST
+       depends on HAS_IOMEM
+       help
+--- a/drivers/mtd/nand/raw/Makefile
++++ b/drivers/mtd/nand/raw/Makefile
+@@ -48,7 +48,7 @@ obj-$(CONFIG_MTD_NAND_SUNXI)         += sunxi_n
+ obj-$(CONFIG_MTD_NAND_HISI504)                += hisi504_nand.o
+ obj-$(CONFIG_MTD_NAND_BRCMNAND)               += brcmnand/
+ obj-$(CONFIG_MTD_NAND_QCOM)           += qcom_nandc.o
+-obj-$(CONFIG_MTD_NAND_MTK)            += mtk_ecc.o mtk_nand.o
++obj-$(CONFIG_MTD_NAND_MTK)            += mtk_nand.o
+ obj-$(CONFIG_MTD_NAND_MXIC)           += mxic_nand.o
+ obj-$(CONFIG_MTD_NAND_TEGRA)          += tegra_nand.o
+ obj-$(CONFIG_MTD_NAND_STM32_FMC2)     += stm32_fmc2_nand.o
+--- a/drivers/mtd/nand/raw/mtk_nand.c
++++ b/drivers/mtd/nand/raw/mtk_nand.c
+@@ -17,7 +17,7 @@
+ #include <linux/iopoll.h>
+ #include <linux/of.h>
+ #include <linux/of_device.h>
+-#include "mtk_ecc.h"
++#include <linux/mtd/nand-ecc-mtk.h>
+ /* NAND controller register definition */
+ #define NFI_CNFG              (0x00)
+--- a/drivers/mtd/nand/raw/mtk_ecc.h
++++ /dev/null
+@@ -1,47 +0,0 @@
+-/* SPDX-License-Identifier: GPL-2.0 OR MIT */
+-/*
+- * MTK SDG1 ECC controller
+- *
+- * Copyright (c) 2016 Mediatek
+- * Authors:   Xiaolei Li              <xiaolei.li@mediatek.com>
+- *            Jorge Ramirez-Ortiz     <jorge.ramirez-ortiz@linaro.org>
+- */
+-
+-#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
+-#define __DRIVERS_MTD_NAND_MTK_ECC_H__
+-
+-#include <linux/types.h>
+-
+-enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
+-enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
+-
+-struct device_node;
+-struct mtk_ecc;
+-
+-struct mtk_ecc_stats {
+-      u32 corrected;
+-      u32 bitflips;
+-      u32 failed;
+-};
+-
+-struct mtk_ecc_config {
+-      enum mtk_ecc_operation op;
+-      enum mtk_ecc_mode mode;
+-      dma_addr_t addr;
+-      u32 strength;
+-      u32 sectors;
+-      u32 len;
+-};
+-
+-int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
+-void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
+-int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
+-int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
+-void mtk_ecc_disable(struct mtk_ecc *);
+-void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
+-unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc);
+-
+-struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
+-void mtk_ecc_release(struct mtk_ecc *);
+-
+-#endif
+--- /dev/null
++++ b/include/linux/mtd/nand-ecc-mtk.h
+@@ -0,0 +1,47 @@
++/* SPDX-License-Identifier: GPL-2.0 OR MIT */
++/*
++ * MTK SDG1 ECC controller
++ *
++ * Copyright (c) 2016 Mediatek
++ * Authors:   Xiaolei Li              <xiaolei.li@mediatek.com>
++ *            Jorge Ramirez-Ortiz     <jorge.ramirez-ortiz@linaro.org>
++ */
++
++#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
++#define __DRIVERS_MTD_NAND_MTK_ECC_H__
++
++#include <linux/types.h>
++
++enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
++enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
++
++struct device_node;
++struct mtk_ecc;
++
++struct mtk_ecc_stats {
++      u32 corrected;
++      u32 bitflips;
++      u32 failed;
++};
++
++struct mtk_ecc_config {
++      enum mtk_ecc_operation op;
++      enum mtk_ecc_mode mode;
++      dma_addr_t addr;
++      u32 strength;
++      u32 sectors;
++      u32 len;
++};
++
++int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
++void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
++int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
++int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
++void mtk_ecc_disable(struct mtk_ecc *);
++void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
++unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc);
++
++struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
++void mtk_ecc_release(struct mtk_ecc *);
++
++#endif
diff --git a/target/linux/mediatek/patches-5.15/120-12-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch b/target/linux/mediatek/patches-5.15/120-12-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch
deleted file mode 100644 (file)
index b77b4ad..0000000
+++ /dev/null
@@ -1,1537 +0,0 @@
-From 8170bafa8936e9fbfdce992932a63bd20eca3bc3 Mon Sep 17 00:00:00 2001
-From: Chuanhong Guo <gch981213@gmail.com>
-Date: Sat, 2 Apr 2022 10:16:11 +0800
-Subject: [PATCH v6 2/5] spi: add driver for MTK SPI NAND Flash Interface
-
-This driver implements support for the SPI-NAND mode of MTK NAND Flash
-Interface as a SPI-MEM controller with pipelined ECC capability.
-
-Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
-Tested-by: Daniel Golle <daniel@makrotopia.org>
----
-Change since v1:
-  fix CI warnings
-
-Changes since v2:
- use streamed DMA api to avoid an extra memory copy during read
- make ECC engine config a per-nand context
- take user-requested ECC strength into account
-
-Change since v3: none
-Changes since v4:
- fix missing OOB write
- print page format with dev_dbg
- replace uint*_t copied from vendor driver with u*
-
-Changes since v5:
- add missing nfi mode register configuration in probe
- fix an off-by-one bug in mtk_snand_mac_io
-
- drivers/spi/Kconfig        |   10 +
- drivers/spi/Makefile       |    1 +
- drivers/spi/spi-mtk-snfi.c | 1470 ++++++++++++++++++++++++++++++++++++
- 3 files changed, 1481 insertions(+)
- create mode 100644 drivers/spi/spi-mtk-snfi.c
-
---- a/drivers/spi/Kconfig
-+++ b/drivers/spi/Kconfig
-@@ -530,6 +530,16 @@ config SPI_MTK_NOR
-         SPI interface as well as several SPI NOR specific instructions
-         via SPI MEM interface.
-+config SPI_MTK_SNFI
-+      tristate "MediaTek SPI NAND Flash Interface"
-+      depends on ARCH_MEDIATEK || COMPILE_TEST
-+      depends on MTD_NAND_ECC_MEDIATEK
-+      help
-+        This enables support for SPI-NAND mode on the MediaTek NAND
-+        Flash Interface found on MediaTek ARM SoCs. This controller
-+        is implemented as a SPI-MEM controller with pipelined ECC
-+        capcability.
-+
- config SPI_NPCM_FIU
-       tristate "Nuvoton NPCM FLASH Interface Unit"
-       depends on ARCH_NPCM || COMPILE_TEST
---- a/drivers/spi/Makefile
-+++ b/drivers/spi/Makefile
-@@ -71,6 +71,7 @@ obj-$(CONFIG_SPI_MPC52xx)            += spi-mpc52x
- obj-$(CONFIG_SPI_MT65XX)                += spi-mt65xx.o
- obj-$(CONFIG_SPI_MT7621)              += spi-mt7621.o
- obj-$(CONFIG_SPI_MTK_NOR)             += spi-mtk-nor.o
-+obj-$(CONFIG_SPI_MTK_SNFI)            += spi-mtk-snfi.o
- obj-$(CONFIG_SPI_MXIC)                        += spi-mxic.o
- obj-$(CONFIG_SPI_MXS)                 += spi-mxs.o
- obj-$(CONFIG_SPI_NPCM_FIU)            += spi-npcm-fiu.o
---- /dev/null
-+++ b/drivers/spi/spi-mtk-snfi.c
-@@ -0,0 +1,1470 @@
-+// SPDX-License-Identifier: GPL-2.0
-+//
-+// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
-+//
-+// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
-+//
-+// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
-+//
-+// Copyright (C) 2020 MediaTek Inc.
-+// Author: Weijie Gao <weijie.gao@mediatek.com>
-+//
-+// This controller organize the page data as several interleaved sectors
-+// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
-+// +---------+------+------+---------+------+------+-----+
-+// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
-+// +---------+------+------+---------+------+------+-----+
-+// With auto-format turned on, DMA only returns this part:
-+// +---------+---------+-----+
-+// | Sector1 | Sector2 | ... |
-+// +---------+---------+-----+
-+// The FDM data will be filled to the registers, and ECC parity data isn't
-+// accessible.
-+// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
-+// in it's original order shown in the first table. ECC can't be turned on when
-+// auto-format is off.
-+//
-+// However, Linux SPI-NAND driver expects the data returned as:
-+// +------+-----+
-+// | Page | OOB |
-+// +------+-----+
-+// where the page data is continuously stored instead of interleaved.
-+// So we assume all instructions matching the page_op template between ECC
-+// prepare_io_req and finish_io_req are for page cache r/w.
-+// Here's how this spi-mem driver operates when reading:
-+//  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
-+//  2. Perform page ops and let the controller fill the DMA bounce buffer with
-+//     de-interleaved sector data and set FDM registers.
-+//  3. Return the data as:
-+//     +---------+---------+-----+------+------+-----+
-+//     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
-+//     +---------+---------+-----+------+------+-----+
-+//  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
-+//     read the data with auto-format off into the bounce buffer and copy
-+//     needed data to the buffer specified in the request.
-+//
-+// Write requests operates in a similar manner.
-+// As a limitation of this strategy, we won't be able to access any ECC parity
-+// data at all in Linux.
-+//
-+// Here's the bad block mark situation on MTK chips:
-+// In older chips like mt7622, MTK uses the first FDM byte in the first sector
-+// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
-+// in the returned data, which is the BBM position expected by kernel. However,
-+// the conventional bad block mark is the first byte of the OOB, which is part
-+// of the last sector data in the interleaved layout. Instead of fixing their
-+// hardware, MTK decided to address this inconsistency in software. On these
-+// later chips, the BootROM expects the following:
-+// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
-+//    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
-+// 2. The original byte stored at that position in the DMA buffer will be stored
-+//    as the first byte of the FDM section in the last sector.
-+// We can't disagree with the BootROM, so after de-interleaving, we need to
-+// perform the following swaps in read:
-+// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
-+//    which is the expected BBM position by kernel.
-+// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
-+//    [page_size - (nsectors - 1) * spare_size]
-+// Similarly, when writing, we need to perform swaps in the other direction.
-+
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/init.h>
-+#include <linux/device.h>
-+#include <linux/mutex.h>
-+#include <linux/clk.h>
-+#include <linux/interrupt.h>
-+#include <linux/dma-mapping.h>
-+#include <linux/iopoll.h>
-+#include <linux/of_platform.h>
-+#include <linux/mtd/nand-ecc-mtk.h>
-+#include <linux/spi/spi.h>
-+#include <linux/spi/spi-mem.h>
-+#include <linux/mtd/nand.h>
-+
-+// NFI registers
-+#define NFI_CNFG 0x000
-+#define CNFG_OP_MODE_S 12
-+#define CNFG_OP_MODE_CUST 6
-+#define CNFG_OP_MODE_PROGRAM 3
-+#define CNFG_AUTO_FMT_EN BIT(9)
-+#define CNFG_HW_ECC_EN BIT(8)
-+#define CNFG_DMA_BURST_EN BIT(2)
-+#define CNFG_READ_MODE BIT(1)
-+#define CNFG_DMA_MODE BIT(0)
-+
-+#define NFI_PAGEFMT 0x0004
-+#define NFI_SPARE_SIZE_LS_S 16
-+#define NFI_FDM_ECC_NUM_S 12
-+#define NFI_FDM_NUM_S 8
-+#define NFI_SPARE_SIZE_S 4
-+#define NFI_SEC_SEL_512 BIT(2)
-+#define NFI_PAGE_SIZE_S 0
-+#define NFI_PAGE_SIZE_512_2K 0
-+#define NFI_PAGE_SIZE_2K_4K 1
-+#define NFI_PAGE_SIZE_4K_8K 2
-+#define NFI_PAGE_SIZE_8K_16K 3
-+
-+#define NFI_CON 0x008
-+#define CON_SEC_NUM_S 12
-+#define CON_BWR BIT(9)
-+#define CON_BRD BIT(8)
-+#define CON_NFI_RST BIT(1)
-+#define CON_FIFO_FLUSH BIT(0)
-+
-+#define NFI_INTR_EN 0x010
-+#define NFI_INTR_STA 0x014
-+#define NFI_IRQ_INTR_EN BIT(31)
-+#define NFI_IRQ_CUS_READ BIT(8)
-+#define NFI_IRQ_CUS_PG BIT(7)
-+
-+#define NFI_CMD 0x020
-+#define NFI_CMD_DUMMY_READ 0x00
-+#define NFI_CMD_DUMMY_WRITE 0x80
-+
-+#define NFI_STRDATA 0x040
-+#define STR_DATA BIT(0)
-+
-+#define NFI_STA 0x060
-+#define NFI_NAND_FSM GENMASK(28, 24)
-+#define NFI_FSM GENMASK(19, 16)
-+#define READ_EMPTY BIT(12)
-+
-+#define NFI_FIFOSTA 0x064
-+#define FIFO_WR_REMAIN_S 8
-+#define FIFO_RD_REMAIN_S 0
-+
-+#define NFI_ADDRCNTR 0x070
-+#define SEC_CNTR GENMASK(16, 12)
-+#define SEC_CNTR_S 12
-+#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
-+
-+#define NFI_STRADDR 0x080
-+
-+#define NFI_BYTELEN 0x084
-+#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
-+
-+#define NFI_FDM0L 0x0a0
-+#define NFI_FDM0M 0x0a4
-+#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
-+#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
-+
-+#define NFI_DEBUG_CON1 0x220
-+#define WBUF_EN BIT(2)
-+
-+#define NFI_MASTERSTA 0x224
-+#define MAS_ADDR GENMASK(11, 9)
-+#define MAS_RD GENMASK(8, 6)
-+#define MAS_WR GENMASK(5, 3)
-+#define MAS_RDDLY GENMASK(2, 0)
-+#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
-+
-+// SNFI registers
-+#define SNF_MAC_CTL 0x500
-+#define MAC_XIO_SEL BIT(4)
-+#define SF_MAC_EN BIT(3)
-+#define SF_TRIG BIT(2)
-+#define WIP_READY BIT(1)
-+#define WIP BIT(0)
-+
-+#define SNF_MAC_OUTL 0x504
-+#define SNF_MAC_INL 0x508
-+
-+#define SNF_RD_CTL2 0x510
-+#define DATA_READ_DUMMY_S 8
-+#define DATA_READ_MAX_DUMMY 0xf
-+#define DATA_READ_CMD_S 0
-+
-+#define SNF_RD_CTL3 0x514
-+
-+#define SNF_PG_CTL1 0x524
-+#define PG_LOAD_CMD_S 8
-+
-+#define SNF_PG_CTL2 0x528
-+
-+#define SNF_MISC_CTL 0x538
-+#define SW_RST BIT(28)
-+#define FIFO_RD_LTC_S 25
-+#define PG_LOAD_X4_EN BIT(20)
-+#define DATA_READ_MODE_S 16
-+#define DATA_READ_MODE GENMASK(18, 16)
-+#define DATA_READ_MODE_X1 0
-+#define DATA_READ_MODE_X2 1
-+#define DATA_READ_MODE_X4 2
-+#define DATA_READ_MODE_DUAL 5
-+#define DATA_READ_MODE_QUAD 6
-+#define PG_LOAD_CUSTOM_EN BIT(7)
-+#define DATARD_CUSTOM_EN BIT(6)
-+#define CS_DESELECT_CYC_S 0
-+
-+#define SNF_MISC_CTL2 0x53c
-+#define PROGRAM_LOAD_BYTE_NUM_S 16
-+#define READ_DATA_BYTE_NUM_S 11
-+
-+#define SNF_DLY_CTL3 0x548
-+#define SFCK_SAM_DLY_S 0
-+
-+#define SNF_STA_CTL1 0x550
-+#define CUS_PG_DONE BIT(28)
-+#define CUS_READ_DONE BIT(27)
-+#define SPI_STATE_S 0
-+#define SPI_STATE GENMASK(3, 0)
-+
-+#define SNF_CFG 0x55c
-+#define SPI_MODE BIT(0)
-+
-+#define SNF_GPRAM 0x800
-+#define SNF_GPRAM_SIZE 0xa0
-+
-+#define SNFI_POLL_INTERVAL 1000000
-+
-+static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
-+
-+struct mtk_snand_caps {
-+      u16 sector_size;
-+      u16 max_sectors;
-+      u16 fdm_size;
-+      u16 fdm_ecc_size;
-+      u16 fifo_size;
-+
-+      bool bbm_swap;
-+      bool empty_page_check;
-+      u32 mastersta_mask;
-+
-+      const u8 *spare_sizes;
-+      u32 num_spare_size;
-+};
-+
-+static const struct mtk_snand_caps mt7622_snand_caps = {
-+      .sector_size = 512,
-+      .max_sectors = 8,
-+      .fdm_size = 8,
-+      .fdm_ecc_size = 1,
-+      .fifo_size = 32,
-+      .bbm_swap = false,
-+      .empty_page_check = false,
-+      .mastersta_mask = NFI_MASTERSTA_MASK_7622,
-+      .spare_sizes = mt7622_spare_sizes,
-+      .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
-+};
-+
-+static const struct mtk_snand_caps mt7629_snand_caps = {
-+      .sector_size = 512,
-+      .max_sectors = 8,
-+      .fdm_size = 8,
-+      .fdm_ecc_size = 1,
-+      .fifo_size = 32,
-+      .bbm_swap = true,
-+      .empty_page_check = false,
-+      .mastersta_mask = NFI_MASTERSTA_MASK_7622,
-+      .spare_sizes = mt7622_spare_sizes,
-+      .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
-+};
-+
-+struct mtk_snand_conf {
-+      size_t page_size;
-+      size_t oob_size;
-+      u8 nsectors;
-+      u8 spare_size;
-+};
-+
-+struct mtk_snand {
-+      struct spi_controller *ctlr;
-+      struct device *dev;
-+      struct clk *nfi_clk;
-+      struct clk *pad_clk;
-+      void __iomem *nfi_base;
-+      int irq;
-+      struct completion op_done;
-+      const struct mtk_snand_caps *caps;
-+      struct mtk_ecc_config *ecc_cfg;
-+      struct mtk_ecc *ecc;
-+      struct mtk_snand_conf nfi_cfg;
-+      struct mtk_ecc_stats ecc_stats;
-+      struct nand_ecc_engine ecc_eng;
-+      bool autofmt;
-+      u8 *buf;
-+      size_t buf_len;
-+};
-+
-+static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
-+{
-+      struct nand_ecc_engine *eng = nand->ecc.engine;
-+
-+      return container_of(eng, struct mtk_snand, ecc_eng);
-+}
-+
-+static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
-+{
-+      if (snf->buf_len >= size)
-+              return 0;
-+      kfree(snf->buf);
-+      snf->buf = kmalloc(size, GFP_KERNEL);
-+      if (!snf->buf)
-+              return -ENOMEM;
-+      snf->buf_len = size;
-+      memset(snf->buf, 0xff, snf->buf_len);
-+      return 0;
-+}
-+
-+static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
-+{
-+      return readl(snf->nfi_base + reg);
-+}
-+
-+static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
-+{
-+      writel(val, snf->nfi_base + reg);
-+}
-+
-+static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
-+{
-+      writew(val, snf->nfi_base + reg);
-+}
-+
-+static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
-+{
-+      u32 val;
-+
-+      val = readl(snf->nfi_base + reg);
-+      val &= ~clr;
-+      val |= set;
-+      writel(val, snf->nfi_base + reg);
-+}
-+
-+static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
-+{
-+      u32 i, val = 0, es = sizeof(u32);
-+
-+      for (i = reg; i < reg + len; i++) {
-+              if (i == reg || i % es == 0)
-+                      val = nfi_read32(snf, i & ~(es - 1));
-+
-+              *data++ = (u8)(val >> (8 * (i % es)));
-+      }
-+}
-+
-+static int mtk_nfi_reset(struct mtk_snand *snf)
-+{
-+      u32 val, fifo_mask;
-+      int ret;
-+
-+      nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
-+
-+      ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
-+                               !(val & snf->caps->mastersta_mask), 0,
-+                               SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "NFI master is still busy after reset\n");
-+              return ret;
-+      }
-+
-+      ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
-+                               !(val & (NFI_FSM | NFI_NAND_FSM)), 0,
-+                               SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "Failed to reset NFI\n");
-+              return ret;
-+      }
-+
-+      fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
-+                  ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
-+      ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
-+                               !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "NFI FIFOs are not empty\n");
-+              return ret;
-+      }
-+
-+      return 0;
-+}
-+
-+static int mtk_snand_mac_reset(struct mtk_snand *snf)
-+{
-+      int ret;
-+      u32 val;
-+
-+      nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
-+
-+      ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
-+                               !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
-+      if (ret)
-+              dev_err(snf->dev, "Failed to reset SNFI MAC\n");
-+
-+      nfi_write32(snf, SNF_MISC_CTL,
-+                  (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
-+
-+      return ret;
-+}
-+
-+static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
-+{
-+      int ret;
-+      u32 val;
-+
-+      nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
-+      nfi_write32(snf, SNF_MAC_OUTL, outlen);
-+      nfi_write32(snf, SNF_MAC_INL, inlen);
-+
-+      nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
-+
-+      ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
-+                               val & WIP_READY, 0, SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
-+              goto cleanup;
-+      }
-+
-+      ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
-+                               0, SNFI_POLL_INTERVAL);
-+      if (ret)
-+              dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
-+
-+cleanup:
-+      nfi_write32(snf, SNF_MAC_CTL, 0);
-+
-+      return ret;
-+}
-+
-+static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
-+{
-+      u32 rx_len = 0;
-+      u32 reg_offs = 0;
-+      u32 val = 0;
-+      const u8 *tx_buf = NULL;
-+      u8 *rx_buf = NULL;
-+      int i, ret;
-+      u8 b;
-+
-+      if (op->data.dir == SPI_MEM_DATA_IN) {
-+              rx_len = op->data.nbytes;
-+              rx_buf = op->data.buf.in;
-+      } else {
-+              tx_buf = op->data.buf.out;
-+      }
-+
-+      mtk_snand_mac_reset(snf);
-+
-+      for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
-+              b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
-+              val |= b << (8 * (reg_offs % 4));
-+              if (reg_offs % 4 == 3) {
-+                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+                      val = 0;
-+              }
-+      }
-+
-+      for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
-+              b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
-+              val |= b << (8 * (reg_offs % 4));
-+              if (reg_offs % 4 == 3) {
-+                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+                      val = 0;
-+              }
-+      }
-+
-+      for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
-+              if (reg_offs % 4 == 3) {
-+                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+                      val = 0;
-+              }
-+      }
-+
-+      if (op->data.dir == SPI_MEM_DATA_OUT) {
-+              for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
-+                      val |= tx_buf[i] << (8 * (reg_offs % 4));
-+                      if (reg_offs % 4 == 3) {
-+                              nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+                              val = 0;
-+                      }
-+              }
-+      }
-+
-+      if (reg_offs % 4)
-+              nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
-+
-+      for (i = 0; i < reg_offs; i += 4)
-+              dev_dbg(snf->dev, "%d: %08X", i,
-+                      nfi_read32(snf, SNF_GPRAM + i));
-+
-+      dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
-+
-+      ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
-+      if (ret)
-+              return ret;
-+
-+      if (!rx_len)
-+              return 0;
-+
-+      nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
-+      return 0;
-+}
-+
-+static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
-+                                 u32 oob_size)
-+{
-+      int spare_idx = -1;
-+      u32 spare_size, spare_size_shift, pagesize_idx;
-+      u32 sector_size_512;
-+      u8 nsectors;
-+      int i;
-+
-+      // skip if it's already configured as required.
-+      if (snf->nfi_cfg.page_size == page_size &&
-+          snf->nfi_cfg.oob_size == oob_size)
-+              return 0;
-+
-+      nsectors = page_size / snf->caps->sector_size;
-+      if (nsectors > snf->caps->max_sectors) {
-+              dev_err(snf->dev, "too many sectors required.\n");
-+              goto err;
-+      }
-+
-+      if (snf->caps->sector_size == 512) {
-+              sector_size_512 = NFI_SEC_SEL_512;
-+              spare_size_shift = NFI_SPARE_SIZE_S;
-+      } else {
-+              sector_size_512 = 0;
-+              spare_size_shift = NFI_SPARE_SIZE_LS_S;
-+      }
-+
-+      switch (page_size) {
-+      case SZ_512:
-+              pagesize_idx = NFI_PAGE_SIZE_512_2K;
-+              break;
-+      case SZ_2K:
-+              if (snf->caps->sector_size == 512)
-+                      pagesize_idx = NFI_PAGE_SIZE_2K_4K;
-+              else
-+                      pagesize_idx = NFI_PAGE_SIZE_512_2K;
-+              break;
-+      case SZ_4K:
-+              if (snf->caps->sector_size == 512)
-+                      pagesize_idx = NFI_PAGE_SIZE_4K_8K;
-+              else
-+                      pagesize_idx = NFI_PAGE_SIZE_2K_4K;
-+              break;
-+      case SZ_8K:
-+              if (snf->caps->sector_size == 512)
-+                      pagesize_idx = NFI_PAGE_SIZE_8K_16K;
-+              else
-+                      pagesize_idx = NFI_PAGE_SIZE_4K_8K;
-+              break;
-+      case SZ_16K:
-+              pagesize_idx = NFI_PAGE_SIZE_8K_16K;
-+              break;
-+      default:
-+              dev_err(snf->dev, "unsupported page size.\n");
-+              goto err;
-+      }
-+
-+      spare_size = oob_size / nsectors;
-+      // If we're using the 1KB sector size, HW will automatically double the
-+      // spare size. We should only use half of the value in this case.
-+      if (snf->caps->sector_size == 1024)
-+              spare_size /= 2;
-+
-+      for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
-+              if (snf->caps->spare_sizes[i] <= spare_size) {
-+                      spare_size = snf->caps->spare_sizes[i];
-+                      if (snf->caps->sector_size == 1024)
-+                              spare_size *= 2;
-+                      spare_idx = i;
-+                      break;
-+              }
-+      }
-+
-+      if (spare_idx < 0) {
-+              dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
-+              goto err;
-+      }
-+
-+      nfi_write32(snf, NFI_PAGEFMT,
-+                  (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
-+                          (snf->caps->fdm_size << NFI_FDM_NUM_S) |
-+                          (spare_idx << spare_size_shift) |
-+                          (pagesize_idx << NFI_PAGE_SIZE_S) |
-+                          sector_size_512);
-+
-+      snf->nfi_cfg.page_size = page_size;
-+      snf->nfi_cfg.oob_size = oob_size;
-+      snf->nfi_cfg.nsectors = nsectors;
-+      snf->nfi_cfg.spare_size = spare_size;
-+
-+      dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
-+              snf->caps->sector_size, spare_size, nsectors);
-+      return snand_prepare_bouncebuf(snf, page_size + oob_size);
-+err:
-+      dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
-+              oob_size);
-+      return -EOPNOTSUPP;
-+}
-+
-+static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
-+                                 struct mtd_oob_region *oobecc)
-+{
-+      // ECC area is not accessible
-+      return -ERANGE;
-+}
-+
-+static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
-+                                  struct mtd_oob_region *oobfree)
-+{
-+      struct nand_device *nand = mtd_to_nanddev(mtd);
-+      struct mtk_snand *ms = nand_to_mtk_snand(nand);
-+
-+      if (section >= ms->nfi_cfg.nsectors)
-+              return -ERANGE;
-+
-+      oobfree->length = ms->caps->fdm_size - 1;
-+      oobfree->offset = section * ms->caps->fdm_size + 1;
-+      return 0;
-+}
-+
-+static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
-+      .ecc = mtk_snand_ooblayout_ecc,
-+      .free = mtk_snand_ooblayout_free,
-+};
-+
-+static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
-+{
-+      struct mtk_snand *snf = nand_to_mtk_snand(nand);
-+      struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
-+      struct nand_ecc_props *reqs = &nand->ecc.requirements;
-+      struct nand_ecc_props *user = &nand->ecc.user_conf;
-+      struct mtd_info *mtd = nanddev_to_mtd(nand);
-+      int step_size = 0, strength = 0, desired_correction = 0, steps;
-+      bool ecc_user = false;
-+      int ret;
-+      u32 parity_bits, max_ecc_bytes;
-+      struct mtk_ecc_config *ecc_cfg;
-+
-+      ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
-+                                    nand->memorg.oobsize);
-+      if (ret)
-+              return ret;
-+
-+      ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
-+      if (!ecc_cfg)
-+              return -ENOMEM;
-+
-+      nand->ecc.ctx.priv = ecc_cfg;
-+
-+      if (user->step_size && user->strength) {
-+              step_size = user->step_size;
-+              strength = user->strength;
-+              ecc_user = true;
-+      } else if (reqs->step_size && reqs->strength) {
-+              step_size = reqs->step_size;
-+              strength = reqs->strength;
-+      }
-+
-+      if (step_size && strength) {
-+              steps = mtd->writesize / step_size;
-+              desired_correction = steps * strength;
-+              strength = desired_correction / snf->nfi_cfg.nsectors;
-+      }
-+
-+      ecc_cfg->mode = ECC_NFI_MODE;
-+      ecc_cfg->sectors = snf->nfi_cfg.nsectors;
-+      ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
-+
-+      // calculate the max possible strength under current page format
-+      parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
-+      max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
-+      ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
-+      mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
-+
-+      // if there's a user requested strength, find the minimum strength that
-+      // meets the requirement. Otherwise use the maximum strength which is
-+      // expected by BootROM.
-+      if (ecc_user && strength) {
-+              u32 s_next = ecc_cfg->strength - 1;
-+
-+              while (1) {
-+                      mtk_ecc_adjust_strength(snf->ecc, &s_next);
-+                      if (s_next >= ecc_cfg->strength)
-+                              break;
-+                      if (s_next < strength)
-+                              break;
-+                      s_next = ecc_cfg->strength - 1;
-+              }
-+      }
-+
-+      mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
-+
-+      conf->step_size = snf->caps->sector_size;
-+      conf->strength = ecc_cfg->strength;
-+
-+      if (ecc_cfg->strength < strength)
-+              dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
-+                       strength);
-+      dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
-+               ecc_cfg->strength, snf->caps->sector_size);
-+
-+      return 0;
-+}
-+
-+static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
-+{
-+      struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
-+
-+      kfree(ecc_cfg);
-+}
-+
-+static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
-+                                      struct nand_page_io_req *req)
-+{
-+      struct mtk_snand *snf = nand_to_mtk_snand(nand);
-+      struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
-+      int ret;
-+
-+      ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
-+                                    nand->memorg.oobsize);
-+      if (ret)
-+              return ret;
-+      snf->autofmt = true;
-+      snf->ecc_cfg = ecc_cfg;
-+      return 0;
-+}
-+
-+static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
-+                                     struct nand_page_io_req *req)
-+{
-+      struct mtk_snand *snf = nand_to_mtk_snand(nand);
-+      struct mtd_info *mtd = nanddev_to_mtd(nand);
-+
-+      snf->ecc_cfg = NULL;
-+      snf->autofmt = false;
-+      if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
-+              return 0;
-+
-+      if (snf->ecc_stats.failed)
-+              mtd->ecc_stats.failed += snf->ecc_stats.failed;
-+      mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
-+      return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
-+}
-+
-+static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
-+      .init_ctx = mtk_snand_ecc_init_ctx,
-+      .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
-+      .prepare_io_req = mtk_snand_ecc_prepare_io_req,
-+      .finish_io_req = mtk_snand_ecc_finish_io_req,
-+};
-+
-+static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
-+{
-+      u32 vall, valm;
-+      u8 *oobptr = buf;
-+      int i, j;
-+
-+      for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
-+              vall = nfi_read32(snf, NFI_FDML(i));
-+              valm = nfi_read32(snf, NFI_FDMM(i));
-+
-+              for (j = 0; j < snf->caps->fdm_size; j++)
-+                      oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
-+
-+              oobptr += snf->caps->fdm_size;
-+      }
-+}
-+
-+static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
-+{
-+      u32 fdm_size = snf->caps->fdm_size;
-+      const u8 *oobptr = buf;
-+      u32 vall, valm;
-+      int i, j;
-+
-+      for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
-+              vall = 0;
-+              valm = 0;
-+
-+              for (j = 0; j < 8; j++) {
-+                      if (j < 4)
-+                              vall |= (j < fdm_size ? oobptr[j] : 0xff)
-+                                      << (j * 8);
-+                      else
-+                              valm |= (j < fdm_size ? oobptr[j] : 0xff)
-+                                      << ((j - 4) * 8);
-+              }
-+
-+              nfi_write32(snf, NFI_FDML(i), vall);
-+              nfi_write32(snf, NFI_FDMM(i), valm);
-+
-+              oobptr += fdm_size;
-+      }
-+}
-+
-+static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
-+{
-+      u32 buf_bbm_pos, fdm_bbm_pos;
-+
-+      if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
-+              return;
-+
-+      // swap [pagesize] byte on nand with the first fdm byte
-+      // in the last sector.
-+      buf_bbm_pos = snf->nfi_cfg.page_size -
-+                    (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
-+      fdm_bbm_pos = snf->nfi_cfg.page_size +
-+                    (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
-+
-+      swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
-+}
-+
-+static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
-+{
-+      u32 fdm_bbm_pos1, fdm_bbm_pos2;
-+
-+      if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
-+              return;
-+
-+      // swap the first fdm byte in the first and the last sector.
-+      fdm_bbm_pos1 = snf->nfi_cfg.page_size;
-+      fdm_bbm_pos2 = snf->nfi_cfg.page_size +
-+                     (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
-+      swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
-+}
-+
-+static int mtk_snand_read_page_cache(struct mtk_snand *snf,
-+                                   const struct spi_mem_op *op)
-+{
-+      u8 *buf = snf->buf;
-+      u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
-+      // the address part to be sent by the controller
-+      u32 op_addr = op->addr.val;
-+      // where to start copying data from bounce buffer
-+      u32 rd_offset = 0;
-+      u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
-+      u32 op_mode = 0;
-+      u32 dma_len = snf->buf_len;
-+      int ret = 0;
-+      u32 rd_mode, rd_bytes, val;
-+      dma_addr_t buf_dma;
-+
-+      if (snf->autofmt) {
-+              u32 last_bit;
-+              u32 mask;
-+
-+              dma_len = snf->nfi_cfg.page_size;
-+              op_mode = CNFG_AUTO_FMT_EN;
-+              if (op->data.ecc)
-+                      op_mode |= CNFG_HW_ECC_EN;
-+              // extract the plane bit:
-+              // Find the highest bit set in (pagesize+oobsize).
-+              // Bits higher than that in op->addr are kept and sent over SPI
-+              // Lower bits are used as an offset for copying data from DMA
-+              // bounce buffer.
-+              last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
-+              mask = (1 << last_bit) - 1;
-+              rd_offset = op_addr & mask;
-+              op_addr &= ~mask;
-+
-+              // check if we can dma to the caller memory
-+              if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
-+                      buf = op->data.buf.in;
-+      }
-+      mtk_snand_mac_reset(snf);
-+      mtk_nfi_reset(snf);
-+
-+      // command and dummy cycles
-+      nfi_write32(snf, SNF_RD_CTL2,
-+                  (dummy_clk << DATA_READ_DUMMY_S) |
-+                          (op->cmd.opcode << DATA_READ_CMD_S));
-+
-+      // read address
-+      nfi_write32(snf, SNF_RD_CTL3, op_addr);
-+
-+      // Set read op_mode
-+      if (op->data.buswidth == 4)
-+              rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
-+                                                 DATA_READ_MODE_X4;
-+      else if (op->data.buswidth == 2)
-+              rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
-+                                                 DATA_READ_MODE_X2;
-+      else
-+              rd_mode = DATA_READ_MODE_X1;
-+      rd_mode <<= DATA_READ_MODE_S;
-+      nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
-+                rd_mode | DATARD_CUSTOM_EN);
-+
-+      // Set bytes to read
-+      rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
-+                 snf->nfi_cfg.nsectors;
-+      nfi_write32(snf, SNF_MISC_CTL2,
-+                  (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
-+
-+      // NFI read prepare
-+      nfi_write16(snf, NFI_CNFG,
-+                  (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
-+                          CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
-+
-+      nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
-+
-+      buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
-+      if (dma_mapping_error(snf->dev, buf_dma)) {
-+              dev_err(snf->dev, "DMA mapping failed.\n");
-+              goto cleanup;
-+      }
-+      nfi_write32(snf, NFI_STRADDR, buf_dma);
-+      if (op->data.ecc) {
-+              snf->ecc_cfg->op = ECC_DECODE;
-+              ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
-+              if (ret)
-+                      goto cleanup_dma;
-+      }
-+      // Prepare for custom read interrupt
-+      nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
-+      reinit_completion(&snf->op_done);
-+
-+      // Trigger NFI into custom mode
-+      nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
-+
-+      // Start DMA read
-+      nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
-+      nfi_write16(snf, NFI_STRDATA, STR_DATA);
-+
-+      if (!wait_for_completion_timeout(
-+                  &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
-+              dev_err(snf->dev, "DMA timed out for reading from cache.\n");
-+              ret = -ETIMEDOUT;
-+              goto cleanup;
-+      }
-+
-+      // Wait for BUS_SEC_CNTR returning expected value
-+      ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
-+                               BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
-+                               SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
-+              goto cleanup2;
-+      }
-+
-+      // Wait for bus becoming idle
-+      ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
-+                               !(val & snf->caps->mastersta_mask), 0,
-+                               SNFI_POLL_INTERVAL);
-+      if (ret) {
-+              dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
-+              goto cleanup2;
-+      }
-+
-+      if (op->data.ecc) {
-+              ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
-+              if (ret) {
-+                      dev_err(snf->dev, "wait ecc done timeout\n");
-+                      goto cleanup2;
-+              }
-+              // save status before disabling ecc
-+              mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
-+                                snf->nfi_cfg.nsectors);
-+      }
-+
-+      dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
-+
-+      if (snf->autofmt) {
-+              mtk_snand_read_fdm(snf, buf_fdm);
-+              if (snf->caps->bbm_swap) {
-+                      mtk_snand_bm_swap(snf, buf);
-+                      mtk_snand_fdm_bm_swap(snf);
-+              }
-+      }
-+
-+      // copy data back
-+      if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
-+              memset(op->data.buf.in, 0xff, op->data.nbytes);
-+              snf->ecc_stats.bitflips = 0;
-+              snf->ecc_stats.failed = 0;
-+              snf->ecc_stats.corrected = 0;
-+      } else {
-+              if (buf == op->data.buf.in) {
-+                      u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
-+                      u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
-+
-+                      if (req_left)
-+                              memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
-+                                     buf_fdm,
-+                                     cap_len < req_left ? cap_len : req_left);
-+              } else if (rd_offset < snf->buf_len) {
-+                      u32 cap_len = snf->buf_len - rd_offset;
-+
-+                      if (op->data.nbytes < cap_len)
-+                              cap_len = op->data.nbytes;
-+                      memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
-+              }
-+      }
-+cleanup2:
-+      if (op->data.ecc)
-+              mtk_ecc_disable(snf->ecc);
-+cleanup_dma:
-+      // unmap dma only if any error happens. (otherwise it's done before
-+      // data copying)
-+      if (ret)
-+              dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
-+cleanup:
-+      // Stop read
-+      nfi_write32(snf, NFI_CON, 0);
-+      nfi_write16(snf, NFI_CNFG, 0);
-+
-+      // Clear SNF done flag
-+      nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
-+      nfi_write32(snf, SNF_STA_CTL1, 0);
-+
-+      // Disable interrupt
-+      nfi_read32(snf, NFI_INTR_STA);
-+      nfi_write32(snf, NFI_INTR_EN, 0);
-+
-+      nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
-+      return ret;
-+}
-+
-+static int mtk_snand_write_page_cache(struct mtk_snand *snf,
-+                                    const struct spi_mem_op *op)
-+{
-+      // the address part to be sent by the controller
-+      u32 op_addr = op->addr.val;
-+      // where to start copying data from bounce buffer
-+      u32 wr_offset = 0;
-+      u32 op_mode = 0;
-+      int ret = 0;
-+      u32 wr_mode = 0;
-+      u32 dma_len = snf->buf_len;
-+      u32 wr_bytes, val;
-+      size_t cap_len;
-+      dma_addr_t buf_dma;
-+
-+      if (snf->autofmt) {
-+              u32 last_bit;
-+              u32 mask;
-+
-+              dma_len = snf->nfi_cfg.page_size;
-+              op_mode = CNFG_AUTO_FMT_EN;
-+              if (op->data.ecc)
-+                      op_mode |= CNFG_HW_ECC_EN;
-+
-+              last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
-+              mask = (1 << last_bit) - 1;
-+              wr_offset = op_addr & mask;
-+              op_addr &= ~mask;
-+      }
-+      mtk_snand_mac_reset(snf);
-+      mtk_nfi_reset(snf);
-+
-+      if (wr_offset)
-+              memset(snf->buf, 0xff, wr_offset);
-+
-+      cap_len = snf->buf_len - wr_offset;
-+      if (op->data.nbytes < cap_len)
-+              cap_len = op->data.nbytes;
-+      memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
-+      if (snf->autofmt) {
-+              if (snf->caps->bbm_swap) {
-+                      mtk_snand_fdm_bm_swap(snf);
-+                      mtk_snand_bm_swap(snf, snf->buf);
-+              }
-+              mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
-+      }
-+
-+      // Command
-+      nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
-+
-+      // write address
-+      nfi_write32(snf, SNF_PG_CTL2, op_addr);
-+
-+      // Set read op_mode
-+      if (op->data.buswidth == 4)
-+              wr_mode = PG_LOAD_X4_EN;
-+
-+      nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
-+                wr_mode | PG_LOAD_CUSTOM_EN);
-+
-+      // Set bytes to write
-+      wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
-+                 snf->nfi_cfg.nsectors;
-+      nfi_write32(snf, SNF_MISC_CTL2,
-+                  (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
-+
-+      // NFI write prepare
-+      nfi_write16(snf, NFI_CNFG,
-+                  (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
-+                          CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
-+
-+      nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
-+      buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
-+      if (dma_mapping_error(snf->dev, buf_dma)) {
-+              dev_err(snf->dev, "DMA mapping failed.\n");
-+              goto cleanup;
-+      }
-+      nfi_write32(snf, NFI_STRADDR, buf_dma);
-+      if (op->data.ecc) {
-+              snf->ecc_cfg->op = ECC_ENCODE;
-+              ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
-+              if (ret)
-+                      goto cleanup_dma;
-+      }
-+      // Prepare for custom write interrupt
-+      nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
-+      reinit_completion(&snf->op_done);
-+      ;
-+
-+      // Trigger NFI into custom mode
-+      nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
-+
-+      // Start DMA write
-+      nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
-+      nfi_write16(snf, NFI_STRDATA, STR_DATA);
-+
-+      if (!wait_for_completion_timeout(
-+                  &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
-+              dev_err(snf->dev, "DMA timed out for program load.\n");
-+              ret = -ETIMEDOUT;
-+              goto cleanup_ecc;
-+      }
-+
-+      // Wait for NFI_SEC_CNTR returning expected value
-+      ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
-+                               NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
-+                               SNFI_POLL_INTERVAL);
-+      if (ret)
-+              dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
-+
-+cleanup_ecc:
-+      if (op->data.ecc)
-+              mtk_ecc_disable(snf->ecc);
-+cleanup_dma:
-+      dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
-+cleanup:
-+      // Stop write
-+      nfi_write32(snf, NFI_CON, 0);
-+      nfi_write16(snf, NFI_CNFG, 0);
-+
-+      // Clear SNF done flag
-+      nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
-+      nfi_write32(snf, SNF_STA_CTL1, 0);
-+
-+      // Disable interrupt
-+      nfi_read32(snf, NFI_INTR_STA);
-+      nfi_write32(snf, NFI_INTR_EN, 0);
-+
-+      nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
-+
-+      return ret;
-+}
-+
-+/**
-+ * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
-+ * @op spi-mem op to check
-+ *
-+ * Check whether op can be executed with read_from_cache or program_load
-+ * mode in the controller.
-+ * This controller can execute typical Read From Cache and Program Load
-+ * instructions found on SPI-NAND with 2-byte address.
-+ * DTR and cmd buswidth & nbytes should be checked before calling this.
-+ *
-+ * Return: true if the op matches the instruction template
-+ */
-+static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
-+{
-+      if (op->addr.nbytes != 2)
-+              return false;
-+
-+      if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
-+          op->addr.buswidth != 4)
-+              return false;
-+
-+      // match read from page instructions
-+      if (op->data.dir == SPI_MEM_DATA_IN) {
-+              // check dummy cycle first
-+              if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
-+                  DATA_READ_MAX_DUMMY)
-+                      return false;
-+              // quad io / quad out
-+              if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
-+                  op->data.buswidth == 4)
-+                      return true;
-+
-+              // dual io / dual out
-+              if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
-+                  op->data.buswidth == 2)
-+                      return true;
-+
-+              // standard spi
-+              if (op->addr.buswidth == 1 && op->data.buswidth == 1)
-+                      return true;
-+      } else if (op->data.dir == SPI_MEM_DATA_OUT) {
-+              // check dummy cycle first
-+              if (op->dummy.nbytes)
-+                      return false;
-+              // program load quad out
-+              if (op->addr.buswidth == 1 && op->data.buswidth == 4)
-+                      return true;
-+              // standard spi
-+              if (op->addr.buswidth == 1 && op->data.buswidth == 1)
-+                      return true;
-+      }
-+      return false;
-+}
-+
-+static bool mtk_snand_supports_op(struct spi_mem *mem,
-+                                const struct spi_mem_op *op)
-+{
-+      if (!spi_mem_default_supports_op(mem, op))
-+              return false;
-+      if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
-+              return false;
-+      if (mtk_snand_is_page_ops(op))
-+              return true;
-+      return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
-+              (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
-+              (op->data.nbytes == 0 || op->data.buswidth == 1));
-+}
-+
-+static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
-+{
-+      struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
-+      // page ops transfer size must be exactly ((sector_size + spare_size) *
-+      // nsectors). Limit the op size if the caller requests more than that.
-+      // exec_op will read more than needed and discard the leftover if the
-+      // caller requests less data.
-+      if (mtk_snand_is_page_ops(op)) {
-+              size_t l;
-+              // skip adjust_op_size for page ops
-+              if (ms->autofmt)
-+                      return 0;
-+              l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
-+              l *= ms->nfi_cfg.nsectors;
-+              if (op->data.nbytes > l)
-+                      op->data.nbytes = l;
-+      } else {
-+              size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
-+
-+              if (hl >= SNF_GPRAM_SIZE)
-+                      return -EOPNOTSUPP;
-+              if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
-+                      op->data.nbytes = SNF_GPRAM_SIZE - hl;
-+      }
-+      return 0;
-+}
-+
-+static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
-+{
-+      struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
-+
-+      dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
-+              op->addr.val, op->addr.buswidth, op->addr.nbytes,
-+              op->data.buswidth, op->data.nbytes);
-+      if (mtk_snand_is_page_ops(op)) {
-+              if (op->data.dir == SPI_MEM_DATA_IN)
-+                      return mtk_snand_read_page_cache(ms, op);
-+              else
-+                      return mtk_snand_write_page_cache(ms, op);
-+      } else {
-+              return mtk_snand_mac_io(ms, op);
-+      }
-+}
-+
-+static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
-+      .adjust_op_size = mtk_snand_adjust_op_size,
-+      .supports_op = mtk_snand_supports_op,
-+      .exec_op = mtk_snand_exec_op,
-+};
-+
-+static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
-+      .ecc = true,
-+};
-+
-+static irqreturn_t mtk_snand_irq(int irq, void *id)
-+{
-+      struct mtk_snand *snf = id;
-+      u32 sta, ien;
-+
-+      sta = nfi_read32(snf, NFI_INTR_STA);
-+      ien = nfi_read32(snf, NFI_INTR_EN);
-+
-+      if (!(sta & ien))
-+              return IRQ_NONE;
-+
-+      nfi_write32(snf, NFI_INTR_EN, 0);
-+      complete(&snf->op_done);
-+      return IRQ_HANDLED;
-+}
-+
-+static const struct of_device_id mtk_snand_ids[] = {
-+      { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
-+      { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
-+      {},
-+};
-+
-+MODULE_DEVICE_TABLE(of, mtk_snand_ids);
-+
-+static int mtk_snand_enable_clk(struct mtk_snand *ms)
-+{
-+      int ret;
-+
-+      ret = clk_prepare_enable(ms->nfi_clk);
-+      if (ret) {
-+              dev_err(ms->dev, "unable to enable nfi clk\n");
-+              return ret;
-+      }
-+      ret = clk_prepare_enable(ms->pad_clk);
-+      if (ret) {
-+              dev_err(ms->dev, "unable to enable pad clk\n");
-+              goto err1;
-+      }
-+      return 0;
-+err1:
-+      clk_disable_unprepare(ms->nfi_clk);
-+      return ret;
-+}
-+
-+static void mtk_snand_disable_clk(struct mtk_snand *ms)
-+{
-+      clk_disable_unprepare(ms->pad_clk);
-+      clk_disable_unprepare(ms->nfi_clk);
-+}
-+
-+static int mtk_snand_probe(struct platform_device *pdev)
-+{
-+      struct device_node *np = pdev->dev.of_node;
-+      const struct of_device_id *dev_id;
-+      struct spi_controller *ctlr;
-+      struct mtk_snand *ms;
-+      int ret;
-+
-+      dev_id = of_match_node(mtk_snand_ids, np);
-+      if (!dev_id)
-+              return -EINVAL;
-+
-+      ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
-+      if (!ctlr)
-+              return -ENOMEM;
-+      platform_set_drvdata(pdev, ctlr);
-+
-+      ms = spi_controller_get_devdata(ctlr);
-+
-+      ms->ctlr = ctlr;
-+      ms->caps = dev_id->data;
-+
-+      ms->ecc = of_mtk_ecc_get(np);
-+      if (IS_ERR(ms->ecc))
-+              return PTR_ERR(ms->ecc);
-+      else if (!ms->ecc)
-+              return -ENODEV;
-+
-+      ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
-+      if (IS_ERR(ms->nfi_base)) {
-+              ret = PTR_ERR(ms->nfi_base);
-+              goto release_ecc;
-+      }
-+
-+      ms->dev = &pdev->dev;
-+
-+      ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
-+      if (IS_ERR(ms->nfi_clk)) {
-+              ret = PTR_ERR(ms->nfi_clk);
-+              dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
-+              goto release_ecc;
-+      }
-+
-+      ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
-+      if (IS_ERR(ms->pad_clk)) {
-+              ret = PTR_ERR(ms->pad_clk);
-+              dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
-+              goto release_ecc;
-+      }
-+
-+      ret = mtk_snand_enable_clk(ms);
-+      if (ret)
-+              goto release_ecc;
-+
-+      init_completion(&ms->op_done);
-+
-+      ms->irq = platform_get_irq(pdev, 0);
-+      if (ms->irq < 0) {
-+              ret = ms->irq;
-+              goto disable_clk;
-+      }
-+      ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
-+                             "mtk-snand", ms);
-+      if (ret) {
-+              dev_err(ms->dev, "failed to request snfi irq\n");
-+              goto disable_clk;
-+      }
-+
-+      ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
-+      if (ret) {
-+              dev_err(ms->dev, "failed to set dma mask\n");
-+              goto disable_clk;
-+      }
-+
-+      // switch to SNFI mode
-+      nfi_write32(ms, SNF_CFG, SPI_MODE);
-+
-+      // setup an initial page format for ops matching page_cache_op template
-+      // before ECC is called.
-+      ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
-+                                    ms->caps->spare_sizes[0]);
-+      if (ret) {
-+              dev_err(ms->dev, "failed to set initial page format\n");
-+              goto disable_clk;
-+      }
-+
-+      // setup ECC engine
-+      ms->ecc_eng.dev = &pdev->dev;
-+      ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
-+      ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
-+      ms->ecc_eng.priv = ms;
-+
-+      ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
-+      if (ret) {
-+              dev_err(&pdev->dev, "failed to register ecc engine.\n");
-+              goto disable_clk;
-+      }
-+
-+      ctlr->num_chipselect = 1;
-+      ctlr->mem_ops = &mtk_snand_mem_ops;
-+      ctlr->mem_caps = &mtk_snand_mem_caps;
-+      ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
-+      ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
-+      ctlr->dev.of_node = pdev->dev.of_node;
-+      ret = spi_register_controller(ctlr);
-+      if (ret) {
-+              dev_err(&pdev->dev, "spi_register_controller failed.\n");
-+              goto disable_clk;
-+      }
-+
-+      return 0;
-+disable_clk:
-+      mtk_snand_disable_clk(ms);
-+release_ecc:
-+      mtk_ecc_release(ms->ecc);
-+      return ret;
-+}
-+
-+static int mtk_snand_remove(struct platform_device *pdev)
-+{
-+      struct spi_controller *ctlr = platform_get_drvdata(pdev);
-+      struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
-+
-+      spi_unregister_controller(ctlr);
-+      mtk_snand_disable_clk(ms);
-+      mtk_ecc_release(ms->ecc);
-+      kfree(ms->buf);
-+      return 0;
-+}
-+
-+static struct platform_driver mtk_snand_driver = {
-+      .probe = mtk_snand_probe,
-+      .remove = mtk_snand_remove,
-+      .driver = {
-+              .name = "mtk-snand",
-+              .of_match_table = mtk_snand_ids,
-+      },
-+};
-+
-+module_platform_driver(mtk_snand_driver);
-+
-+MODULE_LICENSE("GPL");
-+MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
-+MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
diff --git a/target/linux/mediatek/patches-5.15/120-12-v5.19-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch b/target/linux/mediatek/patches-5.15/120-12-v5.19-spi-add-driver-for-MTK-SPI-NAND-Flash-Interface.patch
new file mode 100644 (file)
index 0000000..b77b4ad
--- /dev/null
@@ -0,0 +1,1537 @@
+From 8170bafa8936e9fbfdce992932a63bd20eca3bc3 Mon Sep 17 00:00:00 2001
+From: Chuanhong Guo <gch981213@gmail.com>
+Date: Sat, 2 Apr 2022 10:16:11 +0800
+Subject: [PATCH v6 2/5] spi: add driver for MTK SPI NAND Flash Interface
+
+This driver implements support for the SPI-NAND mode of MTK NAND Flash
+Interface as a SPI-MEM controller with pipelined ECC capability.
+
+Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
+Tested-by: Daniel Golle <daniel@makrotopia.org>
+---
+Change since v1:
+  fix CI warnings
+
+Changes since v2:
+ use streamed DMA api to avoid an extra memory copy during read
+ make ECC engine config a per-nand context
+ take user-requested ECC strength into account
+
+Change since v3: none
+Changes since v4:
+ fix missing OOB write
+ print page format with dev_dbg
+ replace uint*_t copied from vendor driver with u*
+
+Changes since v5:
+ add missing nfi mode register configuration in probe
+ fix an off-by-one bug in mtk_snand_mac_io
+
+ drivers/spi/Kconfig        |   10 +
+ drivers/spi/Makefile       |    1 +
+ drivers/spi/spi-mtk-snfi.c | 1470 ++++++++++++++++++++++++++++++++++++
+ 3 files changed, 1481 insertions(+)
+ create mode 100644 drivers/spi/spi-mtk-snfi.c
+
+--- a/drivers/spi/Kconfig
++++ b/drivers/spi/Kconfig
+@@ -530,6 +530,16 @@ config SPI_MTK_NOR
+         SPI interface as well as several SPI NOR specific instructions
+         via SPI MEM interface.
++config SPI_MTK_SNFI
++      tristate "MediaTek SPI NAND Flash Interface"
++      depends on ARCH_MEDIATEK || COMPILE_TEST
++      depends on MTD_NAND_ECC_MEDIATEK
++      help
++        This enables support for SPI-NAND mode on the MediaTek NAND
++        Flash Interface found on MediaTek ARM SoCs. This controller
++        is implemented as a SPI-MEM controller with pipelined ECC
++        capcability.
++
+ config SPI_NPCM_FIU
+       tristate "Nuvoton NPCM FLASH Interface Unit"
+       depends on ARCH_NPCM || COMPILE_TEST
+--- a/drivers/spi/Makefile
++++ b/drivers/spi/Makefile
+@@ -71,6 +71,7 @@ obj-$(CONFIG_SPI_MPC52xx)            += spi-mpc52x
+ obj-$(CONFIG_SPI_MT65XX)                += spi-mt65xx.o
+ obj-$(CONFIG_SPI_MT7621)              += spi-mt7621.o
+ obj-$(CONFIG_SPI_MTK_NOR)             += spi-mtk-nor.o
++obj-$(CONFIG_SPI_MTK_SNFI)            += spi-mtk-snfi.o
+ obj-$(CONFIG_SPI_MXIC)                        += spi-mxic.o
+ obj-$(CONFIG_SPI_MXS)                 += spi-mxs.o
+ obj-$(CONFIG_SPI_NPCM_FIU)            += spi-npcm-fiu.o
+--- /dev/null
++++ b/drivers/spi/spi-mtk-snfi.c
+@@ -0,0 +1,1470 @@
++// SPDX-License-Identifier: GPL-2.0
++//
++// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
++//
++// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
++//
++// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
++//
++// Copyright (C) 2020 MediaTek Inc.
++// Author: Weijie Gao <weijie.gao@mediatek.com>
++//
++// This controller organize the page data as several interleaved sectors
++// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
++// +---------+------+------+---------+------+------+-----+
++// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
++// +---------+------+------+---------+------+------+-----+
++// With auto-format turned on, DMA only returns this part:
++// +---------+---------+-----+
++// | Sector1 | Sector2 | ... |
++// +---------+---------+-----+
++// The FDM data will be filled to the registers, and ECC parity data isn't
++// accessible.
++// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
++// in it's original order shown in the first table. ECC can't be turned on when
++// auto-format is off.
++//
++// However, Linux SPI-NAND driver expects the data returned as:
++// +------+-----+
++// | Page | OOB |
++// +------+-----+
++// where the page data is continuously stored instead of interleaved.
++// So we assume all instructions matching the page_op template between ECC
++// prepare_io_req and finish_io_req are for page cache r/w.
++// Here's how this spi-mem driver operates when reading:
++//  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
++//  2. Perform page ops and let the controller fill the DMA bounce buffer with
++//     de-interleaved sector data and set FDM registers.
++//  3. Return the data as:
++//     +---------+---------+-----+------+------+-----+
++//     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
++//     +---------+---------+-----+------+------+-----+
++//  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
++//     read the data with auto-format off into the bounce buffer and copy
++//     needed data to the buffer specified in the request.
++//
++// Write requests operates in a similar manner.
++// As a limitation of this strategy, we won't be able to access any ECC parity
++// data at all in Linux.
++//
++// Here's the bad block mark situation on MTK chips:
++// In older chips like mt7622, MTK uses the first FDM byte in the first sector
++// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
++// in the returned data, which is the BBM position expected by kernel. However,
++// the conventional bad block mark is the first byte of the OOB, which is part
++// of the last sector data in the interleaved layout. Instead of fixing their
++// hardware, MTK decided to address this inconsistency in software. On these
++// later chips, the BootROM expects the following:
++// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
++//    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
++// 2. The original byte stored at that position in the DMA buffer will be stored
++//    as the first byte of the FDM section in the last sector.
++// We can't disagree with the BootROM, so after de-interleaving, we need to
++// perform the following swaps in read:
++// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
++//    which is the expected BBM position by kernel.
++// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
++//    [page_size - (nsectors - 1) * spare_size]
++// Similarly, when writing, we need to perform swaps in the other direction.
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/mutex.h>
++#include <linux/clk.h>
++#include <linux/interrupt.h>
++#include <linux/dma-mapping.h>
++#include <linux/iopoll.h>
++#include <linux/of_platform.h>
++#include <linux/mtd/nand-ecc-mtk.h>
++#include <linux/spi/spi.h>
++#include <linux/spi/spi-mem.h>
++#include <linux/mtd/nand.h>
++
++// NFI registers
++#define NFI_CNFG 0x000
++#define CNFG_OP_MODE_S 12
++#define CNFG_OP_MODE_CUST 6
++#define CNFG_OP_MODE_PROGRAM 3
++#define CNFG_AUTO_FMT_EN BIT(9)
++#define CNFG_HW_ECC_EN BIT(8)
++#define CNFG_DMA_BURST_EN BIT(2)
++#define CNFG_READ_MODE BIT(1)
++#define CNFG_DMA_MODE BIT(0)
++
++#define NFI_PAGEFMT 0x0004
++#define NFI_SPARE_SIZE_LS_S 16
++#define NFI_FDM_ECC_NUM_S 12
++#define NFI_FDM_NUM_S 8
++#define NFI_SPARE_SIZE_S 4
++#define NFI_SEC_SEL_512 BIT(2)
++#define NFI_PAGE_SIZE_S 0
++#define NFI_PAGE_SIZE_512_2K 0
++#define NFI_PAGE_SIZE_2K_4K 1
++#define NFI_PAGE_SIZE_4K_8K 2
++#define NFI_PAGE_SIZE_8K_16K 3
++
++#define NFI_CON 0x008
++#define CON_SEC_NUM_S 12
++#define CON_BWR BIT(9)
++#define CON_BRD BIT(8)
++#define CON_NFI_RST BIT(1)
++#define CON_FIFO_FLUSH BIT(0)
++
++#define NFI_INTR_EN 0x010
++#define NFI_INTR_STA 0x014
++#define NFI_IRQ_INTR_EN BIT(31)
++#define NFI_IRQ_CUS_READ BIT(8)
++#define NFI_IRQ_CUS_PG BIT(7)
++
++#define NFI_CMD 0x020
++#define NFI_CMD_DUMMY_READ 0x00
++#define NFI_CMD_DUMMY_WRITE 0x80
++
++#define NFI_STRDATA 0x040
++#define STR_DATA BIT(0)
++
++#define NFI_STA 0x060
++#define NFI_NAND_FSM GENMASK(28, 24)
++#define NFI_FSM GENMASK(19, 16)
++#define READ_EMPTY BIT(12)
++
++#define NFI_FIFOSTA 0x064
++#define FIFO_WR_REMAIN_S 8
++#define FIFO_RD_REMAIN_S 0
++
++#define NFI_ADDRCNTR 0x070
++#define SEC_CNTR GENMASK(16, 12)
++#define SEC_CNTR_S 12
++#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
++
++#define NFI_STRADDR 0x080
++
++#define NFI_BYTELEN 0x084
++#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
++
++#define NFI_FDM0L 0x0a0
++#define NFI_FDM0M 0x0a4
++#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
++#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
++
++#define NFI_DEBUG_CON1 0x220
++#define WBUF_EN BIT(2)
++
++#define NFI_MASTERSTA 0x224
++#define MAS_ADDR GENMASK(11, 9)
++#define MAS_RD GENMASK(8, 6)
++#define MAS_WR GENMASK(5, 3)
++#define MAS_RDDLY GENMASK(2, 0)
++#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
++
++// SNFI registers
++#define SNF_MAC_CTL 0x500
++#define MAC_XIO_SEL BIT(4)
++#define SF_MAC_EN BIT(3)
++#define SF_TRIG BIT(2)
++#define WIP_READY BIT(1)
++#define WIP BIT(0)
++
++#define SNF_MAC_OUTL 0x504
++#define SNF_MAC_INL 0x508
++
++#define SNF_RD_CTL2 0x510
++#define DATA_READ_DUMMY_S 8
++#define DATA_READ_MAX_DUMMY 0xf
++#define DATA_READ_CMD_S 0
++
++#define SNF_RD_CTL3 0x514
++
++#define SNF_PG_CTL1 0x524
++#define PG_LOAD_CMD_S 8
++
++#define SNF_PG_CTL2 0x528
++
++#define SNF_MISC_CTL 0x538
++#define SW_RST BIT(28)
++#define FIFO_RD_LTC_S 25
++#define PG_LOAD_X4_EN BIT(20)
++#define DATA_READ_MODE_S 16
++#define DATA_READ_MODE GENMASK(18, 16)
++#define DATA_READ_MODE_X1 0
++#define DATA_READ_MODE_X2 1
++#define DATA_READ_MODE_X4 2
++#define DATA_READ_MODE_DUAL 5
++#define DATA_READ_MODE_QUAD 6
++#define PG_LOAD_CUSTOM_EN BIT(7)
++#define DATARD_CUSTOM_EN BIT(6)
++#define CS_DESELECT_CYC_S 0
++
++#define SNF_MISC_CTL2 0x53c
++#define PROGRAM_LOAD_BYTE_NUM_S 16
++#define READ_DATA_BYTE_NUM_S 11
++
++#define SNF_DLY_CTL3 0x548
++#define SFCK_SAM_DLY_S 0
++
++#define SNF_STA_CTL1 0x550
++#define CUS_PG_DONE BIT(28)
++#define CUS_READ_DONE BIT(27)
++#define SPI_STATE_S 0
++#define SPI_STATE GENMASK(3, 0)
++
++#define SNF_CFG 0x55c
++#define SPI_MODE BIT(0)
++
++#define SNF_GPRAM 0x800
++#define SNF_GPRAM_SIZE 0xa0
++
++#define SNFI_POLL_INTERVAL 1000000
++
++static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
++
++struct mtk_snand_caps {
++      u16 sector_size;
++      u16 max_sectors;
++      u16 fdm_size;
++      u16 fdm_ecc_size;
++      u16 fifo_size;
++
++      bool bbm_swap;
++      bool empty_page_check;
++      u32 mastersta_mask;
++
++      const u8 *spare_sizes;
++      u32 num_spare_size;
++};
++
++static const struct mtk_snand_caps mt7622_snand_caps = {
++      .sector_size = 512,
++      .max_sectors = 8,
++      .fdm_size = 8,
++      .fdm_ecc_size = 1,
++      .fifo_size = 32,
++      .bbm_swap = false,
++      .empty_page_check = false,
++      .mastersta_mask = NFI_MASTERSTA_MASK_7622,
++      .spare_sizes = mt7622_spare_sizes,
++      .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
++};
++
++static const struct mtk_snand_caps mt7629_snand_caps = {
++      .sector_size = 512,
++      .max_sectors = 8,
++      .fdm_size = 8,
++      .fdm_ecc_size = 1,
++      .fifo_size = 32,
++      .bbm_swap = true,
++      .empty_page_check = false,
++      .mastersta_mask = NFI_MASTERSTA_MASK_7622,
++      .spare_sizes = mt7622_spare_sizes,
++      .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
++};
++
++struct mtk_snand_conf {
++      size_t page_size;
++      size_t oob_size;
++      u8 nsectors;
++      u8 spare_size;
++};
++
++struct mtk_snand {
++      struct spi_controller *ctlr;
++      struct device *dev;
++      struct clk *nfi_clk;
++      struct clk *pad_clk;
++      void __iomem *nfi_base;
++      int irq;
++      struct completion op_done;
++      const struct mtk_snand_caps *caps;
++      struct mtk_ecc_config *ecc_cfg;
++      struct mtk_ecc *ecc;
++      struct mtk_snand_conf nfi_cfg;
++      struct mtk_ecc_stats ecc_stats;
++      struct nand_ecc_engine ecc_eng;
++      bool autofmt;
++      u8 *buf;
++      size_t buf_len;
++};
++
++static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
++{
++      struct nand_ecc_engine *eng = nand->ecc.engine;
++
++      return container_of(eng, struct mtk_snand, ecc_eng);
++}
++
++static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
++{
++      if (snf->buf_len >= size)
++              return 0;
++      kfree(snf->buf);
++      snf->buf = kmalloc(size, GFP_KERNEL);
++      if (!snf->buf)
++              return -ENOMEM;
++      snf->buf_len = size;
++      memset(snf->buf, 0xff, snf->buf_len);
++      return 0;
++}
++
++static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
++{
++      return readl(snf->nfi_base + reg);
++}
++
++static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
++{
++      writel(val, snf->nfi_base + reg);
++}
++
++static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
++{
++      writew(val, snf->nfi_base + reg);
++}
++
++static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
++{
++      u32 val;
++
++      val = readl(snf->nfi_base + reg);
++      val &= ~clr;
++      val |= set;
++      writel(val, snf->nfi_base + reg);
++}
++
++static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
++{
++      u32 i, val = 0, es = sizeof(u32);
++
++      for (i = reg; i < reg + len; i++) {
++              if (i == reg || i % es == 0)
++                      val = nfi_read32(snf, i & ~(es - 1));
++
++              *data++ = (u8)(val >> (8 * (i % es)));
++      }
++}
++
++static int mtk_nfi_reset(struct mtk_snand *snf)
++{
++      u32 val, fifo_mask;
++      int ret;
++
++      nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
++
++      ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
++                               !(val & snf->caps->mastersta_mask), 0,
++                               SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "NFI master is still busy after reset\n");
++              return ret;
++      }
++
++      ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
++                               !(val & (NFI_FSM | NFI_NAND_FSM)), 0,
++                               SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "Failed to reset NFI\n");
++              return ret;
++      }
++
++      fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
++                  ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
++      ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
++                               !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "NFI FIFOs are not empty\n");
++              return ret;
++      }
++
++      return 0;
++}
++
++static int mtk_snand_mac_reset(struct mtk_snand *snf)
++{
++      int ret;
++      u32 val;
++
++      nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
++
++      ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
++                               !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
++      if (ret)
++              dev_err(snf->dev, "Failed to reset SNFI MAC\n");
++
++      nfi_write32(snf, SNF_MISC_CTL,
++                  (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
++
++      return ret;
++}
++
++static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
++{
++      int ret;
++      u32 val;
++
++      nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
++      nfi_write32(snf, SNF_MAC_OUTL, outlen);
++      nfi_write32(snf, SNF_MAC_INL, inlen);
++
++      nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
++
++      ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
++                               val & WIP_READY, 0, SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
++              goto cleanup;
++      }
++
++      ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
++                               0, SNFI_POLL_INTERVAL);
++      if (ret)
++              dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
++
++cleanup:
++      nfi_write32(snf, SNF_MAC_CTL, 0);
++
++      return ret;
++}
++
++static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
++{
++      u32 rx_len = 0;
++      u32 reg_offs = 0;
++      u32 val = 0;
++      const u8 *tx_buf = NULL;
++      u8 *rx_buf = NULL;
++      int i, ret;
++      u8 b;
++
++      if (op->data.dir == SPI_MEM_DATA_IN) {
++              rx_len = op->data.nbytes;
++              rx_buf = op->data.buf.in;
++      } else {
++              tx_buf = op->data.buf.out;
++      }
++
++      mtk_snand_mac_reset(snf);
++
++      for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
++              b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
++              val |= b << (8 * (reg_offs % 4));
++              if (reg_offs % 4 == 3) {
++                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++                      val = 0;
++              }
++      }
++
++      for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
++              b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
++              val |= b << (8 * (reg_offs % 4));
++              if (reg_offs % 4 == 3) {
++                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++                      val = 0;
++              }
++      }
++
++      for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
++              if (reg_offs % 4 == 3) {
++                      nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++                      val = 0;
++              }
++      }
++
++      if (op->data.dir == SPI_MEM_DATA_OUT) {
++              for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
++                      val |= tx_buf[i] << (8 * (reg_offs % 4));
++                      if (reg_offs % 4 == 3) {
++                              nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++                              val = 0;
++                      }
++              }
++      }
++
++      if (reg_offs % 4)
++              nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
++
++      for (i = 0; i < reg_offs; i += 4)
++              dev_dbg(snf->dev, "%d: %08X", i,
++                      nfi_read32(snf, SNF_GPRAM + i));
++
++      dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
++
++      ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
++      if (ret)
++              return ret;
++
++      if (!rx_len)
++              return 0;
++
++      nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
++      return 0;
++}
++
++static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
++                                 u32 oob_size)
++{
++      int spare_idx = -1;
++      u32 spare_size, spare_size_shift, pagesize_idx;
++      u32 sector_size_512;
++      u8 nsectors;
++      int i;
++
++      // skip if it's already configured as required.
++      if (snf->nfi_cfg.page_size == page_size &&
++          snf->nfi_cfg.oob_size == oob_size)
++              return 0;
++
++      nsectors = page_size / snf->caps->sector_size;
++      if (nsectors > snf->caps->max_sectors) {
++              dev_err(snf->dev, "too many sectors required.\n");
++              goto err;
++      }
++
++      if (snf->caps->sector_size == 512) {
++              sector_size_512 = NFI_SEC_SEL_512;
++              spare_size_shift = NFI_SPARE_SIZE_S;
++      } else {
++              sector_size_512 = 0;
++              spare_size_shift = NFI_SPARE_SIZE_LS_S;
++      }
++
++      switch (page_size) {
++      case SZ_512:
++              pagesize_idx = NFI_PAGE_SIZE_512_2K;
++              break;
++      case SZ_2K:
++              if (snf->caps->sector_size == 512)
++                      pagesize_idx = NFI_PAGE_SIZE_2K_4K;
++              else
++                      pagesize_idx = NFI_PAGE_SIZE_512_2K;
++              break;
++      case SZ_4K:
++              if (snf->caps->sector_size == 512)
++                      pagesize_idx = NFI_PAGE_SIZE_4K_8K;
++              else
++                      pagesize_idx = NFI_PAGE_SIZE_2K_4K;
++              break;
++      case SZ_8K:
++              if (snf->caps->sector_size == 512)
++                      pagesize_idx = NFI_PAGE_SIZE_8K_16K;
++              else
++                      pagesize_idx = NFI_PAGE_SIZE_4K_8K;
++              break;
++      case SZ_16K:
++              pagesize_idx = NFI_PAGE_SIZE_8K_16K;
++              break;
++      default:
++              dev_err(snf->dev, "unsupported page size.\n");
++              goto err;
++      }
++
++      spare_size = oob_size / nsectors;
++      // If we're using the 1KB sector size, HW will automatically double the
++      // spare size. We should only use half of the value in this case.
++      if (snf->caps->sector_size == 1024)
++              spare_size /= 2;
++
++      for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
++              if (snf->caps->spare_sizes[i] <= spare_size) {
++                      spare_size = snf->caps->spare_sizes[i];
++                      if (snf->caps->sector_size == 1024)
++                              spare_size *= 2;
++                      spare_idx = i;
++                      break;
++              }
++      }
++
++      if (spare_idx < 0) {
++              dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
++              goto err;
++      }
++
++      nfi_write32(snf, NFI_PAGEFMT,
++                  (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
++                          (snf->caps->fdm_size << NFI_FDM_NUM_S) |
++                          (spare_idx << spare_size_shift) |
++                          (pagesize_idx << NFI_PAGE_SIZE_S) |
++                          sector_size_512);
++
++      snf->nfi_cfg.page_size = page_size;
++      snf->nfi_cfg.oob_size = oob_size;
++      snf->nfi_cfg.nsectors = nsectors;
++      snf->nfi_cfg.spare_size = spare_size;
++
++      dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
++              snf->caps->sector_size, spare_size, nsectors);
++      return snand_prepare_bouncebuf(snf, page_size + oob_size);
++err:
++      dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
++              oob_size);
++      return -EOPNOTSUPP;
++}
++
++static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
++                                 struct mtd_oob_region *oobecc)
++{
++      // ECC area is not accessible
++      return -ERANGE;
++}
++
++static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
++                                  struct mtd_oob_region *oobfree)
++{
++      struct nand_device *nand = mtd_to_nanddev(mtd);
++      struct mtk_snand *ms = nand_to_mtk_snand(nand);
++
++      if (section >= ms->nfi_cfg.nsectors)
++              return -ERANGE;
++
++      oobfree->length = ms->caps->fdm_size - 1;
++      oobfree->offset = section * ms->caps->fdm_size + 1;
++      return 0;
++}
++
++static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
++      .ecc = mtk_snand_ooblayout_ecc,
++      .free = mtk_snand_ooblayout_free,
++};
++
++static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
++{
++      struct mtk_snand *snf = nand_to_mtk_snand(nand);
++      struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
++      struct nand_ecc_props *reqs = &nand->ecc.requirements;
++      struct nand_ecc_props *user = &nand->ecc.user_conf;
++      struct mtd_info *mtd = nanddev_to_mtd(nand);
++      int step_size = 0, strength = 0, desired_correction = 0, steps;
++      bool ecc_user = false;
++      int ret;
++      u32 parity_bits, max_ecc_bytes;
++      struct mtk_ecc_config *ecc_cfg;
++
++      ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
++                                    nand->memorg.oobsize);
++      if (ret)
++              return ret;
++
++      ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
++      if (!ecc_cfg)
++              return -ENOMEM;
++
++      nand->ecc.ctx.priv = ecc_cfg;
++
++      if (user->step_size && user->strength) {
++              step_size = user->step_size;
++              strength = user->strength;
++              ecc_user = true;
++      } else if (reqs->step_size && reqs->strength) {
++              step_size = reqs->step_size;
++              strength = reqs->strength;
++      }
++
++      if (step_size && strength) {
++              steps = mtd->writesize / step_size;
++              desired_correction = steps * strength;
++              strength = desired_correction / snf->nfi_cfg.nsectors;
++      }
++
++      ecc_cfg->mode = ECC_NFI_MODE;
++      ecc_cfg->sectors = snf->nfi_cfg.nsectors;
++      ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
++
++      // calculate the max possible strength under current page format
++      parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
++      max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
++      ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
++      mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
++
++      // if there's a user requested strength, find the minimum strength that
++      // meets the requirement. Otherwise use the maximum strength which is
++      // expected by BootROM.
++      if (ecc_user && strength) {
++              u32 s_next = ecc_cfg->strength - 1;
++
++              while (1) {
++                      mtk_ecc_adjust_strength(snf->ecc, &s_next);
++                      if (s_next >= ecc_cfg->strength)
++                              break;
++                      if (s_next < strength)
++                              break;
++                      s_next = ecc_cfg->strength - 1;
++              }
++      }
++
++      mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
++
++      conf->step_size = snf->caps->sector_size;
++      conf->strength = ecc_cfg->strength;
++
++      if (ecc_cfg->strength < strength)
++              dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
++                       strength);
++      dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
++               ecc_cfg->strength, snf->caps->sector_size);
++
++      return 0;
++}
++
++static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
++{
++      struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
++
++      kfree(ecc_cfg);
++}
++
++static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
++                                      struct nand_page_io_req *req)
++{
++      struct mtk_snand *snf = nand_to_mtk_snand(nand);
++      struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
++      int ret;
++
++      ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
++                                    nand->memorg.oobsize);
++      if (ret)
++              return ret;
++      snf->autofmt = true;
++      snf->ecc_cfg = ecc_cfg;
++      return 0;
++}
++
++static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
++                                     struct nand_page_io_req *req)
++{
++      struct mtk_snand *snf = nand_to_mtk_snand(nand);
++      struct mtd_info *mtd = nanddev_to_mtd(nand);
++
++      snf->ecc_cfg = NULL;
++      snf->autofmt = false;
++      if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
++              return 0;
++
++      if (snf->ecc_stats.failed)
++              mtd->ecc_stats.failed += snf->ecc_stats.failed;
++      mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
++      return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
++}
++
++static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
++      .init_ctx = mtk_snand_ecc_init_ctx,
++      .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
++      .prepare_io_req = mtk_snand_ecc_prepare_io_req,
++      .finish_io_req = mtk_snand_ecc_finish_io_req,
++};
++
++static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
++{
++      u32 vall, valm;
++      u8 *oobptr = buf;
++      int i, j;
++
++      for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
++              vall = nfi_read32(snf, NFI_FDML(i));
++              valm = nfi_read32(snf, NFI_FDMM(i));
++
++              for (j = 0; j < snf->caps->fdm_size; j++)
++                      oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
++
++              oobptr += snf->caps->fdm_size;
++      }
++}
++
++static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
++{
++      u32 fdm_size = snf->caps->fdm_size;
++      const u8 *oobptr = buf;
++      u32 vall, valm;
++      int i, j;
++
++      for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
++              vall = 0;
++              valm = 0;
++
++              for (j = 0; j < 8; j++) {
++                      if (j < 4)
++                              vall |= (j < fdm_size ? oobptr[j] : 0xff)
++                                      << (j * 8);
++                      else
++                              valm |= (j < fdm_size ? oobptr[j] : 0xff)
++                                      << ((j - 4) * 8);
++              }
++
++              nfi_write32(snf, NFI_FDML(i), vall);
++              nfi_write32(snf, NFI_FDMM(i), valm);
++
++              oobptr += fdm_size;
++      }
++}
++
++static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
++{
++      u32 buf_bbm_pos, fdm_bbm_pos;
++
++      if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
++              return;
++
++      // swap [pagesize] byte on nand with the first fdm byte
++      // in the last sector.
++      buf_bbm_pos = snf->nfi_cfg.page_size -
++                    (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
++      fdm_bbm_pos = snf->nfi_cfg.page_size +
++                    (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
++
++      swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
++}
++
++static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
++{
++      u32 fdm_bbm_pos1, fdm_bbm_pos2;
++
++      if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
++              return;
++
++      // swap the first fdm byte in the first and the last sector.
++      fdm_bbm_pos1 = snf->nfi_cfg.page_size;
++      fdm_bbm_pos2 = snf->nfi_cfg.page_size +
++                     (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
++      swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
++}
++
++static int mtk_snand_read_page_cache(struct mtk_snand *snf,
++                                   const struct spi_mem_op *op)
++{
++      u8 *buf = snf->buf;
++      u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
++      // the address part to be sent by the controller
++      u32 op_addr = op->addr.val;
++      // where to start copying data from bounce buffer
++      u32 rd_offset = 0;
++      u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
++      u32 op_mode = 0;
++      u32 dma_len = snf->buf_len;
++      int ret = 0;
++      u32 rd_mode, rd_bytes, val;
++      dma_addr_t buf_dma;
++
++      if (snf->autofmt) {
++              u32 last_bit;
++              u32 mask;
++
++              dma_len = snf->nfi_cfg.page_size;
++              op_mode = CNFG_AUTO_FMT_EN;
++              if (op->data.ecc)
++                      op_mode |= CNFG_HW_ECC_EN;
++              // extract the plane bit:
++              // Find the highest bit set in (pagesize+oobsize).
++              // Bits higher than that in op->addr are kept and sent over SPI
++              // Lower bits are used as an offset for copying data from DMA
++              // bounce buffer.
++              last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
++              mask = (1 << last_bit) - 1;
++              rd_offset = op_addr & mask;
++              op_addr &= ~mask;
++
++              // check if we can dma to the caller memory
++              if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
++                      buf = op->data.buf.in;
++      }
++      mtk_snand_mac_reset(snf);
++      mtk_nfi_reset(snf);
++
++      // command and dummy cycles
++      nfi_write32(snf, SNF_RD_CTL2,
++                  (dummy_clk << DATA_READ_DUMMY_S) |
++                          (op->cmd.opcode << DATA_READ_CMD_S));
++
++      // read address
++      nfi_write32(snf, SNF_RD_CTL3, op_addr);
++
++      // Set read op_mode
++      if (op->data.buswidth == 4)
++              rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
++                                                 DATA_READ_MODE_X4;
++      else if (op->data.buswidth == 2)
++              rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
++                                                 DATA_READ_MODE_X2;
++      else
++              rd_mode = DATA_READ_MODE_X1;
++      rd_mode <<= DATA_READ_MODE_S;
++      nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
++                rd_mode | DATARD_CUSTOM_EN);
++
++      // Set bytes to read
++      rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
++                 snf->nfi_cfg.nsectors;
++      nfi_write32(snf, SNF_MISC_CTL2,
++                  (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
++
++      // NFI read prepare
++      nfi_write16(snf, NFI_CNFG,
++                  (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
++                          CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
++
++      nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
++
++      buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
++      if (dma_mapping_error(snf->dev, buf_dma)) {
++              dev_err(snf->dev, "DMA mapping failed.\n");
++              goto cleanup;
++      }
++      nfi_write32(snf, NFI_STRADDR, buf_dma);
++      if (op->data.ecc) {
++              snf->ecc_cfg->op = ECC_DECODE;
++              ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
++              if (ret)
++                      goto cleanup_dma;
++      }
++      // Prepare for custom read interrupt
++      nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
++      reinit_completion(&snf->op_done);
++
++      // Trigger NFI into custom mode
++      nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
++
++      // Start DMA read
++      nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
++      nfi_write16(snf, NFI_STRDATA, STR_DATA);
++
++      if (!wait_for_completion_timeout(
++                  &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
++              dev_err(snf->dev, "DMA timed out for reading from cache.\n");
++              ret = -ETIMEDOUT;
++              goto cleanup;
++      }
++
++      // Wait for BUS_SEC_CNTR returning expected value
++      ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
++                               BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
++                               SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
++              goto cleanup2;
++      }
++
++      // Wait for bus becoming idle
++      ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
++                               !(val & snf->caps->mastersta_mask), 0,
++                               SNFI_POLL_INTERVAL);
++      if (ret) {
++              dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
++              goto cleanup2;
++      }
++
++      if (op->data.ecc) {
++              ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
++              if (ret) {
++                      dev_err(snf->dev, "wait ecc done timeout\n");
++                      goto cleanup2;
++              }
++              // save status before disabling ecc
++              mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
++                                snf->nfi_cfg.nsectors);
++      }
++
++      dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
++
++      if (snf->autofmt) {
++              mtk_snand_read_fdm(snf, buf_fdm);
++              if (snf->caps->bbm_swap) {
++                      mtk_snand_bm_swap(snf, buf);
++                      mtk_snand_fdm_bm_swap(snf);
++              }
++      }
++
++      // copy data back
++      if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
++              memset(op->data.buf.in, 0xff, op->data.nbytes);
++              snf->ecc_stats.bitflips = 0;
++              snf->ecc_stats.failed = 0;
++              snf->ecc_stats.corrected = 0;
++      } else {
++              if (buf == op->data.buf.in) {
++                      u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
++                      u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
++
++                      if (req_left)
++                              memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
++                                     buf_fdm,
++                                     cap_len < req_left ? cap_len : req_left);
++              } else if (rd_offset < snf->buf_len) {
++                      u32 cap_len = snf->buf_len - rd_offset;
++
++                      if (op->data.nbytes < cap_len)
++                              cap_len = op->data.nbytes;
++                      memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
++              }
++      }
++cleanup2:
++      if (op->data.ecc)
++              mtk_ecc_disable(snf->ecc);
++cleanup_dma:
++      // unmap dma only if any error happens. (otherwise it's done before
++      // data copying)
++      if (ret)
++              dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
++cleanup:
++      // Stop read
++      nfi_write32(snf, NFI_CON, 0);
++      nfi_write16(snf, NFI_CNFG, 0);
++
++      // Clear SNF done flag
++      nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
++      nfi_write32(snf, SNF_STA_CTL1, 0);
++
++      // Disable interrupt
++      nfi_read32(snf, NFI_INTR_STA);
++      nfi_write32(snf, NFI_INTR_EN, 0);
++
++      nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
++      return ret;
++}
++
++static int mtk_snand_write_page_cache(struct mtk_snand *snf,
++                                    const struct spi_mem_op *op)
++{
++      // the address part to be sent by the controller
++      u32 op_addr = op->addr.val;
++      // where to start copying data from bounce buffer
++      u32 wr_offset = 0;
++      u32 op_mode = 0;
++      int ret = 0;
++      u32 wr_mode = 0;
++      u32 dma_len = snf->buf_len;
++      u32 wr_bytes, val;
++      size_t cap_len;
++      dma_addr_t buf_dma;
++
++      if (snf->autofmt) {
++              u32 last_bit;
++              u32 mask;
++
++              dma_len = snf->nfi_cfg.page_size;
++              op_mode = CNFG_AUTO_FMT_EN;
++              if (op->data.ecc)
++                      op_mode |= CNFG_HW_ECC_EN;
++
++              last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
++              mask = (1 << last_bit) - 1;
++              wr_offset = op_addr & mask;
++              op_addr &= ~mask;
++      }
++      mtk_snand_mac_reset(snf);
++      mtk_nfi_reset(snf);
++
++      if (wr_offset)
++              memset(snf->buf, 0xff, wr_offset);
++
++      cap_len = snf->buf_len - wr_offset;
++      if (op->data.nbytes < cap_len)
++              cap_len = op->data.nbytes;
++      memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
++      if (snf->autofmt) {
++              if (snf->caps->bbm_swap) {
++                      mtk_snand_fdm_bm_swap(snf);
++                      mtk_snand_bm_swap(snf, snf->buf);
++              }
++              mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
++      }
++
++      // Command
++      nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
++
++      // write address
++      nfi_write32(snf, SNF_PG_CTL2, op_addr);
++
++      // Set read op_mode
++      if (op->data.buswidth == 4)
++              wr_mode = PG_LOAD_X4_EN;
++
++      nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
++                wr_mode | PG_LOAD_CUSTOM_EN);
++
++      // Set bytes to write
++      wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
++                 snf->nfi_cfg.nsectors;
++      nfi_write32(snf, SNF_MISC_CTL2,
++                  (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
++
++      // NFI write prepare
++      nfi_write16(snf, NFI_CNFG,
++                  (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
++                          CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
++
++      nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
++      buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
++      if (dma_mapping_error(snf->dev, buf_dma)) {
++              dev_err(snf->dev, "DMA mapping failed.\n");
++              goto cleanup;
++      }
++      nfi_write32(snf, NFI_STRADDR, buf_dma);
++      if (op->data.ecc) {
++              snf->ecc_cfg->op = ECC_ENCODE;
++              ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
++              if (ret)
++                      goto cleanup_dma;
++      }
++      // Prepare for custom write interrupt
++      nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
++      reinit_completion(&snf->op_done);
++      ;
++
++      // Trigger NFI into custom mode
++      nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
++
++      // Start DMA write
++      nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
++      nfi_write16(snf, NFI_STRDATA, STR_DATA);
++
++      if (!wait_for_completion_timeout(
++                  &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
++              dev_err(snf->dev, "DMA timed out for program load.\n");
++              ret = -ETIMEDOUT;
++              goto cleanup_ecc;
++      }
++
++      // Wait for NFI_SEC_CNTR returning expected value
++      ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
++                               NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
++                               SNFI_POLL_INTERVAL);
++      if (ret)
++              dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
++
++cleanup_ecc:
++      if (op->data.ecc)
++              mtk_ecc_disable(snf->ecc);
++cleanup_dma:
++      dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
++cleanup:
++      // Stop write
++      nfi_write32(snf, NFI_CON, 0);
++      nfi_write16(snf, NFI_CNFG, 0);
++
++      // Clear SNF done flag
++      nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
++      nfi_write32(snf, SNF_STA_CTL1, 0);
++
++      // Disable interrupt
++      nfi_read32(snf, NFI_INTR_STA);
++      nfi_write32(snf, NFI_INTR_EN, 0);
++
++      nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
++
++      return ret;
++}
++
++/**
++ * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
++ * @op spi-mem op to check
++ *
++ * Check whether op can be executed with read_from_cache or program_load
++ * mode in the controller.
++ * This controller can execute typical Read From Cache and Program Load
++ * instructions found on SPI-NAND with 2-byte address.
++ * DTR and cmd buswidth & nbytes should be checked before calling this.
++ *
++ * Return: true if the op matches the instruction template
++ */
++static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
++{
++      if (op->addr.nbytes != 2)
++              return false;
++
++      if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
++          op->addr.buswidth != 4)
++              return false;
++
++      // match read from page instructions
++      if (op->data.dir == SPI_MEM_DATA_IN) {
++              // check dummy cycle first
++              if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
++                  DATA_READ_MAX_DUMMY)
++                      return false;
++              // quad io / quad out
++              if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
++                  op->data.buswidth == 4)
++                      return true;
++
++              // dual io / dual out
++              if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
++                  op->data.buswidth == 2)
++                      return true;
++
++              // standard spi
++              if (op->addr.buswidth == 1 && op->data.buswidth == 1)
++                      return true;
++      } else if (op->data.dir == SPI_MEM_DATA_OUT) {
++              // check dummy cycle first
++              if (op->dummy.nbytes)
++                      return false;
++              // program load quad out
++              if (op->addr.buswidth == 1 && op->data.buswidth == 4)
++                      return true;
++              // standard spi
++              if (op->addr.buswidth == 1 && op->data.buswidth == 1)
++                      return true;
++      }
++      return false;
++}
++
++static bool mtk_snand_supports_op(struct spi_mem *mem,
++                                const struct spi_mem_op *op)
++{
++      if (!spi_mem_default_supports_op(mem, op))
++              return false;
++      if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
++              return false;
++      if (mtk_snand_is_page_ops(op))
++              return true;
++      return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
++              (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
++              (op->data.nbytes == 0 || op->data.buswidth == 1));
++}
++
++static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
++{
++      struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
++      // page ops transfer size must be exactly ((sector_size + spare_size) *
++      // nsectors). Limit the op size if the caller requests more than that.
++      // exec_op will read more than needed and discard the leftover if the
++      // caller requests less data.
++      if (mtk_snand_is_page_ops(op)) {
++              size_t l;
++              // skip adjust_op_size for page ops
++              if (ms->autofmt)
++                      return 0;
++              l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
++              l *= ms->nfi_cfg.nsectors;
++              if (op->data.nbytes > l)
++                      op->data.nbytes = l;
++      } else {
++              size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
++
++              if (hl >= SNF_GPRAM_SIZE)
++                      return -EOPNOTSUPP;
++              if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
++                      op->data.nbytes = SNF_GPRAM_SIZE - hl;
++      }
++      return 0;
++}
++
++static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
++{
++      struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
++
++      dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
++              op->addr.val, op->addr.buswidth, op->addr.nbytes,
++              op->data.buswidth, op->data.nbytes);
++      if (mtk_snand_is_page_ops(op)) {
++              if (op->data.dir == SPI_MEM_DATA_IN)
++                      return mtk_snand_read_page_cache(ms, op);
++              else
++                      return mtk_snand_write_page_cache(ms, op);
++      } else {
++              return mtk_snand_mac_io(ms, op);
++      }
++}
++
++static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
++      .adjust_op_size = mtk_snand_adjust_op_size,
++      .supports_op = mtk_snand_supports_op,
++      .exec_op = mtk_snand_exec_op,
++};
++
++static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
++      .ecc = true,
++};
++
++static irqreturn_t mtk_snand_irq(int irq, void *id)
++{
++      struct mtk_snand *snf = id;
++      u32 sta, ien;
++
++      sta = nfi_read32(snf, NFI_INTR_STA);
++      ien = nfi_read32(snf, NFI_INTR_EN);
++
++      if (!(sta & ien))
++              return IRQ_NONE;
++
++      nfi_write32(snf, NFI_INTR_EN, 0);
++      complete(&snf->op_done);
++      return IRQ_HANDLED;
++}
++
++static const struct of_device_id mtk_snand_ids[] = {
++      { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
++      { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
++      {},
++};
++
++MODULE_DEVICE_TABLE(of, mtk_snand_ids);
++
++static int mtk_snand_enable_clk(struct mtk_snand *ms)
++{
++      int ret;
++
++      ret = clk_prepare_enable(ms->nfi_clk);
++      if (ret) {
++              dev_err(ms->dev, "unable to enable nfi clk\n");
++              return ret;
++      }
++      ret = clk_prepare_enable(ms->pad_clk);
++      if (ret) {
++              dev_err(ms->dev, "unable to enable pad clk\n");
++              goto err1;
++      }
++      return 0;
++err1:
++      clk_disable_unprepare(ms->nfi_clk);
++      return ret;
++}
++
++static void mtk_snand_disable_clk(struct mtk_snand *ms)
++{
++      clk_disable_unprepare(ms->pad_clk);
++      clk_disable_unprepare(ms->nfi_clk);
++}
++
++static int mtk_snand_probe(struct platform_device *pdev)
++{
++      struct device_node *np = pdev->dev.of_node;
++      const struct of_device_id *dev_id;
++      struct spi_controller *ctlr;
++      struct mtk_snand *ms;
++      int ret;
++
++      dev_id = of_match_node(mtk_snand_ids, np);
++      if (!dev_id)
++              return -EINVAL;
++
++      ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
++      if (!ctlr)
++              return -ENOMEM;
++      platform_set_drvdata(pdev, ctlr);
++
++      ms = spi_controller_get_devdata(ctlr);
++
++      ms->ctlr = ctlr;
++      ms->caps = dev_id->data;
++
++      ms->ecc = of_mtk_ecc_get(np);
++      if (IS_ERR(ms->ecc))
++              return PTR_ERR(ms->ecc);
++      else if (!ms->ecc)
++              return -ENODEV;
++
++      ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
++      if (IS_ERR(ms->nfi_base)) {
++              ret = PTR_ERR(ms->nfi_base);
++              goto release_ecc;
++      }
++
++      ms->dev = &pdev->dev;
++
++      ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
++      if (IS_ERR(ms->nfi_clk)) {
++              ret = PTR_ERR(ms->nfi_clk);
++              dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
++              goto release_ecc;
++      }
++
++      ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
++      if (IS_ERR(ms->pad_clk)) {
++              ret = PTR_ERR(ms->pad_clk);
++              dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
++              goto release_ecc;
++      }
++
++      ret = mtk_snand_enable_clk(ms);
++      if (ret)
++              goto release_ecc;
++
++      init_completion(&ms->op_done);
++
++      ms->irq = platform_get_irq(pdev, 0);
++      if (ms->irq < 0) {
++              ret = ms->irq;
++              goto disable_clk;
++      }
++      ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
++                             "mtk-snand", ms);
++      if (ret) {
++              dev_err(ms->dev, "failed to request snfi irq\n");
++              goto disable_clk;
++      }
++
++      ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
++      if (ret) {
++              dev_err(ms->dev, "failed to set dma mask\n");
++              goto disable_clk;
++      }
++
++      // switch to SNFI mode
++      nfi_write32(ms, SNF_CFG, SPI_MODE);
++
++      // setup an initial page format for ops matching page_cache_op template
++      // before ECC is called.
++      ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
++                                    ms->caps->spare_sizes[0]);
++      if (ret) {
++              dev_err(ms->dev, "failed to set initial page format\n");
++              goto disable_clk;
++      }
++
++      // setup ECC engine
++      ms->ecc_eng.dev = &pdev->dev;
++      ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
++      ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
++      ms->ecc_eng.priv = ms;
++
++      ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
++      if (ret) {
++              dev_err(&pdev->dev, "failed to register ecc engine.\n");
++              goto disable_clk;
++      }
++
++      ctlr->num_chipselect = 1;
++      ctlr->mem_ops = &mtk_snand_mem_ops;
++      ctlr->mem_caps = &mtk_snand_mem_caps;
++      ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
++      ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
++      ctlr->dev.of_node = pdev->dev.of_node;
++      ret = spi_register_controller(ctlr);
++      if (ret) {
++              dev_err(&pdev->dev, "spi_register_controller failed.\n");
++              goto disable_clk;
++      }
++
++      return 0;
++disable_clk:
++      mtk_snand_disable_clk(ms);
++release_ecc:
++      mtk_ecc_release(ms->ecc);
++      return ret;
++}
++
++static int mtk_snand_remove(struct platform_device *pdev)
++{
++      struct spi_controller *ctlr = platform_get_drvdata(pdev);
++      struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
++
++      spi_unregister_controller(ctlr);
++      mtk_snand_disable_clk(ms);
++      mtk_ecc_release(ms->ecc);
++      kfree(ms->buf);
++      return 0;
++}
++
++static struct platform_driver mtk_snand_driver = {
++      .probe = mtk_snand_probe,
++      .remove = mtk_snand_remove,
++      .driver = {
++              .name = "mtk-snand",
++              .of_match_table = mtk_snand_ids,
++      },
++};
++
++module_platform_driver(mtk_snand_driver);
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
++MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
diff --git a/target/linux/mediatek/patches-5.15/120-13-mtd-nand-mtk-ecc-also-parse-nand-ecc-engine-if-avail.patch b/target/linux/mediatek/patches-5.15/120-13-mtd-nand-mtk-ecc-also-parse-nand-ecc-engine-if-avail.patch
deleted file mode 100644 (file)
index 01d9d12..0000000
+++ /dev/null
@@ -1,30 +0,0 @@
-From 433b76fa0f3ca2865841abc21538dd8077ca3edd Mon Sep 17 00:00:00 2001
-From: Chuanhong Guo <gch981213@gmail.com>
-Date: Mon, 4 Apr 2022 00:05:38 +0800
-Subject: [PATCH 13/15] mtd: nand: mtk-ecc: also parse nand-ecc-engine if
- available
-
-The recently added ECC engine support introduced a generic property
-named nand-ecc-engine for ecc engine phandle. This patch adds support
-for this new property.
-
-Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
-(cherry picked from commit a41f25feb6e47c1c4d8d3279ae990ccbd8dfab54)
----
- drivers/mtd/nand/ecc-mtk.c | 5 ++++-
- 1 file changed, 4 insertions(+), 1 deletion(-)
-
---- a/drivers/mtd/nand/ecc-mtk.c
-+++ b/drivers/mtd/nand/ecc-mtk.c
-@@ -279,7 +279,10 @@ struct mtk_ecc *of_mtk_ecc_get(struct de
-       struct mtk_ecc *ecc = NULL;
-       struct device_node *np;
--      np = of_parse_phandle(of_node, "ecc-engine", 0);
-+      np = of_parse_phandle(of_node, "nand-ecc-engine", 0);
-+      /* for backward compatibility */
-+      if (!np)
-+              np = of_parse_phandle(of_node, "ecc-engine", 0);
-       if (np) {
-               ecc = mtk_ecc_get(np);
-               of_node_put(np);
diff --git a/target/linux/mediatek/patches-5.15/120-13-v5.19-mtd-nand-mtk-ecc-also-parse-nand-ecc-engine-if-avail.patch b/target/linux/mediatek/patches-5.15/120-13-v5.19-mtd-nand-mtk-ecc-also-parse-nand-ecc-engine-if-avail.patch
new file mode 100644 (file)
index 0000000..01d9d12
--- /dev/null
@@ -0,0 +1,30 @@
+From 433b76fa0f3ca2865841abc21538dd8077ca3edd Mon Sep 17 00:00:00 2001
+From: Chuanhong Guo <gch981213@gmail.com>
+Date: Mon, 4 Apr 2022 00:05:38 +0800
+Subject: [PATCH 13/15] mtd: nand: mtk-ecc: also parse nand-ecc-engine if
+ available
+
+The recently added ECC engine support introduced a generic property
+named nand-ecc-engine for ecc engine phandle. This patch adds support
+for this new property.
+
+Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
+(cherry picked from commit a41f25feb6e47c1c4d8d3279ae990ccbd8dfab54)
+---
+ drivers/mtd/nand/ecc-mtk.c | 5 ++++-
+ 1 file changed, 4 insertions(+), 1 deletion(-)
+
+--- a/drivers/mtd/nand/ecc-mtk.c
++++ b/drivers/mtd/nand/ecc-mtk.c
+@@ -279,7 +279,10 @@ struct mtk_ecc *of_mtk_ecc_get(struct de
+       struct mtk_ecc *ecc = NULL;
+       struct device_node *np;
+-      np = of_parse_phandle(of_node, "ecc-engine", 0);
++      np = of_parse_phandle(of_node, "nand-ecc-engine", 0);
++      /* for backward compatibility */
++      if (!np)
++              np = of_parse_phandle(of_node, "ecc-engine", 0);
+       if (np) {
+               ecc = mtk_ecc_get(np);
+               of_node_put(np);
diff --git a/target/linux/mediatek/patches-5.15/120-14-arm64-dts-mediatek-add-mtk-snfi-for-mt7622.patch b/target/linux/mediatek/patches-5.15/120-14-arm64-dts-mediatek-add-mtk-snfi-for-mt7622.patch
deleted file mode 100644 (file)
index d528567..0000000
+++ /dev/null
@@ -1,35 +0,0 @@
-From 9ba7c246063ae43baf2e53ccc8c8b5f8d025aaaa Mon Sep 17 00:00:00 2001
-From: Chuanhong Guo <gch981213@gmail.com>
-Date: Sun, 3 Apr 2022 10:19:29 +0800
-Subject: [PATCH 15/15] arm64: dts: mediatek: add mtk-snfi for mt7622
-
-This patch adds a device-tree node for the MTK SPI-NAND Flash Interface
-for MT7622 device tree.
-
-Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
-(cherry picked from commit 2e022641709011ef0843d0416b0f264b5fc217af)
----
- arch/arm64/boot/dts/mediatek/mt7622.dtsi | 12 ++++++++++++
- 1 file changed, 12 insertions(+)
-
---- a/arch/arm64/boot/dts/mediatek/mt7622.dtsi
-+++ b/arch/arm64/boot/dts/mediatek/mt7622.dtsi
-@@ -552,6 +552,18 @@
-               status = "disabled";
-       };
-+      snfi: spi@1100d000 {
-+              compatible = "mediatek,mt7622-snand";
-+              reg = <0 0x1100d000 0 0x1000>;
-+              interrupts = <GIC_SPI 96 IRQ_TYPE_LEVEL_LOW>;
-+              clocks = <&pericfg CLK_PERI_NFI_PD>, <&pericfg CLK_PERI_SNFI_PD>;
-+              clock-names = "nfi_clk", "pad_clk";
-+              nand-ecc-engine = <&bch>;
-+              #address-cells = <1>;
-+              #size-cells = <0>;
-+              status = "disabled";
-+      };
-+
-       bch: ecc@1100e000 {
-               compatible = "mediatek,mt7622-ecc";
-               reg = <0 0x1100e000 0 0x1000>;
diff --git a/target/linux/mediatek/patches-5.15/120-14-v5.19-arm64-dts-mediatek-add-mtk-snfi-for-mt7622.patch b/target/linux/mediatek/patches-5.15/120-14-v5.19-arm64-dts-mediatek-add-mtk-snfi-for-mt7622.patch
new file mode 100644 (file)
index 0000000..d528567
--- /dev/null
@@ -0,0 +1,35 @@
+From 9ba7c246063ae43baf2e53ccc8c8b5f8d025aaaa Mon Sep 17 00:00:00 2001
+From: Chuanhong Guo <gch981213@gmail.com>
+Date: Sun, 3 Apr 2022 10:19:29 +0800
+Subject: [PATCH 15/15] arm64: dts: mediatek: add mtk-snfi for mt7622
+
+This patch adds a device-tree node for the MTK SPI-NAND Flash Interface
+for MT7622 device tree.
+
+Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
+(cherry picked from commit 2e022641709011ef0843d0416b0f264b5fc217af)
+---
+ arch/arm64/boot/dts/mediatek/mt7622.dtsi | 12 ++++++++++++
+ 1 file changed, 12 insertions(+)
+
+--- a/arch/arm64/boot/dts/mediatek/mt7622.dtsi
++++ b/arch/arm64/boot/dts/mediatek/mt7622.dtsi
+@@ -552,6 +552,18 @@
+               status = "disabled";
+       };
++      snfi: spi@1100d000 {
++              compatible = "mediatek,mt7622-snand";
++              reg = <0 0x1100d000 0 0x1000>;
++              interrupts = <GIC_SPI 96 IRQ_TYPE_LEVEL_LOW>;
++              clocks = <&pericfg CLK_PERI_NFI_PD>, <&pericfg CLK_PERI_SNFI_PD>;
++              clock-names = "nfi_clk", "pad_clk";
++              nand-ecc-engine = <&bch>;
++              #address-cells = <1>;
++              #size-cells = <0>;
++              status = "disabled";
++      };
++
+       bch: ecc@1100e000 {
+               compatible = "mediatek,mt7622-ecc";
+               reg = <0 0x1100e000 0 0x1000>;