+++ /dev/null
-From ebb9653d4a87c64fb679e4c339e867556dada719 Mon Sep 17 00:00:00 2001
-From: Chuanhong Guo <gch981213@gmail.com>
-Date: Tue, 22 Mar 2022 18:44:21 +0800
-Subject: [PATCH 11/15] mtd: nand: make mtk_ecc.c a separated module
-
-this code will be used in mediatek snfi spi-mem controller with
-pipelined ECC engine.
-
-Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
-(cherry picked from commit 316f47cec4ce5b81aa8006de202d8769c117a52d)
----
- drivers/mtd/nand/Kconfig | 7 +++++++
- drivers/mtd/nand/Makefile | 1 +
- drivers/mtd/nand/{raw/mtk_ecc.c => ecc-mtk.c} | 3 +--
- drivers/mtd/nand/raw/Kconfig | 1 +
- drivers/mtd/nand/raw/Makefile | 2 +-
- drivers/mtd/nand/raw/mtk_nand.c | 2 +-
- .../nand/raw/mtk_ecc.h => include/linux/mtd/nand-ecc-mtk.h | 0
- 7 files changed, 12 insertions(+), 4 deletions(-)
- rename drivers/mtd/nand/{raw/mtk_ecc.c => ecc-mtk.c} (99%)
- rename drivers/mtd/nand/raw/mtk_ecc.h => include/linux/mtd/nand-ecc-mtk.h (100%)
-
---- a/drivers/mtd/nand/Kconfig
-+++ b/drivers/mtd/nand/Kconfig
-@@ -50,6 +50,13 @@ config MTD_NAND_MTK_BMT
- bool "Support MediaTek NAND Bad-block Management Table"
- default n
-
-+config MTD_NAND_ECC_MEDIATEK
-+ tristate "Mediatek hardware ECC engine"
-+ depends on HAS_IOMEM
-+ select MTD_NAND_ECC
-+ help
-+ This enables support for the hardware ECC engine from Mediatek.
-+
- endmenu
-
- endmenu
---- a/drivers/mtd/nand/Makefile
-+++ b/drivers/mtd/nand/Makefile
-@@ -3,6 +3,7 @@
- nandcore-objs := core.o bbt.o
- obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o
- obj-$(CONFIG_MTD_NAND_MTK_BMT) += mtk_bmt.o mtk_bmt_v2.o mtk_bmt_bbt.o mtk_bmt_nmbm.o
-+obj-$(CONFIG_MTD_NAND_ECC_MEDIATEK) += ecc-mtk.o
-
- obj-y += onenand/
- obj-y += raw/
---- a/drivers/mtd/nand/raw/mtk_ecc.c
-+++ /dev/null
-@@ -1,599 +0,0 @@
--// SPDX-License-Identifier: GPL-2.0 OR MIT
--/*
-- * MTK ECC controller driver.
-- * Copyright (C) 2016 MediaTek Inc.
-- * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
-- * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
-- */
--
--#include <linux/platform_device.h>
--#include <linux/dma-mapping.h>
--#include <linux/interrupt.h>
--#include <linux/clk.h>
--#include <linux/module.h>
--#include <linux/iopoll.h>
--#include <linux/of.h>
--#include <linux/of_platform.h>
--#include <linux/mutex.h>
--
--#include "mtk_ecc.h"
--
--#define ECC_IDLE_MASK BIT(0)
--#define ECC_IRQ_EN BIT(0)
--#define ECC_PG_IRQ_SEL BIT(1)
--#define ECC_OP_ENABLE (1)
--#define ECC_OP_DISABLE (0)
--
--#define ECC_ENCCON (0x00)
--#define ECC_ENCCNFG (0x04)
--#define ECC_MS_SHIFT (16)
--#define ECC_ENCDIADDR (0x08)
--#define ECC_ENCIDLE (0x0C)
--#define ECC_DECCON (0x100)
--#define ECC_DECCNFG (0x104)
--#define DEC_EMPTY_EN BIT(31)
--#define DEC_CNFG_CORRECT (0x3 << 12)
--#define ECC_DECIDLE (0x10C)
--#define ECC_DECENUM0 (0x114)
--
--#define ECC_TIMEOUT (500000)
--
--#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
--#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
--
--struct mtk_ecc_caps {
-- u32 err_mask;
-- u32 err_shift;
-- const u8 *ecc_strength;
-- const u32 *ecc_regs;
-- u8 num_ecc_strength;
-- u8 ecc_mode_shift;
-- u32 parity_bits;
-- int pg_irq_sel;
--};
--
--struct mtk_ecc {
-- struct device *dev;
-- const struct mtk_ecc_caps *caps;
-- void __iomem *regs;
-- struct clk *clk;
--
-- struct completion done;
-- struct mutex lock;
-- u32 sectors;
--
-- u8 *eccdata;
--};
--
--/* ecc strength that each IP supports */
--static const u8 ecc_strength_mt2701[] = {
-- 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
-- 40, 44, 48, 52, 56, 60
--};
--
--static const u8 ecc_strength_mt2712[] = {
-- 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
-- 40, 44, 48, 52, 56, 60, 68, 72, 80
--};
--
--static const u8 ecc_strength_mt7622[] = {
-- 4, 6, 8, 10, 12
--};
--
--enum mtk_ecc_regs {
-- ECC_ENCPAR00,
-- ECC_ENCIRQ_EN,
-- ECC_ENCIRQ_STA,
-- ECC_DECDONE,
-- ECC_DECIRQ_EN,
-- ECC_DECIRQ_STA,
--};
--
--static int mt2701_ecc_regs[] = {
-- [ECC_ENCPAR00] = 0x10,
-- [ECC_ENCIRQ_EN] = 0x80,
-- [ECC_ENCIRQ_STA] = 0x84,
-- [ECC_DECDONE] = 0x124,
-- [ECC_DECIRQ_EN] = 0x200,
-- [ECC_DECIRQ_STA] = 0x204,
--};
--
--static int mt2712_ecc_regs[] = {
-- [ECC_ENCPAR00] = 0x300,
-- [ECC_ENCIRQ_EN] = 0x80,
-- [ECC_ENCIRQ_STA] = 0x84,
-- [ECC_DECDONE] = 0x124,
-- [ECC_DECIRQ_EN] = 0x200,
-- [ECC_DECIRQ_STA] = 0x204,
--};
--
--static int mt7622_ecc_regs[] = {
-- [ECC_ENCPAR00] = 0x10,
-- [ECC_ENCIRQ_EN] = 0x30,
-- [ECC_ENCIRQ_STA] = 0x34,
-- [ECC_DECDONE] = 0x11c,
-- [ECC_DECIRQ_EN] = 0x140,
-- [ECC_DECIRQ_STA] = 0x144,
--};
--
--static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
-- enum mtk_ecc_operation op)
--{
-- struct device *dev = ecc->dev;
-- u32 val;
-- int ret;
--
-- ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
-- val & ECC_IDLE_MASK,
-- 10, ECC_TIMEOUT);
-- if (ret)
-- dev_warn(dev, "%s NOT idle\n",
-- op == ECC_ENCODE ? "encoder" : "decoder");
--}
--
--static irqreturn_t mtk_ecc_irq(int irq, void *id)
--{
-- struct mtk_ecc *ecc = id;
-- u32 dec, enc;
--
-- dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
-- & ECC_IRQ_EN;
-- if (dec) {
-- dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
-- if (dec & ecc->sectors) {
-- /*
-- * Clear decode IRQ status once again to ensure that
-- * there will be no extra IRQ.
-- */
-- readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
-- ecc->sectors = 0;
-- complete(&ecc->done);
-- } else {
-- return IRQ_HANDLED;
-- }
-- } else {
-- enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
-- & ECC_IRQ_EN;
-- if (enc)
-- complete(&ecc->done);
-- else
-- return IRQ_NONE;
-- }
--
-- return IRQ_HANDLED;
--}
--
--static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
--{
-- u32 ecc_bit, dec_sz, enc_sz;
-- u32 reg, i;
--
-- for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
-- if (ecc->caps->ecc_strength[i] == config->strength)
-- break;
-- }
--
-- if (i == ecc->caps->num_ecc_strength) {
-- dev_err(ecc->dev, "invalid ecc strength %d\n",
-- config->strength);
-- return -EINVAL;
-- }
--
-- ecc_bit = i;
--
-- if (config->op == ECC_ENCODE) {
-- /* configure ECC encoder (in bits) */
-- enc_sz = config->len << 3;
--
-- reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
-- reg |= (enc_sz << ECC_MS_SHIFT);
-- writel(reg, ecc->regs + ECC_ENCCNFG);
--
-- if (config->mode != ECC_NFI_MODE)
-- writel(lower_32_bits(config->addr),
-- ecc->regs + ECC_ENCDIADDR);
--
-- } else {
-- /* configure ECC decoder (in bits) */
-- dec_sz = (config->len << 3) +
-- config->strength * ecc->caps->parity_bits;
--
-- reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
-- reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
-- reg |= DEC_EMPTY_EN;
-- writel(reg, ecc->regs + ECC_DECCNFG);
--
-- if (config->sectors)
-- ecc->sectors = 1 << (config->sectors - 1);
-- }
--
-- return 0;
--}
--
--void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
-- int sectors)
--{
-- u32 offset, i, err;
-- u32 bitflips = 0;
--
-- stats->corrected = 0;
-- stats->failed = 0;
--
-- for (i = 0; i < sectors; i++) {
-- offset = (i >> 2) << 2;
-- err = readl(ecc->regs + ECC_DECENUM0 + offset);
-- err = err >> ((i % 4) * ecc->caps->err_shift);
-- err &= ecc->caps->err_mask;
-- if (err == ecc->caps->err_mask) {
-- /* uncorrectable errors */
-- stats->failed++;
-- continue;
-- }
--
-- stats->corrected += err;
-- bitflips = max_t(u32, bitflips, err);
-- }
--
-- stats->bitflips = bitflips;
--}
--EXPORT_SYMBOL(mtk_ecc_get_stats);
--
--void mtk_ecc_release(struct mtk_ecc *ecc)
--{
-- clk_disable_unprepare(ecc->clk);
-- put_device(ecc->dev);
--}
--EXPORT_SYMBOL(mtk_ecc_release);
--
--static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
--{
-- mtk_ecc_wait_idle(ecc, ECC_ENCODE);
-- writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
--
-- mtk_ecc_wait_idle(ecc, ECC_DECODE);
-- writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
--}
--
--static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
--{
-- struct platform_device *pdev;
-- struct mtk_ecc *ecc;
--
-- pdev = of_find_device_by_node(np);
-- if (!pdev)
-- return ERR_PTR(-EPROBE_DEFER);
--
-- ecc = platform_get_drvdata(pdev);
-- if (!ecc) {
-- put_device(&pdev->dev);
-- return ERR_PTR(-EPROBE_DEFER);
-- }
--
-- clk_prepare_enable(ecc->clk);
-- mtk_ecc_hw_init(ecc);
--
-- return ecc;
--}
--
--struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
--{
-- struct mtk_ecc *ecc = NULL;
-- struct device_node *np;
--
-- np = of_parse_phandle(of_node, "ecc-engine", 0);
-- if (np) {
-- ecc = mtk_ecc_get(np);
-- of_node_put(np);
-- }
--
-- return ecc;
--}
--EXPORT_SYMBOL(of_mtk_ecc_get);
--
--int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
--{
-- enum mtk_ecc_operation op = config->op;
-- u16 reg_val;
-- int ret;
--
-- ret = mutex_lock_interruptible(&ecc->lock);
-- if (ret) {
-- dev_err(ecc->dev, "interrupted when attempting to lock\n");
-- return ret;
-- }
--
-- mtk_ecc_wait_idle(ecc, op);
--
-- ret = mtk_ecc_config(ecc, config);
-- if (ret) {
-- mutex_unlock(&ecc->lock);
-- return ret;
-- }
--
-- if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
-- init_completion(&ecc->done);
-- reg_val = ECC_IRQ_EN;
-- /*
-- * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
-- * means this chip can only generate one ecc irq during page
-- * read / write. If is 0, generate one ecc irq each ecc step.
-- */
-- if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
-- reg_val |= ECC_PG_IRQ_SEL;
-- if (op == ECC_ENCODE)
-- writew(reg_val, ecc->regs +
-- ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
-- else
-- writew(reg_val, ecc->regs +
-- ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
-- }
--
-- writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
--
-- return 0;
--}
--EXPORT_SYMBOL(mtk_ecc_enable);
--
--void mtk_ecc_disable(struct mtk_ecc *ecc)
--{
-- enum mtk_ecc_operation op = ECC_ENCODE;
--
-- /* find out the running operation */
-- if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
-- op = ECC_DECODE;
--
-- /* disable it */
-- mtk_ecc_wait_idle(ecc, op);
-- if (op == ECC_DECODE) {
-- /*
-- * Clear decode IRQ status in case there is a timeout to wait
-- * decode IRQ.
-- */
-- readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
-- writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
-- } else {
-- writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
-- }
--
-- writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
--
-- mutex_unlock(&ecc->lock);
--}
--EXPORT_SYMBOL(mtk_ecc_disable);
--
--int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
--{
-- int ret;
--
-- ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
-- if (!ret) {
-- dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
-- (op == ECC_ENCODE) ? "encoder" : "decoder");
-- return -ETIMEDOUT;
-- }
--
-- return 0;
--}
--EXPORT_SYMBOL(mtk_ecc_wait_done);
--
--int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
-- u8 *data, u32 bytes)
--{
-- dma_addr_t addr;
-- u32 len;
-- int ret;
--
-- addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
-- ret = dma_mapping_error(ecc->dev, addr);
-- if (ret) {
-- dev_err(ecc->dev, "dma mapping error\n");
-- return -EINVAL;
-- }
--
-- config->op = ECC_ENCODE;
-- config->addr = addr;
-- ret = mtk_ecc_enable(ecc, config);
-- if (ret) {
-- dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
-- return ret;
-- }
--
-- ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
-- if (ret)
-- goto timeout;
--
-- mtk_ecc_wait_idle(ecc, ECC_ENCODE);
--
-- /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
-- len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
--
-- /* write the parity bytes generated by the ECC back to temp buffer */
-- __ioread32_copy(ecc->eccdata,
-- ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
-- round_up(len, 4));
--
-- /* copy into possibly unaligned OOB region with actual length */
-- memcpy(data + bytes, ecc->eccdata, len);
--timeout:
--
-- dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
-- mtk_ecc_disable(ecc);
--
-- return ret;
--}
--EXPORT_SYMBOL(mtk_ecc_encode);
--
--void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
--{
-- const u8 *ecc_strength = ecc->caps->ecc_strength;
-- int i;
--
-- for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
-- if (*p <= ecc_strength[i]) {
-- if (!i)
-- *p = ecc_strength[i];
-- else if (*p != ecc_strength[i])
-- *p = ecc_strength[i - 1];
-- return;
-- }
-- }
--
-- *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
--}
--EXPORT_SYMBOL(mtk_ecc_adjust_strength);
--
--unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
--{
-- return ecc->caps->parity_bits;
--}
--EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
--
--static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
-- .err_mask = 0x3f,
-- .err_shift = 8,
-- .ecc_strength = ecc_strength_mt2701,
-- .ecc_regs = mt2701_ecc_regs,
-- .num_ecc_strength = 20,
-- .ecc_mode_shift = 5,
-- .parity_bits = 14,
-- .pg_irq_sel = 0,
--};
--
--static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
-- .err_mask = 0x7f,
-- .err_shift = 8,
-- .ecc_strength = ecc_strength_mt2712,
-- .ecc_regs = mt2712_ecc_regs,
-- .num_ecc_strength = 23,
-- .ecc_mode_shift = 5,
-- .parity_bits = 14,
-- .pg_irq_sel = 1,
--};
--
--static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
-- .err_mask = 0x1f,
-- .err_shift = 5,
-- .ecc_strength = ecc_strength_mt7622,
-- .ecc_regs = mt7622_ecc_regs,
-- .num_ecc_strength = 5,
-- .ecc_mode_shift = 4,
-- .parity_bits = 13,
-- .pg_irq_sel = 0,
--};
--
--static const struct of_device_id mtk_ecc_dt_match[] = {
-- {
-- .compatible = "mediatek,mt2701-ecc",
-- .data = &mtk_ecc_caps_mt2701,
-- }, {
-- .compatible = "mediatek,mt2712-ecc",
-- .data = &mtk_ecc_caps_mt2712,
-- }, {
-- .compatible = "mediatek,mt7622-ecc",
-- .data = &mtk_ecc_caps_mt7622,
-- },
-- {},
--};
--
--static int mtk_ecc_probe(struct platform_device *pdev)
--{
-- struct device *dev = &pdev->dev;
-- struct mtk_ecc *ecc;
-- struct resource *res;
-- u32 max_eccdata_size;
-- int irq, ret;
--
-- ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
-- if (!ecc)
-- return -ENOMEM;
--
-- ecc->caps = of_device_get_match_data(dev);
--
-- max_eccdata_size = ecc->caps->num_ecc_strength - 1;
-- max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
-- max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
-- max_eccdata_size = round_up(max_eccdata_size, 4);
-- ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
-- if (!ecc->eccdata)
-- return -ENOMEM;
--
-- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-- ecc->regs = devm_ioremap_resource(dev, res);
-- if (IS_ERR(ecc->regs))
-- return PTR_ERR(ecc->regs);
--
-- ecc->clk = devm_clk_get(dev, NULL);
-- if (IS_ERR(ecc->clk)) {
-- dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
-- return PTR_ERR(ecc->clk);
-- }
--
-- irq = platform_get_irq(pdev, 0);
-- if (irq < 0)
-- return irq;
--
-- ret = dma_set_mask(dev, DMA_BIT_MASK(32));
-- if (ret) {
-- dev_err(dev, "failed to set DMA mask\n");
-- return ret;
-- }
--
-- ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
-- if (ret) {
-- dev_err(dev, "failed to request irq\n");
-- return -EINVAL;
-- }
--
-- ecc->dev = dev;
-- mutex_init(&ecc->lock);
-- platform_set_drvdata(pdev, ecc);
-- dev_info(dev, "probed\n");
--
-- return 0;
--}
--
--#ifdef CONFIG_PM_SLEEP
--static int mtk_ecc_suspend(struct device *dev)
--{
-- struct mtk_ecc *ecc = dev_get_drvdata(dev);
--
-- clk_disable_unprepare(ecc->clk);
--
-- return 0;
--}
--
--static int mtk_ecc_resume(struct device *dev)
--{
-- struct mtk_ecc *ecc = dev_get_drvdata(dev);
-- int ret;
--
-- ret = clk_prepare_enable(ecc->clk);
-- if (ret) {
-- dev_err(dev, "failed to enable clk\n");
-- return ret;
-- }
--
-- return 0;
--}
--
--static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
--#endif
--
--MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
--
--static struct platform_driver mtk_ecc_driver = {
-- .probe = mtk_ecc_probe,
-- .driver = {
-- .name = "mtk-ecc",
-- .of_match_table = of_match_ptr(mtk_ecc_dt_match),
--#ifdef CONFIG_PM_SLEEP
-- .pm = &mtk_ecc_pm_ops,
--#endif
-- },
--};
--
--module_platform_driver(mtk_ecc_driver);
--
--MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
--MODULE_DESCRIPTION("MTK Nand ECC Driver");
--MODULE_LICENSE("Dual MIT/GPL");
---- /dev/null
-+++ b/drivers/mtd/nand/ecc-mtk.c
-@@ -0,0 +1,598 @@
-+// SPDX-License-Identifier: GPL-2.0 OR MIT
-+/*
-+ * MTK ECC controller driver.
-+ * Copyright (C) 2016 MediaTek Inc.
-+ * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
-+ * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
-+ */
-+
-+#include <linux/platform_device.h>
-+#include <linux/dma-mapping.h>
-+#include <linux/interrupt.h>
-+#include <linux/clk.h>
-+#include <linux/module.h>
-+#include <linux/iopoll.h>
-+#include <linux/of.h>
-+#include <linux/of_platform.h>
-+#include <linux/mutex.h>
-+#include <linux/mtd/nand-ecc-mtk.h>
-+
-+#define ECC_IDLE_MASK BIT(0)
-+#define ECC_IRQ_EN BIT(0)
-+#define ECC_PG_IRQ_SEL BIT(1)
-+#define ECC_OP_ENABLE (1)
-+#define ECC_OP_DISABLE (0)
-+
-+#define ECC_ENCCON (0x00)
-+#define ECC_ENCCNFG (0x04)
-+#define ECC_MS_SHIFT (16)
-+#define ECC_ENCDIADDR (0x08)
-+#define ECC_ENCIDLE (0x0C)
-+#define ECC_DECCON (0x100)
-+#define ECC_DECCNFG (0x104)
-+#define DEC_EMPTY_EN BIT(31)
-+#define DEC_CNFG_CORRECT (0x3 << 12)
-+#define ECC_DECIDLE (0x10C)
-+#define ECC_DECENUM0 (0x114)
-+
-+#define ECC_TIMEOUT (500000)
-+
-+#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
-+#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
-+
-+struct mtk_ecc_caps {
-+ u32 err_mask;
-+ u32 err_shift;
-+ const u8 *ecc_strength;
-+ const u32 *ecc_regs;
-+ u8 num_ecc_strength;
-+ u8 ecc_mode_shift;
-+ u32 parity_bits;
-+ int pg_irq_sel;
-+};
-+
-+struct mtk_ecc {
-+ struct device *dev;
-+ const struct mtk_ecc_caps *caps;
-+ void __iomem *regs;
-+ struct clk *clk;
-+
-+ struct completion done;
-+ struct mutex lock;
-+ u32 sectors;
-+
-+ u8 *eccdata;
-+};
-+
-+/* ecc strength that each IP supports */
-+static const u8 ecc_strength_mt2701[] = {
-+ 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
-+ 40, 44, 48, 52, 56, 60
-+};
-+
-+static const u8 ecc_strength_mt2712[] = {
-+ 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
-+ 40, 44, 48, 52, 56, 60, 68, 72, 80
-+};
-+
-+static const u8 ecc_strength_mt7622[] = {
-+ 4, 6, 8, 10, 12
-+};
-+
-+enum mtk_ecc_regs {
-+ ECC_ENCPAR00,
-+ ECC_ENCIRQ_EN,
-+ ECC_ENCIRQ_STA,
-+ ECC_DECDONE,
-+ ECC_DECIRQ_EN,
-+ ECC_DECIRQ_STA,
-+};
-+
-+static int mt2701_ecc_regs[] = {
-+ [ECC_ENCPAR00] = 0x10,
-+ [ECC_ENCIRQ_EN] = 0x80,
-+ [ECC_ENCIRQ_STA] = 0x84,
-+ [ECC_DECDONE] = 0x124,
-+ [ECC_DECIRQ_EN] = 0x200,
-+ [ECC_DECIRQ_STA] = 0x204,
-+};
-+
-+static int mt2712_ecc_regs[] = {
-+ [ECC_ENCPAR00] = 0x300,
-+ [ECC_ENCIRQ_EN] = 0x80,
-+ [ECC_ENCIRQ_STA] = 0x84,
-+ [ECC_DECDONE] = 0x124,
-+ [ECC_DECIRQ_EN] = 0x200,
-+ [ECC_DECIRQ_STA] = 0x204,
-+};
-+
-+static int mt7622_ecc_regs[] = {
-+ [ECC_ENCPAR00] = 0x10,
-+ [ECC_ENCIRQ_EN] = 0x30,
-+ [ECC_ENCIRQ_STA] = 0x34,
-+ [ECC_DECDONE] = 0x11c,
-+ [ECC_DECIRQ_EN] = 0x140,
-+ [ECC_DECIRQ_STA] = 0x144,
-+};
-+
-+static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
-+ enum mtk_ecc_operation op)
-+{
-+ struct device *dev = ecc->dev;
-+ u32 val;
-+ int ret;
-+
-+ ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
-+ val & ECC_IDLE_MASK,
-+ 10, ECC_TIMEOUT);
-+ if (ret)
-+ dev_warn(dev, "%s NOT idle\n",
-+ op == ECC_ENCODE ? "encoder" : "decoder");
-+}
-+
-+static irqreturn_t mtk_ecc_irq(int irq, void *id)
-+{
-+ struct mtk_ecc *ecc = id;
-+ u32 dec, enc;
-+
-+ dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
-+ & ECC_IRQ_EN;
-+ if (dec) {
-+ dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
-+ if (dec & ecc->sectors) {
-+ /*
-+ * Clear decode IRQ status once again to ensure that
-+ * there will be no extra IRQ.
-+ */
-+ readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
-+ ecc->sectors = 0;
-+ complete(&ecc->done);
-+ } else {
-+ return IRQ_HANDLED;
-+ }
-+ } else {
-+ enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
-+ & ECC_IRQ_EN;
-+ if (enc)
-+ complete(&ecc->done);
-+ else
-+ return IRQ_NONE;
-+ }
-+
-+ return IRQ_HANDLED;
-+}
-+
-+static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
-+{
-+ u32 ecc_bit, dec_sz, enc_sz;
-+ u32 reg, i;
-+
-+ for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
-+ if (ecc->caps->ecc_strength[i] == config->strength)
-+ break;
-+ }
-+
-+ if (i == ecc->caps->num_ecc_strength) {
-+ dev_err(ecc->dev, "invalid ecc strength %d\n",
-+ config->strength);
-+ return -EINVAL;
-+ }
-+
-+ ecc_bit = i;
-+
-+ if (config->op == ECC_ENCODE) {
-+ /* configure ECC encoder (in bits) */
-+ enc_sz = config->len << 3;
-+
-+ reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
-+ reg |= (enc_sz << ECC_MS_SHIFT);
-+ writel(reg, ecc->regs + ECC_ENCCNFG);
-+
-+ if (config->mode != ECC_NFI_MODE)
-+ writel(lower_32_bits(config->addr),
-+ ecc->regs + ECC_ENCDIADDR);
-+
-+ } else {
-+ /* configure ECC decoder (in bits) */
-+ dec_sz = (config->len << 3) +
-+ config->strength * ecc->caps->parity_bits;
-+
-+ reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
-+ reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
-+ reg |= DEC_EMPTY_EN;
-+ writel(reg, ecc->regs + ECC_DECCNFG);
-+
-+ if (config->sectors)
-+ ecc->sectors = 1 << (config->sectors - 1);
-+ }
-+
-+ return 0;
-+}
-+
-+void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
-+ int sectors)
-+{
-+ u32 offset, i, err;
-+ u32 bitflips = 0;
-+
-+ stats->corrected = 0;
-+ stats->failed = 0;
-+
-+ for (i = 0; i < sectors; i++) {
-+ offset = (i >> 2) << 2;
-+ err = readl(ecc->regs + ECC_DECENUM0 + offset);
-+ err = err >> ((i % 4) * ecc->caps->err_shift);
-+ err &= ecc->caps->err_mask;
-+ if (err == ecc->caps->err_mask) {
-+ /* uncorrectable errors */
-+ stats->failed++;
-+ continue;
-+ }
-+
-+ stats->corrected += err;
-+ bitflips = max_t(u32, bitflips, err);
-+ }
-+
-+ stats->bitflips = bitflips;
-+}
-+EXPORT_SYMBOL(mtk_ecc_get_stats);
-+
-+void mtk_ecc_release(struct mtk_ecc *ecc)
-+{
-+ clk_disable_unprepare(ecc->clk);
-+ put_device(ecc->dev);
-+}
-+EXPORT_SYMBOL(mtk_ecc_release);
-+
-+static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
-+{
-+ mtk_ecc_wait_idle(ecc, ECC_ENCODE);
-+ writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
-+
-+ mtk_ecc_wait_idle(ecc, ECC_DECODE);
-+ writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
-+}
-+
-+static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
-+{
-+ struct platform_device *pdev;
-+ struct mtk_ecc *ecc;
-+
-+ pdev = of_find_device_by_node(np);
-+ if (!pdev)
-+ return ERR_PTR(-EPROBE_DEFER);
-+
-+ ecc = platform_get_drvdata(pdev);
-+ if (!ecc) {
-+ put_device(&pdev->dev);
-+ return ERR_PTR(-EPROBE_DEFER);
-+ }
-+
-+ clk_prepare_enable(ecc->clk);
-+ mtk_ecc_hw_init(ecc);
-+
-+ return ecc;
-+}
-+
-+struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
-+{
-+ struct mtk_ecc *ecc = NULL;
-+ struct device_node *np;
-+
-+ np = of_parse_phandle(of_node, "ecc-engine", 0);
-+ if (np) {
-+ ecc = mtk_ecc_get(np);
-+ of_node_put(np);
-+ }
-+
-+ return ecc;
-+}
-+EXPORT_SYMBOL(of_mtk_ecc_get);
-+
-+int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
-+{
-+ enum mtk_ecc_operation op = config->op;
-+ u16 reg_val;
-+ int ret;
-+
-+ ret = mutex_lock_interruptible(&ecc->lock);
-+ if (ret) {
-+ dev_err(ecc->dev, "interrupted when attempting to lock\n");
-+ return ret;
-+ }
-+
-+ mtk_ecc_wait_idle(ecc, op);
-+
-+ ret = mtk_ecc_config(ecc, config);
-+ if (ret) {
-+ mutex_unlock(&ecc->lock);
-+ return ret;
-+ }
-+
-+ if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
-+ init_completion(&ecc->done);
-+ reg_val = ECC_IRQ_EN;
-+ /*
-+ * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
-+ * means this chip can only generate one ecc irq during page
-+ * read / write. If is 0, generate one ecc irq each ecc step.
-+ */
-+ if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
-+ reg_val |= ECC_PG_IRQ_SEL;
-+ if (op == ECC_ENCODE)
-+ writew(reg_val, ecc->regs +
-+ ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
-+ else
-+ writew(reg_val, ecc->regs +
-+ ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
-+ }
-+
-+ writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
-+
-+ return 0;
-+}
-+EXPORT_SYMBOL(mtk_ecc_enable);
-+
-+void mtk_ecc_disable(struct mtk_ecc *ecc)
-+{
-+ enum mtk_ecc_operation op = ECC_ENCODE;
-+
-+ /* find out the running operation */
-+ if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
-+ op = ECC_DECODE;
-+
-+ /* disable it */
-+ mtk_ecc_wait_idle(ecc, op);
-+ if (op == ECC_DECODE) {
-+ /*
-+ * Clear decode IRQ status in case there is a timeout to wait
-+ * decode IRQ.
-+ */
-+ readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
-+ writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
-+ } else {
-+ writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
-+ }
-+
-+ writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
-+
-+ mutex_unlock(&ecc->lock);
-+}
-+EXPORT_SYMBOL(mtk_ecc_disable);
-+
-+int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
-+{
-+ int ret;
-+
-+ ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
-+ if (!ret) {
-+ dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
-+ (op == ECC_ENCODE) ? "encoder" : "decoder");
-+ return -ETIMEDOUT;
-+ }
-+
-+ return 0;
-+}
-+EXPORT_SYMBOL(mtk_ecc_wait_done);
-+
-+int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
-+ u8 *data, u32 bytes)
-+{
-+ dma_addr_t addr;
-+ u32 len;
-+ int ret;
-+
-+ addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
-+ ret = dma_mapping_error(ecc->dev, addr);
-+ if (ret) {
-+ dev_err(ecc->dev, "dma mapping error\n");
-+ return -EINVAL;
-+ }
-+
-+ config->op = ECC_ENCODE;
-+ config->addr = addr;
-+ ret = mtk_ecc_enable(ecc, config);
-+ if (ret) {
-+ dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
-+ return ret;
-+ }
-+
-+ ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
-+ if (ret)
-+ goto timeout;
-+
-+ mtk_ecc_wait_idle(ecc, ECC_ENCODE);
-+
-+ /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
-+ len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
-+
-+ /* write the parity bytes generated by the ECC back to temp buffer */
-+ __ioread32_copy(ecc->eccdata,
-+ ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
-+ round_up(len, 4));
-+
-+ /* copy into possibly unaligned OOB region with actual length */
-+ memcpy(data + bytes, ecc->eccdata, len);
-+timeout:
-+
-+ dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
-+ mtk_ecc_disable(ecc);
-+
-+ return ret;
-+}
-+EXPORT_SYMBOL(mtk_ecc_encode);
-+
-+void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
-+{
-+ const u8 *ecc_strength = ecc->caps->ecc_strength;
-+ int i;
-+
-+ for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
-+ if (*p <= ecc_strength[i]) {
-+ if (!i)
-+ *p = ecc_strength[i];
-+ else if (*p != ecc_strength[i])
-+ *p = ecc_strength[i - 1];
-+ return;
-+ }
-+ }
-+
-+ *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
-+}
-+EXPORT_SYMBOL(mtk_ecc_adjust_strength);
-+
-+unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
-+{
-+ return ecc->caps->parity_bits;
-+}
-+EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
-+
-+static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
-+ .err_mask = 0x3f,
-+ .err_shift = 8,
-+ .ecc_strength = ecc_strength_mt2701,
-+ .ecc_regs = mt2701_ecc_regs,
-+ .num_ecc_strength = 20,
-+ .ecc_mode_shift = 5,
-+ .parity_bits = 14,
-+ .pg_irq_sel = 0,
-+};
-+
-+static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
-+ .err_mask = 0x7f,
-+ .err_shift = 8,
-+ .ecc_strength = ecc_strength_mt2712,
-+ .ecc_regs = mt2712_ecc_regs,
-+ .num_ecc_strength = 23,
-+ .ecc_mode_shift = 5,
-+ .parity_bits = 14,
-+ .pg_irq_sel = 1,
-+};
-+
-+static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
-+ .err_mask = 0x1f,
-+ .err_shift = 5,
-+ .ecc_strength = ecc_strength_mt7622,
-+ .ecc_regs = mt7622_ecc_regs,
-+ .num_ecc_strength = 5,
-+ .ecc_mode_shift = 4,
-+ .parity_bits = 13,
-+ .pg_irq_sel = 0,
-+};
-+
-+static const struct of_device_id mtk_ecc_dt_match[] = {
-+ {
-+ .compatible = "mediatek,mt2701-ecc",
-+ .data = &mtk_ecc_caps_mt2701,
-+ }, {
-+ .compatible = "mediatek,mt2712-ecc",
-+ .data = &mtk_ecc_caps_mt2712,
-+ }, {
-+ .compatible = "mediatek,mt7622-ecc",
-+ .data = &mtk_ecc_caps_mt7622,
-+ },
-+ {},
-+};
-+
-+static int mtk_ecc_probe(struct platform_device *pdev)
-+{
-+ struct device *dev = &pdev->dev;
-+ struct mtk_ecc *ecc;
-+ struct resource *res;
-+ u32 max_eccdata_size;
-+ int irq, ret;
-+
-+ ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
-+ if (!ecc)
-+ return -ENOMEM;
-+
-+ ecc->caps = of_device_get_match_data(dev);
-+
-+ max_eccdata_size = ecc->caps->num_ecc_strength - 1;
-+ max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
-+ max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
-+ max_eccdata_size = round_up(max_eccdata_size, 4);
-+ ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
-+ if (!ecc->eccdata)
-+ return -ENOMEM;
-+
-+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
-+ ecc->regs = devm_ioremap_resource(dev, res);
-+ if (IS_ERR(ecc->regs))
-+ return PTR_ERR(ecc->regs);
-+
-+ ecc->clk = devm_clk_get(dev, NULL);
-+ if (IS_ERR(ecc->clk)) {
-+ dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
-+ return PTR_ERR(ecc->clk);
-+ }
-+
-+ irq = platform_get_irq(pdev, 0);
-+ if (irq < 0)
-+ return irq;
-+
-+ ret = dma_set_mask(dev, DMA_BIT_MASK(32));
-+ if (ret) {
-+ dev_err(dev, "failed to set DMA mask\n");
-+ return ret;
-+ }
-+
-+ ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
-+ if (ret) {
-+ dev_err(dev, "failed to request irq\n");
-+ return -EINVAL;
-+ }
-+
-+ ecc->dev = dev;
-+ mutex_init(&ecc->lock);
-+ platform_set_drvdata(pdev, ecc);
-+ dev_info(dev, "probed\n");
-+
-+ return 0;
-+}
-+
-+#ifdef CONFIG_PM_SLEEP
-+static int mtk_ecc_suspend(struct device *dev)
-+{
-+ struct mtk_ecc *ecc = dev_get_drvdata(dev);
-+
-+ clk_disable_unprepare(ecc->clk);
-+
-+ return 0;
-+}
-+
-+static int mtk_ecc_resume(struct device *dev)
-+{
-+ struct mtk_ecc *ecc = dev_get_drvdata(dev);
-+ int ret;
-+
-+ ret = clk_prepare_enable(ecc->clk);
-+ if (ret) {
-+ dev_err(dev, "failed to enable clk\n");
-+ return ret;
-+ }
-+
-+ return 0;
-+}
-+
-+static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
-+#endif
-+
-+MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
-+
-+static struct platform_driver mtk_ecc_driver = {
-+ .probe = mtk_ecc_probe,
-+ .driver = {
-+ .name = "mtk-ecc",
-+ .of_match_table = of_match_ptr(mtk_ecc_dt_match),
-+#ifdef CONFIG_PM_SLEEP
-+ .pm = &mtk_ecc_pm_ops,
-+#endif
-+ },
-+};
-+
-+module_platform_driver(mtk_ecc_driver);
-+
-+MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
-+MODULE_DESCRIPTION("MTK Nand ECC Driver");
-+MODULE_LICENSE("Dual MIT/GPL");
---- a/drivers/mtd/nand/raw/Kconfig
-+++ b/drivers/mtd/nand/raw/Kconfig
-@@ -360,6 +360,7 @@ config MTD_NAND_QCOM
-
- config MTD_NAND_MTK
- tristate "MTK NAND controller"
-+ depends on MTD_NAND_ECC_MEDIATEK
- depends on ARCH_MEDIATEK || COMPILE_TEST
- depends on HAS_IOMEM
- help
---- a/drivers/mtd/nand/raw/Makefile
-+++ b/drivers/mtd/nand/raw/Makefile
-@@ -48,7 +48,7 @@ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_n
- obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
- obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
- obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
--obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
-+obj-$(CONFIG_MTD_NAND_MTK) += mtk_nand.o
- obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o
- obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
- obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
---- a/drivers/mtd/nand/raw/mtk_nand.c
-+++ b/drivers/mtd/nand/raw/mtk_nand.c
-@@ -17,7 +17,7 @@
- #include <linux/iopoll.h>
- #include <linux/of.h>
- #include <linux/of_device.h>
--#include "mtk_ecc.h"
-+#include <linux/mtd/nand-ecc-mtk.h>
-
- /* NAND controller register definition */
- #define NFI_CNFG (0x00)
---- a/drivers/mtd/nand/raw/mtk_ecc.h
-+++ /dev/null
-@@ -1,47 +0,0 @@
--/* SPDX-License-Identifier: GPL-2.0 OR MIT */
--/*
-- * MTK SDG1 ECC controller
-- *
-- * Copyright (c) 2016 Mediatek
-- * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
-- * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
-- */
--
--#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
--#define __DRIVERS_MTD_NAND_MTK_ECC_H__
--
--#include <linux/types.h>
--
--enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
--enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
--
--struct device_node;
--struct mtk_ecc;
--
--struct mtk_ecc_stats {
-- u32 corrected;
-- u32 bitflips;
-- u32 failed;
--};
--
--struct mtk_ecc_config {
-- enum mtk_ecc_operation op;
-- enum mtk_ecc_mode mode;
-- dma_addr_t addr;
-- u32 strength;
-- u32 sectors;
-- u32 len;
--};
--
--int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
--void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
--int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
--int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
--void mtk_ecc_disable(struct mtk_ecc *);
--void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
--unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc);
--
--struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
--void mtk_ecc_release(struct mtk_ecc *);
--
--#endif
---- /dev/null
-+++ b/include/linux/mtd/nand-ecc-mtk.h
-@@ -0,0 +1,47 @@
-+/* SPDX-License-Identifier: GPL-2.0 OR MIT */
-+/*
-+ * MTK SDG1 ECC controller
-+ *
-+ * Copyright (c) 2016 Mediatek
-+ * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
-+ * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
-+ */
-+
-+#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
-+#define __DRIVERS_MTD_NAND_MTK_ECC_H__
-+
-+#include <linux/types.h>
-+
-+enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
-+enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
-+
-+struct device_node;
-+struct mtk_ecc;
-+
-+struct mtk_ecc_stats {
-+ u32 corrected;
-+ u32 bitflips;
-+ u32 failed;
-+};
-+
-+struct mtk_ecc_config {
-+ enum mtk_ecc_operation op;
-+ enum mtk_ecc_mode mode;
-+ dma_addr_t addr;
-+ u32 strength;
-+ u32 sectors;
-+ u32 len;
-+};
-+
-+int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
-+void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
-+int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
-+int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
-+void mtk_ecc_disable(struct mtk_ecc *);
-+void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
-+unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc);
-+
-+struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
-+void mtk_ecc_release(struct mtk_ecc *);
-+
-+#endif
--- /dev/null
+From ebb9653d4a87c64fb679e4c339e867556dada719 Mon Sep 17 00:00:00 2001
+From: Chuanhong Guo <gch981213@gmail.com>
+Date: Tue, 22 Mar 2022 18:44:21 +0800
+Subject: [PATCH 11/15] mtd: nand: make mtk_ecc.c a separated module
+
+this code will be used in mediatek snfi spi-mem controller with
+pipelined ECC engine.
+
+Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
+(cherry picked from commit 316f47cec4ce5b81aa8006de202d8769c117a52d)
+---
+ drivers/mtd/nand/Kconfig | 7 +++++++
+ drivers/mtd/nand/Makefile | 1 +
+ drivers/mtd/nand/{raw/mtk_ecc.c => ecc-mtk.c} | 3 +--
+ drivers/mtd/nand/raw/Kconfig | 1 +
+ drivers/mtd/nand/raw/Makefile | 2 +-
+ drivers/mtd/nand/raw/mtk_nand.c | 2 +-
+ .../nand/raw/mtk_ecc.h => include/linux/mtd/nand-ecc-mtk.h | 0
+ 7 files changed, 12 insertions(+), 4 deletions(-)
+ rename drivers/mtd/nand/{raw/mtk_ecc.c => ecc-mtk.c} (99%)
+ rename drivers/mtd/nand/raw/mtk_ecc.h => include/linux/mtd/nand-ecc-mtk.h (100%)
+
+--- a/drivers/mtd/nand/Kconfig
++++ b/drivers/mtd/nand/Kconfig
+@@ -50,6 +50,13 @@ config MTD_NAND_MTK_BMT
+ bool "Support MediaTek NAND Bad-block Management Table"
+ default n
+
++config MTD_NAND_ECC_MEDIATEK
++ tristate "Mediatek hardware ECC engine"
++ depends on HAS_IOMEM
++ select MTD_NAND_ECC
++ help
++ This enables support for the hardware ECC engine from Mediatek.
++
+ endmenu
+
+ endmenu
+--- a/drivers/mtd/nand/Makefile
++++ b/drivers/mtd/nand/Makefile
+@@ -3,6 +3,7 @@
+ nandcore-objs := core.o bbt.o
+ obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o
+ obj-$(CONFIG_MTD_NAND_MTK_BMT) += mtk_bmt.o mtk_bmt_v2.o mtk_bmt_bbt.o mtk_bmt_nmbm.o
++obj-$(CONFIG_MTD_NAND_ECC_MEDIATEK) += ecc-mtk.o
+
+ obj-y += onenand/
+ obj-y += raw/
+--- a/drivers/mtd/nand/raw/mtk_ecc.c
++++ /dev/null
+@@ -1,599 +0,0 @@
+-// SPDX-License-Identifier: GPL-2.0 OR MIT
+-/*
+- * MTK ECC controller driver.
+- * Copyright (C) 2016 MediaTek Inc.
+- * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
+- * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
+- */
+-
+-#include <linux/platform_device.h>
+-#include <linux/dma-mapping.h>
+-#include <linux/interrupt.h>
+-#include <linux/clk.h>
+-#include <linux/module.h>
+-#include <linux/iopoll.h>
+-#include <linux/of.h>
+-#include <linux/of_platform.h>
+-#include <linux/mutex.h>
+-
+-#include "mtk_ecc.h"
+-
+-#define ECC_IDLE_MASK BIT(0)
+-#define ECC_IRQ_EN BIT(0)
+-#define ECC_PG_IRQ_SEL BIT(1)
+-#define ECC_OP_ENABLE (1)
+-#define ECC_OP_DISABLE (0)
+-
+-#define ECC_ENCCON (0x00)
+-#define ECC_ENCCNFG (0x04)
+-#define ECC_MS_SHIFT (16)
+-#define ECC_ENCDIADDR (0x08)
+-#define ECC_ENCIDLE (0x0C)
+-#define ECC_DECCON (0x100)
+-#define ECC_DECCNFG (0x104)
+-#define DEC_EMPTY_EN BIT(31)
+-#define DEC_CNFG_CORRECT (0x3 << 12)
+-#define ECC_DECIDLE (0x10C)
+-#define ECC_DECENUM0 (0x114)
+-
+-#define ECC_TIMEOUT (500000)
+-
+-#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
+-#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
+-
+-struct mtk_ecc_caps {
+- u32 err_mask;
+- u32 err_shift;
+- const u8 *ecc_strength;
+- const u32 *ecc_regs;
+- u8 num_ecc_strength;
+- u8 ecc_mode_shift;
+- u32 parity_bits;
+- int pg_irq_sel;
+-};
+-
+-struct mtk_ecc {
+- struct device *dev;
+- const struct mtk_ecc_caps *caps;
+- void __iomem *regs;
+- struct clk *clk;
+-
+- struct completion done;
+- struct mutex lock;
+- u32 sectors;
+-
+- u8 *eccdata;
+-};
+-
+-/* ecc strength that each IP supports */
+-static const u8 ecc_strength_mt2701[] = {
+- 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
+- 40, 44, 48, 52, 56, 60
+-};
+-
+-static const u8 ecc_strength_mt2712[] = {
+- 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
+- 40, 44, 48, 52, 56, 60, 68, 72, 80
+-};
+-
+-static const u8 ecc_strength_mt7622[] = {
+- 4, 6, 8, 10, 12
+-};
+-
+-enum mtk_ecc_regs {
+- ECC_ENCPAR00,
+- ECC_ENCIRQ_EN,
+- ECC_ENCIRQ_STA,
+- ECC_DECDONE,
+- ECC_DECIRQ_EN,
+- ECC_DECIRQ_STA,
+-};
+-
+-static int mt2701_ecc_regs[] = {
+- [ECC_ENCPAR00] = 0x10,
+- [ECC_ENCIRQ_EN] = 0x80,
+- [ECC_ENCIRQ_STA] = 0x84,
+- [ECC_DECDONE] = 0x124,
+- [ECC_DECIRQ_EN] = 0x200,
+- [ECC_DECIRQ_STA] = 0x204,
+-};
+-
+-static int mt2712_ecc_regs[] = {
+- [ECC_ENCPAR00] = 0x300,
+- [ECC_ENCIRQ_EN] = 0x80,
+- [ECC_ENCIRQ_STA] = 0x84,
+- [ECC_DECDONE] = 0x124,
+- [ECC_DECIRQ_EN] = 0x200,
+- [ECC_DECIRQ_STA] = 0x204,
+-};
+-
+-static int mt7622_ecc_regs[] = {
+- [ECC_ENCPAR00] = 0x10,
+- [ECC_ENCIRQ_EN] = 0x30,
+- [ECC_ENCIRQ_STA] = 0x34,
+- [ECC_DECDONE] = 0x11c,
+- [ECC_DECIRQ_EN] = 0x140,
+- [ECC_DECIRQ_STA] = 0x144,
+-};
+-
+-static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
+- enum mtk_ecc_operation op)
+-{
+- struct device *dev = ecc->dev;
+- u32 val;
+- int ret;
+-
+- ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
+- val & ECC_IDLE_MASK,
+- 10, ECC_TIMEOUT);
+- if (ret)
+- dev_warn(dev, "%s NOT idle\n",
+- op == ECC_ENCODE ? "encoder" : "decoder");
+-}
+-
+-static irqreturn_t mtk_ecc_irq(int irq, void *id)
+-{
+- struct mtk_ecc *ecc = id;
+- u32 dec, enc;
+-
+- dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
+- & ECC_IRQ_EN;
+- if (dec) {
+- dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
+- if (dec & ecc->sectors) {
+- /*
+- * Clear decode IRQ status once again to ensure that
+- * there will be no extra IRQ.
+- */
+- readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
+- ecc->sectors = 0;
+- complete(&ecc->done);
+- } else {
+- return IRQ_HANDLED;
+- }
+- } else {
+- enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
+- & ECC_IRQ_EN;
+- if (enc)
+- complete(&ecc->done);
+- else
+- return IRQ_NONE;
+- }
+-
+- return IRQ_HANDLED;
+-}
+-
+-static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
+-{
+- u32 ecc_bit, dec_sz, enc_sz;
+- u32 reg, i;
+-
+- for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
+- if (ecc->caps->ecc_strength[i] == config->strength)
+- break;
+- }
+-
+- if (i == ecc->caps->num_ecc_strength) {
+- dev_err(ecc->dev, "invalid ecc strength %d\n",
+- config->strength);
+- return -EINVAL;
+- }
+-
+- ecc_bit = i;
+-
+- if (config->op == ECC_ENCODE) {
+- /* configure ECC encoder (in bits) */
+- enc_sz = config->len << 3;
+-
+- reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
+- reg |= (enc_sz << ECC_MS_SHIFT);
+- writel(reg, ecc->regs + ECC_ENCCNFG);
+-
+- if (config->mode != ECC_NFI_MODE)
+- writel(lower_32_bits(config->addr),
+- ecc->regs + ECC_ENCDIADDR);
+-
+- } else {
+- /* configure ECC decoder (in bits) */
+- dec_sz = (config->len << 3) +
+- config->strength * ecc->caps->parity_bits;
+-
+- reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
+- reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
+- reg |= DEC_EMPTY_EN;
+- writel(reg, ecc->regs + ECC_DECCNFG);
+-
+- if (config->sectors)
+- ecc->sectors = 1 << (config->sectors - 1);
+- }
+-
+- return 0;
+-}
+-
+-void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
+- int sectors)
+-{
+- u32 offset, i, err;
+- u32 bitflips = 0;
+-
+- stats->corrected = 0;
+- stats->failed = 0;
+-
+- for (i = 0; i < sectors; i++) {
+- offset = (i >> 2) << 2;
+- err = readl(ecc->regs + ECC_DECENUM0 + offset);
+- err = err >> ((i % 4) * ecc->caps->err_shift);
+- err &= ecc->caps->err_mask;
+- if (err == ecc->caps->err_mask) {
+- /* uncorrectable errors */
+- stats->failed++;
+- continue;
+- }
+-
+- stats->corrected += err;
+- bitflips = max_t(u32, bitflips, err);
+- }
+-
+- stats->bitflips = bitflips;
+-}
+-EXPORT_SYMBOL(mtk_ecc_get_stats);
+-
+-void mtk_ecc_release(struct mtk_ecc *ecc)
+-{
+- clk_disable_unprepare(ecc->clk);
+- put_device(ecc->dev);
+-}
+-EXPORT_SYMBOL(mtk_ecc_release);
+-
+-static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
+-{
+- mtk_ecc_wait_idle(ecc, ECC_ENCODE);
+- writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
+-
+- mtk_ecc_wait_idle(ecc, ECC_DECODE);
+- writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
+-}
+-
+-static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
+-{
+- struct platform_device *pdev;
+- struct mtk_ecc *ecc;
+-
+- pdev = of_find_device_by_node(np);
+- if (!pdev)
+- return ERR_PTR(-EPROBE_DEFER);
+-
+- ecc = platform_get_drvdata(pdev);
+- if (!ecc) {
+- put_device(&pdev->dev);
+- return ERR_PTR(-EPROBE_DEFER);
+- }
+-
+- clk_prepare_enable(ecc->clk);
+- mtk_ecc_hw_init(ecc);
+-
+- return ecc;
+-}
+-
+-struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
+-{
+- struct mtk_ecc *ecc = NULL;
+- struct device_node *np;
+-
+- np = of_parse_phandle(of_node, "ecc-engine", 0);
+- if (np) {
+- ecc = mtk_ecc_get(np);
+- of_node_put(np);
+- }
+-
+- return ecc;
+-}
+-EXPORT_SYMBOL(of_mtk_ecc_get);
+-
+-int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
+-{
+- enum mtk_ecc_operation op = config->op;
+- u16 reg_val;
+- int ret;
+-
+- ret = mutex_lock_interruptible(&ecc->lock);
+- if (ret) {
+- dev_err(ecc->dev, "interrupted when attempting to lock\n");
+- return ret;
+- }
+-
+- mtk_ecc_wait_idle(ecc, op);
+-
+- ret = mtk_ecc_config(ecc, config);
+- if (ret) {
+- mutex_unlock(&ecc->lock);
+- return ret;
+- }
+-
+- if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
+- init_completion(&ecc->done);
+- reg_val = ECC_IRQ_EN;
+- /*
+- * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
+- * means this chip can only generate one ecc irq during page
+- * read / write. If is 0, generate one ecc irq each ecc step.
+- */
+- if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
+- reg_val |= ECC_PG_IRQ_SEL;
+- if (op == ECC_ENCODE)
+- writew(reg_val, ecc->regs +
+- ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
+- else
+- writew(reg_val, ecc->regs +
+- ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
+- }
+-
+- writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
+-
+- return 0;
+-}
+-EXPORT_SYMBOL(mtk_ecc_enable);
+-
+-void mtk_ecc_disable(struct mtk_ecc *ecc)
+-{
+- enum mtk_ecc_operation op = ECC_ENCODE;
+-
+- /* find out the running operation */
+- if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
+- op = ECC_DECODE;
+-
+- /* disable it */
+- mtk_ecc_wait_idle(ecc, op);
+- if (op == ECC_DECODE) {
+- /*
+- * Clear decode IRQ status in case there is a timeout to wait
+- * decode IRQ.
+- */
+- readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
+- writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
+- } else {
+- writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
+- }
+-
+- writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
+-
+- mutex_unlock(&ecc->lock);
+-}
+-EXPORT_SYMBOL(mtk_ecc_disable);
+-
+-int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
+-{
+- int ret;
+-
+- ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
+- if (!ret) {
+- dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
+- (op == ECC_ENCODE) ? "encoder" : "decoder");
+- return -ETIMEDOUT;
+- }
+-
+- return 0;
+-}
+-EXPORT_SYMBOL(mtk_ecc_wait_done);
+-
+-int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
+- u8 *data, u32 bytes)
+-{
+- dma_addr_t addr;
+- u32 len;
+- int ret;
+-
+- addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
+- ret = dma_mapping_error(ecc->dev, addr);
+- if (ret) {
+- dev_err(ecc->dev, "dma mapping error\n");
+- return -EINVAL;
+- }
+-
+- config->op = ECC_ENCODE;
+- config->addr = addr;
+- ret = mtk_ecc_enable(ecc, config);
+- if (ret) {
+- dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
+- return ret;
+- }
+-
+- ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
+- if (ret)
+- goto timeout;
+-
+- mtk_ecc_wait_idle(ecc, ECC_ENCODE);
+-
+- /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
+- len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
+-
+- /* write the parity bytes generated by the ECC back to temp buffer */
+- __ioread32_copy(ecc->eccdata,
+- ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
+- round_up(len, 4));
+-
+- /* copy into possibly unaligned OOB region with actual length */
+- memcpy(data + bytes, ecc->eccdata, len);
+-timeout:
+-
+- dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
+- mtk_ecc_disable(ecc);
+-
+- return ret;
+-}
+-EXPORT_SYMBOL(mtk_ecc_encode);
+-
+-void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
+-{
+- const u8 *ecc_strength = ecc->caps->ecc_strength;
+- int i;
+-
+- for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
+- if (*p <= ecc_strength[i]) {
+- if (!i)
+- *p = ecc_strength[i];
+- else if (*p != ecc_strength[i])
+- *p = ecc_strength[i - 1];
+- return;
+- }
+- }
+-
+- *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
+-}
+-EXPORT_SYMBOL(mtk_ecc_adjust_strength);
+-
+-unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
+-{
+- return ecc->caps->parity_bits;
+-}
+-EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
+-
+-static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
+- .err_mask = 0x3f,
+- .err_shift = 8,
+- .ecc_strength = ecc_strength_mt2701,
+- .ecc_regs = mt2701_ecc_regs,
+- .num_ecc_strength = 20,
+- .ecc_mode_shift = 5,
+- .parity_bits = 14,
+- .pg_irq_sel = 0,
+-};
+-
+-static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
+- .err_mask = 0x7f,
+- .err_shift = 8,
+- .ecc_strength = ecc_strength_mt2712,
+- .ecc_regs = mt2712_ecc_regs,
+- .num_ecc_strength = 23,
+- .ecc_mode_shift = 5,
+- .parity_bits = 14,
+- .pg_irq_sel = 1,
+-};
+-
+-static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
+- .err_mask = 0x1f,
+- .err_shift = 5,
+- .ecc_strength = ecc_strength_mt7622,
+- .ecc_regs = mt7622_ecc_regs,
+- .num_ecc_strength = 5,
+- .ecc_mode_shift = 4,
+- .parity_bits = 13,
+- .pg_irq_sel = 0,
+-};
+-
+-static const struct of_device_id mtk_ecc_dt_match[] = {
+- {
+- .compatible = "mediatek,mt2701-ecc",
+- .data = &mtk_ecc_caps_mt2701,
+- }, {
+- .compatible = "mediatek,mt2712-ecc",
+- .data = &mtk_ecc_caps_mt2712,
+- }, {
+- .compatible = "mediatek,mt7622-ecc",
+- .data = &mtk_ecc_caps_mt7622,
+- },
+- {},
+-};
+-
+-static int mtk_ecc_probe(struct platform_device *pdev)
+-{
+- struct device *dev = &pdev->dev;
+- struct mtk_ecc *ecc;
+- struct resource *res;
+- u32 max_eccdata_size;
+- int irq, ret;
+-
+- ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
+- if (!ecc)
+- return -ENOMEM;
+-
+- ecc->caps = of_device_get_match_data(dev);
+-
+- max_eccdata_size = ecc->caps->num_ecc_strength - 1;
+- max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
+- max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
+- max_eccdata_size = round_up(max_eccdata_size, 4);
+- ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
+- if (!ecc->eccdata)
+- return -ENOMEM;
+-
+- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+- ecc->regs = devm_ioremap_resource(dev, res);
+- if (IS_ERR(ecc->regs))
+- return PTR_ERR(ecc->regs);
+-
+- ecc->clk = devm_clk_get(dev, NULL);
+- if (IS_ERR(ecc->clk)) {
+- dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
+- return PTR_ERR(ecc->clk);
+- }
+-
+- irq = platform_get_irq(pdev, 0);
+- if (irq < 0)
+- return irq;
+-
+- ret = dma_set_mask(dev, DMA_BIT_MASK(32));
+- if (ret) {
+- dev_err(dev, "failed to set DMA mask\n");
+- return ret;
+- }
+-
+- ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
+- if (ret) {
+- dev_err(dev, "failed to request irq\n");
+- return -EINVAL;
+- }
+-
+- ecc->dev = dev;
+- mutex_init(&ecc->lock);
+- platform_set_drvdata(pdev, ecc);
+- dev_info(dev, "probed\n");
+-
+- return 0;
+-}
+-
+-#ifdef CONFIG_PM_SLEEP
+-static int mtk_ecc_suspend(struct device *dev)
+-{
+- struct mtk_ecc *ecc = dev_get_drvdata(dev);
+-
+- clk_disable_unprepare(ecc->clk);
+-
+- return 0;
+-}
+-
+-static int mtk_ecc_resume(struct device *dev)
+-{
+- struct mtk_ecc *ecc = dev_get_drvdata(dev);
+- int ret;
+-
+- ret = clk_prepare_enable(ecc->clk);
+- if (ret) {
+- dev_err(dev, "failed to enable clk\n");
+- return ret;
+- }
+-
+- return 0;
+-}
+-
+-static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
+-#endif
+-
+-MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
+-
+-static struct platform_driver mtk_ecc_driver = {
+- .probe = mtk_ecc_probe,
+- .driver = {
+- .name = "mtk-ecc",
+- .of_match_table = of_match_ptr(mtk_ecc_dt_match),
+-#ifdef CONFIG_PM_SLEEP
+- .pm = &mtk_ecc_pm_ops,
+-#endif
+- },
+-};
+-
+-module_platform_driver(mtk_ecc_driver);
+-
+-MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
+-MODULE_DESCRIPTION("MTK Nand ECC Driver");
+-MODULE_LICENSE("Dual MIT/GPL");
+--- /dev/null
++++ b/drivers/mtd/nand/ecc-mtk.c
+@@ -0,0 +1,598 @@
++// SPDX-License-Identifier: GPL-2.0 OR MIT
++/*
++ * MTK ECC controller driver.
++ * Copyright (C) 2016 MediaTek Inc.
++ * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
++ * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
++ */
++
++#include <linux/platform_device.h>
++#include <linux/dma-mapping.h>
++#include <linux/interrupt.h>
++#include <linux/clk.h>
++#include <linux/module.h>
++#include <linux/iopoll.h>
++#include <linux/of.h>
++#include <linux/of_platform.h>
++#include <linux/mutex.h>
++#include <linux/mtd/nand-ecc-mtk.h>
++
++#define ECC_IDLE_MASK BIT(0)
++#define ECC_IRQ_EN BIT(0)
++#define ECC_PG_IRQ_SEL BIT(1)
++#define ECC_OP_ENABLE (1)
++#define ECC_OP_DISABLE (0)
++
++#define ECC_ENCCON (0x00)
++#define ECC_ENCCNFG (0x04)
++#define ECC_MS_SHIFT (16)
++#define ECC_ENCDIADDR (0x08)
++#define ECC_ENCIDLE (0x0C)
++#define ECC_DECCON (0x100)
++#define ECC_DECCNFG (0x104)
++#define DEC_EMPTY_EN BIT(31)
++#define DEC_CNFG_CORRECT (0x3 << 12)
++#define ECC_DECIDLE (0x10C)
++#define ECC_DECENUM0 (0x114)
++
++#define ECC_TIMEOUT (500000)
++
++#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
++#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
++
++struct mtk_ecc_caps {
++ u32 err_mask;
++ u32 err_shift;
++ const u8 *ecc_strength;
++ const u32 *ecc_regs;
++ u8 num_ecc_strength;
++ u8 ecc_mode_shift;
++ u32 parity_bits;
++ int pg_irq_sel;
++};
++
++struct mtk_ecc {
++ struct device *dev;
++ const struct mtk_ecc_caps *caps;
++ void __iomem *regs;
++ struct clk *clk;
++
++ struct completion done;
++ struct mutex lock;
++ u32 sectors;
++
++ u8 *eccdata;
++};
++
++/* ecc strength that each IP supports */
++static const u8 ecc_strength_mt2701[] = {
++ 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
++ 40, 44, 48, 52, 56, 60
++};
++
++static const u8 ecc_strength_mt2712[] = {
++ 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
++ 40, 44, 48, 52, 56, 60, 68, 72, 80
++};
++
++static const u8 ecc_strength_mt7622[] = {
++ 4, 6, 8, 10, 12
++};
++
++enum mtk_ecc_regs {
++ ECC_ENCPAR00,
++ ECC_ENCIRQ_EN,
++ ECC_ENCIRQ_STA,
++ ECC_DECDONE,
++ ECC_DECIRQ_EN,
++ ECC_DECIRQ_STA,
++};
++
++static int mt2701_ecc_regs[] = {
++ [ECC_ENCPAR00] = 0x10,
++ [ECC_ENCIRQ_EN] = 0x80,
++ [ECC_ENCIRQ_STA] = 0x84,
++ [ECC_DECDONE] = 0x124,
++ [ECC_DECIRQ_EN] = 0x200,
++ [ECC_DECIRQ_STA] = 0x204,
++};
++
++static int mt2712_ecc_regs[] = {
++ [ECC_ENCPAR00] = 0x300,
++ [ECC_ENCIRQ_EN] = 0x80,
++ [ECC_ENCIRQ_STA] = 0x84,
++ [ECC_DECDONE] = 0x124,
++ [ECC_DECIRQ_EN] = 0x200,
++ [ECC_DECIRQ_STA] = 0x204,
++};
++
++static int mt7622_ecc_regs[] = {
++ [ECC_ENCPAR00] = 0x10,
++ [ECC_ENCIRQ_EN] = 0x30,
++ [ECC_ENCIRQ_STA] = 0x34,
++ [ECC_DECDONE] = 0x11c,
++ [ECC_DECIRQ_EN] = 0x140,
++ [ECC_DECIRQ_STA] = 0x144,
++};
++
++static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
++ enum mtk_ecc_operation op)
++{
++ struct device *dev = ecc->dev;
++ u32 val;
++ int ret;
++
++ ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
++ val & ECC_IDLE_MASK,
++ 10, ECC_TIMEOUT);
++ if (ret)
++ dev_warn(dev, "%s NOT idle\n",
++ op == ECC_ENCODE ? "encoder" : "decoder");
++}
++
++static irqreturn_t mtk_ecc_irq(int irq, void *id)
++{
++ struct mtk_ecc *ecc = id;
++ u32 dec, enc;
++
++ dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
++ & ECC_IRQ_EN;
++ if (dec) {
++ dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
++ if (dec & ecc->sectors) {
++ /*
++ * Clear decode IRQ status once again to ensure that
++ * there will be no extra IRQ.
++ */
++ readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
++ ecc->sectors = 0;
++ complete(&ecc->done);
++ } else {
++ return IRQ_HANDLED;
++ }
++ } else {
++ enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
++ & ECC_IRQ_EN;
++ if (enc)
++ complete(&ecc->done);
++ else
++ return IRQ_NONE;
++ }
++
++ return IRQ_HANDLED;
++}
++
++static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
++{
++ u32 ecc_bit, dec_sz, enc_sz;
++ u32 reg, i;
++
++ for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
++ if (ecc->caps->ecc_strength[i] == config->strength)
++ break;
++ }
++
++ if (i == ecc->caps->num_ecc_strength) {
++ dev_err(ecc->dev, "invalid ecc strength %d\n",
++ config->strength);
++ return -EINVAL;
++ }
++
++ ecc_bit = i;
++
++ if (config->op == ECC_ENCODE) {
++ /* configure ECC encoder (in bits) */
++ enc_sz = config->len << 3;
++
++ reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
++ reg |= (enc_sz << ECC_MS_SHIFT);
++ writel(reg, ecc->regs + ECC_ENCCNFG);
++
++ if (config->mode != ECC_NFI_MODE)
++ writel(lower_32_bits(config->addr),
++ ecc->regs + ECC_ENCDIADDR);
++
++ } else {
++ /* configure ECC decoder (in bits) */
++ dec_sz = (config->len << 3) +
++ config->strength * ecc->caps->parity_bits;
++
++ reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
++ reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
++ reg |= DEC_EMPTY_EN;
++ writel(reg, ecc->regs + ECC_DECCNFG);
++
++ if (config->sectors)
++ ecc->sectors = 1 << (config->sectors - 1);
++ }
++
++ return 0;
++}
++
++void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
++ int sectors)
++{
++ u32 offset, i, err;
++ u32 bitflips = 0;
++
++ stats->corrected = 0;
++ stats->failed = 0;
++
++ for (i = 0; i < sectors; i++) {
++ offset = (i >> 2) << 2;
++ err = readl(ecc->regs + ECC_DECENUM0 + offset);
++ err = err >> ((i % 4) * ecc->caps->err_shift);
++ err &= ecc->caps->err_mask;
++ if (err == ecc->caps->err_mask) {
++ /* uncorrectable errors */
++ stats->failed++;
++ continue;
++ }
++
++ stats->corrected += err;
++ bitflips = max_t(u32, bitflips, err);
++ }
++
++ stats->bitflips = bitflips;
++}
++EXPORT_SYMBOL(mtk_ecc_get_stats);
++
++void mtk_ecc_release(struct mtk_ecc *ecc)
++{
++ clk_disable_unprepare(ecc->clk);
++ put_device(ecc->dev);
++}
++EXPORT_SYMBOL(mtk_ecc_release);
++
++static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
++{
++ mtk_ecc_wait_idle(ecc, ECC_ENCODE);
++ writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
++
++ mtk_ecc_wait_idle(ecc, ECC_DECODE);
++ writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
++}
++
++static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
++{
++ struct platform_device *pdev;
++ struct mtk_ecc *ecc;
++
++ pdev = of_find_device_by_node(np);
++ if (!pdev)
++ return ERR_PTR(-EPROBE_DEFER);
++
++ ecc = platform_get_drvdata(pdev);
++ if (!ecc) {
++ put_device(&pdev->dev);
++ return ERR_PTR(-EPROBE_DEFER);
++ }
++
++ clk_prepare_enable(ecc->clk);
++ mtk_ecc_hw_init(ecc);
++
++ return ecc;
++}
++
++struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
++{
++ struct mtk_ecc *ecc = NULL;
++ struct device_node *np;
++
++ np = of_parse_phandle(of_node, "ecc-engine", 0);
++ if (np) {
++ ecc = mtk_ecc_get(np);
++ of_node_put(np);
++ }
++
++ return ecc;
++}
++EXPORT_SYMBOL(of_mtk_ecc_get);
++
++int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
++{
++ enum mtk_ecc_operation op = config->op;
++ u16 reg_val;
++ int ret;
++
++ ret = mutex_lock_interruptible(&ecc->lock);
++ if (ret) {
++ dev_err(ecc->dev, "interrupted when attempting to lock\n");
++ return ret;
++ }
++
++ mtk_ecc_wait_idle(ecc, op);
++
++ ret = mtk_ecc_config(ecc, config);
++ if (ret) {
++ mutex_unlock(&ecc->lock);
++ return ret;
++ }
++
++ if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
++ init_completion(&ecc->done);
++ reg_val = ECC_IRQ_EN;
++ /*
++ * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
++ * means this chip can only generate one ecc irq during page
++ * read / write. If is 0, generate one ecc irq each ecc step.
++ */
++ if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
++ reg_val |= ECC_PG_IRQ_SEL;
++ if (op == ECC_ENCODE)
++ writew(reg_val, ecc->regs +
++ ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
++ else
++ writew(reg_val, ecc->regs +
++ ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
++ }
++
++ writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
++
++ return 0;
++}
++EXPORT_SYMBOL(mtk_ecc_enable);
++
++void mtk_ecc_disable(struct mtk_ecc *ecc)
++{
++ enum mtk_ecc_operation op = ECC_ENCODE;
++
++ /* find out the running operation */
++ if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
++ op = ECC_DECODE;
++
++ /* disable it */
++ mtk_ecc_wait_idle(ecc, op);
++ if (op == ECC_DECODE) {
++ /*
++ * Clear decode IRQ status in case there is a timeout to wait
++ * decode IRQ.
++ */
++ readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
++ writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
++ } else {
++ writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
++ }
++
++ writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
++
++ mutex_unlock(&ecc->lock);
++}
++EXPORT_SYMBOL(mtk_ecc_disable);
++
++int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
++{
++ int ret;
++
++ ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
++ if (!ret) {
++ dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
++ (op == ECC_ENCODE) ? "encoder" : "decoder");
++ return -ETIMEDOUT;
++ }
++
++ return 0;
++}
++EXPORT_SYMBOL(mtk_ecc_wait_done);
++
++int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
++ u8 *data, u32 bytes)
++{
++ dma_addr_t addr;
++ u32 len;
++ int ret;
++
++ addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
++ ret = dma_mapping_error(ecc->dev, addr);
++ if (ret) {
++ dev_err(ecc->dev, "dma mapping error\n");
++ return -EINVAL;
++ }
++
++ config->op = ECC_ENCODE;
++ config->addr = addr;
++ ret = mtk_ecc_enable(ecc, config);
++ if (ret) {
++ dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
++ return ret;
++ }
++
++ ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
++ if (ret)
++ goto timeout;
++
++ mtk_ecc_wait_idle(ecc, ECC_ENCODE);
++
++ /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
++ len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
++
++ /* write the parity bytes generated by the ECC back to temp buffer */
++ __ioread32_copy(ecc->eccdata,
++ ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
++ round_up(len, 4));
++
++ /* copy into possibly unaligned OOB region with actual length */
++ memcpy(data + bytes, ecc->eccdata, len);
++timeout:
++
++ dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
++ mtk_ecc_disable(ecc);
++
++ return ret;
++}
++EXPORT_SYMBOL(mtk_ecc_encode);
++
++void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
++{
++ const u8 *ecc_strength = ecc->caps->ecc_strength;
++ int i;
++
++ for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
++ if (*p <= ecc_strength[i]) {
++ if (!i)
++ *p = ecc_strength[i];
++ else if (*p != ecc_strength[i])
++ *p = ecc_strength[i - 1];
++ return;
++ }
++ }
++
++ *p = ecc_strength[ecc->caps->num_ecc_strength - 1];
++}
++EXPORT_SYMBOL(mtk_ecc_adjust_strength);
++
++unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
++{
++ return ecc->caps->parity_bits;
++}
++EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
++
++static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
++ .err_mask = 0x3f,
++ .err_shift = 8,
++ .ecc_strength = ecc_strength_mt2701,
++ .ecc_regs = mt2701_ecc_regs,
++ .num_ecc_strength = 20,
++ .ecc_mode_shift = 5,
++ .parity_bits = 14,
++ .pg_irq_sel = 0,
++};
++
++static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
++ .err_mask = 0x7f,
++ .err_shift = 8,
++ .ecc_strength = ecc_strength_mt2712,
++ .ecc_regs = mt2712_ecc_regs,
++ .num_ecc_strength = 23,
++ .ecc_mode_shift = 5,
++ .parity_bits = 14,
++ .pg_irq_sel = 1,
++};
++
++static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
++ .err_mask = 0x1f,
++ .err_shift = 5,
++ .ecc_strength = ecc_strength_mt7622,
++ .ecc_regs = mt7622_ecc_regs,
++ .num_ecc_strength = 5,
++ .ecc_mode_shift = 4,
++ .parity_bits = 13,
++ .pg_irq_sel = 0,
++};
++
++static const struct of_device_id mtk_ecc_dt_match[] = {
++ {
++ .compatible = "mediatek,mt2701-ecc",
++ .data = &mtk_ecc_caps_mt2701,
++ }, {
++ .compatible = "mediatek,mt2712-ecc",
++ .data = &mtk_ecc_caps_mt2712,
++ }, {
++ .compatible = "mediatek,mt7622-ecc",
++ .data = &mtk_ecc_caps_mt7622,
++ },
++ {},
++};
++
++static int mtk_ecc_probe(struct platform_device *pdev)
++{
++ struct device *dev = &pdev->dev;
++ struct mtk_ecc *ecc;
++ struct resource *res;
++ u32 max_eccdata_size;
++ int irq, ret;
++
++ ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
++ if (!ecc)
++ return -ENOMEM;
++
++ ecc->caps = of_device_get_match_data(dev);
++
++ max_eccdata_size = ecc->caps->num_ecc_strength - 1;
++ max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
++ max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
++ max_eccdata_size = round_up(max_eccdata_size, 4);
++ ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
++ if (!ecc->eccdata)
++ return -ENOMEM;
++
++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ ecc->regs = devm_ioremap_resource(dev, res);
++ if (IS_ERR(ecc->regs))
++ return PTR_ERR(ecc->regs);
++
++ ecc->clk = devm_clk_get(dev, NULL);
++ if (IS_ERR(ecc->clk)) {
++ dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
++ return PTR_ERR(ecc->clk);
++ }
++
++ irq = platform_get_irq(pdev, 0);
++ if (irq < 0)
++ return irq;
++
++ ret = dma_set_mask(dev, DMA_BIT_MASK(32));
++ if (ret) {
++ dev_err(dev, "failed to set DMA mask\n");
++ return ret;
++ }
++
++ ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
++ if (ret) {
++ dev_err(dev, "failed to request irq\n");
++ return -EINVAL;
++ }
++
++ ecc->dev = dev;
++ mutex_init(&ecc->lock);
++ platform_set_drvdata(pdev, ecc);
++ dev_info(dev, "probed\n");
++
++ return 0;
++}
++
++#ifdef CONFIG_PM_SLEEP
++static int mtk_ecc_suspend(struct device *dev)
++{
++ struct mtk_ecc *ecc = dev_get_drvdata(dev);
++
++ clk_disable_unprepare(ecc->clk);
++
++ return 0;
++}
++
++static int mtk_ecc_resume(struct device *dev)
++{
++ struct mtk_ecc *ecc = dev_get_drvdata(dev);
++ int ret;
++
++ ret = clk_prepare_enable(ecc->clk);
++ if (ret) {
++ dev_err(dev, "failed to enable clk\n");
++ return ret;
++ }
++
++ return 0;
++}
++
++static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
++#endif
++
++MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
++
++static struct platform_driver mtk_ecc_driver = {
++ .probe = mtk_ecc_probe,
++ .driver = {
++ .name = "mtk-ecc",
++ .of_match_table = of_match_ptr(mtk_ecc_dt_match),
++#ifdef CONFIG_PM_SLEEP
++ .pm = &mtk_ecc_pm_ops,
++#endif
++ },
++};
++
++module_platform_driver(mtk_ecc_driver);
++
++MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
++MODULE_DESCRIPTION("MTK Nand ECC Driver");
++MODULE_LICENSE("Dual MIT/GPL");
+--- a/drivers/mtd/nand/raw/Kconfig
++++ b/drivers/mtd/nand/raw/Kconfig
+@@ -360,6 +360,7 @@ config MTD_NAND_QCOM
+
+ config MTD_NAND_MTK
+ tristate "MTK NAND controller"
++ depends on MTD_NAND_ECC_MEDIATEK
+ depends on ARCH_MEDIATEK || COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+--- a/drivers/mtd/nand/raw/Makefile
++++ b/drivers/mtd/nand/raw/Makefile
+@@ -48,7 +48,7 @@ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_n
+ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
+ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
+ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
+-obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
++obj-$(CONFIG_MTD_NAND_MTK) += mtk_nand.o
+ obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o
+ obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
+ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
+--- a/drivers/mtd/nand/raw/mtk_nand.c
++++ b/drivers/mtd/nand/raw/mtk_nand.c
+@@ -17,7 +17,7 @@
+ #include <linux/iopoll.h>
+ #include <linux/of.h>
+ #include <linux/of_device.h>
+-#include "mtk_ecc.h"
++#include <linux/mtd/nand-ecc-mtk.h>
+
+ /* NAND controller register definition */
+ #define NFI_CNFG (0x00)
+--- a/drivers/mtd/nand/raw/mtk_ecc.h
++++ /dev/null
+@@ -1,47 +0,0 @@
+-/* SPDX-License-Identifier: GPL-2.0 OR MIT */
+-/*
+- * MTK SDG1 ECC controller
+- *
+- * Copyright (c) 2016 Mediatek
+- * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
+- * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
+- */
+-
+-#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
+-#define __DRIVERS_MTD_NAND_MTK_ECC_H__
+-
+-#include <linux/types.h>
+-
+-enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
+-enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
+-
+-struct device_node;
+-struct mtk_ecc;
+-
+-struct mtk_ecc_stats {
+- u32 corrected;
+- u32 bitflips;
+- u32 failed;
+-};
+-
+-struct mtk_ecc_config {
+- enum mtk_ecc_operation op;
+- enum mtk_ecc_mode mode;
+- dma_addr_t addr;
+- u32 strength;
+- u32 sectors;
+- u32 len;
+-};
+-
+-int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
+-void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
+-int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
+-int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
+-void mtk_ecc_disable(struct mtk_ecc *);
+-void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
+-unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc);
+-
+-struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
+-void mtk_ecc_release(struct mtk_ecc *);
+-
+-#endif
+--- /dev/null
++++ b/include/linux/mtd/nand-ecc-mtk.h
+@@ -0,0 +1,47 @@
++/* SPDX-License-Identifier: GPL-2.0 OR MIT */
++/*
++ * MTK SDG1 ECC controller
++ *
++ * Copyright (c) 2016 Mediatek
++ * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
++ * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
++ */
++
++#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
++#define __DRIVERS_MTD_NAND_MTK_ECC_H__
++
++#include <linux/types.h>
++
++enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
++enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
++
++struct device_node;
++struct mtk_ecc;
++
++struct mtk_ecc_stats {
++ u32 corrected;
++ u32 bitflips;
++ u32 failed;
++};
++
++struct mtk_ecc_config {
++ enum mtk_ecc_operation op;
++ enum mtk_ecc_mode mode;
++ dma_addr_t addr;
++ u32 strength;
++ u32 sectors;
++ u32 len;
++};
++
++int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
++void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
++int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
++int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
++void mtk_ecc_disable(struct mtk_ecc *);
++void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
++unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc);
++
++struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
++void mtk_ecc_release(struct mtk_ecc *);
++
++#endif
+++ /dev/null
-From 8170bafa8936e9fbfdce992932a63bd20eca3bc3 Mon Sep 17 00:00:00 2001
-From: Chuanhong Guo <gch981213@gmail.com>
-Date: Sat, 2 Apr 2022 10:16:11 +0800
-Subject: [PATCH v6 2/5] spi: add driver for MTK SPI NAND Flash Interface
-
-This driver implements support for the SPI-NAND mode of MTK NAND Flash
-Interface as a SPI-MEM controller with pipelined ECC capability.
-
-Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
-Tested-by: Daniel Golle <daniel@makrotopia.org>
----
-Change since v1:
- fix CI warnings
-
-Changes since v2:
- use streamed DMA api to avoid an extra memory copy during read
- make ECC engine config a per-nand context
- take user-requested ECC strength into account
-
-Change since v3: none
-Changes since v4:
- fix missing OOB write
- print page format with dev_dbg
- replace uint*_t copied from vendor driver with u*
-
-Changes since v5:
- add missing nfi mode register configuration in probe
- fix an off-by-one bug in mtk_snand_mac_io
-
- drivers/spi/Kconfig | 10 +
- drivers/spi/Makefile | 1 +
- drivers/spi/spi-mtk-snfi.c | 1470 ++++++++++++++++++++++++++++++++++++
- 3 files changed, 1481 insertions(+)
- create mode 100644 drivers/spi/spi-mtk-snfi.c
-
---- a/drivers/spi/Kconfig
-+++ b/drivers/spi/Kconfig
-@@ -530,6 +530,16 @@ config SPI_MTK_NOR
- SPI interface as well as several SPI NOR specific instructions
- via SPI MEM interface.
-
-+config SPI_MTK_SNFI
-+ tristate "MediaTek SPI NAND Flash Interface"
-+ depends on ARCH_MEDIATEK || COMPILE_TEST
-+ depends on MTD_NAND_ECC_MEDIATEK
-+ help
-+ This enables support for SPI-NAND mode on the MediaTek NAND
-+ Flash Interface found on MediaTek ARM SoCs. This controller
-+ is implemented as a SPI-MEM controller with pipelined ECC
-+ capcability.
-+
- config SPI_NPCM_FIU
- tristate "Nuvoton NPCM FLASH Interface Unit"
- depends on ARCH_NPCM || COMPILE_TEST
---- a/drivers/spi/Makefile
-+++ b/drivers/spi/Makefile
-@@ -71,6 +71,7 @@ obj-$(CONFIG_SPI_MPC52xx) += spi-mpc52x
- obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o
- obj-$(CONFIG_SPI_MT7621) += spi-mt7621.o
- obj-$(CONFIG_SPI_MTK_NOR) += spi-mtk-nor.o
-+obj-$(CONFIG_SPI_MTK_SNFI) += spi-mtk-snfi.o
- obj-$(CONFIG_SPI_MXIC) += spi-mxic.o
- obj-$(CONFIG_SPI_MXS) += spi-mxs.o
- obj-$(CONFIG_SPI_NPCM_FIU) += spi-npcm-fiu.o
---- /dev/null
-+++ b/drivers/spi/spi-mtk-snfi.c
-@@ -0,0 +1,1470 @@
-+// SPDX-License-Identifier: GPL-2.0
-+//
-+// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
-+//
-+// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
-+//
-+// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
-+//
-+// Copyright (C) 2020 MediaTek Inc.
-+// Author: Weijie Gao <weijie.gao@mediatek.com>
-+//
-+// This controller organize the page data as several interleaved sectors
-+// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
-+// +---------+------+------+---------+------+------+-----+
-+// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
-+// +---------+------+------+---------+------+------+-----+
-+// With auto-format turned on, DMA only returns this part:
-+// +---------+---------+-----+
-+// | Sector1 | Sector2 | ... |
-+// +---------+---------+-----+
-+// The FDM data will be filled to the registers, and ECC parity data isn't
-+// accessible.
-+// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
-+// in it's original order shown in the first table. ECC can't be turned on when
-+// auto-format is off.
-+//
-+// However, Linux SPI-NAND driver expects the data returned as:
-+// +------+-----+
-+// | Page | OOB |
-+// +------+-----+
-+// where the page data is continuously stored instead of interleaved.
-+// So we assume all instructions matching the page_op template between ECC
-+// prepare_io_req and finish_io_req are for page cache r/w.
-+// Here's how this spi-mem driver operates when reading:
-+// 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
-+// 2. Perform page ops and let the controller fill the DMA bounce buffer with
-+// de-interleaved sector data and set FDM registers.
-+// 3. Return the data as:
-+// +---------+---------+-----+------+------+-----+
-+// | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
-+// +---------+---------+-----+------+------+-----+
-+// 4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
-+// read the data with auto-format off into the bounce buffer and copy
-+// needed data to the buffer specified in the request.
-+//
-+// Write requests operates in a similar manner.
-+// As a limitation of this strategy, we won't be able to access any ECC parity
-+// data at all in Linux.
-+//
-+// Here's the bad block mark situation on MTK chips:
-+// In older chips like mt7622, MTK uses the first FDM byte in the first sector
-+// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
-+// in the returned data, which is the BBM position expected by kernel. However,
-+// the conventional bad block mark is the first byte of the OOB, which is part
-+// of the last sector data in the interleaved layout. Instead of fixing their
-+// hardware, MTK decided to address this inconsistency in software. On these
-+// later chips, the BootROM expects the following:
-+// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
-+// (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
-+// 2. The original byte stored at that position in the DMA buffer will be stored
-+// as the first byte of the FDM section in the last sector.
-+// We can't disagree with the BootROM, so after de-interleaving, we need to
-+// perform the following swaps in read:
-+// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
-+// which is the expected BBM position by kernel.
-+// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
-+// [page_size - (nsectors - 1) * spare_size]
-+// Similarly, when writing, we need to perform swaps in the other direction.
-+
-+#include <linux/kernel.h>
-+#include <linux/module.h>
-+#include <linux/init.h>
-+#include <linux/device.h>
-+#include <linux/mutex.h>
-+#include <linux/clk.h>
-+#include <linux/interrupt.h>
-+#include <linux/dma-mapping.h>
-+#include <linux/iopoll.h>
-+#include <linux/of_platform.h>
-+#include <linux/mtd/nand-ecc-mtk.h>
-+#include <linux/spi/spi.h>
-+#include <linux/spi/spi-mem.h>
-+#include <linux/mtd/nand.h>
-+
-+// NFI registers
-+#define NFI_CNFG 0x000
-+#define CNFG_OP_MODE_S 12
-+#define CNFG_OP_MODE_CUST 6
-+#define CNFG_OP_MODE_PROGRAM 3
-+#define CNFG_AUTO_FMT_EN BIT(9)
-+#define CNFG_HW_ECC_EN BIT(8)
-+#define CNFG_DMA_BURST_EN BIT(2)
-+#define CNFG_READ_MODE BIT(1)
-+#define CNFG_DMA_MODE BIT(0)
-+
-+#define NFI_PAGEFMT 0x0004
-+#define NFI_SPARE_SIZE_LS_S 16
-+#define NFI_FDM_ECC_NUM_S 12
-+#define NFI_FDM_NUM_S 8
-+#define NFI_SPARE_SIZE_S 4
-+#define NFI_SEC_SEL_512 BIT(2)
-+#define NFI_PAGE_SIZE_S 0
-+#define NFI_PAGE_SIZE_512_2K 0
-+#define NFI_PAGE_SIZE_2K_4K 1
-+#define NFI_PAGE_SIZE_4K_8K 2
-+#define NFI_PAGE_SIZE_8K_16K 3
-+
-+#define NFI_CON 0x008
-+#define CON_SEC_NUM_S 12
-+#define CON_BWR BIT(9)
-+#define CON_BRD BIT(8)
-+#define CON_NFI_RST BIT(1)
-+#define CON_FIFO_FLUSH BIT(0)
-+
-+#define NFI_INTR_EN 0x010
-+#define NFI_INTR_STA 0x014
-+#define NFI_IRQ_INTR_EN BIT(31)
-+#define NFI_IRQ_CUS_READ BIT(8)
-+#define NFI_IRQ_CUS_PG BIT(7)
-+
-+#define NFI_CMD 0x020
-+#define NFI_CMD_DUMMY_READ 0x00
-+#define NFI_CMD_DUMMY_WRITE 0x80
-+
-+#define NFI_STRDATA 0x040
-+#define STR_DATA BIT(0)
-+
-+#define NFI_STA 0x060
-+#define NFI_NAND_FSM GENMASK(28, 24)
-+#define NFI_FSM GENMASK(19, 16)
-+#define READ_EMPTY BIT(12)
-+
-+#define NFI_FIFOSTA 0x064
-+#define FIFO_WR_REMAIN_S 8
-+#define FIFO_RD_REMAIN_S 0
-+
-+#define NFI_ADDRCNTR 0x070
-+#define SEC_CNTR GENMASK(16, 12)
-+#define SEC_CNTR_S 12
-+#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
-+
-+#define NFI_STRADDR 0x080
-+
-+#define NFI_BYTELEN 0x084
-+#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
-+
-+#define NFI_FDM0L 0x0a0
-+#define NFI_FDM0M 0x0a4
-+#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
-+#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
-+
-+#define NFI_DEBUG_CON1 0x220
-+#define WBUF_EN BIT(2)
-+
-+#define NFI_MASTERSTA 0x224
-+#define MAS_ADDR GENMASK(11, 9)
-+#define MAS_RD GENMASK(8, 6)
-+#define MAS_WR GENMASK(5, 3)
-+#define MAS_RDDLY GENMASK(2, 0)
-+#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
-+
-+// SNFI registers
-+#define SNF_MAC_CTL 0x500
-+#define MAC_XIO_SEL BIT(4)
-+#define SF_MAC_EN BIT(3)
-+#define SF_TRIG BIT(2)
-+#define WIP_READY BIT(1)
-+#define WIP BIT(0)
-+
-+#define SNF_MAC_OUTL 0x504
-+#define SNF_MAC_INL 0x508
-+
-+#define SNF_RD_CTL2 0x510
-+#define DATA_READ_DUMMY_S 8
-+#define DATA_READ_MAX_DUMMY 0xf
-+#define DATA_READ_CMD_S 0
-+
-+#define SNF_RD_CTL3 0x514
-+
-+#define SNF_PG_CTL1 0x524
-+#define PG_LOAD_CMD_S 8
-+
-+#define SNF_PG_CTL2 0x528
-+
-+#define SNF_MISC_CTL 0x538
-+#define SW_RST BIT(28)
-+#define FIFO_RD_LTC_S 25
-+#define PG_LOAD_X4_EN BIT(20)
-+#define DATA_READ_MODE_S 16
-+#define DATA_READ_MODE GENMASK(18, 16)
-+#define DATA_READ_MODE_X1 0
-+#define DATA_READ_MODE_X2 1
-+#define DATA_READ_MODE_X4 2
-+#define DATA_READ_MODE_DUAL 5
-+#define DATA_READ_MODE_QUAD 6
-+#define PG_LOAD_CUSTOM_EN BIT(7)
-+#define DATARD_CUSTOM_EN BIT(6)
-+#define CS_DESELECT_CYC_S 0
-+
-+#define SNF_MISC_CTL2 0x53c
-+#define PROGRAM_LOAD_BYTE_NUM_S 16
-+#define READ_DATA_BYTE_NUM_S 11
-+
-+#define SNF_DLY_CTL3 0x548
-+#define SFCK_SAM_DLY_S 0
-+
-+#define SNF_STA_CTL1 0x550
-+#define CUS_PG_DONE BIT(28)
-+#define CUS_READ_DONE BIT(27)
-+#define SPI_STATE_S 0
-+#define SPI_STATE GENMASK(3, 0)
-+
-+#define SNF_CFG 0x55c
-+#define SPI_MODE BIT(0)
-+
-+#define SNF_GPRAM 0x800
-+#define SNF_GPRAM_SIZE 0xa0
-+
-+#define SNFI_POLL_INTERVAL 1000000
-+
-+static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
-+
-+struct mtk_snand_caps {
-+ u16 sector_size;
-+ u16 max_sectors;
-+ u16 fdm_size;
-+ u16 fdm_ecc_size;
-+ u16 fifo_size;
-+
-+ bool bbm_swap;
-+ bool empty_page_check;
-+ u32 mastersta_mask;
-+
-+ const u8 *spare_sizes;
-+ u32 num_spare_size;
-+};
-+
-+static const struct mtk_snand_caps mt7622_snand_caps = {
-+ .sector_size = 512,
-+ .max_sectors = 8,
-+ .fdm_size = 8,
-+ .fdm_ecc_size = 1,
-+ .fifo_size = 32,
-+ .bbm_swap = false,
-+ .empty_page_check = false,
-+ .mastersta_mask = NFI_MASTERSTA_MASK_7622,
-+ .spare_sizes = mt7622_spare_sizes,
-+ .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
-+};
-+
-+static const struct mtk_snand_caps mt7629_snand_caps = {
-+ .sector_size = 512,
-+ .max_sectors = 8,
-+ .fdm_size = 8,
-+ .fdm_ecc_size = 1,
-+ .fifo_size = 32,
-+ .bbm_swap = true,
-+ .empty_page_check = false,
-+ .mastersta_mask = NFI_MASTERSTA_MASK_7622,
-+ .spare_sizes = mt7622_spare_sizes,
-+ .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
-+};
-+
-+struct mtk_snand_conf {
-+ size_t page_size;
-+ size_t oob_size;
-+ u8 nsectors;
-+ u8 spare_size;
-+};
-+
-+struct mtk_snand {
-+ struct spi_controller *ctlr;
-+ struct device *dev;
-+ struct clk *nfi_clk;
-+ struct clk *pad_clk;
-+ void __iomem *nfi_base;
-+ int irq;
-+ struct completion op_done;
-+ const struct mtk_snand_caps *caps;
-+ struct mtk_ecc_config *ecc_cfg;
-+ struct mtk_ecc *ecc;
-+ struct mtk_snand_conf nfi_cfg;
-+ struct mtk_ecc_stats ecc_stats;
-+ struct nand_ecc_engine ecc_eng;
-+ bool autofmt;
-+ u8 *buf;
-+ size_t buf_len;
-+};
-+
-+static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
-+{
-+ struct nand_ecc_engine *eng = nand->ecc.engine;
-+
-+ return container_of(eng, struct mtk_snand, ecc_eng);
-+}
-+
-+static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
-+{
-+ if (snf->buf_len >= size)
-+ return 0;
-+ kfree(snf->buf);
-+ snf->buf = kmalloc(size, GFP_KERNEL);
-+ if (!snf->buf)
-+ return -ENOMEM;
-+ snf->buf_len = size;
-+ memset(snf->buf, 0xff, snf->buf_len);
-+ return 0;
-+}
-+
-+static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
-+{
-+ return readl(snf->nfi_base + reg);
-+}
-+
-+static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
-+{
-+ writel(val, snf->nfi_base + reg);
-+}
-+
-+static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
-+{
-+ writew(val, snf->nfi_base + reg);
-+}
-+
-+static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
-+{
-+ u32 val;
-+
-+ val = readl(snf->nfi_base + reg);
-+ val &= ~clr;
-+ val |= set;
-+ writel(val, snf->nfi_base + reg);
-+}
-+
-+static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
-+{
-+ u32 i, val = 0, es = sizeof(u32);
-+
-+ for (i = reg; i < reg + len; i++) {
-+ if (i == reg || i % es == 0)
-+ val = nfi_read32(snf, i & ~(es - 1));
-+
-+ *data++ = (u8)(val >> (8 * (i % es)));
-+ }
-+}
-+
-+static int mtk_nfi_reset(struct mtk_snand *snf)
-+{
-+ u32 val, fifo_mask;
-+ int ret;
-+
-+ nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
-+
-+ ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
-+ !(val & snf->caps->mastersta_mask), 0,
-+ SNFI_POLL_INTERVAL);
-+ if (ret) {
-+ dev_err(snf->dev, "NFI master is still busy after reset\n");
-+ return ret;
-+ }
-+
-+ ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
-+ !(val & (NFI_FSM | NFI_NAND_FSM)), 0,
-+ SNFI_POLL_INTERVAL);
-+ if (ret) {
-+ dev_err(snf->dev, "Failed to reset NFI\n");
-+ return ret;
-+ }
-+
-+ fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
-+ ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
-+ ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
-+ !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
-+ if (ret) {
-+ dev_err(snf->dev, "NFI FIFOs are not empty\n");
-+ return ret;
-+ }
-+
-+ return 0;
-+}
-+
-+static int mtk_snand_mac_reset(struct mtk_snand *snf)
-+{
-+ int ret;
-+ u32 val;
-+
-+ nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
-+
-+ ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
-+ !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
-+ if (ret)
-+ dev_err(snf->dev, "Failed to reset SNFI MAC\n");
-+
-+ nfi_write32(snf, SNF_MISC_CTL,
-+ (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
-+
-+ return ret;
-+}
-+
-+static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
-+{
-+ int ret;
-+ u32 val;
-+
-+ nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
-+ nfi_write32(snf, SNF_MAC_OUTL, outlen);
-+ nfi_write32(snf, SNF_MAC_INL, inlen);
-+
-+ nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
-+
-+ ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
-+ val & WIP_READY, 0, SNFI_POLL_INTERVAL);
-+ if (ret) {
-+ dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
-+ goto cleanup;
-+ }
-+
-+ ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
-+ 0, SNFI_POLL_INTERVAL);
-+ if (ret)
-+ dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
-+
-+cleanup:
-+ nfi_write32(snf, SNF_MAC_CTL, 0);
-+
-+ return ret;
-+}
-+
-+static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
-+{
-+ u32 rx_len = 0;
-+ u32 reg_offs = 0;
-+ u32 val = 0;
-+ const u8 *tx_buf = NULL;
-+ u8 *rx_buf = NULL;
-+ int i, ret;
-+ u8 b;
-+
-+ if (op->data.dir == SPI_MEM_DATA_IN) {
-+ rx_len = op->data.nbytes;
-+ rx_buf = op->data.buf.in;
-+ } else {
-+ tx_buf = op->data.buf.out;
-+ }
-+
-+ mtk_snand_mac_reset(snf);
-+
-+ for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
-+ b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
-+ val |= b << (8 * (reg_offs % 4));
-+ if (reg_offs % 4 == 3) {
-+ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+ val = 0;
-+ }
-+ }
-+
-+ for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
-+ b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
-+ val |= b << (8 * (reg_offs % 4));
-+ if (reg_offs % 4 == 3) {
-+ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+ val = 0;
-+ }
-+ }
-+
-+ for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
-+ if (reg_offs % 4 == 3) {
-+ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+ val = 0;
-+ }
-+ }
-+
-+ if (op->data.dir == SPI_MEM_DATA_OUT) {
-+ for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
-+ val |= tx_buf[i] << (8 * (reg_offs % 4));
-+ if (reg_offs % 4 == 3) {
-+ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
-+ val = 0;
-+ }
-+ }
-+ }
-+
-+ if (reg_offs % 4)
-+ nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
-+
-+ for (i = 0; i < reg_offs; i += 4)
-+ dev_dbg(snf->dev, "%d: %08X", i,
-+ nfi_read32(snf, SNF_GPRAM + i));
-+
-+ dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
-+
-+ ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
-+ if (ret)
-+ return ret;
-+
-+ if (!rx_len)
-+ return 0;
-+
-+ nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
-+ return 0;
-+}
-+
-+static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
-+ u32 oob_size)
-+{
-+ int spare_idx = -1;
-+ u32 spare_size, spare_size_shift, pagesize_idx;
-+ u32 sector_size_512;
-+ u8 nsectors;
-+ int i;
-+
-+ // skip if it's already configured as required.
-+ if (snf->nfi_cfg.page_size == page_size &&
-+ snf->nfi_cfg.oob_size == oob_size)
-+ return 0;
-+
-+ nsectors = page_size / snf->caps->sector_size;
-+ if (nsectors > snf->caps->max_sectors) {
-+ dev_err(snf->dev, "too many sectors required.\n");
-+ goto err;
-+ }
-+
-+ if (snf->caps->sector_size == 512) {
-+ sector_size_512 = NFI_SEC_SEL_512;
-+ spare_size_shift = NFI_SPARE_SIZE_S;
-+ } else {
-+ sector_size_512 = 0;
-+ spare_size_shift = NFI_SPARE_SIZE_LS_S;
-+ }
-+
-+ switch (page_size) {
-+ case SZ_512:
-+ pagesize_idx = NFI_PAGE_SIZE_512_2K;
-+ break;
-+ case SZ_2K:
-+ if (snf->caps->sector_size == 512)
-+ pagesize_idx = NFI_PAGE_SIZE_2K_4K;
-+ else
-+ pagesize_idx = NFI_PAGE_SIZE_512_2K;
-+ break;
-+ case SZ_4K:
-+ if (snf->caps->sector_size == 512)
-+ pagesize_idx = NFI_PAGE_SIZE_4K_8K;
-+ else
-+ pagesize_idx = NFI_PAGE_SIZE_2K_4K;
-+ break;
-+ case SZ_8K:
-+ if (snf->caps->sector_size == 512)
-+ pagesize_idx = NFI_PAGE_SIZE_8K_16K;
-+ else
-+ pagesize_idx = NFI_PAGE_SIZE_4K_8K;
-+ break;
-+ case SZ_16K:
-+ pagesize_idx = NFI_PAGE_SIZE_8K_16K;
-+ break;
-+ default:
-+ dev_err(snf->dev, "unsupported page size.\n");
-+ goto err;
-+ }
-+
-+ spare_size = oob_size / nsectors;
-+ // If we're using the 1KB sector size, HW will automatically double the
-+ // spare size. We should only use half of the value in this case.
-+ if (snf->caps->sector_size == 1024)
-+ spare_size /= 2;
-+
-+ for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
-+ if (snf->caps->spare_sizes[i] <= spare_size) {
-+ spare_size = snf->caps->spare_sizes[i];
-+ if (snf->caps->sector_size == 1024)
-+ spare_size *= 2;
-+ spare_idx = i;
-+ break;
-+ }
-+ }
-+
-+ if (spare_idx < 0) {
-+ dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
-+ goto err;
-+ }
-+
-+ nfi_write32(snf, NFI_PAGEFMT,
-+ (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
-+ (snf->caps->fdm_size << NFI_FDM_NUM_S) |
-+ (spare_idx << spare_size_shift) |
-+ (pagesize_idx << NFI_PAGE_SIZE_S) |
-+ sector_size_512);
-+
-+ snf->nfi_cfg.page_size = page_size;
-+ snf->nfi_cfg.oob_size = oob_size;
-+ snf->nfi_cfg.nsectors = nsectors;
-+ snf->nfi_cfg.spare_size = spare_size;
-+
-+ dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
-+ snf->caps->sector_size, spare_size, nsectors);
-+ return snand_prepare_bouncebuf(snf, page_size + oob_size);
-+err:
-+ dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
-+ oob_size);
-+ return -EOPNOTSUPP;
-+}
-+
-+static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
-+ struct mtd_oob_region *oobecc)
-+{
-+ // ECC area is not accessible
-+ return -ERANGE;
-+}
-+
-+static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
-+ struct mtd_oob_region *oobfree)
-+{
-+ struct nand_device *nand = mtd_to_nanddev(mtd);
-+ struct mtk_snand *ms = nand_to_mtk_snand(nand);
-+
-+ if (section >= ms->nfi_cfg.nsectors)
-+ return -ERANGE;
-+
-+ oobfree->length = ms->caps->fdm_size - 1;
-+ oobfree->offset = section * ms->caps->fdm_size + 1;
-+ return 0;
-+}
-+
-+static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
-+ .ecc = mtk_snand_ooblayout_ecc,
-+ .free = mtk_snand_ooblayout_free,
-+};
-+
-+static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
-+{
-+ struct mtk_snand *snf = nand_to_mtk_snand(nand);
-+ struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
-+ struct nand_ecc_props *reqs = &nand->ecc.requirements;
-+ struct nand_ecc_props *user = &nand->ecc.user_conf;
-+ struct mtd_info *mtd = nanddev_to_mtd(nand);
-+ int step_size = 0, strength = 0, desired_correction = 0, steps;
-+ bool ecc_user = false;
-+ int ret;
-+ u32 parity_bits, max_ecc_bytes;
-+ struct mtk_ecc_config *ecc_cfg;
-+
-+ ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
-+ nand->memorg.oobsize);
-+ if (ret)
-+ return ret;
-+
-+ ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
-+ if (!ecc_cfg)
-+ return -ENOMEM;
-+
-+ nand->ecc.ctx.priv = ecc_cfg;
-+
-+ if (user->step_size && user->strength) {
-+ step_size = user->step_size;
-+ strength = user->strength;
-+ ecc_user = true;
-+ } else if (reqs->step_size && reqs->strength) {
-+ step_size = reqs->step_size;
-+ strength = reqs->strength;
-+ }
-+
-+ if (step_size && strength) {
-+ steps = mtd->writesize / step_size;
-+ desired_correction = steps * strength;
-+ strength = desired_correction / snf->nfi_cfg.nsectors;
-+ }
-+
-+ ecc_cfg->mode = ECC_NFI_MODE;
-+ ecc_cfg->sectors = snf->nfi_cfg.nsectors;
-+ ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
-+
-+ // calculate the max possible strength under current page format
-+ parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
-+ max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
-+ ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
-+ mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
-+
-+ // if there's a user requested strength, find the minimum strength that
-+ // meets the requirement. Otherwise use the maximum strength which is
-+ // expected by BootROM.
-+ if (ecc_user && strength) {
-+ u32 s_next = ecc_cfg->strength - 1;
-+
-+ while (1) {
-+ mtk_ecc_adjust_strength(snf->ecc, &s_next);
-+ if (s_next >= ecc_cfg->strength)
-+ break;
-+ if (s_next < strength)
-+ break;
-+ s_next = ecc_cfg->strength - 1;
-+ }
-+ }
-+
-+ mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
-+
-+ conf->step_size = snf->caps->sector_size;
-+ conf->strength = ecc_cfg->strength;
-+
-+ if (ecc_cfg->strength < strength)
-+ dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
-+ strength);
-+ dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
-+ ecc_cfg->strength, snf->caps->sector_size);
-+
-+ return 0;
-+}
-+
-+static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
-+{
-+ struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
-+
-+ kfree(ecc_cfg);
-+}
-+
-+static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
-+ struct nand_page_io_req *req)
-+{
-+ struct mtk_snand *snf = nand_to_mtk_snand(nand);
-+ struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
-+ int ret;
-+
-+ ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
-+ nand->memorg.oobsize);
-+ if (ret)
-+ return ret;
-+ snf->autofmt = true;
-+ snf->ecc_cfg = ecc_cfg;
-+ return 0;
-+}
-+
-+static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
-+ struct nand_page_io_req *req)
-+{
-+ struct mtk_snand *snf = nand_to_mtk_snand(nand);
-+ struct mtd_info *mtd = nanddev_to_mtd(nand);
-+
-+ snf->ecc_cfg = NULL;
-+ snf->autofmt = false;
-+ if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
-+ return 0;
-+
-+ if (snf->ecc_stats.failed)
-+ mtd->ecc_stats.failed += snf->ecc_stats.failed;
-+ mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
-+ return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
-+}
-+
-+static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
-+ .init_ctx = mtk_snand_ecc_init_ctx,
-+ .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
-+ .prepare_io_req = mtk_snand_ecc_prepare_io_req,
-+ .finish_io_req = mtk_snand_ecc_finish_io_req,
-+};
-+
-+static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
-+{
-+ u32 vall, valm;
-+ u8 *oobptr = buf;
-+ int i, j;
-+
-+ for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
-+ vall = nfi_read32(snf, NFI_FDML(i));
-+ valm = nfi_read32(snf, NFI_FDMM(i));
-+
-+ for (j = 0; j < snf->caps->fdm_size; j++)
-+ oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
-+
-+ oobptr += snf->caps->fdm_size;
-+ }
-+}
-+
-+static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
-+{
-+ u32 fdm_size = snf->caps->fdm_size;
-+ const u8 *oobptr = buf;
-+ u32 vall, valm;
-+ int i, j;
-+
-+ for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
-+ vall = 0;
-+ valm = 0;
-+
-+ for (j = 0; j < 8; j++) {
-+ if (j < 4)
-+ vall |= (j < fdm_size ? oobptr[j] : 0xff)
-+ << (j * 8);
-+ else
-+ valm |= (j < fdm_size ? oobptr[j] : 0xff)
-+ << ((j - 4) * 8);
-+ }
-+
-+ nfi_write32(snf, NFI_FDML(i), vall);
-+ nfi_write32(snf, NFI_FDMM(i), valm);
-+
-+ oobptr += fdm_size;
-+ }
-+}
-+
-+static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
-+{
-+ u32 buf_bbm_pos, fdm_bbm_pos;
-+
-+ if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
-+ return;
-+
-+ // swap [pagesize] byte on nand with the first fdm byte
-+ // in the last sector.
-+ buf_bbm_pos = snf->nfi_cfg.page_size -
-+ (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
-+ fdm_bbm_pos = snf->nfi_cfg.page_size +
-+ (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
-+
-+ swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
-+}
-+
-+static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
-+{
-+ u32 fdm_bbm_pos1, fdm_bbm_pos2;
-+
-+ if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
-+ return;
-+
-+ // swap the first fdm byte in the first and the last sector.
-+ fdm_bbm_pos1 = snf->nfi_cfg.page_size;
-+ fdm_bbm_pos2 = snf->nfi_cfg.page_size +
-+ (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
-+ swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
-+}
-+
-+static int mtk_snand_read_page_cache(struct mtk_snand *snf,
-+ const struct spi_mem_op *op)
-+{
-+ u8 *buf = snf->buf;
-+ u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
-+ // the address part to be sent by the controller
-+ u32 op_addr = op->addr.val;
-+ // where to start copying data from bounce buffer
-+ u32 rd_offset = 0;
-+ u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
-+ u32 op_mode = 0;
-+ u32 dma_len = snf->buf_len;
-+ int ret = 0;
-+ u32 rd_mode, rd_bytes, val;
-+ dma_addr_t buf_dma;
-+
-+ if (snf->autofmt) {
-+ u32 last_bit;
-+ u32 mask;
-+
-+ dma_len = snf->nfi_cfg.page_size;
-+ op_mode = CNFG_AUTO_FMT_EN;
-+ if (op->data.ecc)
-+ op_mode |= CNFG_HW_ECC_EN;
-+ // extract the plane bit:
-+ // Find the highest bit set in (pagesize+oobsize).
-+ // Bits higher than that in op->addr are kept and sent over SPI
-+ // Lower bits are used as an offset for copying data from DMA
-+ // bounce buffer.
-+ last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
-+ mask = (1 << last_bit) - 1;
-+ rd_offset = op_addr & mask;
-+ op_addr &= ~mask;
-+
-+ // check if we can dma to the caller memory
-+ if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
-+ buf = op->data.buf.in;
-+ }
-+ mtk_snand_mac_reset(snf);
-+ mtk_nfi_reset(snf);
-+
-+ // command and dummy cycles
-+ nfi_write32(snf, SNF_RD_CTL2,
-+ (dummy_clk << DATA_READ_DUMMY_S) |
-+ (op->cmd.opcode << DATA_READ_CMD_S));
-+
-+ // read address
-+ nfi_write32(snf, SNF_RD_CTL3, op_addr);
-+
-+ // Set read op_mode
-+ if (op->data.buswidth == 4)
-+ rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
-+ DATA_READ_MODE_X4;
-+ else if (op->data.buswidth == 2)
-+ rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
-+ DATA_READ_MODE_X2;
-+ else
-+ rd_mode = DATA_READ_MODE_X1;
-+ rd_mode <<= DATA_READ_MODE_S;
-+ nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
-+ rd_mode | DATARD_CUSTOM_EN);
-+
-+ // Set bytes to read
-+ rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
-+ snf->nfi_cfg.nsectors;
-+ nfi_write32(snf, SNF_MISC_CTL2,
-+ (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
-+
-+ // NFI read prepare
-+ nfi_write16(snf, NFI_CNFG,
-+ (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
-+ CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
-+
-+ nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
-+
-+ buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
-+ if (dma_mapping_error(snf->dev, buf_dma)) {
-+ dev_err(snf->dev, "DMA mapping failed.\n");
-+ goto cleanup;
-+ }
-+ nfi_write32(snf, NFI_STRADDR, buf_dma);
-+ if (op->data.ecc) {
-+ snf->ecc_cfg->op = ECC_DECODE;
-+ ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
-+ if (ret)
-+ goto cleanup_dma;
-+ }
-+ // Prepare for custom read interrupt
-+ nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
-+ reinit_completion(&snf->op_done);
-+
-+ // Trigger NFI into custom mode
-+ nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
-+
-+ // Start DMA read
-+ nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
-+ nfi_write16(snf, NFI_STRDATA, STR_DATA);
-+
-+ if (!wait_for_completion_timeout(
-+ &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
-+ dev_err(snf->dev, "DMA timed out for reading from cache.\n");
-+ ret = -ETIMEDOUT;
-+ goto cleanup;
-+ }
-+
-+ // Wait for BUS_SEC_CNTR returning expected value
-+ ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
-+ BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
-+ SNFI_POLL_INTERVAL);
-+ if (ret) {
-+ dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
-+ goto cleanup2;
-+ }
-+
-+ // Wait for bus becoming idle
-+ ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
-+ !(val & snf->caps->mastersta_mask), 0,
-+ SNFI_POLL_INTERVAL);
-+ if (ret) {
-+ dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
-+ goto cleanup2;
-+ }
-+
-+ if (op->data.ecc) {
-+ ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
-+ if (ret) {
-+ dev_err(snf->dev, "wait ecc done timeout\n");
-+ goto cleanup2;
-+ }
-+ // save status before disabling ecc
-+ mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
-+ snf->nfi_cfg.nsectors);
-+ }
-+
-+ dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
-+
-+ if (snf->autofmt) {
-+ mtk_snand_read_fdm(snf, buf_fdm);
-+ if (snf->caps->bbm_swap) {
-+ mtk_snand_bm_swap(snf, buf);
-+ mtk_snand_fdm_bm_swap(snf);
-+ }
-+ }
-+
-+ // copy data back
-+ if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
-+ memset(op->data.buf.in, 0xff, op->data.nbytes);
-+ snf->ecc_stats.bitflips = 0;
-+ snf->ecc_stats.failed = 0;
-+ snf->ecc_stats.corrected = 0;
-+ } else {
-+ if (buf == op->data.buf.in) {
-+ u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
-+ u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
-+
-+ if (req_left)
-+ memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
-+ buf_fdm,
-+ cap_len < req_left ? cap_len : req_left);
-+ } else if (rd_offset < snf->buf_len) {
-+ u32 cap_len = snf->buf_len - rd_offset;
-+
-+ if (op->data.nbytes < cap_len)
-+ cap_len = op->data.nbytes;
-+ memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
-+ }
-+ }
-+cleanup2:
-+ if (op->data.ecc)
-+ mtk_ecc_disable(snf->ecc);
-+cleanup_dma:
-+ // unmap dma only if any error happens. (otherwise it's done before
-+ // data copying)
-+ if (ret)
-+ dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
-+cleanup:
-+ // Stop read
-+ nfi_write32(snf, NFI_CON, 0);
-+ nfi_write16(snf, NFI_CNFG, 0);
-+
-+ // Clear SNF done flag
-+ nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
-+ nfi_write32(snf, SNF_STA_CTL1, 0);
-+
-+ // Disable interrupt
-+ nfi_read32(snf, NFI_INTR_STA);
-+ nfi_write32(snf, NFI_INTR_EN, 0);
-+
-+ nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
-+ return ret;
-+}
-+
-+static int mtk_snand_write_page_cache(struct mtk_snand *snf,
-+ const struct spi_mem_op *op)
-+{
-+ // the address part to be sent by the controller
-+ u32 op_addr = op->addr.val;
-+ // where to start copying data from bounce buffer
-+ u32 wr_offset = 0;
-+ u32 op_mode = 0;
-+ int ret = 0;
-+ u32 wr_mode = 0;
-+ u32 dma_len = snf->buf_len;
-+ u32 wr_bytes, val;
-+ size_t cap_len;
-+ dma_addr_t buf_dma;
-+
-+ if (snf->autofmt) {
-+ u32 last_bit;
-+ u32 mask;
-+
-+ dma_len = snf->nfi_cfg.page_size;
-+ op_mode = CNFG_AUTO_FMT_EN;
-+ if (op->data.ecc)
-+ op_mode |= CNFG_HW_ECC_EN;
-+
-+ last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
-+ mask = (1 << last_bit) - 1;
-+ wr_offset = op_addr & mask;
-+ op_addr &= ~mask;
-+ }
-+ mtk_snand_mac_reset(snf);
-+ mtk_nfi_reset(snf);
-+
-+ if (wr_offset)
-+ memset(snf->buf, 0xff, wr_offset);
-+
-+ cap_len = snf->buf_len - wr_offset;
-+ if (op->data.nbytes < cap_len)
-+ cap_len = op->data.nbytes;
-+ memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
-+ if (snf->autofmt) {
-+ if (snf->caps->bbm_swap) {
-+ mtk_snand_fdm_bm_swap(snf);
-+ mtk_snand_bm_swap(snf, snf->buf);
-+ }
-+ mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
-+ }
-+
-+ // Command
-+ nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
-+
-+ // write address
-+ nfi_write32(snf, SNF_PG_CTL2, op_addr);
-+
-+ // Set read op_mode
-+ if (op->data.buswidth == 4)
-+ wr_mode = PG_LOAD_X4_EN;
-+
-+ nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
-+ wr_mode | PG_LOAD_CUSTOM_EN);
-+
-+ // Set bytes to write
-+ wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
-+ snf->nfi_cfg.nsectors;
-+ nfi_write32(snf, SNF_MISC_CTL2,
-+ (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
-+
-+ // NFI write prepare
-+ nfi_write16(snf, NFI_CNFG,
-+ (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
-+ CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
-+
-+ nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
-+ buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
-+ if (dma_mapping_error(snf->dev, buf_dma)) {
-+ dev_err(snf->dev, "DMA mapping failed.\n");
-+ goto cleanup;
-+ }
-+ nfi_write32(snf, NFI_STRADDR, buf_dma);
-+ if (op->data.ecc) {
-+ snf->ecc_cfg->op = ECC_ENCODE;
-+ ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
-+ if (ret)
-+ goto cleanup_dma;
-+ }
-+ // Prepare for custom write interrupt
-+ nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
-+ reinit_completion(&snf->op_done);
-+ ;
-+
-+ // Trigger NFI into custom mode
-+ nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
-+
-+ // Start DMA write
-+ nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
-+ nfi_write16(snf, NFI_STRDATA, STR_DATA);
-+
-+ if (!wait_for_completion_timeout(
-+ &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
-+ dev_err(snf->dev, "DMA timed out for program load.\n");
-+ ret = -ETIMEDOUT;
-+ goto cleanup_ecc;
-+ }
-+
-+ // Wait for NFI_SEC_CNTR returning expected value
-+ ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
-+ NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
-+ SNFI_POLL_INTERVAL);
-+ if (ret)
-+ dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
-+
-+cleanup_ecc:
-+ if (op->data.ecc)
-+ mtk_ecc_disable(snf->ecc);
-+cleanup_dma:
-+ dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
-+cleanup:
-+ // Stop write
-+ nfi_write32(snf, NFI_CON, 0);
-+ nfi_write16(snf, NFI_CNFG, 0);
-+
-+ // Clear SNF done flag
-+ nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
-+ nfi_write32(snf, SNF_STA_CTL1, 0);
-+
-+ // Disable interrupt
-+ nfi_read32(snf, NFI_INTR_STA);
-+ nfi_write32(snf, NFI_INTR_EN, 0);
-+
-+ nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
-+
-+ return ret;
-+}
-+
-+/**
-+ * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
-+ * @op spi-mem op to check
-+ *
-+ * Check whether op can be executed with read_from_cache or program_load
-+ * mode in the controller.
-+ * This controller can execute typical Read From Cache and Program Load
-+ * instructions found on SPI-NAND with 2-byte address.
-+ * DTR and cmd buswidth & nbytes should be checked before calling this.
-+ *
-+ * Return: true if the op matches the instruction template
-+ */
-+static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
-+{
-+ if (op->addr.nbytes != 2)
-+ return false;
-+
-+ if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
-+ op->addr.buswidth != 4)
-+ return false;
-+
-+ // match read from page instructions
-+ if (op->data.dir == SPI_MEM_DATA_IN) {
-+ // check dummy cycle first
-+ if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
-+ DATA_READ_MAX_DUMMY)
-+ return false;
-+ // quad io / quad out
-+ if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
-+ op->data.buswidth == 4)
-+ return true;
-+
-+ // dual io / dual out
-+ if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
-+ op->data.buswidth == 2)
-+ return true;
-+
-+ // standard spi
-+ if (op->addr.buswidth == 1 && op->data.buswidth == 1)
-+ return true;
-+ } else if (op->data.dir == SPI_MEM_DATA_OUT) {
-+ // check dummy cycle first
-+ if (op->dummy.nbytes)
-+ return false;
-+ // program load quad out
-+ if (op->addr.buswidth == 1 && op->data.buswidth == 4)
-+ return true;
-+ // standard spi
-+ if (op->addr.buswidth == 1 && op->data.buswidth == 1)
-+ return true;
-+ }
-+ return false;
-+}
-+
-+static bool mtk_snand_supports_op(struct spi_mem *mem,
-+ const struct spi_mem_op *op)
-+{
-+ if (!spi_mem_default_supports_op(mem, op))
-+ return false;
-+ if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
-+ return false;
-+ if (mtk_snand_is_page_ops(op))
-+ return true;
-+ return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
-+ (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
-+ (op->data.nbytes == 0 || op->data.buswidth == 1));
-+}
-+
-+static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
-+{
-+ struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
-+ // page ops transfer size must be exactly ((sector_size + spare_size) *
-+ // nsectors). Limit the op size if the caller requests more than that.
-+ // exec_op will read more than needed and discard the leftover if the
-+ // caller requests less data.
-+ if (mtk_snand_is_page_ops(op)) {
-+ size_t l;
-+ // skip adjust_op_size for page ops
-+ if (ms->autofmt)
-+ return 0;
-+ l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
-+ l *= ms->nfi_cfg.nsectors;
-+ if (op->data.nbytes > l)
-+ op->data.nbytes = l;
-+ } else {
-+ size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
-+
-+ if (hl >= SNF_GPRAM_SIZE)
-+ return -EOPNOTSUPP;
-+ if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
-+ op->data.nbytes = SNF_GPRAM_SIZE - hl;
-+ }
-+ return 0;
-+}
-+
-+static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
-+{
-+ struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
-+
-+ dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
-+ op->addr.val, op->addr.buswidth, op->addr.nbytes,
-+ op->data.buswidth, op->data.nbytes);
-+ if (mtk_snand_is_page_ops(op)) {
-+ if (op->data.dir == SPI_MEM_DATA_IN)
-+ return mtk_snand_read_page_cache(ms, op);
-+ else
-+ return mtk_snand_write_page_cache(ms, op);
-+ } else {
-+ return mtk_snand_mac_io(ms, op);
-+ }
-+}
-+
-+static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
-+ .adjust_op_size = mtk_snand_adjust_op_size,
-+ .supports_op = mtk_snand_supports_op,
-+ .exec_op = mtk_snand_exec_op,
-+};
-+
-+static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
-+ .ecc = true,
-+};
-+
-+static irqreturn_t mtk_snand_irq(int irq, void *id)
-+{
-+ struct mtk_snand *snf = id;
-+ u32 sta, ien;
-+
-+ sta = nfi_read32(snf, NFI_INTR_STA);
-+ ien = nfi_read32(snf, NFI_INTR_EN);
-+
-+ if (!(sta & ien))
-+ return IRQ_NONE;
-+
-+ nfi_write32(snf, NFI_INTR_EN, 0);
-+ complete(&snf->op_done);
-+ return IRQ_HANDLED;
-+}
-+
-+static const struct of_device_id mtk_snand_ids[] = {
-+ { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
-+ { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
-+ {},
-+};
-+
-+MODULE_DEVICE_TABLE(of, mtk_snand_ids);
-+
-+static int mtk_snand_enable_clk(struct mtk_snand *ms)
-+{
-+ int ret;
-+
-+ ret = clk_prepare_enable(ms->nfi_clk);
-+ if (ret) {
-+ dev_err(ms->dev, "unable to enable nfi clk\n");
-+ return ret;
-+ }
-+ ret = clk_prepare_enable(ms->pad_clk);
-+ if (ret) {
-+ dev_err(ms->dev, "unable to enable pad clk\n");
-+ goto err1;
-+ }
-+ return 0;
-+err1:
-+ clk_disable_unprepare(ms->nfi_clk);
-+ return ret;
-+}
-+
-+static void mtk_snand_disable_clk(struct mtk_snand *ms)
-+{
-+ clk_disable_unprepare(ms->pad_clk);
-+ clk_disable_unprepare(ms->nfi_clk);
-+}
-+
-+static int mtk_snand_probe(struct platform_device *pdev)
-+{
-+ struct device_node *np = pdev->dev.of_node;
-+ const struct of_device_id *dev_id;
-+ struct spi_controller *ctlr;
-+ struct mtk_snand *ms;
-+ int ret;
-+
-+ dev_id = of_match_node(mtk_snand_ids, np);
-+ if (!dev_id)
-+ return -EINVAL;
-+
-+ ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
-+ if (!ctlr)
-+ return -ENOMEM;
-+ platform_set_drvdata(pdev, ctlr);
-+
-+ ms = spi_controller_get_devdata(ctlr);
-+
-+ ms->ctlr = ctlr;
-+ ms->caps = dev_id->data;
-+
-+ ms->ecc = of_mtk_ecc_get(np);
-+ if (IS_ERR(ms->ecc))
-+ return PTR_ERR(ms->ecc);
-+ else if (!ms->ecc)
-+ return -ENODEV;
-+
-+ ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
-+ if (IS_ERR(ms->nfi_base)) {
-+ ret = PTR_ERR(ms->nfi_base);
-+ goto release_ecc;
-+ }
-+
-+ ms->dev = &pdev->dev;
-+
-+ ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
-+ if (IS_ERR(ms->nfi_clk)) {
-+ ret = PTR_ERR(ms->nfi_clk);
-+ dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
-+ goto release_ecc;
-+ }
-+
-+ ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
-+ if (IS_ERR(ms->pad_clk)) {
-+ ret = PTR_ERR(ms->pad_clk);
-+ dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
-+ goto release_ecc;
-+ }
-+
-+ ret = mtk_snand_enable_clk(ms);
-+ if (ret)
-+ goto release_ecc;
-+
-+ init_completion(&ms->op_done);
-+
-+ ms->irq = platform_get_irq(pdev, 0);
-+ if (ms->irq < 0) {
-+ ret = ms->irq;
-+ goto disable_clk;
-+ }
-+ ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
-+ "mtk-snand", ms);
-+ if (ret) {
-+ dev_err(ms->dev, "failed to request snfi irq\n");
-+ goto disable_clk;
-+ }
-+
-+ ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
-+ if (ret) {
-+ dev_err(ms->dev, "failed to set dma mask\n");
-+ goto disable_clk;
-+ }
-+
-+ // switch to SNFI mode
-+ nfi_write32(ms, SNF_CFG, SPI_MODE);
-+
-+ // setup an initial page format for ops matching page_cache_op template
-+ // before ECC is called.
-+ ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
-+ ms->caps->spare_sizes[0]);
-+ if (ret) {
-+ dev_err(ms->dev, "failed to set initial page format\n");
-+ goto disable_clk;
-+ }
-+
-+ // setup ECC engine
-+ ms->ecc_eng.dev = &pdev->dev;
-+ ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
-+ ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
-+ ms->ecc_eng.priv = ms;
-+
-+ ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
-+ if (ret) {
-+ dev_err(&pdev->dev, "failed to register ecc engine.\n");
-+ goto disable_clk;
-+ }
-+
-+ ctlr->num_chipselect = 1;
-+ ctlr->mem_ops = &mtk_snand_mem_ops;
-+ ctlr->mem_caps = &mtk_snand_mem_caps;
-+ ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
-+ ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
-+ ctlr->dev.of_node = pdev->dev.of_node;
-+ ret = spi_register_controller(ctlr);
-+ if (ret) {
-+ dev_err(&pdev->dev, "spi_register_controller failed.\n");
-+ goto disable_clk;
-+ }
-+
-+ return 0;
-+disable_clk:
-+ mtk_snand_disable_clk(ms);
-+release_ecc:
-+ mtk_ecc_release(ms->ecc);
-+ return ret;
-+}
-+
-+static int mtk_snand_remove(struct platform_device *pdev)
-+{
-+ struct spi_controller *ctlr = platform_get_drvdata(pdev);
-+ struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
-+
-+ spi_unregister_controller(ctlr);
-+ mtk_snand_disable_clk(ms);
-+ mtk_ecc_release(ms->ecc);
-+ kfree(ms->buf);
-+ return 0;
-+}
-+
-+static struct platform_driver mtk_snand_driver = {
-+ .probe = mtk_snand_probe,
-+ .remove = mtk_snand_remove,
-+ .driver = {
-+ .name = "mtk-snand",
-+ .of_match_table = mtk_snand_ids,
-+ },
-+};
-+
-+module_platform_driver(mtk_snand_driver);
-+
-+MODULE_LICENSE("GPL");
-+MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
-+MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
--- /dev/null
+From 8170bafa8936e9fbfdce992932a63bd20eca3bc3 Mon Sep 17 00:00:00 2001
+From: Chuanhong Guo <gch981213@gmail.com>
+Date: Sat, 2 Apr 2022 10:16:11 +0800
+Subject: [PATCH v6 2/5] spi: add driver for MTK SPI NAND Flash Interface
+
+This driver implements support for the SPI-NAND mode of MTK NAND Flash
+Interface as a SPI-MEM controller with pipelined ECC capability.
+
+Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
+Tested-by: Daniel Golle <daniel@makrotopia.org>
+---
+Change since v1:
+ fix CI warnings
+
+Changes since v2:
+ use streamed DMA api to avoid an extra memory copy during read
+ make ECC engine config a per-nand context
+ take user-requested ECC strength into account
+
+Change since v3: none
+Changes since v4:
+ fix missing OOB write
+ print page format with dev_dbg
+ replace uint*_t copied from vendor driver with u*
+
+Changes since v5:
+ add missing nfi mode register configuration in probe
+ fix an off-by-one bug in mtk_snand_mac_io
+
+ drivers/spi/Kconfig | 10 +
+ drivers/spi/Makefile | 1 +
+ drivers/spi/spi-mtk-snfi.c | 1470 ++++++++++++++++++++++++++++++++++++
+ 3 files changed, 1481 insertions(+)
+ create mode 100644 drivers/spi/spi-mtk-snfi.c
+
+--- a/drivers/spi/Kconfig
++++ b/drivers/spi/Kconfig
+@@ -530,6 +530,16 @@ config SPI_MTK_NOR
+ SPI interface as well as several SPI NOR specific instructions
+ via SPI MEM interface.
+
++config SPI_MTK_SNFI
++ tristate "MediaTek SPI NAND Flash Interface"
++ depends on ARCH_MEDIATEK || COMPILE_TEST
++ depends on MTD_NAND_ECC_MEDIATEK
++ help
++ This enables support for SPI-NAND mode on the MediaTek NAND
++ Flash Interface found on MediaTek ARM SoCs. This controller
++ is implemented as a SPI-MEM controller with pipelined ECC
++ capcability.
++
+ config SPI_NPCM_FIU
+ tristate "Nuvoton NPCM FLASH Interface Unit"
+ depends on ARCH_NPCM || COMPILE_TEST
+--- a/drivers/spi/Makefile
++++ b/drivers/spi/Makefile
+@@ -71,6 +71,7 @@ obj-$(CONFIG_SPI_MPC52xx) += spi-mpc52x
+ obj-$(CONFIG_SPI_MT65XX) += spi-mt65xx.o
+ obj-$(CONFIG_SPI_MT7621) += spi-mt7621.o
+ obj-$(CONFIG_SPI_MTK_NOR) += spi-mtk-nor.o
++obj-$(CONFIG_SPI_MTK_SNFI) += spi-mtk-snfi.o
+ obj-$(CONFIG_SPI_MXIC) += spi-mxic.o
+ obj-$(CONFIG_SPI_MXS) += spi-mxs.o
+ obj-$(CONFIG_SPI_NPCM_FIU) += spi-npcm-fiu.o
+--- /dev/null
++++ b/drivers/spi/spi-mtk-snfi.c
+@@ -0,0 +1,1470 @@
++// SPDX-License-Identifier: GPL-2.0
++//
++// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
++//
++// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
++//
++// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
++//
++// Copyright (C) 2020 MediaTek Inc.
++// Author: Weijie Gao <weijie.gao@mediatek.com>
++//
++// This controller organize the page data as several interleaved sectors
++// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
++// +---------+------+------+---------+------+------+-----+
++// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
++// +---------+------+------+---------+------+------+-----+
++// With auto-format turned on, DMA only returns this part:
++// +---------+---------+-----+
++// | Sector1 | Sector2 | ... |
++// +---------+---------+-----+
++// The FDM data will be filled to the registers, and ECC parity data isn't
++// accessible.
++// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
++// in it's original order shown in the first table. ECC can't be turned on when
++// auto-format is off.
++//
++// However, Linux SPI-NAND driver expects the data returned as:
++// +------+-----+
++// | Page | OOB |
++// +------+-----+
++// where the page data is continuously stored instead of interleaved.
++// So we assume all instructions matching the page_op template between ECC
++// prepare_io_req and finish_io_req are for page cache r/w.
++// Here's how this spi-mem driver operates when reading:
++// 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
++// 2. Perform page ops and let the controller fill the DMA bounce buffer with
++// de-interleaved sector data and set FDM registers.
++// 3. Return the data as:
++// +---------+---------+-----+------+------+-----+
++// | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
++// +---------+---------+-----+------+------+-----+
++// 4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
++// read the data with auto-format off into the bounce buffer and copy
++// needed data to the buffer specified in the request.
++//
++// Write requests operates in a similar manner.
++// As a limitation of this strategy, we won't be able to access any ECC parity
++// data at all in Linux.
++//
++// Here's the bad block mark situation on MTK chips:
++// In older chips like mt7622, MTK uses the first FDM byte in the first sector
++// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
++// in the returned data, which is the BBM position expected by kernel. However,
++// the conventional bad block mark is the first byte of the OOB, which is part
++// of the last sector data in the interleaved layout. Instead of fixing their
++// hardware, MTK decided to address this inconsistency in software. On these
++// later chips, the BootROM expects the following:
++// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
++// (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
++// 2. The original byte stored at that position in the DMA buffer will be stored
++// as the first byte of the FDM section in the last sector.
++// We can't disagree with the BootROM, so after de-interleaving, we need to
++// perform the following swaps in read:
++// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
++// which is the expected BBM position by kernel.
++// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
++// [page_size - (nsectors - 1) * spare_size]
++// Similarly, when writing, we need to perform swaps in the other direction.
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/mutex.h>
++#include <linux/clk.h>
++#include <linux/interrupt.h>
++#include <linux/dma-mapping.h>
++#include <linux/iopoll.h>
++#include <linux/of_platform.h>
++#include <linux/mtd/nand-ecc-mtk.h>
++#include <linux/spi/spi.h>
++#include <linux/spi/spi-mem.h>
++#include <linux/mtd/nand.h>
++
++// NFI registers
++#define NFI_CNFG 0x000
++#define CNFG_OP_MODE_S 12
++#define CNFG_OP_MODE_CUST 6
++#define CNFG_OP_MODE_PROGRAM 3
++#define CNFG_AUTO_FMT_EN BIT(9)
++#define CNFG_HW_ECC_EN BIT(8)
++#define CNFG_DMA_BURST_EN BIT(2)
++#define CNFG_READ_MODE BIT(1)
++#define CNFG_DMA_MODE BIT(0)
++
++#define NFI_PAGEFMT 0x0004
++#define NFI_SPARE_SIZE_LS_S 16
++#define NFI_FDM_ECC_NUM_S 12
++#define NFI_FDM_NUM_S 8
++#define NFI_SPARE_SIZE_S 4
++#define NFI_SEC_SEL_512 BIT(2)
++#define NFI_PAGE_SIZE_S 0
++#define NFI_PAGE_SIZE_512_2K 0
++#define NFI_PAGE_SIZE_2K_4K 1
++#define NFI_PAGE_SIZE_4K_8K 2
++#define NFI_PAGE_SIZE_8K_16K 3
++
++#define NFI_CON 0x008
++#define CON_SEC_NUM_S 12
++#define CON_BWR BIT(9)
++#define CON_BRD BIT(8)
++#define CON_NFI_RST BIT(1)
++#define CON_FIFO_FLUSH BIT(0)
++
++#define NFI_INTR_EN 0x010
++#define NFI_INTR_STA 0x014
++#define NFI_IRQ_INTR_EN BIT(31)
++#define NFI_IRQ_CUS_READ BIT(8)
++#define NFI_IRQ_CUS_PG BIT(7)
++
++#define NFI_CMD 0x020
++#define NFI_CMD_DUMMY_READ 0x00
++#define NFI_CMD_DUMMY_WRITE 0x80
++
++#define NFI_STRDATA 0x040
++#define STR_DATA BIT(0)
++
++#define NFI_STA 0x060
++#define NFI_NAND_FSM GENMASK(28, 24)
++#define NFI_FSM GENMASK(19, 16)
++#define READ_EMPTY BIT(12)
++
++#define NFI_FIFOSTA 0x064
++#define FIFO_WR_REMAIN_S 8
++#define FIFO_RD_REMAIN_S 0
++
++#define NFI_ADDRCNTR 0x070
++#define SEC_CNTR GENMASK(16, 12)
++#define SEC_CNTR_S 12
++#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
++
++#define NFI_STRADDR 0x080
++
++#define NFI_BYTELEN 0x084
++#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
++
++#define NFI_FDM0L 0x0a0
++#define NFI_FDM0M 0x0a4
++#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
++#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
++
++#define NFI_DEBUG_CON1 0x220
++#define WBUF_EN BIT(2)
++
++#define NFI_MASTERSTA 0x224
++#define MAS_ADDR GENMASK(11, 9)
++#define MAS_RD GENMASK(8, 6)
++#define MAS_WR GENMASK(5, 3)
++#define MAS_RDDLY GENMASK(2, 0)
++#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
++
++// SNFI registers
++#define SNF_MAC_CTL 0x500
++#define MAC_XIO_SEL BIT(4)
++#define SF_MAC_EN BIT(3)
++#define SF_TRIG BIT(2)
++#define WIP_READY BIT(1)
++#define WIP BIT(0)
++
++#define SNF_MAC_OUTL 0x504
++#define SNF_MAC_INL 0x508
++
++#define SNF_RD_CTL2 0x510
++#define DATA_READ_DUMMY_S 8
++#define DATA_READ_MAX_DUMMY 0xf
++#define DATA_READ_CMD_S 0
++
++#define SNF_RD_CTL3 0x514
++
++#define SNF_PG_CTL1 0x524
++#define PG_LOAD_CMD_S 8
++
++#define SNF_PG_CTL2 0x528
++
++#define SNF_MISC_CTL 0x538
++#define SW_RST BIT(28)
++#define FIFO_RD_LTC_S 25
++#define PG_LOAD_X4_EN BIT(20)
++#define DATA_READ_MODE_S 16
++#define DATA_READ_MODE GENMASK(18, 16)
++#define DATA_READ_MODE_X1 0
++#define DATA_READ_MODE_X2 1
++#define DATA_READ_MODE_X4 2
++#define DATA_READ_MODE_DUAL 5
++#define DATA_READ_MODE_QUAD 6
++#define PG_LOAD_CUSTOM_EN BIT(7)
++#define DATARD_CUSTOM_EN BIT(6)
++#define CS_DESELECT_CYC_S 0
++
++#define SNF_MISC_CTL2 0x53c
++#define PROGRAM_LOAD_BYTE_NUM_S 16
++#define READ_DATA_BYTE_NUM_S 11
++
++#define SNF_DLY_CTL3 0x548
++#define SFCK_SAM_DLY_S 0
++
++#define SNF_STA_CTL1 0x550
++#define CUS_PG_DONE BIT(28)
++#define CUS_READ_DONE BIT(27)
++#define SPI_STATE_S 0
++#define SPI_STATE GENMASK(3, 0)
++
++#define SNF_CFG 0x55c
++#define SPI_MODE BIT(0)
++
++#define SNF_GPRAM 0x800
++#define SNF_GPRAM_SIZE 0xa0
++
++#define SNFI_POLL_INTERVAL 1000000
++
++static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
++
++struct mtk_snand_caps {
++ u16 sector_size;
++ u16 max_sectors;
++ u16 fdm_size;
++ u16 fdm_ecc_size;
++ u16 fifo_size;
++
++ bool bbm_swap;
++ bool empty_page_check;
++ u32 mastersta_mask;
++
++ const u8 *spare_sizes;
++ u32 num_spare_size;
++};
++
++static const struct mtk_snand_caps mt7622_snand_caps = {
++ .sector_size = 512,
++ .max_sectors = 8,
++ .fdm_size = 8,
++ .fdm_ecc_size = 1,
++ .fifo_size = 32,
++ .bbm_swap = false,
++ .empty_page_check = false,
++ .mastersta_mask = NFI_MASTERSTA_MASK_7622,
++ .spare_sizes = mt7622_spare_sizes,
++ .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
++};
++
++static const struct mtk_snand_caps mt7629_snand_caps = {
++ .sector_size = 512,
++ .max_sectors = 8,
++ .fdm_size = 8,
++ .fdm_ecc_size = 1,
++ .fifo_size = 32,
++ .bbm_swap = true,
++ .empty_page_check = false,
++ .mastersta_mask = NFI_MASTERSTA_MASK_7622,
++ .spare_sizes = mt7622_spare_sizes,
++ .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
++};
++
++struct mtk_snand_conf {
++ size_t page_size;
++ size_t oob_size;
++ u8 nsectors;
++ u8 spare_size;
++};
++
++struct mtk_snand {
++ struct spi_controller *ctlr;
++ struct device *dev;
++ struct clk *nfi_clk;
++ struct clk *pad_clk;
++ void __iomem *nfi_base;
++ int irq;
++ struct completion op_done;
++ const struct mtk_snand_caps *caps;
++ struct mtk_ecc_config *ecc_cfg;
++ struct mtk_ecc *ecc;
++ struct mtk_snand_conf nfi_cfg;
++ struct mtk_ecc_stats ecc_stats;
++ struct nand_ecc_engine ecc_eng;
++ bool autofmt;
++ u8 *buf;
++ size_t buf_len;
++};
++
++static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
++{
++ struct nand_ecc_engine *eng = nand->ecc.engine;
++
++ return container_of(eng, struct mtk_snand, ecc_eng);
++}
++
++static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
++{
++ if (snf->buf_len >= size)
++ return 0;
++ kfree(snf->buf);
++ snf->buf = kmalloc(size, GFP_KERNEL);
++ if (!snf->buf)
++ return -ENOMEM;
++ snf->buf_len = size;
++ memset(snf->buf, 0xff, snf->buf_len);
++ return 0;
++}
++
++static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
++{
++ return readl(snf->nfi_base + reg);
++}
++
++static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
++{
++ writel(val, snf->nfi_base + reg);
++}
++
++static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
++{
++ writew(val, snf->nfi_base + reg);
++}
++
++static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
++{
++ u32 val;
++
++ val = readl(snf->nfi_base + reg);
++ val &= ~clr;
++ val |= set;
++ writel(val, snf->nfi_base + reg);
++}
++
++static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
++{
++ u32 i, val = 0, es = sizeof(u32);
++
++ for (i = reg; i < reg + len; i++) {
++ if (i == reg || i % es == 0)
++ val = nfi_read32(snf, i & ~(es - 1));
++
++ *data++ = (u8)(val >> (8 * (i % es)));
++ }
++}
++
++static int mtk_nfi_reset(struct mtk_snand *snf)
++{
++ u32 val, fifo_mask;
++ int ret;
++
++ nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
++
++ ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
++ !(val & snf->caps->mastersta_mask), 0,
++ SNFI_POLL_INTERVAL);
++ if (ret) {
++ dev_err(snf->dev, "NFI master is still busy after reset\n");
++ return ret;
++ }
++
++ ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
++ !(val & (NFI_FSM | NFI_NAND_FSM)), 0,
++ SNFI_POLL_INTERVAL);
++ if (ret) {
++ dev_err(snf->dev, "Failed to reset NFI\n");
++ return ret;
++ }
++
++ fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
++ ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
++ ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
++ !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
++ if (ret) {
++ dev_err(snf->dev, "NFI FIFOs are not empty\n");
++ return ret;
++ }
++
++ return 0;
++}
++
++static int mtk_snand_mac_reset(struct mtk_snand *snf)
++{
++ int ret;
++ u32 val;
++
++ nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
++
++ ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
++ !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
++ if (ret)
++ dev_err(snf->dev, "Failed to reset SNFI MAC\n");
++
++ nfi_write32(snf, SNF_MISC_CTL,
++ (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
++
++ return ret;
++}
++
++static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
++{
++ int ret;
++ u32 val;
++
++ nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
++ nfi_write32(snf, SNF_MAC_OUTL, outlen);
++ nfi_write32(snf, SNF_MAC_INL, inlen);
++
++ nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
++
++ ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
++ val & WIP_READY, 0, SNFI_POLL_INTERVAL);
++ if (ret) {
++ dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
++ goto cleanup;
++ }
++
++ ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
++ 0, SNFI_POLL_INTERVAL);
++ if (ret)
++ dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
++
++cleanup:
++ nfi_write32(snf, SNF_MAC_CTL, 0);
++
++ return ret;
++}
++
++static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
++{
++ u32 rx_len = 0;
++ u32 reg_offs = 0;
++ u32 val = 0;
++ const u8 *tx_buf = NULL;
++ u8 *rx_buf = NULL;
++ int i, ret;
++ u8 b;
++
++ if (op->data.dir == SPI_MEM_DATA_IN) {
++ rx_len = op->data.nbytes;
++ rx_buf = op->data.buf.in;
++ } else {
++ tx_buf = op->data.buf.out;
++ }
++
++ mtk_snand_mac_reset(snf);
++
++ for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
++ b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
++ val |= b << (8 * (reg_offs % 4));
++ if (reg_offs % 4 == 3) {
++ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++ val = 0;
++ }
++ }
++
++ for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
++ b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
++ val |= b << (8 * (reg_offs % 4));
++ if (reg_offs % 4 == 3) {
++ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++ val = 0;
++ }
++ }
++
++ for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
++ if (reg_offs % 4 == 3) {
++ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++ val = 0;
++ }
++ }
++
++ if (op->data.dir == SPI_MEM_DATA_OUT) {
++ for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
++ val |= tx_buf[i] << (8 * (reg_offs % 4));
++ if (reg_offs % 4 == 3) {
++ nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
++ val = 0;
++ }
++ }
++ }
++
++ if (reg_offs % 4)
++ nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
++
++ for (i = 0; i < reg_offs; i += 4)
++ dev_dbg(snf->dev, "%d: %08X", i,
++ nfi_read32(snf, SNF_GPRAM + i));
++
++ dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
++
++ ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
++ if (ret)
++ return ret;
++
++ if (!rx_len)
++ return 0;
++
++ nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
++ return 0;
++}
++
++static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
++ u32 oob_size)
++{
++ int spare_idx = -1;
++ u32 spare_size, spare_size_shift, pagesize_idx;
++ u32 sector_size_512;
++ u8 nsectors;
++ int i;
++
++ // skip if it's already configured as required.
++ if (snf->nfi_cfg.page_size == page_size &&
++ snf->nfi_cfg.oob_size == oob_size)
++ return 0;
++
++ nsectors = page_size / snf->caps->sector_size;
++ if (nsectors > snf->caps->max_sectors) {
++ dev_err(snf->dev, "too many sectors required.\n");
++ goto err;
++ }
++
++ if (snf->caps->sector_size == 512) {
++ sector_size_512 = NFI_SEC_SEL_512;
++ spare_size_shift = NFI_SPARE_SIZE_S;
++ } else {
++ sector_size_512 = 0;
++ spare_size_shift = NFI_SPARE_SIZE_LS_S;
++ }
++
++ switch (page_size) {
++ case SZ_512:
++ pagesize_idx = NFI_PAGE_SIZE_512_2K;
++ break;
++ case SZ_2K:
++ if (snf->caps->sector_size == 512)
++ pagesize_idx = NFI_PAGE_SIZE_2K_4K;
++ else
++ pagesize_idx = NFI_PAGE_SIZE_512_2K;
++ break;
++ case SZ_4K:
++ if (snf->caps->sector_size == 512)
++ pagesize_idx = NFI_PAGE_SIZE_4K_8K;
++ else
++ pagesize_idx = NFI_PAGE_SIZE_2K_4K;
++ break;
++ case SZ_8K:
++ if (snf->caps->sector_size == 512)
++ pagesize_idx = NFI_PAGE_SIZE_8K_16K;
++ else
++ pagesize_idx = NFI_PAGE_SIZE_4K_8K;
++ break;
++ case SZ_16K:
++ pagesize_idx = NFI_PAGE_SIZE_8K_16K;
++ break;
++ default:
++ dev_err(snf->dev, "unsupported page size.\n");
++ goto err;
++ }
++
++ spare_size = oob_size / nsectors;
++ // If we're using the 1KB sector size, HW will automatically double the
++ // spare size. We should only use half of the value in this case.
++ if (snf->caps->sector_size == 1024)
++ spare_size /= 2;
++
++ for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
++ if (snf->caps->spare_sizes[i] <= spare_size) {
++ spare_size = snf->caps->spare_sizes[i];
++ if (snf->caps->sector_size == 1024)
++ spare_size *= 2;
++ spare_idx = i;
++ break;
++ }
++ }
++
++ if (spare_idx < 0) {
++ dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
++ goto err;
++ }
++
++ nfi_write32(snf, NFI_PAGEFMT,
++ (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
++ (snf->caps->fdm_size << NFI_FDM_NUM_S) |
++ (spare_idx << spare_size_shift) |
++ (pagesize_idx << NFI_PAGE_SIZE_S) |
++ sector_size_512);
++
++ snf->nfi_cfg.page_size = page_size;
++ snf->nfi_cfg.oob_size = oob_size;
++ snf->nfi_cfg.nsectors = nsectors;
++ snf->nfi_cfg.spare_size = spare_size;
++
++ dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
++ snf->caps->sector_size, spare_size, nsectors);
++ return snand_prepare_bouncebuf(snf, page_size + oob_size);
++err:
++ dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
++ oob_size);
++ return -EOPNOTSUPP;
++}
++
++static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
++ struct mtd_oob_region *oobecc)
++{
++ // ECC area is not accessible
++ return -ERANGE;
++}
++
++static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
++ struct mtd_oob_region *oobfree)
++{
++ struct nand_device *nand = mtd_to_nanddev(mtd);
++ struct mtk_snand *ms = nand_to_mtk_snand(nand);
++
++ if (section >= ms->nfi_cfg.nsectors)
++ return -ERANGE;
++
++ oobfree->length = ms->caps->fdm_size - 1;
++ oobfree->offset = section * ms->caps->fdm_size + 1;
++ return 0;
++}
++
++static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
++ .ecc = mtk_snand_ooblayout_ecc,
++ .free = mtk_snand_ooblayout_free,
++};
++
++static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
++{
++ struct mtk_snand *snf = nand_to_mtk_snand(nand);
++ struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
++ struct nand_ecc_props *reqs = &nand->ecc.requirements;
++ struct nand_ecc_props *user = &nand->ecc.user_conf;
++ struct mtd_info *mtd = nanddev_to_mtd(nand);
++ int step_size = 0, strength = 0, desired_correction = 0, steps;
++ bool ecc_user = false;
++ int ret;
++ u32 parity_bits, max_ecc_bytes;
++ struct mtk_ecc_config *ecc_cfg;
++
++ ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
++ nand->memorg.oobsize);
++ if (ret)
++ return ret;
++
++ ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
++ if (!ecc_cfg)
++ return -ENOMEM;
++
++ nand->ecc.ctx.priv = ecc_cfg;
++
++ if (user->step_size && user->strength) {
++ step_size = user->step_size;
++ strength = user->strength;
++ ecc_user = true;
++ } else if (reqs->step_size && reqs->strength) {
++ step_size = reqs->step_size;
++ strength = reqs->strength;
++ }
++
++ if (step_size && strength) {
++ steps = mtd->writesize / step_size;
++ desired_correction = steps * strength;
++ strength = desired_correction / snf->nfi_cfg.nsectors;
++ }
++
++ ecc_cfg->mode = ECC_NFI_MODE;
++ ecc_cfg->sectors = snf->nfi_cfg.nsectors;
++ ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
++
++ // calculate the max possible strength under current page format
++ parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
++ max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
++ ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
++ mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
++
++ // if there's a user requested strength, find the minimum strength that
++ // meets the requirement. Otherwise use the maximum strength which is
++ // expected by BootROM.
++ if (ecc_user && strength) {
++ u32 s_next = ecc_cfg->strength - 1;
++
++ while (1) {
++ mtk_ecc_adjust_strength(snf->ecc, &s_next);
++ if (s_next >= ecc_cfg->strength)
++ break;
++ if (s_next < strength)
++ break;
++ s_next = ecc_cfg->strength - 1;
++ }
++ }
++
++ mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
++
++ conf->step_size = snf->caps->sector_size;
++ conf->strength = ecc_cfg->strength;
++
++ if (ecc_cfg->strength < strength)
++ dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
++ strength);
++ dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
++ ecc_cfg->strength, snf->caps->sector_size);
++
++ return 0;
++}
++
++static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
++{
++ struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
++
++ kfree(ecc_cfg);
++}
++
++static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
++ struct nand_page_io_req *req)
++{
++ struct mtk_snand *snf = nand_to_mtk_snand(nand);
++ struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
++ int ret;
++
++ ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
++ nand->memorg.oobsize);
++ if (ret)
++ return ret;
++ snf->autofmt = true;
++ snf->ecc_cfg = ecc_cfg;
++ return 0;
++}
++
++static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
++ struct nand_page_io_req *req)
++{
++ struct mtk_snand *snf = nand_to_mtk_snand(nand);
++ struct mtd_info *mtd = nanddev_to_mtd(nand);
++
++ snf->ecc_cfg = NULL;
++ snf->autofmt = false;
++ if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
++ return 0;
++
++ if (snf->ecc_stats.failed)
++ mtd->ecc_stats.failed += snf->ecc_stats.failed;
++ mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
++ return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
++}
++
++static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
++ .init_ctx = mtk_snand_ecc_init_ctx,
++ .cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
++ .prepare_io_req = mtk_snand_ecc_prepare_io_req,
++ .finish_io_req = mtk_snand_ecc_finish_io_req,
++};
++
++static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
++{
++ u32 vall, valm;
++ u8 *oobptr = buf;
++ int i, j;
++
++ for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
++ vall = nfi_read32(snf, NFI_FDML(i));
++ valm = nfi_read32(snf, NFI_FDMM(i));
++
++ for (j = 0; j < snf->caps->fdm_size; j++)
++ oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
++
++ oobptr += snf->caps->fdm_size;
++ }
++}
++
++static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
++{
++ u32 fdm_size = snf->caps->fdm_size;
++ const u8 *oobptr = buf;
++ u32 vall, valm;
++ int i, j;
++
++ for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
++ vall = 0;
++ valm = 0;
++
++ for (j = 0; j < 8; j++) {
++ if (j < 4)
++ vall |= (j < fdm_size ? oobptr[j] : 0xff)
++ << (j * 8);
++ else
++ valm |= (j < fdm_size ? oobptr[j] : 0xff)
++ << ((j - 4) * 8);
++ }
++
++ nfi_write32(snf, NFI_FDML(i), vall);
++ nfi_write32(snf, NFI_FDMM(i), valm);
++
++ oobptr += fdm_size;
++ }
++}
++
++static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
++{
++ u32 buf_bbm_pos, fdm_bbm_pos;
++
++ if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
++ return;
++
++ // swap [pagesize] byte on nand with the first fdm byte
++ // in the last sector.
++ buf_bbm_pos = snf->nfi_cfg.page_size -
++ (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
++ fdm_bbm_pos = snf->nfi_cfg.page_size +
++ (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
++
++ swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
++}
++
++static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
++{
++ u32 fdm_bbm_pos1, fdm_bbm_pos2;
++
++ if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
++ return;
++
++ // swap the first fdm byte in the first and the last sector.
++ fdm_bbm_pos1 = snf->nfi_cfg.page_size;
++ fdm_bbm_pos2 = snf->nfi_cfg.page_size +
++ (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
++ swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
++}
++
++static int mtk_snand_read_page_cache(struct mtk_snand *snf,
++ const struct spi_mem_op *op)
++{
++ u8 *buf = snf->buf;
++ u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
++ // the address part to be sent by the controller
++ u32 op_addr = op->addr.val;
++ // where to start copying data from bounce buffer
++ u32 rd_offset = 0;
++ u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
++ u32 op_mode = 0;
++ u32 dma_len = snf->buf_len;
++ int ret = 0;
++ u32 rd_mode, rd_bytes, val;
++ dma_addr_t buf_dma;
++
++ if (snf->autofmt) {
++ u32 last_bit;
++ u32 mask;
++
++ dma_len = snf->nfi_cfg.page_size;
++ op_mode = CNFG_AUTO_FMT_EN;
++ if (op->data.ecc)
++ op_mode |= CNFG_HW_ECC_EN;
++ // extract the plane bit:
++ // Find the highest bit set in (pagesize+oobsize).
++ // Bits higher than that in op->addr are kept and sent over SPI
++ // Lower bits are used as an offset for copying data from DMA
++ // bounce buffer.
++ last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
++ mask = (1 << last_bit) - 1;
++ rd_offset = op_addr & mask;
++ op_addr &= ~mask;
++
++ // check if we can dma to the caller memory
++ if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
++ buf = op->data.buf.in;
++ }
++ mtk_snand_mac_reset(snf);
++ mtk_nfi_reset(snf);
++
++ // command and dummy cycles
++ nfi_write32(snf, SNF_RD_CTL2,
++ (dummy_clk << DATA_READ_DUMMY_S) |
++ (op->cmd.opcode << DATA_READ_CMD_S));
++
++ // read address
++ nfi_write32(snf, SNF_RD_CTL3, op_addr);
++
++ // Set read op_mode
++ if (op->data.buswidth == 4)
++ rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
++ DATA_READ_MODE_X4;
++ else if (op->data.buswidth == 2)
++ rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
++ DATA_READ_MODE_X2;
++ else
++ rd_mode = DATA_READ_MODE_X1;
++ rd_mode <<= DATA_READ_MODE_S;
++ nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
++ rd_mode | DATARD_CUSTOM_EN);
++
++ // Set bytes to read
++ rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
++ snf->nfi_cfg.nsectors;
++ nfi_write32(snf, SNF_MISC_CTL2,
++ (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
++
++ // NFI read prepare
++ nfi_write16(snf, NFI_CNFG,
++ (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
++ CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
++
++ nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
++
++ buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
++ if (dma_mapping_error(snf->dev, buf_dma)) {
++ dev_err(snf->dev, "DMA mapping failed.\n");
++ goto cleanup;
++ }
++ nfi_write32(snf, NFI_STRADDR, buf_dma);
++ if (op->data.ecc) {
++ snf->ecc_cfg->op = ECC_DECODE;
++ ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
++ if (ret)
++ goto cleanup_dma;
++ }
++ // Prepare for custom read interrupt
++ nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
++ reinit_completion(&snf->op_done);
++
++ // Trigger NFI into custom mode
++ nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
++
++ // Start DMA read
++ nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
++ nfi_write16(snf, NFI_STRDATA, STR_DATA);
++
++ if (!wait_for_completion_timeout(
++ &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
++ dev_err(snf->dev, "DMA timed out for reading from cache.\n");
++ ret = -ETIMEDOUT;
++ goto cleanup;
++ }
++
++ // Wait for BUS_SEC_CNTR returning expected value
++ ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
++ BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
++ SNFI_POLL_INTERVAL);
++ if (ret) {
++ dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
++ goto cleanup2;
++ }
++
++ // Wait for bus becoming idle
++ ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
++ !(val & snf->caps->mastersta_mask), 0,
++ SNFI_POLL_INTERVAL);
++ if (ret) {
++ dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
++ goto cleanup2;
++ }
++
++ if (op->data.ecc) {
++ ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
++ if (ret) {
++ dev_err(snf->dev, "wait ecc done timeout\n");
++ goto cleanup2;
++ }
++ // save status before disabling ecc
++ mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
++ snf->nfi_cfg.nsectors);
++ }
++
++ dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
++
++ if (snf->autofmt) {
++ mtk_snand_read_fdm(snf, buf_fdm);
++ if (snf->caps->bbm_swap) {
++ mtk_snand_bm_swap(snf, buf);
++ mtk_snand_fdm_bm_swap(snf);
++ }
++ }
++
++ // copy data back
++ if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
++ memset(op->data.buf.in, 0xff, op->data.nbytes);
++ snf->ecc_stats.bitflips = 0;
++ snf->ecc_stats.failed = 0;
++ snf->ecc_stats.corrected = 0;
++ } else {
++ if (buf == op->data.buf.in) {
++ u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
++ u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
++
++ if (req_left)
++ memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
++ buf_fdm,
++ cap_len < req_left ? cap_len : req_left);
++ } else if (rd_offset < snf->buf_len) {
++ u32 cap_len = snf->buf_len - rd_offset;
++
++ if (op->data.nbytes < cap_len)
++ cap_len = op->data.nbytes;
++ memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
++ }
++ }
++cleanup2:
++ if (op->data.ecc)
++ mtk_ecc_disable(snf->ecc);
++cleanup_dma:
++ // unmap dma only if any error happens. (otherwise it's done before
++ // data copying)
++ if (ret)
++ dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
++cleanup:
++ // Stop read
++ nfi_write32(snf, NFI_CON, 0);
++ nfi_write16(snf, NFI_CNFG, 0);
++
++ // Clear SNF done flag
++ nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
++ nfi_write32(snf, SNF_STA_CTL1, 0);
++
++ // Disable interrupt
++ nfi_read32(snf, NFI_INTR_STA);
++ nfi_write32(snf, NFI_INTR_EN, 0);
++
++ nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
++ return ret;
++}
++
++static int mtk_snand_write_page_cache(struct mtk_snand *snf,
++ const struct spi_mem_op *op)
++{
++ // the address part to be sent by the controller
++ u32 op_addr = op->addr.val;
++ // where to start copying data from bounce buffer
++ u32 wr_offset = 0;
++ u32 op_mode = 0;
++ int ret = 0;
++ u32 wr_mode = 0;
++ u32 dma_len = snf->buf_len;
++ u32 wr_bytes, val;
++ size_t cap_len;
++ dma_addr_t buf_dma;
++
++ if (snf->autofmt) {
++ u32 last_bit;
++ u32 mask;
++
++ dma_len = snf->nfi_cfg.page_size;
++ op_mode = CNFG_AUTO_FMT_EN;
++ if (op->data.ecc)
++ op_mode |= CNFG_HW_ECC_EN;
++
++ last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
++ mask = (1 << last_bit) - 1;
++ wr_offset = op_addr & mask;
++ op_addr &= ~mask;
++ }
++ mtk_snand_mac_reset(snf);
++ mtk_nfi_reset(snf);
++
++ if (wr_offset)
++ memset(snf->buf, 0xff, wr_offset);
++
++ cap_len = snf->buf_len - wr_offset;
++ if (op->data.nbytes < cap_len)
++ cap_len = op->data.nbytes;
++ memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
++ if (snf->autofmt) {
++ if (snf->caps->bbm_swap) {
++ mtk_snand_fdm_bm_swap(snf);
++ mtk_snand_bm_swap(snf, snf->buf);
++ }
++ mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
++ }
++
++ // Command
++ nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
++
++ // write address
++ nfi_write32(snf, SNF_PG_CTL2, op_addr);
++
++ // Set read op_mode
++ if (op->data.buswidth == 4)
++ wr_mode = PG_LOAD_X4_EN;
++
++ nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
++ wr_mode | PG_LOAD_CUSTOM_EN);
++
++ // Set bytes to write
++ wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
++ snf->nfi_cfg.nsectors;
++ nfi_write32(snf, SNF_MISC_CTL2,
++ (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
++
++ // NFI write prepare
++ nfi_write16(snf, NFI_CNFG,
++ (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
++ CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
++
++ nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
++ buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
++ if (dma_mapping_error(snf->dev, buf_dma)) {
++ dev_err(snf->dev, "DMA mapping failed.\n");
++ goto cleanup;
++ }
++ nfi_write32(snf, NFI_STRADDR, buf_dma);
++ if (op->data.ecc) {
++ snf->ecc_cfg->op = ECC_ENCODE;
++ ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
++ if (ret)
++ goto cleanup_dma;
++ }
++ // Prepare for custom write interrupt
++ nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
++ reinit_completion(&snf->op_done);
++ ;
++
++ // Trigger NFI into custom mode
++ nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
++
++ // Start DMA write
++ nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
++ nfi_write16(snf, NFI_STRDATA, STR_DATA);
++
++ if (!wait_for_completion_timeout(
++ &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
++ dev_err(snf->dev, "DMA timed out for program load.\n");
++ ret = -ETIMEDOUT;
++ goto cleanup_ecc;
++ }
++
++ // Wait for NFI_SEC_CNTR returning expected value
++ ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
++ NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
++ SNFI_POLL_INTERVAL);
++ if (ret)
++ dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
++
++cleanup_ecc:
++ if (op->data.ecc)
++ mtk_ecc_disable(snf->ecc);
++cleanup_dma:
++ dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
++cleanup:
++ // Stop write
++ nfi_write32(snf, NFI_CON, 0);
++ nfi_write16(snf, NFI_CNFG, 0);
++
++ // Clear SNF done flag
++ nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
++ nfi_write32(snf, SNF_STA_CTL1, 0);
++
++ // Disable interrupt
++ nfi_read32(snf, NFI_INTR_STA);
++ nfi_write32(snf, NFI_INTR_EN, 0);
++
++ nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
++
++ return ret;
++}
++
++/**
++ * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
++ * @op spi-mem op to check
++ *
++ * Check whether op can be executed with read_from_cache or program_load
++ * mode in the controller.
++ * This controller can execute typical Read From Cache and Program Load
++ * instructions found on SPI-NAND with 2-byte address.
++ * DTR and cmd buswidth & nbytes should be checked before calling this.
++ *
++ * Return: true if the op matches the instruction template
++ */
++static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
++{
++ if (op->addr.nbytes != 2)
++ return false;
++
++ if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
++ op->addr.buswidth != 4)
++ return false;
++
++ // match read from page instructions
++ if (op->data.dir == SPI_MEM_DATA_IN) {
++ // check dummy cycle first
++ if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
++ DATA_READ_MAX_DUMMY)
++ return false;
++ // quad io / quad out
++ if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
++ op->data.buswidth == 4)
++ return true;
++
++ // dual io / dual out
++ if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
++ op->data.buswidth == 2)
++ return true;
++
++ // standard spi
++ if (op->addr.buswidth == 1 && op->data.buswidth == 1)
++ return true;
++ } else if (op->data.dir == SPI_MEM_DATA_OUT) {
++ // check dummy cycle first
++ if (op->dummy.nbytes)
++ return false;
++ // program load quad out
++ if (op->addr.buswidth == 1 && op->data.buswidth == 4)
++ return true;
++ // standard spi
++ if (op->addr.buswidth == 1 && op->data.buswidth == 1)
++ return true;
++ }
++ return false;
++}
++
++static bool mtk_snand_supports_op(struct spi_mem *mem,
++ const struct spi_mem_op *op)
++{
++ if (!spi_mem_default_supports_op(mem, op))
++ return false;
++ if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
++ return false;
++ if (mtk_snand_is_page_ops(op))
++ return true;
++ return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
++ (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
++ (op->data.nbytes == 0 || op->data.buswidth == 1));
++}
++
++static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
++{
++ struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
++ // page ops transfer size must be exactly ((sector_size + spare_size) *
++ // nsectors). Limit the op size if the caller requests more than that.
++ // exec_op will read more than needed and discard the leftover if the
++ // caller requests less data.
++ if (mtk_snand_is_page_ops(op)) {
++ size_t l;
++ // skip adjust_op_size for page ops
++ if (ms->autofmt)
++ return 0;
++ l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
++ l *= ms->nfi_cfg.nsectors;
++ if (op->data.nbytes > l)
++ op->data.nbytes = l;
++ } else {
++ size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
++
++ if (hl >= SNF_GPRAM_SIZE)
++ return -EOPNOTSUPP;
++ if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
++ op->data.nbytes = SNF_GPRAM_SIZE - hl;
++ }
++ return 0;
++}
++
++static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
++{
++ struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
++
++ dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
++ op->addr.val, op->addr.buswidth, op->addr.nbytes,
++ op->data.buswidth, op->data.nbytes);
++ if (mtk_snand_is_page_ops(op)) {
++ if (op->data.dir == SPI_MEM_DATA_IN)
++ return mtk_snand_read_page_cache(ms, op);
++ else
++ return mtk_snand_write_page_cache(ms, op);
++ } else {
++ return mtk_snand_mac_io(ms, op);
++ }
++}
++
++static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
++ .adjust_op_size = mtk_snand_adjust_op_size,
++ .supports_op = mtk_snand_supports_op,
++ .exec_op = mtk_snand_exec_op,
++};
++
++static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
++ .ecc = true,
++};
++
++static irqreturn_t mtk_snand_irq(int irq, void *id)
++{
++ struct mtk_snand *snf = id;
++ u32 sta, ien;
++
++ sta = nfi_read32(snf, NFI_INTR_STA);
++ ien = nfi_read32(snf, NFI_INTR_EN);
++
++ if (!(sta & ien))
++ return IRQ_NONE;
++
++ nfi_write32(snf, NFI_INTR_EN, 0);
++ complete(&snf->op_done);
++ return IRQ_HANDLED;
++}
++
++static const struct of_device_id mtk_snand_ids[] = {
++ { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
++ { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
++ {},
++};
++
++MODULE_DEVICE_TABLE(of, mtk_snand_ids);
++
++static int mtk_snand_enable_clk(struct mtk_snand *ms)
++{
++ int ret;
++
++ ret = clk_prepare_enable(ms->nfi_clk);
++ if (ret) {
++ dev_err(ms->dev, "unable to enable nfi clk\n");
++ return ret;
++ }
++ ret = clk_prepare_enable(ms->pad_clk);
++ if (ret) {
++ dev_err(ms->dev, "unable to enable pad clk\n");
++ goto err1;
++ }
++ return 0;
++err1:
++ clk_disable_unprepare(ms->nfi_clk);
++ return ret;
++}
++
++static void mtk_snand_disable_clk(struct mtk_snand *ms)
++{
++ clk_disable_unprepare(ms->pad_clk);
++ clk_disable_unprepare(ms->nfi_clk);
++}
++
++static int mtk_snand_probe(struct platform_device *pdev)
++{
++ struct device_node *np = pdev->dev.of_node;
++ const struct of_device_id *dev_id;
++ struct spi_controller *ctlr;
++ struct mtk_snand *ms;
++ int ret;
++
++ dev_id = of_match_node(mtk_snand_ids, np);
++ if (!dev_id)
++ return -EINVAL;
++
++ ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
++ if (!ctlr)
++ return -ENOMEM;
++ platform_set_drvdata(pdev, ctlr);
++
++ ms = spi_controller_get_devdata(ctlr);
++
++ ms->ctlr = ctlr;
++ ms->caps = dev_id->data;
++
++ ms->ecc = of_mtk_ecc_get(np);
++ if (IS_ERR(ms->ecc))
++ return PTR_ERR(ms->ecc);
++ else if (!ms->ecc)
++ return -ENODEV;
++
++ ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
++ if (IS_ERR(ms->nfi_base)) {
++ ret = PTR_ERR(ms->nfi_base);
++ goto release_ecc;
++ }
++
++ ms->dev = &pdev->dev;
++
++ ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
++ if (IS_ERR(ms->nfi_clk)) {
++ ret = PTR_ERR(ms->nfi_clk);
++ dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
++ goto release_ecc;
++ }
++
++ ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
++ if (IS_ERR(ms->pad_clk)) {
++ ret = PTR_ERR(ms->pad_clk);
++ dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
++ goto release_ecc;
++ }
++
++ ret = mtk_snand_enable_clk(ms);
++ if (ret)
++ goto release_ecc;
++
++ init_completion(&ms->op_done);
++
++ ms->irq = platform_get_irq(pdev, 0);
++ if (ms->irq < 0) {
++ ret = ms->irq;
++ goto disable_clk;
++ }
++ ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
++ "mtk-snand", ms);
++ if (ret) {
++ dev_err(ms->dev, "failed to request snfi irq\n");
++ goto disable_clk;
++ }
++
++ ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
++ if (ret) {
++ dev_err(ms->dev, "failed to set dma mask\n");
++ goto disable_clk;
++ }
++
++ // switch to SNFI mode
++ nfi_write32(ms, SNF_CFG, SPI_MODE);
++
++ // setup an initial page format for ops matching page_cache_op template
++ // before ECC is called.
++ ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
++ ms->caps->spare_sizes[0]);
++ if (ret) {
++ dev_err(ms->dev, "failed to set initial page format\n");
++ goto disable_clk;
++ }
++
++ // setup ECC engine
++ ms->ecc_eng.dev = &pdev->dev;
++ ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
++ ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
++ ms->ecc_eng.priv = ms;
++
++ ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
++ if (ret) {
++ dev_err(&pdev->dev, "failed to register ecc engine.\n");
++ goto disable_clk;
++ }
++
++ ctlr->num_chipselect = 1;
++ ctlr->mem_ops = &mtk_snand_mem_ops;
++ ctlr->mem_caps = &mtk_snand_mem_caps;
++ ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
++ ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
++ ctlr->dev.of_node = pdev->dev.of_node;
++ ret = spi_register_controller(ctlr);
++ if (ret) {
++ dev_err(&pdev->dev, "spi_register_controller failed.\n");
++ goto disable_clk;
++ }
++
++ return 0;
++disable_clk:
++ mtk_snand_disable_clk(ms);
++release_ecc:
++ mtk_ecc_release(ms->ecc);
++ return ret;
++}
++
++static int mtk_snand_remove(struct platform_device *pdev)
++{
++ struct spi_controller *ctlr = platform_get_drvdata(pdev);
++ struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
++
++ spi_unregister_controller(ctlr);
++ mtk_snand_disable_clk(ms);
++ mtk_ecc_release(ms->ecc);
++ kfree(ms->buf);
++ return 0;
++}
++
++static struct platform_driver mtk_snand_driver = {
++ .probe = mtk_snand_probe,
++ .remove = mtk_snand_remove,
++ .driver = {
++ .name = "mtk-snand",
++ .of_match_table = mtk_snand_ids,
++ },
++};
++
++module_platform_driver(mtk_snand_driver);
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
++MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
+++ /dev/null
-From 433b76fa0f3ca2865841abc21538dd8077ca3edd Mon Sep 17 00:00:00 2001
-From: Chuanhong Guo <gch981213@gmail.com>
-Date: Mon, 4 Apr 2022 00:05:38 +0800
-Subject: [PATCH 13/15] mtd: nand: mtk-ecc: also parse nand-ecc-engine if
- available
-
-The recently added ECC engine support introduced a generic property
-named nand-ecc-engine for ecc engine phandle. This patch adds support
-for this new property.
-
-Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
-(cherry picked from commit a41f25feb6e47c1c4d8d3279ae990ccbd8dfab54)
----
- drivers/mtd/nand/ecc-mtk.c | 5 ++++-
- 1 file changed, 4 insertions(+), 1 deletion(-)
-
---- a/drivers/mtd/nand/ecc-mtk.c
-+++ b/drivers/mtd/nand/ecc-mtk.c
-@@ -279,7 +279,10 @@ struct mtk_ecc *of_mtk_ecc_get(struct de
- struct mtk_ecc *ecc = NULL;
- struct device_node *np;
-
-- np = of_parse_phandle(of_node, "ecc-engine", 0);
-+ np = of_parse_phandle(of_node, "nand-ecc-engine", 0);
-+ /* for backward compatibility */
-+ if (!np)
-+ np = of_parse_phandle(of_node, "ecc-engine", 0);
- if (np) {
- ecc = mtk_ecc_get(np);
- of_node_put(np);
--- /dev/null
+From 433b76fa0f3ca2865841abc21538dd8077ca3edd Mon Sep 17 00:00:00 2001
+From: Chuanhong Guo <gch981213@gmail.com>
+Date: Mon, 4 Apr 2022 00:05:38 +0800
+Subject: [PATCH 13/15] mtd: nand: mtk-ecc: also parse nand-ecc-engine if
+ available
+
+The recently added ECC engine support introduced a generic property
+named nand-ecc-engine for ecc engine phandle. This patch adds support
+for this new property.
+
+Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
+(cherry picked from commit a41f25feb6e47c1c4d8d3279ae990ccbd8dfab54)
+---
+ drivers/mtd/nand/ecc-mtk.c | 5 ++++-
+ 1 file changed, 4 insertions(+), 1 deletion(-)
+
+--- a/drivers/mtd/nand/ecc-mtk.c
++++ b/drivers/mtd/nand/ecc-mtk.c
+@@ -279,7 +279,10 @@ struct mtk_ecc *of_mtk_ecc_get(struct de
+ struct mtk_ecc *ecc = NULL;
+ struct device_node *np;
+
+- np = of_parse_phandle(of_node, "ecc-engine", 0);
++ np = of_parse_phandle(of_node, "nand-ecc-engine", 0);
++ /* for backward compatibility */
++ if (!np)
++ np = of_parse_phandle(of_node, "ecc-engine", 0);
+ if (np) {
+ ecc = mtk_ecc_get(np);
+ of_node_put(np);
+++ /dev/null
-From 9ba7c246063ae43baf2e53ccc8c8b5f8d025aaaa Mon Sep 17 00:00:00 2001
-From: Chuanhong Guo <gch981213@gmail.com>
-Date: Sun, 3 Apr 2022 10:19:29 +0800
-Subject: [PATCH 15/15] arm64: dts: mediatek: add mtk-snfi for mt7622
-
-This patch adds a device-tree node for the MTK SPI-NAND Flash Interface
-for MT7622 device tree.
-
-Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
-(cherry picked from commit 2e022641709011ef0843d0416b0f264b5fc217af)
----
- arch/arm64/boot/dts/mediatek/mt7622.dtsi | 12 ++++++++++++
- 1 file changed, 12 insertions(+)
-
---- a/arch/arm64/boot/dts/mediatek/mt7622.dtsi
-+++ b/arch/arm64/boot/dts/mediatek/mt7622.dtsi
-@@ -552,6 +552,18 @@
- status = "disabled";
- };
-
-+ snfi: spi@1100d000 {
-+ compatible = "mediatek,mt7622-snand";
-+ reg = <0 0x1100d000 0 0x1000>;
-+ interrupts = <GIC_SPI 96 IRQ_TYPE_LEVEL_LOW>;
-+ clocks = <&pericfg CLK_PERI_NFI_PD>, <&pericfg CLK_PERI_SNFI_PD>;
-+ clock-names = "nfi_clk", "pad_clk";
-+ nand-ecc-engine = <&bch>;
-+ #address-cells = <1>;
-+ #size-cells = <0>;
-+ status = "disabled";
-+ };
-+
- bch: ecc@1100e000 {
- compatible = "mediatek,mt7622-ecc";
- reg = <0 0x1100e000 0 0x1000>;
--- /dev/null
+From 9ba7c246063ae43baf2e53ccc8c8b5f8d025aaaa Mon Sep 17 00:00:00 2001
+From: Chuanhong Guo <gch981213@gmail.com>
+Date: Sun, 3 Apr 2022 10:19:29 +0800
+Subject: [PATCH 15/15] arm64: dts: mediatek: add mtk-snfi for mt7622
+
+This patch adds a device-tree node for the MTK SPI-NAND Flash Interface
+for MT7622 device tree.
+
+Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
+(cherry picked from commit 2e022641709011ef0843d0416b0f264b5fc217af)
+---
+ arch/arm64/boot/dts/mediatek/mt7622.dtsi | 12 ++++++++++++
+ 1 file changed, 12 insertions(+)
+
+--- a/arch/arm64/boot/dts/mediatek/mt7622.dtsi
++++ b/arch/arm64/boot/dts/mediatek/mt7622.dtsi
+@@ -552,6 +552,18 @@
+ status = "disabled";
+ };
+
++ snfi: spi@1100d000 {
++ compatible = "mediatek,mt7622-snand";
++ reg = <0 0x1100d000 0 0x1000>;
++ interrupts = <GIC_SPI 96 IRQ_TYPE_LEVEL_LOW>;
++ clocks = <&pericfg CLK_PERI_NFI_PD>, <&pericfg CLK_PERI_SNFI_PD>;
++ clock-names = "nfi_clk", "pad_clk";
++ nand-ecc-engine = <&bch>;
++ #address-cells = <1>;
++ #size-cells = <0>;
++ status = "disabled";
++ };
++
+ bch: ecc@1100e000 {
+ compatible = "mediatek,mt7622-ecc";
+ reg = <0 0x1100e000 0 0x1000>;