#endif
.endm
+ /*
+ * Debug kernel copy by printing the memory addresses involved
+ */
+ .macro dbgkc, begin, end, cbegin, cend
+#ifdef DEBUG
+ kputc #'\n'
+ kputc #'C'
+ kputc #':'
+ kputc #'0'
+ kputc #'x'
+ kphex \begin, 8 /* Start of compressed kernel */
+ kputc #'-'
+ kputc #'0'
+ kputc #'x'
+ kphex \end, 8 /* End of compressed kernel */
+ kputc #'-'
+ kputc #'>'
+ kputc #'0'
+ kputc #'x'
+ kphex \cbegin, 8 /* Start of kernel copy */
+ kputc #'-'
+ kputc #'0'
+ kputc #'x'
+ kphex \cend, 8 /* End of kernel copy */
+ kputc #'\n'
+ kputc #'\r'
+#endif
+ .endm
+
.section ".start", #alloc, #execinstr
/*
* sort out different calling conventions
add r6, r9, r5
add r9, r9, r10
+#ifdef DEBUG
+ sub r10, r6, r5
+ sub r10, r9, r10
+ /*
+ * We are about to copy the kernel to a new memory area.
+ * The boundaries of the new memory area can be found in
+ * r10 and r9, whilst r5 and r6 contain the boundaries
+ * of the memory we are going to copy.
+ * Calling dbgkc will help with the printing of this
+ * information.
+ */
+ dbgkc r5, r6, r10, r9
+#endif
+
1: ldmdb r6!, {r0 - r3, r10 - r12, lr}
cmp r6, r5
stmdb r9!, {r0 - r3, r10 - r12, lr}