if (intel_crtc == NULL)
return;
+ /*
+ * This is called both by irq handlers and the reset code (to complete
+ * lost pageflips) so needs the full irqsave spinlocks.
+ */
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
unsigned long flags;
- /* NB: An MMIO update of the plane base pointer will also
+
+ /*
+ * This is called both by irq handlers and the reset code (to complete
+ * lost pageflips) so needs the full irqsave spinlocks.
+ *
+ * NB: An MMIO update of the plane base pointer will also
* generate a page-flip completion irq, i.e. every modeset
* is also accompanied by a spurious intel_prepare_page_flip().
*/
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
- unsigned long flags;
+
+ WARN_ON(!in_irq());
if (crtc == NULL)
return;
- spin_lock_irqsave(&dev->event_lock, flags);
+ spin_lock(&dev->event_lock);
if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
page_flip_completed(intel_crtc);
}
- spin_unlock_irqrestore(&dev->event_lock, flags);
+ spin_unlock(&dev->event_lock);
}
static int intel_crtc_page_flip(struct drm_crtc *crtc,