Those files belong to the admin guide, so add them.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
--- /dev/null
+===================
+Block IO Controller
+===================
+
+Overview
+========
+cgroup subsys "blkio" implements the block io controller. There seems to be
+a need of various kinds of IO control policies (like proportional BW, max BW)
+both at leaf nodes as well as at intermediate nodes in a storage hierarchy.
+Plan is to use the same cgroup based management interface for blkio controller
+and based on user options switch IO policies in the background.
+
+One IO control policy is throttling policy which can be used to
+specify upper IO rate limits on devices. This policy is implemented in
+generic block layer and can be used on leaf nodes as well as higher
+level logical devices like device mapper.
+
+HOWTO
+=====
+Throttling/Upper Limit policy
+-----------------------------
+- Enable Block IO controller::
+
+ CONFIG_BLK_CGROUP=y
+
+- Enable throttling in block layer::
+
+ CONFIG_BLK_DEV_THROTTLING=y
+
+- Mount blkio controller (see cgroups.txt, Why are cgroups needed?)::
+
+ mount -t cgroup -o blkio none /sys/fs/cgroup/blkio
+
+- Specify a bandwidth rate on particular device for root group. The format
+ for policy is "<major>:<minor> <bytes_per_second>"::
+
+ echo "8:16 1048576" > /sys/fs/cgroup/blkio/blkio.throttle.read_bps_device
+
+ Above will put a limit of 1MB/second on reads happening for root group
+ on device having major/minor number 8:16.
+
+- Run dd to read a file and see if rate is throttled to 1MB/s or not::
+
+ # dd iflag=direct if=/mnt/common/zerofile of=/dev/null bs=4K count=1024
+ 1024+0 records in
+ 1024+0 records out
+ 4194304 bytes (4.2 MB) copied, 4.0001 s, 1.0 MB/s
+
+ Limits for writes can be put using blkio.throttle.write_bps_device file.
+
+Hierarchical Cgroups
+====================
+
+Throttling implements hierarchy support; however,
+throttling's hierarchy support is enabled iff "sane_behavior" is
+enabled from cgroup side, which currently is a development option and
+not publicly available.
+
+If somebody created a hierarchy like as follows::
+
+ root
+ / \
+ test1 test2
+ |
+ test3
+
+Throttling with "sane_behavior" will handle the
+hierarchy correctly. For throttling, all limits apply
+to the whole subtree while all statistics are local to the IOs
+directly generated by tasks in that cgroup.
+
+Throttling without "sane_behavior" enabled from cgroup side will
+practically treat all groups at same level as if it looks like the
+following::
+
+ pivot
+ / / \ \
+ root test1 test2 test3
+
+Various user visible config options
+===================================
+CONFIG_BLK_CGROUP
+ - Block IO controller.
+
+CONFIG_BFQ_CGROUP_DEBUG
+ - Debug help. Right now some additional stats file show up in cgroup
+ if this option is enabled.
+
+CONFIG_BLK_DEV_THROTTLING
+ - Enable block device throttling support in block layer.
+
+Details of cgroup files
+=======================
+Proportional weight policy files
+--------------------------------
+- blkio.weight
+ - Specifies per cgroup weight. This is default weight of the group
+ on all the devices until and unless overridden by per device rule.
+ (See blkio.weight_device).
+ Currently allowed range of weights is from 10 to 1000.
+
+- blkio.weight_device
+ - One can specify per cgroup per device rules using this interface.
+ These rules override the default value of group weight as specified
+ by blkio.weight.
+
+ Following is the format::
+
+ # echo dev_maj:dev_minor weight > blkio.weight_device
+
+ Configure weight=300 on /dev/sdb (8:16) in this cgroup::
+
+ # echo 8:16 300 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:16 300
+
+ Configure weight=500 on /dev/sda (8:0) in this cgroup::
+
+ # echo 8:0 500 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:0 500
+ 8:16 300
+
+ Remove specific weight for /dev/sda in this cgroup::
+
+ # echo 8:0 0 > blkio.weight_device
+ # cat blkio.weight_device
+ dev weight
+ 8:16 300
+
+- blkio.leaf_weight[_device]
+ - Equivalents of blkio.weight[_device] for the purpose of
+ deciding how much weight tasks in the given cgroup has while
+ competing with the cgroup's child cgroups. For details,
+ please refer to Documentation/block/cfq-iosched.txt.
+
+- blkio.time
+ - disk time allocated to cgroup per device in milliseconds. First
+ two fields specify the major and minor number of the device and
+ third field specifies the disk time allocated to group in
+ milliseconds.
+
+- blkio.sectors
+ - number of sectors transferred to/from disk by the group. First
+ two fields specify the major and minor number of the device and
+ third field specifies the number of sectors transferred by the
+ group to/from the device.
+
+- blkio.io_service_bytes
+ - Number of bytes transferred to/from the disk by the group. These
+ are further divided by the type of operation - read or write, sync
+ or async. First two fields specify the major and minor number of the
+ device, third field specifies the operation type and the fourth field
+ specifies the number of bytes.
+
+- blkio.io_serviced
+ - Number of IOs (bio) issued to the disk by the group. These
+ are further divided by the type of operation - read or write, sync
+ or async. First two fields specify the major and minor number of the
+ device, third field specifies the operation type and the fourth field
+ specifies the number of IOs.
+
+- blkio.io_service_time
+ - Total amount of time between request dispatch and request completion
+ for the IOs done by this cgroup. This is in nanoseconds to make it
+ meaningful for flash devices too. For devices with queue depth of 1,
+ this time represents the actual service time. When queue_depth > 1,
+ that is no longer true as requests may be served out of order. This
+ may cause the service time for a given IO to include the service time
+ of multiple IOs when served out of order which may result in total
+ io_service_time > actual time elapsed. This time is further divided by
+ the type of operation - read or write, sync or async. First two fields
+ specify the major and minor number of the device, third field
+ specifies the operation type and the fourth field specifies the
+ io_service_time in ns.
+
+- blkio.io_wait_time
+ - Total amount of time the IOs for this cgroup spent waiting in the
+ scheduler queues for service. This can be greater than the total time
+ elapsed since it is cumulative io_wait_time for all IOs. It is not a
+ measure of total time the cgroup spent waiting but rather a measure of
+ the wait_time for its individual IOs. For devices with queue_depth > 1
+ this metric does not include the time spent waiting for service once
+ the IO is dispatched to the device but till it actually gets serviced
+ (there might be a time lag here due to re-ordering of requests by the
+ device). This is in nanoseconds to make it meaningful for flash
+ devices too. This time is further divided by the type of operation -
+ read or write, sync or async. First two fields specify the major and
+ minor number of the device, third field specifies the operation type
+ and the fourth field specifies the io_wait_time in ns.
+
+- blkio.io_merged
+ - Total number of bios/requests merged into requests belonging to this
+ cgroup. This is further divided by the type of operation - read or
+ write, sync or async.
+
+- blkio.io_queued
+ - Total number of requests queued up at any given instant for this
+ cgroup. This is further divided by the type of operation - read or
+ write, sync or async.
+
+- blkio.avg_queue_size
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
+ The average queue size for this cgroup over the entire time of this
+ cgroup's existence. Queue size samples are taken each time one of the
+ queues of this cgroup gets a timeslice.
+
+- blkio.group_wait_time
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
+ This is the amount of time the cgroup had to wait since it became busy
+ (i.e., went from 0 to 1 request queued) to get a timeslice for one of
+ its queues. This is different from the io_wait_time which is the
+ cumulative total of the amount of time spent by each IO in that cgroup
+ waiting in the scheduler queue. This is in nanoseconds. If this is
+ read when the cgroup is in a waiting (for timeslice) state, the stat
+ will only report the group_wait_time accumulated till the last time it
+ got a timeslice and will not include the current delta.
+
+- blkio.empty_time
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
+ This is the amount of time a cgroup spends without any pending
+ requests when not being served, i.e., it does not include any time
+ spent idling for one of the queues of the cgroup. This is in
+ nanoseconds. If this is read when the cgroup is in an empty state,
+ the stat will only report the empty_time accumulated till the last
+ time it had a pending request and will not include the current delta.
+
+- blkio.idle_time
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
+ This is the amount of time spent by the IO scheduler idling for a
+ given cgroup in anticipation of a better request than the existing ones
+ from other queues/cgroups. This is in nanoseconds. If this is read
+ when the cgroup is in an idling state, the stat will only report the
+ idle_time accumulated till the last idle period and will not include
+ the current delta.
+
+- blkio.dequeue
+ - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y. This
+ gives the statistics about how many a times a group was dequeued
+ from service tree of the device. First two fields specify the major
+ and minor number of the device and third field specifies the number
+ of times a group was dequeued from a particular device.
+
+- blkio.*_recursive
+ - Recursive version of various stats. These files show the
+ same information as their non-recursive counterparts but
+ include stats from all the descendant cgroups.
+
+Throttling/Upper limit policy files
+-----------------------------------
+- blkio.throttle.read_bps_device
+ - Specifies upper limit on READ rate from the device. IO rate is
+ specified in bytes per second. Rules are per device. Following is
+ the format::
+
+ echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device
+
+- blkio.throttle.write_bps_device
+ - Specifies upper limit on WRITE rate to the device. IO rate is
+ specified in bytes per second. Rules are per device. Following is
+ the format::
+
+ echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device
+
+- blkio.throttle.read_iops_device
+ - Specifies upper limit on READ rate from the device. IO rate is
+ specified in IO per second. Rules are per device. Following is
+ the format::
+
+ echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device
+
+- blkio.throttle.write_iops_device
+ - Specifies upper limit on WRITE rate to the device. IO rate is
+ specified in io per second. Rules are per device. Following is
+ the format::
+
+ echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device
+
+Note: If both BW and IOPS rules are specified for a device, then IO is
+ subjected to both the constraints.
+
+- blkio.throttle.io_serviced
+ - Number of IOs (bio) issued to the disk by the group. These
+ are further divided by the type of operation - read or write, sync
+ or async. First two fields specify the major and minor number of the
+ device, third field specifies the operation type and the fourth field
+ specifies the number of IOs.
+
+- blkio.throttle.io_service_bytes
+ - Number of bytes transferred to/from the disk by the group. These
+ are further divided by the type of operation - read or write, sync
+ or async. First two fields specify the major and minor number of the
+ device, third field specifies the operation type and the fourth field
+ specifies the number of bytes.
+
+Common files among various policies
+-----------------------------------
+- blkio.reset_stats
+ - Writing an int to this file will result in resetting all the stats
+ for that cgroup.
--- /dev/null
+==============
+Control Groups
+==============
+
+Written by Paul Menage <menage@google.com> based on
+Documentation/admin-guide/cgroup-v1/cpusets.rst
+
+Original copyright statements from cpusets.txt:
+
+Portions Copyright (C) 2004 BULL SA.
+
+Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+
+Modified by Paul Jackson <pj@sgi.com>
+
+Modified by Christoph Lameter <cl@linux.com>
+
+.. CONTENTS:
+
+ 1. Control Groups
+ 1.1 What are cgroups ?
+ 1.2 Why are cgroups needed ?
+ 1.3 How are cgroups implemented ?
+ 1.4 What does notify_on_release do ?
+ 1.5 What does clone_children do ?
+ 1.6 How do I use cgroups ?
+ 2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Attaching processes
+ 2.3 Mounting hierarchies by name
+ 3. Kernel API
+ 3.1 Overview
+ 3.2 Synchronization
+ 3.3 Subsystem API
+ 4. Extended attributes usage
+ 5. Questions
+
+1. Control Groups
+=================
+
+1.1 What are cgroups ?
+----------------------
+
+Control Groups provide a mechanism for aggregating/partitioning sets of
+tasks, and all their future children, into hierarchical groups with
+specialized behaviour.
+
+Definitions:
+
+A *cgroup* associates a set of tasks with a set of parameters for one
+or more subsystems.
+
+A *subsystem* is a module that makes use of the task grouping
+facilities provided by cgroups to treat groups of tasks in
+particular ways. A subsystem is typically a "resource controller" that
+schedules a resource or applies per-cgroup limits, but it may be
+anything that wants to act on a group of processes, e.g. a
+virtualization subsystem.
+
+A *hierarchy* is a set of cgroups arranged in a tree, such that
+every task in the system is in exactly one of the cgroups in the
+hierarchy, and a set of subsystems; each subsystem has system-specific
+state attached to each cgroup in the hierarchy. Each hierarchy has
+an instance of the cgroup virtual filesystem associated with it.
+
+At any one time there may be multiple active hierarchies of task
+cgroups. Each hierarchy is a partition of all tasks in the system.
+
+User-level code may create and destroy cgroups by name in an
+instance of the cgroup virtual file system, specify and query to
+which cgroup a task is assigned, and list the task PIDs assigned to
+a cgroup. Those creations and assignments only affect the hierarchy
+associated with that instance of the cgroup file system.
+
+On their own, the only use for cgroups is for simple job
+tracking. The intention is that other subsystems hook into the generic
+cgroup support to provide new attributes for cgroups, such as
+accounting/limiting the resources which processes in a cgroup can
+access. For example, cpusets (see Documentation/admin-guide/cgroup-v1/cpusets.rst) allow
+you to associate a set of CPUs and a set of memory nodes with the
+tasks in each cgroup.
+
+1.2 Why are cgroups needed ?
+----------------------------
+
+There are multiple efforts to provide process aggregations in the
+Linux kernel, mainly for resource-tracking purposes. Such efforts
+include cpusets, CKRM/ResGroups, UserBeanCounters, and virtual server
+namespaces. These all require the basic notion of a
+grouping/partitioning of processes, with newly forked processes ending
+up in the same group (cgroup) as their parent process.
+
+The kernel cgroup patch provides the minimum essential kernel
+mechanisms required to efficiently implement such groups. It has
+minimal impact on the system fast paths, and provides hooks for
+specific subsystems such as cpusets to provide additional behaviour as
+desired.
+
+Multiple hierarchy support is provided to allow for situations where
+the division of tasks into cgroups is distinctly different for
+different subsystems - having parallel hierarchies allows each
+hierarchy to be a natural division of tasks, without having to handle
+complex combinations of tasks that would be present if several
+unrelated subsystems needed to be forced into the same tree of
+cgroups.
+
+At one extreme, each resource controller or subsystem could be in a
+separate hierarchy; at the other extreme, all subsystems
+would be attached to the same hierarchy.
+
+As an example of a scenario (originally proposed by vatsa@in.ibm.com)
+that can benefit from multiple hierarchies, consider a large
+university server with various users - students, professors, system
+tasks etc. The resource planning for this server could be along the
+following lines::
+
+ CPU : "Top cpuset"
+ / \
+ CPUSet1 CPUSet2
+ | |
+ (Professors) (Students)
+
+ In addition (system tasks) are attached to topcpuset (so
+ that they can run anywhere) with a limit of 20%
+
+ Memory : Professors (50%), Students (30%), system (20%)
+
+ Disk : Professors (50%), Students (30%), system (20%)
+
+ Network : WWW browsing (20%), Network File System (60%), others (20%)
+ / \
+ Professors (15%) students (5%)
+
+Browsers like Firefox/Lynx go into the WWW network class, while (k)nfsd goes
+into the NFS network class.
+
+At the same time Firefox/Lynx will share an appropriate CPU/Memory class
+depending on who launched it (prof/student).
+
+With the ability to classify tasks differently for different resources
+(by putting those resource subsystems in different hierarchies),
+the admin can easily set up a script which receives exec notifications
+and depending on who is launching the browser he can::
+
+ # echo browser_pid > /sys/fs/cgroup/<restype>/<userclass>/tasks
+
+With only a single hierarchy, he now would potentially have to create
+a separate cgroup for every browser launched and associate it with
+appropriate network and other resource class. This may lead to
+proliferation of such cgroups.
+
+Also let's say that the administrator would like to give enhanced network
+access temporarily to a student's browser (since it is night and the user
+wants to do online gaming :)) OR give one of the student's simulation
+apps enhanced CPU power.
+
+With ability to write PIDs directly to resource classes, it's just a
+matter of::
+
+ # echo pid > /sys/fs/cgroup/network/<new_class>/tasks
+ (after some time)
+ # echo pid > /sys/fs/cgroup/network/<orig_class>/tasks
+
+Without this ability, the administrator would have to split the cgroup into
+multiple separate ones and then associate the new cgroups with the
+new resource classes.
+
+
+
+1.3 How are cgroups implemented ?
+---------------------------------
+
+Control Groups extends the kernel as follows:
+
+ - Each task in the system has a reference-counted pointer to a
+ css_set.
+
+ - A css_set contains a set of reference-counted pointers to
+ cgroup_subsys_state objects, one for each cgroup subsystem
+ registered in the system. There is no direct link from a task to
+ the cgroup of which it's a member in each hierarchy, but this
+ can be determined by following pointers through the
+ cgroup_subsys_state objects. This is because accessing the
+ subsystem state is something that's expected to happen frequently
+ and in performance-critical code, whereas operations that require a
+ task's actual cgroup assignments (in particular, moving between
+ cgroups) are less common. A linked list runs through the cg_list
+ field of each task_struct using the css_set, anchored at
+ css_set->tasks.
+
+ - A cgroup hierarchy filesystem can be mounted for browsing and
+ manipulation from user space.
+
+ - You can list all the tasks (by PID) attached to any cgroup.
+
+The implementation of cgroups requires a few, simple hooks
+into the rest of the kernel, none in performance-critical paths:
+
+ - in init/main.c, to initialize the root cgroups and initial
+ css_set at system boot.
+
+ - in fork and exit, to attach and detach a task from its css_set.
+
+In addition, a new file system of type "cgroup" may be mounted, to
+enable browsing and modifying the cgroups presently known to the
+kernel. When mounting a cgroup hierarchy, you may specify a
+comma-separated list of subsystems to mount as the filesystem mount
+options. By default, mounting the cgroup filesystem attempts to
+mount a hierarchy containing all registered subsystems.
+
+If an active hierarchy with exactly the same set of subsystems already
+exists, it will be reused for the new mount. If no existing hierarchy
+matches, and any of the requested subsystems are in use in an existing
+hierarchy, the mount will fail with -EBUSY. Otherwise, a new hierarchy
+is activated, associated with the requested subsystems.
+
+It's not currently possible to bind a new subsystem to an active
+cgroup hierarchy, or to unbind a subsystem from an active cgroup
+hierarchy. This may be possible in future, but is fraught with nasty
+error-recovery issues.
+
+When a cgroup filesystem is unmounted, if there are any
+child cgroups created below the top-level cgroup, that hierarchy
+will remain active even though unmounted; if there are no
+child cgroups then the hierarchy will be deactivated.
+
+No new system calls are added for cgroups - all support for
+querying and modifying cgroups is via this cgroup file system.
+
+Each task under /proc has an added file named 'cgroup' displaying,
+for each active hierarchy, the subsystem names and the cgroup name
+as the path relative to the root of the cgroup file system.
+
+Each cgroup is represented by a directory in the cgroup file system
+containing the following files describing that cgroup:
+
+ - tasks: list of tasks (by PID) attached to that cgroup. This list
+ is not guaranteed to be sorted. Writing a thread ID into this file
+ moves the thread into this cgroup.
+ - cgroup.procs: list of thread group IDs in the cgroup. This list is
+ not guaranteed to be sorted or free of duplicate TGIDs, and userspace
+ should sort/uniquify the list if this property is required.
+ Writing a thread group ID into this file moves all threads in that
+ group into this cgroup.
+ - notify_on_release flag: run the release agent on exit?
+ - release_agent: the path to use for release notifications (this file
+ exists in the top cgroup only)
+
+Other subsystems such as cpusets may add additional files in each
+cgroup dir.
+
+New cgroups are created using the mkdir system call or shell
+command. The properties of a cgroup, such as its flags, are
+modified by writing to the appropriate file in that cgroups
+directory, as listed above.
+
+The named hierarchical structure of nested cgroups allows partitioning
+a large system into nested, dynamically changeable, "soft-partitions".
+
+The attachment of each task, automatically inherited at fork by any
+children of that task, to a cgroup allows organizing the work load
+on a system into related sets of tasks. A task may be re-attached to
+any other cgroup, if allowed by the permissions on the necessary
+cgroup file system directories.
+
+When a task is moved from one cgroup to another, it gets a new
+css_set pointer - if there's an already existing css_set with the
+desired collection of cgroups then that group is reused, otherwise a new
+css_set is allocated. The appropriate existing css_set is located by
+looking into a hash table.
+
+To allow access from a cgroup to the css_sets (and hence tasks)
+that comprise it, a set of cg_cgroup_link objects form a lattice;
+each cg_cgroup_link is linked into a list of cg_cgroup_links for
+a single cgroup on its cgrp_link_list field, and a list of
+cg_cgroup_links for a single css_set on its cg_link_list.
+
+Thus the set of tasks in a cgroup can be listed by iterating over
+each css_set that references the cgroup, and sub-iterating over
+each css_set's task set.
+
+The use of a Linux virtual file system (vfs) to represent the
+cgroup hierarchy provides for a familiar permission and name space
+for cgroups, with a minimum of additional kernel code.
+
+1.4 What does notify_on_release do ?
+------------------------------------
+
+If the notify_on_release flag is enabled (1) in a cgroup, then
+whenever the last task in the cgroup leaves (exits or attaches to
+some other cgroup) and the last child cgroup of that cgroup
+is removed, then the kernel runs the command specified by the contents
+of the "release_agent" file in that hierarchy's root directory,
+supplying the pathname (relative to the mount point of the cgroup
+file system) of the abandoned cgroup. This enables automatic
+removal of abandoned cgroups. The default value of
+notify_on_release in the root cgroup at system boot is disabled
+(0). The default value of other cgroups at creation is the current
+value of their parents' notify_on_release settings. The default value of
+a cgroup hierarchy's release_agent path is empty.
+
+1.5 What does clone_children do ?
+---------------------------------
+
+This flag only affects the cpuset controller. If the clone_children
+flag is enabled (1) in a cgroup, a new cpuset cgroup will copy its
+configuration from the parent during initialization.
+
+1.6 How do I use cgroups ?
+--------------------------
+
+To start a new job that is to be contained within a cgroup, using
+the "cpuset" cgroup subsystem, the steps are something like::
+
+ 1) mount -t tmpfs cgroup_root /sys/fs/cgroup
+ 2) mkdir /sys/fs/cgroup/cpuset
+ 3) mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset
+ 4) Create the new cgroup by doing mkdir's and write's (or echo's) in
+ the /sys/fs/cgroup/cpuset virtual file system.
+ 5) Start a task that will be the "founding father" of the new job.
+ 6) Attach that task to the new cgroup by writing its PID to the
+ /sys/fs/cgroup/cpuset tasks file for that cgroup.
+ 7) fork, exec or clone the job tasks from this founding father task.
+
+For example, the following sequence of commands will setup a cgroup
+named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
+and then start a subshell 'sh' in that cgroup::
+
+ mount -t tmpfs cgroup_root /sys/fs/cgroup
+ mkdir /sys/fs/cgroup/cpuset
+ mount -t cgroup cpuset -ocpuset /sys/fs/cgroup/cpuset
+ cd /sys/fs/cgroup/cpuset
+ mkdir Charlie
+ cd Charlie
+ /bin/echo 2-3 > cpuset.cpus
+ /bin/echo 1 > cpuset.mems
+ /bin/echo $$ > tasks
+ sh
+ # The subshell 'sh' is now running in cgroup Charlie
+ # The next line should display '/Charlie'
+ cat /proc/self/cgroup
+
+2. Usage Examples and Syntax
+============================
+
+2.1 Basic Usage
+---------------
+
+Creating, modifying, using cgroups can be done through the cgroup
+virtual filesystem.
+
+To mount a cgroup hierarchy with all available subsystems, type::
+
+ # mount -t cgroup xxx /sys/fs/cgroup
+
+The "xxx" is not interpreted by the cgroup code, but will appear in
+/proc/mounts so may be any useful identifying string that you like.
+
+Note: Some subsystems do not work without some user input first. For instance,
+if cpusets are enabled the user will have to populate the cpus and mems files
+for each new cgroup created before that group can be used.
+
+As explained in section `1.2 Why are cgroups needed?` you should create
+different hierarchies of cgroups for each single resource or group of
+resources you want to control. Therefore, you should mount a tmpfs on
+/sys/fs/cgroup and create directories for each cgroup resource or resource
+group::
+
+ # mount -t tmpfs cgroup_root /sys/fs/cgroup
+ # mkdir /sys/fs/cgroup/rg1
+
+To mount a cgroup hierarchy with just the cpuset and memory
+subsystems, type::
+
+ # mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
+
+While remounting cgroups is currently supported, it is not recommend
+to use it. Remounting allows changing bound subsystems and
+release_agent. Rebinding is hardly useful as it only works when the
+hierarchy is empty and release_agent itself should be replaced with
+conventional fsnotify. The support for remounting will be removed in
+the future.
+
+To Specify a hierarchy's release_agent::
+
+ # mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
+ xxx /sys/fs/cgroup/rg1
+
+Note that specifying 'release_agent' more than once will return failure.
+
+Note that changing the set of subsystems is currently only supported
+when the hierarchy consists of a single (root) cgroup. Supporting
+the ability to arbitrarily bind/unbind subsystems from an existing
+cgroup hierarchy is intended to be implemented in the future.
+
+Then under /sys/fs/cgroup/rg1 you can find a tree that corresponds to the
+tree of the cgroups in the system. For instance, /sys/fs/cgroup/rg1
+is the cgroup that holds the whole system.
+
+If you want to change the value of release_agent::
+
+ # echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
+
+It can also be changed via remount.
+
+If you want to create a new cgroup under /sys/fs/cgroup/rg1::
+
+ # cd /sys/fs/cgroup/rg1
+ # mkdir my_cgroup
+
+Now you want to do something with this cgroup:
+
+ # cd my_cgroup
+
+In this directory you can find several files::
+
+ # ls
+ cgroup.procs notify_on_release tasks
+ (plus whatever files added by the attached subsystems)
+
+Now attach your shell to this cgroup::
+
+ # /bin/echo $$ > tasks
+
+You can also create cgroups inside your cgroup by using mkdir in this
+directory::
+
+ # mkdir my_sub_cs
+
+To remove a cgroup, just use rmdir::
+
+ # rmdir my_sub_cs
+
+This will fail if the cgroup is in use (has cgroups inside, or
+has processes attached, or is held alive by other subsystem-specific
+reference).
+
+2.2 Attaching processes
+-----------------------
+
+::
+
+ # /bin/echo PID > tasks
+
+Note that it is PID, not PIDs. You can only attach ONE task at a time.
+If you have several tasks to attach, you have to do it one after another::
+
+ # /bin/echo PID1 > tasks
+ # /bin/echo PID2 > tasks
+ ...
+ # /bin/echo PIDn > tasks
+
+You can attach the current shell task by echoing 0::
+
+ # echo 0 > tasks
+
+You can use the cgroup.procs file instead of the tasks file to move all
+threads in a threadgroup at once. Echoing the PID of any task in a
+threadgroup to cgroup.procs causes all tasks in that threadgroup to be
+attached to the cgroup. Writing 0 to cgroup.procs moves all tasks
+in the writing task's threadgroup.
+
+Note: Since every task is always a member of exactly one cgroup in each
+mounted hierarchy, to remove a task from its current cgroup you must
+move it into a new cgroup (possibly the root cgroup) by writing to the
+new cgroup's tasks file.
+
+Note: Due to some restrictions enforced by some cgroup subsystems, moving
+a process to another cgroup can fail.
+
+2.3 Mounting hierarchies by name
+--------------------------------
+
+Passing the name=<x> option when mounting a cgroups hierarchy
+associates the given name with the hierarchy. This can be used when
+mounting a pre-existing hierarchy, in order to refer to it by name
+rather than by its set of active subsystems. Each hierarchy is either
+nameless, or has a unique name.
+
+The name should match [\w.-]+
+
+When passing a name=<x> option for a new hierarchy, you need to
+specify subsystems manually; the legacy behaviour of mounting all
+subsystems when none are explicitly specified is not supported when
+you give a subsystem a name.
+
+The name of the subsystem appears as part of the hierarchy description
+in /proc/mounts and /proc/<pid>/cgroups.
+
+
+3. Kernel API
+=============
+
+3.1 Overview
+------------
+
+Each kernel subsystem that wants to hook into the generic cgroup
+system needs to create a cgroup_subsys object. This contains
+various methods, which are callbacks from the cgroup system, along
+with a subsystem ID which will be assigned by the cgroup system.
+
+Other fields in the cgroup_subsys object include:
+
+- subsys_id: a unique array index for the subsystem, indicating which
+ entry in cgroup->subsys[] this subsystem should be managing.
+
+- name: should be initialized to a unique subsystem name. Should be
+ no longer than MAX_CGROUP_TYPE_NAMELEN.
+
+- early_init: indicate if the subsystem needs early initialization
+ at system boot.
+
+Each cgroup object created by the system has an array of pointers,
+indexed by subsystem ID; this pointer is entirely managed by the
+subsystem; the generic cgroup code will never touch this pointer.
+
+3.2 Synchronization
+-------------------
+
+There is a global mutex, cgroup_mutex, used by the cgroup
+system. This should be taken by anything that wants to modify a
+cgroup. It may also be taken to prevent cgroups from being
+modified, but more specific locks may be more appropriate in that
+situation.
+
+See kernel/cgroup.c for more details.
+
+Subsystems can take/release the cgroup_mutex via the functions
+cgroup_lock()/cgroup_unlock().
+
+Accessing a task's cgroup pointer may be done in the following ways:
+- while holding cgroup_mutex
+- while holding the task's alloc_lock (via task_lock())
+- inside an rcu_read_lock() section via rcu_dereference()
+
+3.3 Subsystem API
+-----------------
+
+Each subsystem should:
+
+- add an entry in linux/cgroup_subsys.h
+- define a cgroup_subsys object called <name>_cgrp_subsys
+
+Each subsystem may export the following methods. The only mandatory
+methods are css_alloc/free. Any others that are null are presumed to
+be successful no-ops.
+
+``struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)``
+(cgroup_mutex held by caller)
+
+Called to allocate a subsystem state object for a cgroup. The
+subsystem should allocate its subsystem state object for the passed
+cgroup, returning a pointer to the new object on success or a
+ERR_PTR() value. On success, the subsystem pointer should point to
+a structure of type cgroup_subsys_state (typically embedded in a
+larger subsystem-specific object), which will be initialized by the
+cgroup system. Note that this will be called at initialization to
+create the root subsystem state for this subsystem; this case can be
+identified by the passed cgroup object having a NULL parent (since
+it's the root of the hierarchy) and may be an appropriate place for
+initialization code.
+
+``int css_online(struct cgroup *cgrp)``
+(cgroup_mutex held by caller)
+
+Called after @cgrp successfully completed all allocations and made
+visible to cgroup_for_each_child/descendant_*() iterators. The
+subsystem may choose to fail creation by returning -errno. This
+callback can be used to implement reliable state sharing and
+propagation along the hierarchy. See the comment on
+cgroup_for_each_descendant_pre() for details.
+
+``void css_offline(struct cgroup *cgrp);``
+(cgroup_mutex held by caller)
+
+This is the counterpart of css_online() and called iff css_online()
+has succeeded on @cgrp. This signifies the beginning of the end of
+@cgrp. @cgrp is being removed and the subsystem should start dropping
+all references it's holding on @cgrp. When all references are dropped,
+cgroup removal will proceed to the next step - css_free(). After this
+callback, @cgrp should be considered dead to the subsystem.
+
+``void css_free(struct cgroup *cgrp)``
+(cgroup_mutex held by caller)
+
+The cgroup system is about to free @cgrp; the subsystem should free
+its subsystem state object. By the time this method is called, @cgrp
+is completely unused; @cgrp->parent is still valid. (Note - can also
+be called for a newly-created cgroup if an error occurs after this
+subsystem's create() method has been called for the new cgroup).
+
+``int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
+(cgroup_mutex held by caller)
+
+Called prior to moving one or more tasks into a cgroup; if the
+subsystem returns an error, this will abort the attach operation.
+@tset contains the tasks to be attached and is guaranteed to have at
+least one task in it.
+
+If there are multiple tasks in the taskset, then:
+ - it's guaranteed that all are from the same thread group
+ - @tset contains all tasks from the thread group whether or not
+ they're switching cgroups
+ - the first task is the leader
+
+Each @tset entry also contains the task's old cgroup and tasks which
+aren't switching cgroup can be skipped easily using the
+cgroup_taskset_for_each() iterator. Note that this isn't called on a
+fork. If this method returns 0 (success) then this should remain valid
+while the caller holds cgroup_mutex and it is ensured that either
+attach() or cancel_attach() will be called in future.
+
+``void css_reset(struct cgroup_subsys_state *css)``
+(cgroup_mutex held by caller)
+
+An optional operation which should restore @css's configuration to the
+initial state. This is currently only used on the unified hierarchy
+when a subsystem is disabled on a cgroup through
+"cgroup.subtree_control" but should remain enabled because other
+subsystems depend on it. cgroup core makes such a css invisible by
+removing the associated interface files and invokes this callback so
+that the hidden subsystem can return to the initial neutral state.
+This prevents unexpected resource control from a hidden css and
+ensures that the configuration is in the initial state when it is made
+visible again later.
+
+``void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
+(cgroup_mutex held by caller)
+
+Called when a task attach operation has failed after can_attach() has succeeded.
+A subsystem whose can_attach() has some side-effects should provide this
+function, so that the subsystem can implement a rollback. If not, not necessary.
+This will be called only about subsystems whose can_attach() operation have
+succeeded. The parameters are identical to can_attach().
+
+``void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
+(cgroup_mutex held by caller)
+
+Called after the task has been attached to the cgroup, to allow any
+post-attachment activity that requires memory allocations or blocking.
+The parameters are identical to can_attach().
+
+``void fork(struct task_struct *task)``
+
+Called when a task is forked into a cgroup.
+
+``void exit(struct task_struct *task)``
+
+Called during task exit.
+
+``void free(struct task_struct *task)``
+
+Called when the task_struct is freed.
+
+``void bind(struct cgroup *root)``
+(cgroup_mutex held by caller)
+
+Called when a cgroup subsystem is rebound to a different hierarchy
+and root cgroup. Currently this will only involve movement between
+the default hierarchy (which never has sub-cgroups) and a hierarchy
+that is being created/destroyed (and hence has no sub-cgroups).
+
+4. Extended attribute usage
+===========================
+
+cgroup filesystem supports certain types of extended attributes in its
+directories and files. The current supported types are:
+
+ - Trusted (XATTR_TRUSTED)
+ - Security (XATTR_SECURITY)
+
+Both require CAP_SYS_ADMIN capability to set.
+
+Like in tmpfs, the extended attributes in cgroup filesystem are stored
+using kernel memory and it's advised to keep the usage at minimum. This
+is the reason why user defined extended attributes are not supported, since
+any user can do it and there's no limit in the value size.
+
+The current known users for this feature are SELinux to limit cgroup usage
+in containers and systemd for assorted meta data like main PID in a cgroup
+(systemd creates a cgroup per service).
+
+5. Questions
+============
+
+::
+
+ Q: what's up with this '/bin/echo' ?
+ A: bash's builtin 'echo' command does not check calls to write() against
+ errors. If you use it in the cgroup file system, you won't be
+ able to tell whether a command succeeded or failed.
+
+ Q: When I attach processes, only the first of the line gets really attached !
+ A: We can only return one error code per call to write(). So you should also
+ put only ONE PID.
--- /dev/null
+=========================
+CPU Accounting Controller
+=========================
+
+The CPU accounting controller is used to group tasks using cgroups and
+account the CPU usage of these groups of tasks.
+
+The CPU accounting controller supports multi-hierarchy groups. An accounting
+group accumulates the CPU usage of all of its child groups and the tasks
+directly present in its group.
+
+Accounting groups can be created by first mounting the cgroup filesystem::
+
+ # mount -t cgroup -ocpuacct none /sys/fs/cgroup
+
+With the above step, the initial or the parent accounting group becomes
+visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
+the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
+/sys/fs/cgroup/cpuacct.usage gives the CPU time (in nanoseconds) obtained
+by this group which is essentially the CPU time obtained by all the tasks
+in the system.
+
+New accounting groups can be created under the parent group /sys/fs/cgroup::
+
+ # cd /sys/fs/cgroup
+ # mkdir g1
+ # echo $$ > g1/tasks
+
+The above steps create a new group g1 and move the current shell
+process (bash) into it. CPU time consumed by this bash and its children
+can be obtained from g1/cpuacct.usage and the same is accumulated in
+/sys/fs/cgroup/cpuacct.usage also.
+
+cpuacct.stat file lists a few statistics which further divide the
+CPU time obtained by the cgroup into user and system times. Currently
+the following statistics are supported:
+
+user: Time spent by tasks of the cgroup in user mode.
+system: Time spent by tasks of the cgroup in kernel mode.
+
+user and system are in USER_HZ unit.
+
+cpuacct controller uses percpu_counter interface to collect user and
+system times. This has two side effects:
+
+- It is theoretically possible to see wrong values for user and system times.
+ This is because percpu_counter_read() on 32bit systems isn't safe
+ against concurrent writes.
+- It is possible to see slightly outdated values for user and system times
+ due to the batch processing nature of percpu_counter.
--- /dev/null
+=======
+CPUSETS
+=======
+
+Copyright (C) 2004 BULL SA.
+
+Written by Simon.Derr@bull.net
+
+- Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
+- Modified by Paul Jackson <pj@sgi.com>
+- Modified by Christoph Lameter <cl@linux.com>
+- Modified by Paul Menage <menage@google.com>
+- Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
+
+.. CONTENTS:
+
+ 1. Cpusets
+ 1.1 What are cpusets ?
+ 1.2 Why are cpusets needed ?
+ 1.3 How are cpusets implemented ?
+ 1.4 What are exclusive cpusets ?
+ 1.5 What is memory_pressure ?
+ 1.6 What is memory spread ?
+ 1.7 What is sched_load_balance ?
+ 1.8 What is sched_relax_domain_level ?
+ 1.9 How do I use cpusets ?
+ 2. Usage Examples and Syntax
+ 2.1 Basic Usage
+ 2.2 Adding/removing cpus
+ 2.3 Setting flags
+ 2.4 Attaching processes
+ 3. Questions
+ 4. Contact
+
+1. Cpusets
+==========
+
+1.1 What are cpusets ?
+----------------------
+
+Cpusets provide a mechanism for assigning a set of CPUs and Memory
+Nodes to a set of tasks. In this document "Memory Node" refers to
+an on-line node that contains memory.
+
+Cpusets constrain the CPU and Memory placement of tasks to only
+the resources within a task's current cpuset. They form a nested
+hierarchy visible in a virtual file system. These are the essential
+hooks, beyond what is already present, required to manage dynamic
+job placement on large systems.
+
+Cpusets use the generic cgroup subsystem described in
+Documentation/admin-guide/cgroup-v1/cgroups.rst.
+
+Requests by a task, using the sched_setaffinity(2) system call to
+include CPUs in its CPU affinity mask, and using the mbind(2) and
+set_mempolicy(2) system calls to include Memory Nodes in its memory
+policy, are both filtered through that task's cpuset, filtering out any
+CPUs or Memory Nodes not in that cpuset. The scheduler will not
+schedule a task on a CPU that is not allowed in its cpus_allowed
+vector, and the kernel page allocator will not allocate a page on a
+node that is not allowed in the requesting task's mems_allowed vector.
+
+User level code may create and destroy cpusets by name in the cgroup
+virtual file system, manage the attributes and permissions of these
+cpusets and which CPUs and Memory Nodes are assigned to each cpuset,
+specify and query to which cpuset a task is assigned, and list the
+task pids assigned to a cpuset.
+
+
+1.2 Why are cpusets needed ?
+----------------------------
+
+The management of large computer systems, with many processors (CPUs),
+complex memory cache hierarchies and multiple Memory Nodes having
+non-uniform access times (NUMA) presents additional challenges for
+the efficient scheduling and memory placement of processes.
+
+Frequently more modest sized systems can be operated with adequate
+efficiency just by letting the operating system automatically share
+the available CPU and Memory resources amongst the requesting tasks.
+
+But larger systems, which benefit more from careful processor and
+memory placement to reduce memory access times and contention,
+and which typically represent a larger investment for the customer,
+can benefit from explicitly placing jobs on properly sized subsets of
+the system.
+
+This can be especially valuable on:
+
+ * Web Servers running multiple instances of the same web application,
+ * Servers running different applications (for instance, a web server
+ and a database), or
+ * NUMA systems running large HPC applications with demanding
+ performance characteristics.
+
+These subsets, or "soft partitions" must be able to be dynamically
+adjusted, as the job mix changes, without impacting other concurrently
+executing jobs. The location of the running jobs pages may also be moved
+when the memory locations are changed.
+
+The kernel cpuset patch provides the minimum essential kernel
+mechanisms required to efficiently implement such subsets. It
+leverages existing CPU and Memory Placement facilities in the Linux
+kernel to avoid any additional impact on the critical scheduler or
+memory allocator code.
+
+
+1.3 How are cpusets implemented ?
+---------------------------------
+
+Cpusets provide a Linux kernel mechanism to constrain which CPUs and
+Memory Nodes are used by a process or set of processes.
+
+The Linux kernel already has a pair of mechanisms to specify on which
+CPUs a task may be scheduled (sched_setaffinity) and on which Memory
+Nodes it may obtain memory (mbind, set_mempolicy).
+
+Cpusets extends these two mechanisms as follows:
+
+ - Cpusets are sets of allowed CPUs and Memory Nodes, known to the
+ kernel.
+ - Each task in the system is attached to a cpuset, via a pointer
+ in the task structure to a reference counted cgroup structure.
+ - Calls to sched_setaffinity are filtered to just those CPUs
+ allowed in that task's cpuset.
+ - Calls to mbind and set_mempolicy are filtered to just
+ those Memory Nodes allowed in that task's cpuset.
+ - The root cpuset contains all the systems CPUs and Memory
+ Nodes.
+ - For any cpuset, one can define child cpusets containing a subset
+ of the parents CPU and Memory Node resources.
+ - The hierarchy of cpusets can be mounted at /dev/cpuset, for
+ browsing and manipulation from user space.
+ - A cpuset may be marked exclusive, which ensures that no other
+ cpuset (except direct ancestors and descendants) may contain
+ any overlapping CPUs or Memory Nodes.
+ - You can list all the tasks (by pid) attached to any cpuset.
+
+The implementation of cpusets requires a few, simple hooks
+into the rest of the kernel, none in performance critical paths:
+
+ - in init/main.c, to initialize the root cpuset at system boot.
+ - in fork and exit, to attach and detach a task from its cpuset.
+ - in sched_setaffinity, to mask the requested CPUs by what's
+ allowed in that task's cpuset.
+ - in sched.c migrate_live_tasks(), to keep migrating tasks within
+ the CPUs allowed by their cpuset, if possible.
+ - in the mbind and set_mempolicy system calls, to mask the requested
+ Memory Nodes by what's allowed in that task's cpuset.
+ - in page_alloc.c, to restrict memory to allowed nodes.
+ - in vmscan.c, to restrict page recovery to the current cpuset.
+
+You should mount the "cgroup" filesystem type in order to enable
+browsing and modifying the cpusets presently known to the kernel. No
+new system calls are added for cpusets - all support for querying and
+modifying cpusets is via this cpuset file system.
+
+The /proc/<pid>/status file for each task has four added lines,
+displaying the task's cpus_allowed (on which CPUs it may be scheduled)
+and mems_allowed (on which Memory Nodes it may obtain memory),
+in the two formats seen in the following example::
+
+ Cpus_allowed: ffffffff,ffffffff,ffffffff,ffffffff
+ Cpus_allowed_list: 0-127
+ Mems_allowed: ffffffff,ffffffff
+ Mems_allowed_list: 0-63
+
+Each cpuset is represented by a directory in the cgroup file system
+containing (on top of the standard cgroup files) the following
+files describing that cpuset:
+
+ - cpuset.cpus: list of CPUs in that cpuset
+ - cpuset.mems: list of Memory Nodes in that cpuset
+ - cpuset.memory_migrate flag: if set, move pages to cpusets nodes
+ - cpuset.cpu_exclusive flag: is cpu placement exclusive?
+ - cpuset.mem_exclusive flag: is memory placement exclusive?
+ - cpuset.mem_hardwall flag: is memory allocation hardwalled
+ - cpuset.memory_pressure: measure of how much paging pressure in cpuset
+ - cpuset.memory_spread_page flag: if set, spread page cache evenly on allowed nodes
+ - cpuset.memory_spread_slab flag: if set, spread slab cache evenly on allowed nodes
+ - cpuset.sched_load_balance flag: if set, load balance within CPUs on that cpuset
+ - cpuset.sched_relax_domain_level: the searching range when migrating tasks
+
+In addition, only the root cpuset has the following file:
+
+ - cpuset.memory_pressure_enabled flag: compute memory_pressure?
+
+New cpusets are created using the mkdir system call or shell
+command. The properties of a cpuset, such as its flags, allowed
+CPUs and Memory Nodes, and attached tasks, are modified by writing
+to the appropriate file in that cpusets directory, as listed above.
+
+The named hierarchical structure of nested cpusets allows partitioning
+a large system into nested, dynamically changeable, "soft-partitions".
+
+The attachment of each task, automatically inherited at fork by any
+children of that task, to a cpuset allows organizing the work load
+on a system into related sets of tasks such that each set is constrained
+to using the CPUs and Memory Nodes of a particular cpuset. A task
+may be re-attached to any other cpuset, if allowed by the permissions
+on the necessary cpuset file system directories.
+
+Such management of a system "in the large" integrates smoothly with
+the detailed placement done on individual tasks and memory regions
+using the sched_setaffinity, mbind and set_mempolicy system calls.
+
+The following rules apply to each cpuset:
+
+ - Its CPUs and Memory Nodes must be a subset of its parents.
+ - It can't be marked exclusive unless its parent is.
+ - If its cpu or memory is exclusive, they may not overlap any sibling.
+
+These rules, and the natural hierarchy of cpusets, enable efficient
+enforcement of the exclusive guarantee, without having to scan all
+cpusets every time any of them change to ensure nothing overlaps a
+exclusive cpuset. Also, the use of a Linux virtual file system (vfs)
+to represent the cpuset hierarchy provides for a familiar permission
+and name space for cpusets, with a minimum of additional kernel code.
+
+The cpus and mems files in the root (top_cpuset) cpuset are
+read-only. The cpus file automatically tracks the value of
+cpu_online_mask using a CPU hotplug notifier, and the mems file
+automatically tracks the value of node_states[N_MEMORY]--i.e.,
+nodes with memory--using the cpuset_track_online_nodes() hook.
+
+
+1.4 What are exclusive cpusets ?
+--------------------------------
+
+If a cpuset is cpu or mem exclusive, no other cpuset, other than
+a direct ancestor or descendant, may share any of the same CPUs or
+Memory Nodes.
+
+A cpuset that is cpuset.mem_exclusive *or* cpuset.mem_hardwall is "hardwalled",
+i.e. it restricts kernel allocations for page, buffer and other data
+commonly shared by the kernel across multiple users. All cpusets,
+whether hardwalled or not, restrict allocations of memory for user
+space. This enables configuring a system so that several independent
+jobs can share common kernel data, such as file system pages, while
+isolating each job's user allocation in its own cpuset. To do this,
+construct a large mem_exclusive cpuset to hold all the jobs, and
+construct child, non-mem_exclusive cpusets for each individual job.
+Only a small amount of typical kernel memory, such as requests from
+interrupt handlers, is allowed to be taken outside even a
+mem_exclusive cpuset.
+
+
+1.5 What is memory_pressure ?
+-----------------------------
+The memory_pressure of a cpuset provides a simple per-cpuset metric
+of the rate that the tasks in a cpuset are attempting to free up in
+use memory on the nodes of the cpuset to satisfy additional memory
+requests.
+
+This enables batch managers monitoring jobs running in dedicated
+cpusets to efficiently detect what level of memory pressure that job
+is causing.
+
+This is useful both on tightly managed systems running a wide mix of
+submitted jobs, which may choose to terminate or re-prioritize jobs that
+are trying to use more memory than allowed on the nodes assigned to them,
+and with tightly coupled, long running, massively parallel scientific
+computing jobs that will dramatically fail to meet required performance
+goals if they start to use more memory than allowed to them.
+
+This mechanism provides a very economical way for the batch manager
+to monitor a cpuset for signs of memory pressure. It's up to the
+batch manager or other user code to decide what to do about it and
+take action.
+
+==>
+ Unless this feature is enabled by writing "1" to the special file
+ /dev/cpuset/memory_pressure_enabled, the hook in the rebalance
+ code of __alloc_pages() for this metric reduces to simply noticing
+ that the cpuset_memory_pressure_enabled flag is zero. So only
+ systems that enable this feature will compute the metric.
+
+Why a per-cpuset, running average:
+
+ Because this meter is per-cpuset, rather than per-task or mm,
+ the system load imposed by a batch scheduler monitoring this
+ metric is sharply reduced on large systems, because a scan of
+ the tasklist can be avoided on each set of queries.
+
+ Because this meter is a running average, instead of an accumulating
+ counter, a batch scheduler can detect memory pressure with a
+ single read, instead of having to read and accumulate results
+ for a period of time.
+
+ Because this meter is per-cpuset rather than per-task or mm,
+ the batch scheduler can obtain the key information, memory
+ pressure in a cpuset, with a single read, rather than having to
+ query and accumulate results over all the (dynamically changing)
+ set of tasks in the cpuset.
+
+A per-cpuset simple digital filter (requires a spinlock and 3 words
+of data per-cpuset) is kept, and updated by any task attached to that
+cpuset, if it enters the synchronous (direct) page reclaim code.
+
+A per-cpuset file provides an integer number representing the recent
+(half-life of 10 seconds) rate of direct page reclaims caused by
+the tasks in the cpuset, in units of reclaims attempted per second,
+times 1000.
+
+
+1.6 What is memory spread ?
+---------------------------
+There are two boolean flag files per cpuset that control where the
+kernel allocates pages for the file system buffers and related in
+kernel data structures. They are called 'cpuset.memory_spread_page' and
+'cpuset.memory_spread_slab'.
+
+If the per-cpuset boolean flag file 'cpuset.memory_spread_page' is set, then
+the kernel will spread the file system buffers (page cache) evenly
+over all the nodes that the faulting task is allowed to use, instead
+of preferring to put those pages on the node where the task is running.
+
+If the per-cpuset boolean flag file 'cpuset.memory_spread_slab' is set,
+then the kernel will spread some file system related slab caches,
+such as for inodes and dentries evenly over all the nodes that the
+faulting task is allowed to use, instead of preferring to put those
+pages on the node where the task is running.
+
+The setting of these flags does not affect anonymous data segment or
+stack segment pages of a task.
+
+By default, both kinds of memory spreading are off, and memory
+pages are allocated on the node local to where the task is running,
+except perhaps as modified by the task's NUMA mempolicy or cpuset
+configuration, so long as sufficient free memory pages are available.
+
+When new cpusets are created, they inherit the memory spread settings
+of their parent.
+
+Setting memory spreading causes allocations for the affected page
+or slab caches to ignore the task's NUMA mempolicy and be spread
+instead. Tasks using mbind() or set_mempolicy() calls to set NUMA
+mempolicies will not notice any change in these calls as a result of
+their containing task's memory spread settings. If memory spreading
+is turned off, then the currently specified NUMA mempolicy once again
+applies to memory page allocations.
+
+Both 'cpuset.memory_spread_page' and 'cpuset.memory_spread_slab' are boolean flag
+files. By default they contain "0", meaning that the feature is off
+for that cpuset. If a "1" is written to that file, then that turns
+the named feature on.
+
+The implementation is simple.
+
+Setting the flag 'cpuset.memory_spread_page' turns on a per-process flag
+PFA_SPREAD_PAGE for each task that is in that cpuset or subsequently
+joins that cpuset. The page allocation calls for the page cache
+is modified to perform an inline check for this PFA_SPREAD_PAGE task
+flag, and if set, a call to a new routine cpuset_mem_spread_node()
+returns the node to prefer for the allocation.
+
+Similarly, setting 'cpuset.memory_spread_slab' turns on the flag
+PFA_SPREAD_SLAB, and appropriately marked slab caches will allocate
+pages from the node returned by cpuset_mem_spread_node().
+
+The cpuset_mem_spread_node() routine is also simple. It uses the
+value of a per-task rotor cpuset_mem_spread_rotor to select the next
+node in the current task's mems_allowed to prefer for the allocation.
+
+This memory placement policy is also known (in other contexts) as
+round-robin or interleave.
+
+This policy can provide substantial improvements for jobs that need
+to place thread local data on the corresponding node, but that need
+to access large file system data sets that need to be spread across
+the several nodes in the jobs cpuset in order to fit. Without this
+policy, especially for jobs that might have one thread reading in the
+data set, the memory allocation across the nodes in the jobs cpuset
+can become very uneven.
+
+1.7 What is sched_load_balance ?
+--------------------------------
+
+The kernel scheduler (kernel/sched/core.c) automatically load balances
+tasks. If one CPU is underutilized, kernel code running on that
+CPU will look for tasks on other more overloaded CPUs and move those
+tasks to itself, within the constraints of such placement mechanisms
+as cpusets and sched_setaffinity.
+
+The algorithmic cost of load balancing and its impact on key shared
+kernel data structures such as the task list increases more than
+linearly with the number of CPUs being balanced. So the scheduler
+has support to partition the systems CPUs into a number of sched
+domains such that it only load balances within each sched domain.
+Each sched domain covers some subset of the CPUs in the system;
+no two sched domains overlap; some CPUs might not be in any sched
+domain and hence won't be load balanced.
+
+Put simply, it costs less to balance between two smaller sched domains
+than one big one, but doing so means that overloads in one of the
+two domains won't be load balanced to the other one.
+
+By default, there is one sched domain covering all CPUs, including those
+marked isolated using the kernel boot time "isolcpus=" argument. However,
+the isolated CPUs will not participate in load balancing, and will not
+have tasks running on them unless explicitly assigned.
+
+This default load balancing across all CPUs is not well suited for
+the following two situations:
+
+ 1) On large systems, load balancing across many CPUs is expensive.
+ If the system is managed using cpusets to place independent jobs
+ on separate sets of CPUs, full load balancing is unnecessary.
+ 2) Systems supporting realtime on some CPUs need to minimize
+ system overhead on those CPUs, including avoiding task load
+ balancing if that is not needed.
+
+When the per-cpuset flag "cpuset.sched_load_balance" is enabled (the default
+setting), it requests that all the CPUs in that cpusets allowed 'cpuset.cpus'
+be contained in a single sched domain, ensuring that load balancing
+can move a task (not otherwised pinned, as by sched_setaffinity)
+from any CPU in that cpuset to any other.
+
+When the per-cpuset flag "cpuset.sched_load_balance" is disabled, then the
+scheduler will avoid load balancing across the CPUs in that cpuset,
+--except-- in so far as is necessary because some overlapping cpuset
+has "sched_load_balance" enabled.
+
+So, for example, if the top cpuset has the flag "cpuset.sched_load_balance"
+enabled, then the scheduler will have one sched domain covering all
+CPUs, and the setting of the "cpuset.sched_load_balance" flag in any other
+cpusets won't matter, as we're already fully load balancing.
+
+Therefore in the above two situations, the top cpuset flag
+"cpuset.sched_load_balance" should be disabled, and only some of the smaller,
+child cpusets have this flag enabled.
+
+When doing this, you don't usually want to leave any unpinned tasks in
+the top cpuset that might use non-trivial amounts of CPU, as such tasks
+may be artificially constrained to some subset of CPUs, depending on
+the particulars of this flag setting in descendant cpusets. Even if
+such a task could use spare CPU cycles in some other CPUs, the kernel
+scheduler might not consider the possibility of load balancing that
+task to that underused CPU.
+
+Of course, tasks pinned to a particular CPU can be left in a cpuset
+that disables "cpuset.sched_load_balance" as those tasks aren't going anywhere
+else anyway.
+
+There is an impedance mismatch here, between cpusets and sched domains.
+Cpusets are hierarchical and nest. Sched domains are flat; they don't
+overlap and each CPU is in at most one sched domain.
+
+It is necessary for sched domains to be flat because load balancing
+across partially overlapping sets of CPUs would risk unstable dynamics
+that would be beyond our understanding. So if each of two partially
+overlapping cpusets enables the flag 'cpuset.sched_load_balance', then we
+form a single sched domain that is a superset of both. We won't move
+a task to a CPU outside its cpuset, but the scheduler load balancing
+code might waste some compute cycles considering that possibility.
+
+This mismatch is why there is not a simple one-to-one relation
+between which cpusets have the flag "cpuset.sched_load_balance" enabled,
+and the sched domain configuration. If a cpuset enables the flag, it
+will get balancing across all its CPUs, but if it disables the flag,
+it will only be assured of no load balancing if no other overlapping
+cpuset enables the flag.
+
+If two cpusets have partially overlapping 'cpuset.cpus' allowed, and only
+one of them has this flag enabled, then the other may find its
+tasks only partially load balanced, just on the overlapping CPUs.
+This is just the general case of the top_cpuset example given a few
+paragraphs above. In the general case, as in the top cpuset case,
+don't leave tasks that might use non-trivial amounts of CPU in
+such partially load balanced cpusets, as they may be artificially
+constrained to some subset of the CPUs allowed to them, for lack of
+load balancing to the other CPUs.
+
+CPUs in "cpuset.isolcpus" were excluded from load balancing by the
+isolcpus= kernel boot option, and will never be load balanced regardless
+of the value of "cpuset.sched_load_balance" in any cpuset.
+
+1.7.1 sched_load_balance implementation details.
+------------------------------------------------
+
+The per-cpuset flag 'cpuset.sched_load_balance' defaults to enabled (contrary
+to most cpuset flags.) When enabled for a cpuset, the kernel will
+ensure that it can load balance across all the CPUs in that cpuset
+(makes sure that all the CPUs in the cpus_allowed of that cpuset are
+in the same sched domain.)
+
+If two overlapping cpusets both have 'cpuset.sched_load_balance' enabled,
+then they will be (must be) both in the same sched domain.
+
+If, as is the default, the top cpuset has 'cpuset.sched_load_balance' enabled,
+then by the above that means there is a single sched domain covering
+the whole system, regardless of any other cpuset settings.
+
+The kernel commits to user space that it will avoid load balancing
+where it can. It will pick as fine a granularity partition of sched
+domains as it can while still providing load balancing for any set
+of CPUs allowed to a cpuset having 'cpuset.sched_load_balance' enabled.
+
+The internal kernel cpuset to scheduler interface passes from the
+cpuset code to the scheduler code a partition of the load balanced
+CPUs in the system. This partition is a set of subsets (represented
+as an array of struct cpumask) of CPUs, pairwise disjoint, that cover
+all the CPUs that must be load balanced.
+
+The cpuset code builds a new such partition and passes it to the
+scheduler sched domain setup code, to have the sched domains rebuilt
+as necessary, whenever:
+
+ - the 'cpuset.sched_load_balance' flag of a cpuset with non-empty CPUs changes,
+ - or CPUs come or go from a cpuset with this flag enabled,
+ - or 'cpuset.sched_relax_domain_level' value of a cpuset with non-empty CPUs
+ and with this flag enabled changes,
+ - or a cpuset with non-empty CPUs and with this flag enabled is removed,
+ - or a cpu is offlined/onlined.
+
+This partition exactly defines what sched domains the scheduler should
+setup - one sched domain for each element (struct cpumask) in the
+partition.
+
+The scheduler remembers the currently active sched domain partitions.
+When the scheduler routine partition_sched_domains() is invoked from
+the cpuset code to update these sched domains, it compares the new
+partition requested with the current, and updates its sched domains,
+removing the old and adding the new, for each change.
+
+
+1.8 What is sched_relax_domain_level ?
+--------------------------------------
+
+In sched domain, the scheduler migrates tasks in 2 ways; periodic load
+balance on tick, and at time of some schedule events.
+
+When a task is woken up, scheduler try to move the task on idle CPU.
+For example, if a task A running on CPU X activates another task B
+on the same CPU X, and if CPU Y is X's sibling and performing idle,
+then scheduler migrate task B to CPU Y so that task B can start on
+CPU Y without waiting task A on CPU X.
+
+And if a CPU run out of tasks in its runqueue, the CPU try to pull
+extra tasks from other busy CPUs to help them before it is going to
+be idle.
+
+Of course it takes some searching cost to find movable tasks and/or
+idle CPUs, the scheduler might not search all CPUs in the domain
+every time. In fact, in some architectures, the searching ranges on
+events are limited in the same socket or node where the CPU locates,
+while the load balance on tick searches all.
+
+For example, assume CPU Z is relatively far from CPU X. Even if CPU Z
+is idle while CPU X and the siblings are busy, scheduler can't migrate
+woken task B from X to Z since it is out of its searching range.
+As the result, task B on CPU X need to wait task A or wait load balance
+on the next tick. For some applications in special situation, waiting
+1 tick may be too long.
+
+The 'cpuset.sched_relax_domain_level' file allows you to request changing
+this searching range as you like. This file takes int value which
+indicates size of searching range in levels ideally as follows,
+otherwise initial value -1 that indicates the cpuset has no request.
+
+====== ===========================================================
+ -1 no request. use system default or follow request of others.
+ 0 no search.
+ 1 search siblings (hyperthreads in a core).
+ 2 search cores in a package.
+ 3 search cpus in a node [= system wide on non-NUMA system]
+ 4 search nodes in a chunk of node [on NUMA system]
+ 5 search system wide [on NUMA system]
+====== ===========================================================
+
+The system default is architecture dependent. The system default
+can be changed using the relax_domain_level= boot parameter.
+
+This file is per-cpuset and affect the sched domain where the cpuset
+belongs to. Therefore if the flag 'cpuset.sched_load_balance' of a cpuset
+is disabled, then 'cpuset.sched_relax_domain_level' have no effect since
+there is no sched domain belonging the cpuset.
+
+If multiple cpusets are overlapping and hence they form a single sched
+domain, the largest value among those is used. Be careful, if one
+requests 0 and others are -1 then 0 is used.
+
+Note that modifying this file will have both good and bad effects,
+and whether it is acceptable or not depends on your situation.
+Don't modify this file if you are not sure.
+
+If your situation is:
+
+ - The migration costs between each cpu can be assumed considerably
+ small(for you) due to your special application's behavior or
+ special hardware support for CPU cache etc.
+ - The searching cost doesn't have impact(for you) or you can make
+ the searching cost enough small by managing cpuset to compact etc.
+ - The latency is required even it sacrifices cache hit rate etc.
+ then increasing 'sched_relax_domain_level' would benefit you.
+
+
+1.9 How do I use cpusets ?
+--------------------------
+
+In order to minimize the impact of cpusets on critical kernel
+code, such as the scheduler, and due to the fact that the kernel
+does not support one task updating the memory placement of another
+task directly, the impact on a task of changing its cpuset CPU
+or Memory Node placement, or of changing to which cpuset a task
+is attached, is subtle.
+
+If a cpuset has its Memory Nodes modified, then for each task attached
+to that cpuset, the next time that the kernel attempts to allocate
+a page of memory for that task, the kernel will notice the change
+in the task's cpuset, and update its per-task memory placement to
+remain within the new cpusets memory placement. If the task was using
+mempolicy MPOL_BIND, and the nodes to which it was bound overlap with
+its new cpuset, then the task will continue to use whatever subset
+of MPOL_BIND nodes are still allowed in the new cpuset. If the task
+was using MPOL_BIND and now none of its MPOL_BIND nodes are allowed
+in the new cpuset, then the task will be essentially treated as if it
+was MPOL_BIND bound to the new cpuset (even though its NUMA placement,
+as queried by get_mempolicy(), doesn't change). If a task is moved
+from one cpuset to another, then the kernel will adjust the task's
+memory placement, as above, the next time that the kernel attempts
+to allocate a page of memory for that task.
+
+If a cpuset has its 'cpuset.cpus' modified, then each task in that cpuset
+will have its allowed CPU placement changed immediately. Similarly,
+if a task's pid is written to another cpuset's 'tasks' file, then its
+allowed CPU placement is changed immediately. If such a task had been
+bound to some subset of its cpuset using the sched_setaffinity() call,
+the task will be allowed to run on any CPU allowed in its new cpuset,
+negating the effect of the prior sched_setaffinity() call.
+
+In summary, the memory placement of a task whose cpuset is changed is
+updated by the kernel, on the next allocation of a page for that task,
+and the processor placement is updated immediately.
+
+Normally, once a page is allocated (given a physical page
+of main memory) then that page stays on whatever node it
+was allocated, so long as it remains allocated, even if the
+cpusets memory placement policy 'cpuset.mems' subsequently changes.
+If the cpuset flag file 'cpuset.memory_migrate' is set true, then when
+tasks are attached to that cpuset, any pages that task had
+allocated to it on nodes in its previous cpuset are migrated
+to the task's new cpuset. The relative placement of the page within
+the cpuset is preserved during these migration operations if possible.
+For example if the page was on the second valid node of the prior cpuset
+then the page will be placed on the second valid node of the new cpuset.
+
+Also if 'cpuset.memory_migrate' is set true, then if that cpuset's
+'cpuset.mems' file is modified, pages allocated to tasks in that
+cpuset, that were on nodes in the previous setting of 'cpuset.mems',
+will be moved to nodes in the new setting of 'mems.'
+Pages that were not in the task's prior cpuset, or in the cpuset's
+prior 'cpuset.mems' setting, will not be moved.
+
+There is an exception to the above. If hotplug functionality is used
+to remove all the CPUs that are currently assigned to a cpuset,
+then all the tasks in that cpuset will be moved to the nearest ancestor
+with non-empty cpus. But the moving of some (or all) tasks might fail if
+cpuset is bound with another cgroup subsystem which has some restrictions
+on task attaching. In this failing case, those tasks will stay
+in the original cpuset, and the kernel will automatically update
+their cpus_allowed to allow all online CPUs. When memory hotplug
+functionality for removing Memory Nodes is available, a similar exception
+is expected to apply there as well. In general, the kernel prefers to
+violate cpuset placement, over starving a task that has had all
+its allowed CPUs or Memory Nodes taken offline.
+
+There is a second exception to the above. GFP_ATOMIC requests are
+kernel internal allocations that must be satisfied, immediately.
+The kernel may drop some request, in rare cases even panic, if a
+GFP_ATOMIC alloc fails. If the request cannot be satisfied within
+the current task's cpuset, then we relax the cpuset, and look for
+memory anywhere we can find it. It's better to violate the cpuset
+than stress the kernel.
+
+To start a new job that is to be contained within a cpuset, the steps are:
+
+ 1) mkdir /sys/fs/cgroup/cpuset
+ 2) mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset
+ 3) Create the new cpuset by doing mkdir's and write's (or echo's) in
+ the /sys/fs/cgroup/cpuset virtual file system.
+ 4) Start a task that will be the "founding father" of the new job.
+ 5) Attach that task to the new cpuset by writing its pid to the
+ /sys/fs/cgroup/cpuset tasks file for that cpuset.
+ 6) fork, exec or clone the job tasks from this founding father task.
+
+For example, the following sequence of commands will setup a cpuset
+named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
+and then start a subshell 'sh' in that cpuset::
+
+ mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset
+ cd /sys/fs/cgroup/cpuset
+ mkdir Charlie
+ cd Charlie
+ /bin/echo 2-3 > cpuset.cpus
+ /bin/echo 1 > cpuset.mems
+ /bin/echo $$ > tasks
+ sh
+ # The subshell 'sh' is now running in cpuset Charlie
+ # The next line should display '/Charlie'
+ cat /proc/self/cpuset
+
+There are ways to query or modify cpusets:
+
+ - via the cpuset file system directly, using the various cd, mkdir, echo,
+ cat, rmdir commands from the shell, or their equivalent from C.
+ - via the C library libcpuset.
+ - via the C library libcgroup.
+ (http://sourceforge.net/projects/libcg/)
+ - via the python application cset.
+ (http://code.google.com/p/cpuset/)
+
+The sched_setaffinity calls can also be done at the shell prompt using
+SGI's runon or Robert Love's taskset. The mbind and set_mempolicy
+calls can be done at the shell prompt using the numactl command
+(part of Andi Kleen's numa package).
+
+2. Usage Examples and Syntax
+============================
+
+2.1 Basic Usage
+---------------
+
+Creating, modifying, using the cpusets can be done through the cpuset
+virtual filesystem.
+
+To mount it, type:
+# mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset
+
+Then under /sys/fs/cgroup/cpuset you can find a tree that corresponds to the
+tree of the cpusets in the system. For instance, /sys/fs/cgroup/cpuset
+is the cpuset that holds the whole system.
+
+If you want to create a new cpuset under /sys/fs/cgroup/cpuset::
+
+ # cd /sys/fs/cgroup/cpuset
+ # mkdir my_cpuset
+
+Now you want to do something with this cpuset::
+
+ # cd my_cpuset
+
+In this directory you can find several files::
+
+ # ls
+ cgroup.clone_children cpuset.memory_pressure
+ cgroup.event_control cpuset.memory_spread_page
+ cgroup.procs cpuset.memory_spread_slab
+ cpuset.cpu_exclusive cpuset.mems
+ cpuset.cpus cpuset.sched_load_balance
+ cpuset.mem_exclusive cpuset.sched_relax_domain_level
+ cpuset.mem_hardwall notify_on_release
+ cpuset.memory_migrate tasks
+
+Reading them will give you information about the state of this cpuset:
+the CPUs and Memory Nodes it can use, the processes that are using
+it, its properties. By writing to these files you can manipulate
+the cpuset.
+
+Set some flags::
+
+ # /bin/echo 1 > cpuset.cpu_exclusive
+
+Add some cpus::
+
+ # /bin/echo 0-7 > cpuset.cpus
+
+Add some mems::
+
+ # /bin/echo 0-7 > cpuset.mems
+
+Now attach your shell to this cpuset::
+
+ # /bin/echo $$ > tasks
+
+You can also create cpusets inside your cpuset by using mkdir in this
+directory::
+
+ # mkdir my_sub_cs
+
+To remove a cpuset, just use rmdir::
+
+ # rmdir my_sub_cs
+
+This will fail if the cpuset is in use (has cpusets inside, or has
+processes attached).
+
+Note that for legacy reasons, the "cpuset" filesystem exists as a
+wrapper around the cgroup filesystem.
+
+The command::
+
+ mount -t cpuset X /sys/fs/cgroup/cpuset
+
+is equivalent to::
+
+ mount -t cgroup -ocpuset,noprefix X /sys/fs/cgroup/cpuset
+ echo "/sbin/cpuset_release_agent" > /sys/fs/cgroup/cpuset/release_agent
+
+2.2 Adding/removing cpus
+------------------------
+
+This is the syntax to use when writing in the cpus or mems files
+in cpuset directories::
+
+ # /bin/echo 1-4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
+ # /bin/echo 1,2,3,4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
+
+To add a CPU to a cpuset, write the new list of CPUs including the
+CPU to be added. To add 6 to the above cpuset::
+
+ # /bin/echo 1-4,6 > cpuset.cpus -> set cpus list to cpus 1,2,3,4,6
+
+Similarly to remove a CPU from a cpuset, write the new list of CPUs
+without the CPU to be removed.
+
+To remove all the CPUs::
+
+ # /bin/echo "" > cpuset.cpus -> clear cpus list
+
+2.3 Setting flags
+-----------------
+
+The syntax is very simple::
+
+ # /bin/echo 1 > cpuset.cpu_exclusive -> set flag 'cpuset.cpu_exclusive'
+ # /bin/echo 0 > cpuset.cpu_exclusive -> unset flag 'cpuset.cpu_exclusive'
+
+2.4 Attaching processes
+-----------------------
+
+::
+
+ # /bin/echo PID > tasks
+
+Note that it is PID, not PIDs. You can only attach ONE task at a time.
+If you have several tasks to attach, you have to do it one after another::
+
+ # /bin/echo PID1 > tasks
+ # /bin/echo PID2 > tasks
+ ...
+ # /bin/echo PIDn > tasks
+
+
+3. Questions
+============
+
+Q:
+ what's up with this '/bin/echo' ?
+
+A:
+ bash's builtin 'echo' command does not check calls to write() against
+ errors. If you use it in the cpuset file system, you won't be
+ able to tell whether a command succeeded or failed.
+
+Q:
+ When I attach processes, only the first of the line gets really attached !
+
+A:
+ We can only return one error code per call to write(). So you should also
+ put only ONE pid.
+
+4. Contact
+==========
+
+Web: http://www.bullopensource.org/cpuset
--- /dev/null
+===========================
+Device Whitelist Controller
+===========================
+
+1. Description
+==============
+
+Implement a cgroup to track and enforce open and mknod restrictions
+on device files. A device cgroup associates a device access
+whitelist with each cgroup. A whitelist entry has 4 fields.
+'type' is a (all), c (char), or b (block). 'all' means it applies
+to all types and all major and minor numbers. Major and minor are
+either an integer or * for all. Access is a composition of r
+(read), w (write), and m (mknod).
+
+The root device cgroup starts with rwm to 'all'. A child device
+cgroup gets a copy of the parent. Administrators can then remove
+devices from the whitelist or add new entries. A child cgroup can
+never receive a device access which is denied by its parent.
+
+2. User Interface
+=================
+
+An entry is added using devices.allow, and removed using
+devices.deny. For instance::
+
+ echo 'c 1:3 mr' > /sys/fs/cgroup/1/devices.allow
+
+allows cgroup 1 to read and mknod the device usually known as
+/dev/null. Doing::
+
+ echo a > /sys/fs/cgroup/1/devices.deny
+
+will remove the default 'a *:* rwm' entry. Doing::
+
+ echo a > /sys/fs/cgroup/1/devices.allow
+
+will add the 'a *:* rwm' entry to the whitelist.
+
+3. Security
+===========
+
+Any task can move itself between cgroups. This clearly won't
+suffice, but we can decide the best way to adequately restrict
+movement as people get some experience with this. We may just want
+to require CAP_SYS_ADMIN, which at least is a separate bit from
+CAP_MKNOD. We may want to just refuse moving to a cgroup which
+isn't a descendant of the current one. Or we may want to use
+CAP_MAC_ADMIN, since we really are trying to lock down root.
+
+CAP_SYS_ADMIN is needed to modify the whitelist or move another
+task to a new cgroup. (Again we'll probably want to change that).
+
+A cgroup may not be granted more permissions than the cgroup's
+parent has.
+
+4. Hierarchy
+============
+
+device cgroups maintain hierarchy by making sure a cgroup never has more
+access permissions than its parent. Every time an entry is written to
+a cgroup's devices.deny file, all its children will have that entry removed
+from their whitelist and all the locally set whitelist entries will be
+re-evaluated. In case one of the locally set whitelist entries would provide
+more access than the cgroup's parent, it'll be removed from the whitelist.
+
+Example::
+
+ A
+ / \
+ B
+
+ group behavior exceptions
+ A allow "b 8:* rwm", "c 116:1 rw"
+ B deny "c 1:3 rwm", "c 116:2 rwm", "b 3:* rwm"
+
+If a device is denied in group A::
+
+ # echo "c 116:* r" > A/devices.deny
+
+it'll propagate down and after revalidating B's entries, the whitelist entry
+"c 116:2 rwm" will be removed::
+
+ group whitelist entries denied devices
+ A all "b 8:* rwm", "c 116:* rw"
+ B "c 1:3 rwm", "b 3:* rwm" all the rest
+
+In case parent's exceptions change and local exceptions are not allowed
+anymore, they'll be deleted.
+
+Notice that new whitelist entries will not be propagated::
+
+ A
+ / \
+ B
+
+ group whitelist entries denied devices
+ A "c 1:3 rwm", "c 1:5 r" all the rest
+ B "c 1:3 rwm", "c 1:5 r" all the rest
+
+when adding ``c *:3 rwm``::
+
+ # echo "c *:3 rwm" >A/devices.allow
+
+the result::
+
+ group whitelist entries denied devices
+ A "c *:3 rwm", "c 1:5 r" all the rest
+ B "c 1:3 rwm", "c 1:5 r" all the rest
+
+but now it'll be possible to add new entries to B::
+
+ # echo "c 2:3 rwm" >B/devices.allow
+ # echo "c 50:3 r" >B/devices.allow
+
+or even::
+
+ # echo "c *:3 rwm" >B/devices.allow
+
+Allowing or denying all by writing 'a' to devices.allow or devices.deny will
+not be possible once the device cgroups has children.
+
+4.1 Hierarchy (internal implementation)
+---------------------------------------
+
+device cgroups is implemented internally using a behavior (ALLOW, DENY) and a
+list of exceptions. The internal state is controlled using the same user
+interface to preserve compatibility with the previous whitelist-only
+implementation. Removal or addition of exceptions that will reduce the access
+to devices will be propagated down the hierarchy.
+For every propagated exception, the effective rules will be re-evaluated based
+on current parent's access rules.
--- /dev/null
+==============
+Cgroup Freezer
+==============
+
+The cgroup freezer is useful to batch job management system which start
+and stop sets of tasks in order to schedule the resources of a machine
+according to the desires of a system administrator. This sort of program
+is often used on HPC clusters to schedule access to the cluster as a
+whole. The cgroup freezer uses cgroups to describe the set of tasks to
+be started/stopped by the batch job management system. It also provides
+a means to start and stop the tasks composing the job.
+
+The cgroup freezer will also be useful for checkpointing running groups
+of tasks. The freezer allows the checkpoint code to obtain a consistent
+image of the tasks by attempting to force the tasks in a cgroup into a
+quiescent state. Once the tasks are quiescent another task can
+walk /proc or invoke a kernel interface to gather information about the
+quiesced tasks. Checkpointed tasks can be restarted later should a
+recoverable error occur. This also allows the checkpointed tasks to be
+migrated between nodes in a cluster by copying the gathered information
+to another node and restarting the tasks there.
+
+Sequences of SIGSTOP and SIGCONT are not always sufficient for stopping
+and resuming tasks in userspace. Both of these signals are observable
+from within the tasks we wish to freeze. While SIGSTOP cannot be caught,
+blocked, or ignored it can be seen by waiting or ptracing parent tasks.
+SIGCONT is especially unsuitable since it can be caught by the task. Any
+programs designed to watch for SIGSTOP and SIGCONT could be broken by
+attempting to use SIGSTOP and SIGCONT to stop and resume tasks. We can
+demonstrate this problem using nested bash shells::
+
+ $ echo $$
+ 16644
+ $ bash
+ $ echo $$
+ 16690
+
+ From a second, unrelated bash shell:
+ $ kill -SIGSTOP 16690
+ $ kill -SIGCONT 16690
+
+ <at this point 16690 exits and causes 16644 to exit too>
+
+This happens because bash can observe both signals and choose how it
+responds to them.
+
+Another example of a program which catches and responds to these
+signals is gdb. In fact any program designed to use ptrace is likely to
+have a problem with this method of stopping and resuming tasks.
+
+In contrast, the cgroup freezer uses the kernel freezer code to
+prevent the freeze/unfreeze cycle from becoming visible to the tasks
+being frozen. This allows the bash example above and gdb to run as
+expected.
+
+The cgroup freezer is hierarchical. Freezing a cgroup freezes all
+tasks belonging to the cgroup and all its descendant cgroups. Each
+cgroup has its own state (self-state) and the state inherited from the
+parent (parent-state). Iff both states are THAWED, the cgroup is
+THAWED.
+
+The following cgroupfs files are created by cgroup freezer.
+
+* freezer.state: Read-write.
+
+ When read, returns the effective state of the cgroup - "THAWED",
+ "FREEZING" or "FROZEN". This is the combined self and parent-states.
+ If any is freezing, the cgroup is freezing (FREEZING or FROZEN).
+
+ FREEZING cgroup transitions into FROZEN state when all tasks
+ belonging to the cgroup and its descendants become frozen. Note that
+ a cgroup reverts to FREEZING from FROZEN after a new task is added
+ to the cgroup or one of its descendant cgroups until the new task is
+ frozen.
+
+ When written, sets the self-state of the cgroup. Two values are
+ allowed - "FROZEN" and "THAWED". If FROZEN is written, the cgroup,
+ if not already freezing, enters FREEZING state along with all its
+ descendant cgroups.
+
+ If THAWED is written, the self-state of the cgroup is changed to
+ THAWED. Note that the effective state may not change to THAWED if
+ the parent-state is still freezing. If a cgroup's effective state
+ becomes THAWED, all its descendants which are freezing because of
+ the cgroup also leave the freezing state.
+
+* freezer.self_freezing: Read only.
+
+ Shows the self-state. 0 if the self-state is THAWED; otherwise, 1.
+ This value is 1 iff the last write to freezer.state was "FROZEN".
+
+* freezer.parent_freezing: Read only.
+
+ Shows the parent-state. 0 if none of the cgroup's ancestors is
+ frozen; otherwise, 1.
+
+The root cgroup is non-freezable and the above interface files don't
+exist.
+
+* Examples of usage::
+
+ # mkdir /sys/fs/cgroup/freezer
+ # mount -t cgroup -ofreezer freezer /sys/fs/cgroup/freezer
+ # mkdir /sys/fs/cgroup/freezer/0
+ # echo $some_pid > /sys/fs/cgroup/freezer/0/tasks
+
+to get status of the freezer subsystem::
+
+ # cat /sys/fs/cgroup/freezer/0/freezer.state
+ THAWED
+
+to freeze all tasks in the container::
+
+ # echo FROZEN > /sys/fs/cgroup/freezer/0/freezer.state
+ # cat /sys/fs/cgroup/freezer/0/freezer.state
+ FREEZING
+ # cat /sys/fs/cgroup/freezer/0/freezer.state
+ FROZEN
+
+to unfreeze all tasks in the container::
+
+ # echo THAWED > /sys/fs/cgroup/freezer/0/freezer.state
+ # cat /sys/fs/cgroup/freezer/0/freezer.state
+ THAWED
+
+This is the basic mechanism which should do the right thing for user space task
+in a simple scenario.
--- /dev/null
+==================
+HugeTLB Controller
+==================
+
+The HugeTLB controller allows to limit the HugeTLB usage per control group and
+enforces the controller limit during page fault. Since HugeTLB doesn't
+support page reclaim, enforcing the limit at page fault time implies that,
+the application will get SIGBUS signal if it tries to access HugeTLB pages
+beyond its limit. This requires the application to know beforehand how much
+HugeTLB pages it would require for its use.
+
+HugeTLB controller can be created by first mounting the cgroup filesystem.
+
+# mount -t cgroup -o hugetlb none /sys/fs/cgroup
+
+With the above step, the initial or the parent HugeTLB group becomes
+visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
+the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
+
+New groups can be created under the parent group /sys/fs/cgroup::
+
+ # cd /sys/fs/cgroup
+ # mkdir g1
+ # echo $$ > g1/tasks
+
+The above steps create a new group g1 and move the current shell
+process (bash) into it.
+
+Brief summary of control files::
+
+ hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb usage
+ hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
+ hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb
+ hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB limit
+
+For a system supporting three hugepage sizes (64k, 32M and 1G), the control
+files include::
+
+ hugetlb.1GB.limit_in_bytes
+ hugetlb.1GB.max_usage_in_bytes
+ hugetlb.1GB.usage_in_bytes
+ hugetlb.1GB.failcnt
+ hugetlb.64KB.limit_in_bytes
+ hugetlb.64KB.max_usage_in_bytes
+ hugetlb.64KB.usage_in_bytes
+ hugetlb.64KB.failcnt
+ hugetlb.32MB.limit_in_bytes
+ hugetlb.32MB.max_usage_in_bytes
+ hugetlb.32MB.usage_in_bytes
+ hugetlb.32MB.failcnt
--- /dev/null
+========================
+Control Groups version 1
+========================
+
+.. toctree::
+ :maxdepth: 1
+
+ cgroups
+
+ blkio-controller
+ cpuacct
+ cpusets
+ devices
+ freezer-subsystem
+ hugetlb
+ memcg_test
+ memory
+ net_cls
+ net_prio
+ pids
+ rdma
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
--- /dev/null
+=====================================================
+Memory Resource Controller(Memcg) Implementation Memo
+=====================================================
+
+Last Updated: 2010/2
+
+Base Kernel Version: based on 2.6.33-rc7-mm(candidate for 34).
+
+Because VM is getting complex (one of reasons is memcg...), memcg's behavior
+is complex. This is a document for memcg's internal behavior.
+Please note that implementation details can be changed.
+
+(*) Topics on API should be in Documentation/admin-guide/cgroup-v1/memory.rst)
+
+0. How to record usage ?
+========================
+
+ 2 objects are used.
+
+ page_cgroup ....an object per page.
+
+ Allocated at boot or memory hotplug. Freed at memory hot removal.
+
+ swap_cgroup ... an entry per swp_entry.
+
+ Allocated at swapon(). Freed at swapoff().
+
+ The page_cgroup has USED bit and double count against a page_cgroup never
+ occurs. swap_cgroup is used only when a charged page is swapped-out.
+
+1. Charge
+=========
+
+ a page/swp_entry may be charged (usage += PAGE_SIZE) at
+
+ mem_cgroup_try_charge()
+
+2. Uncharge
+===========
+
+ a page/swp_entry may be uncharged (usage -= PAGE_SIZE) by
+
+ mem_cgroup_uncharge()
+ Called when a page's refcount goes down to 0.
+
+ mem_cgroup_uncharge_swap()
+ Called when swp_entry's refcnt goes down to 0. A charge against swap
+ disappears.
+
+3. charge-commit-cancel
+=======================
+
+ Memcg pages are charged in two steps:
+
+ - mem_cgroup_try_charge()
+ - mem_cgroup_commit_charge() or mem_cgroup_cancel_charge()
+
+ At try_charge(), there are no flags to say "this page is charged".
+ at this point, usage += PAGE_SIZE.
+
+ At commit(), the page is associated with the memcg.
+
+ At cancel(), simply usage -= PAGE_SIZE.
+
+Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
+
+4. Anonymous
+============
+
+ Anonymous page is newly allocated at
+ - page fault into MAP_ANONYMOUS mapping.
+ - Copy-On-Write.
+
+ 4.1 Swap-in.
+ At swap-in, the page is taken from swap-cache. There are 2 cases.
+
+ (a) If the SwapCache is newly allocated and read, it has no charges.
+ (b) If the SwapCache has been mapped by processes, it has been
+ charged already.
+
+ 4.2 Swap-out.
+ At swap-out, typical state transition is below.
+
+ (a) add to swap cache. (marked as SwapCache)
+ swp_entry's refcnt += 1.
+ (b) fully unmapped.
+ swp_entry's refcnt += # of ptes.
+ (c) write back to swap.
+ (d) delete from swap cache. (remove from SwapCache)
+ swp_entry's refcnt -= 1.
+
+
+ Finally, at task exit,
+ (e) zap_pte() is called and swp_entry's refcnt -=1 -> 0.
+
+5. Page Cache
+=============
+
+ Page Cache is charged at
+ - add_to_page_cache_locked().
+
+ The logic is very clear. (About migration, see below)
+
+ Note:
+ __remove_from_page_cache() is called by remove_from_page_cache()
+ and __remove_mapping().
+
+6. Shmem(tmpfs) Page Cache
+===========================
+
+ The best way to understand shmem's page state transition is to read
+ mm/shmem.c.
+
+ But brief explanation of the behavior of memcg around shmem will be
+ helpful to understand the logic.
+
+ Shmem's page (just leaf page, not direct/indirect block) can be on
+
+ - radix-tree of shmem's inode.
+ - SwapCache.
+ - Both on radix-tree and SwapCache. This happens at swap-in
+ and swap-out,
+
+ It's charged when...
+
+ - A new page is added to shmem's radix-tree.
+ - A swp page is read. (move a charge from swap_cgroup to page_cgroup)
+
+7. Page Migration
+=================
+
+ mem_cgroup_migrate()
+
+8. LRU
+======
+ Each memcg has its own private LRU. Now, its handling is under global
+ VM's control (means that it's handled under global pgdat->lru_lock).
+ Almost all routines around memcg's LRU is called by global LRU's
+ list management functions under pgdat->lru_lock.
+
+ A special function is mem_cgroup_isolate_pages(). This scans
+ memcg's private LRU and call __isolate_lru_page() to extract a page
+ from LRU.
+
+ (By __isolate_lru_page(), the page is removed from both of global and
+ private LRU.)
+
+
+9. Typical Tests.
+=================
+
+ Tests for racy cases.
+
+9.1 Small limit to memcg.
+-------------------------
+
+ When you do test to do racy case, it's good test to set memcg's limit
+ to be very small rather than GB. Many races found in the test under
+ xKB or xxMB limits.
+
+ (Memory behavior under GB and Memory behavior under MB shows very
+ different situation.)
+
+9.2 Shmem
+---------
+
+ Historically, memcg's shmem handling was poor and we saw some amount
+ of troubles here. This is because shmem is page-cache but can be
+ SwapCache. Test with shmem/tmpfs is always good test.
+
+9.3 Migration
+-------------
+
+ For NUMA, migration is an another special case. To do easy test, cpuset
+ is useful. Following is a sample script to do migration::
+
+ mount -t cgroup -o cpuset none /opt/cpuset
+
+ mkdir /opt/cpuset/01
+ echo 1 > /opt/cpuset/01/cpuset.cpus
+ echo 0 > /opt/cpuset/01/cpuset.mems
+ echo 1 > /opt/cpuset/01/cpuset.memory_migrate
+ mkdir /opt/cpuset/02
+ echo 1 > /opt/cpuset/02/cpuset.cpus
+ echo 1 > /opt/cpuset/02/cpuset.mems
+ echo 1 > /opt/cpuset/02/cpuset.memory_migrate
+
+ In above set, when you moves a task from 01 to 02, page migration to
+ node 0 to node 1 will occur. Following is a script to migrate all
+ under cpuset.::
+
+ --
+ move_task()
+ {
+ for pid in $1
+ do
+ /bin/echo $pid >$2/tasks 2>/dev/null
+ echo -n $pid
+ echo -n " "
+ done
+ echo END
+ }
+
+ G1_TASK=`cat ${G1}/tasks`
+ G2_TASK=`cat ${G2}/tasks`
+ move_task "${G1_TASK}" ${G2} &
+ --
+
+9.4 Memory hotplug
+------------------
+
+ memory hotplug test is one of good test.
+
+ to offline memory, do following::
+
+ # echo offline > /sys/devices/system/memory/memoryXXX/state
+
+ (XXX is the place of memory)
+
+ This is an easy way to test page migration, too.
+
+9.5 mkdir/rmdir
+---------------
+
+ When using hierarchy, mkdir/rmdir test should be done.
+ Use tests like the following::
+
+ echo 1 >/opt/cgroup/01/memory/use_hierarchy
+ mkdir /opt/cgroup/01/child_a
+ mkdir /opt/cgroup/01/child_b
+
+ set limit to 01.
+ add limit to 01/child_b
+ run jobs under child_a and child_b
+
+ create/delete following groups at random while jobs are running::
+
+ /opt/cgroup/01/child_a/child_aa
+ /opt/cgroup/01/child_b/child_bb
+ /opt/cgroup/01/child_c
+
+ running new jobs in new group is also good.
+
+9.6 Mount with other subsystems
+-------------------------------
+
+ Mounting with other subsystems is a good test because there is a
+ race and lock dependency with other cgroup subsystems.
+
+ example::
+
+ # mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
+
+ and do task move, mkdir, rmdir etc...under this.
+
+9.7 swapoff
+-----------
+
+ Besides management of swap is one of complicated parts of memcg,
+ call path of swap-in at swapoff is not same as usual swap-in path..
+ It's worth to be tested explicitly.
+
+ For example, test like following is good:
+
+ (Shell-A)::
+
+ # mount -t cgroup none /cgroup -o memory
+ # mkdir /cgroup/test
+ # echo 40M > /cgroup/test/memory.limit_in_bytes
+ # echo 0 > /cgroup/test/tasks
+
+ Run malloc(100M) program under this. You'll see 60M of swaps.
+
+ (Shell-B)::
+
+ # move all tasks in /cgroup/test to /cgroup
+ # /sbin/swapoff -a
+ # rmdir /cgroup/test
+ # kill malloc task.
+
+ Of course, tmpfs v.s. swapoff test should be tested, too.
+
+9.8 OOM-Killer
+--------------
+
+ Out-of-memory caused by memcg's limit will kill tasks under
+ the memcg. When hierarchy is used, a task under hierarchy
+ will be killed by the kernel.
+
+ In this case, panic_on_oom shouldn't be invoked and tasks
+ in other groups shouldn't be killed.
+
+ It's not difficult to cause OOM under memcg as following.
+
+ Case A) when you can swapoff::
+
+ #swapoff -a
+ #echo 50M > /memory.limit_in_bytes
+
+ run 51M of malloc
+
+ Case B) when you use mem+swap limitation::
+
+ #echo 50M > memory.limit_in_bytes
+ #echo 50M > memory.memsw.limit_in_bytes
+
+ run 51M of malloc
+
+9.9 Move charges at task migration
+----------------------------------
+
+ Charges associated with a task can be moved along with task migration.
+
+ (Shell-A)::
+
+ #mkdir /cgroup/A
+ #echo $$ >/cgroup/A/tasks
+
+ run some programs which uses some amount of memory in /cgroup/A.
+
+ (Shell-B)::
+
+ #mkdir /cgroup/B
+ #echo 1 >/cgroup/B/memory.move_charge_at_immigrate
+ #echo "pid of the program running in group A" >/cgroup/B/tasks
+
+ You can see charges have been moved by reading ``*.usage_in_bytes`` or
+ memory.stat of both A and B.
+
+ See 8.2 of Documentation/admin-guide/cgroup-v1/memory.rst to see what value should
+ be written to move_charge_at_immigrate.
+
+9.10 Memory thresholds
+----------------------
+
+ Memory controller implements memory thresholds using cgroups notification
+ API. You can use tools/cgroup/cgroup_event_listener.c to test it.
+
+ (Shell-A) Create cgroup and run event listener::
+
+ # mkdir /cgroup/A
+ # ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
+
+ (Shell-B) Add task to cgroup and try to allocate and free memory::
+
+ # echo $$ >/cgroup/A/tasks
+ # a="$(dd if=/dev/zero bs=1M count=10)"
+ # a=
+
+ You will see message from cgroup_event_listener every time you cross
+ the thresholds.
+
+ Use /cgroup/A/memory.memsw.usage_in_bytes to test memsw thresholds.
+
+ It's good idea to test root cgroup as well.
--- /dev/null
+==========================
+Memory Resource Controller
+==========================
+
+NOTE:
+ This document is hopelessly outdated and it asks for a complete
+ rewrite. It still contains a useful information so we are keeping it
+ here but make sure to check the current code if you need a deeper
+ understanding.
+
+NOTE:
+ The Memory Resource Controller has generically been referred to as the
+ memory controller in this document. Do not confuse memory controller
+ used here with the memory controller that is used in hardware.
+
+(For editors) In this document:
+ When we mention a cgroup (cgroupfs's directory) with memory controller,
+ we call it "memory cgroup". When you see git-log and source code, you'll
+ see patch's title and function names tend to use "memcg".
+ In this document, we avoid using it.
+
+Benefits and Purpose of the memory controller
+=============================================
+
+The memory controller isolates the memory behaviour of a group of tasks
+from the rest of the system. The article on LWN [12] mentions some probable
+uses of the memory controller. The memory controller can be used to
+
+a. Isolate an application or a group of applications
+ Memory-hungry applications can be isolated and limited to a smaller
+ amount of memory.
+b. Create a cgroup with a limited amount of memory; this can be used
+ as a good alternative to booting with mem=XXXX.
+c. Virtualization solutions can control the amount of memory they want
+ to assign to a virtual machine instance.
+d. A CD/DVD burner could control the amount of memory used by the
+ rest of the system to ensure that burning does not fail due to lack
+ of available memory.
+e. There are several other use cases; find one or use the controller just
+ for fun (to learn and hack on the VM subsystem).
+
+Current Status: linux-2.6.34-mmotm(development version of 2010/April)
+
+Features:
+
+ - accounting anonymous pages, file caches, swap caches usage and limiting them.
+ - pages are linked to per-memcg LRU exclusively, and there is no global LRU.
+ - optionally, memory+swap usage can be accounted and limited.
+ - hierarchical accounting
+ - soft limit
+ - moving (recharging) account at moving a task is selectable.
+ - usage threshold notifier
+ - memory pressure notifier
+ - oom-killer disable knob and oom-notifier
+ - Root cgroup has no limit controls.
+
+ Kernel memory support is a work in progress, and the current version provides
+ basically functionality. (See Section 2.7)
+
+Brief summary of control files.
+
+==================================== ==========================================
+ tasks attach a task(thread) and show list of
+ threads
+ cgroup.procs show list of processes
+ cgroup.event_control an interface for event_fd()
+ memory.usage_in_bytes show current usage for memory
+ (See 5.5 for details)
+ memory.memsw.usage_in_bytes show current usage for memory+Swap
+ (See 5.5 for details)
+ memory.limit_in_bytes set/show limit of memory usage
+ memory.memsw.limit_in_bytes set/show limit of memory+Swap usage
+ memory.failcnt show the number of memory usage hits limits
+ memory.memsw.failcnt show the number of memory+Swap hits limits
+ memory.max_usage_in_bytes show max memory usage recorded
+ memory.memsw.max_usage_in_bytes show max memory+Swap usage recorded
+ memory.soft_limit_in_bytes set/show soft limit of memory usage
+ memory.stat show various statistics
+ memory.use_hierarchy set/show hierarchical account enabled
+ memory.force_empty trigger forced page reclaim
+ memory.pressure_level set memory pressure notifications
+ memory.swappiness set/show swappiness parameter of vmscan
+ (See sysctl's vm.swappiness)
+ memory.move_charge_at_immigrate set/show controls of moving charges
+ memory.oom_control set/show oom controls.
+ memory.numa_stat show the number of memory usage per numa
+ node
+
+ memory.kmem.limit_in_bytes set/show hard limit for kernel memory
+ memory.kmem.usage_in_bytes show current kernel memory allocation
+ memory.kmem.failcnt show the number of kernel memory usage
+ hits limits
+ memory.kmem.max_usage_in_bytes show max kernel memory usage recorded
+
+ memory.kmem.tcp.limit_in_bytes set/show hard limit for tcp buf memory
+ memory.kmem.tcp.usage_in_bytes show current tcp buf memory allocation
+ memory.kmem.tcp.failcnt show the number of tcp buf memory usage
+ hits limits
+ memory.kmem.tcp.max_usage_in_bytes show max tcp buf memory usage recorded
+==================================== ==========================================
+
+1. History
+==========
+
+The memory controller has a long history. A request for comments for the memory
+controller was posted by Balbir Singh [1]. At the time the RFC was posted
+there were several implementations for memory control. The goal of the
+RFC was to build consensus and agreement for the minimal features required
+for memory control. The first RSS controller was posted by Balbir Singh[2]
+in Feb 2007. Pavel Emelianov [3][4][5] has since posted three versions of the
+RSS controller. At OLS, at the resource management BoF, everyone suggested
+that we handle both page cache and RSS together. Another request was raised
+to allow user space handling of OOM. The current memory controller is
+at version 6; it combines both mapped (RSS) and unmapped Page
+Cache Control [11].
+
+2. Memory Control
+=================
+
+Memory is a unique resource in the sense that it is present in a limited
+amount. If a task requires a lot of CPU processing, the task can spread
+its processing over a period of hours, days, months or years, but with
+memory, the same physical memory needs to be reused to accomplish the task.
+
+The memory controller implementation has been divided into phases. These
+are:
+
+1. Memory controller
+2. mlock(2) controller
+3. Kernel user memory accounting and slab control
+4. user mappings length controller
+
+The memory controller is the first controller developed.
+
+2.1. Design
+-----------
+
+The core of the design is a counter called the page_counter. The
+page_counter tracks the current memory usage and limit of the group of
+processes associated with the controller. Each cgroup has a memory controller
+specific data structure (mem_cgroup) associated with it.
+
+2.2. Accounting
+---------------
+
+::
+
+ +--------------------+
+ | mem_cgroup |
+ | (page_counter) |
+ +--------------------+
+ / ^ \
+ / | \
+ +---------------+ | +---------------+
+ | mm_struct | |.... | mm_struct |
+ | | | | |
+ +---------------+ | +---------------+
+ |
+ + --------------+
+ |
+ +---------------+ +------+--------+
+ | page +----------> page_cgroup|
+ | | | |
+ +---------------+ +---------------+
+
+ (Figure 1: Hierarchy of Accounting)
+
+
+Figure 1 shows the important aspects of the controller
+
+1. Accounting happens per cgroup
+2. Each mm_struct knows about which cgroup it belongs to
+3. Each page has a pointer to the page_cgroup, which in turn knows the
+ cgroup it belongs to
+
+The accounting is done as follows: mem_cgroup_charge_common() is invoked to
+set up the necessary data structures and check if the cgroup that is being
+charged is over its limit. If it is, then reclaim is invoked on the cgroup.
+More details can be found in the reclaim section of this document.
+If everything goes well, a page meta-data-structure called page_cgroup is
+updated. page_cgroup has its own LRU on cgroup.
+(*) page_cgroup structure is allocated at boot/memory-hotplug time.
+
+2.2.1 Accounting details
+------------------------
+
+All mapped anon pages (RSS) and cache pages (Page Cache) are accounted.
+Some pages which are never reclaimable and will not be on the LRU
+are not accounted. We just account pages under usual VM management.
+
+RSS pages are accounted at page_fault unless they've already been accounted
+for earlier. A file page will be accounted for as Page Cache when it's
+inserted into inode (radix-tree). While it's mapped into the page tables of
+processes, duplicate accounting is carefully avoided.
+
+An RSS page is unaccounted when it's fully unmapped. A PageCache page is
+unaccounted when it's removed from radix-tree. Even if RSS pages are fully
+unmapped (by kswapd), they may exist as SwapCache in the system until they
+are really freed. Such SwapCaches are also accounted.
+A swapped-in page is not accounted until it's mapped.
+
+Note: The kernel does swapin-readahead and reads multiple swaps at once.
+This means swapped-in pages may contain pages for other tasks than a task
+causing page fault. So, we avoid accounting at swap-in I/O.
+
+At page migration, accounting information is kept.
+
+Note: we just account pages-on-LRU because our purpose is to control amount
+of used pages; not-on-LRU pages tend to be out-of-control from VM view.
+
+2.3 Shared Page Accounting
+--------------------------
+
+Shared pages are accounted on the basis of the first touch approach. The
+cgroup that first touches a page is accounted for the page. The principle
+behind this approach is that a cgroup that aggressively uses a shared
+page will eventually get charged for it (once it is uncharged from
+the cgroup that brought it in -- this will happen on memory pressure).
+
+But see section 8.2: when moving a task to another cgroup, its pages may
+be recharged to the new cgroup, if move_charge_at_immigrate has been chosen.
+
+Exception: If CONFIG_MEMCG_SWAP is not used.
+When you do swapoff and make swapped-out pages of shmem(tmpfs) to
+be backed into memory in force, charges for pages are accounted against the
+caller of swapoff rather than the users of shmem.
+
+2.4 Swap Extension (CONFIG_MEMCG_SWAP)
+--------------------------------------
+
+Swap Extension allows you to record charge for swap. A swapped-in page is
+charged back to original page allocator if possible.
+
+When swap is accounted, following files are added.
+
+ - memory.memsw.usage_in_bytes.
+ - memory.memsw.limit_in_bytes.
+
+memsw means memory+swap. Usage of memory+swap is limited by
+memsw.limit_in_bytes.
+
+Example: Assume a system with 4G of swap. A task which allocates 6G of memory
+(by mistake) under 2G memory limitation will use all swap.
+In this case, setting memsw.limit_in_bytes=3G will prevent bad use of swap.
+By using the memsw limit, you can avoid system OOM which can be caused by swap
+shortage.
+
+**why 'memory+swap' rather than swap**
+
+The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
+to move account from memory to swap...there is no change in usage of
+memory+swap. In other words, when we want to limit the usage of swap without
+affecting global LRU, memory+swap limit is better than just limiting swap from
+an OS point of view.
+
+**What happens when a cgroup hits memory.memsw.limit_in_bytes**
+
+When a cgroup hits memory.memsw.limit_in_bytes, it's useless to do swap-out
+in this cgroup. Then, swap-out will not be done by cgroup routine and file
+caches are dropped. But as mentioned above, global LRU can do swapout memory
+from it for sanity of the system's memory management state. You can't forbid
+it by cgroup.
+
+2.5 Reclaim
+-----------
+
+Each cgroup maintains a per cgroup LRU which has the same structure as
+global VM. When a cgroup goes over its limit, we first try
+to reclaim memory from the cgroup so as to make space for the new
+pages that the cgroup has touched. If the reclaim is unsuccessful,
+an OOM routine is invoked to select and kill the bulkiest task in the
+cgroup. (See 10. OOM Control below.)
+
+The reclaim algorithm has not been modified for cgroups, except that
+pages that are selected for reclaiming come from the per-cgroup LRU
+list.
+
+NOTE:
+ Reclaim does not work for the root cgroup, since we cannot set any
+ limits on the root cgroup.
+
+Note2:
+ When panic_on_oom is set to "2", the whole system will panic.
+
+When oom event notifier is registered, event will be delivered.
+(See oom_control section)
+
+2.6 Locking
+-----------
+
+ lock_page_cgroup()/unlock_page_cgroup() should not be called under
+ the i_pages lock.
+
+ Other lock order is following:
+
+ PG_locked.
+ mm->page_table_lock
+ pgdat->lru_lock
+ lock_page_cgroup.
+
+ In many cases, just lock_page_cgroup() is called.
+
+ per-zone-per-cgroup LRU (cgroup's private LRU) is just guarded by
+ pgdat->lru_lock, it has no lock of its own.
+
+2.7 Kernel Memory Extension (CONFIG_MEMCG_KMEM)
+-----------------------------------------------
+
+With the Kernel memory extension, the Memory Controller is able to limit
+the amount of kernel memory used by the system. Kernel memory is fundamentally
+different than user memory, since it can't be swapped out, which makes it
+possible to DoS the system by consuming too much of this precious resource.
+
+Kernel memory accounting is enabled for all memory cgroups by default. But
+it can be disabled system-wide by passing cgroup.memory=nokmem to the kernel
+at boot time. In this case, kernel memory will not be accounted at all.
+
+Kernel memory limits are not imposed for the root cgroup. Usage for the root
+cgroup may or may not be accounted. The memory used is accumulated into
+memory.kmem.usage_in_bytes, or in a separate counter when it makes sense.
+(currently only for tcp).
+
+The main "kmem" counter is fed into the main counter, so kmem charges will
+also be visible from the user counter.
+
+Currently no soft limit is implemented for kernel memory. It is future work
+to trigger slab reclaim when those limits are reached.
+
+2.7.1 Current Kernel Memory resources accounted
+-----------------------------------------------
+
+stack pages:
+ every process consumes some stack pages. By accounting into
+ kernel memory, we prevent new processes from being created when the kernel
+ memory usage is too high.
+
+slab pages:
+ pages allocated by the SLAB or SLUB allocator are tracked. A copy
+ of each kmem_cache is created every time the cache is touched by the first time
+ from inside the memcg. The creation is done lazily, so some objects can still be
+ skipped while the cache is being created. All objects in a slab page should
+ belong to the same memcg. This only fails to hold when a task is migrated to a
+ different memcg during the page allocation by the cache.
+
+sockets memory pressure:
+ some sockets protocols have memory pressure
+ thresholds. The Memory Controller allows them to be controlled individually
+ per cgroup, instead of globally.
+
+tcp memory pressure:
+ sockets memory pressure for the tcp protocol.
+
+2.7.2 Common use cases
+----------------------
+
+Because the "kmem" counter is fed to the main user counter, kernel memory can
+never be limited completely independently of user memory. Say "U" is the user
+limit, and "K" the kernel limit. There are three possible ways limits can be
+set:
+
+U != 0, K = unlimited:
+ This is the standard memcg limitation mechanism already present before kmem
+ accounting. Kernel memory is completely ignored.
+
+U != 0, K < U:
+ Kernel memory is a subset of the user memory. This setup is useful in
+ deployments where the total amount of memory per-cgroup is overcommited.
+ Overcommiting kernel memory limits is definitely not recommended, since the
+ box can still run out of non-reclaimable memory.
+ In this case, the admin could set up K so that the sum of all groups is
+ never greater than the total memory, and freely set U at the cost of his
+ QoS.
+
+WARNING:
+ In the current implementation, memory reclaim will NOT be
+ triggered for a cgroup when it hits K while staying below U, which makes
+ this setup impractical.
+
+U != 0, K >= U:
+ Since kmem charges will also be fed to the user counter and reclaim will be
+ triggered for the cgroup for both kinds of memory. This setup gives the
+ admin a unified view of memory, and it is also useful for people who just
+ want to track kernel memory usage.
+
+3. User Interface
+=================
+
+3.0. Configuration
+------------------
+
+a. Enable CONFIG_CGROUPS
+b. Enable CONFIG_MEMCG
+c. Enable CONFIG_MEMCG_SWAP (to use swap extension)
+d. Enable CONFIG_MEMCG_KMEM (to use kmem extension)
+
+3.1. Prepare the cgroups (see cgroups.txt, Why are cgroups needed?)
+-------------------------------------------------------------------
+
+::
+
+ # mount -t tmpfs none /sys/fs/cgroup
+ # mkdir /sys/fs/cgroup/memory
+ # mount -t cgroup none /sys/fs/cgroup/memory -o memory
+
+3.2. Make the new group and move bash into it::
+
+ # mkdir /sys/fs/cgroup/memory/0
+ # echo $$ > /sys/fs/cgroup/memory/0/tasks
+
+Since now we're in the 0 cgroup, we can alter the memory limit::
+
+ # echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes
+
+NOTE:
+ We can use a suffix (k, K, m, M, g or G) to indicate values in kilo,
+ mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes,
+ Gibibytes.)
+
+NOTE:
+ We can write "-1" to reset the ``*.limit_in_bytes(unlimited)``.
+
+NOTE:
+ We cannot set limits on the root cgroup any more.
+
+::
+
+ # cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes
+ 4194304
+
+We can check the usage::
+
+ # cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes
+ 1216512
+
+A successful write to this file does not guarantee a successful setting of
+this limit to the value written into the file. This can be due to a
+number of factors, such as rounding up to page boundaries or the total
+availability of memory on the system. The user is required to re-read
+this file after a write to guarantee the value committed by the kernel::
+
+ # echo 1 > memory.limit_in_bytes
+ # cat memory.limit_in_bytes
+ 4096
+
+The memory.failcnt field gives the number of times that the cgroup limit was
+exceeded.
+
+The memory.stat file gives accounting information. Now, the number of
+caches, RSS and Active pages/Inactive pages are shown.
+
+4. Testing
+==========
+
+For testing features and implementation, see memcg_test.txt.
+
+Performance test is also important. To see pure memory controller's overhead,
+testing on tmpfs will give you good numbers of small overheads.
+Example: do kernel make on tmpfs.
+
+Page-fault scalability is also important. At measuring parallel
+page fault test, multi-process test may be better than multi-thread
+test because it has noise of shared objects/status.
+
+But the above two are testing extreme situations.
+Trying usual test under memory controller is always helpful.
+
+4.1 Troubleshooting
+-------------------
+
+Sometimes a user might find that the application under a cgroup is
+terminated by the OOM killer. There are several causes for this:
+
+1. The cgroup limit is too low (just too low to do anything useful)
+2. The user is using anonymous memory and swap is turned off or too low
+
+A sync followed by echo 1 > /proc/sys/vm/drop_caches will help get rid of
+some of the pages cached in the cgroup (page cache pages).
+
+To know what happens, disabling OOM_Kill as per "10. OOM Control" (below) and
+seeing what happens will be helpful.
+
+4.2 Task migration
+------------------
+
+When a task migrates from one cgroup to another, its charge is not
+carried forward by default. The pages allocated from the original cgroup still
+remain charged to it, the charge is dropped when the page is freed or
+reclaimed.
+
+You can move charges of a task along with task migration.
+See 8. "Move charges at task migration"
+
+4.3 Removing a cgroup
+---------------------
+
+A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a
+cgroup might have some charge associated with it, even though all
+tasks have migrated away from it. (because we charge against pages, not
+against tasks.)
+
+We move the stats to root (if use_hierarchy==0) or parent (if
+use_hierarchy==1), and no change on the charge except uncharging
+from the child.
+
+Charges recorded in swap information is not updated at removal of cgroup.
+Recorded information is discarded and a cgroup which uses swap (swapcache)
+will be charged as a new owner of it.
+
+About use_hierarchy, see Section 6.
+
+5. Misc. interfaces
+===================
+
+5.1 force_empty
+---------------
+ memory.force_empty interface is provided to make cgroup's memory usage empty.
+ When writing anything to this::
+
+ # echo 0 > memory.force_empty
+
+ the cgroup will be reclaimed and as many pages reclaimed as possible.
+
+ The typical use case for this interface is before calling rmdir().
+ Though rmdir() offlines memcg, but the memcg may still stay there due to
+ charged file caches. Some out-of-use page caches may keep charged until
+ memory pressure happens. If you want to avoid that, force_empty will be useful.
+
+ Also, note that when memory.kmem.limit_in_bytes is set the charges due to
+ kernel pages will still be seen. This is not considered a failure and the
+ write will still return success. In this case, it is expected that
+ memory.kmem.usage_in_bytes == memory.usage_in_bytes.
+
+ About use_hierarchy, see Section 6.
+
+5.2 stat file
+-------------
+
+memory.stat file includes following statistics
+
+per-memory cgroup local status
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+=============== ===============================================================
+cache # of bytes of page cache memory.
+rss # of bytes of anonymous and swap cache memory (includes
+ transparent hugepages).
+rss_huge # of bytes of anonymous transparent hugepages.
+mapped_file # of bytes of mapped file (includes tmpfs/shmem)
+pgpgin # of charging events to the memory cgroup. The charging
+ event happens each time a page is accounted as either mapped
+ anon page(RSS) or cache page(Page Cache) to the cgroup.
+pgpgout # of uncharging events to the memory cgroup. The uncharging
+ event happens each time a page is unaccounted from the cgroup.
+swap # of bytes of swap usage
+dirty # of bytes that are waiting to get written back to the disk.
+writeback # of bytes of file/anon cache that are queued for syncing to
+ disk.
+inactive_anon # of bytes of anonymous and swap cache memory on inactive
+ LRU list.
+active_anon # of bytes of anonymous and swap cache memory on active
+ LRU list.
+inactive_file # of bytes of file-backed memory on inactive LRU list.
+active_file # of bytes of file-backed memory on active LRU list.
+unevictable # of bytes of memory that cannot be reclaimed (mlocked etc).
+=============== ===============================================================
+
+status considering hierarchy (see memory.use_hierarchy settings)
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+========================= ===================================================
+hierarchical_memory_limit # of bytes of memory limit with regard to hierarchy
+ under which the memory cgroup is
+hierarchical_memsw_limit # of bytes of memory+swap limit with regard to
+ hierarchy under which memory cgroup is.
+
+total_<counter> # hierarchical version of <counter>, which in
+ addition to the cgroup's own value includes the
+ sum of all hierarchical children's values of
+ <counter>, i.e. total_cache
+========================= ===================================================
+
+The following additional stats are dependent on CONFIG_DEBUG_VM
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+========================= ========================================
+recent_rotated_anon VM internal parameter. (see mm/vmscan.c)
+recent_rotated_file VM internal parameter. (see mm/vmscan.c)
+recent_scanned_anon VM internal parameter. (see mm/vmscan.c)
+recent_scanned_file VM internal parameter. (see mm/vmscan.c)
+========================= ========================================
+
+Memo:
+ recent_rotated means recent frequency of LRU rotation.
+ recent_scanned means recent # of scans to LRU.
+ showing for better debug please see the code for meanings.
+
+Note:
+ Only anonymous and swap cache memory is listed as part of 'rss' stat.
+ This should not be confused with the true 'resident set size' or the
+ amount of physical memory used by the cgroup.
+
+ 'rss + mapped_file" will give you resident set size of cgroup.
+
+ (Note: file and shmem may be shared among other cgroups. In that case,
+ mapped_file is accounted only when the memory cgroup is owner of page
+ cache.)
+
+5.3 swappiness
+--------------
+
+Overrides /proc/sys/vm/swappiness for the particular group. The tunable
+in the root cgroup corresponds to the global swappiness setting.
+
+Please note that unlike during the global reclaim, limit reclaim
+enforces that 0 swappiness really prevents from any swapping even if
+there is a swap storage available. This might lead to memcg OOM killer
+if there are no file pages to reclaim.
+
+5.4 failcnt
+-----------
+
+A memory cgroup provides memory.failcnt and memory.memsw.failcnt files.
+This failcnt(== failure count) shows the number of times that a usage counter
+hit its limit. When a memory cgroup hits a limit, failcnt increases and
+memory under it will be reclaimed.
+
+You can reset failcnt by writing 0 to failcnt file::
+
+ # echo 0 > .../memory.failcnt
+
+5.5 usage_in_bytes
+------------------
+
+For efficiency, as other kernel components, memory cgroup uses some optimization
+to avoid unnecessary cacheline false sharing. usage_in_bytes is affected by the
+method and doesn't show 'exact' value of memory (and swap) usage, it's a fuzz
+value for efficient access. (Of course, when necessary, it's synchronized.)
+If you want to know more exact memory usage, you should use RSS+CACHE(+SWAP)
+value in memory.stat(see 5.2).
+
+5.6 numa_stat
+-------------
+
+This is similar to numa_maps but operates on a per-memcg basis. This is
+useful for providing visibility into the numa locality information within
+an memcg since the pages are allowed to be allocated from any physical
+node. One of the use cases is evaluating application performance by
+combining this information with the application's CPU allocation.
+
+Each memcg's numa_stat file includes "total", "file", "anon" and "unevictable"
+per-node page counts including "hierarchical_<counter>" which sums up all
+hierarchical children's values in addition to the memcg's own value.
+
+The output format of memory.numa_stat is::
+
+ total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
+ hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ...
+
+The "total" count is sum of file + anon + unevictable.
+
+6. Hierarchy support
+====================
+
+The memory controller supports a deep hierarchy and hierarchical accounting.
+The hierarchy is created by creating the appropriate cgroups in the
+cgroup filesystem. Consider for example, the following cgroup filesystem
+hierarchy::
+
+ root
+ / | \
+ / | \
+ a b c
+ | \
+ | \
+ d e
+
+In the diagram above, with hierarchical accounting enabled, all memory
+usage of e, is accounted to its ancestors up until the root (i.e, c and root),
+that has memory.use_hierarchy enabled. If one of the ancestors goes over its
+limit, the reclaim algorithm reclaims from the tasks in the ancestor and the
+children of the ancestor.
+
+6.1 Enabling hierarchical accounting and reclaim
+------------------------------------------------
+
+A memory cgroup by default disables the hierarchy feature. Support
+can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup::
+
+ # echo 1 > memory.use_hierarchy
+
+The feature can be disabled by::
+
+ # echo 0 > memory.use_hierarchy
+
+NOTE1:
+ Enabling/disabling will fail if either the cgroup already has other
+ cgroups created below it, or if the parent cgroup has use_hierarchy
+ enabled.
+
+NOTE2:
+ When panic_on_oom is set to "2", the whole system will panic in
+ case of an OOM event in any cgroup.
+
+7. Soft limits
+==============
+
+Soft limits allow for greater sharing of memory. The idea behind soft limits
+is to allow control groups to use as much of the memory as needed, provided
+
+a. There is no memory contention
+b. They do not exceed their hard limit
+
+When the system detects memory contention or low memory, control groups
+are pushed back to their soft limits. If the soft limit of each control
+group is very high, they are pushed back as much as possible to make
+sure that one control group does not starve the others of memory.
+
+Please note that soft limits is a best-effort feature; it comes with
+no guarantees, but it does its best to make sure that when memory is
+heavily contended for, memory is allocated based on the soft limit
+hints/setup. Currently soft limit based reclaim is set up such that
+it gets invoked from balance_pgdat (kswapd).
+
+7.1 Interface
+-------------
+
+Soft limits can be setup by using the following commands (in this example we
+assume a soft limit of 256 MiB)::
+
+ # echo 256M > memory.soft_limit_in_bytes
+
+If we want to change this to 1G, we can at any time use::
+
+ # echo 1G > memory.soft_limit_in_bytes
+
+NOTE1:
+ Soft limits take effect over a long period of time, since they involve
+ reclaiming memory for balancing between memory cgroups
+NOTE2:
+ It is recommended to set the soft limit always below the hard limit,
+ otherwise the hard limit will take precedence.
+
+8. Move charges at task migration
+=================================
+
+Users can move charges associated with a task along with task migration, that
+is, uncharge task's pages from the old cgroup and charge them to the new cgroup.
+This feature is not supported in !CONFIG_MMU environments because of lack of
+page tables.
+
+8.1 Interface
+-------------
+
+This feature is disabled by default. It can be enabled (and disabled again) by
+writing to memory.move_charge_at_immigrate of the destination cgroup.
+
+If you want to enable it::
+
+ # echo (some positive value) > memory.move_charge_at_immigrate
+
+Note:
+ Each bits of move_charge_at_immigrate has its own meaning about what type
+ of charges should be moved. See 8.2 for details.
+Note:
+ Charges are moved only when you move mm->owner, in other words,
+ a leader of a thread group.
+Note:
+ If we cannot find enough space for the task in the destination cgroup, we
+ try to make space by reclaiming memory. Task migration may fail if we
+ cannot make enough space.
+Note:
+ It can take several seconds if you move charges much.
+
+And if you want disable it again::
+
+ # echo 0 > memory.move_charge_at_immigrate
+
+8.2 Type of charges which can be moved
+--------------------------------------
+
+Each bit in move_charge_at_immigrate has its own meaning about what type of
+charges should be moved. But in any case, it must be noted that an account of
+a page or a swap can be moved only when it is charged to the task's current
+(old) memory cgroup.
+
++---+--------------------------------------------------------------------------+
+|bit| what type of charges would be moved ? |
++===+==========================================================================+
+| 0 | A charge of an anonymous page (or swap of it) used by the target task. |
+| | You must enable Swap Extension (see 2.4) to enable move of swap charges. |
++---+--------------------------------------------------------------------------+
+| 1 | A charge of file pages (normal file, tmpfs file (e.g. ipc shared memory) |
+| | and swaps of tmpfs file) mmapped by the target task. Unlike the case of |
+| | anonymous pages, file pages (and swaps) in the range mmapped by the task |
+| | will be moved even if the task hasn't done page fault, i.e. they might |
+| | not be the task's "RSS", but other task's "RSS" that maps the same file. |
+| | And mapcount of the page is ignored (the page can be moved even if |
+| | page_mapcount(page) > 1). You must enable Swap Extension (see 2.4) to |
+| | enable move of swap charges. |
++---+--------------------------------------------------------------------------+
+
+8.3 TODO
+--------
+
+- All of moving charge operations are done under cgroup_mutex. It's not good
+ behavior to hold the mutex too long, so we may need some trick.
+
+9. Memory thresholds
+====================
+
+Memory cgroup implements memory thresholds using the cgroups notification
+API (see cgroups.txt). It allows to register multiple memory and memsw
+thresholds and gets notifications when it crosses.
+
+To register a threshold, an application must:
+
+- create an eventfd using eventfd(2);
+- open memory.usage_in_bytes or memory.memsw.usage_in_bytes;
+- write string like "<event_fd> <fd of memory.usage_in_bytes> <threshold>" to
+ cgroup.event_control.
+
+Application will be notified through eventfd when memory usage crosses
+threshold in any direction.
+
+It's applicable for root and non-root cgroup.
+
+10. OOM Control
+===============
+
+memory.oom_control file is for OOM notification and other controls.
+
+Memory cgroup implements OOM notifier using the cgroup notification
+API (See cgroups.txt). It allows to register multiple OOM notification
+delivery and gets notification when OOM happens.
+
+To register a notifier, an application must:
+
+ - create an eventfd using eventfd(2)
+ - open memory.oom_control file
+ - write string like "<event_fd> <fd of memory.oom_control>" to
+ cgroup.event_control
+
+The application will be notified through eventfd when OOM happens.
+OOM notification doesn't work for the root cgroup.
+
+You can disable the OOM-killer by writing "1" to memory.oom_control file, as:
+
+ #echo 1 > memory.oom_control
+
+If OOM-killer is disabled, tasks under cgroup will hang/sleep
+in memory cgroup's OOM-waitqueue when they request accountable memory.
+
+For running them, you have to relax the memory cgroup's OOM status by
+
+ * enlarge limit or reduce usage.
+
+To reduce usage,
+
+ * kill some tasks.
+ * move some tasks to other group with account migration.
+ * remove some files (on tmpfs?)
+
+Then, stopped tasks will work again.
+
+At reading, current status of OOM is shown.
+
+ - oom_kill_disable 0 or 1
+ (if 1, oom-killer is disabled)
+ - under_oom 0 or 1
+ (if 1, the memory cgroup is under OOM, tasks may be stopped.)
+
+11. Memory Pressure
+===================
+
+The pressure level notifications can be used to monitor the memory
+allocation cost; based on the pressure, applications can implement
+different strategies of managing their memory resources. The pressure
+levels are defined as following:
+
+The "low" level means that the system is reclaiming memory for new
+allocations. Monitoring this reclaiming activity might be useful for
+maintaining cache level. Upon notification, the program (typically
+"Activity Manager") might analyze vmstat and act in advance (i.e.
+prematurely shutdown unimportant services).
+
+The "medium" level means that the system is experiencing medium memory
+pressure, the system might be making swap, paging out active file caches,
+etc. Upon this event applications may decide to further analyze
+vmstat/zoneinfo/memcg or internal memory usage statistics and free any
+resources that can be easily reconstructed or re-read from a disk.
+
+The "critical" level means that the system is actively thrashing, it is
+about to out of memory (OOM) or even the in-kernel OOM killer is on its
+way to trigger. Applications should do whatever they can to help the
+system. It might be too late to consult with vmstat or any other
+statistics, so it's advisable to take an immediate action.
+
+By default, events are propagated upward until the event is handled, i.e. the
+events are not pass-through. For example, you have three cgroups: A->B->C. Now
+you set up an event listener on cgroups A, B and C, and suppose group C
+experiences some pressure. In this situation, only group C will receive the
+notification, i.e. groups A and B will not receive it. This is done to avoid
+excessive "broadcasting" of messages, which disturbs the system and which is
+especially bad if we are low on memory or thrashing. Group B, will receive
+notification only if there are no event listers for group C.
+
+There are three optional modes that specify different propagation behavior:
+
+ - "default": this is the default behavior specified above. This mode is the
+ same as omitting the optional mode parameter, preserved by backwards
+ compatibility.
+
+ - "hierarchy": events always propagate up to the root, similar to the default
+ behavior, except that propagation continues regardless of whether there are
+ event listeners at each level, with the "hierarchy" mode. In the above
+ example, groups A, B, and C will receive notification of memory pressure.
+
+ - "local": events are pass-through, i.e. they only receive notifications when
+ memory pressure is experienced in the memcg for which the notification is
+ registered. In the above example, group C will receive notification if
+ registered for "local" notification and the group experiences memory
+ pressure. However, group B will never receive notification, regardless if
+ there is an event listener for group C or not, if group B is registered for
+ local notification.
+
+The level and event notification mode ("hierarchy" or "local", if necessary) are
+specified by a comma-delimited string, i.e. "low,hierarchy" specifies
+hierarchical, pass-through, notification for all ancestor memcgs. Notification
+that is the default, non pass-through behavior, does not specify a mode.
+"medium,local" specifies pass-through notification for the medium level.
+
+The file memory.pressure_level is only used to setup an eventfd. To
+register a notification, an application must:
+
+- create an eventfd using eventfd(2);
+- open memory.pressure_level;
+- write string as "<event_fd> <fd of memory.pressure_level> <level[,mode]>"
+ to cgroup.event_control.
+
+Application will be notified through eventfd when memory pressure is at
+the specific level (or higher). Read/write operations to
+memory.pressure_level are no implemented.
+
+Test:
+
+ Here is a small script example that makes a new cgroup, sets up a
+ memory limit, sets up a notification in the cgroup and then makes child
+ cgroup experience a critical pressure::
+
+ # cd /sys/fs/cgroup/memory/
+ # mkdir foo
+ # cd foo
+ # cgroup_event_listener memory.pressure_level low,hierarchy &
+ # echo 8000000 > memory.limit_in_bytes
+ # echo 8000000 > memory.memsw.limit_in_bytes
+ # echo $$ > tasks
+ # dd if=/dev/zero | read x
+
+ (Expect a bunch of notifications, and eventually, the oom-killer will
+ trigger.)
+
+12. TODO
+========
+
+1. Make per-cgroup scanner reclaim not-shared pages first
+2. Teach controller to account for shared-pages
+3. Start reclamation in the background when the limit is
+ not yet hit but the usage is getting closer
+
+Summary
+=======
+
+Overall, the memory controller has been a stable controller and has been
+commented and discussed quite extensively in the community.
+
+References
+==========
+
+1. Singh, Balbir. RFC: Memory Controller, http://lwn.net/Articles/206697/
+2. Singh, Balbir. Memory Controller (RSS Control),
+ http://lwn.net/Articles/222762/
+3. Emelianov, Pavel. Resource controllers based on process cgroups
+ http://lkml.org/lkml/2007/3/6/198
+4. Emelianov, Pavel. RSS controller based on process cgroups (v2)
+ http://lkml.org/lkml/2007/4/9/78
+5. Emelianov, Pavel. RSS controller based on process cgroups (v3)
+ http://lkml.org/lkml/2007/5/30/244
+6. Menage, Paul. Control Groups v10, http://lwn.net/Articles/236032/
+7. Vaidyanathan, Srinivasan, Control Groups: Pagecache accounting and control
+ subsystem (v3), http://lwn.net/Articles/235534/
+8. Singh, Balbir. RSS controller v2 test results (lmbench),
+ http://lkml.org/lkml/2007/5/17/232
+9. Singh, Balbir. RSS controller v2 AIM9 results
+ http://lkml.org/lkml/2007/5/18/1
+10. Singh, Balbir. Memory controller v6 test results,
+ http://lkml.org/lkml/2007/8/19/36
+11. Singh, Balbir. Memory controller introduction (v6),
+ http://lkml.org/lkml/2007/8/17/69
+12. Corbet, Jonathan, Controlling memory use in cgroups,
+ http://lwn.net/Articles/243795/
--- /dev/null
+=========================
+Network classifier cgroup
+=========================
+
+The Network classifier cgroup provides an interface to
+tag network packets with a class identifier (classid).
+
+The Traffic Controller (tc) can be used to assign
+different priorities to packets from different cgroups.
+Also, Netfilter (iptables) can use this tag to perform
+actions on such packets.
+
+Creating a net_cls cgroups instance creates a net_cls.classid file.
+This net_cls.classid value is initialized to 0.
+
+You can write hexadecimal values to net_cls.classid; the format for these
+values is 0xAAAABBBB; AAAA is the major handle number and BBBB
+is the minor handle number.
+Reading net_cls.classid yields a decimal result.
+
+Example::
+
+ mkdir /sys/fs/cgroup/net_cls
+ mount -t cgroup -onet_cls net_cls /sys/fs/cgroup/net_cls
+ mkdir /sys/fs/cgroup/net_cls/0
+ echo 0x100001 > /sys/fs/cgroup/net_cls/0/net_cls.classid
+
+- setting a 10:1 handle::
+
+ cat /sys/fs/cgroup/net_cls/0/net_cls.classid
+ 1048577
+
+- configuring tc::
+
+ tc qdisc add dev eth0 root handle 10: htb
+ tc class add dev eth0 parent 10: classid 10:1 htb rate 40mbit
+
+- creating traffic class 10:1::
+
+ tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup
+
+configuring iptables, basic example::
+
+ iptables -A OUTPUT -m cgroup ! --cgroup 0x100001 -j DROP
--- /dev/null
+=======================
+Network priority cgroup
+=======================
+
+The Network priority cgroup provides an interface to allow an administrator to
+dynamically set the priority of network traffic generated by various
+applications
+
+Nominally, an application would set the priority of its traffic via the
+SO_PRIORITY socket option. This however, is not always possible because:
+
+1) The application may not have been coded to set this value
+2) The priority of application traffic is often a site-specific administrative
+ decision rather than an application defined one.
+
+This cgroup allows an administrator to assign a process to a group which defines
+the priority of egress traffic on a given interface. Network priority groups can
+be created by first mounting the cgroup filesystem::
+
+ # mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio
+
+With the above step, the initial group acting as the parent accounting group
+becomes visible at '/sys/fs/cgroup/net_prio'. This group includes all tasks in
+the system. '/sys/fs/cgroup/net_prio/tasks' lists the tasks in this cgroup.
+
+Each net_prio cgroup contains two files that are subsystem specific
+
+net_prio.prioidx
+ This file is read-only, and is simply informative. It contains a unique
+ integer value that the kernel uses as an internal representation of this
+ cgroup.
+
+net_prio.ifpriomap
+ This file contains a map of the priorities assigned to traffic originating
+ from processes in this group and egressing the system on various interfaces.
+ It contains a list of tuples in the form <ifname priority>. Contents of this
+ file can be modified by echoing a string into the file using the same tuple
+ format. For example::
+
+ echo "eth0 5" > /sys/fs/cgroups/net_prio/iscsi/net_prio.ifpriomap
+
+This command would force any traffic originating from processes belonging to the
+iscsi net_prio cgroup and egressing on interface eth0 to have the priority of
+said traffic set to the value 5. The parent accounting group also has a
+writeable 'net_prio.ifpriomap' file that can be used to set a system default
+priority.
+
+Priorities are set immediately prior to queueing a frame to the device
+queueing discipline (qdisc) so priorities will be assigned prior to the hardware
+queue selection being made.
+
+One usage for the net_prio cgroup is with mqprio qdisc allowing application
+traffic to be steered to hardware/driver based traffic classes. These mappings
+can then be managed by administrators or other networking protocols such as
+DCBX.
+
+A new net_prio cgroup inherits the parent's configuration.
--- /dev/null
+=========================
+Process Number Controller
+=========================
+
+Abstract
+--------
+
+The process number controller is used to allow a cgroup hierarchy to stop any
+new tasks from being fork()'d or clone()'d after a certain limit is reached.
+
+Since it is trivial to hit the task limit without hitting any kmemcg limits in
+place, PIDs are a fundamental resource. As such, PID exhaustion must be
+preventable in the scope of a cgroup hierarchy by allowing resource limiting of
+the number of tasks in a cgroup.
+
+Usage
+-----
+
+In order to use the `pids` controller, set the maximum number of tasks in
+pids.max (this is not available in the root cgroup for obvious reasons). The
+number of processes currently in the cgroup is given by pids.current.
+
+Organisational operations are not blocked by cgroup policies, so it is possible
+to have pids.current > pids.max. This can be done by either setting the limit to
+be smaller than pids.current, or attaching enough processes to the cgroup such
+that pids.current > pids.max. However, it is not possible to violate a cgroup
+policy through fork() or clone(). fork() and clone() will return -EAGAIN if the
+creation of a new process would cause a cgroup policy to be violated.
+
+To set a cgroup to have no limit, set pids.max to "max". This is the default for
+all new cgroups (N.B. that PID limits are hierarchical, so the most stringent
+limit in the hierarchy is followed).
+
+pids.current tracks all child cgroup hierarchies, so parent/pids.current is a
+superset of parent/child/pids.current.
+
+The pids.events file contains event counters:
+
+ - max: Number of times fork failed because limit was hit.
+
+Example
+-------
+
+First, we mount the pids controller::
+
+ # mkdir -p /sys/fs/cgroup/pids
+ # mount -t cgroup -o pids none /sys/fs/cgroup/pids
+
+Then we create a hierarchy, set limits and attach processes to it::
+
+ # mkdir -p /sys/fs/cgroup/pids/parent/child
+ # echo 2 > /sys/fs/cgroup/pids/parent/pids.max
+ # echo $$ > /sys/fs/cgroup/pids/parent/cgroup.procs
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ #
+
+It should be noted that attempts to overcome the set limit (2 in this case) will
+fail::
+
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ # ( /bin/echo "Here's some processes for you." | cat )
+ sh: fork: Resource temporary unavailable
+ #
+
+Even if we migrate to a child cgroup (which doesn't have a set limit), we will
+not be able to overcome the most stringent limit in the hierarchy (in this case,
+parent's)::
+
+ # echo $$ > /sys/fs/cgroup/pids/parent/child/cgroup.procs
+ # cat /sys/fs/cgroup/pids/parent/pids.current
+ 2
+ # cat /sys/fs/cgroup/pids/parent/child/pids.current
+ 2
+ # cat /sys/fs/cgroup/pids/parent/child/pids.max
+ max
+ # ( /bin/echo "Here's some processes for you." | cat )
+ sh: fork: Resource temporary unavailable
+ #
+
+We can set a limit that is smaller than pids.current, which will stop any new
+processes from being forked at all (note that the shell itself counts towards
+pids.current)::
+
+ # echo 1 > /sys/fs/cgroup/pids/parent/pids.max
+ # /bin/echo "We can't even spawn a single process now."
+ sh: fork: Resource temporary unavailable
+ # echo 0 > /sys/fs/cgroup/pids/parent/pids.max
+ # /bin/echo "We can't even spawn a single process now."
+ sh: fork: Resource temporary unavailable
+ #
--- /dev/null
+===============
+RDMA Controller
+===============
+
+.. Contents
+
+ 1. Overview
+ 1-1. What is RDMA controller?
+ 1-2. Why RDMA controller needed?
+ 1-3. How is RDMA controller implemented?
+ 2. Usage Examples
+
+1. Overview
+===========
+
+1-1. What is RDMA controller?
+-----------------------------
+
+RDMA controller allows user to limit RDMA/IB specific resources that a given
+set of processes can use. These processes are grouped using RDMA controller.
+
+RDMA controller defines two resources which can be limited for processes of a
+cgroup.
+
+1-2. Why RDMA controller needed?
+--------------------------------
+
+Currently user space applications can easily take away all the rdma verb
+specific resources such as AH, CQ, QP, MR etc. Due to which other applications
+in other cgroup or kernel space ULPs may not even get chance to allocate any
+rdma resources. This can lead to service unavailability.
+
+Therefore RDMA controller is needed through which resource consumption
+of processes can be limited. Through this controller different rdma
+resources can be accounted.
+
+1-3. How is RDMA controller implemented?
+----------------------------------------
+
+RDMA cgroup allows limit configuration of resources. Rdma cgroup maintains
+resource accounting per cgroup, per device using resource pool structure.
+Each such resource pool is limited up to 64 resources in given resource pool
+by rdma cgroup, which can be extended later if required.
+
+This resource pool object is linked to the cgroup css. Typically there
+are 0 to 4 resource pool instances per cgroup, per device in most use cases.
+But nothing limits to have it more. At present hundreds of RDMA devices per
+single cgroup may not be handled optimally, however there is no
+known use case or requirement for such configuration either.
+
+Since RDMA resources can be allocated from any process and can be freed by any
+of the child processes which shares the address space, rdma resources are
+always owned by the creator cgroup css. This allows process migration from one
+to other cgroup without major complexity of transferring resource ownership;
+because such ownership is not really present due to shared nature of
+rdma resources. Linking resources around css also ensures that cgroups can be
+deleted after processes migrated. This allow progress migration as well with
+active resources, even though that is not a primary use case.
+
+Whenever RDMA resource charging occurs, owner rdma cgroup is returned to
+the caller. Same rdma cgroup should be passed while uncharging the resource.
+This also allows process migrated with active RDMA resource to charge
+to new owner cgroup for new resource. It also allows to uncharge resource of
+a process from previously charged cgroup which is migrated to new cgroup,
+even though that is not a primary use case.
+
+Resource pool object is created in following situations.
+(a) User sets the limit and no previous resource pool exist for the device
+of interest for the cgroup.
+(b) No resource limits were configured, but IB/RDMA stack tries to
+charge the resource. So that it correctly uncharge them when applications are
+running without limits and later on when limits are enforced during uncharging,
+otherwise usage count will drop to negative.
+
+Resource pool is destroyed if all the resource limits are set to max and
+it is the last resource getting deallocated.
+
+User should set all the limit to max value if it intents to remove/unconfigure
+the resource pool for a particular device.
+
+IB stack honors limits enforced by the rdma controller. When application
+query about maximum resource limits of IB device, it returns minimum of
+what is configured by user for a given cgroup and what is supported by
+IB device.
+
+Following resources can be accounted by rdma controller.
+
+ ========== =============================
+ hca_handle Maximum number of HCA Handles
+ hca_object Maximum number of HCA Objects
+ ========== =============================
+
+2. Usage Examples
+=================
+
+(a) Configure resource limit::
+
+ echo mlx4_0 hca_handle=2 hca_object=2000 > /sys/fs/cgroup/rdma/1/rdma.max
+ echo ocrdma1 hca_handle=3 > /sys/fs/cgroup/rdma/2/rdma.max
+
+(b) Query resource limit::
+
+ cat /sys/fs/cgroup/rdma/2/rdma.max
+ #Output:
+ mlx4_0 hca_handle=2 hca_object=2000
+ ocrdma1 hca_handle=3 hca_object=max
+
+(c) Query current usage::
+
+ cat /sys/fs/cgroup/rdma/2/rdma.current
+ #Output:
+ mlx4_0 hca_handle=1 hca_object=20
+ ocrdma1 hca_handle=1 hca_object=23
+
+(d) Delete resource limit::
+
+ echo echo mlx4_0 hca_handle=max hca_object=max > /sys/fs/cgroup/rdma/1/rdma.max
conventions of cgroup v2. It describes all userland-visible aspects
of cgroup including core and specific controller behaviors. All
future changes must be reflected in this document. Documentation for
-v1 is available under Documentation/cgroup-v1/.
+v1 is available under Documentation/admin-guide/cgroup-v1/.
.. CONTENTS
initrd
cgroup-v2
+ cgroup-v1/index
serial-console
braille-console
parport
relax_domain_level=
[KNL, SMP] Set scheduler's default relax_domain_level.
- See Documentation/cgroup-v1/cpusets.rst.
+ See Documentation/admin-guide/cgroup-v1/cpusets.rst.
reserve= [KNL,BUGS] Force kernel to ignore I/O ports or memory
Format: <base1>,<size1>[,<base2>,<size2>,...]
swapaccount=[0|1]
[KNL] Enable accounting of swap in memory resource
controller if no parameter or 1 is given or disable
- it if 0 is given (See Documentation/cgroup-v1/memory.rst)
+ it if 0 is given (See Documentation/admin-guide/cgroup-v1/memory.rst)
swiotlb= [ARM,IA-64,PPC,MIPS,X86]
Format: { <int> | force | noforce }
support.
Memory policies should not be confused with cpusets
-(``Documentation/cgroup-v1/cpusets.rst``)
+(``Documentation/admin-guide/cgroup-v1/cpusets.rst``)
which is an administrative mechanism for restricting the nodes from which
memory may be allocated by a set of processes. Memory policies are a
programming interface that a NUMA-aware application can take advantage of. When
created, and kept up-to-date by bfq, depends on whether
CONFIG_BFQ_CGROUP_DEBUG is set. If it is set, then bfq creates all
the stat files documented in
-Documentation/cgroup-v1/blkio-controller.rst. If, instead,
+Documentation/admin-guide/cgroup-v1/blkio-controller.rst. If, instead,
CONFIG_BFQ_CGROUP_DEBUG is not set, then bfq creates only the files::
blkio.bfq.io_service_bytes
+++ /dev/null
-===================
-Block IO Controller
-===================
-
-Overview
-========
-cgroup subsys "blkio" implements the block io controller. There seems to be
-a need of various kinds of IO control policies (like proportional BW, max BW)
-both at leaf nodes as well as at intermediate nodes in a storage hierarchy.
-Plan is to use the same cgroup based management interface for blkio controller
-and based on user options switch IO policies in the background.
-
-One IO control policy is throttling policy which can be used to
-specify upper IO rate limits on devices. This policy is implemented in
-generic block layer and can be used on leaf nodes as well as higher
-level logical devices like device mapper.
-
-HOWTO
-=====
-Throttling/Upper Limit policy
------------------------------
-- Enable Block IO controller::
-
- CONFIG_BLK_CGROUP=y
-
-- Enable throttling in block layer::
-
- CONFIG_BLK_DEV_THROTTLING=y
-
-- Mount blkio controller (see cgroups.txt, Why are cgroups needed?)::
-
- mount -t cgroup -o blkio none /sys/fs/cgroup/blkio
-
-- Specify a bandwidth rate on particular device for root group. The format
- for policy is "<major>:<minor> <bytes_per_second>"::
-
- echo "8:16 1048576" > /sys/fs/cgroup/blkio/blkio.throttle.read_bps_device
-
- Above will put a limit of 1MB/second on reads happening for root group
- on device having major/minor number 8:16.
-
-- Run dd to read a file and see if rate is throttled to 1MB/s or not::
-
- # dd iflag=direct if=/mnt/common/zerofile of=/dev/null bs=4K count=1024
- 1024+0 records in
- 1024+0 records out
- 4194304 bytes (4.2 MB) copied, 4.0001 s, 1.0 MB/s
-
- Limits for writes can be put using blkio.throttle.write_bps_device file.
-
-Hierarchical Cgroups
-====================
-
-Throttling implements hierarchy support; however,
-throttling's hierarchy support is enabled iff "sane_behavior" is
-enabled from cgroup side, which currently is a development option and
-not publicly available.
-
-If somebody created a hierarchy like as follows::
-
- root
- / \
- test1 test2
- |
- test3
-
-Throttling with "sane_behavior" will handle the
-hierarchy correctly. For throttling, all limits apply
-to the whole subtree while all statistics are local to the IOs
-directly generated by tasks in that cgroup.
-
-Throttling without "sane_behavior" enabled from cgroup side will
-practically treat all groups at same level as if it looks like the
-following::
-
- pivot
- / / \ \
- root test1 test2 test3
-
-Various user visible config options
-===================================
-CONFIG_BLK_CGROUP
- - Block IO controller.
-
-CONFIG_BFQ_CGROUP_DEBUG
- - Debug help. Right now some additional stats file show up in cgroup
- if this option is enabled.
-
-CONFIG_BLK_DEV_THROTTLING
- - Enable block device throttling support in block layer.
-
-Details of cgroup files
-=======================
-Proportional weight policy files
---------------------------------
-- blkio.weight
- - Specifies per cgroup weight. This is default weight of the group
- on all the devices until and unless overridden by per device rule.
- (See blkio.weight_device).
- Currently allowed range of weights is from 10 to 1000.
-
-- blkio.weight_device
- - One can specify per cgroup per device rules using this interface.
- These rules override the default value of group weight as specified
- by blkio.weight.
-
- Following is the format::
-
- # echo dev_maj:dev_minor weight > blkio.weight_device
-
- Configure weight=300 on /dev/sdb (8:16) in this cgroup::
-
- # echo 8:16 300 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:16 300
-
- Configure weight=500 on /dev/sda (8:0) in this cgroup::
-
- # echo 8:0 500 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:0 500
- 8:16 300
-
- Remove specific weight for /dev/sda in this cgroup::
-
- # echo 8:0 0 > blkio.weight_device
- # cat blkio.weight_device
- dev weight
- 8:16 300
-
-- blkio.leaf_weight[_device]
- - Equivalents of blkio.weight[_device] for the purpose of
- deciding how much weight tasks in the given cgroup has while
- competing with the cgroup's child cgroups. For details,
- please refer to Documentation/block/cfq-iosched.txt.
-
-- blkio.time
- - disk time allocated to cgroup per device in milliseconds. First
- two fields specify the major and minor number of the device and
- third field specifies the disk time allocated to group in
- milliseconds.
-
-- blkio.sectors
- - number of sectors transferred to/from disk by the group. First
- two fields specify the major and minor number of the device and
- third field specifies the number of sectors transferred by the
- group to/from the device.
-
-- blkio.io_service_bytes
- - Number of bytes transferred to/from the disk by the group. These
- are further divided by the type of operation - read or write, sync
- or async. First two fields specify the major and minor number of the
- device, third field specifies the operation type and the fourth field
- specifies the number of bytes.
-
-- blkio.io_serviced
- - Number of IOs (bio) issued to the disk by the group. These
- are further divided by the type of operation - read or write, sync
- or async. First two fields specify the major and minor number of the
- device, third field specifies the operation type and the fourth field
- specifies the number of IOs.
-
-- blkio.io_service_time
- - Total amount of time between request dispatch and request completion
- for the IOs done by this cgroup. This is in nanoseconds to make it
- meaningful for flash devices too. For devices with queue depth of 1,
- this time represents the actual service time. When queue_depth > 1,
- that is no longer true as requests may be served out of order. This
- may cause the service time for a given IO to include the service time
- of multiple IOs when served out of order which may result in total
- io_service_time > actual time elapsed. This time is further divided by
- the type of operation - read or write, sync or async. First two fields
- specify the major and minor number of the device, third field
- specifies the operation type and the fourth field specifies the
- io_service_time in ns.
-
-- blkio.io_wait_time
- - Total amount of time the IOs for this cgroup spent waiting in the
- scheduler queues for service. This can be greater than the total time
- elapsed since it is cumulative io_wait_time for all IOs. It is not a
- measure of total time the cgroup spent waiting but rather a measure of
- the wait_time for its individual IOs. For devices with queue_depth > 1
- this metric does not include the time spent waiting for service once
- the IO is dispatched to the device but till it actually gets serviced
- (there might be a time lag here due to re-ordering of requests by the
- device). This is in nanoseconds to make it meaningful for flash
- devices too. This time is further divided by the type of operation -
- read or write, sync or async. First two fields specify the major and
- minor number of the device, third field specifies the operation type
- and the fourth field specifies the io_wait_time in ns.
-
-- blkio.io_merged
- - Total number of bios/requests merged into requests belonging to this
- cgroup. This is further divided by the type of operation - read or
- write, sync or async.
-
-- blkio.io_queued
- - Total number of requests queued up at any given instant for this
- cgroup. This is further divided by the type of operation - read or
- write, sync or async.
-
-- blkio.avg_queue_size
- - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
- The average queue size for this cgroup over the entire time of this
- cgroup's existence. Queue size samples are taken each time one of the
- queues of this cgroup gets a timeslice.
-
-- blkio.group_wait_time
- - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
- This is the amount of time the cgroup had to wait since it became busy
- (i.e., went from 0 to 1 request queued) to get a timeslice for one of
- its queues. This is different from the io_wait_time which is the
- cumulative total of the amount of time spent by each IO in that cgroup
- waiting in the scheduler queue. This is in nanoseconds. If this is
- read when the cgroup is in a waiting (for timeslice) state, the stat
- will only report the group_wait_time accumulated till the last time it
- got a timeslice and will not include the current delta.
-
-- blkio.empty_time
- - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
- This is the amount of time a cgroup spends without any pending
- requests when not being served, i.e., it does not include any time
- spent idling for one of the queues of the cgroup. This is in
- nanoseconds. If this is read when the cgroup is in an empty state,
- the stat will only report the empty_time accumulated till the last
- time it had a pending request and will not include the current delta.
-
-- blkio.idle_time
- - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y.
- This is the amount of time spent by the IO scheduler idling for a
- given cgroup in anticipation of a better request than the existing ones
- from other queues/cgroups. This is in nanoseconds. If this is read
- when the cgroup is in an idling state, the stat will only report the
- idle_time accumulated till the last idle period and will not include
- the current delta.
-
-- blkio.dequeue
- - Debugging aid only enabled if CONFIG_BFQ_CGROUP_DEBUG=y. This
- gives the statistics about how many a times a group was dequeued
- from service tree of the device. First two fields specify the major
- and minor number of the device and third field specifies the number
- of times a group was dequeued from a particular device.
-
-- blkio.*_recursive
- - Recursive version of various stats. These files show the
- same information as their non-recursive counterparts but
- include stats from all the descendant cgroups.
-
-Throttling/Upper limit policy files
------------------------------------
-- blkio.throttle.read_bps_device
- - Specifies upper limit on READ rate from the device. IO rate is
- specified in bytes per second. Rules are per device. Following is
- the format::
-
- echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.read_bps_device
-
-- blkio.throttle.write_bps_device
- - Specifies upper limit on WRITE rate to the device. IO rate is
- specified in bytes per second. Rules are per device. Following is
- the format::
-
- echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.throttle.write_bps_device
-
-- blkio.throttle.read_iops_device
- - Specifies upper limit on READ rate from the device. IO rate is
- specified in IO per second. Rules are per device. Following is
- the format::
-
- echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.read_iops_device
-
-- blkio.throttle.write_iops_device
- - Specifies upper limit on WRITE rate to the device. IO rate is
- specified in io per second. Rules are per device. Following is
- the format::
-
- echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.throttle.write_iops_device
-
-Note: If both BW and IOPS rules are specified for a device, then IO is
- subjected to both the constraints.
-
-- blkio.throttle.io_serviced
- - Number of IOs (bio) issued to the disk by the group. These
- are further divided by the type of operation - read or write, sync
- or async. First two fields specify the major and minor number of the
- device, third field specifies the operation type and the fourth field
- specifies the number of IOs.
-
-- blkio.throttle.io_service_bytes
- - Number of bytes transferred to/from the disk by the group. These
- are further divided by the type of operation - read or write, sync
- or async. First two fields specify the major and minor number of the
- device, third field specifies the operation type and the fourth field
- specifies the number of bytes.
-
-Common files among various policies
------------------------------------
-- blkio.reset_stats
- - Writing an int to this file will result in resetting all the stats
- for that cgroup.
+++ /dev/null
-==============
-Control Groups
-==============
-
-Written by Paul Menage <menage@google.com> based on
-Documentation/cgroup-v1/cpusets.rst
-
-Original copyright statements from cpusets.txt:
-
-Portions Copyright (C) 2004 BULL SA.
-
-Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
-
-Modified by Paul Jackson <pj@sgi.com>
-
-Modified by Christoph Lameter <cl@linux.com>
-
-.. CONTENTS:
-
- 1. Control Groups
- 1.1 What are cgroups ?
- 1.2 Why are cgroups needed ?
- 1.3 How are cgroups implemented ?
- 1.4 What does notify_on_release do ?
- 1.5 What does clone_children do ?
- 1.6 How do I use cgroups ?
- 2. Usage Examples and Syntax
- 2.1 Basic Usage
- 2.2 Attaching processes
- 2.3 Mounting hierarchies by name
- 3. Kernel API
- 3.1 Overview
- 3.2 Synchronization
- 3.3 Subsystem API
- 4. Extended attributes usage
- 5. Questions
-
-1. Control Groups
-=================
-
-1.1 What are cgroups ?
-----------------------
-
-Control Groups provide a mechanism for aggregating/partitioning sets of
-tasks, and all their future children, into hierarchical groups with
-specialized behaviour.
-
-Definitions:
-
-A *cgroup* associates a set of tasks with a set of parameters for one
-or more subsystems.
-
-A *subsystem* is a module that makes use of the task grouping
-facilities provided by cgroups to treat groups of tasks in
-particular ways. A subsystem is typically a "resource controller" that
-schedules a resource or applies per-cgroup limits, but it may be
-anything that wants to act on a group of processes, e.g. a
-virtualization subsystem.
-
-A *hierarchy* is a set of cgroups arranged in a tree, such that
-every task in the system is in exactly one of the cgroups in the
-hierarchy, and a set of subsystems; each subsystem has system-specific
-state attached to each cgroup in the hierarchy. Each hierarchy has
-an instance of the cgroup virtual filesystem associated with it.
-
-At any one time there may be multiple active hierarchies of task
-cgroups. Each hierarchy is a partition of all tasks in the system.
-
-User-level code may create and destroy cgroups by name in an
-instance of the cgroup virtual file system, specify and query to
-which cgroup a task is assigned, and list the task PIDs assigned to
-a cgroup. Those creations and assignments only affect the hierarchy
-associated with that instance of the cgroup file system.
-
-On their own, the only use for cgroups is for simple job
-tracking. The intention is that other subsystems hook into the generic
-cgroup support to provide new attributes for cgroups, such as
-accounting/limiting the resources which processes in a cgroup can
-access. For example, cpusets (see Documentation/cgroup-v1/cpusets.rst) allow
-you to associate a set of CPUs and a set of memory nodes with the
-tasks in each cgroup.
-
-1.2 Why are cgroups needed ?
-----------------------------
-
-There are multiple efforts to provide process aggregations in the
-Linux kernel, mainly for resource-tracking purposes. Such efforts
-include cpusets, CKRM/ResGroups, UserBeanCounters, and virtual server
-namespaces. These all require the basic notion of a
-grouping/partitioning of processes, with newly forked processes ending
-up in the same group (cgroup) as their parent process.
-
-The kernel cgroup patch provides the minimum essential kernel
-mechanisms required to efficiently implement such groups. It has
-minimal impact on the system fast paths, and provides hooks for
-specific subsystems such as cpusets to provide additional behaviour as
-desired.
-
-Multiple hierarchy support is provided to allow for situations where
-the division of tasks into cgroups is distinctly different for
-different subsystems - having parallel hierarchies allows each
-hierarchy to be a natural division of tasks, without having to handle
-complex combinations of tasks that would be present if several
-unrelated subsystems needed to be forced into the same tree of
-cgroups.
-
-At one extreme, each resource controller or subsystem could be in a
-separate hierarchy; at the other extreme, all subsystems
-would be attached to the same hierarchy.
-
-As an example of a scenario (originally proposed by vatsa@in.ibm.com)
-that can benefit from multiple hierarchies, consider a large
-university server with various users - students, professors, system
-tasks etc. The resource planning for this server could be along the
-following lines::
-
- CPU : "Top cpuset"
- / \
- CPUSet1 CPUSet2
- | |
- (Professors) (Students)
-
- In addition (system tasks) are attached to topcpuset (so
- that they can run anywhere) with a limit of 20%
-
- Memory : Professors (50%), Students (30%), system (20%)
-
- Disk : Professors (50%), Students (30%), system (20%)
-
- Network : WWW browsing (20%), Network File System (60%), others (20%)
- / \
- Professors (15%) students (5%)
-
-Browsers like Firefox/Lynx go into the WWW network class, while (k)nfsd goes
-into the NFS network class.
-
-At the same time Firefox/Lynx will share an appropriate CPU/Memory class
-depending on who launched it (prof/student).
-
-With the ability to classify tasks differently for different resources
-(by putting those resource subsystems in different hierarchies),
-the admin can easily set up a script which receives exec notifications
-and depending on who is launching the browser he can::
-
- # echo browser_pid > /sys/fs/cgroup/<restype>/<userclass>/tasks
-
-With only a single hierarchy, he now would potentially have to create
-a separate cgroup for every browser launched and associate it with
-appropriate network and other resource class. This may lead to
-proliferation of such cgroups.
-
-Also let's say that the administrator would like to give enhanced network
-access temporarily to a student's browser (since it is night and the user
-wants to do online gaming :)) OR give one of the student's simulation
-apps enhanced CPU power.
-
-With ability to write PIDs directly to resource classes, it's just a
-matter of::
-
- # echo pid > /sys/fs/cgroup/network/<new_class>/tasks
- (after some time)
- # echo pid > /sys/fs/cgroup/network/<orig_class>/tasks
-
-Without this ability, the administrator would have to split the cgroup into
-multiple separate ones and then associate the new cgroups with the
-new resource classes.
-
-
-
-1.3 How are cgroups implemented ?
----------------------------------
-
-Control Groups extends the kernel as follows:
-
- - Each task in the system has a reference-counted pointer to a
- css_set.
-
- - A css_set contains a set of reference-counted pointers to
- cgroup_subsys_state objects, one for each cgroup subsystem
- registered in the system. There is no direct link from a task to
- the cgroup of which it's a member in each hierarchy, but this
- can be determined by following pointers through the
- cgroup_subsys_state objects. This is because accessing the
- subsystem state is something that's expected to happen frequently
- and in performance-critical code, whereas operations that require a
- task's actual cgroup assignments (in particular, moving between
- cgroups) are less common. A linked list runs through the cg_list
- field of each task_struct using the css_set, anchored at
- css_set->tasks.
-
- - A cgroup hierarchy filesystem can be mounted for browsing and
- manipulation from user space.
-
- - You can list all the tasks (by PID) attached to any cgroup.
-
-The implementation of cgroups requires a few, simple hooks
-into the rest of the kernel, none in performance-critical paths:
-
- - in init/main.c, to initialize the root cgroups and initial
- css_set at system boot.
-
- - in fork and exit, to attach and detach a task from its css_set.
-
-In addition, a new file system of type "cgroup" may be mounted, to
-enable browsing and modifying the cgroups presently known to the
-kernel. When mounting a cgroup hierarchy, you may specify a
-comma-separated list of subsystems to mount as the filesystem mount
-options. By default, mounting the cgroup filesystem attempts to
-mount a hierarchy containing all registered subsystems.
-
-If an active hierarchy with exactly the same set of subsystems already
-exists, it will be reused for the new mount. If no existing hierarchy
-matches, and any of the requested subsystems are in use in an existing
-hierarchy, the mount will fail with -EBUSY. Otherwise, a new hierarchy
-is activated, associated with the requested subsystems.
-
-It's not currently possible to bind a new subsystem to an active
-cgroup hierarchy, or to unbind a subsystem from an active cgroup
-hierarchy. This may be possible in future, but is fraught with nasty
-error-recovery issues.
-
-When a cgroup filesystem is unmounted, if there are any
-child cgroups created below the top-level cgroup, that hierarchy
-will remain active even though unmounted; if there are no
-child cgroups then the hierarchy will be deactivated.
-
-No new system calls are added for cgroups - all support for
-querying and modifying cgroups is via this cgroup file system.
-
-Each task under /proc has an added file named 'cgroup' displaying,
-for each active hierarchy, the subsystem names and the cgroup name
-as the path relative to the root of the cgroup file system.
-
-Each cgroup is represented by a directory in the cgroup file system
-containing the following files describing that cgroup:
-
- - tasks: list of tasks (by PID) attached to that cgroup. This list
- is not guaranteed to be sorted. Writing a thread ID into this file
- moves the thread into this cgroup.
- - cgroup.procs: list of thread group IDs in the cgroup. This list is
- not guaranteed to be sorted or free of duplicate TGIDs, and userspace
- should sort/uniquify the list if this property is required.
- Writing a thread group ID into this file moves all threads in that
- group into this cgroup.
- - notify_on_release flag: run the release agent on exit?
- - release_agent: the path to use for release notifications (this file
- exists in the top cgroup only)
-
-Other subsystems such as cpusets may add additional files in each
-cgroup dir.
-
-New cgroups are created using the mkdir system call or shell
-command. The properties of a cgroup, such as its flags, are
-modified by writing to the appropriate file in that cgroups
-directory, as listed above.
-
-The named hierarchical structure of nested cgroups allows partitioning
-a large system into nested, dynamically changeable, "soft-partitions".
-
-The attachment of each task, automatically inherited at fork by any
-children of that task, to a cgroup allows organizing the work load
-on a system into related sets of tasks. A task may be re-attached to
-any other cgroup, if allowed by the permissions on the necessary
-cgroup file system directories.
-
-When a task is moved from one cgroup to another, it gets a new
-css_set pointer - if there's an already existing css_set with the
-desired collection of cgroups then that group is reused, otherwise a new
-css_set is allocated. The appropriate existing css_set is located by
-looking into a hash table.
-
-To allow access from a cgroup to the css_sets (and hence tasks)
-that comprise it, a set of cg_cgroup_link objects form a lattice;
-each cg_cgroup_link is linked into a list of cg_cgroup_links for
-a single cgroup on its cgrp_link_list field, and a list of
-cg_cgroup_links for a single css_set on its cg_link_list.
-
-Thus the set of tasks in a cgroup can be listed by iterating over
-each css_set that references the cgroup, and sub-iterating over
-each css_set's task set.
-
-The use of a Linux virtual file system (vfs) to represent the
-cgroup hierarchy provides for a familiar permission and name space
-for cgroups, with a minimum of additional kernel code.
-
-1.4 What does notify_on_release do ?
-------------------------------------
-
-If the notify_on_release flag is enabled (1) in a cgroup, then
-whenever the last task in the cgroup leaves (exits or attaches to
-some other cgroup) and the last child cgroup of that cgroup
-is removed, then the kernel runs the command specified by the contents
-of the "release_agent" file in that hierarchy's root directory,
-supplying the pathname (relative to the mount point of the cgroup
-file system) of the abandoned cgroup. This enables automatic
-removal of abandoned cgroups. The default value of
-notify_on_release in the root cgroup at system boot is disabled
-(0). The default value of other cgroups at creation is the current
-value of their parents' notify_on_release settings. The default value of
-a cgroup hierarchy's release_agent path is empty.
-
-1.5 What does clone_children do ?
----------------------------------
-
-This flag only affects the cpuset controller. If the clone_children
-flag is enabled (1) in a cgroup, a new cpuset cgroup will copy its
-configuration from the parent during initialization.
-
-1.6 How do I use cgroups ?
---------------------------
-
-To start a new job that is to be contained within a cgroup, using
-the "cpuset" cgroup subsystem, the steps are something like::
-
- 1) mount -t tmpfs cgroup_root /sys/fs/cgroup
- 2) mkdir /sys/fs/cgroup/cpuset
- 3) mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset
- 4) Create the new cgroup by doing mkdir's and write's (or echo's) in
- the /sys/fs/cgroup/cpuset virtual file system.
- 5) Start a task that will be the "founding father" of the new job.
- 6) Attach that task to the new cgroup by writing its PID to the
- /sys/fs/cgroup/cpuset tasks file for that cgroup.
- 7) fork, exec or clone the job tasks from this founding father task.
-
-For example, the following sequence of commands will setup a cgroup
-named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
-and then start a subshell 'sh' in that cgroup::
-
- mount -t tmpfs cgroup_root /sys/fs/cgroup
- mkdir /sys/fs/cgroup/cpuset
- mount -t cgroup cpuset -ocpuset /sys/fs/cgroup/cpuset
- cd /sys/fs/cgroup/cpuset
- mkdir Charlie
- cd Charlie
- /bin/echo 2-3 > cpuset.cpus
- /bin/echo 1 > cpuset.mems
- /bin/echo $$ > tasks
- sh
- # The subshell 'sh' is now running in cgroup Charlie
- # The next line should display '/Charlie'
- cat /proc/self/cgroup
-
-2. Usage Examples and Syntax
-============================
-
-2.1 Basic Usage
----------------
-
-Creating, modifying, using cgroups can be done through the cgroup
-virtual filesystem.
-
-To mount a cgroup hierarchy with all available subsystems, type::
-
- # mount -t cgroup xxx /sys/fs/cgroup
-
-The "xxx" is not interpreted by the cgroup code, but will appear in
-/proc/mounts so may be any useful identifying string that you like.
-
-Note: Some subsystems do not work without some user input first. For instance,
-if cpusets are enabled the user will have to populate the cpus and mems files
-for each new cgroup created before that group can be used.
-
-As explained in section `1.2 Why are cgroups needed?` you should create
-different hierarchies of cgroups for each single resource or group of
-resources you want to control. Therefore, you should mount a tmpfs on
-/sys/fs/cgroup and create directories for each cgroup resource or resource
-group::
-
- # mount -t tmpfs cgroup_root /sys/fs/cgroup
- # mkdir /sys/fs/cgroup/rg1
-
-To mount a cgroup hierarchy with just the cpuset and memory
-subsystems, type::
-
- # mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
-
-While remounting cgroups is currently supported, it is not recommend
-to use it. Remounting allows changing bound subsystems and
-release_agent. Rebinding is hardly useful as it only works when the
-hierarchy is empty and release_agent itself should be replaced with
-conventional fsnotify. The support for remounting will be removed in
-the future.
-
-To Specify a hierarchy's release_agent::
-
- # mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
- xxx /sys/fs/cgroup/rg1
-
-Note that specifying 'release_agent' more than once will return failure.
-
-Note that changing the set of subsystems is currently only supported
-when the hierarchy consists of a single (root) cgroup. Supporting
-the ability to arbitrarily bind/unbind subsystems from an existing
-cgroup hierarchy is intended to be implemented in the future.
-
-Then under /sys/fs/cgroup/rg1 you can find a tree that corresponds to the
-tree of the cgroups in the system. For instance, /sys/fs/cgroup/rg1
-is the cgroup that holds the whole system.
-
-If you want to change the value of release_agent::
-
- # echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
-
-It can also be changed via remount.
-
-If you want to create a new cgroup under /sys/fs/cgroup/rg1::
-
- # cd /sys/fs/cgroup/rg1
- # mkdir my_cgroup
-
-Now you want to do something with this cgroup:
-
- # cd my_cgroup
-
-In this directory you can find several files::
-
- # ls
- cgroup.procs notify_on_release tasks
- (plus whatever files added by the attached subsystems)
-
-Now attach your shell to this cgroup::
-
- # /bin/echo $$ > tasks
-
-You can also create cgroups inside your cgroup by using mkdir in this
-directory::
-
- # mkdir my_sub_cs
-
-To remove a cgroup, just use rmdir::
-
- # rmdir my_sub_cs
-
-This will fail if the cgroup is in use (has cgroups inside, or
-has processes attached, or is held alive by other subsystem-specific
-reference).
-
-2.2 Attaching processes
------------------------
-
-::
-
- # /bin/echo PID > tasks
-
-Note that it is PID, not PIDs. You can only attach ONE task at a time.
-If you have several tasks to attach, you have to do it one after another::
-
- # /bin/echo PID1 > tasks
- # /bin/echo PID2 > tasks
- ...
- # /bin/echo PIDn > tasks
-
-You can attach the current shell task by echoing 0::
-
- # echo 0 > tasks
-
-You can use the cgroup.procs file instead of the tasks file to move all
-threads in a threadgroup at once. Echoing the PID of any task in a
-threadgroup to cgroup.procs causes all tasks in that threadgroup to be
-attached to the cgroup. Writing 0 to cgroup.procs moves all tasks
-in the writing task's threadgroup.
-
-Note: Since every task is always a member of exactly one cgroup in each
-mounted hierarchy, to remove a task from its current cgroup you must
-move it into a new cgroup (possibly the root cgroup) by writing to the
-new cgroup's tasks file.
-
-Note: Due to some restrictions enforced by some cgroup subsystems, moving
-a process to another cgroup can fail.
-
-2.3 Mounting hierarchies by name
---------------------------------
-
-Passing the name=<x> option when mounting a cgroups hierarchy
-associates the given name with the hierarchy. This can be used when
-mounting a pre-existing hierarchy, in order to refer to it by name
-rather than by its set of active subsystems. Each hierarchy is either
-nameless, or has a unique name.
-
-The name should match [\w.-]+
-
-When passing a name=<x> option for a new hierarchy, you need to
-specify subsystems manually; the legacy behaviour of mounting all
-subsystems when none are explicitly specified is not supported when
-you give a subsystem a name.
-
-The name of the subsystem appears as part of the hierarchy description
-in /proc/mounts and /proc/<pid>/cgroups.
-
-
-3. Kernel API
-=============
-
-3.1 Overview
-------------
-
-Each kernel subsystem that wants to hook into the generic cgroup
-system needs to create a cgroup_subsys object. This contains
-various methods, which are callbacks from the cgroup system, along
-with a subsystem ID which will be assigned by the cgroup system.
-
-Other fields in the cgroup_subsys object include:
-
-- subsys_id: a unique array index for the subsystem, indicating which
- entry in cgroup->subsys[] this subsystem should be managing.
-
-- name: should be initialized to a unique subsystem name. Should be
- no longer than MAX_CGROUP_TYPE_NAMELEN.
-
-- early_init: indicate if the subsystem needs early initialization
- at system boot.
-
-Each cgroup object created by the system has an array of pointers,
-indexed by subsystem ID; this pointer is entirely managed by the
-subsystem; the generic cgroup code will never touch this pointer.
-
-3.2 Synchronization
--------------------
-
-There is a global mutex, cgroup_mutex, used by the cgroup
-system. This should be taken by anything that wants to modify a
-cgroup. It may also be taken to prevent cgroups from being
-modified, but more specific locks may be more appropriate in that
-situation.
-
-See kernel/cgroup.c for more details.
-
-Subsystems can take/release the cgroup_mutex via the functions
-cgroup_lock()/cgroup_unlock().
-
-Accessing a task's cgroup pointer may be done in the following ways:
-- while holding cgroup_mutex
-- while holding the task's alloc_lock (via task_lock())
-- inside an rcu_read_lock() section via rcu_dereference()
-
-3.3 Subsystem API
------------------
-
-Each subsystem should:
-
-- add an entry in linux/cgroup_subsys.h
-- define a cgroup_subsys object called <name>_cgrp_subsys
-
-Each subsystem may export the following methods. The only mandatory
-methods are css_alloc/free. Any others that are null are presumed to
-be successful no-ops.
-
-``struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)``
-(cgroup_mutex held by caller)
-
-Called to allocate a subsystem state object for a cgroup. The
-subsystem should allocate its subsystem state object for the passed
-cgroup, returning a pointer to the new object on success or a
-ERR_PTR() value. On success, the subsystem pointer should point to
-a structure of type cgroup_subsys_state (typically embedded in a
-larger subsystem-specific object), which will be initialized by the
-cgroup system. Note that this will be called at initialization to
-create the root subsystem state for this subsystem; this case can be
-identified by the passed cgroup object having a NULL parent (since
-it's the root of the hierarchy) and may be an appropriate place for
-initialization code.
-
-``int css_online(struct cgroup *cgrp)``
-(cgroup_mutex held by caller)
-
-Called after @cgrp successfully completed all allocations and made
-visible to cgroup_for_each_child/descendant_*() iterators. The
-subsystem may choose to fail creation by returning -errno. This
-callback can be used to implement reliable state sharing and
-propagation along the hierarchy. See the comment on
-cgroup_for_each_descendant_pre() for details.
-
-``void css_offline(struct cgroup *cgrp);``
-(cgroup_mutex held by caller)
-
-This is the counterpart of css_online() and called iff css_online()
-has succeeded on @cgrp. This signifies the beginning of the end of
-@cgrp. @cgrp is being removed and the subsystem should start dropping
-all references it's holding on @cgrp. When all references are dropped,
-cgroup removal will proceed to the next step - css_free(). After this
-callback, @cgrp should be considered dead to the subsystem.
-
-``void css_free(struct cgroup *cgrp)``
-(cgroup_mutex held by caller)
-
-The cgroup system is about to free @cgrp; the subsystem should free
-its subsystem state object. By the time this method is called, @cgrp
-is completely unused; @cgrp->parent is still valid. (Note - can also
-be called for a newly-created cgroup if an error occurs after this
-subsystem's create() method has been called for the new cgroup).
-
-``int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
-(cgroup_mutex held by caller)
-
-Called prior to moving one or more tasks into a cgroup; if the
-subsystem returns an error, this will abort the attach operation.
-@tset contains the tasks to be attached and is guaranteed to have at
-least one task in it.
-
-If there are multiple tasks in the taskset, then:
- - it's guaranteed that all are from the same thread group
- - @tset contains all tasks from the thread group whether or not
- they're switching cgroups
- - the first task is the leader
-
-Each @tset entry also contains the task's old cgroup and tasks which
-aren't switching cgroup can be skipped easily using the
-cgroup_taskset_for_each() iterator. Note that this isn't called on a
-fork. If this method returns 0 (success) then this should remain valid
-while the caller holds cgroup_mutex and it is ensured that either
-attach() or cancel_attach() will be called in future.
-
-``void css_reset(struct cgroup_subsys_state *css)``
-(cgroup_mutex held by caller)
-
-An optional operation which should restore @css's configuration to the
-initial state. This is currently only used on the unified hierarchy
-when a subsystem is disabled on a cgroup through
-"cgroup.subtree_control" but should remain enabled because other
-subsystems depend on it. cgroup core makes such a css invisible by
-removing the associated interface files and invokes this callback so
-that the hidden subsystem can return to the initial neutral state.
-This prevents unexpected resource control from a hidden css and
-ensures that the configuration is in the initial state when it is made
-visible again later.
-
-``void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
-(cgroup_mutex held by caller)
-
-Called when a task attach operation has failed after can_attach() has succeeded.
-A subsystem whose can_attach() has some side-effects should provide this
-function, so that the subsystem can implement a rollback. If not, not necessary.
-This will be called only about subsystems whose can_attach() operation have
-succeeded. The parameters are identical to can_attach().
-
-``void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)``
-(cgroup_mutex held by caller)
-
-Called after the task has been attached to the cgroup, to allow any
-post-attachment activity that requires memory allocations or blocking.
-The parameters are identical to can_attach().
-
-``void fork(struct task_struct *task)``
-
-Called when a task is forked into a cgroup.
-
-``void exit(struct task_struct *task)``
-
-Called during task exit.
-
-``void free(struct task_struct *task)``
-
-Called when the task_struct is freed.
-
-``void bind(struct cgroup *root)``
-(cgroup_mutex held by caller)
-
-Called when a cgroup subsystem is rebound to a different hierarchy
-and root cgroup. Currently this will only involve movement between
-the default hierarchy (which never has sub-cgroups) and a hierarchy
-that is being created/destroyed (and hence has no sub-cgroups).
-
-4. Extended attribute usage
-===========================
-
-cgroup filesystem supports certain types of extended attributes in its
-directories and files. The current supported types are:
-
- - Trusted (XATTR_TRUSTED)
- - Security (XATTR_SECURITY)
-
-Both require CAP_SYS_ADMIN capability to set.
-
-Like in tmpfs, the extended attributes in cgroup filesystem are stored
-using kernel memory and it's advised to keep the usage at minimum. This
-is the reason why user defined extended attributes are not supported, since
-any user can do it and there's no limit in the value size.
-
-The current known users for this feature are SELinux to limit cgroup usage
-in containers and systemd for assorted meta data like main PID in a cgroup
-(systemd creates a cgroup per service).
-
-5. Questions
-============
-
-::
-
- Q: what's up with this '/bin/echo' ?
- A: bash's builtin 'echo' command does not check calls to write() against
- errors. If you use it in the cgroup file system, you won't be
- able to tell whether a command succeeded or failed.
-
- Q: When I attach processes, only the first of the line gets really attached !
- A: We can only return one error code per call to write(). So you should also
- put only ONE PID.
+++ /dev/null
-=========================
-CPU Accounting Controller
-=========================
-
-The CPU accounting controller is used to group tasks using cgroups and
-account the CPU usage of these groups of tasks.
-
-The CPU accounting controller supports multi-hierarchy groups. An accounting
-group accumulates the CPU usage of all of its child groups and the tasks
-directly present in its group.
-
-Accounting groups can be created by first mounting the cgroup filesystem::
-
- # mount -t cgroup -ocpuacct none /sys/fs/cgroup
-
-With the above step, the initial or the parent accounting group becomes
-visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
-the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
-/sys/fs/cgroup/cpuacct.usage gives the CPU time (in nanoseconds) obtained
-by this group which is essentially the CPU time obtained by all the tasks
-in the system.
-
-New accounting groups can be created under the parent group /sys/fs/cgroup::
-
- # cd /sys/fs/cgroup
- # mkdir g1
- # echo $$ > g1/tasks
-
-The above steps create a new group g1 and move the current shell
-process (bash) into it. CPU time consumed by this bash and its children
-can be obtained from g1/cpuacct.usage and the same is accumulated in
-/sys/fs/cgroup/cpuacct.usage also.
-
-cpuacct.stat file lists a few statistics which further divide the
-CPU time obtained by the cgroup into user and system times. Currently
-the following statistics are supported:
-
-user: Time spent by tasks of the cgroup in user mode.
-system: Time spent by tasks of the cgroup in kernel mode.
-
-user and system are in USER_HZ unit.
-
-cpuacct controller uses percpu_counter interface to collect user and
-system times. This has two side effects:
-
-- It is theoretically possible to see wrong values for user and system times.
- This is because percpu_counter_read() on 32bit systems isn't safe
- against concurrent writes.
-- It is possible to see slightly outdated values for user and system times
- due to the batch processing nature of percpu_counter.
+++ /dev/null
-=======
-CPUSETS
-=======
-
-Copyright (C) 2004 BULL SA.
-
-Written by Simon.Derr@bull.net
-
-- Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
-- Modified by Paul Jackson <pj@sgi.com>
-- Modified by Christoph Lameter <cl@linux.com>
-- Modified by Paul Menage <menage@google.com>
-- Modified by Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
-
-.. CONTENTS:
-
- 1. Cpusets
- 1.1 What are cpusets ?
- 1.2 Why are cpusets needed ?
- 1.3 How are cpusets implemented ?
- 1.4 What are exclusive cpusets ?
- 1.5 What is memory_pressure ?
- 1.6 What is memory spread ?
- 1.7 What is sched_load_balance ?
- 1.8 What is sched_relax_domain_level ?
- 1.9 How do I use cpusets ?
- 2. Usage Examples and Syntax
- 2.1 Basic Usage
- 2.2 Adding/removing cpus
- 2.3 Setting flags
- 2.4 Attaching processes
- 3. Questions
- 4. Contact
-
-1. Cpusets
-==========
-
-1.1 What are cpusets ?
-----------------------
-
-Cpusets provide a mechanism for assigning a set of CPUs and Memory
-Nodes to a set of tasks. In this document "Memory Node" refers to
-an on-line node that contains memory.
-
-Cpusets constrain the CPU and Memory placement of tasks to only
-the resources within a task's current cpuset. They form a nested
-hierarchy visible in a virtual file system. These are the essential
-hooks, beyond what is already present, required to manage dynamic
-job placement on large systems.
-
-Cpusets use the generic cgroup subsystem described in
-Documentation/cgroup-v1/cgroups.rst.
-
-Requests by a task, using the sched_setaffinity(2) system call to
-include CPUs in its CPU affinity mask, and using the mbind(2) and
-set_mempolicy(2) system calls to include Memory Nodes in its memory
-policy, are both filtered through that task's cpuset, filtering out any
-CPUs or Memory Nodes not in that cpuset. The scheduler will not
-schedule a task on a CPU that is not allowed in its cpus_allowed
-vector, and the kernel page allocator will not allocate a page on a
-node that is not allowed in the requesting task's mems_allowed vector.
-
-User level code may create and destroy cpusets by name in the cgroup
-virtual file system, manage the attributes and permissions of these
-cpusets and which CPUs and Memory Nodes are assigned to each cpuset,
-specify and query to which cpuset a task is assigned, and list the
-task pids assigned to a cpuset.
-
-
-1.2 Why are cpusets needed ?
-----------------------------
-
-The management of large computer systems, with many processors (CPUs),
-complex memory cache hierarchies and multiple Memory Nodes having
-non-uniform access times (NUMA) presents additional challenges for
-the efficient scheduling and memory placement of processes.
-
-Frequently more modest sized systems can be operated with adequate
-efficiency just by letting the operating system automatically share
-the available CPU and Memory resources amongst the requesting tasks.
-
-But larger systems, which benefit more from careful processor and
-memory placement to reduce memory access times and contention,
-and which typically represent a larger investment for the customer,
-can benefit from explicitly placing jobs on properly sized subsets of
-the system.
-
-This can be especially valuable on:
-
- * Web Servers running multiple instances of the same web application,
- * Servers running different applications (for instance, a web server
- and a database), or
- * NUMA systems running large HPC applications with demanding
- performance characteristics.
-
-These subsets, or "soft partitions" must be able to be dynamically
-adjusted, as the job mix changes, without impacting other concurrently
-executing jobs. The location of the running jobs pages may also be moved
-when the memory locations are changed.
-
-The kernel cpuset patch provides the minimum essential kernel
-mechanisms required to efficiently implement such subsets. It
-leverages existing CPU and Memory Placement facilities in the Linux
-kernel to avoid any additional impact on the critical scheduler or
-memory allocator code.
-
-
-1.3 How are cpusets implemented ?
----------------------------------
-
-Cpusets provide a Linux kernel mechanism to constrain which CPUs and
-Memory Nodes are used by a process or set of processes.
-
-The Linux kernel already has a pair of mechanisms to specify on which
-CPUs a task may be scheduled (sched_setaffinity) and on which Memory
-Nodes it may obtain memory (mbind, set_mempolicy).
-
-Cpusets extends these two mechanisms as follows:
-
- - Cpusets are sets of allowed CPUs and Memory Nodes, known to the
- kernel.
- - Each task in the system is attached to a cpuset, via a pointer
- in the task structure to a reference counted cgroup structure.
- - Calls to sched_setaffinity are filtered to just those CPUs
- allowed in that task's cpuset.
- - Calls to mbind and set_mempolicy are filtered to just
- those Memory Nodes allowed in that task's cpuset.
- - The root cpuset contains all the systems CPUs and Memory
- Nodes.
- - For any cpuset, one can define child cpusets containing a subset
- of the parents CPU and Memory Node resources.
- - The hierarchy of cpusets can be mounted at /dev/cpuset, for
- browsing and manipulation from user space.
- - A cpuset may be marked exclusive, which ensures that no other
- cpuset (except direct ancestors and descendants) may contain
- any overlapping CPUs or Memory Nodes.
- - You can list all the tasks (by pid) attached to any cpuset.
-
-The implementation of cpusets requires a few, simple hooks
-into the rest of the kernel, none in performance critical paths:
-
- - in init/main.c, to initialize the root cpuset at system boot.
- - in fork and exit, to attach and detach a task from its cpuset.
- - in sched_setaffinity, to mask the requested CPUs by what's
- allowed in that task's cpuset.
- - in sched.c migrate_live_tasks(), to keep migrating tasks within
- the CPUs allowed by their cpuset, if possible.
- - in the mbind and set_mempolicy system calls, to mask the requested
- Memory Nodes by what's allowed in that task's cpuset.
- - in page_alloc.c, to restrict memory to allowed nodes.
- - in vmscan.c, to restrict page recovery to the current cpuset.
-
-You should mount the "cgroup" filesystem type in order to enable
-browsing and modifying the cpusets presently known to the kernel. No
-new system calls are added for cpusets - all support for querying and
-modifying cpusets is via this cpuset file system.
-
-The /proc/<pid>/status file for each task has four added lines,
-displaying the task's cpus_allowed (on which CPUs it may be scheduled)
-and mems_allowed (on which Memory Nodes it may obtain memory),
-in the two formats seen in the following example::
-
- Cpus_allowed: ffffffff,ffffffff,ffffffff,ffffffff
- Cpus_allowed_list: 0-127
- Mems_allowed: ffffffff,ffffffff
- Mems_allowed_list: 0-63
-
-Each cpuset is represented by a directory in the cgroup file system
-containing (on top of the standard cgroup files) the following
-files describing that cpuset:
-
- - cpuset.cpus: list of CPUs in that cpuset
- - cpuset.mems: list of Memory Nodes in that cpuset
- - cpuset.memory_migrate flag: if set, move pages to cpusets nodes
- - cpuset.cpu_exclusive flag: is cpu placement exclusive?
- - cpuset.mem_exclusive flag: is memory placement exclusive?
- - cpuset.mem_hardwall flag: is memory allocation hardwalled
- - cpuset.memory_pressure: measure of how much paging pressure in cpuset
- - cpuset.memory_spread_page flag: if set, spread page cache evenly on allowed nodes
- - cpuset.memory_spread_slab flag: if set, spread slab cache evenly on allowed nodes
- - cpuset.sched_load_balance flag: if set, load balance within CPUs on that cpuset
- - cpuset.sched_relax_domain_level: the searching range when migrating tasks
-
-In addition, only the root cpuset has the following file:
-
- - cpuset.memory_pressure_enabled flag: compute memory_pressure?
-
-New cpusets are created using the mkdir system call or shell
-command. The properties of a cpuset, such as its flags, allowed
-CPUs and Memory Nodes, and attached tasks, are modified by writing
-to the appropriate file in that cpusets directory, as listed above.
-
-The named hierarchical structure of nested cpusets allows partitioning
-a large system into nested, dynamically changeable, "soft-partitions".
-
-The attachment of each task, automatically inherited at fork by any
-children of that task, to a cpuset allows organizing the work load
-on a system into related sets of tasks such that each set is constrained
-to using the CPUs and Memory Nodes of a particular cpuset. A task
-may be re-attached to any other cpuset, if allowed by the permissions
-on the necessary cpuset file system directories.
-
-Such management of a system "in the large" integrates smoothly with
-the detailed placement done on individual tasks and memory regions
-using the sched_setaffinity, mbind and set_mempolicy system calls.
-
-The following rules apply to each cpuset:
-
- - Its CPUs and Memory Nodes must be a subset of its parents.
- - It can't be marked exclusive unless its parent is.
- - If its cpu or memory is exclusive, they may not overlap any sibling.
-
-These rules, and the natural hierarchy of cpusets, enable efficient
-enforcement of the exclusive guarantee, without having to scan all
-cpusets every time any of them change to ensure nothing overlaps a
-exclusive cpuset. Also, the use of a Linux virtual file system (vfs)
-to represent the cpuset hierarchy provides for a familiar permission
-and name space for cpusets, with a minimum of additional kernel code.
-
-The cpus and mems files in the root (top_cpuset) cpuset are
-read-only. The cpus file automatically tracks the value of
-cpu_online_mask using a CPU hotplug notifier, and the mems file
-automatically tracks the value of node_states[N_MEMORY]--i.e.,
-nodes with memory--using the cpuset_track_online_nodes() hook.
-
-
-1.4 What are exclusive cpusets ?
---------------------------------
-
-If a cpuset is cpu or mem exclusive, no other cpuset, other than
-a direct ancestor or descendant, may share any of the same CPUs or
-Memory Nodes.
-
-A cpuset that is cpuset.mem_exclusive *or* cpuset.mem_hardwall is "hardwalled",
-i.e. it restricts kernel allocations for page, buffer and other data
-commonly shared by the kernel across multiple users. All cpusets,
-whether hardwalled or not, restrict allocations of memory for user
-space. This enables configuring a system so that several independent
-jobs can share common kernel data, such as file system pages, while
-isolating each job's user allocation in its own cpuset. To do this,
-construct a large mem_exclusive cpuset to hold all the jobs, and
-construct child, non-mem_exclusive cpusets for each individual job.
-Only a small amount of typical kernel memory, such as requests from
-interrupt handlers, is allowed to be taken outside even a
-mem_exclusive cpuset.
-
-
-1.5 What is memory_pressure ?
------------------------------
-The memory_pressure of a cpuset provides a simple per-cpuset metric
-of the rate that the tasks in a cpuset are attempting to free up in
-use memory on the nodes of the cpuset to satisfy additional memory
-requests.
-
-This enables batch managers monitoring jobs running in dedicated
-cpusets to efficiently detect what level of memory pressure that job
-is causing.
-
-This is useful both on tightly managed systems running a wide mix of
-submitted jobs, which may choose to terminate or re-prioritize jobs that
-are trying to use more memory than allowed on the nodes assigned to them,
-and with tightly coupled, long running, massively parallel scientific
-computing jobs that will dramatically fail to meet required performance
-goals if they start to use more memory than allowed to them.
-
-This mechanism provides a very economical way for the batch manager
-to monitor a cpuset for signs of memory pressure. It's up to the
-batch manager or other user code to decide what to do about it and
-take action.
-
-==>
- Unless this feature is enabled by writing "1" to the special file
- /dev/cpuset/memory_pressure_enabled, the hook in the rebalance
- code of __alloc_pages() for this metric reduces to simply noticing
- that the cpuset_memory_pressure_enabled flag is zero. So only
- systems that enable this feature will compute the metric.
-
-Why a per-cpuset, running average:
-
- Because this meter is per-cpuset, rather than per-task or mm,
- the system load imposed by a batch scheduler monitoring this
- metric is sharply reduced on large systems, because a scan of
- the tasklist can be avoided on each set of queries.
-
- Because this meter is a running average, instead of an accumulating
- counter, a batch scheduler can detect memory pressure with a
- single read, instead of having to read and accumulate results
- for a period of time.
-
- Because this meter is per-cpuset rather than per-task or mm,
- the batch scheduler can obtain the key information, memory
- pressure in a cpuset, with a single read, rather than having to
- query and accumulate results over all the (dynamically changing)
- set of tasks in the cpuset.
-
-A per-cpuset simple digital filter (requires a spinlock and 3 words
-of data per-cpuset) is kept, and updated by any task attached to that
-cpuset, if it enters the synchronous (direct) page reclaim code.
-
-A per-cpuset file provides an integer number representing the recent
-(half-life of 10 seconds) rate of direct page reclaims caused by
-the tasks in the cpuset, in units of reclaims attempted per second,
-times 1000.
-
-
-1.6 What is memory spread ?
----------------------------
-There are two boolean flag files per cpuset that control where the
-kernel allocates pages for the file system buffers and related in
-kernel data structures. They are called 'cpuset.memory_spread_page' and
-'cpuset.memory_spread_slab'.
-
-If the per-cpuset boolean flag file 'cpuset.memory_spread_page' is set, then
-the kernel will spread the file system buffers (page cache) evenly
-over all the nodes that the faulting task is allowed to use, instead
-of preferring to put those pages on the node where the task is running.
-
-If the per-cpuset boolean flag file 'cpuset.memory_spread_slab' is set,
-then the kernel will spread some file system related slab caches,
-such as for inodes and dentries evenly over all the nodes that the
-faulting task is allowed to use, instead of preferring to put those
-pages on the node where the task is running.
-
-The setting of these flags does not affect anonymous data segment or
-stack segment pages of a task.
-
-By default, both kinds of memory spreading are off, and memory
-pages are allocated on the node local to where the task is running,
-except perhaps as modified by the task's NUMA mempolicy or cpuset
-configuration, so long as sufficient free memory pages are available.
-
-When new cpusets are created, they inherit the memory spread settings
-of their parent.
-
-Setting memory spreading causes allocations for the affected page
-or slab caches to ignore the task's NUMA mempolicy and be spread
-instead. Tasks using mbind() or set_mempolicy() calls to set NUMA
-mempolicies will not notice any change in these calls as a result of
-their containing task's memory spread settings. If memory spreading
-is turned off, then the currently specified NUMA mempolicy once again
-applies to memory page allocations.
-
-Both 'cpuset.memory_spread_page' and 'cpuset.memory_spread_slab' are boolean flag
-files. By default they contain "0", meaning that the feature is off
-for that cpuset. If a "1" is written to that file, then that turns
-the named feature on.
-
-The implementation is simple.
-
-Setting the flag 'cpuset.memory_spread_page' turns on a per-process flag
-PFA_SPREAD_PAGE for each task that is in that cpuset or subsequently
-joins that cpuset. The page allocation calls for the page cache
-is modified to perform an inline check for this PFA_SPREAD_PAGE task
-flag, and if set, a call to a new routine cpuset_mem_spread_node()
-returns the node to prefer for the allocation.
-
-Similarly, setting 'cpuset.memory_spread_slab' turns on the flag
-PFA_SPREAD_SLAB, and appropriately marked slab caches will allocate
-pages from the node returned by cpuset_mem_spread_node().
-
-The cpuset_mem_spread_node() routine is also simple. It uses the
-value of a per-task rotor cpuset_mem_spread_rotor to select the next
-node in the current task's mems_allowed to prefer for the allocation.
-
-This memory placement policy is also known (in other contexts) as
-round-robin or interleave.
-
-This policy can provide substantial improvements for jobs that need
-to place thread local data on the corresponding node, but that need
-to access large file system data sets that need to be spread across
-the several nodes in the jobs cpuset in order to fit. Without this
-policy, especially for jobs that might have one thread reading in the
-data set, the memory allocation across the nodes in the jobs cpuset
-can become very uneven.
-
-1.7 What is sched_load_balance ?
---------------------------------
-
-The kernel scheduler (kernel/sched/core.c) automatically load balances
-tasks. If one CPU is underutilized, kernel code running on that
-CPU will look for tasks on other more overloaded CPUs and move those
-tasks to itself, within the constraints of such placement mechanisms
-as cpusets and sched_setaffinity.
-
-The algorithmic cost of load balancing and its impact on key shared
-kernel data structures such as the task list increases more than
-linearly with the number of CPUs being balanced. So the scheduler
-has support to partition the systems CPUs into a number of sched
-domains such that it only load balances within each sched domain.
-Each sched domain covers some subset of the CPUs in the system;
-no two sched domains overlap; some CPUs might not be in any sched
-domain and hence won't be load balanced.
-
-Put simply, it costs less to balance between two smaller sched domains
-than one big one, but doing so means that overloads in one of the
-two domains won't be load balanced to the other one.
-
-By default, there is one sched domain covering all CPUs, including those
-marked isolated using the kernel boot time "isolcpus=" argument. However,
-the isolated CPUs will not participate in load balancing, and will not
-have tasks running on them unless explicitly assigned.
-
-This default load balancing across all CPUs is not well suited for
-the following two situations:
-
- 1) On large systems, load balancing across many CPUs is expensive.
- If the system is managed using cpusets to place independent jobs
- on separate sets of CPUs, full load balancing is unnecessary.
- 2) Systems supporting realtime on some CPUs need to minimize
- system overhead on those CPUs, including avoiding task load
- balancing if that is not needed.
-
-When the per-cpuset flag "cpuset.sched_load_balance" is enabled (the default
-setting), it requests that all the CPUs in that cpusets allowed 'cpuset.cpus'
-be contained in a single sched domain, ensuring that load balancing
-can move a task (not otherwised pinned, as by sched_setaffinity)
-from any CPU in that cpuset to any other.
-
-When the per-cpuset flag "cpuset.sched_load_balance" is disabled, then the
-scheduler will avoid load balancing across the CPUs in that cpuset,
---except-- in so far as is necessary because some overlapping cpuset
-has "sched_load_balance" enabled.
-
-So, for example, if the top cpuset has the flag "cpuset.sched_load_balance"
-enabled, then the scheduler will have one sched domain covering all
-CPUs, and the setting of the "cpuset.sched_load_balance" flag in any other
-cpusets won't matter, as we're already fully load balancing.
-
-Therefore in the above two situations, the top cpuset flag
-"cpuset.sched_load_balance" should be disabled, and only some of the smaller,
-child cpusets have this flag enabled.
-
-When doing this, you don't usually want to leave any unpinned tasks in
-the top cpuset that might use non-trivial amounts of CPU, as such tasks
-may be artificially constrained to some subset of CPUs, depending on
-the particulars of this flag setting in descendant cpusets. Even if
-such a task could use spare CPU cycles in some other CPUs, the kernel
-scheduler might not consider the possibility of load balancing that
-task to that underused CPU.
-
-Of course, tasks pinned to a particular CPU can be left in a cpuset
-that disables "cpuset.sched_load_balance" as those tasks aren't going anywhere
-else anyway.
-
-There is an impedance mismatch here, between cpusets and sched domains.
-Cpusets are hierarchical and nest. Sched domains are flat; they don't
-overlap and each CPU is in at most one sched domain.
-
-It is necessary for sched domains to be flat because load balancing
-across partially overlapping sets of CPUs would risk unstable dynamics
-that would be beyond our understanding. So if each of two partially
-overlapping cpusets enables the flag 'cpuset.sched_load_balance', then we
-form a single sched domain that is a superset of both. We won't move
-a task to a CPU outside its cpuset, but the scheduler load balancing
-code might waste some compute cycles considering that possibility.
-
-This mismatch is why there is not a simple one-to-one relation
-between which cpusets have the flag "cpuset.sched_load_balance" enabled,
-and the sched domain configuration. If a cpuset enables the flag, it
-will get balancing across all its CPUs, but if it disables the flag,
-it will only be assured of no load balancing if no other overlapping
-cpuset enables the flag.
-
-If two cpusets have partially overlapping 'cpuset.cpus' allowed, and only
-one of them has this flag enabled, then the other may find its
-tasks only partially load balanced, just on the overlapping CPUs.
-This is just the general case of the top_cpuset example given a few
-paragraphs above. In the general case, as in the top cpuset case,
-don't leave tasks that might use non-trivial amounts of CPU in
-such partially load balanced cpusets, as they may be artificially
-constrained to some subset of the CPUs allowed to them, for lack of
-load balancing to the other CPUs.
-
-CPUs in "cpuset.isolcpus" were excluded from load balancing by the
-isolcpus= kernel boot option, and will never be load balanced regardless
-of the value of "cpuset.sched_load_balance" in any cpuset.
-
-1.7.1 sched_load_balance implementation details.
-------------------------------------------------
-
-The per-cpuset flag 'cpuset.sched_load_balance' defaults to enabled (contrary
-to most cpuset flags.) When enabled for a cpuset, the kernel will
-ensure that it can load balance across all the CPUs in that cpuset
-(makes sure that all the CPUs in the cpus_allowed of that cpuset are
-in the same sched domain.)
-
-If two overlapping cpusets both have 'cpuset.sched_load_balance' enabled,
-then they will be (must be) both in the same sched domain.
-
-If, as is the default, the top cpuset has 'cpuset.sched_load_balance' enabled,
-then by the above that means there is a single sched domain covering
-the whole system, regardless of any other cpuset settings.
-
-The kernel commits to user space that it will avoid load balancing
-where it can. It will pick as fine a granularity partition of sched
-domains as it can while still providing load balancing for any set
-of CPUs allowed to a cpuset having 'cpuset.sched_load_balance' enabled.
-
-The internal kernel cpuset to scheduler interface passes from the
-cpuset code to the scheduler code a partition of the load balanced
-CPUs in the system. This partition is a set of subsets (represented
-as an array of struct cpumask) of CPUs, pairwise disjoint, that cover
-all the CPUs that must be load balanced.
-
-The cpuset code builds a new such partition and passes it to the
-scheduler sched domain setup code, to have the sched domains rebuilt
-as necessary, whenever:
-
- - the 'cpuset.sched_load_balance' flag of a cpuset with non-empty CPUs changes,
- - or CPUs come or go from a cpuset with this flag enabled,
- - or 'cpuset.sched_relax_domain_level' value of a cpuset with non-empty CPUs
- and with this flag enabled changes,
- - or a cpuset with non-empty CPUs and with this flag enabled is removed,
- - or a cpu is offlined/onlined.
-
-This partition exactly defines what sched domains the scheduler should
-setup - one sched domain for each element (struct cpumask) in the
-partition.
-
-The scheduler remembers the currently active sched domain partitions.
-When the scheduler routine partition_sched_domains() is invoked from
-the cpuset code to update these sched domains, it compares the new
-partition requested with the current, and updates its sched domains,
-removing the old and adding the new, for each change.
-
-
-1.8 What is sched_relax_domain_level ?
---------------------------------------
-
-In sched domain, the scheduler migrates tasks in 2 ways; periodic load
-balance on tick, and at time of some schedule events.
-
-When a task is woken up, scheduler try to move the task on idle CPU.
-For example, if a task A running on CPU X activates another task B
-on the same CPU X, and if CPU Y is X's sibling and performing idle,
-then scheduler migrate task B to CPU Y so that task B can start on
-CPU Y without waiting task A on CPU X.
-
-And if a CPU run out of tasks in its runqueue, the CPU try to pull
-extra tasks from other busy CPUs to help them before it is going to
-be idle.
-
-Of course it takes some searching cost to find movable tasks and/or
-idle CPUs, the scheduler might not search all CPUs in the domain
-every time. In fact, in some architectures, the searching ranges on
-events are limited in the same socket or node where the CPU locates,
-while the load balance on tick searches all.
-
-For example, assume CPU Z is relatively far from CPU X. Even if CPU Z
-is idle while CPU X and the siblings are busy, scheduler can't migrate
-woken task B from X to Z since it is out of its searching range.
-As the result, task B on CPU X need to wait task A or wait load balance
-on the next tick. For some applications in special situation, waiting
-1 tick may be too long.
-
-The 'cpuset.sched_relax_domain_level' file allows you to request changing
-this searching range as you like. This file takes int value which
-indicates size of searching range in levels ideally as follows,
-otherwise initial value -1 that indicates the cpuset has no request.
-
-====== ===========================================================
- -1 no request. use system default or follow request of others.
- 0 no search.
- 1 search siblings (hyperthreads in a core).
- 2 search cores in a package.
- 3 search cpus in a node [= system wide on non-NUMA system]
- 4 search nodes in a chunk of node [on NUMA system]
- 5 search system wide [on NUMA system]
-====== ===========================================================
-
-The system default is architecture dependent. The system default
-can be changed using the relax_domain_level= boot parameter.
-
-This file is per-cpuset and affect the sched domain where the cpuset
-belongs to. Therefore if the flag 'cpuset.sched_load_balance' of a cpuset
-is disabled, then 'cpuset.sched_relax_domain_level' have no effect since
-there is no sched domain belonging the cpuset.
-
-If multiple cpusets are overlapping and hence they form a single sched
-domain, the largest value among those is used. Be careful, if one
-requests 0 and others are -1 then 0 is used.
-
-Note that modifying this file will have both good and bad effects,
-and whether it is acceptable or not depends on your situation.
-Don't modify this file if you are not sure.
-
-If your situation is:
-
- - The migration costs between each cpu can be assumed considerably
- small(for you) due to your special application's behavior or
- special hardware support for CPU cache etc.
- - The searching cost doesn't have impact(for you) or you can make
- the searching cost enough small by managing cpuset to compact etc.
- - The latency is required even it sacrifices cache hit rate etc.
- then increasing 'sched_relax_domain_level' would benefit you.
-
-
-1.9 How do I use cpusets ?
---------------------------
-
-In order to minimize the impact of cpusets on critical kernel
-code, such as the scheduler, and due to the fact that the kernel
-does not support one task updating the memory placement of another
-task directly, the impact on a task of changing its cpuset CPU
-or Memory Node placement, or of changing to which cpuset a task
-is attached, is subtle.
-
-If a cpuset has its Memory Nodes modified, then for each task attached
-to that cpuset, the next time that the kernel attempts to allocate
-a page of memory for that task, the kernel will notice the change
-in the task's cpuset, and update its per-task memory placement to
-remain within the new cpusets memory placement. If the task was using
-mempolicy MPOL_BIND, and the nodes to which it was bound overlap with
-its new cpuset, then the task will continue to use whatever subset
-of MPOL_BIND nodes are still allowed in the new cpuset. If the task
-was using MPOL_BIND and now none of its MPOL_BIND nodes are allowed
-in the new cpuset, then the task will be essentially treated as if it
-was MPOL_BIND bound to the new cpuset (even though its NUMA placement,
-as queried by get_mempolicy(), doesn't change). If a task is moved
-from one cpuset to another, then the kernel will adjust the task's
-memory placement, as above, the next time that the kernel attempts
-to allocate a page of memory for that task.
-
-If a cpuset has its 'cpuset.cpus' modified, then each task in that cpuset
-will have its allowed CPU placement changed immediately. Similarly,
-if a task's pid is written to another cpuset's 'tasks' file, then its
-allowed CPU placement is changed immediately. If such a task had been
-bound to some subset of its cpuset using the sched_setaffinity() call,
-the task will be allowed to run on any CPU allowed in its new cpuset,
-negating the effect of the prior sched_setaffinity() call.
-
-In summary, the memory placement of a task whose cpuset is changed is
-updated by the kernel, on the next allocation of a page for that task,
-and the processor placement is updated immediately.
-
-Normally, once a page is allocated (given a physical page
-of main memory) then that page stays on whatever node it
-was allocated, so long as it remains allocated, even if the
-cpusets memory placement policy 'cpuset.mems' subsequently changes.
-If the cpuset flag file 'cpuset.memory_migrate' is set true, then when
-tasks are attached to that cpuset, any pages that task had
-allocated to it on nodes in its previous cpuset are migrated
-to the task's new cpuset. The relative placement of the page within
-the cpuset is preserved during these migration operations if possible.
-For example if the page was on the second valid node of the prior cpuset
-then the page will be placed on the second valid node of the new cpuset.
-
-Also if 'cpuset.memory_migrate' is set true, then if that cpuset's
-'cpuset.mems' file is modified, pages allocated to tasks in that
-cpuset, that were on nodes in the previous setting of 'cpuset.mems',
-will be moved to nodes in the new setting of 'mems.'
-Pages that were not in the task's prior cpuset, or in the cpuset's
-prior 'cpuset.mems' setting, will not be moved.
-
-There is an exception to the above. If hotplug functionality is used
-to remove all the CPUs that are currently assigned to a cpuset,
-then all the tasks in that cpuset will be moved to the nearest ancestor
-with non-empty cpus. But the moving of some (or all) tasks might fail if
-cpuset is bound with another cgroup subsystem which has some restrictions
-on task attaching. In this failing case, those tasks will stay
-in the original cpuset, and the kernel will automatically update
-their cpus_allowed to allow all online CPUs. When memory hotplug
-functionality for removing Memory Nodes is available, a similar exception
-is expected to apply there as well. In general, the kernel prefers to
-violate cpuset placement, over starving a task that has had all
-its allowed CPUs or Memory Nodes taken offline.
-
-There is a second exception to the above. GFP_ATOMIC requests are
-kernel internal allocations that must be satisfied, immediately.
-The kernel may drop some request, in rare cases even panic, if a
-GFP_ATOMIC alloc fails. If the request cannot be satisfied within
-the current task's cpuset, then we relax the cpuset, and look for
-memory anywhere we can find it. It's better to violate the cpuset
-than stress the kernel.
-
-To start a new job that is to be contained within a cpuset, the steps are:
-
- 1) mkdir /sys/fs/cgroup/cpuset
- 2) mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset
- 3) Create the new cpuset by doing mkdir's and write's (or echo's) in
- the /sys/fs/cgroup/cpuset virtual file system.
- 4) Start a task that will be the "founding father" of the new job.
- 5) Attach that task to the new cpuset by writing its pid to the
- /sys/fs/cgroup/cpuset tasks file for that cpuset.
- 6) fork, exec or clone the job tasks from this founding father task.
-
-For example, the following sequence of commands will setup a cpuset
-named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
-and then start a subshell 'sh' in that cpuset::
-
- mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset
- cd /sys/fs/cgroup/cpuset
- mkdir Charlie
- cd Charlie
- /bin/echo 2-3 > cpuset.cpus
- /bin/echo 1 > cpuset.mems
- /bin/echo $$ > tasks
- sh
- # The subshell 'sh' is now running in cpuset Charlie
- # The next line should display '/Charlie'
- cat /proc/self/cpuset
-
-There are ways to query or modify cpusets:
-
- - via the cpuset file system directly, using the various cd, mkdir, echo,
- cat, rmdir commands from the shell, or their equivalent from C.
- - via the C library libcpuset.
- - via the C library libcgroup.
- (http://sourceforge.net/projects/libcg/)
- - via the python application cset.
- (http://code.google.com/p/cpuset/)
-
-The sched_setaffinity calls can also be done at the shell prompt using
-SGI's runon or Robert Love's taskset. The mbind and set_mempolicy
-calls can be done at the shell prompt using the numactl command
-(part of Andi Kleen's numa package).
-
-2. Usage Examples and Syntax
-============================
-
-2.1 Basic Usage
----------------
-
-Creating, modifying, using the cpusets can be done through the cpuset
-virtual filesystem.
-
-To mount it, type:
-# mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset
-
-Then under /sys/fs/cgroup/cpuset you can find a tree that corresponds to the
-tree of the cpusets in the system. For instance, /sys/fs/cgroup/cpuset
-is the cpuset that holds the whole system.
-
-If you want to create a new cpuset under /sys/fs/cgroup/cpuset::
-
- # cd /sys/fs/cgroup/cpuset
- # mkdir my_cpuset
-
-Now you want to do something with this cpuset::
-
- # cd my_cpuset
-
-In this directory you can find several files::
-
- # ls
- cgroup.clone_children cpuset.memory_pressure
- cgroup.event_control cpuset.memory_spread_page
- cgroup.procs cpuset.memory_spread_slab
- cpuset.cpu_exclusive cpuset.mems
- cpuset.cpus cpuset.sched_load_balance
- cpuset.mem_exclusive cpuset.sched_relax_domain_level
- cpuset.mem_hardwall notify_on_release
- cpuset.memory_migrate tasks
-
-Reading them will give you information about the state of this cpuset:
-the CPUs and Memory Nodes it can use, the processes that are using
-it, its properties. By writing to these files you can manipulate
-the cpuset.
-
-Set some flags::
-
- # /bin/echo 1 > cpuset.cpu_exclusive
-
-Add some cpus::
-
- # /bin/echo 0-7 > cpuset.cpus
-
-Add some mems::
-
- # /bin/echo 0-7 > cpuset.mems
-
-Now attach your shell to this cpuset::
-
- # /bin/echo $$ > tasks
-
-You can also create cpusets inside your cpuset by using mkdir in this
-directory::
-
- # mkdir my_sub_cs
-
-To remove a cpuset, just use rmdir::
-
- # rmdir my_sub_cs
-
-This will fail if the cpuset is in use (has cpusets inside, or has
-processes attached).
-
-Note that for legacy reasons, the "cpuset" filesystem exists as a
-wrapper around the cgroup filesystem.
-
-The command::
-
- mount -t cpuset X /sys/fs/cgroup/cpuset
-
-is equivalent to::
-
- mount -t cgroup -ocpuset,noprefix X /sys/fs/cgroup/cpuset
- echo "/sbin/cpuset_release_agent" > /sys/fs/cgroup/cpuset/release_agent
-
-2.2 Adding/removing cpus
-------------------------
-
-This is the syntax to use when writing in the cpus or mems files
-in cpuset directories::
-
- # /bin/echo 1-4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
- # /bin/echo 1,2,3,4 > cpuset.cpus -> set cpus list to cpus 1,2,3,4
-
-To add a CPU to a cpuset, write the new list of CPUs including the
-CPU to be added. To add 6 to the above cpuset::
-
- # /bin/echo 1-4,6 > cpuset.cpus -> set cpus list to cpus 1,2,3,4,6
-
-Similarly to remove a CPU from a cpuset, write the new list of CPUs
-without the CPU to be removed.
-
-To remove all the CPUs::
-
- # /bin/echo "" > cpuset.cpus -> clear cpus list
-
-2.3 Setting flags
------------------
-
-The syntax is very simple::
-
- # /bin/echo 1 > cpuset.cpu_exclusive -> set flag 'cpuset.cpu_exclusive'
- # /bin/echo 0 > cpuset.cpu_exclusive -> unset flag 'cpuset.cpu_exclusive'
-
-2.4 Attaching processes
------------------------
-
-::
-
- # /bin/echo PID > tasks
-
-Note that it is PID, not PIDs. You can only attach ONE task at a time.
-If you have several tasks to attach, you have to do it one after another::
-
- # /bin/echo PID1 > tasks
- # /bin/echo PID2 > tasks
- ...
- # /bin/echo PIDn > tasks
-
-
-3. Questions
-============
-
-Q:
- what's up with this '/bin/echo' ?
-
-A:
- bash's builtin 'echo' command does not check calls to write() against
- errors. If you use it in the cpuset file system, you won't be
- able to tell whether a command succeeded or failed.
-
-Q:
- When I attach processes, only the first of the line gets really attached !
-
-A:
- We can only return one error code per call to write(). So you should also
- put only ONE pid.
-
-4. Contact
-==========
-
-Web: http://www.bullopensource.org/cpuset
+++ /dev/null
-===========================
-Device Whitelist Controller
-===========================
-
-1. Description
-==============
-
-Implement a cgroup to track and enforce open and mknod restrictions
-on device files. A device cgroup associates a device access
-whitelist with each cgroup. A whitelist entry has 4 fields.
-'type' is a (all), c (char), or b (block). 'all' means it applies
-to all types and all major and minor numbers. Major and minor are
-either an integer or * for all. Access is a composition of r
-(read), w (write), and m (mknod).
-
-The root device cgroup starts with rwm to 'all'. A child device
-cgroup gets a copy of the parent. Administrators can then remove
-devices from the whitelist or add new entries. A child cgroup can
-never receive a device access which is denied by its parent.
-
-2. User Interface
-=================
-
-An entry is added using devices.allow, and removed using
-devices.deny. For instance::
-
- echo 'c 1:3 mr' > /sys/fs/cgroup/1/devices.allow
-
-allows cgroup 1 to read and mknod the device usually known as
-/dev/null. Doing::
-
- echo a > /sys/fs/cgroup/1/devices.deny
-
-will remove the default 'a *:* rwm' entry. Doing::
-
- echo a > /sys/fs/cgroup/1/devices.allow
-
-will add the 'a *:* rwm' entry to the whitelist.
-
-3. Security
-===========
-
-Any task can move itself between cgroups. This clearly won't
-suffice, but we can decide the best way to adequately restrict
-movement as people get some experience with this. We may just want
-to require CAP_SYS_ADMIN, which at least is a separate bit from
-CAP_MKNOD. We may want to just refuse moving to a cgroup which
-isn't a descendant of the current one. Or we may want to use
-CAP_MAC_ADMIN, since we really are trying to lock down root.
-
-CAP_SYS_ADMIN is needed to modify the whitelist or move another
-task to a new cgroup. (Again we'll probably want to change that).
-
-A cgroup may not be granted more permissions than the cgroup's
-parent has.
-
-4. Hierarchy
-============
-
-device cgroups maintain hierarchy by making sure a cgroup never has more
-access permissions than its parent. Every time an entry is written to
-a cgroup's devices.deny file, all its children will have that entry removed
-from their whitelist and all the locally set whitelist entries will be
-re-evaluated. In case one of the locally set whitelist entries would provide
-more access than the cgroup's parent, it'll be removed from the whitelist.
-
-Example::
-
- A
- / \
- B
-
- group behavior exceptions
- A allow "b 8:* rwm", "c 116:1 rw"
- B deny "c 1:3 rwm", "c 116:2 rwm", "b 3:* rwm"
-
-If a device is denied in group A::
-
- # echo "c 116:* r" > A/devices.deny
-
-it'll propagate down and after revalidating B's entries, the whitelist entry
-"c 116:2 rwm" will be removed::
-
- group whitelist entries denied devices
- A all "b 8:* rwm", "c 116:* rw"
- B "c 1:3 rwm", "b 3:* rwm" all the rest
-
-In case parent's exceptions change and local exceptions are not allowed
-anymore, they'll be deleted.
-
-Notice that new whitelist entries will not be propagated::
-
- A
- / \
- B
-
- group whitelist entries denied devices
- A "c 1:3 rwm", "c 1:5 r" all the rest
- B "c 1:3 rwm", "c 1:5 r" all the rest
-
-when adding ``c *:3 rwm``::
-
- # echo "c *:3 rwm" >A/devices.allow
-
-the result::
-
- group whitelist entries denied devices
- A "c *:3 rwm", "c 1:5 r" all the rest
- B "c 1:3 rwm", "c 1:5 r" all the rest
-
-but now it'll be possible to add new entries to B::
-
- # echo "c 2:3 rwm" >B/devices.allow
- # echo "c 50:3 r" >B/devices.allow
-
-or even::
-
- # echo "c *:3 rwm" >B/devices.allow
-
-Allowing or denying all by writing 'a' to devices.allow or devices.deny will
-not be possible once the device cgroups has children.
-
-4.1 Hierarchy (internal implementation)
----------------------------------------
-
-device cgroups is implemented internally using a behavior (ALLOW, DENY) and a
-list of exceptions. The internal state is controlled using the same user
-interface to preserve compatibility with the previous whitelist-only
-implementation. Removal or addition of exceptions that will reduce the access
-to devices will be propagated down the hierarchy.
-For every propagated exception, the effective rules will be re-evaluated based
-on current parent's access rules.
+++ /dev/null
-==============
-Cgroup Freezer
-==============
-
-The cgroup freezer is useful to batch job management system which start
-and stop sets of tasks in order to schedule the resources of a machine
-according to the desires of a system administrator. This sort of program
-is often used on HPC clusters to schedule access to the cluster as a
-whole. The cgroup freezer uses cgroups to describe the set of tasks to
-be started/stopped by the batch job management system. It also provides
-a means to start and stop the tasks composing the job.
-
-The cgroup freezer will also be useful for checkpointing running groups
-of tasks. The freezer allows the checkpoint code to obtain a consistent
-image of the tasks by attempting to force the tasks in a cgroup into a
-quiescent state. Once the tasks are quiescent another task can
-walk /proc or invoke a kernel interface to gather information about the
-quiesced tasks. Checkpointed tasks can be restarted later should a
-recoverable error occur. This also allows the checkpointed tasks to be
-migrated between nodes in a cluster by copying the gathered information
-to another node and restarting the tasks there.
-
-Sequences of SIGSTOP and SIGCONT are not always sufficient for stopping
-and resuming tasks in userspace. Both of these signals are observable
-from within the tasks we wish to freeze. While SIGSTOP cannot be caught,
-blocked, or ignored it can be seen by waiting or ptracing parent tasks.
-SIGCONT is especially unsuitable since it can be caught by the task. Any
-programs designed to watch for SIGSTOP and SIGCONT could be broken by
-attempting to use SIGSTOP and SIGCONT to stop and resume tasks. We can
-demonstrate this problem using nested bash shells::
-
- $ echo $$
- 16644
- $ bash
- $ echo $$
- 16690
-
- From a second, unrelated bash shell:
- $ kill -SIGSTOP 16690
- $ kill -SIGCONT 16690
-
- <at this point 16690 exits and causes 16644 to exit too>
-
-This happens because bash can observe both signals and choose how it
-responds to them.
-
-Another example of a program which catches and responds to these
-signals is gdb. In fact any program designed to use ptrace is likely to
-have a problem with this method of stopping and resuming tasks.
-
-In contrast, the cgroup freezer uses the kernel freezer code to
-prevent the freeze/unfreeze cycle from becoming visible to the tasks
-being frozen. This allows the bash example above and gdb to run as
-expected.
-
-The cgroup freezer is hierarchical. Freezing a cgroup freezes all
-tasks belonging to the cgroup and all its descendant cgroups. Each
-cgroup has its own state (self-state) and the state inherited from the
-parent (parent-state). Iff both states are THAWED, the cgroup is
-THAWED.
-
-The following cgroupfs files are created by cgroup freezer.
-
-* freezer.state: Read-write.
-
- When read, returns the effective state of the cgroup - "THAWED",
- "FREEZING" or "FROZEN". This is the combined self and parent-states.
- If any is freezing, the cgroup is freezing (FREEZING or FROZEN).
-
- FREEZING cgroup transitions into FROZEN state when all tasks
- belonging to the cgroup and its descendants become frozen. Note that
- a cgroup reverts to FREEZING from FROZEN after a new task is added
- to the cgroup or one of its descendant cgroups until the new task is
- frozen.
-
- When written, sets the self-state of the cgroup. Two values are
- allowed - "FROZEN" and "THAWED". If FROZEN is written, the cgroup,
- if not already freezing, enters FREEZING state along with all its
- descendant cgroups.
-
- If THAWED is written, the self-state of the cgroup is changed to
- THAWED. Note that the effective state may not change to THAWED if
- the parent-state is still freezing. If a cgroup's effective state
- becomes THAWED, all its descendants which are freezing because of
- the cgroup also leave the freezing state.
-
-* freezer.self_freezing: Read only.
-
- Shows the self-state. 0 if the self-state is THAWED; otherwise, 1.
- This value is 1 iff the last write to freezer.state was "FROZEN".
-
-* freezer.parent_freezing: Read only.
-
- Shows the parent-state. 0 if none of the cgroup's ancestors is
- frozen; otherwise, 1.
-
-The root cgroup is non-freezable and the above interface files don't
-exist.
-
-* Examples of usage::
-
- # mkdir /sys/fs/cgroup/freezer
- # mount -t cgroup -ofreezer freezer /sys/fs/cgroup/freezer
- # mkdir /sys/fs/cgroup/freezer/0
- # echo $some_pid > /sys/fs/cgroup/freezer/0/tasks
-
-to get status of the freezer subsystem::
-
- # cat /sys/fs/cgroup/freezer/0/freezer.state
- THAWED
-
-to freeze all tasks in the container::
-
- # echo FROZEN > /sys/fs/cgroup/freezer/0/freezer.state
- # cat /sys/fs/cgroup/freezer/0/freezer.state
- FREEZING
- # cat /sys/fs/cgroup/freezer/0/freezer.state
- FROZEN
-
-to unfreeze all tasks in the container::
-
- # echo THAWED > /sys/fs/cgroup/freezer/0/freezer.state
- # cat /sys/fs/cgroup/freezer/0/freezer.state
- THAWED
-
-This is the basic mechanism which should do the right thing for user space task
-in a simple scenario.
+++ /dev/null
-==================
-HugeTLB Controller
-==================
-
-The HugeTLB controller allows to limit the HugeTLB usage per control group and
-enforces the controller limit during page fault. Since HugeTLB doesn't
-support page reclaim, enforcing the limit at page fault time implies that,
-the application will get SIGBUS signal if it tries to access HugeTLB pages
-beyond its limit. This requires the application to know beforehand how much
-HugeTLB pages it would require for its use.
-
-HugeTLB controller can be created by first mounting the cgroup filesystem.
-
-# mount -t cgroup -o hugetlb none /sys/fs/cgroup
-
-With the above step, the initial or the parent HugeTLB group becomes
-visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in
-the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup.
-
-New groups can be created under the parent group /sys/fs/cgroup::
-
- # cd /sys/fs/cgroup
- # mkdir g1
- # echo $$ > g1/tasks
-
-The above steps create a new group g1 and move the current shell
-process (bash) into it.
-
-Brief summary of control files::
-
- hugetlb.<hugepagesize>.limit_in_bytes # set/show limit of "hugepagesize" hugetlb usage
- hugetlb.<hugepagesize>.max_usage_in_bytes # show max "hugepagesize" hugetlb usage recorded
- hugetlb.<hugepagesize>.usage_in_bytes # show current usage for "hugepagesize" hugetlb
- hugetlb.<hugepagesize>.failcnt # show the number of allocation failure due to HugeTLB limit
-
-For a system supporting three hugepage sizes (64k, 32M and 1G), the control
-files include::
-
- hugetlb.1GB.limit_in_bytes
- hugetlb.1GB.max_usage_in_bytes
- hugetlb.1GB.usage_in_bytes
- hugetlb.1GB.failcnt
- hugetlb.64KB.limit_in_bytes
- hugetlb.64KB.max_usage_in_bytes
- hugetlb.64KB.usage_in_bytes
- hugetlb.64KB.failcnt
- hugetlb.32MB.limit_in_bytes
- hugetlb.32MB.max_usage_in_bytes
- hugetlb.32MB.usage_in_bytes
- hugetlb.32MB.failcnt
+++ /dev/null
-:orphan:
-
-========================
-Control Groups version 1
-========================
-
-.. toctree::
- :maxdepth: 1
-
- cgroups
-
- blkio-controller
- cpuacct
- cpusets
- devices
- freezer-subsystem
- hugetlb
- memcg_test
- memory
- net_cls
- net_prio
- pids
- rdma
-
-.. only:: subproject and html
-
- Indices
- =======
-
- * :ref:`genindex`
+++ /dev/null
-=====================================================
-Memory Resource Controller(Memcg) Implementation Memo
-=====================================================
-
-Last Updated: 2010/2
-
-Base Kernel Version: based on 2.6.33-rc7-mm(candidate for 34).
-
-Because VM is getting complex (one of reasons is memcg...), memcg's behavior
-is complex. This is a document for memcg's internal behavior.
-Please note that implementation details can be changed.
-
-(*) Topics on API should be in Documentation/cgroup-v1/memory.rst)
-
-0. How to record usage ?
-========================
-
- 2 objects are used.
-
- page_cgroup ....an object per page.
-
- Allocated at boot or memory hotplug. Freed at memory hot removal.
-
- swap_cgroup ... an entry per swp_entry.
-
- Allocated at swapon(). Freed at swapoff().
-
- The page_cgroup has USED bit and double count against a page_cgroup never
- occurs. swap_cgroup is used only when a charged page is swapped-out.
-
-1. Charge
-=========
-
- a page/swp_entry may be charged (usage += PAGE_SIZE) at
-
- mem_cgroup_try_charge()
-
-2. Uncharge
-===========
-
- a page/swp_entry may be uncharged (usage -= PAGE_SIZE) by
-
- mem_cgroup_uncharge()
- Called when a page's refcount goes down to 0.
-
- mem_cgroup_uncharge_swap()
- Called when swp_entry's refcnt goes down to 0. A charge against swap
- disappears.
-
-3. charge-commit-cancel
-=======================
-
- Memcg pages are charged in two steps:
-
- - mem_cgroup_try_charge()
- - mem_cgroup_commit_charge() or mem_cgroup_cancel_charge()
-
- At try_charge(), there are no flags to say "this page is charged".
- at this point, usage += PAGE_SIZE.
-
- At commit(), the page is associated with the memcg.
-
- At cancel(), simply usage -= PAGE_SIZE.
-
-Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
-
-4. Anonymous
-============
-
- Anonymous page is newly allocated at
- - page fault into MAP_ANONYMOUS mapping.
- - Copy-On-Write.
-
- 4.1 Swap-in.
- At swap-in, the page is taken from swap-cache. There are 2 cases.
-
- (a) If the SwapCache is newly allocated and read, it has no charges.
- (b) If the SwapCache has been mapped by processes, it has been
- charged already.
-
- 4.2 Swap-out.
- At swap-out, typical state transition is below.
-
- (a) add to swap cache. (marked as SwapCache)
- swp_entry's refcnt += 1.
- (b) fully unmapped.
- swp_entry's refcnt += # of ptes.
- (c) write back to swap.
- (d) delete from swap cache. (remove from SwapCache)
- swp_entry's refcnt -= 1.
-
-
- Finally, at task exit,
- (e) zap_pte() is called and swp_entry's refcnt -=1 -> 0.
-
-5. Page Cache
-=============
-
- Page Cache is charged at
- - add_to_page_cache_locked().
-
- The logic is very clear. (About migration, see below)
-
- Note:
- __remove_from_page_cache() is called by remove_from_page_cache()
- and __remove_mapping().
-
-6. Shmem(tmpfs) Page Cache
-===========================
-
- The best way to understand shmem's page state transition is to read
- mm/shmem.c.
-
- But brief explanation of the behavior of memcg around shmem will be
- helpful to understand the logic.
-
- Shmem's page (just leaf page, not direct/indirect block) can be on
-
- - radix-tree of shmem's inode.
- - SwapCache.
- - Both on radix-tree and SwapCache. This happens at swap-in
- and swap-out,
-
- It's charged when...
-
- - A new page is added to shmem's radix-tree.
- - A swp page is read. (move a charge from swap_cgroup to page_cgroup)
-
-7. Page Migration
-=================
-
- mem_cgroup_migrate()
-
-8. LRU
-======
- Each memcg has its own private LRU. Now, its handling is under global
- VM's control (means that it's handled under global pgdat->lru_lock).
- Almost all routines around memcg's LRU is called by global LRU's
- list management functions under pgdat->lru_lock.
-
- A special function is mem_cgroup_isolate_pages(). This scans
- memcg's private LRU and call __isolate_lru_page() to extract a page
- from LRU.
-
- (By __isolate_lru_page(), the page is removed from both of global and
- private LRU.)
-
-
-9. Typical Tests.
-=================
-
- Tests for racy cases.
-
-9.1 Small limit to memcg.
--------------------------
-
- When you do test to do racy case, it's good test to set memcg's limit
- to be very small rather than GB. Many races found in the test under
- xKB or xxMB limits.
-
- (Memory behavior under GB and Memory behavior under MB shows very
- different situation.)
-
-9.2 Shmem
----------
-
- Historically, memcg's shmem handling was poor and we saw some amount
- of troubles here. This is because shmem is page-cache but can be
- SwapCache. Test with shmem/tmpfs is always good test.
-
-9.3 Migration
--------------
-
- For NUMA, migration is an another special case. To do easy test, cpuset
- is useful. Following is a sample script to do migration::
-
- mount -t cgroup -o cpuset none /opt/cpuset
-
- mkdir /opt/cpuset/01
- echo 1 > /opt/cpuset/01/cpuset.cpus
- echo 0 > /opt/cpuset/01/cpuset.mems
- echo 1 > /opt/cpuset/01/cpuset.memory_migrate
- mkdir /opt/cpuset/02
- echo 1 > /opt/cpuset/02/cpuset.cpus
- echo 1 > /opt/cpuset/02/cpuset.mems
- echo 1 > /opt/cpuset/02/cpuset.memory_migrate
-
- In above set, when you moves a task from 01 to 02, page migration to
- node 0 to node 1 will occur. Following is a script to migrate all
- under cpuset.::
-
- --
- move_task()
- {
- for pid in $1
- do
- /bin/echo $pid >$2/tasks 2>/dev/null
- echo -n $pid
- echo -n " "
- done
- echo END
- }
-
- G1_TASK=`cat ${G1}/tasks`
- G2_TASK=`cat ${G2}/tasks`
- move_task "${G1_TASK}" ${G2} &
- --
-
-9.4 Memory hotplug
-------------------
-
- memory hotplug test is one of good test.
-
- to offline memory, do following::
-
- # echo offline > /sys/devices/system/memory/memoryXXX/state
-
- (XXX is the place of memory)
-
- This is an easy way to test page migration, too.
-
-9.5 mkdir/rmdir
----------------
-
- When using hierarchy, mkdir/rmdir test should be done.
- Use tests like the following::
-
- echo 1 >/opt/cgroup/01/memory/use_hierarchy
- mkdir /opt/cgroup/01/child_a
- mkdir /opt/cgroup/01/child_b
-
- set limit to 01.
- add limit to 01/child_b
- run jobs under child_a and child_b
-
- create/delete following groups at random while jobs are running::
-
- /opt/cgroup/01/child_a/child_aa
- /opt/cgroup/01/child_b/child_bb
- /opt/cgroup/01/child_c
-
- running new jobs in new group is also good.
-
-9.6 Mount with other subsystems
--------------------------------
-
- Mounting with other subsystems is a good test because there is a
- race and lock dependency with other cgroup subsystems.
-
- example::
-
- # mount -t cgroup none /cgroup -o cpuset,memory,cpu,devices
-
- and do task move, mkdir, rmdir etc...under this.
-
-9.7 swapoff
------------
-
- Besides management of swap is one of complicated parts of memcg,
- call path of swap-in at swapoff is not same as usual swap-in path..
- It's worth to be tested explicitly.
-
- For example, test like following is good:
-
- (Shell-A)::
-
- # mount -t cgroup none /cgroup -o memory
- # mkdir /cgroup/test
- # echo 40M > /cgroup/test/memory.limit_in_bytes
- # echo 0 > /cgroup/test/tasks
-
- Run malloc(100M) program under this. You'll see 60M of swaps.
-
- (Shell-B)::
-
- # move all tasks in /cgroup/test to /cgroup
- # /sbin/swapoff -a
- # rmdir /cgroup/test
- # kill malloc task.
-
- Of course, tmpfs v.s. swapoff test should be tested, too.
-
-9.8 OOM-Killer
---------------
-
- Out-of-memory caused by memcg's limit will kill tasks under
- the memcg. When hierarchy is used, a task under hierarchy
- will be killed by the kernel.
-
- In this case, panic_on_oom shouldn't be invoked and tasks
- in other groups shouldn't be killed.
-
- It's not difficult to cause OOM under memcg as following.
-
- Case A) when you can swapoff::
-
- #swapoff -a
- #echo 50M > /memory.limit_in_bytes
-
- run 51M of malloc
-
- Case B) when you use mem+swap limitation::
-
- #echo 50M > memory.limit_in_bytes
- #echo 50M > memory.memsw.limit_in_bytes
-
- run 51M of malloc
-
-9.9 Move charges at task migration
-----------------------------------
-
- Charges associated with a task can be moved along with task migration.
-
- (Shell-A)::
-
- #mkdir /cgroup/A
- #echo $$ >/cgroup/A/tasks
-
- run some programs which uses some amount of memory in /cgroup/A.
-
- (Shell-B)::
-
- #mkdir /cgroup/B
- #echo 1 >/cgroup/B/memory.move_charge_at_immigrate
- #echo "pid of the program running in group A" >/cgroup/B/tasks
-
- You can see charges have been moved by reading ``*.usage_in_bytes`` or
- memory.stat of both A and B.
-
- See 8.2 of Documentation/cgroup-v1/memory.rst to see what value should
- be written to move_charge_at_immigrate.
-
-9.10 Memory thresholds
-----------------------
-
- Memory controller implements memory thresholds using cgroups notification
- API. You can use tools/cgroup/cgroup_event_listener.c to test it.
-
- (Shell-A) Create cgroup and run event listener::
-
- # mkdir /cgroup/A
- # ./cgroup_event_listener /cgroup/A/memory.usage_in_bytes 5M
-
- (Shell-B) Add task to cgroup and try to allocate and free memory::
-
- # echo $$ >/cgroup/A/tasks
- # a="$(dd if=/dev/zero bs=1M count=10)"
- # a=
-
- You will see message from cgroup_event_listener every time you cross
- the thresholds.
-
- Use /cgroup/A/memory.memsw.usage_in_bytes to test memsw thresholds.
-
- It's good idea to test root cgroup as well.
+++ /dev/null
-==========================
-Memory Resource Controller
-==========================
-
-NOTE:
- This document is hopelessly outdated and it asks for a complete
- rewrite. It still contains a useful information so we are keeping it
- here but make sure to check the current code if you need a deeper
- understanding.
-
-NOTE:
- The Memory Resource Controller has generically been referred to as the
- memory controller in this document. Do not confuse memory controller
- used here with the memory controller that is used in hardware.
-
-(For editors) In this document:
- When we mention a cgroup (cgroupfs's directory) with memory controller,
- we call it "memory cgroup". When you see git-log and source code, you'll
- see patch's title and function names tend to use "memcg".
- In this document, we avoid using it.
-
-Benefits and Purpose of the memory controller
-=============================================
-
-The memory controller isolates the memory behaviour of a group of tasks
-from the rest of the system. The article on LWN [12] mentions some probable
-uses of the memory controller. The memory controller can be used to
-
-a. Isolate an application or a group of applications
- Memory-hungry applications can be isolated and limited to a smaller
- amount of memory.
-b. Create a cgroup with a limited amount of memory; this can be used
- as a good alternative to booting with mem=XXXX.
-c. Virtualization solutions can control the amount of memory they want
- to assign to a virtual machine instance.
-d. A CD/DVD burner could control the amount of memory used by the
- rest of the system to ensure that burning does not fail due to lack
- of available memory.
-e. There are several other use cases; find one or use the controller just
- for fun (to learn and hack on the VM subsystem).
-
-Current Status: linux-2.6.34-mmotm(development version of 2010/April)
-
-Features:
-
- - accounting anonymous pages, file caches, swap caches usage and limiting them.
- - pages are linked to per-memcg LRU exclusively, and there is no global LRU.
- - optionally, memory+swap usage can be accounted and limited.
- - hierarchical accounting
- - soft limit
- - moving (recharging) account at moving a task is selectable.
- - usage threshold notifier
- - memory pressure notifier
- - oom-killer disable knob and oom-notifier
- - Root cgroup has no limit controls.
-
- Kernel memory support is a work in progress, and the current version provides
- basically functionality. (See Section 2.7)
-
-Brief summary of control files.
-
-==================================== ==========================================
- tasks attach a task(thread) and show list of
- threads
- cgroup.procs show list of processes
- cgroup.event_control an interface for event_fd()
- memory.usage_in_bytes show current usage for memory
- (See 5.5 for details)
- memory.memsw.usage_in_bytes show current usage for memory+Swap
- (See 5.5 for details)
- memory.limit_in_bytes set/show limit of memory usage
- memory.memsw.limit_in_bytes set/show limit of memory+Swap usage
- memory.failcnt show the number of memory usage hits limits
- memory.memsw.failcnt show the number of memory+Swap hits limits
- memory.max_usage_in_bytes show max memory usage recorded
- memory.memsw.max_usage_in_bytes show max memory+Swap usage recorded
- memory.soft_limit_in_bytes set/show soft limit of memory usage
- memory.stat show various statistics
- memory.use_hierarchy set/show hierarchical account enabled
- memory.force_empty trigger forced page reclaim
- memory.pressure_level set memory pressure notifications
- memory.swappiness set/show swappiness parameter of vmscan
- (See sysctl's vm.swappiness)
- memory.move_charge_at_immigrate set/show controls of moving charges
- memory.oom_control set/show oom controls.
- memory.numa_stat show the number of memory usage per numa
- node
-
- memory.kmem.limit_in_bytes set/show hard limit for kernel memory
- memory.kmem.usage_in_bytes show current kernel memory allocation
- memory.kmem.failcnt show the number of kernel memory usage
- hits limits
- memory.kmem.max_usage_in_bytes show max kernel memory usage recorded
-
- memory.kmem.tcp.limit_in_bytes set/show hard limit for tcp buf memory
- memory.kmem.tcp.usage_in_bytes show current tcp buf memory allocation
- memory.kmem.tcp.failcnt show the number of tcp buf memory usage
- hits limits
- memory.kmem.tcp.max_usage_in_bytes show max tcp buf memory usage recorded
-==================================== ==========================================
-
-1. History
-==========
-
-The memory controller has a long history. A request for comments for the memory
-controller was posted by Balbir Singh [1]. At the time the RFC was posted
-there were several implementations for memory control. The goal of the
-RFC was to build consensus and agreement for the minimal features required
-for memory control. The first RSS controller was posted by Balbir Singh[2]
-in Feb 2007. Pavel Emelianov [3][4][5] has since posted three versions of the
-RSS controller. At OLS, at the resource management BoF, everyone suggested
-that we handle both page cache and RSS together. Another request was raised
-to allow user space handling of OOM. The current memory controller is
-at version 6; it combines both mapped (RSS) and unmapped Page
-Cache Control [11].
-
-2. Memory Control
-=================
-
-Memory is a unique resource in the sense that it is present in a limited
-amount. If a task requires a lot of CPU processing, the task can spread
-its processing over a period of hours, days, months or years, but with
-memory, the same physical memory needs to be reused to accomplish the task.
-
-The memory controller implementation has been divided into phases. These
-are:
-
-1. Memory controller
-2. mlock(2) controller
-3. Kernel user memory accounting and slab control
-4. user mappings length controller
-
-The memory controller is the first controller developed.
-
-2.1. Design
------------
-
-The core of the design is a counter called the page_counter. The
-page_counter tracks the current memory usage and limit of the group of
-processes associated with the controller. Each cgroup has a memory controller
-specific data structure (mem_cgroup) associated with it.
-
-2.2. Accounting
----------------
-
-::
-
- +--------------------+
- | mem_cgroup |
- | (page_counter) |
- +--------------------+
- / ^ \
- / | \
- +---------------+ | +---------------+
- | mm_struct | |.... | mm_struct |
- | | | | |
- +---------------+ | +---------------+
- |
- + --------------+
- |
- +---------------+ +------+--------+
- | page +----------> page_cgroup|
- | | | |
- +---------------+ +---------------+
-
- (Figure 1: Hierarchy of Accounting)
-
-
-Figure 1 shows the important aspects of the controller
-
-1. Accounting happens per cgroup
-2. Each mm_struct knows about which cgroup it belongs to
-3. Each page has a pointer to the page_cgroup, which in turn knows the
- cgroup it belongs to
-
-The accounting is done as follows: mem_cgroup_charge_common() is invoked to
-set up the necessary data structures and check if the cgroup that is being
-charged is over its limit. If it is, then reclaim is invoked on the cgroup.
-More details can be found in the reclaim section of this document.
-If everything goes well, a page meta-data-structure called page_cgroup is
-updated. page_cgroup has its own LRU on cgroup.
-(*) page_cgroup structure is allocated at boot/memory-hotplug time.
-
-2.2.1 Accounting details
-------------------------
-
-All mapped anon pages (RSS) and cache pages (Page Cache) are accounted.
-Some pages which are never reclaimable and will not be on the LRU
-are not accounted. We just account pages under usual VM management.
-
-RSS pages are accounted at page_fault unless they've already been accounted
-for earlier. A file page will be accounted for as Page Cache when it's
-inserted into inode (radix-tree). While it's mapped into the page tables of
-processes, duplicate accounting is carefully avoided.
-
-An RSS page is unaccounted when it's fully unmapped. A PageCache page is
-unaccounted when it's removed from radix-tree. Even if RSS pages are fully
-unmapped (by kswapd), they may exist as SwapCache in the system until they
-are really freed. Such SwapCaches are also accounted.
-A swapped-in page is not accounted until it's mapped.
-
-Note: The kernel does swapin-readahead and reads multiple swaps at once.
-This means swapped-in pages may contain pages for other tasks than a task
-causing page fault. So, we avoid accounting at swap-in I/O.
-
-At page migration, accounting information is kept.
-
-Note: we just account pages-on-LRU because our purpose is to control amount
-of used pages; not-on-LRU pages tend to be out-of-control from VM view.
-
-2.3 Shared Page Accounting
---------------------------
-
-Shared pages are accounted on the basis of the first touch approach. The
-cgroup that first touches a page is accounted for the page. The principle
-behind this approach is that a cgroup that aggressively uses a shared
-page will eventually get charged for it (once it is uncharged from
-the cgroup that brought it in -- this will happen on memory pressure).
-
-But see section 8.2: when moving a task to another cgroup, its pages may
-be recharged to the new cgroup, if move_charge_at_immigrate has been chosen.
-
-Exception: If CONFIG_MEMCG_SWAP is not used.
-When you do swapoff and make swapped-out pages of shmem(tmpfs) to
-be backed into memory in force, charges for pages are accounted against the
-caller of swapoff rather than the users of shmem.
-
-2.4 Swap Extension (CONFIG_MEMCG_SWAP)
---------------------------------------
-
-Swap Extension allows you to record charge for swap. A swapped-in page is
-charged back to original page allocator if possible.
-
-When swap is accounted, following files are added.
-
- - memory.memsw.usage_in_bytes.
- - memory.memsw.limit_in_bytes.
-
-memsw means memory+swap. Usage of memory+swap is limited by
-memsw.limit_in_bytes.
-
-Example: Assume a system with 4G of swap. A task which allocates 6G of memory
-(by mistake) under 2G memory limitation will use all swap.
-In this case, setting memsw.limit_in_bytes=3G will prevent bad use of swap.
-By using the memsw limit, you can avoid system OOM which can be caused by swap
-shortage.
-
-**why 'memory+swap' rather than swap**
-
-The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
-to move account from memory to swap...there is no change in usage of
-memory+swap. In other words, when we want to limit the usage of swap without
-affecting global LRU, memory+swap limit is better than just limiting swap from
-an OS point of view.
-
-**What happens when a cgroup hits memory.memsw.limit_in_bytes**
-
-When a cgroup hits memory.memsw.limit_in_bytes, it's useless to do swap-out
-in this cgroup. Then, swap-out will not be done by cgroup routine and file
-caches are dropped. But as mentioned above, global LRU can do swapout memory
-from it for sanity of the system's memory management state. You can't forbid
-it by cgroup.
-
-2.5 Reclaim
------------
-
-Each cgroup maintains a per cgroup LRU which has the same structure as
-global VM. When a cgroup goes over its limit, we first try
-to reclaim memory from the cgroup so as to make space for the new
-pages that the cgroup has touched. If the reclaim is unsuccessful,
-an OOM routine is invoked to select and kill the bulkiest task in the
-cgroup. (See 10. OOM Control below.)
-
-The reclaim algorithm has not been modified for cgroups, except that
-pages that are selected for reclaiming come from the per-cgroup LRU
-list.
-
-NOTE:
- Reclaim does not work for the root cgroup, since we cannot set any
- limits on the root cgroup.
-
-Note2:
- When panic_on_oom is set to "2", the whole system will panic.
-
-When oom event notifier is registered, event will be delivered.
-(See oom_control section)
-
-2.6 Locking
------------
-
- lock_page_cgroup()/unlock_page_cgroup() should not be called under
- the i_pages lock.
-
- Other lock order is following:
-
- PG_locked.
- mm->page_table_lock
- pgdat->lru_lock
- lock_page_cgroup.
-
- In many cases, just lock_page_cgroup() is called.
-
- per-zone-per-cgroup LRU (cgroup's private LRU) is just guarded by
- pgdat->lru_lock, it has no lock of its own.
-
-2.7 Kernel Memory Extension (CONFIG_MEMCG_KMEM)
------------------------------------------------
-
-With the Kernel memory extension, the Memory Controller is able to limit
-the amount of kernel memory used by the system. Kernel memory is fundamentally
-different than user memory, since it can't be swapped out, which makes it
-possible to DoS the system by consuming too much of this precious resource.
-
-Kernel memory accounting is enabled for all memory cgroups by default. But
-it can be disabled system-wide by passing cgroup.memory=nokmem to the kernel
-at boot time. In this case, kernel memory will not be accounted at all.
-
-Kernel memory limits are not imposed for the root cgroup. Usage for the root
-cgroup may or may not be accounted. The memory used is accumulated into
-memory.kmem.usage_in_bytes, or in a separate counter when it makes sense.
-(currently only for tcp).
-
-The main "kmem" counter is fed into the main counter, so kmem charges will
-also be visible from the user counter.
-
-Currently no soft limit is implemented for kernel memory. It is future work
-to trigger slab reclaim when those limits are reached.
-
-2.7.1 Current Kernel Memory resources accounted
------------------------------------------------
-
-stack pages:
- every process consumes some stack pages. By accounting into
- kernel memory, we prevent new processes from being created when the kernel
- memory usage is too high.
-
-slab pages:
- pages allocated by the SLAB or SLUB allocator are tracked. A copy
- of each kmem_cache is created every time the cache is touched by the first time
- from inside the memcg. The creation is done lazily, so some objects can still be
- skipped while the cache is being created. All objects in a slab page should
- belong to the same memcg. This only fails to hold when a task is migrated to a
- different memcg during the page allocation by the cache.
-
-sockets memory pressure:
- some sockets protocols have memory pressure
- thresholds. The Memory Controller allows them to be controlled individually
- per cgroup, instead of globally.
-
-tcp memory pressure:
- sockets memory pressure for the tcp protocol.
-
-2.7.2 Common use cases
-----------------------
-
-Because the "kmem" counter is fed to the main user counter, kernel memory can
-never be limited completely independently of user memory. Say "U" is the user
-limit, and "K" the kernel limit. There are three possible ways limits can be
-set:
-
-U != 0, K = unlimited:
- This is the standard memcg limitation mechanism already present before kmem
- accounting. Kernel memory is completely ignored.
-
-U != 0, K < U:
- Kernel memory is a subset of the user memory. This setup is useful in
- deployments where the total amount of memory per-cgroup is overcommited.
- Overcommiting kernel memory limits is definitely not recommended, since the
- box can still run out of non-reclaimable memory.
- In this case, the admin could set up K so that the sum of all groups is
- never greater than the total memory, and freely set U at the cost of his
- QoS.
-
-WARNING:
- In the current implementation, memory reclaim will NOT be
- triggered for a cgroup when it hits K while staying below U, which makes
- this setup impractical.
-
-U != 0, K >= U:
- Since kmem charges will also be fed to the user counter and reclaim will be
- triggered for the cgroup for both kinds of memory. This setup gives the
- admin a unified view of memory, and it is also useful for people who just
- want to track kernel memory usage.
-
-3. User Interface
-=================
-
-3.0. Configuration
-------------------
-
-a. Enable CONFIG_CGROUPS
-b. Enable CONFIG_MEMCG
-c. Enable CONFIG_MEMCG_SWAP (to use swap extension)
-d. Enable CONFIG_MEMCG_KMEM (to use kmem extension)
-
-3.1. Prepare the cgroups (see cgroups.txt, Why are cgroups needed?)
--------------------------------------------------------------------
-
-::
-
- # mount -t tmpfs none /sys/fs/cgroup
- # mkdir /sys/fs/cgroup/memory
- # mount -t cgroup none /sys/fs/cgroup/memory -o memory
-
-3.2. Make the new group and move bash into it::
-
- # mkdir /sys/fs/cgroup/memory/0
- # echo $$ > /sys/fs/cgroup/memory/0/tasks
-
-Since now we're in the 0 cgroup, we can alter the memory limit::
-
- # echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes
-
-NOTE:
- We can use a suffix (k, K, m, M, g or G) to indicate values in kilo,
- mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes,
- Gibibytes.)
-
-NOTE:
- We can write "-1" to reset the ``*.limit_in_bytes(unlimited)``.
-
-NOTE:
- We cannot set limits on the root cgroup any more.
-
-::
-
- # cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes
- 4194304
-
-We can check the usage::
-
- # cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes
- 1216512
-
-A successful write to this file does not guarantee a successful setting of
-this limit to the value written into the file. This can be due to a
-number of factors, such as rounding up to page boundaries or the total
-availability of memory on the system. The user is required to re-read
-this file after a write to guarantee the value committed by the kernel::
-
- # echo 1 > memory.limit_in_bytes
- # cat memory.limit_in_bytes
- 4096
-
-The memory.failcnt field gives the number of times that the cgroup limit was
-exceeded.
-
-The memory.stat file gives accounting information. Now, the number of
-caches, RSS and Active pages/Inactive pages are shown.
-
-4. Testing
-==========
-
-For testing features and implementation, see memcg_test.txt.
-
-Performance test is also important. To see pure memory controller's overhead,
-testing on tmpfs will give you good numbers of small overheads.
-Example: do kernel make on tmpfs.
-
-Page-fault scalability is also important. At measuring parallel
-page fault test, multi-process test may be better than multi-thread
-test because it has noise of shared objects/status.
-
-But the above two are testing extreme situations.
-Trying usual test under memory controller is always helpful.
-
-4.1 Troubleshooting
--------------------
-
-Sometimes a user might find that the application under a cgroup is
-terminated by the OOM killer. There are several causes for this:
-
-1. The cgroup limit is too low (just too low to do anything useful)
-2. The user is using anonymous memory and swap is turned off or too low
-
-A sync followed by echo 1 > /proc/sys/vm/drop_caches will help get rid of
-some of the pages cached in the cgroup (page cache pages).
-
-To know what happens, disabling OOM_Kill as per "10. OOM Control" (below) and
-seeing what happens will be helpful.
-
-4.2 Task migration
-------------------
-
-When a task migrates from one cgroup to another, its charge is not
-carried forward by default. The pages allocated from the original cgroup still
-remain charged to it, the charge is dropped when the page is freed or
-reclaimed.
-
-You can move charges of a task along with task migration.
-See 8. "Move charges at task migration"
-
-4.3 Removing a cgroup
----------------------
-
-A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a
-cgroup might have some charge associated with it, even though all
-tasks have migrated away from it. (because we charge against pages, not
-against tasks.)
-
-We move the stats to root (if use_hierarchy==0) or parent (if
-use_hierarchy==1), and no change on the charge except uncharging
-from the child.
-
-Charges recorded in swap information is not updated at removal of cgroup.
-Recorded information is discarded and a cgroup which uses swap (swapcache)
-will be charged as a new owner of it.
-
-About use_hierarchy, see Section 6.
-
-5. Misc. interfaces
-===================
-
-5.1 force_empty
----------------
- memory.force_empty interface is provided to make cgroup's memory usage empty.
- When writing anything to this::
-
- # echo 0 > memory.force_empty
-
- the cgroup will be reclaimed and as many pages reclaimed as possible.
-
- The typical use case for this interface is before calling rmdir().
- Though rmdir() offlines memcg, but the memcg may still stay there due to
- charged file caches. Some out-of-use page caches may keep charged until
- memory pressure happens. If you want to avoid that, force_empty will be useful.
-
- Also, note that when memory.kmem.limit_in_bytes is set the charges due to
- kernel pages will still be seen. This is not considered a failure and the
- write will still return success. In this case, it is expected that
- memory.kmem.usage_in_bytes == memory.usage_in_bytes.
-
- About use_hierarchy, see Section 6.
-
-5.2 stat file
--------------
-
-memory.stat file includes following statistics
-
-per-memory cgroup local status
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-=============== ===============================================================
-cache # of bytes of page cache memory.
-rss # of bytes of anonymous and swap cache memory (includes
- transparent hugepages).
-rss_huge # of bytes of anonymous transparent hugepages.
-mapped_file # of bytes of mapped file (includes tmpfs/shmem)
-pgpgin # of charging events to the memory cgroup. The charging
- event happens each time a page is accounted as either mapped
- anon page(RSS) or cache page(Page Cache) to the cgroup.
-pgpgout # of uncharging events to the memory cgroup. The uncharging
- event happens each time a page is unaccounted from the cgroup.
-swap # of bytes of swap usage
-dirty # of bytes that are waiting to get written back to the disk.
-writeback # of bytes of file/anon cache that are queued for syncing to
- disk.
-inactive_anon # of bytes of anonymous and swap cache memory on inactive
- LRU list.
-active_anon # of bytes of anonymous and swap cache memory on active
- LRU list.
-inactive_file # of bytes of file-backed memory on inactive LRU list.
-active_file # of bytes of file-backed memory on active LRU list.
-unevictable # of bytes of memory that cannot be reclaimed (mlocked etc).
-=============== ===============================================================
-
-status considering hierarchy (see memory.use_hierarchy settings)
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-========================= ===================================================
-hierarchical_memory_limit # of bytes of memory limit with regard to hierarchy
- under which the memory cgroup is
-hierarchical_memsw_limit # of bytes of memory+swap limit with regard to
- hierarchy under which memory cgroup is.
-
-total_<counter> # hierarchical version of <counter>, which in
- addition to the cgroup's own value includes the
- sum of all hierarchical children's values of
- <counter>, i.e. total_cache
-========================= ===================================================
-
-The following additional stats are dependent on CONFIG_DEBUG_VM
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-========================= ========================================
-recent_rotated_anon VM internal parameter. (see mm/vmscan.c)
-recent_rotated_file VM internal parameter. (see mm/vmscan.c)
-recent_scanned_anon VM internal parameter. (see mm/vmscan.c)
-recent_scanned_file VM internal parameter. (see mm/vmscan.c)
-========================= ========================================
-
-Memo:
- recent_rotated means recent frequency of LRU rotation.
- recent_scanned means recent # of scans to LRU.
- showing for better debug please see the code for meanings.
-
-Note:
- Only anonymous and swap cache memory is listed as part of 'rss' stat.
- This should not be confused with the true 'resident set size' or the
- amount of physical memory used by the cgroup.
-
- 'rss + mapped_file" will give you resident set size of cgroup.
-
- (Note: file and shmem may be shared among other cgroups. In that case,
- mapped_file is accounted only when the memory cgroup is owner of page
- cache.)
-
-5.3 swappiness
---------------
-
-Overrides /proc/sys/vm/swappiness for the particular group. The tunable
-in the root cgroup corresponds to the global swappiness setting.
-
-Please note that unlike during the global reclaim, limit reclaim
-enforces that 0 swappiness really prevents from any swapping even if
-there is a swap storage available. This might lead to memcg OOM killer
-if there are no file pages to reclaim.
-
-5.4 failcnt
------------
-
-A memory cgroup provides memory.failcnt and memory.memsw.failcnt files.
-This failcnt(== failure count) shows the number of times that a usage counter
-hit its limit. When a memory cgroup hits a limit, failcnt increases and
-memory under it will be reclaimed.
-
-You can reset failcnt by writing 0 to failcnt file::
-
- # echo 0 > .../memory.failcnt
-
-5.5 usage_in_bytes
-------------------
-
-For efficiency, as other kernel components, memory cgroup uses some optimization
-to avoid unnecessary cacheline false sharing. usage_in_bytes is affected by the
-method and doesn't show 'exact' value of memory (and swap) usage, it's a fuzz
-value for efficient access. (Of course, when necessary, it's synchronized.)
-If you want to know more exact memory usage, you should use RSS+CACHE(+SWAP)
-value in memory.stat(see 5.2).
-
-5.6 numa_stat
--------------
-
-This is similar to numa_maps but operates on a per-memcg basis. This is
-useful for providing visibility into the numa locality information within
-an memcg since the pages are allowed to be allocated from any physical
-node. One of the use cases is evaluating application performance by
-combining this information with the application's CPU allocation.
-
-Each memcg's numa_stat file includes "total", "file", "anon" and "unevictable"
-per-node page counts including "hierarchical_<counter>" which sums up all
-hierarchical children's values in addition to the memcg's own value.
-
-The output format of memory.numa_stat is::
-
- total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ...
- file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ...
- anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
- unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ...
- hierarchical_<counter>=<counter pages> N0=<node 0 pages> N1=<node 1 pages> ...
-
-The "total" count is sum of file + anon + unevictable.
-
-6. Hierarchy support
-====================
-
-The memory controller supports a deep hierarchy and hierarchical accounting.
-The hierarchy is created by creating the appropriate cgroups in the
-cgroup filesystem. Consider for example, the following cgroup filesystem
-hierarchy::
-
- root
- / | \
- / | \
- a b c
- | \
- | \
- d e
-
-In the diagram above, with hierarchical accounting enabled, all memory
-usage of e, is accounted to its ancestors up until the root (i.e, c and root),
-that has memory.use_hierarchy enabled. If one of the ancestors goes over its
-limit, the reclaim algorithm reclaims from the tasks in the ancestor and the
-children of the ancestor.
-
-6.1 Enabling hierarchical accounting and reclaim
-------------------------------------------------
-
-A memory cgroup by default disables the hierarchy feature. Support
-can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup::
-
- # echo 1 > memory.use_hierarchy
-
-The feature can be disabled by::
-
- # echo 0 > memory.use_hierarchy
-
-NOTE1:
- Enabling/disabling will fail if either the cgroup already has other
- cgroups created below it, or if the parent cgroup has use_hierarchy
- enabled.
-
-NOTE2:
- When panic_on_oom is set to "2", the whole system will panic in
- case of an OOM event in any cgroup.
-
-7. Soft limits
-==============
-
-Soft limits allow for greater sharing of memory. The idea behind soft limits
-is to allow control groups to use as much of the memory as needed, provided
-
-a. There is no memory contention
-b. They do not exceed their hard limit
-
-When the system detects memory contention or low memory, control groups
-are pushed back to their soft limits. If the soft limit of each control
-group is very high, they are pushed back as much as possible to make
-sure that one control group does not starve the others of memory.
-
-Please note that soft limits is a best-effort feature; it comes with
-no guarantees, but it does its best to make sure that when memory is
-heavily contended for, memory is allocated based on the soft limit
-hints/setup. Currently soft limit based reclaim is set up such that
-it gets invoked from balance_pgdat (kswapd).
-
-7.1 Interface
--------------
-
-Soft limits can be setup by using the following commands (in this example we
-assume a soft limit of 256 MiB)::
-
- # echo 256M > memory.soft_limit_in_bytes
-
-If we want to change this to 1G, we can at any time use::
-
- # echo 1G > memory.soft_limit_in_bytes
-
-NOTE1:
- Soft limits take effect over a long period of time, since they involve
- reclaiming memory for balancing between memory cgroups
-NOTE2:
- It is recommended to set the soft limit always below the hard limit,
- otherwise the hard limit will take precedence.
-
-8. Move charges at task migration
-=================================
-
-Users can move charges associated with a task along with task migration, that
-is, uncharge task's pages from the old cgroup and charge them to the new cgroup.
-This feature is not supported in !CONFIG_MMU environments because of lack of
-page tables.
-
-8.1 Interface
--------------
-
-This feature is disabled by default. It can be enabled (and disabled again) by
-writing to memory.move_charge_at_immigrate of the destination cgroup.
-
-If you want to enable it::
-
- # echo (some positive value) > memory.move_charge_at_immigrate
-
-Note:
- Each bits of move_charge_at_immigrate has its own meaning about what type
- of charges should be moved. See 8.2 for details.
-Note:
- Charges are moved only when you move mm->owner, in other words,
- a leader of a thread group.
-Note:
- If we cannot find enough space for the task in the destination cgroup, we
- try to make space by reclaiming memory. Task migration may fail if we
- cannot make enough space.
-Note:
- It can take several seconds if you move charges much.
-
-And if you want disable it again::
-
- # echo 0 > memory.move_charge_at_immigrate
-
-8.2 Type of charges which can be moved
---------------------------------------
-
-Each bit in move_charge_at_immigrate has its own meaning about what type of
-charges should be moved. But in any case, it must be noted that an account of
-a page or a swap can be moved only when it is charged to the task's current
-(old) memory cgroup.
-
-+---+--------------------------------------------------------------------------+
-|bit| what type of charges would be moved ? |
-+===+==========================================================================+
-| 0 | A charge of an anonymous page (or swap of it) used by the target task. |
-| | You must enable Swap Extension (see 2.4) to enable move of swap charges. |
-+---+--------------------------------------------------------------------------+
-| 1 | A charge of file pages (normal file, tmpfs file (e.g. ipc shared memory) |
-| | and swaps of tmpfs file) mmapped by the target task. Unlike the case of |
-| | anonymous pages, file pages (and swaps) in the range mmapped by the task |
-| | will be moved even if the task hasn't done page fault, i.e. they might |
-| | not be the task's "RSS", but other task's "RSS" that maps the same file. |
-| | And mapcount of the page is ignored (the page can be moved even if |
-| | page_mapcount(page) > 1). You must enable Swap Extension (see 2.4) to |
-| | enable move of swap charges. |
-+---+--------------------------------------------------------------------------+
-
-8.3 TODO
---------
-
-- All of moving charge operations are done under cgroup_mutex. It's not good
- behavior to hold the mutex too long, so we may need some trick.
-
-9. Memory thresholds
-====================
-
-Memory cgroup implements memory thresholds using the cgroups notification
-API (see cgroups.txt). It allows to register multiple memory and memsw
-thresholds and gets notifications when it crosses.
-
-To register a threshold, an application must:
-
-- create an eventfd using eventfd(2);
-- open memory.usage_in_bytes or memory.memsw.usage_in_bytes;
-- write string like "<event_fd> <fd of memory.usage_in_bytes> <threshold>" to
- cgroup.event_control.
-
-Application will be notified through eventfd when memory usage crosses
-threshold in any direction.
-
-It's applicable for root and non-root cgroup.
-
-10. OOM Control
-===============
-
-memory.oom_control file is for OOM notification and other controls.
-
-Memory cgroup implements OOM notifier using the cgroup notification
-API (See cgroups.txt). It allows to register multiple OOM notification
-delivery and gets notification when OOM happens.
-
-To register a notifier, an application must:
-
- - create an eventfd using eventfd(2)
- - open memory.oom_control file
- - write string like "<event_fd> <fd of memory.oom_control>" to
- cgroup.event_control
-
-The application will be notified through eventfd when OOM happens.
-OOM notification doesn't work for the root cgroup.
-
-You can disable the OOM-killer by writing "1" to memory.oom_control file, as:
-
- #echo 1 > memory.oom_control
-
-If OOM-killer is disabled, tasks under cgroup will hang/sleep
-in memory cgroup's OOM-waitqueue when they request accountable memory.
-
-For running them, you have to relax the memory cgroup's OOM status by
-
- * enlarge limit or reduce usage.
-
-To reduce usage,
-
- * kill some tasks.
- * move some tasks to other group with account migration.
- * remove some files (on tmpfs?)
-
-Then, stopped tasks will work again.
-
-At reading, current status of OOM is shown.
-
- - oom_kill_disable 0 or 1
- (if 1, oom-killer is disabled)
- - under_oom 0 or 1
- (if 1, the memory cgroup is under OOM, tasks may be stopped.)
-
-11. Memory Pressure
-===================
-
-The pressure level notifications can be used to monitor the memory
-allocation cost; based on the pressure, applications can implement
-different strategies of managing their memory resources. The pressure
-levels are defined as following:
-
-The "low" level means that the system is reclaiming memory for new
-allocations. Monitoring this reclaiming activity might be useful for
-maintaining cache level. Upon notification, the program (typically
-"Activity Manager") might analyze vmstat and act in advance (i.e.
-prematurely shutdown unimportant services).
-
-The "medium" level means that the system is experiencing medium memory
-pressure, the system might be making swap, paging out active file caches,
-etc. Upon this event applications may decide to further analyze
-vmstat/zoneinfo/memcg or internal memory usage statistics and free any
-resources that can be easily reconstructed or re-read from a disk.
-
-The "critical" level means that the system is actively thrashing, it is
-about to out of memory (OOM) or even the in-kernel OOM killer is on its
-way to trigger. Applications should do whatever they can to help the
-system. It might be too late to consult with vmstat or any other
-statistics, so it's advisable to take an immediate action.
-
-By default, events are propagated upward until the event is handled, i.e. the
-events are not pass-through. For example, you have three cgroups: A->B->C. Now
-you set up an event listener on cgroups A, B and C, and suppose group C
-experiences some pressure. In this situation, only group C will receive the
-notification, i.e. groups A and B will not receive it. This is done to avoid
-excessive "broadcasting" of messages, which disturbs the system and which is
-especially bad if we are low on memory or thrashing. Group B, will receive
-notification only if there are no event listers for group C.
-
-There are three optional modes that specify different propagation behavior:
-
- - "default": this is the default behavior specified above. This mode is the
- same as omitting the optional mode parameter, preserved by backwards
- compatibility.
-
- - "hierarchy": events always propagate up to the root, similar to the default
- behavior, except that propagation continues regardless of whether there are
- event listeners at each level, with the "hierarchy" mode. In the above
- example, groups A, B, and C will receive notification of memory pressure.
-
- - "local": events are pass-through, i.e. they only receive notifications when
- memory pressure is experienced in the memcg for which the notification is
- registered. In the above example, group C will receive notification if
- registered for "local" notification and the group experiences memory
- pressure. However, group B will never receive notification, regardless if
- there is an event listener for group C or not, if group B is registered for
- local notification.
-
-The level and event notification mode ("hierarchy" or "local", if necessary) are
-specified by a comma-delimited string, i.e. "low,hierarchy" specifies
-hierarchical, pass-through, notification for all ancestor memcgs. Notification
-that is the default, non pass-through behavior, does not specify a mode.
-"medium,local" specifies pass-through notification for the medium level.
-
-The file memory.pressure_level is only used to setup an eventfd. To
-register a notification, an application must:
-
-- create an eventfd using eventfd(2);
-- open memory.pressure_level;
-- write string as "<event_fd> <fd of memory.pressure_level> <level[,mode]>"
- to cgroup.event_control.
-
-Application will be notified through eventfd when memory pressure is at
-the specific level (or higher). Read/write operations to
-memory.pressure_level are no implemented.
-
-Test:
-
- Here is a small script example that makes a new cgroup, sets up a
- memory limit, sets up a notification in the cgroup and then makes child
- cgroup experience a critical pressure::
-
- # cd /sys/fs/cgroup/memory/
- # mkdir foo
- # cd foo
- # cgroup_event_listener memory.pressure_level low,hierarchy &
- # echo 8000000 > memory.limit_in_bytes
- # echo 8000000 > memory.memsw.limit_in_bytes
- # echo $$ > tasks
- # dd if=/dev/zero | read x
-
- (Expect a bunch of notifications, and eventually, the oom-killer will
- trigger.)
-
-12. TODO
-========
-
-1. Make per-cgroup scanner reclaim not-shared pages first
-2. Teach controller to account for shared-pages
-3. Start reclamation in the background when the limit is
- not yet hit but the usage is getting closer
-
-Summary
-=======
-
-Overall, the memory controller has been a stable controller and has been
-commented and discussed quite extensively in the community.
-
-References
-==========
-
-1. Singh, Balbir. RFC: Memory Controller, http://lwn.net/Articles/206697/
-2. Singh, Balbir. Memory Controller (RSS Control),
- http://lwn.net/Articles/222762/
-3. Emelianov, Pavel. Resource controllers based on process cgroups
- http://lkml.org/lkml/2007/3/6/198
-4. Emelianov, Pavel. RSS controller based on process cgroups (v2)
- http://lkml.org/lkml/2007/4/9/78
-5. Emelianov, Pavel. RSS controller based on process cgroups (v3)
- http://lkml.org/lkml/2007/5/30/244
-6. Menage, Paul. Control Groups v10, http://lwn.net/Articles/236032/
-7. Vaidyanathan, Srinivasan, Control Groups: Pagecache accounting and control
- subsystem (v3), http://lwn.net/Articles/235534/
-8. Singh, Balbir. RSS controller v2 test results (lmbench),
- http://lkml.org/lkml/2007/5/17/232
-9. Singh, Balbir. RSS controller v2 AIM9 results
- http://lkml.org/lkml/2007/5/18/1
-10. Singh, Balbir. Memory controller v6 test results,
- http://lkml.org/lkml/2007/8/19/36
-11. Singh, Balbir. Memory controller introduction (v6),
- http://lkml.org/lkml/2007/8/17/69
-12. Corbet, Jonathan, Controlling memory use in cgroups,
- http://lwn.net/Articles/243795/
+++ /dev/null
-=========================
-Network classifier cgroup
-=========================
-
-The Network classifier cgroup provides an interface to
-tag network packets with a class identifier (classid).
-
-The Traffic Controller (tc) can be used to assign
-different priorities to packets from different cgroups.
-Also, Netfilter (iptables) can use this tag to perform
-actions on such packets.
-
-Creating a net_cls cgroups instance creates a net_cls.classid file.
-This net_cls.classid value is initialized to 0.
-
-You can write hexadecimal values to net_cls.classid; the format for these
-values is 0xAAAABBBB; AAAA is the major handle number and BBBB
-is the minor handle number.
-Reading net_cls.classid yields a decimal result.
-
-Example::
-
- mkdir /sys/fs/cgroup/net_cls
- mount -t cgroup -onet_cls net_cls /sys/fs/cgroup/net_cls
- mkdir /sys/fs/cgroup/net_cls/0
- echo 0x100001 > /sys/fs/cgroup/net_cls/0/net_cls.classid
-
-- setting a 10:1 handle::
-
- cat /sys/fs/cgroup/net_cls/0/net_cls.classid
- 1048577
-
-- configuring tc::
-
- tc qdisc add dev eth0 root handle 10: htb
- tc class add dev eth0 parent 10: classid 10:1 htb rate 40mbit
-
-- creating traffic class 10:1::
-
- tc filter add dev eth0 parent 10: protocol ip prio 10 handle 1: cgroup
-
-configuring iptables, basic example::
-
- iptables -A OUTPUT -m cgroup ! --cgroup 0x100001 -j DROP
+++ /dev/null
-=======================
-Network priority cgroup
-=======================
-
-The Network priority cgroup provides an interface to allow an administrator to
-dynamically set the priority of network traffic generated by various
-applications
-
-Nominally, an application would set the priority of its traffic via the
-SO_PRIORITY socket option. This however, is not always possible because:
-
-1) The application may not have been coded to set this value
-2) The priority of application traffic is often a site-specific administrative
- decision rather than an application defined one.
-
-This cgroup allows an administrator to assign a process to a group which defines
-the priority of egress traffic on a given interface. Network priority groups can
-be created by first mounting the cgroup filesystem::
-
- # mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio
-
-With the above step, the initial group acting as the parent accounting group
-becomes visible at '/sys/fs/cgroup/net_prio'. This group includes all tasks in
-the system. '/sys/fs/cgroup/net_prio/tasks' lists the tasks in this cgroup.
-
-Each net_prio cgroup contains two files that are subsystem specific
-
-net_prio.prioidx
- This file is read-only, and is simply informative. It contains a unique
- integer value that the kernel uses as an internal representation of this
- cgroup.
-
-net_prio.ifpriomap
- This file contains a map of the priorities assigned to traffic originating
- from processes in this group and egressing the system on various interfaces.
- It contains a list of tuples in the form <ifname priority>. Contents of this
- file can be modified by echoing a string into the file using the same tuple
- format. For example::
-
- echo "eth0 5" > /sys/fs/cgroups/net_prio/iscsi/net_prio.ifpriomap
-
-This command would force any traffic originating from processes belonging to the
-iscsi net_prio cgroup and egressing on interface eth0 to have the priority of
-said traffic set to the value 5. The parent accounting group also has a
-writeable 'net_prio.ifpriomap' file that can be used to set a system default
-priority.
-
-Priorities are set immediately prior to queueing a frame to the device
-queueing discipline (qdisc) so priorities will be assigned prior to the hardware
-queue selection being made.
-
-One usage for the net_prio cgroup is with mqprio qdisc allowing application
-traffic to be steered to hardware/driver based traffic classes. These mappings
-can then be managed by administrators or other networking protocols such as
-DCBX.
-
-A new net_prio cgroup inherits the parent's configuration.
+++ /dev/null
-=========================
-Process Number Controller
-=========================
-
-Abstract
---------
-
-The process number controller is used to allow a cgroup hierarchy to stop any
-new tasks from being fork()'d or clone()'d after a certain limit is reached.
-
-Since it is trivial to hit the task limit without hitting any kmemcg limits in
-place, PIDs are a fundamental resource. As such, PID exhaustion must be
-preventable in the scope of a cgroup hierarchy by allowing resource limiting of
-the number of tasks in a cgroup.
-
-Usage
------
-
-In order to use the `pids` controller, set the maximum number of tasks in
-pids.max (this is not available in the root cgroup for obvious reasons). The
-number of processes currently in the cgroup is given by pids.current.
-
-Organisational operations are not blocked by cgroup policies, so it is possible
-to have pids.current > pids.max. This can be done by either setting the limit to
-be smaller than pids.current, or attaching enough processes to the cgroup such
-that pids.current > pids.max. However, it is not possible to violate a cgroup
-policy through fork() or clone(). fork() and clone() will return -EAGAIN if the
-creation of a new process would cause a cgroup policy to be violated.
-
-To set a cgroup to have no limit, set pids.max to "max". This is the default for
-all new cgroups (N.B. that PID limits are hierarchical, so the most stringent
-limit in the hierarchy is followed).
-
-pids.current tracks all child cgroup hierarchies, so parent/pids.current is a
-superset of parent/child/pids.current.
-
-The pids.events file contains event counters:
-
- - max: Number of times fork failed because limit was hit.
-
-Example
--------
-
-First, we mount the pids controller::
-
- # mkdir -p /sys/fs/cgroup/pids
- # mount -t cgroup -o pids none /sys/fs/cgroup/pids
-
-Then we create a hierarchy, set limits and attach processes to it::
-
- # mkdir -p /sys/fs/cgroup/pids/parent/child
- # echo 2 > /sys/fs/cgroup/pids/parent/pids.max
- # echo $$ > /sys/fs/cgroup/pids/parent/cgroup.procs
- # cat /sys/fs/cgroup/pids/parent/pids.current
- 2
- #
-
-It should be noted that attempts to overcome the set limit (2 in this case) will
-fail::
-
- # cat /sys/fs/cgroup/pids/parent/pids.current
- 2
- # ( /bin/echo "Here's some processes for you." | cat )
- sh: fork: Resource temporary unavailable
- #
-
-Even if we migrate to a child cgroup (which doesn't have a set limit), we will
-not be able to overcome the most stringent limit in the hierarchy (in this case,
-parent's)::
-
- # echo $$ > /sys/fs/cgroup/pids/parent/child/cgroup.procs
- # cat /sys/fs/cgroup/pids/parent/pids.current
- 2
- # cat /sys/fs/cgroup/pids/parent/child/pids.current
- 2
- # cat /sys/fs/cgroup/pids/parent/child/pids.max
- max
- # ( /bin/echo "Here's some processes for you." | cat )
- sh: fork: Resource temporary unavailable
- #
-
-We can set a limit that is smaller than pids.current, which will stop any new
-processes from being forked at all (note that the shell itself counts towards
-pids.current)::
-
- # echo 1 > /sys/fs/cgroup/pids/parent/pids.max
- # /bin/echo "We can't even spawn a single process now."
- sh: fork: Resource temporary unavailable
- # echo 0 > /sys/fs/cgroup/pids/parent/pids.max
- # /bin/echo "We can't even spawn a single process now."
- sh: fork: Resource temporary unavailable
- #
+++ /dev/null
-===============
-RDMA Controller
-===============
-
-.. Contents
-
- 1. Overview
- 1-1. What is RDMA controller?
- 1-2. Why RDMA controller needed?
- 1-3. How is RDMA controller implemented?
- 2. Usage Examples
-
-1. Overview
-===========
-
-1-1. What is RDMA controller?
------------------------------
-
-RDMA controller allows user to limit RDMA/IB specific resources that a given
-set of processes can use. These processes are grouped using RDMA controller.
-
-RDMA controller defines two resources which can be limited for processes of a
-cgroup.
-
-1-2. Why RDMA controller needed?
---------------------------------
-
-Currently user space applications can easily take away all the rdma verb
-specific resources such as AH, CQ, QP, MR etc. Due to which other applications
-in other cgroup or kernel space ULPs may not even get chance to allocate any
-rdma resources. This can lead to service unavailability.
-
-Therefore RDMA controller is needed through which resource consumption
-of processes can be limited. Through this controller different rdma
-resources can be accounted.
-
-1-3. How is RDMA controller implemented?
-----------------------------------------
-
-RDMA cgroup allows limit configuration of resources. Rdma cgroup maintains
-resource accounting per cgroup, per device using resource pool structure.
-Each such resource pool is limited up to 64 resources in given resource pool
-by rdma cgroup, which can be extended later if required.
-
-This resource pool object is linked to the cgroup css. Typically there
-are 0 to 4 resource pool instances per cgroup, per device in most use cases.
-But nothing limits to have it more. At present hundreds of RDMA devices per
-single cgroup may not be handled optimally, however there is no
-known use case or requirement for such configuration either.
-
-Since RDMA resources can be allocated from any process and can be freed by any
-of the child processes which shares the address space, rdma resources are
-always owned by the creator cgroup css. This allows process migration from one
-to other cgroup without major complexity of transferring resource ownership;
-because such ownership is not really present due to shared nature of
-rdma resources. Linking resources around css also ensures that cgroups can be
-deleted after processes migrated. This allow progress migration as well with
-active resources, even though that is not a primary use case.
-
-Whenever RDMA resource charging occurs, owner rdma cgroup is returned to
-the caller. Same rdma cgroup should be passed while uncharging the resource.
-This also allows process migrated with active RDMA resource to charge
-to new owner cgroup for new resource. It also allows to uncharge resource of
-a process from previously charged cgroup which is migrated to new cgroup,
-even though that is not a primary use case.
-
-Resource pool object is created in following situations.
-(a) User sets the limit and no previous resource pool exist for the device
-of interest for the cgroup.
-(b) No resource limits were configured, but IB/RDMA stack tries to
-charge the resource. So that it correctly uncharge them when applications are
-running without limits and later on when limits are enforced during uncharging,
-otherwise usage count will drop to negative.
-
-Resource pool is destroyed if all the resource limits are set to max and
-it is the last resource getting deallocated.
-
-User should set all the limit to max value if it intents to remove/unconfigure
-the resource pool for a particular device.
-
-IB stack honors limits enforced by the rdma controller. When application
-query about maximum resource limits of IB device, it returns minimum of
-what is configured by user for a given cgroup and what is supported by
-IB device.
-
-Following resources can be accounted by rdma controller.
-
- ========== =============================
- hca_handle Maximum number of HCA Handles
- hca_object Maximum number of HCA Objects
- ========== =============================
-
-2. Usage Examples
-=================
-
-(a) Configure resource limit::
-
- echo mlx4_0 hca_handle=2 hca_object=2000 > /sys/fs/cgroup/rdma/1/rdma.max
- echo ocrdma1 hca_handle=3 > /sys/fs/cgroup/rdma/2/rdma.max
-
-(b) Query resource limit::
-
- cat /sys/fs/cgroup/rdma/2/rdma.max
- #Output:
- mlx4_0 hca_handle=2 hca_object=2000
- ocrdma1 hca_handle=3 hca_object=max
-
-(c) Query current usage::
-
- cat /sys/fs/cgroup/rdma/2/rdma.current
- #Output:
- mlx4_0 hca_handle=1 hca_object=20
- ocrdma1 hca_handle=1 hca_object=23
-
-(d) Delete resource limit::
-
- echo echo mlx4_0 hca_handle=max hca_object=max > /sys/fs/cgroup/rdma/1/rdma.max
use at file creation time. When a task allocates a file in the file
system, the mount option memory policy will be applied with a NodeList,
if any, modified by the calling task's cpuset constraints
-[See Documentation/cgroup-v1/cpusets.rst] and any optional flags, listed
+[See Documentation/admin-guide/cgroup-v1/cpusets.rst] and any optional flags, listed
below. If the resulting NodeLists is the empty set, the effective memory
policy for the file will revert to "default" policy.
- Documentation/IRQ-affinity.txt: Binding interrupts to sets of CPUs.
-- Documentation/cgroup-v1: Using cgroups to bind tasks to sets of CPUs.
+- Documentation/admin-guide/cgroup-v1: Using cgroups to bind tasks to sets of CPUs.
- man taskset: Using the taskset command to bind tasks to sets
of CPUs.
-deadline tasks cannot have an affinity mask smaller that the entire
root_domain they are created on. However, affinities can be specified
- through the cpuset facility (Documentation/cgroup-v1/cpusets.rst).
+ through the cpuset facility (Documentation/admin-guide/cgroup-v1/cpusets.rst).
5.1 SCHED_DEADLINE and cpusets HOWTO
------------------------------------
These options need CONFIG_CGROUPS to be defined, and let the administrator
create arbitrary groups of tasks, using the "cgroup" pseudo filesystem. See
- Documentation/cgroup-v1/cgroups.rst for more information about this filesystem.
+ Documentation/admin-guide/cgroup-v1/cgroups.rst for more information about this filesystem.
When CONFIG_FAIR_GROUP_SCHED is defined, a "cpu.shares" file is created for each
group created using the pseudo filesystem. See example steps below to create
to control the CPU time reserved for each control group.
For more information on working with control groups, you should read
-Documentation/cgroup-v1/cgroups.rst as well.
+Documentation/admin-guide/cgroup-v1/cgroups.rst as well.
Group settings are checked against the following limits in order to keep the
configuration schedulable:
physical memory. NUMA emluation is useful for testing NUMA kernel and
application features on non-NUMA platforms, and as a sort of memory resource
management mechanism when used together with cpusets.
-[see Documentation/cgroup-v1/cpusets.rst]
+[see Documentation/admin-guide/cgroup-v1/cpusets.rst]
For each node with memory, Linux constructs an independent memory management
subsystem, complete with its own free page lists, in-use page lists, usage
System administrators can restrict the CPUs and nodes' memories that a non-
privileged user can specify in the scheduling or NUMA commands and functions
-using control groups and CPUsets. [see Documentation/cgroup-v1/cpusets.rst]
+using control groups and CPUsets. [see Documentation/admin-guide/cgroup-v1/cpusets.rst]
On architectures that do not hide memoryless nodes, Linux will include only
zones [nodes] with memory in the zonelists. This means that for a memoryless
Larger installations usually partition the system using cpusets into
sections of nodes. Paul Jackson has equipped cpusets with the ability to
move pages when a task is moved to another cpuset (See
-Documentation/cgroup-v1/cpusets.rst).
+Documentation/admin-guide/cgroup-v1/cpusets.rst).
Cpusets allows the automation of process locality. If a task is moved to
a new cpuset then also all its pages are moved with it so that the
performance of the process does not sink dramatically. Also the pages
--------------------------------
The unevictable LRU facility interacts with the memory control group [aka
-memory controller; see Documentation/cgroup-v1/memory.rst] by extending the
+memory controller; see Documentation/admin-guide/cgroup-v1/memory.rst] by extending the
lru_list enum.
The memory controller data structure automatically gets a per-zone unevictable
amount of system memory that are available to a certain class of tasks.
For more information on the features of cpusets, see
-Documentation/cgroup-v1/cpusets.rst.
+Documentation/admin-guide/cgroup-v1/cpusets.rst.
There are a number of different configurations you can use for your needs. For
more information on the numa=fake command line option and its various ways of
configuring fake nodes, see Documentation/x86/x86_64/boot-options.rst.
On node 3 totalpages: 131072
Now following the instructions for mounting the cpusets filesystem from
-Documentation/cgroup-v1/cpusets.rst, you can assign fake nodes (i.e. contiguous memory
+Documentation/admin-guide/cgroup-v1/cpusets.rst, you can assign fake nodes (i.e. contiguous memory
address spaces) to individual cpusets::
[root@xroads /]# mkdir exampleset
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup.git
S: Maintained
F: Documentation/admin-guide/cgroup-v2.rst
-F: Documentation/cgroup-v1/
+F: Documentation/admin-guide/cgroup-v1/
F: include/linux/cgroup*
F: kernel/cgroup/
W: http://oss.sgi.com/projects/cpusets/
T: git git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup.git
S: Maintained
-F: Documentation/cgroup-v1/cpusets.rst
+F: Documentation/admin-guide/cgroup-v1/cpusets.rst
F: include/linux/cpuset.h
F: kernel/cgroup/cpuset.c
one needs to mount and use blkio cgroup controller for creating
cgroups and specifying per device IO rate policies.
- See Documentation/cgroup-v1/blkio-controller.rst for more information.
+ See Documentation/admin-guide/cgroup-v1/blkio-controller.rst for more information.
config BLK_DEV_THROTTLING_LOW
bool "Block throttling .low limit interface support (EXPERIMENTAL)"
/*
* Control Group subsystem type.
- * See Documentation/cgroup-v1/cgroups.rst for details
+ * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
*/
struct cgroup_subsys {
struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
* based on a user-provided identifier for all traffic coming from
* the tasks belonging to the related cgroup. See also the related
* kernel documentation, available from the Linux sources in file
- * *Documentation/cgroup-v1/net_cls.rst*.
+ * *Documentation/admin-guide/cgroup-v1/net_cls.rst*.
*
* The Linux kernel has two versions for cgroups: there are
* cgroups v1 and cgroups v2. Both are available to users, who can
controls or device isolation.
See
- Documentation/scheduler/sched-design-CFS.rst (CFS)
- - Documentation/cgroup-v1/ (features for grouping, isolation
+ - Documentation/admin-guide/cgroup-v1/ (features for grouping, isolation
and resource control)
Say N if unsure.
CONFIG_CFQ_GROUP_IOSCHED=y; for enabling throttling policy, set
CONFIG_BLK_DEV_THROTTLING=y.
- See Documentation/cgroup-v1/blkio-controller.rst for more information.
+ See Documentation/admin-guide/cgroup-v1/blkio-controller.rst for more information.
config CGROUP_WRITEBACK
bool
* load balancing domains (sched domains) as specified by that partial
* partition.
*
- * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.rst
+ * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
* for a background explanation of this.
*
* Does not return errors, on the theory that the callers of this
* This is one of the three key functions for hierarchy implementation.
* This function is responsible for re-evaluating all the cgroup's active
* exceptions due to a parent's exception change.
- * Refer to Documentation/cgroup-v1/devices.rst for more details.
+ * Refer to Documentation/admin-guide/cgroup-v1/devices.rst for more details.
*/
static void revalidate_active_exceptions(struct dev_cgroup *devcg)
{
* based on a user-provided identifier for all traffic coming from
* the tasks belonging to the related cgroup. See also the related
* kernel documentation, available from the Linux sources in file
- * *Documentation/cgroup-v1/net_cls.rst*.
+ * *Documentation/admin-guide/cgroup-v1/net_cls.rst*.
*
* The Linux kernel has two versions for cgroups: there are
* cgroups v1 and cgroups v2. Both are available to users, who can