"extern inline" doesn't make much sense.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Acked-by: Mikael Starvik <starvik@axis.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Given the top-level Page Directory, the offset in that directory is calculated
using the upper 8 bits:
-extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
+static inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
return mm->pgd + (address >> PGDIR_SHIFT);
}
Since the Middle Directory does not exist, it is a unity mapping:
-extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
+static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) dir;
}
The Page Table provides the final lookup by using bits 13 to 23 as index:
-extern inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
+static inline pte_t * pte_offset(pmd_t * dir, unsigned long address)
{
return (pte_t *) pmd_page(*dir) + ((address >> PAGE_SHIFT) &
(PTRS_PER_PTE - 1));
* OK, we're invoking a handler
*/
-extern inline void
+static inline void
handle_signal(int canrestart, unsigned long sig,
siginfo_t *info, struct k_sigaction *ka,
sigset_t *oldset, struct pt_regs * regs)
}
/* Invoke a singal handler to, well, handle the signal. */
-extern inline void
+static inline void
handle_signal(int canrestart, unsigned long sig,
siginfo_t *info, struct k_sigaction *ka,
sigset_t *oldset, struct pt_regs * regs)
#include <asm/tlbflush.h>
#include <asm/arch/memmap.h>
-extern inline void remap_area_pte(pte_t * pte, unsigned long address, unsigned long size,
+static inline void remap_area_pte(pte_t * pte, unsigned long address, unsigned long size,
unsigned long phys_addr, pgprot_t prot)
{
unsigned long end;
* them together into ntohl etc.
*/
-extern __inline__ __attribute_const__ __u32 ___arch__swab32(__u32 x)
+static inline __attribute_const__ __u32 ___arch__swab32(__u32 x)
{
__asm__ ("swapwb %0" : "=r" (x) : "0" (x));
return(x);
}
-extern __inline__ __attribute_const__ __u16 ___arch__swab16(__u16 x)
+static inline __attribute_const__ __u16 ___arch__swab16(__u16 x)
{
__asm__ ("swapb %0" : "=r" (x) : "0" (x));
* to split all of those into 16-bit components, then add.
*/
-extern inline unsigned int
+static inline unsigned int
csum_tcpudp_nofold(unsigned long saddr, unsigned long daddr, unsigned short len,
unsigned short proto, unsigned int sum)
{
#ifndef _CRIS_ARCH_DELAY_H
#define _CRIS_ARCH_DELAY_H
-extern __inline__ void __delay(int loops)
+static inline void __delay(int loops)
{
__asm__ __volatile__ (
"move.d %0,$r9\n\t"
#define MAX_HWIFS 4
-extern __inline__ int ide_default_irq(unsigned long base)
+static inline int ide_default_irq(unsigned long base)
{
/* all IDE busses share the same IRQ, number 4.
* this has the side-effect that ide-probe.c will cluster our 4 interfaces
return 4;
}
-extern __inline__ unsigned long ide_default_io_base(int index)
+static inline unsigned long ide_default_io_base(int index)
{
/* we have no real I/O base address per interface, since all go through the
* same register. but in a bitfield in that register, we have the i/f number.
* of the ide_default_io_base call above. ctrl_port will be 0, but that is don't care for us.
*/
-extern __inline__ void ide_init_hwif_ports(hw_regs_t *hw, unsigned long data_port, unsigned long ctrl_port, int *irq)
+static inline void ide_init_hwif_ports(hw_regs_t *hw, unsigned long data_port, unsigned long ctrl_port, int *irq)
{
int i;
hw->io_ports[IDE_IRQ_OFFSET] = 0;
}
-extern __inline__ void ide_init_default_hwifs(void)
+static inline void ide_init_default_hwifs(void)
{
hw_regs_t hw;
int index;
/* read the CPU version register */
-extern inline unsigned long rdvr(void) {
+static inline unsigned long rdvr(void) {
unsigned char vr;
__asm__ volatile ("move $vr,%0" : "=rm" (vr));
return vr;
/* read/write the user-mode stackpointer */
-extern inline unsigned long rdusp(void) {
+static inline unsigned long rdusp(void) {
unsigned long usp;
__asm__ __volatile__("move $usp,%0" : "=rm" (usp));
return usp;
/* read the current stackpointer */
-extern inline unsigned long rdsp(void) {
+static inline unsigned long rdsp(void) {
unsigned long sp;
__asm__ __volatile__("move.d $sp,%0" : "=rm" (sp));
return sp;
}
-extern inline unsigned long _get_base(char * addr)
+static inline unsigned long _get_base(char * addr)
{
return 0;
}
#define _ASM_ARCH_THREAD_INFO_H
/* how to get the thread information struct from C */
-extern inline struct thread_info *current_thread_info(void)
+static inline struct thread_info *current_thread_info(void)
{
struct thread_info *ti;
__asm__("and.d $sp,%0; ":"=r" (ti) : "0" (~8191UL));
unsigned long get_ns_in_jiffie(void);
-extern inline unsigned long get_us_in_jiffie_highres(void)
+static inline unsigned long get_us_in_jiffie_highres(void)
{
return get_ns_in_jiffie()/1000;
}
* bytes copied if we hit a null byte
* (without the null byte)
*/
-extern inline long
+static inline long
__do_strncpy_from_user(char *dst, const char *src, long count)
{
long res;
* or 0 for error. Return a value greater than N if too long.
*/
-extern inline long
+static inline long
strnlen_user(const char *s, long n)
{
long res, tmp1;
* inverts all bits in the input.
*/
-extern inline unsigned long
+static inline unsigned long
cris_swapnwbrlz(unsigned long w)
{
unsigned long res;
return res;
}
-extern inline unsigned long
+static inline unsigned long
cris_swapwbrlz(unsigned long w)
{
unsigned long res;
* Find First Zero in word. Undefined if no zero exist, so the caller should
* check against ~0 first.
*/
-extern inline unsigned long
+static inline unsigned long
ffz(unsigned long w)
{
return cris_swapnwbrlz(w);
* Find First Set bit in word. Undefined if no 1 exist, so the caller
* should check against 0 first.
*/
-extern inline unsigned long
+static inline unsigned long
__ffs(unsigned long w)
{
return cris_swapnwbrlz(~w);
/*
* Find First Bit that is set.
*/
-extern inline unsigned long
+static inline unsigned long
kernel_ffs(unsigned long w)
{
return w ? cris_swapwbrlz (w) + 1 : 0;
#include <asm/types.h>
-extern __inline__ __const__ __u32
+static inline __const__ __u32
___arch__swab32(__u32 x)
{
__asm__ __volatile__ ("swapwb %0" : "=r" (x) : "0" (x));
return (x);
}
-extern __inline__ __const__ __u16
+static inline __const__ __u16
___arch__swab16(__u16 x)
{
__asm__ __volatile__ ("swapb %0" : "=r" (x) : "0" (x));
* checksum. Which means it would be necessary to split all those into
* 16-bit components and then add.
*/
-extern inline unsigned int
+static inline unsigned int
csum_tcpudp_nofold(unsigned long saddr, unsigned long daddr,
unsigned short len, unsigned short proto, unsigned int sum)
{
#ifndef _ASM_CRIS_ARCH_DELAY_H
#define _ASM_CRIS_ARCH_DELAY_H
-extern __inline__ void
+static inline void
__delay(int loops)
{
__asm__ __volatile__ (
#define MAX_HWIFS 4
-extern __inline__ int ide_default_irq(unsigned long base)
+static inline int ide_default_irq(unsigned long base)
{
/* all IDE busses share the same IRQ,
* this has the side-effect that ide-probe.c will cluster our 4 interfaces
return ATA_INTR_VECT;
}
-extern __inline__ unsigned long ide_default_io_base(int index)
+static inline unsigned long ide_default_io_base(int index)
{
reg_ata_rw_ctrl2 ctrl2 = {.sel = index};
/* we have no real I/O base address per interface, since all go through the
extern struct crisv32_iopin crisv32_led3_green;
extern struct crisv32_iopin crisv32_led3_red;
-extern inline void crisv32_io_set(struct crisv32_iopin* iopin,
+static inline void crisv32_io_set(struct crisv32_iopin* iopin,
int val)
{
if (val)
*iopin->port->data &= ~iopin->bit;
}
-extern inline void crisv32_io_set_dir(struct crisv32_iopin* iopin,
+static inline void crisv32_io_set_dir(struct crisv32_iopin* iopin,
enum crisv32_io_dir dir)
{
if (dir == crisv32_io_dir_in)
*iopin->port->oe |= iopin->bit;
}
-extern inline int crisv32_io_rd(struct crisv32_iopin* iopin)
+static inline int crisv32_io_rd(struct crisv32_iopin* iopin)
{
return ((*iopin->port->data_in & iopin->bit) ? 1 : 0);
}
#include <linux/config.h>
/* Read the CPU version register. */
-extern inline unsigned long rdvr(void)
+static inline unsigned long rdvr(void)
{
unsigned char vr;
#define cris_machine_name "crisv32"
/* Read the user-mode stack pointer. */
-extern inline unsigned long rdusp(void)
+static inline unsigned long rdusp(void)
{
unsigned long usp;
}
/* Read the current stack pointer. */
-extern inline unsigned long rdsp(void)
+static inline unsigned long rdsp(void)
{
unsigned long sp;
#define _ASM_CRIS_ARCH_THREAD_INFO_H
/* Return a thread_info struct. */
-extern inline struct thread_info *current_thread_info(void)
+static inline struct thread_info *current_thread_info(void)
{
struct thread_info *ti;
extern unsigned long get_ns_in_jiffie(void);
-extern inline unsigned long get_us_in_jiffie_highres(void)
+static inline unsigned long get_us_in_jiffie_highres(void)
{
return get_ns_in_jiffie() / 1000;
}
* bytes copied if we hit a null byte
* (without the null byte)
*/
-extern inline long
+static inline long
__do_strncpy_from_user(char *dst, const char *src, long count)
{
long res;
* or 0 for error. Return a value greater than N if too long.
*/
-extern inline long
+static inline long
strnlen_user(const char *s, long n)
{
long res, tmp1;
/* These should be written in asm but we do it in C for now. */
-extern __inline__ void atomic_add(int i, volatile atomic_t *v)
+static inline void atomic_add(int i, volatile atomic_t *v)
{
unsigned long flags;
cris_atomic_save(v, flags);
cris_atomic_restore(v, flags);
}
-extern __inline__ void atomic_sub(int i, volatile atomic_t *v)
+static inline void atomic_sub(int i, volatile atomic_t *v)
{
unsigned long flags;
cris_atomic_save(v, flags);
cris_atomic_restore(v, flags);
}
-extern __inline__ int atomic_add_return(int i, volatile atomic_t *v)
+static inline int atomic_add_return(int i, volatile atomic_t *v)
{
unsigned long flags;
int retval;
#define atomic_add_negative(a, v) (atomic_add_return((a), (v)) < 0)
-extern __inline__ int atomic_sub_return(int i, volatile atomic_t *v)
+static inline int atomic_sub_return(int i, volatile atomic_t *v)
{
unsigned long flags;
int retval;
return retval;
}
-extern __inline__ int atomic_sub_and_test(int i, volatile atomic_t *v)
+static inline int atomic_sub_and_test(int i, volatile atomic_t *v)
{
int retval;
unsigned long flags;
return retval;
}
-extern __inline__ void atomic_inc(volatile atomic_t *v)
+static inline void atomic_inc(volatile atomic_t *v)
{
unsigned long flags;
cris_atomic_save(v, flags);
cris_atomic_restore(v, flags);
}
-extern __inline__ void atomic_dec(volatile atomic_t *v)
+static inline void atomic_dec(volatile atomic_t *v)
{
unsigned long flags;
cris_atomic_save(v, flags);
cris_atomic_restore(v, flags);
}
-extern __inline__ int atomic_inc_return(volatile atomic_t *v)
+static inline int atomic_inc_return(volatile atomic_t *v)
{
unsigned long flags;
int retval;
return retval;
}
-extern __inline__ int atomic_dec_return(volatile atomic_t *v)
+static inline int atomic_dec_return(volatile atomic_t *v)
{
unsigned long flags;
int retval;
cris_atomic_restore(v, flags);
return retval;
}
-extern __inline__ int atomic_dec_and_test(volatile atomic_t *v)
+static inline int atomic_dec_and_test(volatile atomic_t *v)
{
int retval;
unsigned long flags;
return retval;
}
-extern __inline__ int atomic_inc_and_test(volatile atomic_t *v)
+static inline int atomic_inc_and_test(volatile atomic_t *v)
{
int retval;
unsigned long flags;
* It also implies a memory barrier.
*/
-extern inline int test_and_set_bit(int nr, volatile unsigned long *addr)
+static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned int mask, retval;
unsigned long flags;
return retval;
}
-extern inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
+static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned int mask, retval;
unsigned int *adr = (unsigned int *)addr;
* It also implies a memory barrier.
*/
-extern inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
+static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned int mask, retval;
unsigned long flags;
* but actually fail. You must protect multiple accesses with a lock.
*/
-extern inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
+static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned int mask, retval;
unsigned int *adr = (unsigned int *)addr;
* It also implies a memory barrier.
*/
-extern inline int test_and_change_bit(int nr, volatile unsigned long *addr)
+static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
{
unsigned int mask, retval;
unsigned long flags;
/* WARNING: non atomic and it can be reordered! */
-extern inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
+static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
{
unsigned int mask, retval;
unsigned int *adr = (unsigned int *)addr;
* This routine doesn't need to be atomic.
*/
-extern inline int test_bit(int nr, const volatile unsigned long *addr)
+static inline int test_bit(int nr, const volatile unsigned long *addr)
{
unsigned int mask;
unsigned int *adr = (unsigned int *)addr;
* @offset: The bitnumber to start searching at
* @size: The maximum size to search
*/
-extern inline int find_next_zero_bit (const unsigned long * addr, int size, int offset)
+static inline int find_next_zero_bit (const unsigned long * addr, int size, int offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
unsigned long result = offset & ~31UL;
#define minix_test_bit(nr,addr) test_bit(nr,addr)
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
-extern inline int sched_find_first_bit(const unsigned long *b)
+static inline int sched_find_first_bit(const unsigned long *b)
{
if (unlikely(b[0]))
return __ffs(b[0]);
* Fold a partial checksum into a word
*/
-extern inline unsigned int csum_fold(unsigned int sum)
+static inline unsigned int csum_fold(unsigned int sum)
{
/* the while loop is unnecessary really, it's always enough with two
iterations */
*
*/
-extern inline unsigned short ip_fast_csum(unsigned char * iph,
+static inline unsigned short ip_fast_csum(unsigned char * iph,
unsigned int ihl)
{
return csum_fold(csum_partial(iph, ihl * 4, 0));
* returns a 16-bit checksum, already complemented
*/
-extern inline unsigned short int csum_tcpudp_magic(unsigned long saddr,
+static inline unsigned short int csum_tcpudp_magic(unsigned long saddr,
unsigned long daddr,
unsigned short len,
unsigned short proto,
* in icmp.c
*/
-extern inline unsigned short ip_compute_csum(unsigned char * buff, int len) {
+static inline unsigned short ip_compute_csum(unsigned char * buff, int len) {
return csum_fold (csum_partial(buff, len, 0));
}
struct task_struct;
-extern inline struct task_struct * get_current(void)
+static inline struct task_struct * get_current(void)
{
return current_thread_info()->task;
}
extern unsigned long loops_per_usec; /* arch/cris/mm/init.c */
-extern __inline__ void udelay(unsigned long usecs)
+static inline void udelay(unsigned long usecs)
{
__delay(usecs * loops_per_usec);
}
* Change virtual addresses to physical addresses and vv.
*/
-extern inline unsigned long virt_to_phys(volatile void * address)
+static inline unsigned long virt_to_phys(volatile void * address)
{
return __pa(address);
}
-extern inline void * phys_to_virt(unsigned long address)
+static inline void * phys_to_virt(unsigned long address)
{
return __va(address);
}
extern void __iomem * __ioremap(unsigned long offset, unsigned long size, unsigned long flags);
extern void __iomem * __ioremap_prot(unsigned long phys_addr, unsigned long size, pgprot_t prot);
-extern inline void __iomem * ioremap (unsigned long offset, unsigned long size)
+static inline void __iomem * ioremap (unsigned long offset, unsigned long size)
{
return __ioremap(offset, size, 0);
}
#include <asm/arch/irq.h>
-extern __inline__ int irq_canonicalize(int irq)
+static inline int irq_canonicalize(int irq)
{
return irq;
}
* Allocate and free page tables.
*/
-extern inline pgd_t *pgd_alloc (struct mm_struct *mm)
+static inline pgd_t *pgd_alloc (struct mm_struct *mm)
{
return (pgd_t *)get_zeroed_page(GFP_KERNEL);
}
-extern inline void pgd_free (pgd_t *pgd)
+static inline void pgd_free (pgd_t *pgd)
{
free_page((unsigned long)pgd);
}
-extern inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
+static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
pte_t *pte = (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
return pte;
}
-extern inline struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
+static inline struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
{
struct page *pte;
pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
return pte;
}
-extern inline void pte_free_kernel(pte_t *pte)
+static inline void pte_free_kernel(pte_t *pte)
{
free_page((unsigned long)pte);
}
-extern inline void pte_free(struct page *pte)
+static inline void pte_free(struct page *pte)
{
__free_page(pte);
}
* Undefined behaviour if not..
*/
-extern inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
-extern inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
-extern inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
-extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; }
-extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
-extern inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
-
-extern inline pte_t pte_wrprotect(pte_t pte)
+static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
+static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
+static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
+static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; }
+static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
+static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
+
+static inline pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
return pte;
}
-extern inline pte_t pte_rdprotect(pte_t pte)
+static inline pte_t pte_rdprotect(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ);
return pte;
}
-extern inline pte_t pte_exprotect(pte_t pte)
+static inline pte_t pte_exprotect(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ);
return pte;
}
-extern inline pte_t pte_mkclean(pte_t pte)
+static inline pte_t pte_mkclean(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE);
return pte;
}
-extern inline pte_t pte_mkold(pte_t pte)
+static inline pte_t pte_mkold(pte_t pte)
{
pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ);
return pte;
}
-extern inline pte_t pte_mkwrite(pte_t pte)
+static inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PAGE_WRITE;
if (pte_val(pte) & _PAGE_MODIFIED)
return pte;
}
-extern inline pte_t pte_mkread(pte_t pte)
+static inline pte_t pte_mkread(pte_t pte)
{
pte_val(pte) |= _PAGE_READ;
if (pte_val(pte) & _PAGE_ACCESSED)
return pte;
}
-extern inline pte_t pte_mkexec(pte_t pte)
+static inline pte_t pte_mkexec(pte_t pte)
{
pte_val(pte) |= _PAGE_READ;
if (pte_val(pte) & _PAGE_ACCESSED)
return pte;
}
-extern inline pte_t pte_mkdirty(pte_t pte)
+static inline pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PAGE_MODIFIED;
if (pte_val(pte) & _PAGE_WRITE)
return pte;
}
-extern inline pte_t pte_mkyoung(pte_t pte)
+static inline pte_t pte_mkyoung(pte_t pte)
{
pte_val(pte) |= _PAGE_ACCESSED;
if (pte_val(pte) & _PAGE_READ)
* addresses (the 0xc0xxxxxx's) goes as void *'s.
*/
-extern inline pte_t __mk_pte(void * page, pgprot_t pgprot)
+static inline pte_t __mk_pte(void * page, pgprot_t pgprot)
{
pte_t pte;
/* the PTE needs a physical address */
__pte; \
})
-extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
+static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
* pte_pagenr refers to the page-number counted starting from the virtual DRAM start
*/
-extern inline unsigned long __pte_page(pte_t pte)
+static inline unsigned long __pte_page(pte_t pte)
{
/* the PTE contains a physical address */
return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
* don't need the __pa and __va transformations.
*/
-extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
+static inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
{ pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; }
#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
/* to find an entry in a page-table-directory */
-extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
+static inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
return mm->pgd + pgd_index(address);
}
*
* Actually I am not sure on what this could be used for.
*/
-extern inline void update_mmu_cache(struct vm_area_struct * vma,
+static inline void update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte)
{
}
#define current_regs() user_regs(current->thread_info)
-extern inline void prepare_to_copy(struct task_struct *tsk)
+static inline void prepare_to_copy(struct task_struct *tsk)
{
}
extern unsigned long thread_saved_pc(struct task_struct *tsk);
/* Free all resources held by a thread. */
-extern inline void release_thread(struct task_struct *dead_task)
+static inline void release_thread(struct task_struct *dead_task)
{
/* Nothing needs to be done. */
}
#define DECLARE_MUTEX(name) __DECLARE_SEMAPHORE_GENERIC(name,1)
#define DECLARE_MUTEX_LOCKED(name) __DECLARE_SEMAPHORE_GENERIC(name,0)
-extern inline void sema_init(struct semaphore *sem, int val)
+static inline void sema_init(struct semaphore *sem, int val)
{
*sem = (struct semaphore)__SEMAPHORE_INITIALIZER((*sem),val);
}
-extern inline void init_MUTEX (struct semaphore *sem)
+static inline void init_MUTEX (struct semaphore *sem)
{
sema_init(sem, 1);
}
-extern inline void init_MUTEX_LOCKED (struct semaphore *sem)
+static inline void init_MUTEX_LOCKED (struct semaphore *sem)
{
sema_init(sem, 0);
}
/* notice - we probably can do cli/sti here instead of saving */
-extern inline void down(struct semaphore * sem)
+static inline void down(struct semaphore * sem)
{
unsigned long flags;
int failed;
* returns negative for signalled and zero for semaphore acquired.
*/
-extern inline int down_interruptible(struct semaphore * sem)
+static inline int down_interruptible(struct semaphore * sem)
{
unsigned long flags;
int failed;
return(failed);
}
-extern inline int down_trylock(struct semaphore * sem)
+static inline int down_trylock(struct semaphore * sem)
{
unsigned long flags;
int failed;
* The default case (no contention) will result in NO
* jumps for both down() and up().
*/
-extern inline void up(struct semaphore * sem)
+static inline void up(struct semaphore * sem)
{
unsigned long flags;
int wakeup;
void disable_hlt(void);
void enable_hlt(void);
-extern inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
+static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
{
/* since Etrax doesn't have any atomic xchg instructions, we need to disable
irq's (if enabled) and do it with move.d's */
typedef unsigned long long cycles_t;
-extern inline cycles_t get_cycles(void)
+static inline cycles_t get_cycles(void)
{
return 0;
}
flush_tlb_mm(vma->vm_mm);
}
-extern inline void flush_tlb_pgtables(struct mm_struct *mm,
+static inline void flush_tlb_pgtables(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
/* CRIS does not keep any page table caches in TLB */
}
-extern inline void flush_tlb(void)
+static inline void flush_tlb(void)
{
flush_tlb_mm(current->mm);
}
extern unsigned long __copy_user_zeroing(void *to, const void *from, unsigned long n);
extern unsigned long __do_clear_user(void *to, unsigned long n);
-extern inline unsigned long
+static inline unsigned long
__generic_copy_to_user(void __user *to, const void *from, unsigned long n)
{
if (access_ok(VERIFY_WRITE, to, n))
return n;
}
-extern inline unsigned long
+static inline unsigned long
__generic_copy_from_user(void *to, const void __user *from, unsigned long n)
{
if (access_ok(VERIFY_READ, from, n))
return n;
}
-extern inline unsigned long
+static inline unsigned long
__generic_clear_user(void __user *to, unsigned long n)
{
if (access_ok(VERIFY_WRITE, to, n))
return n;
}
-extern inline long
+static inline long
__strncpy_from_user(char *dst, const char __user *src, long count)
{
return __do_strncpy_from_user(dst, src, count);
}
-extern inline long
+static inline long
strncpy_from_user(char *dst, const char __user *src, long count)
{
long res = -EFAULT;
/* Note that if these expand awfully if made into switch constructs, so
don't do that. */
-extern inline unsigned long
+static inline unsigned long
__constant_copy_from_user(void *to, const void __user *from, unsigned long n)
{
unsigned long ret = 0;
/* Ditto, don't make a switch out of this. */
-extern inline unsigned long
+static inline unsigned long
__constant_copy_to_user(void __user *to, const void *from, unsigned long n)
{
unsigned long ret = 0;
/* No switch, please. */
-extern inline unsigned long
+static inline unsigned long
__constant_clear_user(void __user *to, unsigned long n)
{
unsigned long ret = 0;
* used in fast paths and have only a small space overhead.
*/
-extern inline unsigned long
+static inline unsigned long
__generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
{
return __copy_user_zeroing(to,from,n);
}
-extern inline unsigned long
+static inline unsigned long
__generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
{
return __copy_user(to,from,n);
}
-extern inline unsigned long
+static inline unsigned long
__generic_clear_user_nocheck(void *to, unsigned long n)
{
return __do_clear_user(to,n);
* some others too.
*/
#define __NR__exit __NR_exit
-extern inline _syscall0(pid_t,setsid)
-extern inline _syscall3(int,write,int,fd,const char *,buf,off_t,count)
-extern inline _syscall3(int,read,int,fd,char *,buf,off_t,count)
-extern inline _syscall3(off_t,lseek,int,fd,off_t,offset,int,count)
-extern inline _syscall1(int,dup,int,fd)
-extern inline _syscall3(int,execve,const char *,file,char **,argv,char **,envp)
-extern inline _syscall3(int,open,const char *,file,int,flag,int,mode)
-extern inline _syscall1(int,close,int,fd)
+static inline _syscall0(pid_t,setsid)
+static inline _syscall3(int,write,int,fd,const char *,buf,off_t,count)
+static inline _syscall3(int,read,int,fd,char *,buf,off_t,count)
+static inline _syscall3(off_t,lseek,int,fd,off_t,offset,int,count)
+static inline _syscall1(int,dup,int,fd)
+static inline _syscall3(int,execve,const char *,file,char **,argv,char **,envp)
+static inline _syscall3(int,open,const char *,file,int,flag,int,mode)
+static inline _syscall1(int,close,int,fd)
struct pt_regs;
asmlinkage long sys_mmap2(
#ifdef __KERNEL__
#define _exit kernel_syscall_exit
#endif
-extern inline _syscall1(int,_exit,int,exitcode)
-extern inline _syscall3(pid_t,waitpid,pid_t,pid,int *,wait_stat,int,options)
+static inline _syscall1(int,_exit,int,exitcode)
+static inline _syscall3(pid_t,waitpid,pid_t,pid,int *,wait_stat,int,options)
#endif