* all locks. So someone else could sneak in and change the current modeset
* configuration. Which means that all the state assembled in @state is no
* longer an atomic update to the current state, but to some arbitrary earlier
- * state. Which could break assumptions the driver's ->atomic_check likely
- * relies on.
+ * state. Which could break assumptions the driver's
+ * &drm_mode_config_funcs.atomic_check likely relies on.
*
* Hence we must clear all cached state and completely start over, using this
* function.
* @property: the property to set
* @val: the new property value
*
- * Use this instead of calling crtc->atomic_set_property directly.
- * This function handles generic/core properties and calls out to
- * driver's ->atomic_set_property() for driver properties. To ensure
- * consistent behavior you must call this function rather than the
- * driver hook directly.
+ * This function handles generic/core properties and calls out to driver's
+ * &drm_crtc_funcs.atomic_set_property for driver properties. To ensure
+ * consistent behavior you must call this function rather than the driver hook
+ * directly.
*
* RETURNS:
* Zero on success, error code on failure
* @property: the property to set
* @val: return location for the property value
*
- * This function handles generic/core properties and calls out to
- * driver's ->atomic_get_property() for driver properties. To ensure
- * consistent behavior you must call this function rather than the
- * driver hook directly.
+ * This function handles generic/core properties and calls out to driver's
+ * &drm_crtc_funcs.atomic_get_property for driver properties. To ensure
+ * consistent behavior you must call this function rather than the driver hook
+ * directly.
*
* RETURNS:
* Zero on success, error code on failure
* @property: the property to set
* @val: the new property value
*
- * Use this instead of calling plane->atomic_set_property directly.
- * This function handles generic/core properties and calls out to
- * driver's ->atomic_set_property() for driver properties. To ensure
- * consistent behavior you must call this function rather than the
- * driver hook directly.
+ * This function handles generic/core properties and calls out to driver's
+ * &drm_plane_funcs.atomic_set_property for driver properties. To ensure
+ * consistent behavior you must call this function rather than the driver hook
+ * directly.
*
* RETURNS:
* Zero on success, error code on failure
* @property: the property to set
* @val: return location for the property value
*
- * This function handles generic/core properties and calls out to
- * driver's ->atomic_get_property() for driver properties. To ensure
- * consistent behavior you must call this function rather than the
- * driver hook directly.
+ * This function handles generic/core properties and calls out to driver's
+ * &drm_plane_funcs.atomic_get_property for driver properties. To ensure
+ * consistent behavior you must call this function rather than the driver hook
+ * directly.
*
* RETURNS:
* Zero on success, error code on failure
* @property: the property to set
* @val: the new property value
*
- * Use this instead of calling connector->atomic_set_property directly.
- * This function handles generic/core properties and calls out to
- * driver's ->atomic_set_property() for driver properties. To ensure
- * consistent behavior you must call this function rather than the
- * driver hook directly.
+ * This function handles generic/core properties and calls out to driver's
+ * &drm_connector_funcs.atomic_set_property for driver properties. To ensure
+ * consistent behavior you must call this function rather than the driver hook
+ * directly.
*
* RETURNS:
* Zero on success, error code on failure
* @property: the property to set
* @val: return location for the property value
*
- * This function handles generic/core properties and calls out to
- * driver's ->atomic_get_property() for driver properties. To ensure
- * consistent behavior you must call this function rather than the
- * driver hook directly.
+ * This function handles generic/core properties and calls out to driver's
+ * &drm_connector_funcs.atomic_get_property for driver properties. To ensure
+ * consistent behavior you must call this function rather than the driver hook
+ * directly.
*
* RETURNS:
* Zero on success, error code on failure
* implicit or explicit fencing.
*
* This function will not set the fence to the state if it was set
- * via explicit fencing interfaces on the atomic ioctl. It will
- * all drope the reference to the fence as we not storing it
- * anywhere.
- *
- * Otherwise, if plane_state->fence is not set this function we
- * just set it with the received implict fence.
+ * via explicit fencing interfaces on the atomic ioctl. In that case it will
+ * drop the reference to the fence as we are not storing it anywhere.
+ * Otherwise, if &drm_plane_state.fence is not set this function we just set it
+ * with the received implicit fence. In both cases this function consumes a
+ * reference for @fence.
*/
void
drm_atomic_set_fence_for_plane(struct drm_plane_state *plane_state,
EXPORT_SYMBOL(drm_atomic_commit);
/**
- * drm_atomic_nonblocking_commit - atomic&nonblocking configuration commit
+ * drm_atomic_nonblocking_commit - atomic nonblocking commit
* @state: atomic configuration to check
*
* Note that this function can return -EDEADLK if the driver needed to acquire
* @plane_mask: plane mask for planes that were updated.
* @ret: return value, can be -EDEADLK for a retry.
*
- * Before doing an update plane->old_fb is set to plane->fb,
- * but before dropping the locks old_fb needs to be set to NULL
- * and plane->fb updated. This is a common operation for each
- * atomic update, so this call is split off as a helper.
+ * Before doing an update &drm_plane.old_fb is set to &drm_plane.fb, but before
+ * dropping the locks old_fb needs to be set to NULL and plane->fb updated. This
+ * is a common operation for each atomic update, so this call is split off as a
+ * helper.
*/
void drm_atomic_clean_old_fb(struct drm_device *dev,
unsigned plane_mask,
* As a contrast, with implicit fencing the kernel keeps track of any
* ongoing rendering, and automatically ensures that the atomic update waits
* for any pending rendering to complete. For shared buffers represented with
- * a &struct dma_buf this is tracked in &reservation_object structures.
+ * a &struct dma_buf this is tracked in &struct reservation_object.
* Implicit syncing is how Linux traditionally worked (e.g. DRI2/3 on X.org),
* whereas explicit fencing is what Android wants.
*
* sub-pixel accuracy, which is scaled up to a pixel-aligned destination
* rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is
* defined by the horizontal and vertical visible pixels (stored in @hdisplay
- * and @vdisplay) of the requested mode (stored in @mode in the
- * &drm_crtc_state). These two rectangles are both stored in the
- * &drm_plane_state.
+ * and @vdisplay) of the requested mode (stored in &drm_crtc_state.mode). These
+ * two rectangles are both stored in the &drm_plane_state.
*
* For the atomic ioctl the following standard (atomic) properties on the plane object
* encode the basic plane composition model:
* for it in drm core. Drivers can then attach this property to planes to enable
* support for configurable planes arrangement during blending operation.
* Once mutable zpos property has been enabled, the DRM core will automatically
- * calculate drm_plane_state->normalized_zpos values. Usually min should be set
+ * calculate &drm_plane_state.normalized_zpos values. Usually min should be set
* to 0 and max to maximal number of planes for given crtc - 1.
*
* If zpos of some planes cannot be changed (like fixed background or
* For every CRTC this function checks new states of all planes assigned to
* it and calculates normalized zpos value for these planes. Planes are compared
* first by their zpos values, then by plane id (if zpos is equal). The plane
- * with lowest zpos value is at the bottom. The plane_state->normalized_zpos is
- * then filled with unique values from 0 to number of active planes in crtc
+ * with lowest zpos value is at the bottom. The &drm_plane_state.normalized_zpos
+ * is then filled with unique values from 0 to number of active planes in crtc
* minus one.
*
* RETURNS
* Hence they are reference-counted using drm_connector_reference() and
* drm_connector_unreference().
*
- * KMS driver must create, initialize, register and attach at a struct
- * &drm_connector for each such sink. The instance is created as other KMS
+ * KMS driver must create, initialize, register and attach at a &struct
+ * drm_connector for each such sink. The instance is created as other KMS
* objects and initialized by setting the following fields.
*
* The connector is then registered with a call to drm_connector_init() with a
* Connectors must be attached to an encoder to be used. For devices that map
* connectors to encoders 1:1, the connector should be attached at
* initialization time with a call to drm_mode_connector_attach_encoder(). The
- * driver must also set the &struct drm_connector encoder field to point to the
+ * driver must also set the &drm_connector.encoder field to point to the
* attached encoder.
*
* For connectors which are not fixed (like built-in panels) the driver needs to
* @dev: DRM device
* @iter: connector_list iterator
*
- * Sets @iter up to walk the connector list in &drm_mode_config of @dev. @iter
+ * Sets @iter up to walk the &drm_mode_config.connector_list of @dev. @iter
* must always be cleaned up again by calling drm_connector_list_iter_put().
* Iteration itself happens using drm_connector_list_iter_next() or
* drm_for_each_connector_iter().
* drivers this is only provided for backwards compatibility with existing
* drivers, it remaps to controlling the "ACTIVE" property on the CRTC the
* connector is linked to. Drivers should never set this property directly,
- * it is handled by the DRM core by calling the ->dpms() callback in
- * &drm_connector_funcs. Atomic drivers should implement this hook using
+ * it is handled by the DRM core by calling the &drm_connector_funcs.dpms
+ * callback. Atomic drivers should implement this hook using
* drm_atomic_helper_connector_dpms(). This is the only property standard
* connector property that userspace can change.
* PATH:
}
/**
- * drm_mode_set_config_internal - helper to call ->set_config
+ * drm_mode_set_config_internal - helper to call &drm_mode_config_funcs.set_config
* @set: modeset config to set
*
- * This is a little helper to wrap internal calls to the ->set_config driver
- * interface. The only thing it adds is correct refcounting dance.
+ * This is a little helper to wrap internal calls to the
+ * &drm_mode_config_funcs.set_config driver interface. The only thing it adds is
+ * correct refcounting dance.
*
* Returns:
* Zero on success, negative errno on failure.
* create dumb buffers suitable for scanout, which can then be used to create
* KMS frame buffers.
*
- * To support dumb objects drivers must implement the dumb_create,
- * dumb_destroy and dumb_map_offset operations from &struct drm_driver. See
+ * To support dumb objects drivers must implement the &drm_driver.dumb_create,
+ * &drm_driver.dumb_destroy and &drm_driver.dumb_map_offset operations. See
* there for further details.
*
* Note that dumb objects may not be used for gpu acceleration, as has been
*
* Initialises a preallocated encoder. Encoder should be subclassed as part of
* driver encoder objects. At driver unload time drm_encoder_cleanup() should be
- * called from the driver's destroy hook in &drm_encoder_funcs.
+ * called from the driver's &drm_encoder_funcs.destroy hook.
*
* Returns:
* Zero on success, error code on failure.
* &drm_encoder_slave. The @slave_funcs field will be initialized with
* the hooks provided by the slave driver.
*
- * If @info->platform_data is non-NULL it will be used as the initial
+ * If @info.platform_data is non-NULL it will be used as the initial
* slave config.
*
* Returns 0 on success or a negative errno on failure, in particular,
* fbdev framebuffer when the struct &struct drm_framebuffer is embedded into
* the fbdev helper struct) drivers can manually clean up a framebuffer at
* module unload time with drm_framebuffer_unregister_private(). But doing this
- * is not recommended, and it's better to have a normal free-standing struct
- * &drm_framebuffer.
+ * is not recommended, and it's better to have a normal free-standing &struct
+ * drm_framebuffer.
*/
int drm_framebuffer_check_src_coords(uint32_t src_x, uint32_t src_y,
* usb display-link, mipi manual update panels or edp panel self refresh modes.
*
* Modesetting drivers which always update the frontbuffer do not need to
- * implement the corresponding ->dirty framebuffer callback.
+ * implement the corresponding &drm_framebuffer_funcs.dirty callback.
*
* Called by the user via ioctl.
*
* @fb: framebuffer to remove
*
* Cleanup framebuffer. This function is intended to be used from the drivers
- * ->destroy callback. It can also be used to clean up driver private
- * framebuffers embedded into a larger structure.
+ * &drm_framebuffer_funcs.destroy callback. It can also be used to clean up
+ * driver private framebuffers embedded into a larger structure.
*
- * Note that this function does not remove the fb from active usuage - if it is
+ * Note that this function does not remove the fb from active usage - if it is
* still used anywhere, hilarity can ensue since userspace could call getfb on
* the id and get back -EINVAL. Obviously no concern at driver unload time.
*
* to use &ww_mutex and acquire-contexts to avoid deadlocks. But because
* the locking is more distributed around the driver code, we want a bit
* of extra utility/tracking out of our acquire-ctx. This is provided
- * by drm_modeset_lock / drm_modeset_acquire_ctx.
+ * by &struct drm_modeset_lock and &struct drm_modeset_acquire_ctx.
*
* For basic principles of &ww_mutex, see: Documentation/locking/ww-mutex-design.txt
*
* drm_modeset_acquire_fini(&ctx);
*
* On top of of these per-object locks using &ww_mutex there's also an overall
- * dev->mode_config.lock, for protecting everything else. Mostly this means
+ * &drm_mode_config.mutex, for protecting everything else. Mostly this means
* probe state of connectors, and preventing hotplug add/removal of connectors.
*
* Finally there's a bunch of dedicated locks to protect drm core internal
* drm_modeset_unlock_all() function.
*
* This function is deprecated. It allocates a lock acquisition context and
- * stores it in the DRM device's ->mode_config. This facilitate conversion of
+ * stores it in &drm_device.mode_config. This facilitate conversion of
* existing code because it removes the need to manually deal with the
* acquisition context, but it is also brittle because the context is global
* and care must be taken not to nest calls. New code should use the
* drm_modeset_lock_all() function.
*
* This function is deprecated. It uses the lock acquisition context stored
- * in the DRM device's ->mode_config. This facilitates conversion of existing
+ * in &drm_device.mode_config. This facilitates conversion of existing
* code because it removes the need to manually deal with the acquisition
* context, but it is also brittle because the context is global and care must
* be taken not to nest calls. New code should pass the acquisition context
* This function takes all modeset locks, suitable where a more fine-grained
* scheme isn't (yet) implemented.
*
- * Unlike drm_modeset_lock_all(), it doesn't take the dev->mode_config.mutex
+ * Unlike drm_modeset_lock_all(), it doesn't take the &drm_mode_config.mutex
* since that lock isn't required for modeset state changes. Callers which
* need to grab that lock too need to do so outside of the acquire context
* @ctx.
*
* Cursor and overlay planes are optional. All drivers should provide one
* primary plane per CRTC to avoid surprising userspace too much. See enum
- * &drm_plane_type for a more in-depth discussion of these special uapi-relevant
+ * drm_plane_type for a more in-depth discussion of these special uapi-relevant
* plane types. Special planes are associated with their CRTC by calling
* drm_crtc_init_with_planes().
*
* drm_object_attach_property().
*
* Property values are only 64bit. To support bigger piles of data (like gamma
- * tables, color correction matrizes or large structures) a property can instead
- * point at a &drm_property_blob with that additional data
+ * tables, color correction matrices or large structures) a property can instead
+ * point at a &drm_property_blob with that additional data.
*
* Properties are defined by their symbolic name, userspace must keep a
* per-object mapping from those names to the property ID used in the atomic
/**
* @commit_entry:
*
- * Entry on the per-CRTC commit_list. Protected by crtc->commit_lock.
+ * Entry on the per-CRTC &drm_crtc.commit_list. Protected by
+ * $drm_crtc.commit_lock.
*/
struct list_head commit_entry;
*
* For example if the CRTC mode has changed, and the hardware is able to enact
* the requested mode change without going through a full modeset, the driver
- * should clear mode_changed during its ->atomic_check.
+ * should clear mode_changed in its &drm_mode_config_funcs.atomic_check
+ * implementation.
*/
static inline bool
drm_atomic_crtc_needs_modeset(const struct drm_crtc_state *state)
int gamma_size);
/**
- * drm_color_lut_extract - clamp&round LUT entries
+ * drm_color_lut_extract - clamp and round LUT entries
* @user_input: input value
* @bit_precision: number of bits the hw LUT supports
*
*
* Entry point for output detection and basic mode validation. The
* driver should reprobe the output if needed (e.g. when hotplug
- * handling is unreliable), add all detected modes to connector->modes
+ * handling is unreliable), add all detected modes to &drm_connector.modes
* and filter out any the device can't support in any configuration. It
* also needs to filter out any modes wider or higher than the
* parameters max_width and max_height indicate.
*
* The drivers must also prune any modes no longer valid from
- * connector->modes. Furthermore it must update connector->status and
- * connector->edid. If no EDID has been received for this output
- * connector->edid must be NULL.
+ * &drm_connector.modes. Furthermore it must update
+ * &drm_connector.status and &drm_connector.edid. If no EDID has been
+ * received for this output connector->edid must be NULL.
*
* Drivers using the probe helpers should use
* drm_helper_probe_single_connector_modes() or
*
* RETURNS:
*
- * The number of modes detected and filled into connector->modes.
+ * The number of modes detected and filled into &drm_connector.modes.
*/
int (*fill_modes)(struct drm_connector *connector, uint32_t max_width, uint32_t max_height);
* core drm connector interfaces. Everything added from this callback
* should be unregistered in the early_unregister callback.
*
- * This is called while holding drm_connector->mutex.
+ * This is called while holding &drm_connector.mutex.
*
* Returns:
*
* early in the driver unload sequence to disable userspace access
* before data structures are torndown.
*
- * This is called while holding drm_connector->mutex.
+ * This is called while holding &drm_connector.mutex.
*/
void (*early_unregister)(struct drm_connector *connector);
* Duplicate the current atomic state for this connector and return it.
* The core and helpers guarantee that any atomic state duplicated with
* this hook and still owned by the caller (i.e. not transferred to the
- * driver by calling ->atomic_commit() from struct
- * &drm_mode_config_funcs) will be cleaned up by calling the
- * @atomic_destroy_state hook in this structure.
+ * driver by calling &drm_mode_config_funcs.atomic_commit) will be
+ * cleaned up by calling the @atomic_destroy_state hook in this
+ * structure.
*
* Atomic drivers which don't subclass &struct drm_connector_state should use
* drm_atomic_helper_connector_duplicate_state(). Drivers that subclass the
* __drm_atomic_helper_connector_duplicate_state() to make sure shared state is
* duplicated in a consistent fashion across drivers.
*
- * It is an error to call this hook before connector->state has been
+ * It is an error to call this hook before &drm_connector.state has been
* initialized correctly.
*
* NOTE:
/**
* @mutex: Lock for general connector state, but currently only protects
- * @registered. Most of the connector state is still protected by the
- * mutex in &drm_mode_config.
+ * @registered. Most of the connector state is still protected by
+ * &drm_mode_config.mutex.
*/
struct mutex mutex;
/**
* @modes:
* Modes available on this connector (from fill_modes() + user).
- * Protected by dev->mode_config.mutex.
+ * Protected by &drm_mode_config.mutex.
*/
- struct list_head modes; /* list of modes on this connector */
+ struct list_head modes;
/**
* @status:
* One of the drm_connector_status enums (connected, not, or unknown).
- * Protected by dev->mode_config.mutex.
+ * Protected by &drm_mode_config.mutex.
*/
enum drm_connector_status status;
/**
* @probed_modes:
* These are modes added by probing with DDC or the BIOS, before
- * filtering is applied. Used by the probe helpers.Protected by
- * dev->mode_config.mutex.
+ * filtering is applied. Used by the probe helpers. Protected by
+ * &drm_mode_config.mutex.
*/
struct list_head probed_modes;
* @display_info: Display information is filled from EDID information
* when a display is detected. For non hot-pluggable displays such as
* flat panels in embedded systems, the driver should initialize the
- * display_info.width_mm and display_info.height_mm fields with the
- * physical size of the display.
+ * &drm_display_info.width_mm and &drm_display_info.height_mm fields
+ * with the physical size of the display.
*
- * Protected by dev->mode_config.mutex.
+ * Protected by &drm_mode_config.mutex.
*/
struct drm_display_info display_info;
const struct drm_connector_funcs *funcs;
* @enable: whether the CRTC should be enabled, gates all other state
* @active: whether the CRTC is actively displaying (used for DPMS)
* @planes_changed: planes on this crtc are updated
- * @mode_changed: crtc_state->mode or crtc_state->enable has been changed
- * @active_changed: crtc_state->active has been toggled.
+ * @mode_changed: @mode or @enable has been changed
+ * @active_changed: @active has been toggled.
* @connectors_changed: connectors to this crtc have been updated
* @zpos_changed: zpos values of planes on this crtc have been updated
* @color_mgmt_changed: color management properties have changed (degamma or
*
* Note that the distinction between @enable and @active is rather subtile:
* Flipping @active while @enable is set without changing anything else may
- * never return in a failure from the ->atomic_check callback. Userspace assumes
- * that a DPMS On will always succeed. In other words: @enable controls resource
- * assignment, @active controls the actual hardware state.
+ * never return in a failure from the &drm_mode_config_funcs.atomic_check
+ * callback. Userspace assumes that a DPMS On will always succeed. In other
+ * words: @enable controls resource assignment, @active controls the actual
+ * hardware state.
*
* The three booleans active_changed, connectors_changed and mode_changed are
* intended to indicate whether a full modeset is needed, rather than strictly
* through the DRM_MODE_PAGE_FLIP_ASYNC flag). When an application
* requests a page flip the DRM core verifies that the new frame buffer
* is large enough to be scanned out by the CRTC in the currently
- * configured mode and then calls the CRTC ->page_flip() operation with a
- * pointer to the new frame buffer.
+ * configured mode and then calls this hook with a pointer to the new
+ * frame buffer.
*
* The driver must wait for any pending rendering to the new framebuffer
* to complete before executing the flip. It should also wait for any
* RETURNS:
*
* 0 on success or a negative error code on failure. Note that if a
- * ->page_flip() operation is already pending the callback should return
+ * page flip operation is already pending the callback should return
* -EBUSY. Pageflips on a disabled CRTC (either by setting a NULL mode
* or just runtime disabled through DPMS respectively the new atomic
* "ACTIVE" state) should result in an -EINVAL error code. Note that
* @atomic_duplicate_state:
*
* Duplicate the current atomic state for this CRTC and return it.
- * The core and helpers gurantee that any atomic state duplicated with
+ * The core and helpers guarantee that any atomic state duplicated with
* this hook and still owned by the caller (i.e. not transferred to the
- * driver by calling ->atomic_commit() from struct
- * &drm_mode_config_funcs) will be cleaned up by calling the
- * @atomic_destroy_state hook in this structure.
+ * driver by calling &drm_mode_config_funcs.atomic_commit) will be
+ * cleaned up by calling the @atomic_destroy_state hook in this
+ * structure.
*
- * Atomic drivers which don't subclass &struct drm_crtc should use
+ * Atomic drivers which don't subclass &struct drm_crtc_state should use
* drm_atomic_helper_crtc_duplicate_state(). Drivers that subclass the
* state structure to extend it with driver-private state should use
* __drm_atomic_helper_crtc_duplicate_state() to make sure shared state is
* duplicated in a consistent fashion across drivers.
*
- * It is an error to call this hook before crtc->state has been
+ * It is an error to call this hook before &drm_crtc.state has been
* initialized correctly.
*
* NOTE:
* This provides a read lock for the overall crtc state (mode, dpms
* state, ...) and a write lock for everything which can be update
* without a full modeset (fb, cursor data, crtc properties ...). Full
- * modeset also need to grab dev->mode_config.connection_mutex.
+ * modeset also need to grab &drm_mode_config.connection_mutex.
*/
struct drm_modeset_lock mutex;
*
* Clean up framebuffer resources, specifically also unreference the
* backing storage. The core guarantees to call this function for every
- * framebuffer successfully created by ->fb_create() in
- * &drm_mode_config_funcs. Drivers must also call
+ * framebuffer successfully created by calling
+ * &drm_mode_config_funcs.fb_create. Drivers must also call
* drm_framebuffer_cleanup() to release DRM core resources for this
* framebuffer.
*/
*/
struct drm_device *dev;
/**
- * @head: Place on the dev->mode_config.fb_list, access protected by
- * dev->mode_config.fb_lock.
+ * @head: Place on the &drm_mode_config.fb_list, access protected by
+ * &drm_mode_config.fb_lock.
*/
struct list_head head;
*/
int hot_y;
/**
- * @filp_head: Placed on &struct drm_file fbs list_head, protected by
- * fbs_lock in the same structure.
+ * @filp_head: Placed on &drm_file.fbs, protected by &drm_file.fbs_lock.
*/
struct list_head filp_head;
};
* @fb: the loop cursor
* @dev: the DRM device
*
- * Iterate over all framebuffers of @dev. User must hold the fb_lock from
- * &drm_mode_config.
+ * Iterate over all framebuffers of @dev. User must hold
+ * &drm_mode_config.fb_lock.
*/
#define drm_for_each_fb(fb, dev) \
for (WARN_ON(!mutex_is_locked(&(dev)->mode_config.fb_lock)), \
* that before calling this hook.
*
* See the documentation of @atomic_commit for an exhaustive list of
- * error conditions which don't have to be checked at the
- * ->atomic_check() stage?
+ * error conditions which don't have to be checked at the in this
+ * callback.
*
* See the documentation for &struct drm_atomic_state for how exactly
* an atomic modeset update is described.
* completed. These events are per-CRTC and can be distinguished by the
* CRTC index supplied in &drm_event to userspace.
*
- * The drm core will supply a &struct drm_event in the event
- * member of each CRTC's &drm_crtc_state structure. See the
- * documentation for &drm_crtc_state for more details about the precise
- * semantics of this event.
+ * The drm core will supply a &struct drm_event in each CRTC's
+ * &drm_crtc_state.event. See the documentation for
+ * &drm_crtc_state.event for more details about the precise semantics of
+ * this event.
*
* NOTE:
*
*
* Note that atomic drivers do not store mutable properties in this
* array, but only the decoded values in the corresponding state
- * structure. The decoding is done using the ->atomic_get_property and
- * ->atomic_set_property hooks of the corresponding object. Hence atomic
- * drivers should not use drm_object_property_set_value() and
- * drm_object_property_get_value() on mutable objects, i.e. those
+ * structure. The decoding is done using the &drm_crtc.atomic_get_property and
+ * &drm_crtc.atomic_set_property hooks for &struct drm_crtc. For
+ * &struct drm_plane the hooks are &drm_plane_funcs.atomic_get_property and
+ * &drm_plane_funcs.atomic_set_property. And for &struct drm_connector
+ * the hooks are &drm_connector_funcs.atomic_get_property and
+ * &drm_connector_funcs.atomic_set_property .
+ *
+ * Hence atomic drivers should not use drm_object_property_set_value()
+ * and drm_object_property_get_value() on mutable objects, i.e. those
* without the DRM_MODE_PROP_IMMUTABLE flag set.
*/
uint64_t values[DRM_OBJECT_MAX_PROPERTY];
/**
* struct drm_modeset_lock - used for locking modeset resources.
* @mutex: resource locking
- * @head: used to hold it's place on state->locked list when
+ * @head: used to hold it's place on &drm_atomi_state.locked list when
* part of an atomic update
*
* Used for locking CRTCs and other modeset resources.
* @atomic_duplicate_state:
*
* Duplicate the current atomic state for this plane and return it.
- * The core and helpers gurantee that any atomic state duplicated with
+ * The core and helpers guarantee that any atomic state duplicated with
* this hook and still owned by the caller (i.e. not transferred to the
- * driver by calling ->atomic_commit() from struct
- * &drm_mode_config_funcs) will be cleaned up by calling the
- * @atomic_destroy_state hook in this structure.
+ * driver by calling &drm_mode_config_funcs.atomic_commit) will be
+ * cleaned up by calling the @atomic_destroy_state hook in this
+ * structure.
*
* Atomic drivers which don't subclass &struct drm_plane_state should use
* drm_atomic_helper_plane_duplicate_state(). Drivers that subclass the
* __drm_atomic_helper_plane_duplicate_state() to make sure shared state is
* duplicated in a consistent fashion across drivers.
*
- * It is an error to call this hook before plane->state has been
+ * It is an error to call this hook before &drm_plane.state has been
* initialized correctly.
*
* NOTE:
*
* Primary planes represent a "main" plane for a CRTC. Primary planes
* are the planes operated upon by CRTC modesetting and flipping
- * operations described in the page_flip and set_config hooks in struct
- * &drm_crtc_funcs.
+ * operations described in the &drm_crtc_funcs.page_flip and
+ * &drm_crtc_funcs.set_config hooks.
*/
DRM_PLANE_TYPE_PRIMARY,
/**
* @mutex:
*
- * Protects modeset plane state, together with the mutex of &drm_crtc
- * this plane is linked to (when active, getting actived or getting
- * disabled).
+ * Protects modeset plane state, together with the &drm_crtc.mutex of
+ * CRTC this plane is linked to (when active, getting activated or
+ * getting disabled).
*/
struct drm_modeset_lock mutex;
*
* Iterate over all legacy planes of @dev, excluding primary and cursor planes.
* This is useful for implementing userspace apis when userspace is not
- * universal plane aware. See also enum &drm_plane_type.
+ * universal plane aware. See also &enum drm_plane_type.
*/
#define drm_for_each_legacy_plane(plane, dev) \
list_for_each_entry(plane, &(dev)->mode_config.plane_list, head) \
/**
* struct drm_property_enum - symbolic values for enumerations
* @value: numeric property value for this enum entry
- * @head: list of enum values, linked to enum_list in &drm_property
+ * @head: list of enum values, linked to &drm_property.enum_list
* @name: symbolic name for the enum
*
* For enumeration and bitmask properties this structure stores the symbolic
* struct drm_property_blob - Blob data for &drm_property
* @base: base KMS object
* @dev: DRM device
- * @head_global: entry on the global blob list in &drm_mode_config
- * property_blob_list.
- * @head_file: entry on the per-file blob list in &drm_file blobs list.
+ * @head_global: entry on the global blob list in
+ * &drm_mode_config.property_blob_list.
+ * @head_file: entry on the per-file blob list in &drm_file.blobs list.
* @length: size of the blob in bytes, invariant over the lifetime of the object
* @data: actual data, embedded at the end of this structure
*