atomic_t scrubs_paused;
atomic_t scrub_cancel_req;
wait_queue_head_t scrub_pause_wait;
+ /*
+ * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
+ * running.
+ */
refcount_t scrub_workers_refcnt;
struct btrfs_workqueue *scrub_workers;
struct btrfs_workqueue *scrub_wr_completion_workers;
lockdep_assert_held(&fs_info->scrub_lock);
if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
+ ASSERT(fs_info->scrub_workers == NULL);
fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
flags, is_dev_replace ? 1 : max_active, 4);
if (!fs_info->scrub_workers)
goto fail_scrub_workers;
+ ASSERT(fs_info->scrub_wr_completion_workers == NULL);
fs_info->scrub_wr_completion_workers =
btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
max_active, 2);
if (!fs_info->scrub_wr_completion_workers)
goto fail_scrub_wr_completion_workers;
+ ASSERT(fs_info->scrub_parity_workers == NULL);
fs_info->scrub_parity_workers =
btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
max_active, 2);
scrub_workers = fs_info->scrub_workers;
scrub_wr_comp = fs_info->scrub_wr_completion_workers;
scrub_parity = fs_info->scrub_parity_workers;
+
+ fs_info->scrub_workers = NULL;
+ fs_info->scrub_wr_completion_workers = NULL;
+ fs_info->scrub_parity_workers = NULL;
}
mutex_unlock(&fs_info->scrub_lock);