#include "rcar_lvds_regs.h"
+struct rcar_lvds;
+
/* Keep in sync with the LVDCR0.LVMD hardware register values. */
enum rcar_lvds_mode {
RCAR_LVDS_MODE_JEIDA = 0,
RCAR_LVDS_MODE_VESA = 4,
};
-#define RCAR_LVDS_QUIRK_LANES (1 << 0) /* LVDS lanes 1 and 3 inverted */
-#define RCAR_LVDS_QUIRK_GEN2_PLLCR (1 << 1) /* LVDPLLCR has gen2 layout */
-#define RCAR_LVDS_QUIRK_GEN3_LVEN (1 << 2) /* LVEN bit needs to be set */
- /* on R8A77970/R8A7799x */
+#define RCAR_LVDS_QUIRK_LANES BIT(0) /* LVDS lanes 1 and 3 inverted */
+#define RCAR_LVDS_QUIRK_GEN3_LVEN BIT(1) /* LVEN bit needs to be set on R8A77970/R8A7799x */
+#define RCAR_LVDS_QUIRK_PWD BIT(2) /* PWD bit available (all of Gen3 but E3) */
+#define RCAR_LVDS_QUIRK_EXT_PLL BIT(3) /* Has extended PLL */
+#define RCAR_LVDS_QUIRK_DUAL_LINK BIT(4) /* Supports dual-link operation */
struct rcar_lvds_device_info {
unsigned int gen;
unsigned int quirks;
+ void (*pll_setup)(struct rcar_lvds *lvds, unsigned int freq);
};
struct rcar_lvds {
struct drm_panel *panel;
void __iomem *mmio;
- struct clk *clock;
+ struct {
+ struct clk *mod; /* CPG module clock */
+ struct clk *extal; /* External clock */
+ struct clk *dotclkin[2]; /* External DU clocks */
+ } clocks;
bool enabled;
struct drm_display_mode display_mode;
};
/* -----------------------------------------------------------------------------
- * Bridge
+ * PLL Setup
*/
-static u32 rcar_lvds_lvdpllcr_gen2(unsigned int freq)
+static void rcar_lvds_pll_setup_gen2(struct rcar_lvds *lvds, unsigned int freq)
{
- if (freq < 39000)
- return LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_38M;
- else if (freq < 61000)
- return LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_60M;
- else if (freq < 121000)
- return LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_121M;
+ u32 val;
+
+ if (freq < 39000000)
+ val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_38M;
+ else if (freq < 61000000)
+ val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_60M;
+ else if (freq < 121000000)
+ val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_121M;
else
- return LVDPLLCR_PLLDLYCNT_150M;
+ val = LVDPLLCR_PLLDLYCNT_150M;
+
+ rcar_lvds_write(lvds, LVDPLLCR, val);
}
-static u32 rcar_lvds_lvdpllcr_gen3(unsigned int freq)
+static void rcar_lvds_pll_setup_gen3(struct rcar_lvds *lvds, unsigned int freq)
{
- if (freq < 42000)
- return LVDPLLCR_PLLDIVCNT_42M;
- else if (freq < 85000)
- return LVDPLLCR_PLLDIVCNT_85M;
- else if (freq < 128000)
- return LVDPLLCR_PLLDIVCNT_128M;
+ u32 val;
+
+ if (freq < 42000000)
+ val = LVDPLLCR_PLLDIVCNT_42M;
+ else if (freq < 85000000)
+ val = LVDPLLCR_PLLDIVCNT_85M;
+ else if (freq < 128000000)
+ val = LVDPLLCR_PLLDIVCNT_128M;
else
- return LVDPLLCR_PLLDIVCNT_148M;
+ val = LVDPLLCR_PLLDIVCNT_148M;
+
+ rcar_lvds_write(lvds, LVDPLLCR, val);
}
+struct pll_info {
+ unsigned long diff;
+ unsigned int pll_m;
+ unsigned int pll_n;
+ unsigned int pll_e;
+ unsigned int div;
+ u32 clksel;
+};
+
+static void rcar_lvds_d3_e3_pll_calc(struct rcar_lvds *lvds, struct clk *clk,
+ unsigned long target, struct pll_info *pll,
+ u32 clksel)
+{
+ unsigned long output;
+ unsigned long fin;
+ unsigned int m_min;
+ unsigned int m_max;
+ unsigned int m;
+ int error;
+
+ if (!clk)
+ return;
+
+ /*
+ * The LVDS PLL is made of a pre-divider and a multiplier (strangely
+ * enough called M and N respectively), followed by a post-divider E.
+ *
+ * ,-----. ,-----. ,-----. ,-----.
+ * Fin --> | 1/M | -Fpdf-> | PFD | --> | VCO | -Fvco-> | 1/E | --> Fout
+ * `-----' ,-> | | `-----' | `-----'
+ * | `-----' |
+ * | ,-----. |
+ * `-------- | 1/N | <-------'
+ * `-----'
+ *
+ * The clock output by the PLL is then further divided by a programmable
+ * divider DIV to achieve the desired target frequency. Finally, an
+ * optional fixed /7 divider is used to convert the bit clock to a pixel
+ * clock (as LVDS transmits 7 bits per lane per clock sample).
+ *
+ * ,-------. ,-----. |\
+ * Fout --> | 1/DIV | --> | 1/7 | --> | |
+ * `-------' | `-----' | | --> dot clock
+ * `------------> | |
+ * |/
+ *
+ * The /7 divider is optional when the LVDS PLL is used to generate a
+ * dot clock for the DU RGB output, without using the LVDS encoder. We
+ * don't support this configuration yet.
+ *
+ * The PLL allowed input frequency range is 12 MHz to 192 MHz.
+ */
+
+ fin = clk_get_rate(clk);
+ if (fin < 12000000 || fin > 192000000)
+ return;
+
+ /*
+ * The comparison frequency range is 12 MHz to 24 MHz, which limits the
+ * allowed values for the pre-divider M (normal range 1-8).
+ *
+ * Fpfd = Fin / M
+ */
+ m_min = max_t(unsigned int, 1, DIV_ROUND_UP(fin, 24000000));
+ m_max = min_t(unsigned int, 8, fin / 12000000);
+
+ for (m = m_min; m <= m_max; ++m) {
+ unsigned long fpfd;
+ unsigned int n_min;
+ unsigned int n_max;
+ unsigned int n;
+
+ /*
+ * The VCO operating range is 900 Mhz to 1800 MHz, which limits
+ * the allowed values for the multiplier N (normal range
+ * 60-120).
+ *
+ * Fvco = Fin * N / M
+ */
+ fpfd = fin / m;
+ n_min = max_t(unsigned int, 60, DIV_ROUND_UP(900000000, fpfd));
+ n_max = min_t(unsigned int, 120, 1800000000 / fpfd);
+
+ for (n = n_min; n < n_max; ++n) {
+ unsigned long fvco;
+ unsigned int e_min;
+ unsigned int e;
+
+ /*
+ * The output frequency is limited to 1039.5 MHz,
+ * limiting again the allowed values for the
+ * post-divider E (normal value 1, 2 or 4).
+ *
+ * Fout = Fvco / E
+ */
+ fvco = fpfd * n;
+ e_min = fvco > 1039500000 ? 1 : 0;
+
+ for (e = e_min; e < 3; ++e) {
+ unsigned long fout;
+ unsigned long diff;
+ unsigned int div;
+
+ /*
+ * Finally we have a programable divider after
+ * the PLL, followed by a an optional fixed /7
+ * divider.
+ */
+ fout = fvco / (1 << e) / 7;
+ div = DIV_ROUND_CLOSEST(fout, target);
+ diff = abs(fout / div - target);
+
+ if (diff < pll->diff) {
+ pll->diff = diff;
+ pll->pll_m = m;
+ pll->pll_n = n;
+ pll->pll_e = e;
+ pll->div = div;
+ pll->clksel = clksel;
+
+ if (diff == 0)
+ goto done;
+ }
+ }
+ }
+ }
+
+done:
+ output = fin * pll->pll_n / pll->pll_m / (1 << pll->pll_e)
+ / 7 / pll->div;
+ error = (long)(output - target) * 10000 / (long)target;
+
+ dev_dbg(lvds->dev,
+ "%pC %lu Hz -> Fout %lu Hz (target %lu Hz, error %d.%02u%%), PLL M/N/E/DIV %u/%u/%u/%u\n",
+ clk, fin, output, target, error / 100,
+ error < 0 ? -error % 100 : error % 100,
+ pll->pll_m, pll->pll_n, pll->pll_e, pll->div);
+}
+
+static void rcar_lvds_pll_setup_d3_e3(struct rcar_lvds *lvds, unsigned int freq)
+{
+ struct pll_info pll = { .diff = (unsigned long)-1 };
+ u32 lvdpllcr;
+
+ rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.dotclkin[0], freq, &pll,
+ LVDPLLCR_CKSEL_DU_DOTCLKIN(0));
+ rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.dotclkin[1], freq, &pll,
+ LVDPLLCR_CKSEL_DU_DOTCLKIN(1));
+ rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.extal, freq, &pll,
+ LVDPLLCR_CKSEL_EXTAL);
+
+ lvdpllcr = LVDPLLCR_PLLON | pll.clksel | LVDPLLCR_CLKOUT
+ | LVDPLLCR_PLLN(pll.pll_n - 1) | LVDPLLCR_PLLM(pll.pll_m - 1);
+
+ if (pll.pll_e > 0)
+ lvdpllcr |= LVDPLLCR_STP_CLKOUTE | LVDPLLCR_OUTCLKSEL
+ | LVDPLLCR_PLLE(pll.pll_e - 1);
+
+ rcar_lvds_write(lvds, LVDPLLCR, lvdpllcr);
+
+ if (pll.div > 1)
+ /*
+ * The DIVRESET bit is a misnomer, setting it to 1 deasserts the
+ * divisor reset.
+ */
+ rcar_lvds_write(lvds, LVDDIV, LVDDIV_DIVSEL |
+ LVDDIV_DIVRESET | LVDDIV_DIV(pll.div - 1));
+ else
+ rcar_lvds_write(lvds, LVDDIV, 0);
+}
+
+/* -----------------------------------------------------------------------------
+ * Bridge
+ */
+
static void rcar_lvds_enable(struct drm_bridge *bridge)
{
struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge);
* do we get a state pointer?
*/
struct drm_crtc *crtc = lvds->bridge.encoder->crtc;
- u32 lvdpllcr;
u32 lvdhcr;
u32 lvdcr0;
int ret;
WARN_ON(lvds->enabled);
- ret = clk_prepare_enable(lvds->clock);
+ ret = clk_prepare_enable(lvds->clocks.mod);
if (ret < 0)
return;
rcar_lvds_write(lvds, LVDCHCR, lvdhcr);
+ if (lvds->info->quirks & RCAR_LVDS_QUIRK_DUAL_LINK) {
+ /* Disable dual-link mode. */
+ rcar_lvds_write(lvds, LVDSTRIPE, 0);
+ }
+
/* PLL clock configuration. */
- if (lvds->info->quirks & RCAR_LVDS_QUIRK_GEN2_PLLCR)
- lvdpllcr = rcar_lvds_lvdpllcr_gen2(mode->clock);
- else
- lvdpllcr = rcar_lvds_lvdpllcr_gen3(mode->clock);
- rcar_lvds_write(lvds, LVDPLLCR, lvdpllcr);
+ lvds->info->pll_setup(lvds, mode->clock * 1000);
/* Set the LVDS mode and select the input. */
lvdcr0 = lvds->mode << LVDCR0_LVMD_SHIFT;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
- /* Turn the PLL on. */
- lvdcr0 |= LVDCR0_PLLON;
- rcar_lvds_write(lvds, LVDCR0, lvdcr0);
+ if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) {
+ /*
+ * Turn the PLL on (simple PLL only, extended PLL is fully
+ * controlled through LVDPLLCR).
+ */
+ lvdcr0 |= LVDCR0_PLLON;
+ rcar_lvds_write(lvds, LVDCR0, lvdcr0);
+ }
- if (lvds->info->gen > 2) {
+ if (lvds->info->quirks & RCAR_LVDS_QUIRK_PWD) {
/* Set LVDS normal mode. */
lvdcr0 |= LVDCR0_PWD;
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
rcar_lvds_write(lvds, LVDCR0, lvdcr0);
}
- /* Wait for the startup delay. */
- usleep_range(100, 150);
+ if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) {
+ /* Wait for the PLL startup delay (simple PLL only). */
+ usleep_range(100, 150);
+ }
/* Turn the output on. */
lvdcr0 |= LVDCR0_LVRES;
rcar_lvds_write(lvds, LVDCR0, 0);
rcar_lvds_write(lvds, LVDCR1, 0);
+ rcar_lvds_write(lvds, LVDPLLCR, 0);
- clk_disable_unprepare(lvds->clock);
+ clk_disable_unprepare(lvds->clocks.mod);
lvds->enabled = false;
}
return ret;
}
+static struct clk *rcar_lvds_get_clock(struct rcar_lvds *lvds, const char *name,
+ bool optional)
+{
+ struct clk *clk;
+
+ clk = devm_clk_get(lvds->dev, name);
+ if (!IS_ERR(clk))
+ return clk;
+
+ if (PTR_ERR(clk) == -ENOENT && optional)
+ return NULL;
+
+ if (PTR_ERR(clk) != -EPROBE_DEFER)
+ dev_err(lvds->dev, "failed to get %s clock\n",
+ name ? name : "module");
+
+ return clk;
+}
+
+static int rcar_lvds_get_clocks(struct rcar_lvds *lvds)
+{
+ lvds->clocks.mod = rcar_lvds_get_clock(lvds, NULL, false);
+ if (IS_ERR(lvds->clocks.mod))
+ return PTR_ERR(lvds->clocks.mod);
+
+ /*
+ * LVDS encoders without an extended PLL have no external clock inputs.
+ */
+ if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL))
+ return 0;
+
+ lvds->clocks.extal = rcar_lvds_get_clock(lvds, "extal", true);
+ if (IS_ERR(lvds->clocks.extal))
+ return PTR_ERR(lvds->clocks.extal);
+
+ lvds->clocks.dotclkin[0] = rcar_lvds_get_clock(lvds, "dclkin.0", true);
+ if (IS_ERR(lvds->clocks.dotclkin[0]))
+ return PTR_ERR(lvds->clocks.dotclkin[0]);
+
+ lvds->clocks.dotclkin[1] = rcar_lvds_get_clock(lvds, "dclkin.1", true);
+ if (IS_ERR(lvds->clocks.dotclkin[1]))
+ return PTR_ERR(lvds->clocks.dotclkin[1]);
+
+ /* At least one input to the PLL must be available. */
+ if (!lvds->clocks.extal && !lvds->clocks.dotclkin[0] &&
+ !lvds->clocks.dotclkin[1]) {
+ dev_err(lvds->dev,
+ "no input clock (extal, dclkin.0 or dclkin.1)\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
static int rcar_lvds_probe(struct platform_device *pdev)
{
struct rcar_lvds *lvds;
if (IS_ERR(lvds->mmio))
return PTR_ERR(lvds->mmio);
- lvds->clock = devm_clk_get(&pdev->dev, NULL);
- if (IS_ERR(lvds->clock)) {
- dev_err(&pdev->dev, "failed to get clock\n");
- return PTR_ERR(lvds->clock);
- }
+ ret = rcar_lvds_get_clocks(lvds);
+ if (ret < 0)
+ return ret;
drm_bridge_add(&lvds->bridge);
static const struct rcar_lvds_device_info rcar_lvds_gen2_info = {
.gen = 2,
- .quirks = RCAR_LVDS_QUIRK_GEN2_PLLCR,
+ .pll_setup = rcar_lvds_pll_setup_gen2,
};
static const struct rcar_lvds_device_info rcar_lvds_r8a7790_info = {
.gen = 2,
- .quirks = RCAR_LVDS_QUIRK_GEN2_PLLCR | RCAR_LVDS_QUIRK_LANES,
+ .quirks = RCAR_LVDS_QUIRK_LANES,
+ .pll_setup = rcar_lvds_pll_setup_gen2,
};
static const struct rcar_lvds_device_info rcar_lvds_gen3_info = {
.gen = 3,
+ .quirks = RCAR_LVDS_QUIRK_PWD,
+ .pll_setup = rcar_lvds_pll_setup_gen3,
};
static const struct rcar_lvds_device_info rcar_lvds_r8a77970_info = {
.gen = 3,
- .quirks = RCAR_LVDS_QUIRK_GEN2_PLLCR | RCAR_LVDS_QUIRK_GEN3_LVEN,
+ .quirks = RCAR_LVDS_QUIRK_PWD | RCAR_LVDS_QUIRK_GEN3_LVEN,
+ .pll_setup = rcar_lvds_pll_setup_gen2,
+};
+
+static const struct rcar_lvds_device_info rcar_lvds_r8a77990_info = {
+ .gen = 3,
+ .quirks = RCAR_LVDS_QUIRK_GEN3_LVEN | RCAR_LVDS_QUIRK_EXT_PLL
+ | RCAR_LVDS_QUIRK_DUAL_LINK,
+ .pll_setup = rcar_lvds_pll_setup_d3_e3,
+};
+
+static const struct rcar_lvds_device_info rcar_lvds_r8a77995_info = {
+ .gen = 3,
+ .quirks = RCAR_LVDS_QUIRK_GEN3_LVEN | RCAR_LVDS_QUIRK_PWD
+ | RCAR_LVDS_QUIRK_EXT_PLL | RCAR_LVDS_QUIRK_DUAL_LINK,
+ .pll_setup = rcar_lvds_pll_setup_d3_e3,
};
static const struct of_device_id rcar_lvds_of_table[] = {
{ .compatible = "renesas,r8a7796-lvds", .data = &rcar_lvds_gen3_info },
{ .compatible = "renesas,r8a77970-lvds", .data = &rcar_lvds_r8a77970_info },
{ .compatible = "renesas,r8a77980-lvds", .data = &rcar_lvds_gen3_info },
+ { .compatible = "renesas,r8a77990-lvds", .data = &rcar_lvds_r8a77990_info },
+ { .compatible = "renesas,r8a77995-lvds", .data = &rcar_lvds_r8a77995_info },
{ }
};
#define LVDCR0_PLLON (1 << 4)
#define LVDCR0_PWD (1 << 2) /* Gen3 only */
#define LVDCR0_BEN (1 << 2) /* Gen2 only */
-#define LVDCR0_LVEN (1 << 1) /* Gen2 only */
+#define LVDCR0_LVEN (1 << 1)
#define LVDCR0_LVRES (1 << 0)
#define LVDCR1 0x0004
#define LVDCR1_CLKSTBY (3 << 0)
#define LVDPLLCR 0x0008
+/* Gen2 & V3M */
#define LVDPLLCR_CEEN (1 << 14)
#define LVDPLLCR_FBEN (1 << 13)
#define LVDPLLCR_COSEL (1 << 12)
-/* Gen2 */
#define LVDPLLCR_PLLDLYCNT_150M (0x1bf << 0)
#define LVDPLLCR_PLLDLYCNT_121M (0x22c << 0)
#define LVDPLLCR_PLLDLYCNT_60M (0x77b << 0)
#define LVDPLLCR_PLLDLYCNT_38M (0x69a << 0)
#define LVDPLLCR_PLLDLYCNT_MASK (0x7ff << 0)
-/* Gen3 */
+/* Gen3 but V3M,D3 and E3 */
#define LVDPLLCR_PLLDIVCNT_42M (0x014cb << 0)
#define LVDPLLCR_PLLDIVCNT_85M (0x00a45 << 0)
#define LVDPLLCR_PLLDIVCNT_128M (0x006c3 << 0)
#define LVDPLLCR_PLLDIVCNT_148M (0x046c1 << 0)
#define LVDPLLCR_PLLDIVCNT_MASK (0x7ffff << 0)
+/* D3 and E3 */
+#define LVDPLLCR_PLLON (1 << 22)
+#define LVDPLLCR_PLLSEL_PLL0 (0 << 20)
+#define LVDPLLCR_PLLSEL_LVX (1 << 20)
+#define LVDPLLCR_PLLSEL_PLL1 (2 << 20)
+#define LVDPLLCR_CKSEL_LVX (1 << 17)
+#define LVDPLLCR_CKSEL_EXTAL (3 << 17)
+#define LVDPLLCR_CKSEL_DU_DOTCLKIN(n) ((5 + (n) * 2) << 17)
+#define LVDPLLCR_OCKSEL (1 << 16)
+#define LVDPLLCR_STP_CLKOUTE (1 << 14)
+#define LVDPLLCR_OUTCLKSEL (1 << 12)
+#define LVDPLLCR_CLKOUT (1 << 11)
+#define LVDPLLCR_PLLE(n) ((n) << 10)
+#define LVDPLLCR_PLLN(n) ((n) << 3)
+#define LVDPLLCR_PLLM(n) ((n) << 0)
#define LVDCTRCR 0x000c
#define LVDCTRCR_CTR3SEL_ZERO (0 << 12)
#define LVDCHCR_CHSEL_CH(n, c) ((((c) - (n)) & 3) << ((n) * 4))
#define LVDCHCR_CHSEL_MASK(n) (3 << ((n) * 4))
+/* All registers below are specific to D3 and E3 */
+#define LVDSTRIPE 0x0014
+#define LVDSTRIPE_ST_TRGSEL_DISP (0 << 2)
+#define LVDSTRIPE_ST_TRGSEL_HSYNC_R (1 << 2)
+#define LVDSTRIPE_ST_TRGSEL_HSYNC_F (2 << 2)
+#define LVDSTRIPE_ST_SWAP (1 << 1)
+#define LVDSTRIPE_ST_ON (1 << 0)
+
+#define LVDSCR 0x0018
+#define LVDSCR_DEPTH(n) (((n) - 1) << 29)
+#define LVDSCR_BANDSET (1 << 28)
+#define LVDSCR_TWGCNT(n) ((((n) - 256) / 16) << 24)
+#define LVDSCR_SDIV(n) ((n) << 22)
+#define LVDSCR_MODE (1 << 21)
+#define LVDSCR_RSTN (1 << 20)
+
+#define LVDDIV 0x001c
+#define LVDDIV_DIVSEL (1 << 8)
+#define LVDDIV_DIVRESET (1 << 7)
+#define LVDDIV_DIVSTP (1 << 6)
+#define LVDDIV_DIV(n) ((n) << 0)
+
#endif /* __RCAR_LVDS_REGS_H__ */