*
* (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
*
+ * Add Programmable Multibit ECC support for various AT91 SoC
+ * (C) Copyright 2012 ATMEL, Hong Xu
+ *
* See file CREDITS for list of people who contributed to this
* project.
*
#include <asm/arch/at91_pio.h>
#include <nand.h>
+#include <watchdog.h>
#ifdef CONFIG_ATMEL_NAND_HWECC
#include "atmel_nand_ecc.h" /* Hardware ECC registers */
+#ifdef CONFIG_ATMEL_NAND_HW_PMECC
+
+struct atmel_nand_host {
+ struct pmecc_regs __iomem *pmecc;
+ struct pmecc_errloc_regs __iomem *pmerrloc;
+ void __iomem *pmecc_rom_base;
+
+ u8 pmecc_corr_cap;
+ u16 pmecc_sector_size;
+ u32 pmecc_index_table_offset;
+
+ int pmecc_bytes_per_sector;
+ int pmecc_sector_number;
+ int pmecc_degree; /* Degree of remainders */
+ int pmecc_cw_len; /* Length of codeword */
+
+ /* lookup table for alpha_to and index_of */
+ void __iomem *pmecc_alpha_to;
+ void __iomem *pmecc_index_of;
+
+ /* data for pmecc computation */
+ int16_t pmecc_smu[(CONFIG_PMECC_CAP + 2) * (2 * CONFIG_PMECC_CAP + 1)];
+ int16_t pmecc_partial_syn[2 * CONFIG_PMECC_CAP + 1];
+ int16_t pmecc_si[2 * CONFIG_PMECC_CAP + 1];
+ int16_t pmecc_lmu[CONFIG_PMECC_CAP + 1]; /* polynomal order */
+ int pmecc_mu[CONFIG_PMECC_CAP + 1];
+ int pmecc_dmu[CONFIG_PMECC_CAP + 1];
+ int pmecc_delta[CONFIG_PMECC_CAP + 1];
+};
+
+static struct atmel_nand_host pmecc_host;
+static struct nand_ecclayout atmel_pmecc_oobinfo;
+
+/*
+ * Return number of ecc bytes per sector according to sector size and
+ * correction capability
+ *
+ * Following table shows what at91 PMECC supported:
+ * Correction Capability Sector_512_bytes Sector_1024_bytes
+ * ===================== ================ =================
+ * 2-bits 4-bytes 4-bytes
+ * 4-bits 7-bytes 7-bytes
+ * 8-bits 13-bytes 14-bytes
+ * 12-bits 20-bytes 21-bytes
+ * 24-bits 39-bytes 42-bytes
+ */
+static int pmecc_get_ecc_bytes(int cap, int sector_size)
+{
+ int m = 12 + sector_size / 512;
+ return (m * cap + 7) / 8;
+}
+
+static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
+ int oobsize, int ecc_len)
+{
+ int i;
+
+ layout->eccbytes = ecc_len;
+
+ /* ECC will occupy the last ecc_len bytes continuously */
+ for (i = 0; i < ecc_len; i++)
+ layout->eccpos[i] = oobsize - ecc_len + i;
+
+ layout->oobfree[0].offset = 2;
+ layout->oobfree[0].length =
+ oobsize - ecc_len - layout->oobfree[0].offset;
+}
+
+static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
+{
+ int table_size;
+
+ table_size = host->pmecc_sector_size == 512 ?
+ PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;
+
+ /* the ALPHA lookup table is right behind the INDEX lookup table. */
+ return host->pmecc_rom_base + host->pmecc_index_table_offset +
+ table_size * sizeof(int16_t);
+}
+
+static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+ int i;
+ uint32_t value;
+
+ /* Fill odd syndromes */
+ for (i = 0; i < host->pmecc_corr_cap; i++) {
+ value = readl(&host->pmecc->rem_port[sector].rem[i / 2]);
+ if (i & 1)
+ value >>= 16;
+ value &= 0xffff;
+ host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
+ }
+}
+
+static void pmecc_substitute(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+ int16_t __iomem *alpha_to = host->pmecc_alpha_to;
+ int16_t __iomem *index_of = host->pmecc_index_of;
+ int16_t *partial_syn = host->pmecc_partial_syn;
+ const int cap = host->pmecc_corr_cap;
+ int16_t *si;
+ int i, j;
+
+ /* si[] is a table that holds the current syndrome value,
+ * an element of that table belongs to the field
+ */
+ si = host->pmecc_si;
+
+ memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
+
+ /* Computation 2t syndromes based on S(x) */
+ /* Odd syndromes */
+ for (i = 1; i < 2 * cap; i += 2) {
+ for (j = 0; j < host->pmecc_degree; j++) {
+ if (partial_syn[i] & (0x1 << j))
+ si[i] = readw(alpha_to + i * j) ^ si[i];
+ }
+ }
+ /* Even syndrome = (Odd syndrome) ** 2 */
+ for (i = 2, j = 1; j <= cap; i = ++j << 1) {
+ if (si[j] == 0) {
+ si[i] = 0;
+ } else {
+ int16_t tmp;
+
+ tmp = readw(index_of + si[j]);
+ tmp = (tmp * 2) % host->pmecc_cw_len;
+ si[i] = readw(alpha_to + tmp);
+ }
+ }
+}
+
+/*
+ * This function defines a Berlekamp iterative procedure for
+ * finding the value of the error location polynomial.
+ * The input is si[], initialize by pmecc_substitute().
+ * The output is smu[][].
+ *
+ * This function is written according to chip datasheet Chapter:
+ * Find the Error Location Polynomial Sigma(x) of Section:
+ * Programmable Multibit ECC Control (PMECC).
+ */
+static void pmecc_get_sigma(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+
+ int16_t *lmu = host->pmecc_lmu;
+ int16_t *si = host->pmecc_si;
+ int *mu = host->pmecc_mu;
+ int *dmu = host->pmecc_dmu; /* Discrepancy */
+ int *delta = host->pmecc_delta; /* Delta order */
+ int cw_len = host->pmecc_cw_len;
+ const int16_t cap = host->pmecc_corr_cap;
+ const int num = 2 * cap + 1;
+ int16_t __iomem *index_of = host->pmecc_index_of;
+ int16_t __iomem *alpha_to = host->pmecc_alpha_to;
+ int i, j, k;
+ uint32_t dmu_0_count, tmp;
+ int16_t *smu = host->pmecc_smu;
+
+ /* index of largest delta */
+ int ro;
+ int largest;
+ int diff;
+
+ /* Init the Sigma(x) */
+ memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));
+
+ dmu_0_count = 0;
+
+ /* First Row */
+
+ /* Mu */
+ mu[0] = -1;
+
+ smu[0] = 1;
+
+ /* discrepancy set to 1 */
+ dmu[0] = 1;
+ /* polynom order set to 0 */
+ lmu[0] = 0;
+ /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
+ delta[0] = -1;
+
+ /* Second Row */
+
+ /* Mu */
+ mu[1] = 0;
+ /* Sigma(x) set to 1 */
+ smu[num] = 1;
+
+ /* discrepancy set to S1 */
+ dmu[1] = si[1];
+
+ /* polynom order set to 0 */
+ lmu[1] = 0;
+
+ /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
+ delta[1] = 0;
+
+ for (i = 1; i <= cap; i++) {
+ mu[i + 1] = i << 1;
+ /* Begin Computing Sigma (Mu+1) and L(mu) */
+ /* check if discrepancy is set to 0 */
+ if (dmu[i] == 0) {
+ dmu_0_count++;
+
+ tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
+ if ((cap - (lmu[i] >> 1) - 1) & 0x1)
+ tmp += 2;
+ else
+ tmp += 1;
+
+ if (dmu_0_count == tmp) {
+ for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
+ smu[(cap + 1) * num + j] =
+ smu[i * num + j];
+
+ lmu[cap + 1] = lmu[i];
+ return;
+ }
+
+ /* copy polynom */
+ for (j = 0; j <= lmu[i] >> 1; j++)
+ smu[(i + 1) * num + j] = smu[i * num + j];
+
+ /* copy previous polynom order to the next */
+ lmu[i + 1] = lmu[i];
+ } else {
+ ro = 0;
+ largest = -1;
+ /* find largest delta with dmu != 0 */
+ for (j = 0; j < i; j++) {
+ if ((dmu[j]) && (delta[j] > largest)) {
+ largest = delta[j];
+ ro = j;
+ }
+ }
+
+ /* compute difference */
+ diff = (mu[i] - mu[ro]);
+
+ /* Compute degree of the new smu polynomial */
+ if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
+ lmu[i + 1] = lmu[i];
+ else
+ lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
+
+ /* Init smu[i+1] with 0 */
+ for (k = 0; k < num; k++)
+ smu[(i + 1) * num + k] = 0;
+
+ /* Compute smu[i+1] */
+ for (k = 0; k <= lmu[ro] >> 1; k++) {
+ int16_t a, b, c;
+
+ if (!(smu[ro * num + k] && dmu[i]))
+ continue;
+ a = readw(index_of + dmu[i]);
+ b = readw(index_of + dmu[ro]);
+ c = readw(index_of + smu[ro * num + k]);
+ tmp = a + (cw_len - b) + c;
+ a = readw(alpha_to + tmp % cw_len);
+ smu[(i + 1) * num + (k + diff)] = a;
+ }
+
+ for (k = 0; k <= lmu[i] >> 1; k++)
+ smu[(i + 1) * num + k] ^= smu[i * num + k];
+ }
+
+ /* End Computing Sigma (Mu+1) and L(mu) */
+ /* In either case compute delta */
+ delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
+
+ /* Do not compute discrepancy for the last iteration */
+ if (i >= cap)
+ continue;
+
+ for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
+ tmp = 2 * (i - 1);
+ if (k == 0) {
+ dmu[i + 1] = si[tmp + 3];
+ } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
+ int16_t a, b, c;
+ a = readw(index_of +
+ smu[(i + 1) * num + k]);
+ b = si[2 * (i - 1) + 3 - k];
+ c = readw(index_of + b);
+ tmp = a + c;
+ tmp %= cw_len;
+ dmu[i + 1] = readw(alpha_to + tmp) ^
+ dmu[i + 1];
+ }
+ }
+ }
+}
+
+static int pmecc_err_location(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+ const int cap = host->pmecc_corr_cap;
+ const int num = 2 * cap + 1;
+ int sector_size = host->pmecc_sector_size;
+ int err_nbr = 0; /* number of error */
+ int roots_nbr; /* number of roots */
+ int i;
+ uint32_t val;
+ int16_t *smu = host->pmecc_smu;
+ int timeout = PMECC_MAX_TIMEOUT_US;
+
+ writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis);
+
+ for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
+ writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]);
+ err_nbr++;
+ }
+
+ val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
+ if (sector_size == 1024)
+ val |= PMERRLOC_ELCFG_SECTOR_1024;
+
+ writel(val, &host->pmerrloc->elcfg);
+ writel(sector_size * 8 + host->pmecc_degree * cap,
+ &host->pmerrloc->elen);
+
+ while (--timeout) {
+ if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE)
+ break;
+ WATCHDOG_RESET();
+ udelay(1);
+ }
+
+ if (!timeout) {
+ printk(KERN_ERR "atmel_nand : Timeout to calculate PMECC error location\n");
+ return -1;
+ }
+
+ roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK)
+ >> 8;
+ /* Number of roots == degree of smu hence <= cap */
+ if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
+ return err_nbr - 1;
+
+ /* Number of roots does not match the degree of smu
+ * unable to correct error */
+ return -1;
+}
+
+static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
+ int sector_num, int extra_bytes, int err_nbr)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+ int i = 0;
+ int byte_pos, bit_pos, sector_size, pos;
+ uint32_t tmp;
+ uint8_t err_byte;
+
+ sector_size = host->pmecc_sector_size;
+
+ while (err_nbr) {
+ tmp = readl(&host->pmerrloc->el[i]) - 1;
+ byte_pos = tmp / 8;
+ bit_pos = tmp % 8;
+
+ if (byte_pos >= (sector_size + extra_bytes))
+ BUG(); /* should never happen */
+
+ if (byte_pos < sector_size) {
+ err_byte = *(buf + byte_pos);
+ *(buf + byte_pos) ^= (1 << bit_pos);
+
+ pos = sector_num * host->pmecc_sector_size + byte_pos;
+ printk(KERN_INFO "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
+ pos, bit_pos, err_byte, *(buf + byte_pos));
+ } else {
+ /* Bit flip in OOB area */
+ tmp = sector_num * host->pmecc_bytes_per_sector
+ + (byte_pos - sector_size);
+ err_byte = ecc[tmp];
+ ecc[tmp] ^= (1 << bit_pos);
+
+ pos = tmp + nand_chip->ecc.layout->eccpos[0];
+ printk(KERN_INFO "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
+ pos, bit_pos, err_byte, ecc[tmp]);
+ }
+
+ i++;
+ err_nbr--;
+ }
+
+ return;
+}
+
+static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
+ u8 *ecc)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+ int i, err_nbr, eccbytes;
+ uint8_t *buf_pos;
+
+ eccbytes = nand_chip->ecc.bytes;
+ for (i = 0; i < eccbytes; i++)
+ if (ecc[i] != 0xff)
+ goto normal_check;
+ /* Erased page, return OK */
+ return 0;
+
+normal_check:
+ for (i = 0; i < host->pmecc_sector_number; i++) {
+ err_nbr = 0;
+ if (pmecc_stat & 0x1) {
+ buf_pos = buf + i * host->pmecc_sector_size;
+
+ pmecc_gen_syndrome(mtd, i);
+ pmecc_substitute(mtd);
+ pmecc_get_sigma(mtd);
+
+ err_nbr = pmecc_err_location(mtd);
+ if (err_nbr == -1) {
+ printk(KERN_ERR "PMECC: Too many errors\n");
+ mtd->ecc_stats.failed++;
+ return -EIO;
+ } else {
+ pmecc_correct_data(mtd, buf_pos, ecc, i,
+ host->pmecc_bytes_per_sector, err_nbr);
+ mtd->ecc_stats.corrected += err_nbr;
+ }
+ }
+ pmecc_stat >>= 1;
+ }
+
+ return 0;
+}
+
+static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
+ struct nand_chip *chip, uint8_t *buf, int page)
+{
+ struct atmel_nand_host *host = chip->priv;
+ int eccsize = chip->ecc.size;
+ uint8_t *oob = chip->oob_poi;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ uint32_t stat;
+ int timeout = PMECC_MAX_TIMEOUT_US;
+
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
+ pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
+ & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);
+
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
+
+ chip->read_buf(mtd, buf, eccsize);
+ chip->read_buf(mtd, oob, mtd->oobsize);
+
+ while (--timeout) {
+ if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
+ break;
+ WATCHDOG_RESET();
+ udelay(1);
+ }
+
+ if (!timeout) {
+ printk(KERN_ERR "atmel_nand : Timeout to read PMECC page\n");
+ return -1;
+ }
+
+ stat = pmecc_readl(host->pmecc, isr);
+ if (stat != 0)
+ if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
+ return -EIO;
+
+ return 0;
+}
+
+static void atmel_nand_pmecc_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf)
+{
+ struct atmel_nand_host *host = chip->priv;
+ uint32_t *eccpos = chip->ecc.layout->eccpos;
+ int i, j;
+ int timeout = PMECC_MAX_TIMEOUT_US;
+
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
+
+ pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
+ PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);
+
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);
+
+ chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
+
+ while (--timeout) {
+ if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
+ break;
+ WATCHDOG_RESET();
+ udelay(1);
+ }
+
+ if (!timeout) {
+ printk(KERN_ERR "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
+ return;
+ }
+
+ for (i = 0; i < host->pmecc_sector_number; i++) {
+ for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
+ int pos;
+
+ pos = i * host->pmecc_bytes_per_sector + j;
+ chip->oob_poi[eccpos[pos]] =
+ readb(&host->pmecc->ecc_port[i].ecc[j]);
+ }
+ }
+ chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
+
+static void atmel_pmecc_core_init(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct atmel_nand_host *host = nand_chip->priv;
+ uint32_t val = 0;
+ struct nand_ecclayout *ecc_layout;
+
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
+
+ switch (host->pmecc_corr_cap) {
+ case 2:
+ val = PMECC_CFG_BCH_ERR2;
+ break;
+ case 4:
+ val = PMECC_CFG_BCH_ERR4;
+ break;
+ case 8:
+ val = PMECC_CFG_BCH_ERR8;
+ break;
+ case 12:
+ val = PMECC_CFG_BCH_ERR12;
+ break;
+ case 24:
+ val = PMECC_CFG_BCH_ERR24;
+ break;
+ }
+
+ if (host->pmecc_sector_size == 512)
+ val |= PMECC_CFG_SECTOR512;
+ else if (host->pmecc_sector_size == 1024)
+ val |= PMECC_CFG_SECTOR1024;
+
+ switch (host->pmecc_sector_number) {
+ case 1:
+ val |= PMECC_CFG_PAGE_1SECTOR;
+ break;
+ case 2:
+ val |= PMECC_CFG_PAGE_2SECTORS;
+ break;
+ case 4:
+ val |= PMECC_CFG_PAGE_4SECTORS;
+ break;
+ case 8:
+ val |= PMECC_CFG_PAGE_8SECTORS;
+ break;
+ }
+
+ val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
+ | PMECC_CFG_AUTO_DISABLE);
+ pmecc_writel(host->pmecc, cfg, val);
+
+ ecc_layout = nand_chip->ecc.layout;
+ pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
+ pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
+ pmecc_writel(host->pmecc, eaddr,
+ ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
+ /* See datasheet about PMECC Clock Control Register */
+ pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
+ pmecc_writel(host->pmecc, idr, 0xff);
+ pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
+}
+
+static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
+ struct mtd_info *mtd)
+{
+ struct atmel_nand_host *host;
+ int cap, sector_size;
+
+ host = nand->priv = &pmecc_host;
+
+ nand->ecc.mode = NAND_ECC_HW;
+ nand->ecc.calculate = NULL;
+ nand->ecc.correct = NULL;
+ nand->ecc.hwctl = NULL;
+
+ cap = host->pmecc_corr_cap = CONFIG_PMECC_CAP;
+ sector_size = host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
+ host->pmecc_index_table_offset = CONFIG_PMECC_INDEX_TABLE_OFFSET;
+
+ printk(KERN_INFO "Initialize PMECC params, cap: %d, sector: %d\n",
+ cap, sector_size);
+
+ host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
+ host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
+ ATMEL_BASE_PMERRLOC;
+ host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;
+
+ /* ECC is calculated for the whole page (1 step) */
+ nand->ecc.size = mtd->writesize;
+
+ /* set ECC page size and oob layout */
+ switch (mtd->writesize) {
+ case 2048:
+ case 4096:
+ host->pmecc_degree = PMECC_GF_DIMENSION_13;
+ host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
+ host->pmecc_sector_number = mtd->writesize / sector_size;
+ host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
+ cap, sector_size);
+ host->pmecc_alpha_to = pmecc_get_alpha_to(host);
+ host->pmecc_index_of = host->pmecc_rom_base +
+ host->pmecc_index_table_offset;
+
+ nand->ecc.steps = 1;
+ nand->ecc.bytes = host->pmecc_bytes_per_sector *
+ host->pmecc_sector_number;
+ if (nand->ecc.bytes > mtd->oobsize - 2) {
+ printk(KERN_ERR "No room for ECC bytes\n");
+ return -EINVAL;
+ }
+ pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
+ mtd->oobsize,
+ nand->ecc.bytes);
+ nand->ecc.layout = &atmel_pmecc_oobinfo;
+ break;
+ case 512:
+ case 1024:
+ /* TODO */
+ printk(KERN_ERR "Unsupported page size for PMECC, use Software ECC\n");
+ default:
+ /* page size not handled by HW ECC */
+ /* switching back to soft ECC */
+ nand->ecc.mode = NAND_ECC_SOFT;
+ nand->ecc.read_page = NULL;
+ nand->ecc.postpad = 0;
+ nand->ecc.prepad = 0;
+ nand->ecc.bytes = 0;
+ return 0;
+ }
+
+ nand->ecc.read_page = atmel_nand_pmecc_read_page;
+ nand->ecc.write_page = atmel_nand_pmecc_write_page;
+
+ atmel_pmecc_core_init(mtd);
+
+ return 0;
+}
+
+#else
+
/* oob layout for large page size
* bad block info is on bytes 0 and 1
* the bytes have to be consecutives to avoid
return 0;
}
-#endif
+#endif /* CONFIG_ATMEL_NAND_HW_PMECC */
+
+#endif /* CONFIG_ATMEL_NAND_HWECC */
static void at91_nand_hwcontrol(struct mtd_info *mtd,
int cmd, unsigned int ctrl)
return ret;
#ifdef CONFIG_ATMEL_NAND_HWECC
+#ifdef CONFIG_ATMEL_NAND_HW_PMECC
+ ret = atmel_pmecc_nand_init_params(nand, mtd);
+#else
ret = atmel_hwecc_nand_init_param(nand, mtd);
+#endif
if (ret)
return ret;
#endif
#define ATMEL_ECC_NPR 0x10 /* NParity register */
#define ATMEL_ECC_NPARITY (0xffff << 0) /* NParity */
+/* Register access macros for PMECC */
+#define pmecc_readl(addr, reg) \
+ readl(&addr->reg)
+
+#define pmecc_writel(addr, reg, value) \
+ writel((value), &addr->reg)
+
+/* PMECC Register Definitions */
+#define PMECC_MAX_SECTOR_NUM 8
+struct pmecc_regs {
+ u32 cfg; /* 0x00 PMECC Configuration Register */
+ u32 sarea; /* 0x04 PMECC Spare Area Size Register */
+ u32 saddr; /* 0x08 PMECC Start Address Register */
+ u32 eaddr; /* 0x0C PMECC End Address Register */
+ u32 clk; /* 0x10 PMECC Clock Control Register */
+ u32 ctrl; /* 0x14 PMECC Control Register */
+ u32 sr; /* 0x18 PMECC Status Register */
+ u32 ier; /* 0x1C PMECC Interrupt Enable Register */
+ u32 idr; /* 0x20 PMECC Interrupt Disable Register */
+ u32 imr; /* 0x24 PMECC Interrupt Mask Register */
+ u32 isr; /* 0x28 PMECC Interrupt Status Register */
+ u32 reserved0[5]; /* 0x2C-0x3C Reserved */
+
+ /* 0x40 + sector_num * (0x40), Redundancy Registers */
+ struct {
+ u8 ecc[44]; /* PMECC Generated Redundancy Byte Per Sector */
+ u32 reserved1[5];
+ } ecc_port[PMECC_MAX_SECTOR_NUM];
+
+ /* 0x240 + sector_num * (0x40) Remainder Registers */
+ struct {
+ u32 rem[12];
+ u32 reserved2[4];
+ } rem_port[PMECC_MAX_SECTOR_NUM];
+ u32 reserved3[16]; /* 0x440-0x47C Reserved */
+};
+
+/* For PMECC Configuration Register */
+#define PMECC_CFG_BCH_ERR2 (0 << 0)
+#define PMECC_CFG_BCH_ERR4 (1 << 0)
+#define PMECC_CFG_BCH_ERR8 (2 << 0)
+#define PMECC_CFG_BCH_ERR12 (3 << 0)
+#define PMECC_CFG_BCH_ERR24 (4 << 0)
+
+#define PMECC_CFG_SECTOR512 (0 << 4)
+#define PMECC_CFG_SECTOR1024 (1 << 4)
+
+#define PMECC_CFG_PAGE_1SECTOR (0 << 8)
+#define PMECC_CFG_PAGE_2SECTORS (1 << 8)
+#define PMECC_CFG_PAGE_4SECTORS (2 << 8)
+#define PMECC_CFG_PAGE_8SECTORS (3 << 8)
+
+#define PMECC_CFG_READ_OP (0 << 12)
+#define PMECC_CFG_WRITE_OP (1 << 12)
+
+#define PMECC_CFG_SPARE_ENABLE (1 << 16)
+#define PMECC_CFG_SPARE_DISABLE (0 << 16)
+
+#define PMECC_CFG_AUTO_ENABLE (1 << 20)
+#define PMECC_CFG_AUTO_DISABLE (0 << 20)
+
+/* For PMECC Clock Control Register */
+#define PMECC_CLK_133MHZ (2 << 0)
+
+/* For PMECC Control Register */
+#define PMECC_CTRL_RST (1 << 0)
+#define PMECC_CTRL_DATA (1 << 1)
+#define PMECC_CTRL_USER (1 << 2)
+#define PMECC_CTRL_ENABLE (1 << 4)
+#define PMECC_CTRL_DISABLE (1 << 5)
+
+/* For PMECC Status Register */
+#define PMECC_SR_BUSY (1 << 0)
+#define PMECC_SR_ENABLE (1 << 4)
+
+/* PMERRLOC Register Definitions */
+struct pmecc_errloc_regs {
+ u32 elcfg; /* 0x00 Error Location Configuration Register */
+ u32 elprim; /* 0x04 Error Location Primitive Register */
+ u32 elen; /* 0x08 Error Location Enable Register */
+ u32 eldis; /* 0x0C Error Location Disable Register */
+ u32 elsr; /* 0x10 Error Location Status Register */
+ u32 elier; /* 0x14 Error Location Interrupt Enable Register */
+ u32 elidr; /* 0x08 Error Location Interrupt Disable Register */
+ u32 elimr; /* 0x0C Error Location Interrupt Mask Register */
+ u32 elisr; /* 0x20 Error Location Interrupt Status Register */
+ u32 reserved0; /* 0x24 Reserved */
+ u32 sigma[25]; /* 0x28-0x88 Error Location Sigma Registers */
+ u32 el[24]; /* 0x8C-0xE8 Error Location Registers */
+ u32 reserved1[5]; /* 0xEC-0xFC Reserved */
+};
+
+/* For Error Location Configuration Register */
+#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0)
+#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0)
+#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16)
+
+/* For Error Location Disable Register */
+#define PMERRLOC_DISABLE (1 << 0)
+
+/* For Error Location Interrupt Status Register */
+#define PMERRLOC_ERR_NUM_MASK (0x1f << 8)
+#define PMERRLOC_CALC_DONE (1 << 0)
+
+/* Galois field dimension */
+#define PMECC_GF_DIMENSION_13 13
+#define PMECC_GF_DIMENSION_14 14
+
+#define PMECC_INDEX_TABLE_SIZE_512 0x2000
+#define PMECC_INDEX_TABLE_SIZE_1024 0x4000
+
+#define PMECC_MAX_TIMEOUT_US (100 * 1000)
+
#endif