test: add test for lib/lmb.c
authorSimon Goldschmidt <simon.k.r.goldschmidt@gmail.com>
Mon, 14 Jan 2019 21:38:14 +0000 (22:38 +0100)
committerTom Rini <trini@konsulko.com>
Wed, 16 Jan 2019 21:14:46 +0000 (16:14 -0500)
Add basic tests for the lmb memory allocation code used to reserve and
allocate memory during boot.

Signed-off-by: Simon Goldschmidt <simon.k.r.goldschmidt@gmail.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
test/lib/Makefile
test/lib/lmb.c [new file with mode: 0644]

index ea68fae566f928898099c18fa44a7e0037cfef1b..5a636aac740200d64494ab9779e4d255c1b2df19 100644 (file)
@@ -3,3 +3,4 @@
 # (C) Copyright 2018
 # Mario Six, Guntermann & Drunck GmbH, mario.six@gdsys.cc
 obj-y += hexdump.o
+obj-y += lmb.o
diff --git a/test/lib/lmb.c b/test/lib/lmb.c
new file mode 100644 (file)
index 0000000..dd7ba14
--- /dev/null
@@ -0,0 +1,297 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * (C) Copyright 2018 Simon Goldschmidt
+ */
+
+#include <common.h>
+#include <lmb.h>
+#include <dm/test.h>
+#include <test/ut.h>
+
+static int check_lmb(struct unit_test_state *uts, struct lmb *lmb,
+                    phys_addr_t ram_base, phys_size_t ram_size,
+                    unsigned long num_reserved,
+                    phys_addr_t base1, phys_size_t size1,
+                    phys_addr_t base2, phys_size_t size2,
+                    phys_addr_t base3, phys_size_t size3)
+{
+       ut_asserteq(lmb->memory.cnt, 1);
+       ut_asserteq(lmb->memory.region[0].base, ram_base);
+       ut_asserteq(lmb->memory.region[0].size, ram_size);
+
+       ut_asserteq(lmb->reserved.cnt, num_reserved);
+       if (num_reserved > 0) {
+               ut_asserteq(lmb->reserved.region[0].base, base1);
+               ut_asserteq(lmb->reserved.region[0].size, size1);
+       }
+       if (num_reserved > 1) {
+               ut_asserteq(lmb->reserved.region[1].base, base2);
+               ut_asserteq(lmb->reserved.region[1].size, size2);
+       }
+       if (num_reserved > 2) {
+               ut_asserteq(lmb->reserved.region[2].base, base3);
+               ut_asserteq(lmb->reserved.region[2].size, size3);
+       }
+       return 0;
+}
+
+#define ASSERT_LMB(lmb, ram_base, ram_size, num_reserved, base1, size1, \
+                  base2, size2, base3, size3) \
+                  ut_assert(!check_lmb(uts, lmb, ram_base, ram_size, \
+                            num_reserved, base1, size1, base2, size2, base3, \
+                            size3))
+
+/*
+ * Test helper function that reserves 64 KiB somewhere in the simulated RAM and
+ * then does some alloc + free tests.
+ */
+static int test_multi_alloc(struct unit_test_state *uts,
+                           const phys_addr_t ram, const phys_size_t ram_size,
+                           const phys_addr_t alloc_64k_addr)
+{
+       const phys_addr_t ram_end = ram + ram_size;
+       const phys_addr_t alloc_64k_end = alloc_64k_addr + 0x10000;
+
+       struct lmb lmb;
+       long ret;
+       phys_addr_t a, a2, b, b2, c, d;
+
+       /* check for overflow */
+       ut_assert(ram_end == 0 || ram_end > ram);
+       ut_assert(alloc_64k_end > alloc_64k_addr);
+       /* check input addresses + size */
+       ut_assert(alloc_64k_addr >= ram + 8);
+       ut_assert(alloc_64k_end <= ram_end - 8);
+
+       lmb_init(&lmb);
+
+       ret = lmb_add(&lmb, ram, ram_size);
+       ut_asserteq(ret, 0);
+
+       /* reserve 64KiB somewhere */
+       ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
+       ut_asserteq(ret, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+                  0, 0, 0, 0);
+
+       /* allocate somewhere, should be at the end of RAM */
+       a = lmb_alloc(&lmb, 4, 1);
+       ut_asserteq(a, ram_end - 4);
+       ASSERT_LMB(&lmb, ram, ram_size, 2, alloc_64k_addr, 0x10000,
+                  ram_end - 4, 4, 0, 0);
+       /* alloc below end of reserved region -> below reserved region */
+       b = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
+       ut_asserteq(b, alloc_64k_addr - 4);
+       ASSERT_LMB(&lmb, ram, ram_size, 2,
+                  alloc_64k_addr - 4, 0x10000 + 4, ram_end - 4, 4, 0, 0);
+
+       /* 2nd time */
+       c = lmb_alloc(&lmb, 4, 1);
+       ut_asserteq(c, ram_end - 8);
+       ASSERT_LMB(&lmb, ram, ram_size, 2,
+                  alloc_64k_addr - 4, 0x10000 + 4, ram_end - 8, 8, 0, 0);
+       d = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
+       ut_asserteq(d, alloc_64k_addr - 8);
+       ASSERT_LMB(&lmb, ram, ram_size, 2,
+                  alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
+
+       ret = lmb_free(&lmb, a, 4);
+       ut_asserteq(ret, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 2,
+                  alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
+       /* allocate again to ensure we get the same address */
+       a2 = lmb_alloc(&lmb, 4, 1);
+       ut_asserteq(a, a2);
+       ASSERT_LMB(&lmb, ram, ram_size, 2,
+                  alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 8, 0, 0);
+       ret = lmb_free(&lmb, a2, 4);
+       ut_asserteq(ret, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 2,
+                  alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
+
+       ret = lmb_free(&lmb, b, 4);
+       ut_asserteq(ret, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 3,
+                  alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
+                  ram_end - 8, 4);
+       /* allocate again to ensure we get the same address */
+       b2 = lmb_alloc_base(&lmb, 4, 1, alloc_64k_end);
+       ut_asserteq(b, b2);
+       ASSERT_LMB(&lmb, ram, ram_size, 2,
+                  alloc_64k_addr - 8, 0x10000 + 8, ram_end - 8, 4, 0, 0);
+       ret = lmb_free(&lmb, b2, 4);
+       ut_asserteq(ret, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 3,
+                  alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000,
+                  ram_end - 8, 4);
+
+       ret = lmb_free(&lmb, c, 4);
+       ut_asserteq(ret, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 2,
+                  alloc_64k_addr - 8, 4, alloc_64k_addr, 0x10000, 0, 0);
+       ret = lmb_free(&lmb, d, 4);
+       ut_asserteq(ret, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+                  0, 0, 0, 0);
+
+       return 0;
+}
+
+static int test_multi_alloc_512mb(struct unit_test_state *uts,
+                                 const phys_addr_t ram)
+{
+       return test_multi_alloc(uts, ram, 0x20000000, ram + 0x10000000);
+}
+
+/* Create a memory region with one reserved region and allocate */
+static int lib_test_lmb_simple(struct unit_test_state *uts)
+{
+       /* simulate 512 MiB RAM beginning at 1GiB */
+       return test_multi_alloc_512mb(uts, 0x40000000);
+}
+
+DM_TEST(lib_test_lmb_simple, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/* Simulate 512 MiB RAM, allocate some blocks that fit/don't fit */
+static int test_bigblock(struct unit_test_state *uts, const phys_addr_t ram)
+{
+       const phys_size_t ram_size = 0x20000000;
+       const phys_size_t big_block_size = 0x10000000;
+       const phys_addr_t ram_end = ram + ram_size;
+       const phys_addr_t alloc_64k_addr = ram + 0x10000000;
+       struct lmb lmb;
+       long ret;
+       phys_addr_t a, b;
+
+       /* check for overflow */
+       ut_assert(ram_end == 0 || ram_end > ram);
+
+       lmb_init(&lmb);
+
+       ret = lmb_add(&lmb, ram, ram_size);
+       ut_asserteq(ret, 0);
+
+       /* reserve 64KiB in the middle of RAM */
+       ret = lmb_reserve(&lmb, alloc_64k_addr, 0x10000);
+       ut_asserteq(ret, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+                  0, 0, 0, 0);
+
+       /* allocate a big block, should be below reserved */
+       a = lmb_alloc(&lmb, big_block_size, 1);
+       ut_asserteq(a, ram);
+       ASSERT_LMB(&lmb, ram, ram_size, 1, a,
+                  big_block_size + 0x10000, 0, 0, 0, 0);
+       /* allocate 2nd big block */
+       /* This should fail, printing an error */
+       b = lmb_alloc(&lmb, big_block_size, 1);
+       ut_asserteq(b, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 1, a,
+                  big_block_size + 0x10000, 0, 0, 0, 0);
+
+       ret = lmb_free(&lmb, a, big_block_size);
+       ut_asserteq(ret, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+                  0, 0, 0, 0);
+
+       /* allocate too big block */
+       /* This should fail, printing an error */
+       a = lmb_alloc(&lmb, ram_size, 1);
+       ut_asserteq(a, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 1, alloc_64k_addr, 0x10000,
+                  0, 0, 0, 0);
+
+       return 0;
+}
+
+static int lib_test_lmb_big(struct unit_test_state *uts)
+{
+       return test_bigblock(uts, 0x40000000);
+}
+
+DM_TEST(lib_test_lmb_big, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/* Simulate 512 MiB RAM, allocate a block without previous reservation */
+static int test_noreserved(struct unit_test_state *uts, const phys_addr_t ram)
+{
+       const phys_size_t ram_size = 0x20000000;
+       const phys_addr_t ram_end = ram + ram_size;
+       struct lmb lmb;
+       long ret;
+       phys_addr_t a, b;
+
+       /* check for overflow */
+       ut_assert(ram_end == 0 || ram_end > ram);
+
+       lmb_init(&lmb);
+
+       ret = lmb_add(&lmb, ram, ram_size);
+       ut_asserteq(ret, 0);
+
+       /* allocate a block */
+       a = lmb_alloc(&lmb, 4, 1);
+       ut_assert(a != 0);
+       /* and free it */
+       ret = lmb_free(&lmb, a, 4);
+       ut_asserteq(ret, 0);
+
+       /* allocate a block with base*/
+       b = lmb_alloc_base(&lmb, 4, 1, ram_end);
+       ut_assert(a == b);
+       /* and free it */
+       ret = lmb_free(&lmb, b, 4);
+       ut_asserteq(ret, 0);
+
+       return 0;
+}
+
+static int lib_test_lmb_noreserved(struct unit_test_state *uts)
+{
+       return test_noreserved(uts, 0x40000000);
+}
+
+DM_TEST(lib_test_lmb_noreserved, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);
+
+/*
+ * Simulate a RAM that starts at 0 and allocate down to address 0, which must
+ * fail as '0' means failure for the lmb_alloc functions.
+ */
+static int lib_test_lmb_at_0(struct unit_test_state *uts)
+{
+       const phys_addr_t ram = 0;
+       const phys_size_t ram_size = 0x20000000;
+       struct lmb lmb;
+       long ret;
+       phys_addr_t a, b;
+
+       lmb_init(&lmb);
+
+       ret = lmb_add(&lmb, ram, ram_size);
+       ut_asserteq(ret, 0);
+
+       /* allocate nearly everything */
+       a = lmb_alloc(&lmb, ram_size - 4, 1);
+       ut_asserteq(a, ram + 4);
+       ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
+                  0, 0, 0, 0);
+       /* allocate the rest */
+       /* This should fail as the allocated address would be 0 */
+       b = lmb_alloc(&lmb, 4, 1);
+       ut_asserteq(b, 0);
+       /* check that this was an error by checking lmb */
+       ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
+                  0, 0, 0, 0);
+       /* check that this was an error by freeing b */
+       ret = lmb_free(&lmb, b, 4);
+       ut_asserteq(ret, -1);
+       ASSERT_LMB(&lmb, ram, ram_size, 1, a, ram_size - 4,
+                  0, 0, 0, 0);
+
+       ret = lmb_free(&lmb, a, ram_size - 4);
+       ut_asserteq(ret, 0);
+       ASSERT_LMB(&lmb, ram, ram_size, 0, 0, 0, 0, 0, 0, 0);
+
+       return 0;
+}
+
+DM_TEST(lib_test_lmb_at_0, DM_TESTF_SCAN_PDATA | DM_TESTF_SCAN_FDT);