u8 reg, u8 data)
{
u8 m[2] = {reg, data};
- struct i2c_msg msg = {.addr=adr, .flags=0, .buf=m, .len=2};
+ struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = m, .len = 2};
if (i2c_transfer(adapter, &msg, 1) != 1) {
printk(KERN_ERR "Failed to write to I2C register %02x@%02x!\n",
static int i2c_write(struct i2c_adapter *adapter, u8 adr,
u8 *data, u8 len)
{
- struct i2c_msg msg = {.addr=adr, .flags=0, .buf=data, .len=len};
+ struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len};
if (i2c_transfer(adapter, &msg, 1) != 1) {
printk(KERN_ERR "Failed to write to I2C!\n");
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = ®, .len = 1},
{.addr = adr, .flags = I2C_M_RD,
- .buf = val, .len = 1}};
+ .buf = val, .len = 1} };
if (i2c_transfer(adapter, msgs, 2) != 2) {
printk(KERN_ERR "error in i2c_read_reg\n");
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = ®, .len = 1},
{.addr = adr, .flags = I2C_M_RD,
- .buf = data, .len = n}};
+ .buf = data, .len = n} };
if (i2c_transfer(adapter, msgs, 2) != 2) {
printk(KERN_ERR "error in i2c_read\n");
int status;
u8 addr[3] = {2, address & 0xff, address >> 8};
- status=i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
+ status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status)
status = i2c_read(ci->i2c, ci->cfg.adr, 3, data, n);
return status;
int status;
u8 addr[3] = {2, address & 0xff, address >> 8};
- status=i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
+ status = i2c_write(ci->i2c, ci->cfg.adr, addr, 3);
if (!status) {
u8 buf[256] = {3};
memcpy(buf+1, data, n);
{
int status;
- status=i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
- if (!status && reg >= 6 && reg <=8 && mask != 0xff)
+ status = i2c_write_reg(ci->i2c, ci->cfg.adr, 0, reg);
+ if (!status && reg >= 6 && reg <= 8 && mask != 0xff)
status = i2c_read_reg(ci->i2c, ci->cfg.adr, 1, &ci->regs[reg]);
ci->regs[reg] = (ci->regs[reg] & (~mask)) | val;
if (!status) {
-#define CHK_ERROR(s) if( (status = s) ) break
+#define CHK_ERROR(s) if ((status = s)) break
static int init(struct cxd *ci)
{
int status;
mutex_lock(&ci->lock);
- ci->mode=-1;
+ ci->mode = -1;
do {
CHK_ERROR(write_reg(ci, 0x00, 0x00));
CHK_ERROR(write_reg(ci, 0x01, 0x00));
CHK_ERROR(write_regm(ci, 0x14, 0x00, 0x0F));
CHK_ERROR(write_reg(ci, 0x15, ci->clk_reg_b));
CHK_ERROR(write_regm(ci, 0x16, 0x00, 0x0F));
- CHK_ERROR(write_reg(ci, 0x17,ci->clk_reg_f));
+ CHK_ERROR(write_reg(ci, 0x17, ci->clk_reg_f));
if (ci->cfg.clock_mode) {
if (ci->cfg.polarity) {
/* Put TS in bypass */
CHK_ERROR(write_regm(ci, 0x09, 0x08, 0x08));
- ci->cammode=-1;
+ ci->cammode = -1;
cam_mode(ci, 0);
- } while(0);
+ } while (0);
mutex_unlock(&ci->lock);
return 0;
struct cxd *ci = ca->data;
#if 0
if (ci->amem_read) {
- if (address <=0 || address>1024)
+ if (address <= 0 || address > 1024)
return -EIO;
return ci->amem[address];
}
set_mode(ci, 1);
read_pccard(ci, address, &val, 1);
mutex_unlock(&ci->lock);
- //printk("%02x:%02x\n", address,val);
+ /* printk(KERN_INFO "%02x:%02x\n", address,val); */
return val;
#endif
}
write_reg(ci, 0x00, 0x31);
write_regm(ci, 0x20, 0x80, 0x80);
write_reg(ci, 0x03, 0x02);
- ci->ready=0;
+ ci->ready = 0;
#endif
#endif
- ci->mode=-1;
+ ci->mode = -1;
{
int i;
#if 0
u8 val;
#endif
- for (i=0; i<100;i++) {
+ for (i = 0; i < 100; i++) {
msleep(10);
#if 0
- read_reg(ci, 0x06,&val);
+ read_reg(ci, 0x06, &val);
printk(KERN_INFO "%d:%02x\n", i, val);
if (!(val&0x10))
break;
write_reg(ci, 0x05, istat);
if (istat&0x40) {
- ci->dr=1;
+ ci->dr = 1;
printk(KERN_INFO "DR\n");
}
if (istat&0x20)
read_reg(ci, 0x01, &slotstat);
if (!(2&slotstat)) {
if (!ci->slot_stat) {
- ci->slot_stat|=DVB_CA_EN50221_POLL_CAM_PRESENT;
+ ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_PRESENT;
write_regm(ci, 0x03, 0x08, 0x08);
}
} else {
if (ci->slot_stat) {
- ci->slot_stat=0;
+ ci->slot_stat = 0;
write_regm(ci, 0x03, 0x00, 0x08);
printk(KERN_INFO "NO CAM\n");
- ci->ready=0;
+ ci->ready = 0;
}
}
- if (istat&8 && ci->slot_stat==DVB_CA_EN50221_POLL_CAM_PRESENT) {
- ci->ready=1;
- ci->slot_stat|=DVB_CA_EN50221_POLL_CAM_READY;
+ if (istat&8 && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) {
+ ci->ready = 1;
+ ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY;
}
}
return 0;
}
#ifdef BUFFER_MODE
-static int read_data(struct dvb_ca_en50221* ca, int slot, u8 *ebuf, int ecount)
+static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
{
struct cxd *ci = ca->data;
u8 msb, lsb;
mutex_lock(&ci->lock);
read_reg(ci, 0x0f, &msb);
read_reg(ci, 0x10, &lsb);
- len=(msb<<8)|lsb;
+ len = (msb<<8)|lsb;
read_block(ci, 0x12, ebuf, len);
- ci->dr=0;
+ ci->dr = 0;
mutex_unlock(&ci->lock);
return len;
}
-static int write_data(struct dvb_ca_en50221* ca, int slot, u8 * ebuf, int ecount)
+static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount)
{
struct cxd *ci = ca->data;
mutex_lock(&ci->lock);
- printk("write_data %d\n", ecount);
+ printk(kern_INFO "write_data %d\n", ecount);
write_reg(ci, 0x0d, ecount>>8);
write_reg(ci, 0x0e, ecount&0xff);
write_block(ci, 0x11, ebuf, ecount);
struct cxd *ci = 0;
u8 val;
- if (i2c_read_reg(i2c, cfg->adr, 0, &val)<0) {
- printk("No CXD2099 detected at %02x\n", cfg->adr);
+ if (i2c_read_reg(i2c, cfg->adr, 0, &val) < 0) {
+ printk(KERN_INFO "No CXD2099 detected at %02x\n", cfg->adr);
return 0;
}
mutex_init(&ci->lock);
memcpy(&ci->cfg, cfg, sizeof(struct cxd2099_cfg));
ci->i2c = i2c;
- ci->lastaddress=0xff;
- ci->clk_reg_b=0x4a;
- ci->clk_reg_f=0x1b;
+ ci->lastaddress = 0xff;
+ ci->clk_reg_b = 0x4a;
+ ci->clk_reg_f = 0x1b;
memcpy(&ci->en, &en_templ, sizeof(en_templ));
- ci->en.data=ci;
+ ci->en.data = ci;
init(ci);
printk(KERN_INFO "Attached CXD2099AR at %02x\n", ci->cfg.adr);
return &ci->en;
}
-
EXPORT_SYMBOL(cxd2099_attach);
MODULE_DESCRIPTION("cxd2099");