(exopc << GRU_CB_EXOPC_SHFT);
}
-/*
- * Prefetch a cacheline. Fetch is unconditional. Must page fault if
- * no valid TLB entry is found.
- * ??? should I use actual "load" or hardware prefetch???
- */
-static inline void gru_prefetch(void *p)
-{
- *(volatile char *)p;
-}
-
/*
* Architecture specific intrinsics
*/
if ((vma->vm_flags & (VM_SHARED | VM_WRITE)) != (VM_SHARED | VM_WRITE))
return -EPERM;
+ if (vma->vm_start & (GRU_GSEG_PAGESIZE - 1) ||
+ vma->vm_end & (GRU_GSEG_PAGESIZE - 1))
+ return -EINVAL;
+
vma->vm_flags |=
(VM_IO | VM_DONTCOPY | VM_LOCKED | VM_DONTEXPAND | VM_PFNMAP |
VM_RESERVED);
module_init(gru_init);
module_exit(gru_exit);
-module_param(options, ulong, 0644);
-MODULE_PARM_DESC(options, "Various debug options");
+module_param(gru_options, ulong, 0644);
+MODULE_PARM_DESC(gru_options, "Various debug options");
MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_LICENSE("GPL");
cpus_possible = uv_blade_nr_possible_cpus(gru->gs_blade_id);
num = GRU_NUM_KERNEL_CBR * cpus_possible;
- cbr_map = reserve_gru_cb_resources(gru, GRU_CB_COUNT_TO_AU(num), NULL);
+ cbr_map = gru_reserve_cb_resources(gru, GRU_CB_COUNT_TO_AU(num), NULL);
gru->gs_reserved_cbrs += num;
num = GRU_NUM_KERNEL_DSR_BYTES * cpus_possible;
- dsr_map = reserve_gru_ds_resources(gru, GRU_DS_BYTES_TO_AU(num), NULL);
+ dsr_map = gru_reserve_ds_resources(gru, GRU_DS_BYTES_TO_AU(num), NULL);
gru->gs_reserved_dsr_bytes += num;
gru->gs_active_contexts++;
}
unlock_cch_handle(cch);
- if (options & GRU_QUICKLOOK)
+ if (gru_options & GRU_QUICKLOOK)
quicktest(gru);
return 0;
}
#include "grutables.h"
#include "gruhandles.h"
-unsigned long options __read_mostly;
+unsigned long gru_options __read_mostly;
static struct device_driver gru_driver = {
.name = "gru"
return bits;
}
-unsigned long reserve_gru_cb_resources(struct gru_state *gru, int cbr_au_count,
+unsigned long gru_reserve_cb_resources(struct gru_state *gru, int cbr_au_count,
char *cbmap)
{
return reserve_resources(&gru->gs_cbr_map, cbr_au_count, GRU_CBR_AU,
cbmap);
}
-unsigned long reserve_gru_ds_resources(struct gru_state *gru, int dsr_au_count,
+unsigned long gru_reserve_ds_resources(struct gru_state *gru, int dsr_au_count,
char *dsmap)
{
return reserve_resources(&gru->gs_dsr_map, dsr_au_count, GRU_DSR_AU,
{
gru->gs_active_contexts++;
gts->ts_cbr_map =
- reserve_gru_cb_resources(gru, gts->ts_cbr_au_count,
+ gru_reserve_cb_resources(gru, gts->ts_cbr_au_count,
gts->ts_cbr_idx);
gts->ts_dsr_map =
- reserve_gru_ds_resources(gru, gts->ts_dsr_au_count, NULL);
+ gru_reserve_ds_resources(gru, gts->ts_dsr_au_count, NULL);
}
static void free_gru_resources(struct gru_state *gru,
/*
* Prefetching cachelines help hardware performance.
+ * (Strictly a performance enhancement. Not functionally required).
*/
static void prefetch_data(void *p, int num, int stride)
{
* gru_nopage
*
* Map the user's GRU segment
+ *
+ * Note: gru segments alway mmaped on GRU_GSEG_PAGESIZE boundaries.
*/
int gru_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
vma, vaddr, GSEG_BASE(vaddr));
STAT(nopfn);
+ /* The following check ensures vaddr is a valid address in the VMA */
gts = gru_find_thread_state(vma, TSID(vaddr, vma));
if (!gts)
return VM_FAULT_SIGBUS;
}
if (!gts->ts_gru) {
- while (!gru_assign_gru_context(gts)) {
+ if (!gru_assign_gru_context(gts)) {
mutex_unlock(>s->ts_ctxlock);
preempt_enable();
schedule_timeout(GRU_ASSIGN_DELAY); /* true hack ZZZ */
static int options_show(struct seq_file *s, void *p)
{
- seq_printf(s, "0x%lx\n", options);
+ seq_printf(s, "0x%lx\n", gru_options);
return 0;
}
(buf, userbuf, count < sizeof(buf) ? count : sizeof(buf)))
return -EFAULT;
if (!strict_strtoul(buf, 10, &val))
- options = val;
+ gru_options = val;
return count;
}
#define __GRUTABLES_H__
/*
+ * GRU Chiplet:
+ * The GRU is a user addressible memory accelerator. It provides
+ * several forms of load, store, memset, bcopy instructions. In addition, it
+ * contains special instructions for AMOs, sending messages to message
+ * queues, etc.
+ *
+ * The GRU is an integral part of the node controller. It connects
+ * directly to the cpu socket. In its current implementation, there are 2
+ * GRU chiplets in the node controller on each blade (~node).
+ *
+ * The entire GRU memory space is fully coherent and cacheable by the cpus.
+ *
+ * Each GRU chiplet has a physical memory map that looks like the following:
+ *
+ * +-----------------+
+ * |/////////////////|
+ * |/////////////////|
+ * |/////////////////|
+ * |/////////////////|
+ * |/////////////////|
+ * |/////////////////|
+ * |/////////////////|
+ * |/////////////////|
+ * +-----------------+
+ * | system control |
+ * +-----------------+ _______ +-------------+
+ * |/////////////////| / | |
+ * |/////////////////| / | |
+ * |/////////////////| / | instructions|
+ * |/////////////////| / | |
+ * |/////////////////| / | |
+ * |/////////////////| / |-------------|
+ * |/////////////////| / | |
+ * +-----------------+ | |
+ * | context 15 | | data |
+ * +-----------------+ | |
+ * | ...... | \ | |
+ * +-----------------+ \____________ +-------------+
+ * | context 1 |
+ * +-----------------+
+ * | context 0 |
+ * +-----------------+
+ *
+ * Each of the "contexts" is a chunk of memory that can be mmaped into user
+ * space. The context consists of 2 parts:
+ *
+ * - an instruction space that can be directly accessed by the user
+ * to issue GRU instructions and to check instruction status.
+ *
+ * - a data area that acts as normal RAM.
+ *
+ * User instructions contain virtual addresses of data to be accessed by the
+ * GRU. The GRU contains a TLB that is used to convert these user virtual
+ * addresses to physical addresses.
+ *
+ * The "system control" area of the GRU chiplet is used by the kernel driver
+ * to manage user contexts and to perform functions such as TLB dropin and
+ * purging.
+ *
+ * One context may be reserved for the kernel and used for cross-partition
+ * communication. The GRU will also be used to asynchronously zero out
+ * large blocks of memory (not currently implemented).
+ *
+ *
* Tables:
*
* VDATA-VMA Data - Holds a few parameters. Head of linked list of
#define GRU_STEAL_DELAY ((HZ * 200) / 1000)
#define STAT(id) do { \
- if (options & OPT_STATS) \
+ if (gru_options & OPT_STATS) \
atomic_long_inc(&gru_stats.id); \
} while (0)
#ifdef CONFIG_SGI_GRU_DEBUG
#define gru_dbg(dev, fmt, x...) \
do { \
- if (options & OPT_DPRINT) \
+ if (gru_options & OPT_DPRINT) \
dev_dbg(dev, "%s: " fmt, __func__, x); \
} while (0)
#else
extern int gru_proc_init(void);
extern void gru_proc_exit(void);
-extern unsigned long reserve_gru_cb_resources(struct gru_state *gru,
+extern unsigned long gru_reserve_cb_resources(struct gru_state *gru,
int cbr_au_count, char *cbmap);
-extern unsigned long reserve_gru_ds_resources(struct gru_state *gru,
+extern unsigned long gru_reserve_ds_resources(struct gru_state *gru,
int dsr_au_count, char *dsmap);
extern int gru_fault(struct vm_area_struct *, struct vm_fault *vmf);
extern struct gru_mm_struct *gru_register_mmu_notifier(void);
extern void gru_flush_tlb_range(struct gru_mm_struct *gms, unsigned long start,
unsigned long len);
-extern unsigned long options;
+extern unsigned long gru_options;
#endif /* __GRUTABLES_H__ */
struct gru_mm_struct *gms = container_of(mn, struct gru_mm_struct,
ms_notifier);
- atomic_dec(&gms->ms_range_active);
+ /* ..._and_test() provides needed barrier */
+ (void)atomic_dec_and_test(&gms->ms_range_active);
+
wake_up_all(&gms->ms_wait_queue);
gru_dbg(grudev, "gms %p, start 0x%lx, end 0x%lx\n", gms, start, end);
}