+++ /dev/null
-From 36366e367ee93ced84fddb8fae6675e12985f5a4 Mon Sep 17 00:00:00 2001
-From: Paul Burton <paulburton@kernel.org>
-Date: Thu, 5 Dec 2019 10:23:18 -0800
-Subject: [PATCH] MIPS: BPF: Restore MIPS32 cBPF JIT
-
-Commit 716850ab104d ("MIPS: eBPF: Initial eBPF support for MIPS32
-architecture.") enabled our eBPF JIT for MIPS32 kernels, whereas it has
-previously only been availailable for MIPS64. It was my understanding at
-the time that the BPF test suite was passing & JITing a comparable
-number of tests to our cBPF JIT [1], but it turns out that was not the
-case.
-
-The eBPF JIT has a number of problems on MIPS32:
-
-- Most notably various code paths still result in emission of MIPS64
- instructions which will cause reserved instruction exceptions & kernel
- panics when run on MIPS32 CPUs.
-
-- The eBPF JIT doesn't account for differences between the O32 ABI used
- by MIPS32 kernels versus the N64 ABI used by MIPS64 kernels. Notably
- arguments beyond the first 4 are passed on the stack in O32, and this
- is entirely unhandled when JITing a BPF_CALL instruction. Stack space
- must be reserved for arguments even if they all fit in registers, and
- the callee is free to assume that stack space has been reserved for
- its use - with the eBPF JIT this is not the case, so calling any
- function can result in clobbering values on the stack & unpredictable
- behaviour. Function arguments in eBPF are always 64-bit values which
- is also entirely unhandled - the JIT still uses a single (32-bit)
- register per argument. As a result all function arguments are always
- passed incorrectly when JITing a BPF_CALL instruction, leading to
- kernel crashes or strange behavior.
-
-- The JIT attempts to bail our on use of ALU64 instructions or 64-bit
- memory access instructions. The code doing this at the start of
- build_one_insn() incorrectly checks whether BPF_OP() equals BPF_DW,
- when it should really be checking BPF_SIZE() & only doing so when
- BPF_CLASS() is one of BPF_{LD,LDX,ST,STX}. This results in false
- positives that cause more bailouts than intended, and that in turns
- hides some of the problems described above.
-
-- The kernel's cBPF->eBPF translation makes heavy use of 64-bit eBPF
- instructions that the MIPS32 eBPF JIT bails out on, leading to most
- cBPF programs not being JITed at all.
-
-Until these problems are resolved, revert the removal of the cBPF JIT
-performed by commit 716850ab104d ("MIPS: eBPF: Initial eBPF support for
-MIPS32 architecture."). Together with commit f8fffebdea75 ("MIPS: BPF:
-Disable MIPS32 eBPF JIT") this restores MIPS32 BPF JIT behavior back to
-the same state it was prior to the introduction of the broken eBPF JIT
-support.
-
-[1] https://lore.kernel.org/linux-mips/MWHPR2201MB13583388481F01A422CE7D66D4410@MWHPR2201MB1358.namprd22.prod.outlook.com/
-
-Signed-off-by: Paul Burton <paulburton@kernel.org>
-Fixes: 716850ab104d ("MIPS: eBPF: Initial eBPF support for MIPS32 architecture.")
-Cc: Daniel Borkmann <daniel@iogearbox.net>
-Cc: Hassan Naveed <hnaveed@wavecomp.com>
-Cc: Tony Ambardar <itugrok@yahoo.com>
-Cc: bpf@vger.kernel.org
-Cc: netdev@vger.kernel.org
-Cc: linux-mips@vger.kernel.org
-Cc: linux-kernel@vger.kernel.org
----
- arch/mips/Kconfig | 1 +
- arch/mips/net/Makefile | 1 +
- arch/mips/net/bpf_jit.c | 1270 +++++++++++++++++++++++++++++++++++
- arch/mips/net/bpf_jit_asm.S | 285 ++++++++
- 4 files changed, 1557 insertions(+)
- create mode 100644 arch/mips/net/bpf_jit.c
- create mode 100644 arch/mips/net/bpf_jit_asm.S
-
---- a/arch/mips/Kconfig
-+++ b/arch/mips/Kconfig
-@@ -46,6 +46,7 @@ config MIPS
- select HAVE_ARCH_TRACEHOOK
- select HAVE_ARCH_TRANSPARENT_HUGEPAGE if CPU_SUPPORTS_HUGEPAGES
- select HAVE_ASM_MODVERSIONS
-+ select HAVE_CBPF_JIT if !64BIT && !CPU_MICROMIPS
- select HAVE_EBPF_JIT if 64BIT && !CPU_MICROMIPS && TARGET_ISA_REV >= 2
- select HAVE_CONTEXT_TRACKING
- select HAVE_COPY_THREAD_TLS
---- a/arch/mips/net/Makefile
-+++ b/arch/mips/net/Makefile
-@@ -1,4 +1,5 @@
- # SPDX-License-Identifier: GPL-2.0-only
- # MIPS networking code
-
-+obj-$(CONFIG_MIPS_CBPF_JIT) += bpf_jit.o bpf_jit_asm.o
- obj-$(CONFIG_MIPS_EBPF_JIT) += ebpf_jit.o
---- /dev/null
-+++ b/arch/mips/net/bpf_jit.c
-@@ -0,0 +1,1270 @@
-+/*
-+ * Just-In-Time compiler for BPF filters on MIPS
-+ *
-+ * Copyright (c) 2014 Imagination Technologies Ltd.
-+ * Author: Markos Chandras <markos.chandras@imgtec.com>
-+ *
-+ * This program is free software; you can redistribute it and/or modify it
-+ * under the terms of the GNU General Public License as published by the
-+ * Free Software Foundation; version 2 of the License.
-+ */
-+
-+#include <linux/bitops.h>
-+#include <linux/compiler.h>
-+#include <linux/errno.h>
-+#include <linux/filter.h>
-+#include <linux/if_vlan.h>
-+#include <linux/moduleloader.h>
-+#include <linux/netdevice.h>
-+#include <linux/string.h>
-+#include <linux/slab.h>
-+#include <linux/types.h>
-+#include <asm/asm.h>
-+#include <asm/bitops.h>
-+#include <asm/cacheflush.h>
-+#include <asm/cpu-features.h>
-+#include <asm/uasm.h>
-+
-+#include "bpf_jit.h"
-+
-+/* ABI
-+ * r_skb_hl SKB header length
-+ * r_data SKB data pointer
-+ * r_off Offset
-+ * r_A BPF register A
-+ * r_X BPF register X
-+ * r_skb *skb
-+ * r_M *scratch memory
-+ * r_skb_len SKB length
-+ *
-+ * On entry (*bpf_func)(*skb, *filter)
-+ * a0 = MIPS_R_A0 = skb;
-+ * a1 = MIPS_R_A1 = filter;
-+ *
-+ * Stack
-+ * ...
-+ * M[15]
-+ * M[14]
-+ * M[13]
-+ * ...
-+ * M[0] <-- r_M
-+ * saved reg k-1
-+ * saved reg k-2
-+ * ...
-+ * saved reg 0 <-- r_sp
-+ * <no argument area>
-+ *
-+ * Packet layout
-+ *
-+ * <--------------------- len ------------------------>
-+ * <--skb-len(r_skb_hl)-->< ----- skb->data_len ------>
-+ * ----------------------------------------------------
-+ * | skb->data |
-+ * ----------------------------------------------------
-+ */
-+
-+#define ptr typeof(unsigned long)
-+
-+#define SCRATCH_OFF(k) (4 * (k))
-+
-+/* JIT flags */
-+#define SEEN_CALL (1 << BPF_MEMWORDS)
-+#define SEEN_SREG_SFT (BPF_MEMWORDS + 1)
-+#define SEEN_SREG_BASE (1 << SEEN_SREG_SFT)
-+#define SEEN_SREG(x) (SEEN_SREG_BASE << (x))
-+#define SEEN_OFF SEEN_SREG(2)
-+#define SEEN_A SEEN_SREG(3)
-+#define SEEN_X SEEN_SREG(4)
-+#define SEEN_SKB SEEN_SREG(5)
-+#define SEEN_MEM SEEN_SREG(6)
-+/* SEEN_SK_DATA also implies skb_hl an skb_len */
-+#define SEEN_SKB_DATA (SEEN_SREG(7) | SEEN_SREG(1) | SEEN_SREG(0))
-+
-+/* Arguments used by JIT */
-+#define ARGS_USED_BY_JIT 2 /* only applicable to 64-bit */
-+
-+#define SBIT(x) (1 << (x)) /* Signed version of BIT() */
-+
-+/**
-+ * struct jit_ctx - JIT context
-+ * @skf: The sk_filter
-+ * @prologue_bytes: Number of bytes for prologue
-+ * @idx: Instruction index
-+ * @flags: JIT flags
-+ * @offsets: Instruction offsets
-+ * @target: Memory location for the compiled filter
-+ */
-+struct jit_ctx {
-+ const struct bpf_prog *skf;
-+ unsigned int prologue_bytes;
-+ u32 idx;
-+ u32 flags;
-+ u32 *offsets;
-+ u32 *target;
-+};
-+
-+
-+static inline int optimize_div(u32 *k)
-+{
-+ /* power of 2 divides can be implemented with right shift */
-+ if (!(*k & (*k-1))) {
-+ *k = ilog2(*k);
-+ return 1;
-+ }
-+
-+ return 0;
-+}
-+
-+static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx);
-+
-+/* Simply emit the instruction if the JIT memory space has been allocated */
-+#define emit_instr(ctx, func, ...) \
-+do { \
-+ if ((ctx)->target != NULL) { \
-+ u32 *p = &(ctx)->target[ctx->idx]; \
-+ uasm_i_##func(&p, ##__VA_ARGS__); \
-+ } \
-+ (ctx)->idx++; \
-+} while (0)
-+
-+/*
-+ * Similar to emit_instr but it must be used when we need to emit
-+ * 32-bit or 64-bit instructions
-+ */
-+#define emit_long_instr(ctx, func, ...) \
-+do { \
-+ if ((ctx)->target != NULL) { \
-+ u32 *p = &(ctx)->target[ctx->idx]; \
-+ UASM_i_##func(&p, ##__VA_ARGS__); \
-+ } \
-+ (ctx)->idx++; \
-+} while (0)
-+
-+/* Determine if immediate is within the 16-bit signed range */
-+static inline bool is_range16(s32 imm)
-+{
-+ return !(imm >= SBIT(15) || imm < -SBIT(15));
-+}
-+
-+static inline void emit_addu(unsigned int dst, unsigned int src1,
-+ unsigned int src2, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, addu, dst, src1, src2);
-+}
-+
-+static inline void emit_nop(struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, nop);
-+}
-+
-+/* Load a u32 immediate to a register */
-+static inline void emit_load_imm(unsigned int dst, u32 imm, struct jit_ctx *ctx)
-+{
-+ if (ctx->target != NULL) {
-+ /* addiu can only handle s16 */
-+ if (!is_range16(imm)) {
-+ u32 *p = &ctx->target[ctx->idx];
-+ uasm_i_lui(&p, r_tmp_imm, (s32)imm >> 16);
-+ p = &ctx->target[ctx->idx + 1];
-+ uasm_i_ori(&p, dst, r_tmp_imm, imm & 0xffff);
-+ } else {
-+ u32 *p = &ctx->target[ctx->idx];
-+ uasm_i_addiu(&p, dst, r_zero, imm);
-+ }
-+ }
-+ ctx->idx++;
-+
-+ if (!is_range16(imm))
-+ ctx->idx++;
-+}
-+
-+static inline void emit_or(unsigned int dst, unsigned int src1,
-+ unsigned int src2, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, or, dst, src1, src2);
-+}
-+
-+static inline void emit_ori(unsigned int dst, unsigned src, u32 imm,
-+ struct jit_ctx *ctx)
-+{
-+ if (imm >= BIT(16)) {
-+ emit_load_imm(r_tmp, imm, ctx);
-+ emit_or(dst, src, r_tmp, ctx);
-+ } else {
-+ emit_instr(ctx, ori, dst, src, imm);
-+ }
-+}
-+
-+static inline void emit_daddiu(unsigned int dst, unsigned int src,
-+ int imm, struct jit_ctx *ctx)
-+{
-+ /*
-+ * Only used for stack, so the imm is relatively small
-+ * and it fits in 15-bits
-+ */
-+ emit_instr(ctx, daddiu, dst, src, imm);
-+}
-+
-+static inline void emit_addiu(unsigned int dst, unsigned int src,
-+ u32 imm, struct jit_ctx *ctx)
-+{
-+ if (!is_range16(imm)) {
-+ emit_load_imm(r_tmp, imm, ctx);
-+ emit_addu(dst, r_tmp, src, ctx);
-+ } else {
-+ emit_instr(ctx, addiu, dst, src, imm);
-+ }
-+}
-+
-+static inline void emit_and(unsigned int dst, unsigned int src1,
-+ unsigned int src2, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, and, dst, src1, src2);
-+}
-+
-+static inline void emit_andi(unsigned int dst, unsigned int src,
-+ u32 imm, struct jit_ctx *ctx)
-+{
-+ /* If imm does not fit in u16 then load it to register */
-+ if (imm >= BIT(16)) {
-+ emit_load_imm(r_tmp, imm, ctx);
-+ emit_and(dst, src, r_tmp, ctx);
-+ } else {
-+ emit_instr(ctx, andi, dst, src, imm);
-+ }
-+}
-+
-+static inline void emit_xor(unsigned int dst, unsigned int src1,
-+ unsigned int src2, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, xor, dst, src1, src2);
-+}
-+
-+static inline void emit_xori(ptr dst, ptr src, u32 imm, struct jit_ctx *ctx)
-+{
-+ /* If imm does not fit in u16 then load it to register */
-+ if (imm >= BIT(16)) {
-+ emit_load_imm(r_tmp, imm, ctx);
-+ emit_xor(dst, src, r_tmp, ctx);
-+ } else {
-+ emit_instr(ctx, xori, dst, src, imm);
-+ }
-+}
-+
-+static inline void emit_stack_offset(int offset, struct jit_ctx *ctx)
-+{
-+ emit_long_instr(ctx, ADDIU, r_sp, r_sp, offset);
-+}
-+
-+static inline void emit_subu(unsigned int dst, unsigned int src1,
-+ unsigned int src2, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, subu, dst, src1, src2);
-+}
-+
-+static inline void emit_neg(unsigned int reg, struct jit_ctx *ctx)
-+{
-+ emit_subu(reg, r_zero, reg, ctx);
-+}
-+
-+static inline void emit_sllv(unsigned int dst, unsigned int src,
-+ unsigned int sa, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, sllv, dst, src, sa);
-+}
-+
-+static inline void emit_sll(unsigned int dst, unsigned int src,
-+ unsigned int sa, struct jit_ctx *ctx)
-+{
-+ /* sa is 5-bits long */
-+ if (sa >= BIT(5))
-+ /* Shifting >= 32 results in zero */
-+ emit_jit_reg_move(dst, r_zero, ctx);
-+ else
-+ emit_instr(ctx, sll, dst, src, sa);
-+}
-+
-+static inline void emit_srlv(unsigned int dst, unsigned int src,
-+ unsigned int sa, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, srlv, dst, src, sa);
-+}
-+
-+static inline void emit_srl(unsigned int dst, unsigned int src,
-+ unsigned int sa, struct jit_ctx *ctx)
-+{
-+ /* sa is 5-bits long */
-+ if (sa >= BIT(5))
-+ /* Shifting >= 32 results in zero */
-+ emit_jit_reg_move(dst, r_zero, ctx);
-+ else
-+ emit_instr(ctx, srl, dst, src, sa);
-+}
-+
-+static inline void emit_slt(unsigned int dst, unsigned int src1,
-+ unsigned int src2, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, slt, dst, src1, src2);
-+}
-+
-+static inline void emit_sltu(unsigned int dst, unsigned int src1,
-+ unsigned int src2, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, sltu, dst, src1, src2);
-+}
-+
-+static inline void emit_sltiu(unsigned dst, unsigned int src,
-+ unsigned int imm, struct jit_ctx *ctx)
-+{
-+ /* 16 bit immediate */
-+ if (!is_range16((s32)imm)) {
-+ emit_load_imm(r_tmp, imm, ctx);
-+ emit_sltu(dst, src, r_tmp, ctx);
-+ } else {
-+ emit_instr(ctx, sltiu, dst, src, imm);
-+ }
-+
-+}
-+
-+/* Store register on the stack */
-+static inline void emit_store_stack_reg(ptr reg, ptr base,
-+ unsigned int offset,
-+ struct jit_ctx *ctx)
-+{
-+ emit_long_instr(ctx, SW, reg, offset, base);
-+}
-+
-+static inline void emit_store(ptr reg, ptr base, unsigned int offset,
-+ struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, sw, reg, offset, base);
-+}
-+
-+static inline void emit_load_stack_reg(ptr reg, ptr base,
-+ unsigned int offset,
-+ struct jit_ctx *ctx)
-+{
-+ emit_long_instr(ctx, LW, reg, offset, base);
-+}
-+
-+static inline void emit_load(unsigned int reg, unsigned int base,
-+ unsigned int offset, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, lw, reg, offset, base);
-+}
-+
-+static inline void emit_load_byte(unsigned int reg, unsigned int base,
-+ unsigned int offset, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, lb, reg, offset, base);
-+}
-+
-+static inline void emit_half_load(unsigned int reg, unsigned int base,
-+ unsigned int offset, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, lh, reg, offset, base);
-+}
-+
-+static inline void emit_half_load_unsigned(unsigned int reg, unsigned int base,
-+ unsigned int offset, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, lhu, reg, offset, base);
-+}
-+
-+static inline void emit_mul(unsigned int dst, unsigned int src1,
-+ unsigned int src2, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, mul, dst, src1, src2);
-+}
-+
-+static inline void emit_div(unsigned int dst, unsigned int src,
-+ struct jit_ctx *ctx)
-+{
-+ if (ctx->target != NULL) {
-+ u32 *p = &ctx->target[ctx->idx];
-+ uasm_i_divu(&p, dst, src);
-+ p = &ctx->target[ctx->idx + 1];
-+ uasm_i_mflo(&p, dst);
-+ }
-+ ctx->idx += 2; /* 2 insts */
-+}
-+
-+static inline void emit_mod(unsigned int dst, unsigned int src,
-+ struct jit_ctx *ctx)
-+{
-+ if (ctx->target != NULL) {
-+ u32 *p = &ctx->target[ctx->idx];
-+ uasm_i_divu(&p, dst, src);
-+ p = &ctx->target[ctx->idx + 1];
-+ uasm_i_mfhi(&p, dst);
-+ }
-+ ctx->idx += 2; /* 2 insts */
-+}
-+
-+static inline void emit_dsll(unsigned int dst, unsigned int src,
-+ unsigned int sa, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, dsll, dst, src, sa);
-+}
-+
-+static inline void emit_dsrl32(unsigned int dst, unsigned int src,
-+ unsigned int sa, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, dsrl32, dst, src, sa);
-+}
-+
-+static inline void emit_wsbh(unsigned int dst, unsigned int src,
-+ struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, wsbh, dst, src);
-+}
-+
-+/* load pointer to register */
-+static inline void emit_load_ptr(unsigned int dst, unsigned int src,
-+ int imm, struct jit_ctx *ctx)
-+{
-+ /* src contains the base addr of the 32/64-pointer */
-+ emit_long_instr(ctx, LW, dst, imm, src);
-+}
-+
-+/* load a function pointer to register */
-+static inline void emit_load_func(unsigned int reg, ptr imm,
-+ struct jit_ctx *ctx)
-+{
-+ if (IS_ENABLED(CONFIG_64BIT)) {
-+ /* At this point imm is always 64-bit */
-+ emit_load_imm(r_tmp, (u64)imm >> 32, ctx);
-+ emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
-+ emit_ori(r_tmp, r_tmp_imm, (imm >> 16) & 0xffff, ctx);
-+ emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
-+ emit_ori(reg, r_tmp_imm, imm & 0xffff, ctx);
-+ } else {
-+ emit_load_imm(reg, imm, ctx);
-+ }
-+}
-+
-+/* Move to real MIPS register */
-+static inline void emit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
-+{
-+ emit_long_instr(ctx, ADDU, dst, src, r_zero);
-+}
-+
-+/* Move to JIT (32-bit) register */
-+static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
-+{
-+ emit_addu(dst, src, r_zero, ctx);
-+}
-+
-+/* Compute the immediate value for PC-relative branches. */
-+static inline u32 b_imm(unsigned int tgt, struct jit_ctx *ctx)
-+{
-+ if (ctx->target == NULL)
-+ return 0;
-+
-+ /*
-+ * We want a pc-relative branch. We only do forward branches
-+ * so tgt is always after pc. tgt is the instruction offset
-+ * we want to jump to.
-+
-+ * Branch on MIPS:
-+ * I: target_offset <- sign_extend(offset)
-+ * I+1: PC += target_offset (delay slot)
-+ *
-+ * ctx->idx currently points to the branch instruction
-+ * but the offset is added to the delay slot so we need
-+ * to subtract 4.
-+ */
-+ return ctx->offsets[tgt] -
-+ (ctx->idx * 4 - ctx->prologue_bytes) - 4;
-+}
-+
-+static inline void emit_bcond(int cond, unsigned int reg1, unsigned int reg2,
-+ unsigned int imm, struct jit_ctx *ctx)
-+{
-+ if (ctx->target != NULL) {
-+ u32 *p = &ctx->target[ctx->idx];
-+
-+ switch (cond) {
-+ case MIPS_COND_EQ:
-+ uasm_i_beq(&p, reg1, reg2, imm);
-+ break;
-+ case MIPS_COND_NE:
-+ uasm_i_bne(&p, reg1, reg2, imm);
-+ break;
-+ case MIPS_COND_ALL:
-+ uasm_i_b(&p, imm);
-+ break;
-+ default:
-+ pr_warn("%s: Unhandled branch conditional: %d\n",
-+ __func__, cond);
-+ }
-+ }
-+ ctx->idx++;
-+}
-+
-+static inline void emit_b(unsigned int imm, struct jit_ctx *ctx)
-+{
-+ emit_bcond(MIPS_COND_ALL, r_zero, r_zero, imm, ctx);
-+}
-+
-+static inline void emit_jalr(unsigned int link, unsigned int reg,
-+ struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, jalr, link, reg);
-+}
-+
-+static inline void emit_jr(unsigned int reg, struct jit_ctx *ctx)
-+{
-+ emit_instr(ctx, jr, reg);
-+}
-+
-+static inline u16 align_sp(unsigned int num)
-+{
-+ /* Double word alignment for 32-bit, quadword for 64-bit */
-+ unsigned int align = IS_ENABLED(CONFIG_64BIT) ? 16 : 8;
-+ num = (num + (align - 1)) & -align;
-+ return num;
-+}
-+
-+static void save_bpf_jit_regs(struct jit_ctx *ctx, unsigned offset)
-+{
-+ int i = 0, real_off = 0;
-+ u32 sflags, tmp_flags;
-+
-+ /* Adjust the stack pointer */
-+ if (offset)
-+ emit_stack_offset(-align_sp(offset), ctx);
-+
-+ tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
-+ /* sflags is essentially a bitmap */
-+ while (tmp_flags) {
-+ if ((sflags >> i) & 0x1) {
-+ emit_store_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
-+ ctx);
-+ real_off += SZREG;
-+ }
-+ i++;
-+ tmp_flags >>= 1;
-+ }
-+
-+ /* save return address */
-+ if (ctx->flags & SEEN_CALL) {
-+ emit_store_stack_reg(r_ra, r_sp, real_off, ctx);
-+ real_off += SZREG;
-+ }
-+
-+ /* Setup r_M leaving the alignment gap if necessary */
-+ if (ctx->flags & SEEN_MEM) {
-+ if (real_off % (SZREG * 2))
-+ real_off += SZREG;
-+ emit_long_instr(ctx, ADDIU, r_M, r_sp, real_off);
-+ }
-+}
-+
-+static void restore_bpf_jit_regs(struct jit_ctx *ctx,
-+ unsigned int offset)
-+{
-+ int i, real_off = 0;
-+ u32 sflags, tmp_flags;
-+
-+ tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
-+ /* sflags is a bitmap */
-+ i = 0;
-+ while (tmp_flags) {
-+ if ((sflags >> i) & 0x1) {
-+ emit_load_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
-+ ctx);
-+ real_off += SZREG;
-+ }
-+ i++;
-+ tmp_flags >>= 1;
-+ }
-+
-+ /* restore return address */
-+ if (ctx->flags & SEEN_CALL)
-+ emit_load_stack_reg(r_ra, r_sp, real_off, ctx);
-+
-+ /* Restore the sp and discard the scrach memory */
-+ if (offset)
-+ emit_stack_offset(align_sp(offset), ctx);
-+}
-+
-+static unsigned int get_stack_depth(struct jit_ctx *ctx)
-+{
-+ int sp_off = 0;
-+
-+
-+ /* How may s* regs do we need to preserved? */
-+ sp_off += hweight32(ctx->flags >> SEEN_SREG_SFT) * SZREG;
-+
-+ if (ctx->flags & SEEN_MEM)
-+ sp_off += 4 * BPF_MEMWORDS; /* BPF_MEMWORDS are 32-bit */
-+
-+ if (ctx->flags & SEEN_CALL)
-+ sp_off += SZREG; /* Space for our ra register */
-+
-+ return sp_off;
-+}
-+
-+static void build_prologue(struct jit_ctx *ctx)
-+{
-+ int sp_off;
-+
-+ /* Calculate the total offset for the stack pointer */
-+ sp_off = get_stack_depth(ctx);
-+ save_bpf_jit_regs(ctx, sp_off);
-+
-+ if (ctx->flags & SEEN_SKB)
-+ emit_reg_move(r_skb, MIPS_R_A0, ctx);
-+
-+ if (ctx->flags & SEEN_SKB_DATA) {
-+ /* Load packet length */
-+ emit_load(r_skb_len, r_skb, offsetof(struct sk_buff, len),
-+ ctx);
-+ emit_load(r_tmp, r_skb, offsetof(struct sk_buff, data_len),
-+ ctx);
-+ /* Load the data pointer */
-+ emit_load_ptr(r_skb_data, r_skb,
-+ offsetof(struct sk_buff, data), ctx);
-+ /* Load the header length */
-+ emit_subu(r_skb_hl, r_skb_len, r_tmp, ctx);
-+ }
-+
-+ if (ctx->flags & SEEN_X)
-+ emit_jit_reg_move(r_X, r_zero, ctx);
-+
-+ /*
-+ * Do not leak kernel data to userspace, we only need to clear
-+ * r_A if it is ever used. In fact if it is never used, we
-+ * will not save/restore it, so clearing it in this case would
-+ * corrupt the state of the caller.
-+ */
-+ if (bpf_needs_clear_a(&ctx->skf->insns[0]) &&
-+ (ctx->flags & SEEN_A))
-+ emit_jit_reg_move(r_A, r_zero, ctx);
-+}
-+
-+static void build_epilogue(struct jit_ctx *ctx)
-+{
-+ unsigned int sp_off;
-+
-+ /* Calculate the total offset for the stack pointer */
-+
-+ sp_off = get_stack_depth(ctx);
-+ restore_bpf_jit_regs(ctx, sp_off);
-+
-+ /* Return */
-+ emit_jr(r_ra, ctx);
-+ emit_nop(ctx);
-+}
-+
-+#define CHOOSE_LOAD_FUNC(K, func) \
-+ ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative : func) : \
-+ func##_positive)
-+
-+static int build_body(struct jit_ctx *ctx)
-+{
-+ const struct bpf_prog *prog = ctx->skf;
-+ const struct sock_filter *inst;
-+ unsigned int i, off, condt;
-+ u32 k, b_off __maybe_unused;
-+ u8 (*sk_load_func)(unsigned long *skb, int offset);
-+
-+ for (i = 0; i < prog->len; i++) {
-+ u16 code;
-+
-+ inst = &(prog->insns[i]);
-+ pr_debug("%s: code->0x%02x, jt->0x%x, jf->0x%x, k->0x%x\n",
-+ __func__, inst->code, inst->jt, inst->jf, inst->k);
-+ k = inst->k;
-+ code = bpf_anc_helper(inst);
-+
-+ if (ctx->target == NULL)
-+ ctx->offsets[i] = ctx->idx * 4;
-+
-+ switch (code) {
-+ case BPF_LD | BPF_IMM:
-+ /* A <- k ==> li r_A, k */
-+ ctx->flags |= SEEN_A;
-+ emit_load_imm(r_A, k, ctx);
-+ break;
-+ case BPF_LD | BPF_W | BPF_LEN:
-+ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
-+ /* A <- len ==> lw r_A, offset(skb) */
-+ ctx->flags |= SEEN_SKB | SEEN_A;
-+ off = offsetof(struct sk_buff, len);
-+ emit_load(r_A, r_skb, off, ctx);
-+ break;
-+ case BPF_LD | BPF_MEM:
-+ /* A <- M[k] ==> lw r_A, offset(M) */
-+ ctx->flags |= SEEN_MEM | SEEN_A;
-+ emit_load(r_A, r_M, SCRATCH_OFF(k), ctx);
-+ break;
-+ case BPF_LD | BPF_W | BPF_ABS:
-+ /* A <- P[k:4] */
-+ sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_word);
-+ goto load;
-+ case BPF_LD | BPF_H | BPF_ABS:
-+ /* A <- P[k:2] */
-+ sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_half);
-+ goto load;
-+ case BPF_LD | BPF_B | BPF_ABS:
-+ /* A <- P[k:1] */
-+ sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_byte);
-+load:
-+ emit_load_imm(r_off, k, ctx);
-+load_common:
-+ ctx->flags |= SEEN_CALL | SEEN_OFF |
-+ SEEN_SKB | SEEN_A | SEEN_SKB_DATA;
-+
-+ emit_load_func(r_s0, (ptr)sk_load_func, ctx);
-+ emit_reg_move(MIPS_R_A0, r_skb, ctx);
-+ emit_jalr(MIPS_R_RA, r_s0, ctx);
-+ /* Load second argument to delay slot */
-+ emit_reg_move(MIPS_R_A1, r_off, ctx);
-+ /* Check the error value */
-+ emit_bcond(MIPS_COND_EQ, r_ret, 0, b_imm(i + 1, ctx),
-+ ctx);
-+ /* Load return register on DS for failures */
-+ emit_reg_move(r_ret, r_zero, ctx);
-+ /* Return with error */
-+ emit_b(b_imm(prog->len, ctx), ctx);
-+ emit_nop(ctx);
-+ break;
-+ case BPF_LD | BPF_W | BPF_IND:
-+ /* A <- P[X + k:4] */
-+ sk_load_func = sk_load_word;
-+ goto load_ind;
-+ case BPF_LD | BPF_H | BPF_IND:
-+ /* A <- P[X + k:2] */
-+ sk_load_func = sk_load_half;
-+ goto load_ind;
-+ case BPF_LD | BPF_B | BPF_IND:
-+ /* A <- P[X + k:1] */
-+ sk_load_func = sk_load_byte;
-+load_ind:
-+ ctx->flags |= SEEN_OFF | SEEN_X;
-+ emit_addiu(r_off, r_X, k, ctx);
-+ goto load_common;
-+ case BPF_LDX | BPF_IMM:
-+ /* X <- k */
-+ ctx->flags |= SEEN_X;
-+ emit_load_imm(r_X, k, ctx);
-+ break;
-+ case BPF_LDX | BPF_MEM:
-+ /* X <- M[k] */
-+ ctx->flags |= SEEN_X | SEEN_MEM;
-+ emit_load(r_X, r_M, SCRATCH_OFF(k), ctx);
-+ break;
-+ case BPF_LDX | BPF_W | BPF_LEN:
-+ /* X <- len */
-+ ctx->flags |= SEEN_X | SEEN_SKB;
-+ off = offsetof(struct sk_buff, len);
-+ emit_load(r_X, r_skb, off, ctx);
-+ break;
-+ case BPF_LDX | BPF_B | BPF_MSH:
-+ /* X <- 4 * (P[k:1] & 0xf) */
-+ ctx->flags |= SEEN_X | SEEN_CALL | SEEN_SKB;
-+ /* Load offset to a1 */
-+ emit_load_func(r_s0, (ptr)sk_load_byte, ctx);
-+ /*
-+ * This may emit two instructions so it may not fit
-+ * in the delay slot. So use a0 in the delay slot.
-+ */
-+ emit_load_imm(MIPS_R_A1, k, ctx);
-+ emit_jalr(MIPS_R_RA, r_s0, ctx);
-+ emit_reg_move(MIPS_R_A0, r_skb, ctx); /* delay slot */
-+ /* Check the error value */
-+ emit_bcond(MIPS_COND_NE, r_ret, 0,
-+ b_imm(prog->len, ctx), ctx);
-+ emit_reg_move(r_ret, r_zero, ctx);
-+ /* We are good */
-+ /* X <- P[1:K] & 0xf */
-+ emit_andi(r_X, r_A, 0xf, ctx);
-+ /* X << 2 */
-+ emit_b(b_imm(i + 1, ctx), ctx);
-+ emit_sll(r_X, r_X, 2, ctx); /* delay slot */
-+ break;
-+ case BPF_ST:
-+ /* M[k] <- A */
-+ ctx->flags |= SEEN_MEM | SEEN_A;
-+ emit_store(r_A, r_M, SCRATCH_OFF(k), ctx);
-+ break;
-+ case BPF_STX:
-+ /* M[k] <- X */
-+ ctx->flags |= SEEN_MEM | SEEN_X;
-+ emit_store(r_X, r_M, SCRATCH_OFF(k), ctx);
-+ break;
-+ case BPF_ALU | BPF_ADD | BPF_K:
-+ /* A += K */
-+ ctx->flags |= SEEN_A;
-+ emit_addiu(r_A, r_A, k, ctx);
-+ break;
-+ case BPF_ALU | BPF_ADD | BPF_X:
-+ /* A += X */
-+ ctx->flags |= SEEN_A | SEEN_X;
-+ emit_addu(r_A, r_A, r_X, ctx);
-+ break;
-+ case BPF_ALU | BPF_SUB | BPF_K:
-+ /* A -= K */
-+ ctx->flags |= SEEN_A;
-+ emit_addiu(r_A, r_A, -k, ctx);
-+ break;
-+ case BPF_ALU | BPF_SUB | BPF_X:
-+ /* A -= X */
-+ ctx->flags |= SEEN_A | SEEN_X;
-+ emit_subu(r_A, r_A, r_X, ctx);
-+ break;
-+ case BPF_ALU | BPF_MUL | BPF_K:
-+ /* A *= K */
-+ /* Load K to scratch register before MUL */
-+ ctx->flags |= SEEN_A;
-+ emit_load_imm(r_s0, k, ctx);
-+ emit_mul(r_A, r_A, r_s0, ctx);
-+ break;
-+ case BPF_ALU | BPF_MUL | BPF_X:
-+ /* A *= X */
-+ ctx->flags |= SEEN_A | SEEN_X;
-+ emit_mul(r_A, r_A, r_X, ctx);
-+ break;
-+ case BPF_ALU | BPF_DIV | BPF_K:
-+ /* A /= k */
-+ if (k == 1)
-+ break;
-+ if (optimize_div(&k)) {
-+ ctx->flags |= SEEN_A;
-+ emit_srl(r_A, r_A, k, ctx);
-+ break;
-+ }
-+ ctx->flags |= SEEN_A;
-+ emit_load_imm(r_s0, k, ctx);
-+ emit_div(r_A, r_s0, ctx);
-+ break;
-+ case BPF_ALU | BPF_MOD | BPF_K:
-+ /* A %= k */
-+ if (k == 1) {
-+ ctx->flags |= SEEN_A;
-+ emit_jit_reg_move(r_A, r_zero, ctx);
-+ } else {
-+ ctx->flags |= SEEN_A;
-+ emit_load_imm(r_s0, k, ctx);
-+ emit_mod(r_A, r_s0, ctx);
-+ }
-+ break;
-+ case BPF_ALU | BPF_DIV | BPF_X:
-+ /* A /= X */
-+ ctx->flags |= SEEN_X | SEEN_A;
-+ /* Check if r_X is zero */
-+ emit_bcond(MIPS_COND_EQ, r_X, r_zero,
-+ b_imm(prog->len, ctx), ctx);
-+ emit_load_imm(r_ret, 0, ctx); /* delay slot */
-+ emit_div(r_A, r_X, ctx);
-+ break;
-+ case BPF_ALU | BPF_MOD | BPF_X:
-+ /* A %= X */
-+ ctx->flags |= SEEN_X | SEEN_A;
-+ /* Check if r_X is zero */
-+ emit_bcond(MIPS_COND_EQ, r_X, r_zero,
-+ b_imm(prog->len, ctx), ctx);
-+ emit_load_imm(r_ret, 0, ctx); /* delay slot */
-+ emit_mod(r_A, r_X, ctx);
-+ break;
-+ case BPF_ALU | BPF_OR | BPF_K:
-+ /* A |= K */
-+ ctx->flags |= SEEN_A;
-+ emit_ori(r_A, r_A, k, ctx);
-+ break;
-+ case BPF_ALU | BPF_OR | BPF_X:
-+ /* A |= X */
-+ ctx->flags |= SEEN_A;
-+ emit_ori(r_A, r_A, r_X, ctx);
-+ break;
-+ case BPF_ALU | BPF_XOR | BPF_K:
-+ /* A ^= k */
-+ ctx->flags |= SEEN_A;
-+ emit_xori(r_A, r_A, k, ctx);
-+ break;
-+ case BPF_ANC | SKF_AD_ALU_XOR_X:
-+ case BPF_ALU | BPF_XOR | BPF_X:
-+ /* A ^= X */
-+ ctx->flags |= SEEN_A;
-+ emit_xor(r_A, r_A, r_X, ctx);
-+ break;
-+ case BPF_ALU | BPF_AND | BPF_K:
-+ /* A &= K */
-+ ctx->flags |= SEEN_A;
-+ emit_andi(r_A, r_A, k, ctx);
-+ break;
-+ case BPF_ALU | BPF_AND | BPF_X:
-+ /* A &= X */
-+ ctx->flags |= SEEN_A | SEEN_X;
-+ emit_and(r_A, r_A, r_X, ctx);
-+ break;
-+ case BPF_ALU | BPF_LSH | BPF_K:
-+ /* A <<= K */
-+ ctx->flags |= SEEN_A;
-+ emit_sll(r_A, r_A, k, ctx);
-+ break;
-+ case BPF_ALU | BPF_LSH | BPF_X:
-+ /* A <<= X */
-+ ctx->flags |= SEEN_A | SEEN_X;
-+ emit_sllv(r_A, r_A, r_X, ctx);
-+ break;
-+ case BPF_ALU | BPF_RSH | BPF_K:
-+ /* A >>= K */
-+ ctx->flags |= SEEN_A;
-+ emit_srl(r_A, r_A, k, ctx);
-+ break;
-+ case BPF_ALU | BPF_RSH | BPF_X:
-+ ctx->flags |= SEEN_A | SEEN_X;
-+ emit_srlv(r_A, r_A, r_X, ctx);
-+ break;
-+ case BPF_ALU | BPF_NEG:
-+ /* A = -A */
-+ ctx->flags |= SEEN_A;
-+ emit_neg(r_A, ctx);
-+ break;
-+ case BPF_JMP | BPF_JA:
-+ /* pc += K */
-+ emit_b(b_imm(i + k + 1, ctx), ctx);
-+ emit_nop(ctx);
-+ break;
-+ case BPF_JMP | BPF_JEQ | BPF_K:
-+ /* pc += ( A == K ) ? pc->jt : pc->jf */
-+ condt = MIPS_COND_EQ | MIPS_COND_K;
-+ goto jmp_cmp;
-+ case BPF_JMP | BPF_JEQ | BPF_X:
-+ ctx->flags |= SEEN_X;
-+ /* pc += ( A == X ) ? pc->jt : pc->jf */
-+ condt = MIPS_COND_EQ | MIPS_COND_X;
-+ goto jmp_cmp;
-+ case BPF_JMP | BPF_JGE | BPF_K:
-+ /* pc += ( A >= K ) ? pc->jt : pc->jf */
-+ condt = MIPS_COND_GE | MIPS_COND_K;
-+ goto jmp_cmp;
-+ case BPF_JMP | BPF_JGE | BPF_X:
-+ ctx->flags |= SEEN_X;
-+ /* pc += ( A >= X ) ? pc->jt : pc->jf */
-+ condt = MIPS_COND_GE | MIPS_COND_X;
-+ goto jmp_cmp;
-+ case BPF_JMP | BPF_JGT | BPF_K:
-+ /* pc += ( A > K ) ? pc->jt : pc->jf */
-+ condt = MIPS_COND_GT | MIPS_COND_K;
-+ goto jmp_cmp;
-+ case BPF_JMP | BPF_JGT | BPF_X:
-+ ctx->flags |= SEEN_X;
-+ /* pc += ( A > X ) ? pc->jt : pc->jf */
-+ condt = MIPS_COND_GT | MIPS_COND_X;
-+jmp_cmp:
-+ /* Greater or Equal */
-+ if ((condt & MIPS_COND_GE) ||
-+ (condt & MIPS_COND_GT)) {
-+ if (condt & MIPS_COND_K) { /* K */
-+ ctx->flags |= SEEN_A;
-+ emit_sltiu(r_s0, r_A, k, ctx);
-+ } else { /* X */
-+ ctx->flags |= SEEN_A |
-+ SEEN_X;
-+ emit_sltu(r_s0, r_A, r_X, ctx);
-+ }
-+ /* A < (K|X) ? r_scrach = 1 */
-+ b_off = b_imm(i + inst->jf + 1, ctx);
-+ emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off,
-+ ctx);
-+ emit_nop(ctx);
-+ /* A > (K|X) ? scratch = 0 */
-+ if (condt & MIPS_COND_GT) {
-+ /* Checking for equality */
-+ ctx->flags |= SEEN_A | SEEN_X;
-+ if (condt & MIPS_COND_K)
-+ emit_load_imm(r_s0, k, ctx);
-+ else
-+ emit_jit_reg_move(r_s0, r_X,
-+ ctx);
-+ b_off = b_imm(i + inst->jf + 1, ctx);
-+ emit_bcond(MIPS_COND_EQ, r_A, r_s0,
-+ b_off, ctx);
-+ emit_nop(ctx);
-+ /* Finally, A > K|X */
-+ b_off = b_imm(i + inst->jt + 1, ctx);
-+ emit_b(b_off, ctx);
-+ emit_nop(ctx);
-+ } else {
-+ /* A >= (K|X) so jump */
-+ b_off = b_imm(i + inst->jt + 1, ctx);
-+ emit_b(b_off, ctx);
-+ emit_nop(ctx);
-+ }
-+ } else {
-+ /* A == K|X */
-+ if (condt & MIPS_COND_K) { /* K */
-+ ctx->flags |= SEEN_A;
-+ emit_load_imm(r_s0, k, ctx);
-+ /* jump true */
-+ b_off = b_imm(i + inst->jt + 1, ctx);
-+ emit_bcond(MIPS_COND_EQ, r_A, r_s0,
-+ b_off, ctx);
-+ emit_nop(ctx);
-+ /* jump false */
-+ b_off = b_imm(i + inst->jf + 1,
-+ ctx);
-+ emit_bcond(MIPS_COND_NE, r_A, r_s0,
-+ b_off, ctx);
-+ emit_nop(ctx);
-+ } else { /* X */
-+ /* jump true */
-+ ctx->flags |= SEEN_A | SEEN_X;
-+ b_off = b_imm(i + inst->jt + 1,
-+ ctx);
-+ emit_bcond(MIPS_COND_EQ, r_A, r_X,
-+ b_off, ctx);
-+ emit_nop(ctx);
-+ /* jump false */
-+ b_off = b_imm(i + inst->jf + 1, ctx);
-+ emit_bcond(MIPS_COND_NE, r_A, r_X,
-+ b_off, ctx);
-+ emit_nop(ctx);
-+ }
-+ }
-+ break;
-+ case BPF_JMP | BPF_JSET | BPF_K:
-+ ctx->flags |= SEEN_A;
-+ /* pc += (A & K) ? pc -> jt : pc -> jf */
-+ emit_load_imm(r_s1, k, ctx);
-+ emit_and(r_s0, r_A, r_s1, ctx);
-+ /* jump true */
-+ b_off = b_imm(i + inst->jt + 1, ctx);
-+ emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
-+ emit_nop(ctx);
-+ /* jump false */
-+ b_off = b_imm(i + inst->jf + 1, ctx);
-+ emit_b(b_off, ctx);
-+ emit_nop(ctx);
-+ break;
-+ case BPF_JMP | BPF_JSET | BPF_X:
-+ ctx->flags |= SEEN_X | SEEN_A;
-+ /* pc += (A & X) ? pc -> jt : pc -> jf */
-+ emit_and(r_s0, r_A, r_X, ctx);
-+ /* jump true */
-+ b_off = b_imm(i + inst->jt + 1, ctx);
-+ emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
-+ emit_nop(ctx);
-+ /* jump false */
-+ b_off = b_imm(i + inst->jf + 1, ctx);
-+ emit_b(b_off, ctx);
-+ emit_nop(ctx);
-+ break;
-+ case BPF_RET | BPF_A:
-+ ctx->flags |= SEEN_A;
-+ if (i != prog->len - 1)
-+ /*
-+ * If this is not the last instruction
-+ * then jump to the epilogue
-+ */
-+ emit_b(b_imm(prog->len, ctx), ctx);
-+ emit_reg_move(r_ret, r_A, ctx); /* delay slot */
-+ break;
-+ case BPF_RET | BPF_K:
-+ /*
-+ * It can emit two instructions so it does not fit on
-+ * the delay slot.
-+ */
-+ emit_load_imm(r_ret, k, ctx);
-+ if (i != prog->len - 1) {
-+ /*
-+ * If this is not the last instruction
-+ * then jump to the epilogue
-+ */
-+ emit_b(b_imm(prog->len, ctx), ctx);
-+ emit_nop(ctx);
-+ }
-+ break;
-+ case BPF_MISC | BPF_TAX:
-+ /* X = A */
-+ ctx->flags |= SEEN_X | SEEN_A;
-+ emit_jit_reg_move(r_X, r_A, ctx);
-+ break;
-+ case BPF_MISC | BPF_TXA:
-+ /* A = X */
-+ ctx->flags |= SEEN_A | SEEN_X;
-+ emit_jit_reg_move(r_A, r_X, ctx);
-+ break;
-+ /* AUX */
-+ case BPF_ANC | SKF_AD_PROTOCOL:
-+ /* A = ntohs(skb->protocol */
-+ ctx->flags |= SEEN_SKB | SEEN_OFF | SEEN_A;
-+ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
-+ protocol) != 2);
-+ off = offsetof(struct sk_buff, protocol);
-+ emit_half_load(r_A, r_skb, off, ctx);
-+#ifdef CONFIG_CPU_LITTLE_ENDIAN
-+ /* This needs little endian fixup */
-+ if (cpu_has_wsbh) {
-+ /* R2 and later have the wsbh instruction */
-+ emit_wsbh(r_A, r_A, ctx);
-+ } else {
-+ /* Get first byte */
-+ emit_andi(r_tmp_imm, r_A, 0xff, ctx);
-+ /* Shift it */
-+ emit_sll(r_tmp, r_tmp_imm, 8, ctx);
-+ /* Get second byte */
-+ emit_srl(r_tmp_imm, r_A, 8, ctx);
-+ emit_andi(r_tmp_imm, r_tmp_imm, 0xff, ctx);
-+ /* Put everyting together in r_A */
-+ emit_or(r_A, r_tmp, r_tmp_imm, ctx);
-+ }
-+#endif
-+ break;
-+ case BPF_ANC | SKF_AD_CPU:
-+ ctx->flags |= SEEN_A | SEEN_OFF;
-+ /* A = current_thread_info()->cpu */
-+ BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info,
-+ cpu) != 4);
-+ off = offsetof(struct thread_info, cpu);
-+ /* $28/gp points to the thread_info struct */
-+ emit_load(r_A, 28, off, ctx);
-+ break;
-+ case BPF_ANC | SKF_AD_IFINDEX:
-+ /* A = skb->dev->ifindex */
-+ case BPF_ANC | SKF_AD_HATYPE:
-+ /* A = skb->dev->type */
-+ ctx->flags |= SEEN_SKB | SEEN_A;
-+ off = offsetof(struct sk_buff, dev);
-+ /* Load *dev pointer */
-+ emit_load_ptr(r_s0, r_skb, off, ctx);
-+ /* error (0) in the delay slot */
-+ emit_bcond(MIPS_COND_EQ, r_s0, r_zero,
-+ b_imm(prog->len, ctx), ctx);
-+ emit_reg_move(r_ret, r_zero, ctx);
-+ if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
-+ BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
-+ off = offsetof(struct net_device, ifindex);
-+ emit_load(r_A, r_s0, off, ctx);
-+ } else { /* (code == (BPF_ANC | SKF_AD_HATYPE) */
-+ BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
-+ off = offsetof(struct net_device, type);
-+ emit_half_load_unsigned(r_A, r_s0, off, ctx);
-+ }
-+ break;
-+ case BPF_ANC | SKF_AD_MARK:
-+ ctx->flags |= SEEN_SKB | SEEN_A;
-+ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
-+ off = offsetof(struct sk_buff, mark);
-+ emit_load(r_A, r_skb, off, ctx);
-+ break;
-+ case BPF_ANC | SKF_AD_RXHASH:
-+ ctx->flags |= SEEN_SKB | SEEN_A;
-+ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
-+ off = offsetof(struct sk_buff, hash);
-+ emit_load(r_A, r_skb, off, ctx);
-+ break;
-+ case BPF_ANC | SKF_AD_VLAN_TAG:
-+ ctx->flags |= SEEN_SKB | SEEN_A;
-+ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
-+ vlan_tci) != 2);
-+ off = offsetof(struct sk_buff, vlan_tci);
-+ emit_half_load_unsigned(r_A, r_skb, off, ctx);
-+ break;
-+ case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
-+ ctx->flags |= SEEN_SKB | SEEN_A;
-+ emit_load_byte(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET(), ctx);
-+ if (PKT_VLAN_PRESENT_BIT)
-+ emit_srl(r_A, r_A, PKT_VLAN_PRESENT_BIT, ctx);
-+ if (PKT_VLAN_PRESENT_BIT < 7)
-+ emit_andi(r_A, r_A, 1, ctx);
-+ break;
-+ case BPF_ANC | SKF_AD_PKTTYPE:
-+ ctx->flags |= SEEN_SKB;
-+
-+ emit_load_byte(r_tmp, r_skb, PKT_TYPE_OFFSET(), ctx);
-+ /* Keep only the last 3 bits */
-+ emit_andi(r_A, r_tmp, PKT_TYPE_MAX, ctx);
-+#ifdef __BIG_ENDIAN_BITFIELD
-+ /* Get the actual packet type to the lower 3 bits */
-+ emit_srl(r_A, r_A, 5, ctx);
-+#endif
-+ break;
-+ case BPF_ANC | SKF_AD_QUEUE:
-+ ctx->flags |= SEEN_SKB | SEEN_A;
-+ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
-+ queue_mapping) != 2);
-+ BUILD_BUG_ON(offsetof(struct sk_buff,
-+ queue_mapping) > 0xff);
-+ off = offsetof(struct sk_buff, queue_mapping);
-+ emit_half_load_unsigned(r_A, r_skb, off, ctx);
-+ break;
-+ default:
-+ pr_debug("%s: Unhandled opcode: 0x%02x\n", __FILE__,
-+ inst->code);
-+ return -1;
-+ }
-+ }
-+
-+ /* compute offsets only during the first pass */
-+ if (ctx->target == NULL)
-+ ctx->offsets[i] = ctx->idx * 4;
-+
-+ return 0;
-+}
-+
-+void bpf_jit_compile(struct bpf_prog *fp)
-+{
-+ struct jit_ctx ctx;
-+ unsigned int alloc_size, tmp_idx;
-+
-+ if (!bpf_jit_enable)
-+ return;
-+
-+ memset(&ctx, 0, sizeof(ctx));
-+
-+ ctx.offsets = kcalloc(fp->len + 1, sizeof(*ctx.offsets), GFP_KERNEL);
-+ if (ctx.offsets == NULL)
-+ return;
-+
-+ ctx.skf = fp;
-+
-+ if (build_body(&ctx))
-+ goto out;
-+
-+ tmp_idx = ctx.idx;
-+ build_prologue(&ctx);
-+ ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
-+ /* just to complete the ctx.idx count */
-+ build_epilogue(&ctx);
-+
-+ alloc_size = 4 * ctx.idx;
-+ ctx.target = module_alloc(alloc_size);
-+ if (ctx.target == NULL)
-+ goto out;
-+
-+ /* Clean it */
-+ memset(ctx.target, 0, alloc_size);
-+
-+ ctx.idx = 0;
-+
-+ /* Generate the actual JIT code */
-+ build_prologue(&ctx);
-+ build_body(&ctx);
-+ build_epilogue(&ctx);
-+
-+ /* Update the icache */
-+ flush_icache_range((ptr)ctx.target, (ptr)(ctx.target + ctx.idx));
-+
-+ if (bpf_jit_enable > 1)
-+ /* Dump JIT code */
-+ bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
-+
-+ fp->bpf_func = (void *)ctx.target;
-+ fp->jited = 1;
-+
-+out:
-+ kfree(ctx.offsets);
-+}
-+
-+void bpf_jit_free(struct bpf_prog *fp)
-+{
-+ if (fp->jited)
-+ module_memfree(fp->bpf_func);
-+
-+ bpf_prog_unlock_free(fp);
-+}
---- /dev/null
-+++ b/arch/mips/net/bpf_jit_asm.S
-@@ -0,0 +1,285 @@
-+/*
-+ * bpf_jib_asm.S: Packet/header access helper functions for MIPS/MIPS64 BPF
-+ * compiler.
-+ *
-+ * Copyright (C) 2015 Imagination Technologies Ltd.
-+ * Author: Markos Chandras <markos.chandras@imgtec.com>
-+ *
-+ * This program is free software; you can redistribute it and/or modify it
-+ * under the terms of the GNU General Public License as published by the
-+ * Free Software Foundation; version 2 of the License.
-+ */
-+
-+#include <asm/asm.h>
-+#include <asm/isa-rev.h>
-+#include <asm/regdef.h>
-+#include "bpf_jit.h"
-+
-+/* ABI
-+ *
-+ * r_skb_hl skb header length
-+ * r_skb_data skb data
-+ * r_off(a1) offset register
-+ * r_A BPF register A
-+ * r_X PF register X
-+ * r_skb(a0) *skb
-+ * r_M *scratch memory
-+ * r_skb_le skb length
-+ * r_s0 Scratch register 0
-+ * r_s1 Scratch register 1
-+ *
-+ * On entry:
-+ * a0: *skb
-+ * a1: offset (imm or imm + X)
-+ *
-+ * All non-BPF-ABI registers are free for use. On return, we only
-+ * care about r_ret. The BPF-ABI registers are assumed to remain
-+ * unmodified during the entire filter operation.
-+ */
-+
-+#define skb a0
-+#define offset a1
-+#define SKF_LL_OFF (-0x200000) /* Can't include linux/filter.h in assembly */
-+
-+ /* We know better :) so prevent assembler reordering etc */
-+ .set noreorder
-+
-+#define is_offset_negative(TYPE) \
-+ /* If offset is negative we have more work to do */ \
-+ slti t0, offset, 0; \
-+ bgtz t0, bpf_slow_path_##TYPE##_neg; \
-+ /* Be careful what follows in DS. */
-+
-+#define is_offset_in_header(SIZE, TYPE) \
-+ /* Reading from header? */ \
-+ addiu $r_s0, $r_skb_hl, -SIZE; \
-+ slt t0, $r_s0, offset; \
-+ bgtz t0, bpf_slow_path_##TYPE; \
-+
-+LEAF(sk_load_word)
-+ is_offset_negative(word)
-+FEXPORT(sk_load_word_positive)
-+ is_offset_in_header(4, word)
-+ /* Offset within header boundaries */
-+ PTR_ADDU t1, $r_skb_data, offset
-+ .set reorder
-+ lw $r_A, 0(t1)
-+ .set noreorder
-+#ifdef CONFIG_CPU_LITTLE_ENDIAN
-+# if MIPS_ISA_REV >= 2
-+ wsbh t0, $r_A
-+ rotr $r_A, t0, 16
-+# else
-+ sll t0, $r_A, 24
-+ srl t1, $r_A, 24
-+ srl t2, $r_A, 8
-+ or t0, t0, t1
-+ andi t2, t2, 0xff00
-+ andi t1, $r_A, 0xff00
-+ or t0, t0, t2
-+ sll t1, t1, 8
-+ or $r_A, t0, t1
-+# endif
-+#endif
-+ jr $r_ra
-+ move $r_ret, zero
-+ END(sk_load_word)
-+
-+LEAF(sk_load_half)
-+ is_offset_negative(half)
-+FEXPORT(sk_load_half_positive)
-+ is_offset_in_header(2, half)
-+ /* Offset within header boundaries */
-+ PTR_ADDU t1, $r_skb_data, offset
-+ lhu $r_A, 0(t1)
-+#ifdef CONFIG_CPU_LITTLE_ENDIAN
-+# if MIPS_ISA_REV >= 2
-+ wsbh $r_A, $r_A
-+# else
-+ sll t0, $r_A, 8
-+ srl t1, $r_A, 8
-+ andi t0, t0, 0xff00
-+ or $r_A, t0, t1
-+# endif
-+#endif
-+ jr $r_ra
-+ move $r_ret, zero
-+ END(sk_load_half)
-+
-+LEAF(sk_load_byte)
-+ is_offset_negative(byte)
-+FEXPORT(sk_load_byte_positive)
-+ is_offset_in_header(1, byte)
-+ /* Offset within header boundaries */
-+ PTR_ADDU t1, $r_skb_data, offset
-+ lbu $r_A, 0(t1)
-+ jr $r_ra
-+ move $r_ret, zero
-+ END(sk_load_byte)
-+
-+/*
-+ * call skb_copy_bits:
-+ * (prototype in linux/skbuff.h)
-+ *
-+ * int skb_copy_bits(sk_buff *skb, int offset, void *to, int len)
-+ *
-+ * o32 mandates we leave 4 spaces for argument registers in case
-+ * the callee needs to use them. Even though we don't care about
-+ * the argument registers ourselves, we need to allocate that space
-+ * to remain ABI compliant since the callee may want to use that space.
-+ * We also allocate 2 more spaces for $r_ra and our return register (*to).
-+ *
-+ * n64 is a bit different. The *caller* will allocate the space to preserve
-+ * the arguments. So in 64-bit kernels, we allocate the 4-arg space for no
-+ * good reason but it does not matter that much really.
-+ *
-+ * (void *to) is returned in r_s0
-+ *
-+ */
-+#ifdef CONFIG_CPU_LITTLE_ENDIAN
-+#define DS_OFFSET(SIZE) (4 * SZREG)
-+#else
-+#define DS_OFFSET(SIZE) ((4 * SZREG) + (4 - SIZE))
-+#endif
-+#define bpf_slow_path_common(SIZE) \
-+ /* Quick check. Are we within reasonable boundaries? */ \
-+ LONG_ADDIU $r_s1, $r_skb_len, -SIZE; \
-+ sltu $r_s0, offset, $r_s1; \
-+ beqz $r_s0, fault; \
-+ /* Load 4th argument in DS */ \
-+ LONG_ADDIU a3, zero, SIZE; \
-+ PTR_ADDIU $r_sp, $r_sp, -(6 * SZREG); \
-+ PTR_LA t0, skb_copy_bits; \
-+ PTR_S $r_ra, (5 * SZREG)($r_sp); \
-+ /* Assign low slot to a2 */ \
-+ PTR_ADDIU a2, $r_sp, DS_OFFSET(SIZE); \
-+ jalr t0; \
-+ /* Reset our destination slot (DS but it's ok) */ \
-+ INT_S zero, (4 * SZREG)($r_sp); \
-+ /* \
-+ * skb_copy_bits returns 0 on success and -EFAULT \
-+ * on error. Our data live in a2. Do not bother with \
-+ * our data if an error has been returned. \
-+ */ \
-+ /* Restore our frame */ \
-+ PTR_L $r_ra, (5 * SZREG)($r_sp); \
-+ INT_L $r_s0, (4 * SZREG)($r_sp); \
-+ bltz v0, fault; \
-+ PTR_ADDIU $r_sp, $r_sp, 6 * SZREG; \
-+ move $r_ret, zero; \
-+
-+NESTED(bpf_slow_path_word, (6 * SZREG), $r_sp)
-+ bpf_slow_path_common(4)
-+#ifdef CONFIG_CPU_LITTLE_ENDIAN
-+# if MIPS_ISA_REV >= 2
-+ wsbh t0, $r_s0
-+ jr $r_ra
-+ rotr $r_A, t0, 16
-+# else
-+ sll t0, $r_s0, 24
-+ srl t1, $r_s0, 24
-+ srl t2, $r_s0, 8
-+ or t0, t0, t1
-+ andi t2, t2, 0xff00
-+ andi t1, $r_s0, 0xff00
-+ or t0, t0, t2
-+ sll t1, t1, 8
-+ jr $r_ra
-+ or $r_A, t0, t1
-+# endif
-+#else
-+ jr $r_ra
-+ move $r_A, $r_s0
-+#endif
-+
-+ END(bpf_slow_path_word)
-+
-+NESTED(bpf_slow_path_half, (6 * SZREG), $r_sp)
-+ bpf_slow_path_common(2)
-+#ifdef CONFIG_CPU_LITTLE_ENDIAN
-+# if MIPS_ISA_REV >= 2
-+ jr $r_ra
-+ wsbh $r_A, $r_s0
-+# else
-+ sll t0, $r_s0, 8
-+ andi t1, $r_s0, 0xff00
-+ andi t0, t0, 0xff00
-+ srl t1, t1, 8
-+ jr $r_ra
-+ or $r_A, t0, t1
-+# endif
-+#else
-+ jr $r_ra
-+ move $r_A, $r_s0
-+#endif
-+
-+ END(bpf_slow_path_half)
-+
-+NESTED(bpf_slow_path_byte, (6 * SZREG), $r_sp)
-+ bpf_slow_path_common(1)
-+ jr $r_ra
-+ move $r_A, $r_s0
-+
-+ END(bpf_slow_path_byte)
-+
-+/*
-+ * Negative entry points
-+ */
-+ .macro bpf_is_end_of_data
-+ li t0, SKF_LL_OFF
-+ /* Reading link layer data? */
-+ slt t1, offset, t0
-+ bgtz t1, fault
-+ /* Be careful what follows in DS. */
-+ .endm
-+/*
-+ * call skb_copy_bits:
-+ * (prototype in linux/filter.h)
-+ *
-+ * void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
-+ * int k, unsigned int size)
-+ *
-+ * see above (bpf_slow_path_common) for ABI restrictions
-+ */
-+#define bpf_negative_common(SIZE) \
-+ PTR_ADDIU $r_sp, $r_sp, -(6 * SZREG); \
-+ PTR_LA t0, bpf_internal_load_pointer_neg_helper; \
-+ PTR_S $r_ra, (5 * SZREG)($r_sp); \
-+ jalr t0; \
-+ li a2, SIZE; \
-+ PTR_L $r_ra, (5 * SZREG)($r_sp); \
-+ /* Check return pointer */ \
-+ beqz v0, fault; \
-+ PTR_ADDIU $r_sp, $r_sp, 6 * SZREG; \
-+ /* Preserve our pointer */ \
-+ move $r_s0, v0; \
-+ /* Set return value */ \
-+ move $r_ret, zero; \
-+
-+bpf_slow_path_word_neg:
-+ bpf_is_end_of_data
-+NESTED(sk_load_word_negative, (6 * SZREG), $r_sp)
-+ bpf_negative_common(4)
-+ jr $r_ra
-+ lw $r_A, 0($r_s0)
-+ END(sk_load_word_negative)
-+
-+bpf_slow_path_half_neg:
-+ bpf_is_end_of_data
-+NESTED(sk_load_half_negative, (6 * SZREG), $r_sp)
-+ bpf_negative_common(2)
-+ jr $r_ra
-+ lhu $r_A, 0($r_s0)
-+ END(sk_load_half_negative)
-+
-+bpf_slow_path_byte_neg:
-+ bpf_is_end_of_data
-+NESTED(sk_load_byte_negative, (6 * SZREG), $r_sp)
-+ bpf_negative_common(1)
-+ jr $r_ra
-+ lbu $r_A, 0($r_s0)
-+ END(sk_load_byte_negative)
-+
-+fault:
-+ jr $r_ra
-+ addiu $r_ret, zero, 1