(GIC_HIGHEST_NS_PRIORITY << 24))
static const irq_sec_cfg_t *g_irq_sec_ptr;
-static unsigned int g_num_irqs;
+static uint32_t g_num_irqs;
/*******************************************************************************
* Place the cpu interface in a state where it can never make a cpu exit wfi as
******************************************************************************/
void tegra_gic_cpuif_deactivate(void)
{
- unsigned int val;
+ uint32_t val;
/* Disable secure, non-secure interrupts and disable their bypass */
val = gicc_read_ctlr(TEGRA_GICC_BASE);
* Enable secure interrupts and set the priority mask register to allow all
* interrupts to trickle in.
******************************************************************************/
-static void tegra_gic_cpuif_setup(unsigned int gicc_base)
+static void tegra_gic_cpuif_setup(uint32_t gicc_base)
{
- unsigned int val;
+ uint32_t val;
val = ENABLE_GRP0 | ENABLE_GRP1 | FIQ_EN | FIQ_BYP_DIS_GRP0;
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
* Per cpu gic distributor setup which will be done by all cpus after a cold
* boot/hotplug. This marks out the secure interrupts & enables them.
******************************************************************************/
-static void tegra_gic_pcpu_distif_setup(unsigned int gicd_base)
+static void tegra_gic_pcpu_distif_setup(uint32_t gicd_base)
{
- unsigned int index, sec_ppi_sgi_mask = 0;
+ uint32_t index, sec_ppi_sgi_mask = 0;
- assert(gicd_base);
+ assert(gicd_base != 0U);
/* Setup PPI priorities doing four at a time */
- for (index = 0; index < 32; index += 4) {
+ for (index = 0U; index < 32U; index += 4U) {
gicd_write_ipriorityr(gicd_base, index,
GICD_IPRIORITYR_DEF_VAL);
}
* cold boot. It marks out the non secure SPIs, PPIs & SGIs and enables them.
* It then enables the secure GIC distributor interface.
******************************************************************************/
-static void tegra_gic_distif_setup(unsigned int gicd_base)
+static void tegra_gic_distif_setup(uint32_t gicd_base)
{
- unsigned int index, num_ints, irq_num;
+ uint32_t index, num_ints, irq_num;
uint8_t target_cpus;
uint32_t val;
* number of IT_LINES
*/
num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;
- num_ints = (num_ints + 1) << 5;
- for (index = MIN_SPI_ID; index < num_ints; index += 32)
- gicd_write_igroupr(gicd_base, index, ~0);
+ num_ints = (num_ints + 1U) << 5;
+ for (index = MIN_SPI_ID; index < num_ints; index += 32U) {
+ gicd_write_igroupr(gicd_base, index, 0xFFFFFFFFU);
+ }
/* Setup SPI priorities doing four at a time */
- for (index = MIN_SPI_ID; index < num_ints; index += 4) {
+ for (index = MIN_SPI_ID; index < num_ints; index += 4U) {
gicd_write_ipriorityr(gicd_base, index,
GICD_IPRIORITYR_DEF_VAL);
}
/* Configure SPI secure interrupts now */
- if (g_irq_sec_ptr) {
+ if (g_irq_sec_ptr != NULL) {
- for (index = 0; index < g_num_irqs; index++) {
- irq_num = (g_irq_sec_ptr + index)->irq;
- target_cpus = (g_irq_sec_ptr + index)->target_cpus;
+ for (index = 0U; index < g_num_irqs; index++) {
+ irq_num = g_irq_sec_ptr[index].irq;
+ target_cpus = (uint8_t)g_irq_sec_ptr[index].target_cpus;
if (irq_num >= MIN_SPI_ID) {
gicd_clr_igroupr(gicd_base, irq_num);
/* Configure SPI priority */
- mmio_write_8(gicd_base + GICD_IPRIORITYR +
- irq_num,
+ mmio_write_8((uint64_t)gicd_base +
+ (uint64_t)GICD_IPRIORITYR +
+ (uint64_t)irq_num,
GIC_HIGHEST_SEC_PRIORITY &
GIC_PRI_MASK);
/* Configure as level triggered */
val = gicd_read_icfgr(gicd_base, irq_num);
- val |= (3 << ((irq_num & 0xF) << 1));
+ val |= (3U << ((irq_num & 0xFU) << 1U));
gicd_write_icfgr(gicd_base, irq_num, val);
/* Route SPI to the target CPUs */
gicd_write_ctlr(gicd_base, ENABLE_GRP0 | ENABLE_GRP1);
}
-void tegra_gic_setup(const irq_sec_cfg_t *irq_sec_ptr, unsigned int num_irqs)
+void tegra_gic_setup(const irq_sec_cfg_t *irq_sec_ptr, uint32_t num_irqs)
{
g_irq_sec_ptr = irq_sec_ptr;
g_num_irqs = num_irqs;
* SCR_EL3 to control its routing to EL3. The interrupt line is represented as
* the bit position of the IRQ or FIQ bit in the SCR_EL3.
******************************************************************************/
-uint32_t tegra_gic_interrupt_type_to_line(uint32_t type,
+static uint32_t tegra_gic_interrupt_type_to_line(uint32_t type,
uint32_t security_state)
{
- assert(type == INTR_TYPE_S_EL1 ||
- type == INTR_TYPE_EL3 ||
- type == INTR_TYPE_NS);
+ assert((type == INTR_TYPE_S_EL1) ||
+ (type == INTR_TYPE_EL3) ||
+ (type == INTR_TYPE_NS));
assert(sec_state_is_valid(security_state));
* the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
* interrupt pending.
******************************************************************************/
-uint32_t tegra_gic_get_pending_interrupt_type(void)
+static uint32_t tegra_gic_get_pending_interrupt_type(void)
{
uint32_t id;
- unsigned int index;
+ uint32_t index;
+ uint32_t ret = INTR_TYPE_NS;
id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK;
/* get the interrupt type */
- if (id < 1022) {
- for (index = 0; index < g_num_irqs; index++) {
- if (id == (g_irq_sec_ptr + index)->irq)
- return (g_irq_sec_ptr + index)->type;
+ if (id < 1022U) {
+ for (index = 0U; index < g_num_irqs; index++) {
+ if (id == g_irq_sec_ptr[index].irq) {
+ ret = g_irq_sec_ptr[index].type;
+ break;
+ }
+ }
+ } else {
+ if (id == GIC_SPURIOUS_INTERRUPT) {
+ ret = INTR_TYPE_INVAL;
}
}
- if (id == GIC_SPURIOUS_INTERRUPT)
- return INTR_TYPE_INVAL;
-
- return INTR_TYPE_NS;
+ return ret;
}
/*******************************************************************************
* the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
* interrupt pending.
******************************************************************************/
-uint32_t tegra_gic_get_pending_interrupt_id(void)
+static uint32_t tegra_gic_get_pending_interrupt_id(void)
{
- uint32_t id;
+ uint32_t id, ret;
id = gicc_read_hppir(TEGRA_GICC_BASE) & INT_ID_MASK;
- if (id < 1022)
- return id;
-
- if (id == 1023)
- return INTR_ID_UNAVAILABLE;
+ if (id < 1022UL) {
+ ret = id;
+ } else if (id == 1023UL) {
+ ret = 0xFFFFFFFFUL; /* INTR_ID_UNAVAILABLE */
+ } else {
+ /*
+ * Find out which non-secure interrupt it is under the assumption that
+ * the GICC_CTLR.AckCtl bit is 0.
+ */
+ ret = gicc_read_ahppir(TEGRA_GICC_BASE) & INT_ID_MASK;
+ }
- /*
- * Find out which non-secure interrupt it is under the assumption that
- * the GICC_CTLR.AckCtl bit is 0.
- */
- return gicc_read_ahppir(TEGRA_GICC_BASE) & INT_ID_MASK;
+ return ret;
}
/*******************************************************************************
* This functions reads the GIC cpu interface Interrupt Acknowledge register
* to start handling the pending interrupt. It returns the contents of the IAR.
******************************************************************************/
-uint32_t tegra_gic_acknowledge_interrupt(void)
+static uint32_t tegra_gic_acknowledge_interrupt(void)
{
return gicc_read_IAR(TEGRA_GICC_BASE);
}
* This functions writes the GIC cpu interface End Of Interrupt register with
* the passed value to finish handling the active interrupt
******************************************************************************/
-void tegra_gic_end_of_interrupt(uint32_t id)
+static void tegra_gic_end_of_interrupt(uint32_t id)
{
gicc_write_EOIR(TEGRA_GICC_BASE, id);
}
* this interrupt has been configured under by the interrupt controller i.e.
* group0 or group1.
******************************************************************************/
-uint32_t tegra_gic_get_interrupt_type(uint32_t id)
+static uint32_t tegra_gic_get_interrupt_type(uint32_t id)
{
uint32_t group;
- unsigned int index;
+ uint32_t index;
+ uint32_t ret = INTR_TYPE_NS;
group = gicd_get_igroupr(TEGRA_GICD_BASE, id);
/* get the interrupt type */
if (group == GRP0) {
- for (index = 0; index < g_num_irqs; index++) {
- if (id == (g_irq_sec_ptr + index)->irq)
- return (g_irq_sec_ptr + index)->type;
+ for (index = 0U; index < g_num_irqs; index++) {
+ if (id == g_irq_sec_ptr[index].irq) {
+ ret = g_irq_sec_ptr[index].type;
+ break;
+ }
}
}
- return INTR_TYPE_NS;
+ return ret;
}
#else