#define CFG_READ_SPD i2c_read
#endif
+/*
+ * Only one of the following three should be 1; others should be 0
+ * By default the cache line interleaving is selected if
+ * the CONFIG_DDR_INTERLEAVE flag is defined in MPC8641HPCN.h
+ */
+#define CFG_PAGE_INTERLEAVING 0
+#define CFG_BANK_INTERLEAVING 0
+#define CFG_SUPER_BANK_INTERLEAVING 0
+
/*
* Convert picoseconds into clock cycles (rounding up if needed).
*/
long int
-spd_sdram(void)
+spd_init(unsigned char i2c_address, unsigned int ddr_num,
+ unsigned int dimm_num, unsigned int start_addr)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
- volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1;
+ volatile ccsr_ddr_t *ddr;
volatile ccsr_gur_t *gur = &immap->im_gur;
spd_eeprom_t spd;
unsigned int n_ranks;
unsigned int mode_caslat;
unsigned char sdram_type;
unsigned char d_init;
+ unsigned int law_size;
+ volatile ccsr_local_mcm_t *mcm = &immap->im_local_mcm;
-
- unsigned int law_size;
- volatile ccsr_local_mcm_t *mcm = &immap->im_local_mcm;
+ if (ddr_num == 1)
+ ddr = &immap->im_ddr1;
+ else
+ ddr = &immap->im_ddr2;
/*
* Read SPD information.
*/
- CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd));
+ debug("Performing SPD read at I2C address 0x%02lx\n",i2c_address);
+ memset((void *)&spd, 0, sizeof(spd));
+ CFG_READ_SPD(i2c_address, 0, 1, (uchar *) &spd, sizeof(spd));
/*
* Check for supported memory module types.
*/
if (spd.mem_type != SPD_MEMTYPE_DDR &&
spd.mem_type != SPD_MEMTYPE_DDR2) {
- printf("Unable to locate DDR I or DDR II module.\n"
- " Fundamental memory type is 0x%0x\n",
- spd.mem_type);
+ debug("Warning: Unable to locate DDR I or DDR II module for DIMM %d of DDR controller %d.\n"
+ " Fundamental memory type is 0x%0x\n",
+ dimm_num,
+ ddr_num,
+ spd.mem_type);
return 0;
}
+ debug("\nFound memory of type 0x%02lx ", spd.mem_type);
+ if (spd.mem_type == SPD_MEMTYPE_DDR)
+ debug("DDR I\n");
+ else
+ debug("DDR II\n");
+
/*
* These test gloss over DDR I and II differences in interpretation
* of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks
*/
rank_density = compute_banksize(spd.mem_type, spd.row_dens);
-
- /*
- * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
- */
- ddr1->cs0_bnds = (rank_density >> 24) - 1;
+ debug("Start address for this controller is 0x%08lx\n", start_addr);
/*
* ODT configuration recommendation from DDR Controller Chapter.
odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */
}
- ddr1->cs0_config = ( 1 << 31
- | (odt_rd_cfg << 20)
- | (odt_wr_cfg << 16)
- | (spd.nrow_addr - 12) << 8
- | (spd.ncol_addr - 8) );
- debug("\n");
- debug("DDR: cs0_bnds = 0x%08x\n", ddr1->cs0_bnds);
- debug("DDR: cs0_config = 0x%08x\n", ddr1->cs0_config);
+#ifdef CONFIG_DDR_INTERLEAVE
+#ifdef CONFIG_MPC8641HPCN
+ if (dimm_num != 1) {
+ printf("For interleaving memory on HPCN, need to use DIMM 1 for DDR Controller %d !\n", ddr_num);
+ return 0;
+ } else {
+ /*
+ * Since interleaved memory only uses CS0, the
+ * memory sticks have to be identical in size and quantity
+ * of ranks. That essentially gives double the size on
+ * one rank, i.e on CS0 for both controllers put together.
+ * Confirm this???
+ */
+ rank_density *= 2;
- if (n_ranks == 2) {
/*
- * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg
+ * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
+ */
+ start_addr = 0;
+ ddr->cs0_bnds = (start_addr >> 8)
+ | (((start_addr + rank_density - 1) >> 24));
+ /*
+ * Default interleaving mode to cache-line interleaving.
*/
- ddr1->cs1_bnds = ( (rank_density >> 8)
- | ((rank_density >> (24 - 1)) - 1) );
- ddr1->cs1_config = ( 1<<31
+ ddr->cs0_config = ( 1 << 31
+#if (CFG_PAGE_INTERLEAVING == 1)
+ | (PAGE_INTERLEAVING)
+#elif (CFG_BANK_INTERLEAVING == 1)
+ | (BANK_INTERLEAVING)
+#elif (CFG_SUPER_BANK_INTERLEAVING == 1)
+ | (SUPER_BANK_INTERLEAVING)
+#else
+ | (CACHE_LINE_INTERLEAVING)
+#endif
| (odt_rd_cfg << 20)
| (odt_wr_cfg << 16)
| (spd.nrow_addr - 12) << 8
| (spd.ncol_addr - 8) );
- debug("DDR: cs1_bnds = 0x%08x\n", ddr1->cs1_bnds);
- debug("DDR: cs1_config = 0x%08x\n", ddr1->cs1_config);
+
+ debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
+ debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
+
+ /*
+ * Adjustment for dual rank memory to get correct memory
+ * size (return value of this function).
+ */
+ if (n_ranks == 2) {
+ n_ranks = 1;
+ rank_density /= 2;
+ } else {
+ rank_density /= 2;
+ }
}
+#endif /* CONFIG_MPC8641HPCN */
+#else /* CONFIG_DDR_INTERLEAVE */
+
+ if (dimm_num == 1) {
+ /*
+ * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
+ */
+ ddr->cs0_bnds = (start_addr >> 8)
+ | (((start_addr + rank_density - 1) >> 24));
+
+ ddr->cs0_config = ( 1 << 31
+ | (odt_rd_cfg << 20)
+ | (odt_wr_cfg << 16)
+ | (spd.nrow_addr - 12) << 8
+ | (spd.ncol_addr - 8) );
+
+ debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
+ debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
+
+ if (n_ranks == 2) {
+ /*
+ * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
+ * second 256 Meg
+ */
+ ddr->cs1_bnds = (((start_addr + rank_density) >> 8)
+ | (( start_addr + 2*rank_density - 1)
+ >> 24));
+ ddr->cs1_config = ( 1<<31
+ | (odt_rd_cfg << 20)
+ | (odt_wr_cfg << 16)
+ | (spd.nrow_addr - 12) << 8
+ | (spd.ncol_addr - 8) );
+ debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds);
+ debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
+ }
+
+ } else {
+ /*
+ * This is the 2nd DIMM slot for this controller
+ */
+ /*
+ * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
+ */
+ ddr->cs2_bnds = (start_addr >> 8)
+ | (((start_addr + rank_density - 1) >> 24));
+
+ ddr->cs2_config = ( 1 << 31
+ | (odt_rd_cfg << 20)
+ | (odt_wr_cfg << 16)
+ | (spd.nrow_addr - 12) << 8
+ | (spd.ncol_addr - 8) );
+
+ debug("DDR: cs2_bnds = 0x%08x\n", ddr->cs2_bnds);
+ debug("DDR: cs2_config = 0x%08x\n", ddr->cs2_config);
+
+ if (n_ranks == 2) {
+ /*
+ * Eg: Bounds: 0x1000_0000 to 0x1f00_0000,
+ * second 256 Meg
+ */
+ ddr->cs3_bnds = (((start_addr + rank_density) >> 8)
+ | (( start_addr + 2*rank_density - 1)
+ >> 24));
+ ddr->cs3_config = ( 1<<31
+ | (odt_rd_cfg << 20)
+ | (odt_wr_cfg << 16)
+ | (spd.nrow_addr - 12) << 8
+ | (spd.ncol_addr - 8) );
+ debug("DDR: cs3_bnds = 0x%08x\n", ddr->cs3_bnds);
+ debug("DDR: cs3_config = 0x%08x\n", ddr->cs3_config);
+ }
+ }
+#endif /* CONFIG_DDR_INTERLEAVE */
/*
* Find the largest CAS by locating the highest 1 bit
unsigned char act_pd_exit = 2; /* Empirical? */
unsigned char pre_pd_exit = 6; /* Empirical? */
- ddr1->timing_cfg_0 = (0
+ ddr->timing_cfg_0 = (0
| ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
| ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
| ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
| ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
);
- debug("DDR: timing_cfg_0 = 0x%08x\n", ddr1->timing_cfg_0);
+ debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
- } else {
}
/*
* Sneak in some Extended Refresh Recovery.
*/
- ddr1->ext_refrec = (trfc_high << 16);
- debug("DDR: ext_refrec = 0x%08x\n", ddr1->ext_refrec);
+ ddr->ext_refrec = (trfc_high << 16);
+ debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
- ddr1->timing_cfg_1 =
+ ddr->timing_cfg_1 =
(0
| ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */
| ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */
| ((twtr_clk & 0x07) << 0) /* WRTORD */
);
- debug("DDR: timing_cfg_1 = 0x%08x\n", ddr1->timing_cfg_1);
+ debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
/*
}
}
- ddr1->timing_cfg_2 = (0
+ ddr->timing_cfg_2 = (0
| ((add_lat & 0x7) << 28) /* ADD_LAT */
| ((cpo & 0x1f) << 23) /* CPO */
| ((wr_lat & 0x7) << 19) /* WR_LAT */
| ((four_act & 0x1f) << 0) /* FOUR_ACT */
);
- debug("DDR: timing_cfg_2 = 0x%08x\n", ddr1->timing_cfg_2);
+ debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
/*
}
/*
- * Encoded Burst Lenght of 4.
+ * Encoded Burst Length of 4.
*/
burst_len = 2; /* Fiat. */
mode_odt_enable = 0x40; /* 150 Ohm */
}
- ddr1->sdram_mode_1 =
+ ddr->sdram_mode_1 =
(0
| (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
| (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
| (burst_len << 0) /* Burst length */
);
- debug("DDR: sdram_mode = 0x%08x\n", ddr1->sdram_mode_1);
+ debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode_1);
/*
* Clear EMRS2 and EMRS3.
*/
- ddr1->sdram_mode_2 = 0;
- debug("DDR: sdram_mode_2 = 0x%08x\n", ddr1->sdram_mode_2);
+ ddr->sdram_mode_2 = 0;
+ debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
/*
* Set BSTOPRE to 0x100 for page mode
* If auto-charge is used, set BSTOPRE = 0
*/
- ddr1->sdram_interval =
+ ddr->sdram_interval =
(0
| (refresh_clk & 0x3fff) << 16
| 0x100
);
- debug("DDR: sdram_interval = 0x%08x\n", ddr1->sdram_interval);
+ debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
}
/*
*/
#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
if (spd.config == 0x02) {
- ddr1->err_disable = 0x0000000d;
- ddr1->err_sbe = 0x00ff0000;
+ ddr->err_disable = 0x0000000d;
+ ddr->err_sbe = 0x00ff0000;
}
- debug("DDR: err_disable = 0x%08x\n", ddr1->err_disable);
- debug("DDR: err_sbe = 0x%08x\n", ddr1->err_sbe);
+ debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
+ debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
#endif
asm("sync;isync");
* Use the DDR controller to auto initialize memory.
*/
d_init = 1;
- ddr1->sdram_data_init = CONFIG_MEM_INIT_VALUE;
- debug("DDR: ddr_data_init = 0x%08x\n", ddr1->sdram_data_init);
+ ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
+ debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
#else
/*
* Memory will be initialized via DMA, or not at all.
d_init = 0;
#endif
- ddr1->sdram_cfg_2 = (0
+ ddr->sdram_cfg_2 = (0
| (dqs_cfg << 26) /* Differential DQS */
| (odt_cfg << 21) /* ODT */
| (d_init << 4) /* D_INIT auto init DDR */
);
- debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr1->sdram_cfg_2);
+ debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2);
#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL
clk_adjust = 0x7;
}
- ddr1->sdram_clk_cntl = (0
+ ddr->sdram_clk_cntl = (0
| 0x80000000
| (clk_adjust << 23)
);
- debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr1->sdram_clk_cntl);
+ debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
}
#endif
+
/*
- * Figure out the settings for the sdram_cfg register.
- * Build up the entire register in 'sdram_cfg' before writing
- * since the write into the register will actually enable the
- * memory controller; all settings must be done before enabling.
- *
- * sdram_cfg[0] = 1 (ddr sdram logic enable)
- * sdram_cfg[1] = 1 (self-refresh-enable)
- * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
- * 010 DDR 1 SDRAM
- * 011 DDR 2 SDRAM
+ * Figure out memory size in Megabytes.
*/
- sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
- sdram_cfg_1 = (0
- | (1 << 31) /* Enable */
- | (1 << 30) /* Self refresh */
- | (sdram_type << 24) /* SDRAM type */
- );
+ debug("# ranks = %d, rank_density = 0x%08lx\n", n_ranks, rank_density);
+ memsize = n_ranks * rank_density / 0x100000;
+ return memsize;
+}
+
+
+unsigned int enable_ddr(unsigned int ddr_num)
+{
+ volatile immap_t *immap = (immap_t *)CFG_IMMR;
+ spd_eeprom_t spd1,spd2;
+ volatile ccsr_ddr_t *ddr;
+ unsigned sdram_cfg_1;
+ unsigned char sdram_type, mem_type, config, mod_attr;
+ unsigned char d_init;
+ unsigned int no_dimm1=0, no_dimm2=0;
+
+ /* Set up pointer to enable the current ddr controller */
+ if (ddr_num == 1)
+ ddr = &immap->im_ddr1;
+ else
+ ddr = &immap->im_ddr2;
/*
- * sdram_cfg[3] = RD_EN - registered DIMM enable
- * A value of 0x26 indicates micron registered DIMMS (micron.com)
+ * Read both dimm slots and decide whether
+ * or not to enable this controller.
*/
- if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) {
- sdram_cfg_1 |= 0x10000000; /* RD_EN */
+ memset((void *)&spd1,0,sizeof(spd1));
+ memset((void *)&spd2,0,sizeof(spd2));
+
+ if (ddr_num == 1) {
+ CFG_READ_SPD(SPD_EEPROM_ADDRESS1,
+ 0, 1, (uchar *) &spd1, sizeof(spd1));
+ CFG_READ_SPD(SPD_EEPROM_ADDRESS2,
+ 0, 1, (uchar *) &spd2, sizeof(spd2));
+ } else {
+ CFG_READ_SPD(SPD_EEPROM_ADDRESS3,
+ 0, 1, (uchar *) &spd1, sizeof(spd1));
+ CFG_READ_SPD(SPD_EEPROM_ADDRESS4,
+ 0, 1, (uchar *) &spd2, sizeof(spd2));
}
-#if defined(CONFIG_DDR_ECC)
/*
- * If the user wanted ECC (enabled via sdram_cfg[2])
+ * Check for supported memory module types.
*/
- if (spd.config == 0x02) {
- sdram_cfg_1 |= 0x20000000; /* ECC_EN */
+ if (spd1.mem_type != SPD_MEMTYPE_DDR
+ && spd1.mem_type != SPD_MEMTYPE_DDR2) {
+ no_dimm1 = 1;
+ } else {
+ debug("\nFound memory of type 0x%02lx ",spd1.mem_type );
+ if (spd1.mem_type == SPD_MEMTYPE_DDR)
+ debug("DDR I\n");
+ else
+ debug("DDR II\n");
+ }
+
+ if (spd2.mem_type != SPD_MEMTYPE_DDR &&
+ spd2.mem_type != SPD_MEMTYPE_DDR2) {
+ no_dimm2 = 1;
+ } else {
+ debug("\nFound memory of type 0x%02lx ",spd2.mem_type );
+ if (spd2.mem_type == SPD_MEMTYPE_DDR)
+ debug("DDR I\n");
+ else
+ debug("DDR II\n");
+ }
+
+#ifdef CONFIG_DDR_INTERLEAVE
+ if (no_dimm1) {
+ printf("For interleaved operation memory modules need to be present in CS0 DIMM slots of both DDR controllers!\n");
+ return 0;
}
#endif
/*
- * REV1 uses 1T timing.
- * REV2 may use 1T or 2T as configured by the user.
+ * Memory is not present in DIMM1 and DIMM2 - so do not enable DDRn
*/
- {
- uint pvr = get_pvr();
+ if (no_dimm1 && no_dimm2) {
+ printf("No memory modules found for DDR controller %d!!\n", ddr_num);
+ return 0;
+ } else {
+ mem_type = no_dimm2 ? spd1.mem_type : spd2.mem_type;
- if (pvr != PVR_85xx_REV1) {
+ /*
+ * Figure out the settings for the sdram_cfg register.
+ * Build up the entire register in 'sdram_cfg' before
+ * writing since the write into the register will
+ * actually enable the memory controller; all settings
+ * must be done before enabling.
+ *
+ * sdram_cfg[0] = 1 (ddr sdram logic enable)
+ * sdram_cfg[1] = 1 (self-refresh-enable)
+ * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
+ * 010 DDR 1 SDRAM
+ * 011 DDR 2 SDRAM
+ */
+ sdram_type = (mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
+ sdram_cfg_1 = (0
+ | (1 << 31) /* Enable */
+ | (1 << 30) /* Self refresh */
+ | (sdram_type << 24) /* SDRAM type */
+ );
+
+ /*
+ * sdram_cfg[3] = RD_EN - registered DIMM enable
+ * A value of 0x26 indicates micron registered
+ * DIMMS (micron.com)
+ */
+ mod_attr = no_dimm2 ? spd1.mod_attr : spd2.mod_attr;
+ if (mem_type == SPD_MEMTYPE_DDR && mod_attr == 0x26) {
+ sdram_cfg_1 |= 0x10000000; /* RD_EN */
+ }
+
+#if defined(CONFIG_DDR_ECC)
+
+ config = no_dimm2 ? spd1.config : spd2.config;
+
+ /*
+ * If the user wanted ECC (enabled via sdram_cfg[2])
+ */
+ if (config == 0x02) {
+ sdram_cfg_1 |= 0x20000000; /* ECC_EN */
+ }
+#endif
+
+ /*
+ * REV1 uses 1T timing.
+ * REV2 may use 1T or 2T as configured by the user.
+ */
+ {
+ uint pvr = get_pvr();
+
+ if (pvr != PVR_85xx_REV1) {
#if defined(CONFIG_DDR_2T_TIMING)
- /*
- * Enable 2T timing by setting sdram_cfg[16].
- */
- sdram_cfg_1 |= 0x8000; /* 2T_EN */
+ /*
+ * Enable 2T timing by setting sdram_cfg[16].
+ */
+ sdram_cfg_1 |= 0x8000; /* 2T_EN */
#endif
+ }
}
- }
- /*
- * 200 painful micro-seconds must elapse between
- * the DDR clock setup and the DDR config enable.
- */
- udelay(200);
+ /*
+ * 200 painful micro-seconds must elapse between
+ * the DDR clock setup and the DDR config enable.
+ */
+ udelay(200);
- /*
- * Go!
- */
- ddr1->sdram_cfg_1 = sdram_cfg_1;
+ /*
+ * Go!
+ */
+ ddr->sdram_cfg_1 = sdram_cfg_1;
- asm("sync;isync");
- udelay(500);
+ asm volatile("sync;isync");
+ udelay(500);
- debug("DDR: sdram_cfg = 0x%08x\n", ddr1->sdram_cfg_1);
+ debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg_1);
#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
- debug("DDR: memory initializing\n");
- /*
- * Poll until memory is initialized.
- * 512 Meg at 400 might hit this 200 times or so.
- */
- while ((ddr1->sdram_cfg_2 & (d_init << 4)) != 0) {
- udelay(1000);
+ d_init = 1;
+ debug("DDR: memory initializing\n");
+
+ /*
+ * Poll until memory is initialized.
+ * 512 Meg at 400 might hit this 200 times or so.
+ */
+ while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
+ udelay(1000);
+ }
+ debug("DDR: memory initialized\n\n");
+#endif
+
+ debug("Enabled DDR Controller %d\n", ddr_num);
+ return 1;
+ }
+}
+
+
+long int
+spd_sdram(void)
+{
+ int memsize_ddr1_dimm1 = 0;
+ int memsize_ddr1_dimm2 = 0;
+ int memsize_ddr2_dimm1 = 0;
+ int memsize_ddr2_dimm2 = 0;
+ int memsize_total = 0;
+ int memsize_ddr1 = 0;
+ int memsize_ddr2 = 0;
+ unsigned int ddr1_enabled = 0;
+ unsigned int ddr2_enabled = 0;
+ unsigned int law_size_ddr1;
+ unsigned int law_size_ddr2;
+ volatile immap_t *immap = (immap_t *)CFG_IMMR;
+ volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1;
+ volatile ccsr_ddr_t *ddr2 = &immap->im_ddr2;
+ volatile ccsr_local_mcm_t *mcm = &immap->im_local_mcm;
+
+#ifdef CONFIG_DDR_INTERLEAVE
+ unsigned int law_size_interleaved;
+
+ memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
+ 1, 1,
+ (unsigned int)memsize_total * 1024*1024);
+ memsize_total += memsize_ddr1_dimm1;
+
+ memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
+ 2, 1,
+ (unsigned int)memsize_total * 1024*1024);
+ memsize_total += memsize_ddr2_dimm1;
+
+ if (memsize_ddr1_dimm1 != memsize_ddr2_dimm1) {
+ if (memsize_ddr1_dimm1 < memsize_ddr2_dimm1)
+ memsize_total -= memsize_ddr1_dimm1;
+ else
+ memsize_total -= memsize_ddr2_dimm1;
+ debug("Total memory available for interleaving 0x%08lx\n",
+ memsize_total * 1024 * 1024);
+ debug("Adjusting CS0_BNDS to account for unequal DIMM sizes in interleaved memory\n");
+ ddr1->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
+ ddr2->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24;
+ debug("DDR1: cs0_bnds = 0x%08x\n", ddr1->cs0_bnds);
+ debug("DDR2: cs0_bnds = 0x%08x\n", ddr2->cs0_bnds);
}
- debug("DDR: memory initialized\n");
+
+ ddr1_enabled = enable_ddr(1);
+ ddr2_enabled = enable_ddr(2);
+
+ /*
+ * Both controllers need to be enabled for interleaving.
+ */
+ if (ddr1_enabled && ddr2_enabled) {
+ law_size_interleaved = 19 + __ilog2(memsize_total);
+
+ /*
+ * Set up LAWBAR for DDR 1 space.
+ */
+ mcm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
+ mcm->lawar1 = (LAWAR_EN
+ | LAWAR_TRGT_IF_DDR_INTERLEAVED
+ | (LAWAR_SIZE & law_size_interleaved));
+ debug("DDR: LAWBAR1=0x%08x\n", mcm->lawbar1);
+ debug("DDR: LAWAR1=0x%08x\n", mcm->lawar1);
+ debug("Interleaved memory size is 0x%08lx\n", memsize_total);
+
+#ifdef CONFIG_DDR_INTERLEAVE
+#if (CFG_PAGE_INTERLEAVING == 1)
+ printf("Page ");
+#elif (CFG_BANK_INTERLEAVING == 1)
+ printf("Bank ");
+#elif (CFG_SUPER_BANK_INTERLEAVING == 1)
+ printf("Super-bank ");
+#else
+ printf("Cache-line ");
#endif
+#endif
+ printf("Interleaved");
+ return memsize_total * 1024 * 1024;
+ } else {
+ printf("Interleaved memory not enabled - check CS0 DIMM slots for both controllers.\n");
+ return 0;
+ }
+
+#else
+ /*
+ * Call spd_sdram() routine to init ddr1 - pass I2c address,
+ * controller number, dimm number, and starting address.
+ */
+ memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1,
+ 1, 1,
+ (unsigned int)memsize_total * 1024*1024);
+ memsize_total += memsize_ddr1_dimm1;
+ memsize_ddr1_dimm2 = spd_init(SPD_EEPROM_ADDRESS2,
+ 1, 2,
+ (unsigned int)memsize_total * 1024*1024);
+ memsize_total += memsize_ddr1_dimm2;
/*
- * Figure out memory size in Megabytes.
+ * Enable the DDR controller - pass ddr controller number.
*/
- memsize = n_ranks * rank_density / 0x100000;
+ ddr1_enabled = enable_ddr(1);
+ /* Keep track of memory to be addressed by DDR1 */
+ memsize_ddr1 = memsize_ddr1_dimm1 + memsize_ddr1_dimm2;
- /*
+ /*
* First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
*/
- law_size = 19 + __ilog2(memsize);
+ if (ddr1_enabled) {
+ law_size_ddr1 = 19 + __ilog2(memsize_ddr1);
+
+ /*
+ * Set up LAWBAR for DDR 1 space.
+ */
+ mcm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
+ mcm->lawar1 = (LAWAR_EN
+ | LAWAR_TRGT_IF_DDR1
+ | (LAWAR_SIZE & law_size_ddr1));
+ debug("DDR: LAWBAR1=0x%08x\n", mcm->lawbar1);
+ debug("DDR: LAWAR1=0x%08x\n", mcm->lawar1);
+ }
+
+#if (CONFIG_NUM_DDR_CONTROLLERS > 1)
+ memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3,
+ 2, 1,
+ (unsigned int)memsize_total * 1024*1024);
+ memsize_total += memsize_ddr2_dimm1;
+
+ memsize_ddr2_dimm2 = spd_init(SPD_EEPROM_ADDRESS4,
+ 2, 2,
+ (unsigned int)memsize_total * 1024*1024);
+ memsize_total += memsize_ddr2_dimm2;
+
+ ddr2_enabled = enable_ddr(2);
+
+ /* Keep track of memory to be addressed by DDR2 */
+ memsize_ddr2 = memsize_ddr2_dimm1 + memsize_ddr2_dimm2;
+
+ if (ddr2_enabled) {
+ law_size_ddr2 = 19 + __ilog2(memsize_ddr2);
+
+ /*
+ * Set up LAWBAR for DDR 2 space.
+ */
+ if (ddr1_enabled)
+ mcm->lawbar8 = (((memsize_ddr1 * 1024 * 1024) >> 12)
+ & 0xfffff);
+ else
+ mcm->lawbar8 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
+
+ mcm->lawar8 = (LAWAR_EN
+ | LAWAR_TRGT_IF_DDR2
+ | (LAWAR_SIZE & law_size_ddr2));
+ debug("\nDDR: LAWBAR8=0x%08x\n", mcm->lawbar8);
+ debug("DDR: LAWAR8=0x%08x\n", mcm->lawar8);
+ }
+#endif /* CONFIG_NUM_DDR_CONTROLLERS > 1 */
+
+ debug("\nMemory sizes are DDR1 = 0x%08lx, DDR2 = 0x%08lx\n",
+ memsize_ddr1, memsize_ddr2);
/*
- * Set up LAWBAR for all of DDR.
+ * If neither DDR controller is enabled return 0.
*/
- mcm->lawbar1 = ((CFG_DDR_SDRAM_BASE >> 12) & 0xfffff);
- mcm->lawar1 = (LAWAR_EN
- | LAWAR_TRGT_IF_DDR
- | (LAWAR_SIZE & law_size));
- debug("DDR: LAWBAR1=0x%08x\n", mcm->lawbar1);
- debug("DDR: LARAR1=0x%08x\n", mcm->lawar1);
+ if (!ddr1_enabled && !ddr2_enabled)
+ return 0;
+ else {
+ printf("Non-interleaved");
+ return memsize_total * 1024 * 1024;
+ }
- return memsize * 1024 * 1024;
+#endif /* CONFIG_DDR_INTERLEAVE */
}
+
#endif /* CONFIG_SPD_EEPROM */