* Shared functions for accessing and configuring the MAC
*/
+
#include "e1000_hw.h"
static int32_t e1000_set_phy_type(struct e1000_hw *hw);
{
DEBUGFUNC("e1000_set_phy_type");
- if(hw->mac_type == e1000_undefined)
+ if (hw->mac_type == e1000_undefined)
return -E1000_ERR_PHY_TYPE;
- switch(hw->phy_id) {
+ switch (hw->phy_id) {
case M88E1000_E_PHY_ID:
case M88E1000_I_PHY_ID:
case M88E1011_I_PHY_ID:
hw->phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID:
- if(hw->mac_type == e1000_82541 ||
- hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547 ||
- hw->mac_type == e1000_82547_rev_2) {
+ if (hw->mac_type == e1000_82541 ||
+ hw->mac_type == e1000_82541_rev_2 ||
+ hw->mac_type == e1000_82547 ||
+ hw->mac_type == e1000_82547_rev_2) {
hw->phy_type = e1000_phy_igp;
break;
}
return E1000_SUCCESS;
}
+
/******************************************************************************
* IGP phy init script - initializes the GbE PHY
*
DEBUGFUNC("e1000_phy_init_script");
- if(hw->phy_init_script) {
+ if (hw->phy_init_script) {
msec_delay(20);
/* Save off the current value of register 0x2F5B to be restored at
msec_delay(5);
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82541:
case e1000_82547:
e1000_write_phy_reg(hw, 0x1F95, 0x0001);
/* Now enable the transmitter */
e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if(hw->mac_type == e1000_82547) {
+ if (hw->mac_type == e1000_82547) {
uint16_t fused, fine, coarse;
/* Move to analog registers page */
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
- if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
+ if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
- if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
+ if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
- } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
+ } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
return -E1000_ERR_MAC_TYPE;
}
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_ich8lan:
hw->swfwhw_semaphore_present = TRUE;
hw->asf_firmware_present = TRUE;
DEBUGFUNC("e1000_set_media_type");
- if(hw->mac_type != e1000_82543) {
+ if (hw->mac_type != e1000_82543) {
/* tbi_compatibility is only valid on 82543 */
hw->tbi_compatibility_en = FALSE;
}
DEBUGFUNC("e1000_reset_hw");
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
- if(hw->mac_type == e1000_82542_rev2_0) {
+ if (hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
e1000_pci_clear_mwi(hw);
}
- if(hw->bus_type == e1000_bus_type_pci_express) {
+ if (hw->bus_type == e1000_bus_type_pci_express) {
/* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
- if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
+ if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
DEBUGOUT("PCI-E Master disable polling has failed.\n");
}
}
ctrl = E1000_READ_REG(hw, CTRL);
/* Must reset the PHY before resetting the MAC */
- if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
msec_delay(5);
}
/* Must acquire the MDIO ownership before MAC reset.
* Ownership defaults to firmware after a reset. */
- if(hw->mac_type == e1000_82573) {
+ if (hw->mac_type == e1000_82573) {
timeout = 10;
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
- if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
+ if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
break;
else
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
msec_delay(2);
timeout--;
- } while(timeout);
+ } while (timeout);
}
/* Workaround for ICH8 bit corruption issue in FIFO memory */
*/
DEBUGOUT("Issuing a global reset to MAC\n");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82544:
case e1000_82540:
case e1000_82545:
* device. Later controllers reload the EEPROM automatically, so just wait
* for reload to complete.
*/
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_ich8lan:
case e1000_80003es2lan:
ret_val = e1000_get_auto_rd_done(hw);
- if(ret_val)
+ if (ret_val)
/* We don't want to continue accessing MAC registers. */
return ret_val;
break;
}
/* Disable HW ARPs on ASF enabled adapters */
- if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
+ if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
manc = E1000_READ_REG(hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(hw, MANC, manc);
}
- if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
e1000_phy_init_script(hw);
/* Configure activity LED after PHY reset */
icr = E1000_READ_REG(hw, ICR);
/* If MWI was previously enabled, reenable it. */
- if(hw->mac_type == e1000_82542_rev2_0) {
- if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ if (hw->mac_type == e1000_82542_rev2_0) {
+ if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
e1000_pci_set_mwi(hw);
}
/* Initialize Identification LED */
ret_val = e1000_id_led_init(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Initializing Identification LED\n");
return ret_val;
}
}
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
- if(hw->mac_type == e1000_82542_rev2_0) {
+ if (hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
e1000_pci_clear_mwi(hw);
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
e1000_init_rx_addrs(hw);
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
- if(hw->mac_type == e1000_82542_rev2_0) {
+ if (hw->mac_type == e1000_82542_rev2_0) {
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_FLUSH(hw);
msec_delay(1);
- if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
+ if (hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
e1000_pci_set_mwi(hw);
}
mta_size = E1000_MC_TBL_SIZE;
if (hw->mac_type == e1000_ich8lan)
mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
- for(i = 0; i < mta_size; i++) {
+ for (i = 0; i < mta_size; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
/* use write flush to prevent Memory Write Block (MWB) from
* occuring when accessing our register space */
* gives equal priority to transmits and receives. Valid only on
* 82542 and 82543 silicon.
*/
- if(hw->dma_fairness && hw->mac_type <= e1000_82543) {
+ if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
}
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
default:
/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
- if(hw->bus_type == e1000_bus_type_pcix) {
+ if (hw->bus_type == e1000_bus_type_pcix) {
e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
&pcix_stat_hi_word);
PCIX_COMMAND_MMRBC_SHIFT;
stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
PCIX_STATUS_HI_MMRBC_SHIFT;
- if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+ if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
- if(cmd_mmrbc > stat_mmrbc) {
+ if (cmd_mmrbc > stat_mmrbc) {
pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
ret_val = e1000_setup_link(hw);
/* Set the transmit descriptor write-back policy */
- if(hw->mac_type > e1000_82544) {
+ if (hw->mac_type > e1000_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
switch (hw->mac_type) {
case e1000_ich8lan:
ctrl = E1000_READ_REG(hw, TXDCTL1);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- if(hw->mac_type >= e1000_82571)
+ if (hw->mac_type >= e1000_82571)
ctrl |= E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, TXDCTL1, ctrl);
break;
}
-
if (hw->mac_type == e1000_82573) {
uint32_t gcr = E1000_READ_REG(hw, GCR);
gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
DEBUGFUNC("e1000_adjust_serdes_amplitude");
- if(hw->media_type != e1000_media_type_internal_serdes)
+ if (hw->media_type != e1000_media_type_internal_serdes)
return E1000_SUCCESS;
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
return ret_val;
}
- if(eeprom_data != EEPROM_RESERVED_WORD) {
+ if (eeprom_data != EEPROM_RESERVED_WORD) {
/* Adjust SERDES output amplitude only. */
eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
- if(hw->mac_type == e1000_82542_rev2_0)
+ if (hw->mac_type == e1000_82542_rev2_0)
hw->fc &= (~e1000_fc_tx_pause);
- if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
+ if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
hw->fc &= (~e1000_fc_rx_pause);
hw->original_fc = hw->fc;
* or e1000_phy_setup() is called.
*/
if (hw->mac_type == e1000_82543) {
- ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
- 1, &eeprom_data);
- if (ret_val) {
- DEBUGOUT("EEPROM Read Error\n");
- return -E1000_ERR_EEPROM;
- }
+ ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
+ 1, &eeprom_data);
+ if (ret_val) {
+ DEBUGOUT("EEPROM Read Error\n");
+ return -E1000_ERR_EEPROM;
+ }
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
- if(!(hw->fc & e1000_fc_tx_pause)) {
+ if (!(hw->fc & e1000_fc_tx_pause)) {
E1000_WRITE_REG(hw, FCRTL, 0);
E1000_WRITE_REG(hw, FCRTH, 0);
} else {
/* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames.
*/
- if(hw->fc_send_xon) {
+ if (hw->fc_send_xon) {
E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
} else {
* the EEPROM.
*/
ctrl = E1000_READ_REG(hw, CTRL);
- if(hw->media_type == e1000_media_type_fiber)
+ if (hw->media_type == e1000_media_type_fiber)
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
ret_val = e1000_adjust_serdes_amplitude(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Take the link out of reset */
/* Adjust VCO speed to improve BER performance */
ret_val = e1000_set_vco_speed(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
e1000_config_collision_dist(hw);
* less than 500 milliseconds even if the other end is doing it in SW).
* For internal serdes, we just assume a signal is present, then poll.
*/
- if(hw->media_type == e1000_media_type_internal_serdes ||
+ if (hw->media_type == e1000_media_type_internal_serdes ||
(E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
DEBUGOUT("Looking for Link\n");
- for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
+ for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
msec_delay(10);
status = E1000_READ_REG(hw, STATUS);
- if(status & E1000_STATUS_LU) break;
+ if (status & E1000_STATUS_LU) break;
}
- if(i == (LINK_UP_TIMEOUT / 10)) {
+ if (i == (LINK_UP_TIMEOUT / 10)) {
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
hw->autoneg_failed = 1;
/* AutoNeg failed to achieve a link, so we'll call
* non-autonegotiating link partners.
*/
ret_val = e1000_check_for_link(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error while checking for link\n");
return ret_val;
}
* the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset.
*/
- if(hw->mac_type > e1000_82543) {
+ if (hw->mac_type > e1000_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, CTRL, ctrl);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
E1000_WRITE_REG(hw, CTRL, ctrl);
ret_val = e1000_phy_hw_reset(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
/* Make sure we have a valid PHY */
ret_val = e1000_detect_gig_phy(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error, did not detect valid phy.\n");
return ret_val;
}
/* Set PHY to class A mode (if necessary) */
ret_val = e1000_set_phy_mode(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if((hw->mac_type == e1000_82545_rev_3) ||
+ if ((hw->mac_type == e1000_82545_rev_3) ||
(hw->mac_type == e1000_82546_rev_3)) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
phy_data |= 0x00000008;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
}
- if(hw->mac_type <= e1000_82543 ||
- hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
- hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
+ if (hw->mac_type <= e1000_82543 ||
+ hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
+ hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
hw->phy_reset_disable = FALSE;
return E1000_SUCCESS;
return ret_val;
}
- /* Wait 10ms for MAC to configure PHY from eeprom settings */
+ /* Wait 15ms for MAC to configure PHY from eeprom settings */
msec_delay(15);
if (hw->mac_type != e1000_ich8lan) {
/* Configure activity LED after PHY reset */
}
}
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* set auto-master slave resolution settings */
- if(hw->autoneg) {
+ if (hw->autoneg) {
e1000_ms_type phy_ms_setting = hw->master_slave;
- if(hw->ffe_config_state == e1000_ffe_config_active)
+ if (hw->ffe_config_state == e1000_ffe_config_active)
hw->ffe_config_state = e1000_ffe_config_enabled;
- if(hw->dsp_config_state == e1000_dsp_config_activated)
+ if (hw->dsp_config_state == e1000_dsp_config_activated)
hw->dsp_config_state = e1000_dsp_config_enabled;
/* when autonegotiation advertisment is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default. */
- if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
+ if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
- ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
+ ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ &phy_data);
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
- ret_val = e1000_write_phy_reg(hw,
- IGP01E1000_PHY_PORT_CONFIG,
- phy_data);
- if(ret_val)
+ ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+ phy_data);
+ if (ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~CR_1000T_MS_ENABLE;
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* load defaults for future use */
break;
}
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
DEBUGFUNC("e1000_copper_link_ggp_setup");
- if(!hw->phy_reset_disable) {
+ if (!hw->phy_reset_disable) {
/* Enable CRS on TX for half-duplex operation. */
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Options:
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
* 1 - Enabled
*/
phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
- if(hw->disable_polarity_correction == 1)
+ if (hw->disable_polarity_correction == 1)
phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* SW Reset the PHY so all changes take effect */
return ret_val;
phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
-
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
phy_data);
+
if (ret_val)
return ret_val;
}
DEBUGFUNC("e1000_copper_link_mgp_setup");
- if(hw->phy_reset_disable)
+ if (hw->phy_reset_disable)
return E1000_SUCCESS;
/* Enable CRS on TX. This must be set for half-duplex operation. */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
- if(hw->disable_polarity_correction == 1)
+ if (hw->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
/* SW Reset the PHY so all changes take effect */
ret_val = e1000_phy_reset(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
- if(hw->autoneg_advertised == 0)
+ if (hw->autoneg_advertised == 0)
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* IFE phy only supports 10/100 */
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Setting up Auto-Negotiation\n");
return ret_val;
}
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
- if(hw->wait_autoneg_complete) {
+ if (hw->wait_autoneg_complete) {
ret_val = e1000_wait_autoneg(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error while waiting for autoneg to complete\n");
return ret_val;
}
return E1000_SUCCESS;
}
-
/******************************************************************************
* Config the MAC and the PHY after link is up.
* 1) Set up the MAC to the current PHY speed/duplex
int32_t ret_val;
DEBUGFUNC("e1000_copper_link_postconfig");
- if(hw->mac_type >= e1000_82544) {
+ if (hw->mac_type >= e1000_82544) {
e1000_config_collision_dist(hw);
} else {
ret_val = e1000_config_mac_to_phy(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
ret_val = e1000_config_fc_after_link_up(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Configuring Flow Control\n");
return ret_val;
}
/* Config DSP to improve Giga link quality */
- if(hw->phy_type == e1000_phy_igp) {
+ if (hw->phy_type == e1000_phy_igp) {
ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Configuring DSP after link up\n");
return ret_val;
}
/* Check if it is a valid PHY and set PHY mode if necessary. */
ret_val = e1000_copper_link_preconfig(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
switch (hw->mac_type) {
hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2) {
ret_val = e1000_copper_link_igp_setup(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else if (hw->phy_type == e1000_phy_m88) {
ret_val = e1000_copper_link_mgp_setup(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else if (hw->phy_type == e1000_phy_gg82563) {
ret_val = e1000_copper_link_ggp_setup(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
- if(hw->autoneg) {
+ if (hw->autoneg) {
/* Setup autoneg and flow control advertisement
* and perform autonegotiation */
ret_val = e1000_copper_link_autoneg(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else {
/* PHY will be set to 10H, 10F, 100H,or 100F
* depending on value from forced_speed_duplex. */
DEBUGOUT("Forcing speed and duplex\n");
ret_val = e1000_phy_force_speed_duplex(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Forcing Speed and Duplex\n");
return ret_val;
}
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
- for(i = 0; i < 10; i++) {
+ for (i = 0; i < 10; i++) {
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(phy_data & MII_SR_LINK_STATUS) {
+ if (phy_data & MII_SR_LINK_STATUS) {
/* Config the MAC and PHY after link is up */
ret_val = e1000_copper_link_postconfig(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
DEBUGOUT("Valid link established!!!\n");
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
if (hw->phy_type != e1000_phy_ife) {
DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
+ if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
DEBUGOUT("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
+ if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
DEBUGOUT("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
+ if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
DEBUGOUT("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
+ if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
DEBUGOUT("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
- if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
+ if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
}
/* Do we want to advertise 1000 Mb Full Duplex? */
- if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
+ if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
if (hw->phy_type == e1000_phy_ife) {
}
ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
/* Read the MII Control Register. */
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* We need to disable autoneg in order to force link and duplex. */
mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
/* Are we forcing Full or Half Duplex? */
- if(hw->forced_speed_duplex == e1000_100_full ||
- hw->forced_speed_duplex == e1000_10_full) {
+ if (hw->forced_speed_duplex == e1000_100_full ||
+ hw->forced_speed_duplex == e1000_10_full) {
/* We want to force full duplex so we SET the full duplex bits in the
* Device and MII Control Registers.
*/
}
/* Are we forcing 100Mbps??? */
- if(hw->forced_speed_duplex == e1000_100_full ||
+ if (hw->forced_speed_duplex == e1000_100_full ||
hw->forced_speed_duplex == e1000_100_half) {
/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
ctrl |= E1000_CTRL_SPD_100;
if ((hw->phy_type == e1000_phy_m88) ||
(hw->phy_type == e1000_phy_gg82563)) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
* forced whenever speed or duplex are forced.
*/
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
/* Write back the modified PHY MII control register. */
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
udelay(1);
* only if the user has set wait_autoneg_complete to 1, which is
* the default.
*/
- if(hw->wait_autoneg_complete) {
+ if (hw->wait_autoneg_complete) {
/* We will wait for autoneg to complete. */
DEBUGOUT("Waiting for forced speed/duplex link.\n");
mii_status_reg = 0;
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg Complete bit
* to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ if (mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay(100);
}
- if((i == 0) &&
+ if ((i == 0) &&
((hw->phy_type == e1000_phy_m88) ||
(hw->phy_type == e1000_phy_gg82563))) {
/* We didn't get link. Reset the DSP and wait again for link. */
ret_val = e1000_phy_reset_dsp(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error Resetting PHY DSP\n");
return ret_val;
}
}
/* This loop will early-out if the link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
+ if (mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay(100);
/* Read the MII Status Register and wait for Auto-Neg Complete bit
* to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
}
* defaults back to a 2.5MHz clock when the PHY is reset.
*/
ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* In addition, because of the s/w reset above, we need to enable CRS on
* TX. This must be set for both full and half duplex operation.
*/
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == e1000_10_full ||
- hw->forced_speed_duplex == e1000_10_half)) {
+ if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
+ (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
+ hw->forced_speed_duplex == e1000_10_half)) {
ret_val = e1000_polarity_reversal_workaround(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
} else if (hw->phy_type == e1000_phy_gg82563) {
* registers depending on negotiated values.
*/
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(phy_data & M88E1000_PSSR_DPLX)
+ if (phy_data & M88E1000_PSSR_DPLX)
ctrl |= E1000_CTRL_FD;
else
ctrl &= ~E1000_CTRL_FD;
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
- if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
+ if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
- else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
+ else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
/* Write the configured values back to the Device Control Reg. */
}
/* Disable TX Flow Control for 82542 (rev 2.0) */
- if(hw->mac_type == e1000_82542_rev2_0)
+ if (hw->mac_type == e1000_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
E1000_WRITE_REG(hw, CTRL, ctrl);
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
- if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
- ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) ||
- ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
+ if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
+ ((hw->media_type == e1000_media_type_internal_serdes) &&
+ (hw->autoneg_failed)) ||
+ ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
ret_val = e1000_force_mac_fc(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
- if((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
+ if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
+ if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement Register
* (Address 4) and the Auto_Negotiation Base Page Ability
*/
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Two bits in the Auto Negotiation Advertisement Register
* 1 | DC | 1 | DC | e1000_fc_full
*
*/
- if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+ if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
- if(hw->original_fc == e1000_fc_full) {
+ if (hw->original_fc == e1000_fc_full) {
hw->fc = e1000_fc_full;
DEBUGOUT("Flow Control = FULL.\n");
} else {
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*
*/
- else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = e1000_fc_tx_pause;
DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
}
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
- else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
- (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
- !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
- (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+ else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+ (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+ !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+ (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
}
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
- else if((hw->original_fc == e1000_fc_none ||
- hw->original_fc == e1000_fc_tx_pause) ||
- hw->fc_strict_ieee) {
+ else if ((hw->original_fc == e1000_fc_none ||
+ hw->original_fc == e1000_fc_tx_pause) ||
+ hw->fc_strict_ieee) {
hw->fc = e1000_fc_none;
DEBUGOUT("Flow Control = NONE.\n");
} else {
* enabled per IEEE 802.3 spec.
*/
ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
- if(duplex == HALF_DUPLEX)
+ if (duplex == HALF_DUPLEX)
hw->fc = e1000_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000_force_mac_fc(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal. This applies to fiber media only.
*/
- if((hw->media_type == e1000_media_type_fiber) ||
- (hw->media_type == e1000_media_type_internal_serdes)) {
+ if ((hw->media_type == e1000_media_type_fiber) ||
+ (hw->media_type == e1000_media_type_internal_serdes)) {
rxcw = E1000_READ_REG(hw, RXCW);
- if(hw->media_type == e1000_media_type_fiber) {
+ if (hw->media_type == e1000_media_type_fiber) {
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
- if(status & E1000_STATUS_LU)
+ if (status & E1000_STATUS_LU)
hw->get_link_status = FALSE;
}
}
* receive a Link Status Change interrupt or we have Rx Sequence
* Errors.
*/
- if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
+ if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
* Read the register twice since the link bit is sticky.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(phy_data & MII_SR_LINK_STATUS) {
+ if (phy_data & MII_SR_LINK_STATUS) {
hw->get_link_status = FALSE;
/* Check if there was DownShift, must be checked immediately after
* link-up */
* happen due to the execution of this workaround.
*/
- if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
- (!hw->autoneg) &&
- (hw->forced_speed_duplex == e1000_10_full ||
- hw->forced_speed_duplex == e1000_10_half)) {
+ if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
+ (!hw->autoneg) &&
+ (hw->forced_speed_duplex == e1000_10_full ||
+ hw->forced_speed_duplex == e1000_10_half)) {
E1000_WRITE_REG(hw, IMC, 0xffffffff);
ret_val = e1000_polarity_reversal_workaround(hw);
icr = E1000_READ_REG(hw, ICR);
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
- if(!hw->autoneg) return -E1000_ERR_CONFIG;
+ if (!hw->autoneg) return -E1000_ERR_CONFIG;
/* optimize the dsp settings for the igp phy */
e1000_config_dsp_after_link_change(hw, TRUE);
* speed/duplex on the MAC to the current PHY speed/duplex
* settings.
*/
- if(hw->mac_type >= e1000_82544)
+ if (hw->mac_type >= e1000_82544)
e1000_config_collision_dist(hw);
else {
ret_val = e1000_config_mac_to_phy(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
* have had to re-autoneg with a different link partner.
*/
ret_val = e1000_config_fc_after_link_up(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
* at gigabit speed, then TBI compatibility is not needed. If we are
* at gigabit speed, we turn on TBI compatibility.
*/
- if(hw->tbi_compatibility_en) {
+ if (hw->tbi_compatibility_en) {
uint16_t speed, duplex;
ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
/* If link speed is not set to gigabit speed, we do not need
* to enable TBI compatibility.
*/
- if(hw->tbi_compatibility_on) {
+ if (hw->tbi_compatibility_on) {
/* If we previously were in the mode, turn it off. */
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~E1000_RCTL_SBP;
* packets. Some frames have an additional byte on the end and
* will look like CRC errors to to the hardware.
*/
- if(!hw->tbi_compatibility_on) {
+ if (!hw->tbi_compatibility_on) {
hw->tbi_compatibility_on = TRUE;
rctl = E1000_READ_REG(hw, RCTL);
rctl |= E1000_RCTL_SBP;
* auto-negotiation time to complete, in case the cable was just plugged
* in. The autoneg_failed flag does this.
*/
- else if((((hw->media_type == e1000_media_type_fiber) &&
+ else if ((((hw->media_type == e1000_media_type_fiber) &&
((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
- (hw->media_type == e1000_media_type_internal_serdes)) &&
- (!(status & E1000_STATUS_LU)) &&
- (!(rxcw & E1000_RXCW_C))) {
- if(hw->autoneg_failed == 0) {
+ (hw->media_type == e1000_media_type_internal_serdes)) &&
+ (!(status & E1000_STATUS_LU)) &&
+ (!(rxcw & E1000_RXCW_C))) {
+ if (hw->autoneg_failed == 0) {
hw->autoneg_failed = 1;
return 0;
}
/* Configure Flow Control after forcing link up. */
ret_val = e1000_config_fc_after_link_up(hw);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
* Device Control register in an attempt to auto-negotiate with our link
* partner.
*/
- else if(((hw->media_type == e1000_media_type_fiber) ||
- (hw->media_type == e1000_media_type_internal_serdes)) &&
- (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+ else if (((hw->media_type == e1000_media_type_fiber) ||
+ (hw->media_type == e1000_media_type_internal_serdes)) &&
+ (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
E1000_WRITE_REG(hw, TXCW, hw->txcw);
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
/* If we force link for non-auto-negotiation switch, check link status
* based on MAC synchronization for internal serdes media type.
*/
- else if((hw->media_type == e1000_media_type_internal_serdes) &&
- !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+ else if ((hw->media_type == e1000_media_type_internal_serdes) &&
+ !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
/* SYNCH bit and IV bit are sticky. */
udelay(10);
- if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
- if(!(rxcw & E1000_RXCW_IV)) {
+ if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
+ if (!(rxcw & E1000_RXCW_IV)) {
hw->serdes_link_down = FALSE;
DEBUGOUT("SERDES: Link is up.\n");
}
DEBUGOUT("SERDES: Link is down.\n");
}
}
- if((hw->media_type == e1000_media_type_internal_serdes) &&
- (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
+ if ((hw->media_type == e1000_media_type_internal_serdes) &&
+ (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
}
return E1000_SUCCESS;
DEBUGFUNC("e1000_get_speed_and_duplex");
- if(hw->mac_type >= e1000_82543) {
+ if (hw->mac_type >= e1000_82543) {
status = E1000_READ_REG(hw, STATUS);
- if(status & E1000_STATUS_SPEED_1000) {
+ if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
- } else if(status & E1000_STATUS_SPEED_100) {
+ } else if (status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
DEBUGOUT("10 Mbs, ");
}
- if(status & E1000_STATUS_FD) {
+ if (status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\n");
} else {
* if it is operating at half duplex. Here we set the duplex settings to
* match the duplex in the link partner's capabilities.
*/
- if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
+ if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
+ if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
*duplex = HALF_DUPLEX;
else {
ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
+ if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
(*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
*duplex = HALF_DUPLEX;
}
DEBUGOUT("Waiting for Auto-Neg to complete.\n");
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
- for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
+ for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(phy_data & MII_SR_AUTONEG_COMPLETE) {
+ if (phy_data & MII_SR_AUTONEG_COMPLETE) {
return E1000_SUCCESS;
}
msec_delay(100);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
- while(mask) {
+ while (mask) {
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
* then raising and lowering the Management Data Clock. A "0" is
* shifted out to the PHY by setting the MDIO bit to "0" and then
* raising and lowering the clock.
*/
- if(data & mask) ctrl |= E1000_CTRL_MDIO;
- else ctrl &= ~E1000_CTRL_MDIO;
+ if (data & mask)
+ ctrl |= E1000_CTRL_MDIO;
+ else
+ ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
- for(data = 0, i = 0; i < 16; i++) {
+ for (data = 0, i = 0; i < 16; i++) {
data = data << 1;
e1000_raise_mdi_clk(hw, &ctrl);
ctrl = E1000_READ_REG(hw, CTRL);
/* Check to see if we shifted in a "1". */
- if(ctrl & E1000_CTRL_MDIO) data |= 1;
+ if (ctrl & E1000_CTRL_MDIO)
+ data |= 1;
e1000_lower_mdi_clk(hw, &ctrl);
}
if (!hw->swfw_sync_present)
return e1000_get_hw_eeprom_semaphore(hw);
- while(timeout) {
+ while (timeout) {
if (e1000_get_hw_eeprom_semaphore(hw))
return -E1000_ERR_SWFW_SYNC;
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr);
- if(ret_val) {
+ if (ret_val) {
e1000_swfw_sync_release(hw, swfw);
return ret_val;
}
DEBUGFUNC("e1000_read_phy_reg_ex");
- if(reg_addr > MAX_PHY_REG_ADDRESS) {
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
- if(hw->mac_type > e1000_82543) {
+ if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, and register address in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
- for(i = 0; i < 64; i++) {
+ for (i = 0; i < 64; i++) {
udelay(50);
mdic = E1000_READ_REG(hw, MDIC);
- if(mdic & E1000_MDIC_READY) break;
+ if (mdic & E1000_MDIC_READY) break;
}
- if(!(mdic & E1000_MDIC_READY)) {
+ if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
- if(mdic & E1000_MDIC_ERROR) {
+ if (mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -E1000_ERR_PHY;
}
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr);
- if(ret_val) {
+ if (ret_val) {
e1000_swfw_sync_release(hw, swfw);
return ret_val;
}
DEBUGFUNC("e1000_write_phy_reg_ex");
- if(reg_addr > MAX_PHY_REG_ADDRESS) {
+ if (reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
- if(hw->mac_type > e1000_82543) {
+ if (hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, register address, and data intended
* for the PHY register in the MDI Control register. The MAC will take
* care of interfacing with the PHY to send the desired data.
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
- for(i = 0; i < 640; i++) {
+ for (i = 0; i < 641; i++) {
udelay(5);
mdic = E1000_READ_REG(hw, MDIC);
- if(mdic & E1000_MDIC_READY) break;
+ if (mdic & E1000_MDIC_READY) break;
}
- if(!(mdic & E1000_MDIC_READY)) {
+ if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
DEBUGOUT("Resetting Phy...\n");
- if(hw->mac_type > e1000_82543) {
+ if (hw->mac_type > e1000_82543) {
if ((hw->mac_type == e1000_80003es2lan) &&
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
swfw = E1000_SWFW_PHY1_SM;
}
udelay(150);
- if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
+ if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
/* Configure activity LED after PHY reset */
led_ctrl = E1000_READ_REG(hw, LEDCTL);
led_ctrl &= IGP_ACTIVITY_LED_MASK;
/* Wait for FW to finish PHY configuration. */
ret_val = e1000_get_phy_cfg_done(hw);
+ if (ret_val != E1000_SUCCESS)
+ return ret_val;
e1000_release_software_semaphore(hw);
- if ((hw->mac_type == e1000_ich8lan) &&
- (hw->phy_type == e1000_phy_igp_3)) {
- ret_val = e1000_init_lcd_from_nvm(hw);
- if (ret_val)
- return ret_val;
- }
+ if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
+ ret_val = e1000_init_lcd_from_nvm(hw);
+
return ret_val;
}
case e1000_82572:
case e1000_ich8lan:
ret_val = e1000_phy_hw_reset(hw);
- if(ret_val)
+ if (ret_val)
return ret_val;
break;
default:
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= MII_CR_RESET;
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
udelay(1);
break;
}
- if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
+ if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
e1000_phy_init_script(hw);
return E1000_SUCCESS;
if (hw->kmrn_lock_loss_workaround_disabled)
return E1000_SUCCESS;
- /* Make sure link is up before proceeding. If not just return.
- * Attempting this while link is negotiating fouls up link
+ /* Make sure link is up before proceeding. If not just return.
+ * Attempting this while link is negotiating fouled up link
* stability */
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
hw->phy_id = (uint32_t) (phy_id_high << 16);
udelay(20);
ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82543:
- if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
+ if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
break;
case e1000_82544:
- if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
+ if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
- if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
+ if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
- if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
+ if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
break;
case e1000_82573:
- if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
+ if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
break;
case e1000_80003es2lan:
if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
do {
if (hw->phy_type != e1000_phy_gg82563) {
ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
- if(ret_val) break;
+ if (ret_val) break;
}
ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
- if(ret_val) break;
+ if (ret_val) break;
ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
- if(ret_val) break;
+ if (ret_val) break;
ret_val = E1000_SUCCESS;
- } while(0);
+ } while (0);
return ret_val;
}
* hw - Struct containing variables accessed by shared code
* phy_info - PHY information structure
******************************************************************************/
-static int32_t
+int32_t
e1000_phy_igp_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
/* Check polarity status */
ret_val = e1000_check_polarity(hw, &polarity);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->cable_polarity = polarity;
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
IGP01E1000_PSSR_MDIX_SHIFT;
- if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
/* Local/Remote Receiver Information are only valid at 1000 Mbps */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
/* Get cable length */
ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Translate to old method */
average = (max_length + min_length) / 2;
- if(average <= e1000_igp_cable_length_50)
+ if (average <= e1000_igp_cable_length_50)
phy_info->cable_length = e1000_cable_length_50;
- else if(average <= e1000_igp_cable_length_80)
+ else if (average <= e1000_igp_cable_length_80)
phy_info->cable_length = e1000_cable_length_50_80;
- else if(average <= e1000_igp_cable_length_110)
+ else if (average <= e1000_igp_cable_length_110)
phy_info->cable_length = e1000_cable_length_80_110;
- else if(average <= e1000_igp_cable_length_140)
+ else if (average <= e1000_igp_cable_length_140)
phy_info->cable_length = e1000_cable_length_110_140;
else
phy_info->cable_length = e1000_cable_length_140;
phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->extended_10bt_distance =
/* Check polarity status */
ret_val = e1000_check_polarity(hw, &polarity);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->cable_polarity = polarity;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
}
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
phy_info->local_rx = e1000_1000t_rx_status_undefined;
phy_info->remote_rx = e1000_1000t_rx_status_undefined;
- if(hw->media_type != e1000_media_type_copper) {
+ if (hw->media_type != e1000_media_type_copper) {
DEBUGOUT("PHY info is only valid for copper media\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
+ if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
DEBUGOUT("PHY info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
{
DEBUGFUNC("e1000_validate_mdi_settings");
- if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
+ if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
DEBUGOUT("Invalid MDI setting detected\n");
hw->mdix = 1;
return -E1000_ERR_CONFIG;
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
- if(eecd & E1000_EECD_SIZE) {
+ if (eecd & E1000_EECD_SIZE) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
}
eeprom->use_eerd = TRUE;
eeprom->use_eewr = TRUE;
- if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
+ if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
eeprom->type = e1000_eeprom_flash;
eeprom->word_size = 2048;
/* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
* 32KB (incremented by powers of 2).
*/
- if(hw->mac_type <= e1000_82547_rev_2) {
+ if (hw->mac_type <= e1000_82547_rev_2) {
/* Set to default value for initial eeprom read. */
eeprom->word_size = 64;
ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
- if(ret_val)
+ if (ret_val)
return ret_val;
eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
/* 256B eeprom size was not supported in earlier hardware, so we
* bump eeprom_size up one to ensure that "1" (which maps to 256B)
* is never the result used in the shifting logic below. */
- if(eeprom_size)
+ if (eeprom_size)
eeprom_size++;
} else {
eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
*/
eecd &= ~E1000_EECD_DI;
- if(data & mask)
+ if (data & mask)
eecd |= E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
mask = mask >> 1;
- } while(mask);
+ } while (mask);
/* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI;
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
- for(i = 0; i < count; i++) {
+ for (i = 0; i < count; i++) {
data = data << 1;
e1000_raise_ee_clk(hw, &eecd);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DI);
- if(eecd & E1000_EECD_DO)
+ if (eecd & E1000_EECD_DO)
data |= 1;
e1000_lower_ee_clk(hw, &eecd);
if (hw->mac_type != e1000_82573) {
/* Request EEPROM Access */
- if(hw->mac_type > e1000_82544) {
+ if (hw->mac_type > e1000_82544) {
eecd |= E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
eecd = E1000_READ_REG(hw, EECD);
- while((!(eecd & E1000_EECD_GNT)) &&
+ while ((!(eecd & E1000_EECD_GNT)) &&
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
i++;
udelay(5);
eecd = E1000_READ_REG(hw, EECD);
}
- if(!(eecd & E1000_EECD_GNT)) {
+ if (!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
DEBUGOUT("Could not acquire EEPROM grant\n");
eecd = E1000_READ_REG(hw, EECD);
- if(eeprom->type == e1000_eeprom_microwire) {
+ if (eeprom->type == e1000_eeprom_microwire) {
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
- } else if(eeprom->type == e1000_eeprom_spi) {
+ } else if (eeprom->type == e1000_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_REG(hw, EECD, eecd);
udelay(hw->eeprom.delay_usec);
- } else if(hw->eeprom.type == e1000_eeprom_microwire) {
+ } else if (hw->eeprom.type == e1000_eeprom_microwire) {
/* cleanup eeprom */
/* CS on Microwire is active-high */
}
/* Stop requesting EEPROM access */
- if(hw->mac_type > e1000_82544) {
+ if (hw->mac_type > e1000_82544) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
}
retry_count += 5;
e1000_standby_eeprom(hw);
- } while(retry_count < EEPROM_MAX_RETRY_SPI);
+ } while (retry_count < EEPROM_MAX_RETRY_SPI);
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
* only 0-5mSec on 5V devices)
*/
- if(retry_count >= EEPROM_MAX_RETRY_SPI) {
+ if (retry_count >= EEPROM_MAX_RETRY_SPI) {
DEBUGOUT("SPI EEPROM Status error\n");
return -E1000_ERR_EEPROM;
}
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
- if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
+ if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds\n");
return -E1000_ERR_EEPROM;
/* FLASH reads without acquiring the semaphore are safe */
if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
- hw->eeprom.use_eerd == FALSE) {
+ hw->eeprom.use_eerd == FALSE) {
switch (hw->mac_type) {
case e1000_80003es2lan:
break;
uint16_t word_in;
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
- if(e1000_spi_eeprom_ready(hw)) {
+ if (e1000_spi_eeprom_ready(hw)) {
e1000_release_eeprom(hw);
return -E1000_ERR_EEPROM;
}
e1000_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if((eeprom->address_bits == 8) && (offset >= 128))
+ if ((eeprom->address_bits == 8) && (offset >= 128))
read_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
word_in = e1000_shift_in_ee_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
- } else if(eeprom->type == e1000_eeprom_microwire) {
+ } else if (eeprom->type == e1000_eeprom_microwire) {
for (i = 0; i < words; i++) {
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
E1000_WRITE_REG(hw, EERD, eerd);
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
- if(error) {
+ if (error) {
break;
}
data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
E1000_EEPROM_RW_REG_START;
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
- if(error) {
+ if (error) {
break;
}
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
- if(error) {
+ if (error) {
break;
}
}
uint32_t i, reg = 0;
int32_t done = E1000_ERR_EEPROM;
- for(i = 0; i < attempts; i++) {
- if(eerd == E1000_EEPROM_POLL_READ)
+ for (i = 0; i < attempts; i++) {
+ if (eerd == E1000_EEPROM_POLL_READ)
reg = E1000_READ_REG(hw, EERD);
else
reg = E1000_READ_REG(hw, EEWR);
- if(reg & E1000_EEPROM_RW_REG_DONE) {
+ if (reg & E1000_EEPROM_RW_REG_DONE) {
done = E1000_SUCCESS;
break;
}
eecd = ((eecd >> 15) & 0x03);
/* If both bits are set, device is Flash type */
- if(eecd == 0x03) {
+ if (eecd == 0x03) {
return FALSE;
}
}
checksum += eeprom_data;
}
- if(checksum == (uint16_t) EEPROM_SUM)
+ if (checksum == (uint16_t) EEPROM_SUM)
return E1000_SUCCESS;
else {
DEBUGOUT("EEPROM Checksum Invalid\n");
DEBUGFUNC("e1000_update_eeprom_checksum");
- for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
- if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
+ for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
+ if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
checksum = (uint16_t) EEPROM_SUM - checksum;
- if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
+ if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
DEBUGOUT("EEPROM Write Error\n");
return -E1000_ERR_EEPROM;
} else if (hw->eeprom.type == e1000_eeprom_flash) {
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
- if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
+ if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds\n");
return -E1000_ERR_EEPROM;
}
/* 82573 writes only through eewr */
- if(eeprom->use_eewr == TRUE)
+ if (eeprom->use_eewr == TRUE)
return e1000_write_eeprom_eewr(hw, offset, words, data);
if (eeprom->type == e1000_eeprom_ich8)
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
- if(eeprom->type == e1000_eeprom_microwire) {
+ if (eeprom->type == e1000_eeprom_microwire) {
status = e1000_write_eeprom_microwire(hw, offset, words, data);
} else {
status = e1000_write_eeprom_spi(hw, offset, words, data);
while (widx < words) {
uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
- if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
+ if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
e1000_standby_eeprom(hw);
e1000_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
- if((eeprom->address_bits == 8) && (offset >= 128))
+ if ((eeprom->address_bits == 8) && (offset >= 128))
write_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
* operation, while the smaller eeproms are capable of an 8-byte
* PAGE WRITE operation. Break the inner loop to pass new address
*/
- if((((offset + widx)*2) % eeprom->page_size) == 0) {
+ if ((((offset + widx)*2) % eeprom->page_size) == 0) {
e1000_standby_eeprom(hw);
break;
}
* signal that the command has been completed by raising the DO signal.
* If DO does not go high in 10 milliseconds, then error out.
*/
- for(i = 0; i < 200; i++) {
+ for (i = 0; i < 200; i++) {
eecd = E1000_READ_REG(hw, EECD);
- if(eecd & E1000_EECD_DO) break;
+ if (eecd & E1000_EECD_DO) break;
udelay(50);
}
- if(i == 200) {
+ if (i == 200) {
DEBUGOUT("EEPROM Write did not complete\n");
return -E1000_ERR_EEPROM;
}
DEBUGFUNC("e1000_read_part_num");
/* Get word 0 from EEPROM */
- if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+ if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
*part_num = (uint32_t) (eeprom_data << 16);
/* Get word 1 from EEPROM */
- if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
+ if (e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
DEBUGFUNC("e1000_read_mac_addr");
- for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
+ for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
- if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
+ if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
case e1000_82546_rev_3:
case e1000_82571:
case e1000_80003es2lan:
- if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
+ if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
hw->perm_mac_addr[5] ^= 0x01;
break;
}
- for(i = 0; i < NODE_ADDRESS_SIZE; i++)
+ for (i = 0; i < NODE_ADDRESS_SIZE; i++)
hw->mac_addr[i] = hw->perm_mac_addr[i];
return E1000_SUCCESS;
}
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
- for(i = 1; i < rar_num; i++) {
+ for (i = 1; i < rar_num; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
num_rar_entry -= 1;
- for(i = rar_used_count; i < num_rar_entry; i++) {
+ for (i = rar_used_count; i < num_rar_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_FLUSH(hw);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
num_mta_entry = E1000_NUM_MTA_REGISTERS;
if (hw->mac_type == e1000_ich8lan)
num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
- for(i = 0; i < num_mta_entry; i++) {
+ for (i = 0; i < num_mta_entry; i++) {
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
E1000_WRITE_FLUSH(hw);
}
/* Add the new addresses */
- for(i = 0; i < mc_addr_count; i++) {
+ for (i = 0; i < mc_addr_count; i++) {
DEBUGOUT(" Adding the multicast addresses:\n");
DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
* in the MTA, save off the previous entry before writing and
* restore the old value after writing.
*/
- if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
+ if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
E1000_WRITE_FLUSH(hw);
DEBUGFUNC("e1000_id_led_init");
- if(hw->mac_type < e1000_82540) {
+ if (hw->mac_type < e1000_82540) {
/* Nothing to do */
return E1000_SUCCESS;
}
hw->ledctl_mode1 = hw->ledctl_default;
hw->ledctl_mode2 = hw->ledctl_default;
- if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
+ if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
}
for (i = 0; i < 4; i++) {
temp = (eeprom_data >> (i << 2)) & led_mask;
- switch(temp) {
+ switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
/* Do nothing */
break;
}
- switch(temp) {
+ switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
DEBUGFUNC("e1000_setup_led");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
/* Turn off PHY Smart Power Down (if enabled) */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
&hw->phy_spd_default);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
(uint16_t)(hw->phy_spd_default &
~IGP01E1000_GMII_SPD));
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Fall Through */
default:
- if(hw->media_type == e1000_media_type_fiber) {
+ if (hw->media_type == e1000_media_type_fiber) {
ledctl = E1000_READ_REG(hw, LEDCTL);
/* Save current LEDCTL settings */
hw->ledctl_default = ledctl;
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
E1000_LEDCTL_LED0_MODE_SHIFT);
E1000_WRITE_REG(hw, LEDCTL, ledctl);
- } else if(hw->media_type == e1000_media_type_copper)
+ } else if (hw->media_type == e1000_media_type_copper)
E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
break;
}
return E1000_SUCCESS;
}
+
/******************************************************************************
* Used on 82571 and later Si that has LED blink bits.
* Callers must use their own timer and should have already called
DEBUGFUNC("e1000_cleanup_led");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
/* Turn on PHY Smart Power Down (if previously enabled) */
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
hw->phy_spd_default);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Fall Through */
default:
DEBUGFUNC("e1000_led_on");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
ctrl |= E1000_CTRL_SWDPIO0;
break;
case e1000_82544:
- if(hw->media_type == e1000_media_type_fiber) {
+ if (hw->media_type == e1000_media_type_fiber) {
/* Set SW Defineable Pin 0 to turn on the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
}
break;
default:
- if(hw->media_type == e1000_media_type_fiber) {
+ if (hw->media_type == e1000_media_type_fiber) {
/* Clear SW Defineable Pin 0 to turn on the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
DEBUGFUNC("e1000_led_off");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
ctrl |= E1000_CTRL_SWDPIO0;
break;
case e1000_82544:
- if(hw->media_type == e1000_media_type_fiber) {
+ if (hw->media_type == e1000_media_type_fiber) {
/* Clear SW Defineable Pin 0 to turn off the LED */
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
}
break;
default:
- if(hw->media_type == e1000_media_type_fiber) {
+ if (hw->media_type == e1000_media_type_fiber) {
/* Set SW Defineable Pin 0 to turn off the LED */
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
-static void
+void
e1000_clear_hw_cntrs(struct e1000_hw *hw)
{
volatile uint32_t temp;
temp = E1000_READ_REG(hw, MPTC);
temp = E1000_READ_REG(hw, BPTC);
- if(hw->mac_type < e1000_82543) return;
+ if (hw->mac_type < e1000_82543) return;
temp = E1000_READ_REG(hw, ALGNERRC);
temp = E1000_READ_REG(hw, RXERRC);
temp = E1000_READ_REG(hw, TSCTC);
temp = E1000_READ_REG(hw, TSCTFC);
- if(hw->mac_type <= e1000_82544) return;
+ if (hw->mac_type <= e1000_82544) return;
temp = E1000_READ_REG(hw, MGTPRC);
temp = E1000_READ_REG(hw, MGTPDC);
temp = E1000_READ_REG(hw, MGTPTC);
- if(hw->mac_type <= e1000_82547_rev_2) return;
+ if (hw->mac_type <= e1000_82547_rev_2) return;
temp = E1000_READ_REG(hw, IAC);
temp = E1000_READ_REG(hw, ICRXOC);
{
DEBUGFUNC("e1000_reset_adaptive");
- if(hw->adaptive_ifs) {
- if(!hw->ifs_params_forced) {
+ if (hw->adaptive_ifs) {
+ if (!hw->ifs_params_forced) {
hw->current_ifs_val = 0;
hw->ifs_min_val = IFS_MIN;
hw->ifs_max_val = IFS_MAX;
{
DEBUGFUNC("e1000_update_adaptive");
- if(hw->adaptive_ifs) {
- if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
- if(hw->tx_packet_delta > MIN_NUM_XMITS) {
+ if (hw->adaptive_ifs) {
+ if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
+ if (hw->tx_packet_delta > MIN_NUM_XMITS) {
hw->in_ifs_mode = TRUE;
- if(hw->current_ifs_val < hw->ifs_max_val) {
- if(hw->current_ifs_val == 0)
+ if (hw->current_ifs_val < hw->ifs_max_val) {
+ if (hw->current_ifs_val == 0)
hw->current_ifs_val = hw->ifs_min_val;
else
hw->current_ifs_val += hw->ifs_step_size;
}
}
} else {
- if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
+ if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
hw->current_ifs_val = 0;
hw->in_ifs_mode = FALSE;
E1000_WRITE_REG(hw, AIT, 0);
* This could be simplified if all environments supported
* 64-bit integers.
*/
- if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
+ if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
stats->gorch++;
/* Is this a broadcast or multicast? Check broadcast first,
* since the test for a multicast frame will test positive on
* a broadcast frame.
*/
- if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
+ if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
/* Broadcast packet */
stats->bprc++;
- else if(*mac_addr & 0x01)
+ else if (*mac_addr & 0x01)
/* Multicast packet */
stats->mprc++;
- if(frame_len == hw->max_frame_size) {
+ if (frame_len == hw->max_frame_size) {
/* In this case, the hardware has overcounted the number of
* oversize frames.
*/
- if(stats->roc > 0)
+ if (stats->roc > 0)
stats->roc--;
}
/* Adjust the bin counters when the extra byte put the frame in the
* wrong bin. Remember that the frame_len was adjusted above.
*/
- if(frame_len == 64) {
+ if (frame_len == 64) {
stats->prc64++;
stats->prc127--;
- } else if(frame_len == 127) {
+ } else if (frame_len == 127) {
stats->prc127++;
stats->prc255--;
- } else if(frame_len == 255) {
+ } else if (frame_len == 255) {
stats->prc255++;
stats->prc511--;
- } else if(frame_len == 511) {
+ } else if (frame_len == 511) {
stats->prc511++;
stats->prc1023--;
- } else if(frame_len == 1023) {
+ } else if (frame_len == 1023) {
stats->prc1023++;
stats->prc1522--;
- } else if(frame_len == 1522) {
+ } else if (frame_len == 1522) {
stats->prc1522++;
}
}
hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
e1000_bus_type_pcix : e1000_bus_type_pci;
- if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
+ if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
e1000_bus_speed_66 : e1000_bus_speed_120;
- } else if(hw->bus_type == e1000_bus_type_pci) {
+ } else if (hw->bus_type == e1000_bus_type_pci) {
hw->bus_speed = (status & E1000_STATUS_PCI66) ?
e1000_bus_speed_66 : e1000_bus_speed_33;
} else {
*min_length = *max_length = 0;
/* Use old method for Phy older than IGP */
- if(hw->phy_type == e1000_phy_m88) {
+ if (hw->phy_type == e1000_phy_m88) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
return -E1000_ERR_PHY;
break;
}
- } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
+ } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
uint16_t cur_agc_value;
uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
IGP01E1000_PHY_AGC_C,
IGP01E1000_PHY_AGC_D};
/* Read the AGC registers for all channels */
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
if (ret_val)
return ret_val;
- /* Getting bits 15:9, which represent the combination of course and
+ /* Getting bits 15:9, which represent the combination of course and
* fine gain values. The result is a number that can be put into
* the lookup table to obtain the approximate cable length. */
cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
/* return the Polarity bit in the Status register. */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
*polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
M88E1000_PSSR_REV_POLARITY_SHIFT;
/* Read the Status register to check the speed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
* find the polarity status */
- if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
+ if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
/* Read the GIG initialization PCS register (0x00B4) */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Check the polarity bits */
hw->phy_type == e1000_phy_igp_2) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
(hw->phy_type == e1000_phy_gg82563)) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
DEBUGFUNC("e1000_config_dsp_after_link_change");
- if(hw->phy_type != e1000_phy_igp)
+ if (hw->phy_type != e1000_phy_igp)
return E1000_SUCCESS;
- if(link_up) {
+ if (link_up) {
ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
- if(ret_val) {
+ if (ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
- if(speed == SPEED_1000) {
+ if (speed == SPEED_1000) {
ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
if (ret_val)
return ret_val;
- if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
+ if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
min_length >= e1000_igp_cable_length_50) {
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
hw->dsp_config_state = e1000_dsp_config_activated;
}
- if((hw->ffe_config_state == e1000_ffe_config_enabled) &&
+ if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
(min_length < e1000_igp_cable_length_50)) {
uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
/* clear previous idle error counts */
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
- for(i = 0; i < ffe_idle_err_timeout; i++) {
+ for (i = 0; i < ffe_idle_err_timeout; i++) {
udelay(1000);
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
- if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
+ if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
hw->ffe_config_state = e1000_ffe_config_active;
ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_DSP_FFE,
IGP01E1000_PHY_DSP_FFE_CM_CP);
- if(ret_val)
+ if (ret_val)
return ret_val;
break;
}
- if(idle_errs)
+ if (idle_errs)
ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
}
}
}
} else {
- if(hw->dsp_config_state == e1000_dsp_config_activated) {
+ if (hw->dsp_config_state == e1000_dsp_config_activated) {
/* Save off the current value of register 0x2F5B to be restored at
* the end of the routines. */
ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Disable the PHY transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(20);
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
- if(ret_val)
+ if (ret_val)
return ret_val;
- for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
+ for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_RESTART_AUTONEG);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(20);
/* Now enable the transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->dsp_config_state = e1000_dsp_config_enabled;
}
- if(hw->ffe_config_state == e1000_ffe_config_active) {
+ if (hw->ffe_config_state == e1000_ffe_config_active) {
/* Save off the current value of register 0x2F5B to be restored at
* the end of the routines. */
ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Disable the PHY transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(20);
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_FORCE_GIGA);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
IGP01E1000_PHY_DSP_FFE_DEFAULT);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, 0x0000,
IGP01E1000_IEEE_RESTART_AUTONEG);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(20);
/* Now enable the transmitter */
ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->ffe_config_state = e1000_ffe_config_enabled;
DEBUGFUNC("e1000_set_phy_mode");
- if((hw->mac_type == e1000_82545_rev_3) &&
- (hw->media_type == e1000_media_type_copper)) {
+ if ((hw->mac_type == e1000_82545_rev_3) &&
+ (hw->media_type == e1000_media_type_copper)) {
ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
- if(ret_val) {
+ if (ret_val) {
return ret_val;
}
- if((eeprom_data != EEPROM_RESERVED_WORD) &&
- (eeprom_data & EEPROM_PHY_CLASS_A)) {
+ if ((eeprom_data != EEPROM_RESERVED_WORD) &&
+ (eeprom_data & EEPROM_PHY_CLASS_A)) {
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
- if(ret_val)
+ if (ret_val)
return ret_val;
hw->phy_reset_disable = FALSE;
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
- if(!active) {
- if(hw->mac_type == e1000_82541_rev_2 ||
- hw->mac_type == e1000_82547_rev_2) {
+ if (!active) {
+ if (hw->mac_type == e1000_82541_rev_2 ||
+ hw->mac_type == e1000_82547_rev_2) {
phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else {
if (hw->mac_type == e1000_ich8lan) {
if (hw->smart_speed == e1000_smart_speed_on) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
- } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
- (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
+ } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
+ (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
+ (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
- if(hw->mac_type == e1000_82541_rev_2 ||
+ if (hw->mac_type == e1000_82541_rev_2 ||
hw->mac_type == e1000_82547_rev_2) {
phy_data |= IGP01E1000_GMII_FLEX_SPD;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else {
if (hw->mac_type == e1000_ich8lan) {
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
uint16_t phy_data;
DEBUGFUNC("e1000_set_d0_lplu_state");
- if(hw->mac_type <= e1000_82547_rev_2)
+ if (hw->mac_type <= e1000_82547_rev_2)
return E1000_SUCCESS;
if (hw->mac_type == e1000_ich8lan) {
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
} else {
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
if (hw->smart_speed == e1000_smart_speed_on) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
/* When LPLU is enabled we should disable SmartSpeed */
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
}
DEBUGFUNC("e1000_set_vco_speed");
- switch(hw->mac_type) {
+ switch (hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
/* Set PHY register 30, page 5, bit 8 to 0 */
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* Set PHY register 30, page 4, bit 11 to 1 */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
phy_data |= M88E1000_PHY_VCO_REG_BIT11;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
- if(ret_val)
+ if (ret_val)
return ret_val;
return E1000_SUCCESS;
{
uint8_t *tmp;
uint8_t *bufptr = buffer;
- uint32_t data;
+ uint32_t data = 0;
uint16_t remaining, i, j, prev_bytes;
/* sum = only sum of the data and it is not checksum */
buffer = (uint8_t *) hdr;
i = length;
- while(i--)
+ while (i--)
sum += buffer[i];
hdr->checksum = 0 - sum;
* returns - E1000_SUCCESS for success.
****************************************************************************/
static int32_t
-e1000_mng_write_commit(
- struct e1000_hw * hw)
+e1000_mng_write_commit(struct e1000_hw * hw)
{
uint32_t hicr;
/* Disable the transmitter on the PHY */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* This loop will early-out if the NO link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be clear.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
+ if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
msec_delay_irq(100);
}
/* Now we will re-enable th transmitter on the PHY */
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
- if(ret_val)
+ if (ret_val)
return ret_val;
msec_delay_irq(50);
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
- if(ret_val)
+ if (ret_val)
return ret_val;
/* This loop will early-out if the link condition has been met. */
- for(i = PHY_FORCE_TIME; i > 0; i--) {
+ for (i = PHY_FORCE_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Link Status bit
* to be set.
*/
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
- if(ret_val)
+ if (ret_val)
return ret_val;
- if(mii_status_reg & MII_SR_LINK_STATUS) break;
+ if (mii_status_reg & MII_SR_LINK_STATUS) break;
msec_delay_irq(100);
}
return E1000_SUCCESS;
e1000_set_pci_express_master_disable(hw);
- while(timeout) {
- if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
+ while (timeout) {
+ if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
break;
else
udelay(100);
timeout--;
}
- if(!timeout) {
+ if (!timeout) {
DEBUGOUT("Master requests are pending.\n");
return -E1000_ERR_MASTER_REQUESTS_PENDING;
}
timeout--;
}
- if(!timeout) {
+ if (!timeout) {
DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
return -E1000_ERR_RESET;
}
DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
- if(!hw->eeprom_semaphore_present)
+ if (!hw->eeprom_semaphore_present)
return E1000_SUCCESS;
if (hw->mac_type == e1000_80003es2lan) {
/* Get the FW semaphore. */
timeout = hw->eeprom.word_size + 1;
- while(timeout) {
+ while (timeout) {
swsm = E1000_READ_REG(hw, SWSM);
swsm |= E1000_SWSM_SWESMBI;
E1000_WRITE_REG(hw, SWSM, swsm);
/* if we managed to set the bit we got the semaphore. */
swsm = E1000_READ_REG(hw, SWSM);
- if(swsm & E1000_SWSM_SWESMBI)
+ if (swsm & E1000_SWSM_SWESMBI)
break;
udelay(50);
timeout--;
}
- if(!timeout) {
+ if (!timeout) {
/* Release semaphores */
e1000_put_hw_eeprom_semaphore(hw);
DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
- if(!hw->eeprom_semaphore_present)
+ if (!hw->eeprom_semaphore_present)
return;
swsm = E1000_READ_REG(hw, SWSM);
if (hw->mac_type != e1000_80003es2lan)
return E1000_SUCCESS;
- while(timeout) {
+ while (timeout) {
swsm = E1000_READ_REG(hw, SWSM);
/* If SMBI bit cleared, it is now set and we hold the semaphore */
- if(!(swsm & E1000_SWSM_SMBI))
+ if (!(swsm & E1000_SWSM_SMBI))
break;
msec_delay_irq(1);
timeout--;
}
- if(!timeout) {
+ if (!timeout) {
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
return -E1000_ERR_RESET;
}
case e1000_82573:
case e1000_80003es2lan:
fwsm = E1000_READ_REG(hw, FWSM);
- if((fwsm & E1000_FWSM_MODE_MASK) != 0)
+ if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
return TRUE;
break;
case e1000_ich8lan: