bl2_ep->args.arg7);
}
+/*******************************************************************************
+ * The next function has a weak definition. Platform specific code can override
+ * it if it wishes to.
+ ******************************************************************************/
+#pragma weak bl1_init_bl2_mem_layout
+
+/*******************************************************************************
+ * Function that takes a memory layout into which BL2 has been loaded and
+ * populates a new memory layout for BL2 that ensures that BL1's data sections
+ * resident in secure RAM are not visible to BL2.
+ ******************************************************************************/
+void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout,
+ meminfo_t *bl2_mem_layout)
+{
+ const size_t bl1_size = BL1_RAM_LIMIT - BL1_RAM_BASE;
+
+ assert(bl1_mem_layout != NULL);
+ assert(bl2_mem_layout != NULL);
+
+ /* Check that BL1's memory is lying outside of the free memory */
+ assert((BL1_RAM_LIMIT <= bl1_mem_layout->free_base) ||
+ (BL1_RAM_BASE >= bl1_mem_layout->free_base + bl1_mem_layout->free_size));
+
+ /* Remove BL1 RW data from the scope of memory visible to BL2 */
+ *bl2_mem_layout = *bl1_mem_layout;
+ reserve_mem(&bl2_mem_layout->total_base,
+ &bl2_mem_layout->total_size,
+ BL1_RAM_BASE,
+ bl1_size);
+
+ flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t));
+}
/*******************************************************************************
* Function to perform late architectural and platform specific initialization.
#if DEBUG
unsigned long sctlr_el3 = read_sctlr_el3();
#endif
- unsigned int load_type = TOP_LOAD;
image_info_t bl2_image_info = { {0} };
entry_point_info_t bl2_ep = { {0} };
meminfo_t *bl1_tzram_layout;
SET_PARAM_HEAD(&bl2_image_info, PARAM_IMAGE_BINARY, VERSION_1, 0);
SET_PARAM_HEAD(&bl2_ep, PARAM_EP, VERSION_1, 0);
- /*
- * Find out how much free trusted ram remains after BL1 load
- * & load the BL2 image at its top
- */
+ /* Find out how much free trusted ram remains after BL1 load */
bl1_tzram_layout = bl1_plat_sec_mem_layout();
+
+ /* Load the BL2 image */
err = load_image(bl1_tzram_layout,
- (const char *) BL2_IMAGE_NAME,
- load_type,
- BL2_BASE,
- &bl2_image_info,
- &bl2_ep);
+ BL2_IMAGE_NAME,
+ BL2_BASE,
+ &bl2_image_info,
+ &bl2_ep);
if (err) {
/*
* TODO: print failure to load BL2 but also add a tzwdog timer
* memory for other purposes.
*/
bl2_tzram_layout = (meminfo_t *) bl1_tzram_layout->free_base;
- init_bl2_mem_layout(bl1_tzram_layout,
- bl2_tzram_layout,
- load_type,
- bl2_image_info.image_base);
+ bl1_init_bl2_mem_layout(bl1_tzram_layout, bl2_tzram_layout);
bl1_plat_set_bl2_ep_info(&bl2_image_info, &bl2_ep);
bl2_ep.args.arg1 = (unsigned long)bl2_tzram_layout;
#include <assert.h>
#include <bl_common.h>
#include <debug.h>
+#include <errno.h>
#include <io_storage.h>
#include <platform.h>
-#include <errno.h>
-#include <stdio.h>
unsigned long page_align(unsigned long value, unsigned dir)
{
write_scr(scr);
}
+/******************************************************************************
+ * Determine whether the memory region delimited by 'addr' and 'size' is free,
+ * given the extents of free memory.
+ * Return 1 if it is free, 0 otherwise.
+ *****************************************************************************/
+static int is_mem_free(uint64_t free_base, size_t free_size,
+ uint64_t addr, size_t size)
+{
+ return (addr >= free_base) && (addr + size <= free_base + free_size);
+}
-/*******************************************************************************
- * The next function has a weak definition. Platform specific code can override
- * it if it wishes to.
- ******************************************************************************/
-#pragma weak init_bl2_mem_layout
-
-/*******************************************************************************
- * Function that takes a memory layout into which BL2 has been either top or
- * bottom loaded along with the address where BL2 has been loaded in it. Using
- * this information, it populates bl2_mem_layout to tell BL2 how much memory
- * it has access to and how much is available for use.
- ******************************************************************************/
-void init_bl2_mem_layout(meminfo_t *bl1_mem_layout,
- meminfo_t *bl2_mem_layout,
- unsigned int load_type,
- unsigned long bl2_base)
+/******************************************************************************
+ * Inside a given memory region, determine whether a sub-region of memory is
+ * closer from the top or the bottom of the encompassing region. Return the
+ * size of the smallest chunk of free memory surrounding the sub-region in
+ * 'small_chunk_size'.
+ *****************************************************************************/
+static unsigned int choose_mem_pos(uint64_t mem_start, uint64_t mem_end,
+ uint64_t submem_start, uint64_t submem_end,
+ size_t *small_chunk_size)
{
- unsigned tmp;
+ size_t top_chunk_size, bottom_chunk_size;
- if (load_type == BOT_LOAD) {
- bl2_mem_layout->total_base = bl2_base;
- tmp = bl1_mem_layout->free_base - bl2_base;
- bl2_mem_layout->total_size = bl1_mem_layout->free_size + tmp;
+ assert(mem_start <= submem_start);
+ assert(submem_start <= submem_end);
+ assert(submem_end <= mem_end);
+ assert(small_chunk_size != NULL);
+ top_chunk_size = mem_end - submem_end;
+ bottom_chunk_size = submem_start - mem_start;
+
+ if (top_chunk_size < bottom_chunk_size) {
+ *small_chunk_size = top_chunk_size;
+ return TOP;
} else {
- bl2_mem_layout->total_base = bl1_mem_layout->free_base;
- tmp = bl1_mem_layout->total_base + bl1_mem_layout->total_size;
- bl2_mem_layout->total_size = tmp - bl1_mem_layout->free_base;
+ *small_chunk_size = bottom_chunk_size;
+ return BOTTOM;
}
+}
- bl2_mem_layout->free_base = bl1_mem_layout->free_base;
- bl2_mem_layout->free_size = bl1_mem_layout->free_size;
- bl2_mem_layout->attr = load_type;
+/******************************************************************************
+ * Reserve the memory region delimited by 'addr' and 'size'. The extents of free
+ * memory are passed in 'free_base' and 'free_size' and they will be updated to
+ * reflect the memory usage.
+ * The caller must ensure the memory to reserve is free.
+ *****************************************************************************/
+void reserve_mem(uint64_t *free_base, size_t *free_size,
+ uint64_t addr, size_t size)
+{
+ size_t discard_size;
+ size_t reserved_size;
+ unsigned int pos;
- flush_dcache_range((unsigned long) bl2_mem_layout, sizeof(meminfo_t));
- return;
+ assert(free_base != NULL);
+ assert(free_size != NULL);
+ assert(is_mem_free(*free_base, *free_size, addr, size));
+
+ pos = choose_mem_pos(*free_base, *free_base + *free_size,
+ addr, addr + size,
+ &discard_size);
+
+ reserved_size = size + discard_size;
+ *free_size -= reserved_size;
+
+ if (pos == BOTTOM)
+ *free_base = addr + size;
+
+ INFO("Reserved %u bytes (discarded %u bytes %s)\n",
+ reserved_size, discard_size,
+ pos == TOP ? "above" : "below");
}
static void dump_load_info(unsigned long image_load_addr,
return image_size;
}
+
/*******************************************************************************
- * Generic function to load an image into the trusted RAM,
- * given a name, extents of free memory & whether the image should be loaded at
- * the bottom or top of the free memory. It updates the memory layout if the
- * load is successful. It also updates the image information and the entry point
- * information in the params passed. The caller might pass a NULL pointer for
- * the entry point if it is not interested in this information, e.g. because
- * the image just needs to be loaded in memory but won't ever be executed.
+ * Generic function to load an image at a specific address given a name and
+ * extents of free memory. It updates the memory layout if the load is
+ * successful, as well as the image information and the entry point information.
+ * The caller might pass a NULL pointer for the entry point if it is not
+ * interested in this information, e.g. because the image just needs to be
+ * loaded in memory but won't ever be executed.
+ * Returns 0 on success, a negative error code otherwise.
******************************************************************************/
int load_image(meminfo_t *mem_layout,
- const char *image_name,
- unsigned int load_type,
- unsigned long fixed_addr,
- image_info_t *image_data,
- entry_point_info_t *entry_point_info)
+ const char *image_name,
+ uint64_t image_base,
+ image_info_t *image_data,
+ entry_point_info_t *entry_point_info)
{
uintptr_t dev_handle;
uintptr_t image_handle;
uintptr_t image_spec;
- unsigned long temp_image_base = 0;
- unsigned long image_base = 0;
- long offset = 0;
- size_t image_size = 0;
- size_t bytes_read = 0;
+ size_t image_size;
+ size_t bytes_read;
int io_result = IO_FAIL;
assert(mem_layout != NULL);
assert(image_name != NULL);
+ assert(image_data != NULL);
assert(image_data->h.version >= VERSION_1);
/* Obtain a reference to the image by querying the platform layer */
return io_result;
}
+ INFO("Loading file '%s' at address 0x%lx\n", image_name, image_base);
+
/* Find the size of the image */
io_result = io_size(image_handle, &image_size);
if ((io_result != IO_SUCCESS) || (image_size == 0)) {
goto exit;
}
- /* See if we have enough space */
- if (image_size > mem_layout->free_size) {
- WARN("Cannot load '%s' file: Not enough space.\n",
- image_name);
- dump_load_info(0, image_size, mem_layout);
- goto exit;
- }
-
- switch (load_type) {
-
- case TOP_LOAD:
-
- /* Load the image in the top of free memory */
- temp_image_base = mem_layout->free_base + mem_layout->free_size;
- temp_image_base -= image_size;
-
- /* Page align base address and check whether the image still fits */
- image_base = page_align(temp_image_base, DOWN);
- assert(image_base <= temp_image_base);
-
- if (image_base < mem_layout->free_base) {
- WARN("Cannot load '%s' file: Not enough space.\n",
- image_name);
- dump_load_info(image_base, image_size, mem_layout);
- io_result = -ENOMEM;
- goto exit;
- }
-
- /* Calculate the amount of extra memory used due to alignment */
- offset = temp_image_base - image_base;
-
- break;
-
- case BOT_LOAD:
-
- /* Load the BL2 image in the bottom of free memory */
- temp_image_base = mem_layout->free_base;
- image_base = page_align(temp_image_base, UP);
- assert(image_base >= temp_image_base);
-
- /* Page align base address and check whether the image still fits */
- if (image_base + image_size >
- mem_layout->free_base + mem_layout->free_size) {
- WARN("Cannot load '%s' file: Not enough space.\n",
- image_name);
+ /* Check that the memory where the image will be loaded is free */
+ if (!is_mem_free(mem_layout->free_base, mem_layout->free_size,
+ image_base, image_size)) {
+ WARN("Failed to reserve memory: 0x%lx - 0x%lx\n",
+ image_base, image_base + image_size);
dump_load_info(image_base, image_size, mem_layout);
io_result = -ENOMEM;
goto exit;
- }
-
- /* Calculate the amount of extra memory used due to alignment */
- offset = image_base - temp_image_base;
-
- break;
-
- default:
- assert(0);
-
- }
-
- /*
- * Some images must be loaded at a fixed address, not a dynamic one.
- *
- * This has been implemented as a hack on top of the existing dynamic
- * loading mechanism, for the time being. If the 'fixed_addr' function
- * argument is different from zero, then it will force the load address.
- * So we still have this principle of top/bottom loading but the code
- * determining the load address is bypassed and the load address is
- * forced to the fixed one.
- *
- * This can result in quite a lot of wasted space because we still use
- * 1 sole meminfo structure to represent the extents of free memory,
- * where we should use some sort of linked list.
- *
- * E.g. we want to load BL2 at address 0x04020000, the resulting memory
- * layout should look as follows:
- * ------------ 0x04040000
- * | | <- Free space (1)
- * |----------|
- * | BL2 |
- * |----------| 0x04020000
- * | | <- Free space (2)
- * |----------|
- * | BL1 |
- * ------------ 0x04000000
- *
- * But in the current hacky implementation, we'll need to specify
- * whether BL2 is loaded at the top or bottom of the free memory.
- * E.g. if BL2 is considered as top-loaded, the meminfo structure
- * will give the following view of the memory, hiding the chunk of
- * free memory above BL2:
- * ------------ 0x04040000
- * | |
- * | |
- * | BL2 |
- * |----------| 0x04020000
- * | | <- Free space (2)
- * |----------|
- * | BL1 |
- * ------------ 0x04000000
- */
- if (fixed_addr != 0) {
- /* Load the image at the given address. */
- image_base = fixed_addr;
-
- /* Check whether the image fits. */
- if ((image_base < mem_layout->free_base) ||
- (image_base + image_size >
- mem_layout->free_base + mem_layout->free_size)) {
- WARN("Cannot load '%s' file: Not enough space.\n",
- image_name);
- dump_load_info(image_base, image_size, mem_layout);
- io_result = -ENOMEM;
- goto exit;
- }
-
- /* Check whether the fixed load address is page-aligned. */
- if (!is_page_aligned(image_base)) {
- WARN("Cannot load '%s' file at unaligned address 0x%lx\n",
- image_name, fixed_addr);
- io_result = -ENOMEM;
- goto exit;
- }
-
- /*
- * Calculate the amount of extra memory used due to fixed
- * loading.
- */
- if (load_type == TOP_LOAD) {
- unsigned long max_addr, space_used;
- /*
- * ------------ max_addr
- * | /wasted/ | | offset
- * |..........|..............................
- * | image | | image_flen
- * |----------| fixed_addr
- * | |
- * | |
- * ------------ total_base
- */
- max_addr = mem_layout->total_base + mem_layout->total_size;
- /*
- * Compute the amount of memory used by the image.
- * Corresponds to all space above the image load
- * address.
- */
- space_used = max_addr - fixed_addr;
- /*
- * Calculate the amount of wasted memory within the
- * amount of memory used by the image.
- */
- offset = space_used - image_size;
- } else /* BOT_LOAD */
- /*
- * ------------
- * | |
- * | |
- * |----------|
- * | image |
- * |..........| fixed_addr
- * | /wasted/ | | offset
- * ------------ total_base
- */
- offset = fixed_addr - mem_layout->total_base;
}
/* We have enough space so load the image now */
goto exit;
}
+ /*
+ * Update the memory usage info.
+ * This is done after the actual loading so that it is not updated when
+ * the load is unsuccessful.
+ */
+ reserve_mem(&mem_layout->free_base, &mem_layout->free_size,
+ image_base, image_size);
+
image_data->image_base = image_base;
image_data->image_size = image_size;
entry_point_info->pc = image_base;
/*
- * File has been successfully loaded. Update the free memory
- * data structure & flush the contents of the TZRAM so that
- * the next EL can see it.
+ * File has been successfully loaded.
+ * Flush the image in TZRAM so that the next EL can see it.
*/
- /* Update the memory contents */
flush_dcache_range(image_base, image_size);
- mem_layout->free_size -= image_size + offset;
-
- /* Update the base of free memory since its moved up */
- if (load_type == BOT_LOAD)
- mem_layout->free_base += offset + image_size;
+ INFO("File '%s' loaded: 0x%lx - 0x%lx\n", image_name, image_base,
+ image_base + image_size);
exit:
io_close(image_handle);