dma_addr_t dma_handle;
- cpu_addr = pci_alloc_consistent(dev, size, &dma_handle);
+ cpu_addr = pci_alloc_consistent(pdev, size, &dma_handle);
-where dev is a struct pci_dev *. You should pass NULL for PCI like buses
+where pdev is a struct pci_dev *. You should pass NULL for PCI like buses
where devices don't have struct pci_dev (like ISA, EISA). This may be
called in interrupt context.
To unmap and free such a DMA region, you call:
- pci_free_consistent(dev, size, cpu_addr, dma_handle);
+ pci_free_consistent(pdev, size, cpu_addr, dma_handle);
-where dev, size are the same as in the above call and cpu_addr and
+where pdev, size are the same as in the above call and cpu_addr and
dma_handle are the values pci_alloc_consistent returned to you.
This function may not be called in interrupt context.
struct pci_pool *pool;
- pool = pci_pool_create(name, dev, size, align, alloc);
+ pool = pci_pool_create(name, pdev, size, align, alloc);
-The "name" is for diagnostics (like a kmem_cache name); dev and size
+The "name" is for diagnostics (like a kmem_cache name); pdev and size
are as above. The device's hardware alignment requirement for this
type of data is "align" (which is expressed in bytes, and must be a
power of two). If your device has no boundary crossing restrictions,
void *addr = buffer->ptr;
size_t size = buffer->len;
- dma_handle = pci_map_single(dev, addr, size, direction);
+ dma_handle = pci_map_single(pdev, addr, size, direction);
and to unmap it:
- pci_unmap_single(dev, dma_handle, size, direction);
+ pci_unmap_single(pdev, dma_handle, size, direction);
You should call pci_unmap_single when the DMA activity is finished, e.g.
from the interrupt which told you that the DMA transfer is done.
unsigned long offset = buffer->offset;
size_t size = buffer->len;
- dma_handle = pci_map_page(dev, page, offset, size, direction);
+ dma_handle = pci_map_page(pdev, page, offset, size, direction);
...
- pci_unmap_page(dev, dma_handle, size, direction);
+ pci_unmap_page(pdev, dma_handle, size, direction);
Here, "offset" means byte offset within the given page.
With scatterlists, you map a region gathered from several regions by:
- int i, count = pci_map_sg(dev, sglist, nents, direction);
+ int i, count = pci_map_sg(pdev, sglist, nents, direction);
struct scatterlist *sg;
for_each_sg(sglist, sg, count, i) {
To unmap a scatterlist, just call:
- pci_unmap_sg(dev, sglist, nents, direction);
+ pci_unmap_sg(pdev, sglist, nents, direction);
Again, make sure DMA activity has already finished.
So, firstly, just map it with pci_map_{single,sg}, and after each DMA
transfer call either:
- pci_dma_sync_single_for_cpu(dev, dma_handle, size, direction);
+ pci_dma_sync_single_for_cpu(pdev, dma_handle, size, direction);
or:
- pci_dma_sync_sg_for_cpu(dev, sglist, nents, direction);
+ pci_dma_sync_sg_for_cpu(pdev, sglist, nents, direction);
as appropriate.
finish accessing the data with the cpu, and then before actually
giving the buffer to the hardware call either:
- pci_dma_sync_single_for_device(dev, dma_handle, size, direction);
+ pci_dma_sync_single_for_device(pdev, dma_handle, size, direction);
or:
dma_addr_t dma_handle;
- dma_handle = pci_map_single(dev, addr, size, direction);
+ dma_handle = pci_map_single(pdev, addr, size, direction);
if (pci_dma_mapping_error(dma_handle)) {
/*
* reduce current DMA mapping usage,