struct regmap *regmap;
struct mutex lock;
int type;
- unsigned int lux_scale;
- unsigned int lux_uscale;
+ unsigned int calibscale;
+ unsigned int ucalibscale;
unsigned int range;
unsigned int adc_bit;
int prox_scheme;
/* To support fractional scaling, separate the unshifted lux
* into two calculations: int scaling and micro-scaling.
- * lux_uscale ranges from 0-999999, so about 20 bits. Split
+ * ucalibscale ranges from 0-999999, so about 20 bits. Split
* the /1,000,000 in two to reduce the risk of over/underflow.
*/
data_x_range = lux_data * chip->range;
- lux_unshifted = data_x_range * chip->lux_scale;
- lux_unshifted += data_x_range / 1000 * chip->lux_uscale / 1000;
+ lux_unshifted = data_x_range * chip->calibscale;
+ lux_unshifted += data_x_range / 1000 * chip->ucalibscale / 1000;
*lux = lux_unshifted >> chip->adc_bit;
return 0;
mutex_lock(&chip->lock);
if (mask == IIO_CHAN_INFO_CALIBSCALE && chan->type == IIO_LIGHT) {
- chip->lux_scale = val;
+ chip->calibscale = val;
/* With no write_raw_get_fmt(), val2 is a MICRO fraction. */
- chip->lux_uscale = val2;
+ chip->ucalibscale = val2;
ret = 0;
}
mutex_unlock(&chip->lock);
break;
case IIO_CHAN_INFO_CALIBSCALE:
if (chan->type == IIO_LIGHT) {
- *val = chip->lux_scale;
- *val2 = chip->lux_uscale;
+ *val = chip->calibscale;
+ *val2 = chip->ucalibscale;
ret = IIO_VAL_INT_PLUS_MICRO;
}
break;
mutex_init(&chip->lock);
chip->type = dev_id;
- chip->lux_scale = 1;
- chip->lux_uscale = 0;
+ chip->calibscale = 1;
+ chip->ucalibscale = 0;
chip->range = 1000;
chip->adc_bit = 16;
chip->suspended = false;