--- /dev/null
--- /dev/null
- struct pci_dev *pdev;
- u16 devid, alias;
++ /*
++ * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
++ * Author: Joerg Roedel <joerg.roedel@amd.com>
++ * Leo Duran <leo.duran@amd.com>
++ *
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
++ */
++
++ #include <linux/pci.h>
++ #include <linux/pci-ats.h>
++ #include <linux/bitmap.h>
++ #include <linux/slab.h>
++ #include <linux/debugfs.h>
++ #include <linux/scatterlist.h>
++ #include <linux/dma-mapping.h>
++ #include <linux/iommu-helper.h>
++ #include <linux/iommu.h>
++ #include <linux/delay.h>
++ #include <linux/amd-iommu.h>
++ #include <asm/proto.h>
++ #include <asm/iommu.h>
++ #include <asm/gart.h>
++ #include <asm/dma.h>
++
++ #include "amd_iommu_proto.h"
++ #include "amd_iommu_types.h"
++
++ #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
++
++ #define LOOP_TIMEOUT 100000
++
++ static DEFINE_RWLOCK(amd_iommu_devtable_lock);
++
++ /* A list of preallocated protection domains */
++ static LIST_HEAD(iommu_pd_list);
++ static DEFINE_SPINLOCK(iommu_pd_list_lock);
++
+++/* List of all available dev_data structures */
+++static LIST_HEAD(dev_data_list);
+++static DEFINE_SPINLOCK(dev_data_list_lock);
+++
++ /*
++ * Domain for untranslated devices - only allocated
++ * if iommu=pt passed on kernel cmd line.
++ */
++ static struct protection_domain *pt_domain;
++
++ static struct iommu_ops amd_iommu_ops;
++
++ /*
++ * general struct to manage commands send to an IOMMU
++ */
++ struct iommu_cmd {
++ u32 data[4];
++ };
++
++ static void update_domain(struct protection_domain *domain);
++
++ /****************************************************************************
++ *
++ * Helper functions
++ *
++ ****************************************************************************/
++
+++static struct iommu_dev_data *alloc_dev_data(u16 devid)
+++{
+++ struct iommu_dev_data *dev_data;
+++ unsigned long flags;
+++
+++ dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
+++ if (!dev_data)
+++ return NULL;
+++
+++ dev_data->devid = devid;
+++ atomic_set(&dev_data->bind, 0);
+++
+++ spin_lock_irqsave(&dev_data_list_lock, flags);
+++ list_add_tail(&dev_data->dev_data_list, &dev_data_list);
+++ spin_unlock_irqrestore(&dev_data_list_lock, flags);
+++
+++ return dev_data;
+++}
+++
+++static void free_dev_data(struct iommu_dev_data *dev_data)
+++{
+++ unsigned long flags;
+++
+++ spin_lock_irqsave(&dev_data_list_lock, flags);
+++ list_del(&dev_data->dev_data_list);
+++ spin_unlock_irqrestore(&dev_data_list_lock, flags);
+++
+++ kfree(dev_data);
+++}
+++
+++static struct iommu_dev_data *search_dev_data(u16 devid)
+++{
+++ struct iommu_dev_data *dev_data;
+++ unsigned long flags;
+++
+++ spin_lock_irqsave(&dev_data_list_lock, flags);
+++ list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
+++ if (dev_data->devid == devid)
+++ goto out_unlock;
+++ }
+++
+++ dev_data = NULL;
+++
+++out_unlock:
+++ spin_unlock_irqrestore(&dev_data_list_lock, flags);
+++
+++ return dev_data;
+++}
+++
+++static struct iommu_dev_data *find_dev_data(u16 devid)
+++{
+++ struct iommu_dev_data *dev_data;
+++
+++ dev_data = search_dev_data(devid);
+++
+++ if (dev_data == NULL)
+++ dev_data = alloc_dev_data(devid);
+++
+++ return dev_data;
+++}
+++
++ static inline u16 get_device_id(struct device *dev)
++ {
++ struct pci_dev *pdev = to_pci_dev(dev);
++
++ return calc_devid(pdev->bus->number, pdev->devfn);
++ }
++
++ static struct iommu_dev_data *get_dev_data(struct device *dev)
++ {
++ return dev->archdata.iommu;
++ }
++
++ /*
++ * In this function the list of preallocated protection domains is traversed to
++ * find the domain for a specific device
++ */
++ static struct dma_ops_domain *find_protection_domain(u16 devid)
++ {
++ struct dma_ops_domain *entry, *ret = NULL;
++ unsigned long flags;
++ u16 alias = amd_iommu_alias_table[devid];
++
++ if (list_empty(&iommu_pd_list))
++ return NULL;
++
++ spin_lock_irqsave(&iommu_pd_list_lock, flags);
++
++ list_for_each_entry(entry, &iommu_pd_list, list) {
++ if (entry->target_dev == devid ||
++ entry->target_dev == alias) {
++ ret = entry;
++ break;
++ }
++ }
++
++ spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
++
++ return ret;
++ }
++
++ /*
++ * This function checks if the driver got a valid device from the caller to
++ * avoid dereferencing invalid pointers.
++ */
++ static bool check_device(struct device *dev)
++ {
++ u16 devid;
++
++ if (!dev || !dev->dma_mask)
++ return false;
++
++ /* No device or no PCI device */
++ if (dev->bus != &pci_bus_type)
++ return false;
++
++ devid = get_device_id(dev);
++
++ /* Out of our scope? */
++ if (devid > amd_iommu_last_bdf)
++ return false;
++
++ if (amd_iommu_rlookup_table[devid] == NULL)
++ return false;
++
++ return true;
++ }
++
++ static int iommu_init_device(struct device *dev)
++ {
++ struct iommu_dev_data *dev_data;
- dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
+++ u16 alias;
++
++ if (dev->archdata.iommu)
++ return 0;
++
- dev_data->dev = dev;
+++ dev_data = find_dev_data(get_device_id(dev));
++ if (!dev_data)
++ return -ENOMEM;
++
- devid = get_device_id(dev);
- alias = amd_iommu_alias_table[devid];
- pdev = pci_get_bus_and_slot(PCI_BUS(alias), alias & 0xff);
- if (pdev)
- dev_data->alias = &pdev->dev;
- else {
- kfree(dev_data);
- return -ENOTSUPP;
+++ alias = amd_iommu_alias_table[dev_data->devid];
+++ if (alias != dev_data->devid) {
+++ struct iommu_dev_data *alias_data;
++
- atomic_set(&dev_data->bind, 0);
-
+++ alias_data = find_dev_data(alias);
+++ if (alias_data == NULL) {
+++ pr_err("AMD-Vi: Warning: Unhandled device %s\n",
+++ dev_name(dev));
+++ free_dev_data(dev_data);
+++ return -ENOTSUPP;
+++ }
+++ dev_data->alias_data = alias_data;
++ }
++
-
++ dev->archdata.iommu = dev_data;
++
- kfree(dev->archdata.iommu);
++ return 0;
++ }
++
++ static void iommu_ignore_device(struct device *dev)
++ {
++ u16 devid, alias;
++
++ devid = get_device_id(dev);
++ alias = amd_iommu_alias_table[devid];
++
++ memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
++ memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
++
++ amd_iommu_rlookup_table[devid] = NULL;
++ amd_iommu_rlookup_table[alias] = NULL;
++ }
++
++ static void iommu_uninit_device(struct device *dev)
++ {
-static int device_flush_iotlb(struct device *dev, u64 address, size_t size)
+++ /*
+++ * Nothing to do here - we keep dev_data around for unplugged devices
+++ * and reuse it when the device is re-plugged - not doing so would
+++ * introduce a ton of races.
+++ */
++ }
++
++ void __init amd_iommu_uninit_devices(void)
++ {
+++ struct iommu_dev_data *dev_data, *n;
++ struct pci_dev *pdev = NULL;
++
++ for_each_pci_dev(pdev) {
++
++ if (!check_device(&pdev->dev))
++ continue;
++
++ iommu_uninit_device(&pdev->dev);
++ }
+++
+++ /* Free all of our dev_data structures */
+++ list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
+++ free_dev_data(dev_data);
++ }
++
++ int __init amd_iommu_init_devices(void)
++ {
++ struct pci_dev *pdev = NULL;
++ int ret = 0;
++
++ for_each_pci_dev(pdev) {
++
++ if (!check_device(&pdev->dev))
++ continue;
++
++ ret = iommu_init_device(&pdev->dev);
++ if (ret == -ENOTSUPP)
++ iommu_ignore_device(&pdev->dev);
++ else if (ret)
++ goto out_free;
++ }
++
++ return 0;
++
++ out_free:
++
++ amd_iommu_uninit_devices();
++
++ return ret;
++ }
++ #ifdef CONFIG_AMD_IOMMU_STATS
++
++ /*
++ * Initialization code for statistics collection
++ */
++
++ DECLARE_STATS_COUNTER(compl_wait);
++ DECLARE_STATS_COUNTER(cnt_map_single);
++ DECLARE_STATS_COUNTER(cnt_unmap_single);
++ DECLARE_STATS_COUNTER(cnt_map_sg);
++ DECLARE_STATS_COUNTER(cnt_unmap_sg);
++ DECLARE_STATS_COUNTER(cnt_alloc_coherent);
++ DECLARE_STATS_COUNTER(cnt_free_coherent);
++ DECLARE_STATS_COUNTER(cross_page);
++ DECLARE_STATS_COUNTER(domain_flush_single);
++ DECLARE_STATS_COUNTER(domain_flush_all);
++ DECLARE_STATS_COUNTER(alloced_io_mem);
++ DECLARE_STATS_COUNTER(total_map_requests);
++
++ static struct dentry *stats_dir;
++ static struct dentry *de_fflush;
++
++ static void amd_iommu_stats_add(struct __iommu_counter *cnt)
++ {
++ if (stats_dir == NULL)
++ return;
++
++ cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
++ &cnt->value);
++ }
++
++ static void amd_iommu_stats_init(void)
++ {
++ stats_dir = debugfs_create_dir("amd-iommu", NULL);
++ if (stats_dir == NULL)
++ return;
++
++ de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
++ (u32 *)&amd_iommu_unmap_flush);
++
++ amd_iommu_stats_add(&compl_wait);
++ amd_iommu_stats_add(&cnt_map_single);
++ amd_iommu_stats_add(&cnt_unmap_single);
++ amd_iommu_stats_add(&cnt_map_sg);
++ amd_iommu_stats_add(&cnt_unmap_sg);
++ amd_iommu_stats_add(&cnt_alloc_coherent);
++ amd_iommu_stats_add(&cnt_free_coherent);
++ amd_iommu_stats_add(&cross_page);
++ amd_iommu_stats_add(&domain_flush_single);
++ amd_iommu_stats_add(&domain_flush_all);
++ amd_iommu_stats_add(&alloced_io_mem);
++ amd_iommu_stats_add(&total_map_requests);
++ }
++
++ #endif
++
++ /****************************************************************************
++ *
++ * Interrupt handling functions
++ *
++ ****************************************************************************/
++
++ static void dump_dte_entry(u16 devid)
++ {
++ int i;
++
++ for (i = 0; i < 8; ++i)
++ pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
++ amd_iommu_dev_table[devid].data[i]);
++ }
++
++ static void dump_command(unsigned long phys_addr)
++ {
++ struct iommu_cmd *cmd = phys_to_virt(phys_addr);
++ int i;
++
++ for (i = 0; i < 4; ++i)
++ pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
++ }
++
++ static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
++ {
++ u32 *event = __evt;
++ int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
++ int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
++ int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
++ int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
++ u64 address = (u64)(((u64)event[3]) << 32) | event[2];
++
++ printk(KERN_ERR "AMD-Vi: Event logged [");
++
++ switch (type) {
++ case EVENT_TYPE_ILL_DEV:
++ printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
++ "address=0x%016llx flags=0x%04x]\n",
++ PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
++ address, flags);
++ dump_dte_entry(devid);
++ break;
++ case EVENT_TYPE_IO_FAULT:
++ printk("IO_PAGE_FAULT device=%02x:%02x.%x "
++ "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
++ PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
++ domid, address, flags);
++ break;
++ case EVENT_TYPE_DEV_TAB_ERR:
++ printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
++ "address=0x%016llx flags=0x%04x]\n",
++ PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
++ address, flags);
++ break;
++ case EVENT_TYPE_PAGE_TAB_ERR:
++ printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
++ "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
++ PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
++ domid, address, flags);
++ break;
++ case EVENT_TYPE_ILL_CMD:
++ printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
++ dump_command(address);
++ break;
++ case EVENT_TYPE_CMD_HARD_ERR:
++ printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
++ "flags=0x%04x]\n", address, flags);
++ break;
++ case EVENT_TYPE_IOTLB_INV_TO:
++ printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
++ "address=0x%016llx]\n",
++ PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
++ address);
++ break;
++ case EVENT_TYPE_INV_DEV_REQ:
++ printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
++ "address=0x%016llx flags=0x%04x]\n",
++ PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
++ address, flags);
++ break;
++ default:
++ printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
++ }
++ }
++
++ static void iommu_poll_events(struct amd_iommu *iommu)
++ {
++ u32 head, tail;
++ unsigned long flags;
++
++ spin_lock_irqsave(&iommu->lock, flags);
++
++ head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
++ tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
++
++ while (head != tail) {
++ iommu_print_event(iommu, iommu->evt_buf + head);
++ head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
++ }
++
++ writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
++
++ spin_unlock_irqrestore(&iommu->lock, flags);
++ }
++
++ irqreturn_t amd_iommu_int_thread(int irq, void *data)
++ {
++ struct amd_iommu *iommu;
++
++ for_each_iommu(iommu)
++ iommu_poll_events(iommu);
++
++ return IRQ_HANDLED;
++ }
++
++ irqreturn_t amd_iommu_int_handler(int irq, void *data)
++ {
++ return IRQ_WAKE_THREAD;
++ }
++
++ /****************************************************************************
++ *
++ * IOMMU command queuing functions
++ *
++ ****************************************************************************/
++
++ static int wait_on_sem(volatile u64 *sem)
++ {
++ int i = 0;
++
++ while (*sem == 0 && i < LOOP_TIMEOUT) {
++ udelay(1);
++ i += 1;
++ }
++
++ if (i == LOOP_TIMEOUT) {
++ pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
++ return -EIO;
++ }
++
++ return 0;
++ }
++
++ static void copy_cmd_to_buffer(struct amd_iommu *iommu,
++ struct iommu_cmd *cmd,
++ u32 tail)
++ {
++ u8 *target;
++
++ target = iommu->cmd_buf + tail;
++ tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
++
++ /* Copy command to buffer */
++ memcpy(target, cmd, sizeof(*cmd));
++
++ /* Tell the IOMMU about it */
++ writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
++ }
++
++ static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
++ {
++ WARN_ON(address & 0x7ULL);
++
++ memset(cmd, 0, sizeof(*cmd));
++ cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
++ cmd->data[1] = upper_32_bits(__pa(address));
++ cmd->data[2] = 1;
++ CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
++ }
++
++ static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
++ {
++ memset(cmd, 0, sizeof(*cmd));
++ cmd->data[0] = devid;
++ CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
++ }
++
++ static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
++ size_t size, u16 domid, int pde)
++ {
++ u64 pages;
++ int s;
++
++ pages = iommu_num_pages(address, size, PAGE_SIZE);
++ s = 0;
++
++ if (pages > 1) {
++ /*
++ * If we have to flush more than one page, flush all
++ * TLB entries for this domain
++ */
++ address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
++ s = 1;
++ }
++
++ address &= PAGE_MASK;
++
++ memset(cmd, 0, sizeof(*cmd));
++ cmd->data[1] |= domid;
++ cmd->data[2] = lower_32_bits(address);
++ cmd->data[3] = upper_32_bits(address);
++ CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
++ if (s) /* size bit - we flush more than one 4kb page */
++ cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
++ if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
++ cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
++ }
++
++ static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
++ u64 address, size_t size)
++ {
++ u64 pages;
++ int s;
++
++ pages = iommu_num_pages(address, size, PAGE_SIZE);
++ s = 0;
++
++ if (pages > 1) {
++ /*
++ * If we have to flush more than one page, flush all
++ * TLB entries for this domain
++ */
++ address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
++ s = 1;
++ }
++
++ address &= PAGE_MASK;
++
++ memset(cmd, 0, sizeof(*cmd));
++ cmd->data[0] = devid;
++ cmd->data[0] |= (qdep & 0xff) << 24;
++ cmd->data[1] = devid;
++ cmd->data[2] = lower_32_bits(address);
++ cmd->data[3] = upper_32_bits(address);
++ CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
++ if (s)
++ cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
++ }
++
++ static void build_inv_all(struct iommu_cmd *cmd)
++ {
++ memset(cmd, 0, sizeof(*cmd));
++ CMD_SET_TYPE(cmd, CMD_INV_ALL);
++ }
++
++ /*
++ * Writes the command to the IOMMUs command buffer and informs the
++ * hardware about the new command.
++ */
++ static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
++ {
++ u32 left, tail, head, next_tail;
++ unsigned long flags;
++
++ WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
++
++ again:
++ spin_lock_irqsave(&iommu->lock, flags);
++
++ head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
++ tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
++ next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
++ left = (head - next_tail) % iommu->cmd_buf_size;
++
++ if (left <= 2) {
++ struct iommu_cmd sync_cmd;
++ volatile u64 sem = 0;
++ int ret;
++
++ build_completion_wait(&sync_cmd, (u64)&sem);
++ copy_cmd_to_buffer(iommu, &sync_cmd, tail);
++
++ spin_unlock_irqrestore(&iommu->lock, flags);
++
++ if ((ret = wait_on_sem(&sem)) != 0)
++ return ret;
++
++ goto again;
++ }
++
++ copy_cmd_to_buffer(iommu, cmd, tail);
++
++ /* We need to sync now to make sure all commands are processed */
++ iommu->need_sync = true;
++
++ spin_unlock_irqrestore(&iommu->lock, flags);
++
++ return 0;
++ }
++
++ /*
++ * This function queues a completion wait command into the command
++ * buffer of an IOMMU
++ */
++ static int iommu_completion_wait(struct amd_iommu *iommu)
++ {
++ struct iommu_cmd cmd;
++ volatile u64 sem = 0;
++ int ret;
++
++ if (!iommu->need_sync)
++ return 0;
++
++ build_completion_wait(&cmd, (u64)&sem);
++
++ ret = iommu_queue_command(iommu, &cmd);
++ if (ret)
++ return ret;
++
++ return wait_on_sem(&sem);
++ }
++
++ static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
++ {
++ struct iommu_cmd cmd;
++
++ build_inv_dte(&cmd, devid);
++
++ return iommu_queue_command(iommu, &cmd);
++ }
++
++ static void iommu_flush_dte_all(struct amd_iommu *iommu)
++ {
++ u32 devid;
++
++ for (devid = 0; devid <= 0xffff; ++devid)
++ iommu_flush_dte(iommu, devid);
++
++ iommu_completion_wait(iommu);
++ }
++
++ /*
++ * This function uses heavy locking and may disable irqs for some time. But
++ * this is no issue because it is only called during resume.
++ */
++ static void iommu_flush_tlb_all(struct amd_iommu *iommu)
++ {
++ u32 dom_id;
++
++ for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
++ struct iommu_cmd cmd;
++ build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
++ dom_id, 1);
++ iommu_queue_command(iommu, &cmd);
++ }
++
++ iommu_completion_wait(iommu);
++ }
++
++ static void iommu_flush_all(struct amd_iommu *iommu)
++ {
++ struct iommu_cmd cmd;
++
++ build_inv_all(&cmd);
++
++ iommu_queue_command(iommu, &cmd);
++ iommu_completion_wait(iommu);
++ }
++
++ void iommu_flush_all_caches(struct amd_iommu *iommu)
++ {
++ if (iommu_feature(iommu, FEATURE_IA)) {
++ iommu_flush_all(iommu);
++ } else {
++ iommu_flush_dte_all(iommu);
++ iommu_flush_tlb_all(iommu);
++ }
++ }
++
++ /*
++ * Command send function for flushing on-device TLB
++ */
- struct pci_dev *pdev = to_pci_dev(dev);
+++static int device_flush_iotlb(struct iommu_dev_data *dev_data,
+++ u64 address, size_t size)
++ {
- u16 devid;
++ struct amd_iommu *iommu;
++ struct iommu_cmd cmd;
- qdep = pci_ats_queue_depth(pdev);
- devid = get_device_id(dev);
- iommu = amd_iommu_rlookup_table[devid];
++ int qdep;
++
- build_inv_iotlb_pages(&cmd, devid, qdep, address, size);
+++ qdep = dev_data->ats.qdep;
+++ iommu = amd_iommu_rlookup_table[dev_data->devid];
++
-static int device_flush_dte(struct device *dev)
+++ build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
++
++ return iommu_queue_command(iommu, &cmd);
++ }
++
++ /*
++ * Command send function for invalidating a device table entry
++ */
- struct pci_dev *pdev;
- u16 devid;
+++static int device_flush_dte(struct iommu_dev_data *dev_data)
++ {
++ struct amd_iommu *iommu;
- pdev = to_pci_dev(dev);
- devid = get_device_id(dev);
- iommu = amd_iommu_rlookup_table[devid];
++ int ret;
++
- ret = iommu_flush_dte(iommu, devid);
+++ iommu = amd_iommu_rlookup_table[dev_data->devid];
++
- if (pci_ats_enabled(pdev))
- ret = device_flush_iotlb(dev, 0, ~0UL);
+++ ret = iommu_flush_dte(iommu, dev_data->devid);
++ if (ret)
++ return ret;
++
- struct pci_dev *pdev = to_pci_dev(dev_data->dev);
+++ if (dev_data->ats.enabled)
+++ ret = device_flush_iotlb(dev_data, 0, ~0UL);
++
++ return ret;
++ }
++
++ /*
++ * TLB invalidation function which is called from the mapping functions.
++ * It invalidates a single PTE if the range to flush is within a single
++ * page. Otherwise it flushes the whole TLB of the IOMMU.
++ */
++ static void __domain_flush_pages(struct protection_domain *domain,
++ u64 address, size_t size, int pde)
++ {
++ struct iommu_dev_data *dev_data;
++ struct iommu_cmd cmd;
++ int ret = 0, i;
++
++ build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
++
++ for (i = 0; i < amd_iommus_present; ++i) {
++ if (!domain->dev_iommu[i])
++ continue;
++
++ /*
++ * Devices of this domain are behind this IOMMU
++ * We need a TLB flush
++ */
++ ret |= iommu_queue_command(amd_iommus[i], &cmd);
++ }
++
++ list_for_each_entry(dev_data, &domain->dev_list, list) {
- if (!pci_ats_enabled(pdev))
++
- ret |= device_flush_iotlb(dev_data->dev, address, size);
+++ if (!dev_data->ats.enabled)
++ continue;
++
- device_flush_dte(dev_data->dev);
+++ ret |= device_flush_iotlb(dev_data, address, size);
++ }
++
++ WARN_ON(ret);
++ }
++
++ static void domain_flush_pages(struct protection_domain *domain,
++ u64 address, size_t size)
++ {
++ __domain_flush_pages(domain, address, size, 0);
++ }
++
++ /* Flush the whole IO/TLB for a given protection domain */
++ static void domain_flush_tlb(struct protection_domain *domain)
++ {
++ __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
++ }
++
++ /* Flush the whole IO/TLB for a given protection domain - including PDE */
++ static void domain_flush_tlb_pde(struct protection_domain *domain)
++ {
++ __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
++ }
++
++ static void domain_flush_complete(struct protection_domain *domain)
++ {
++ int i;
++
++ for (i = 0; i < amd_iommus_present; ++i) {
++ if (!domain->dev_iommu[i])
++ continue;
++
++ /*
++ * Devices of this domain are behind this IOMMU
++ * We need to wait for completion of all commands.
++ */
++ iommu_completion_wait(amd_iommus[i]);
++ }
++ }
++
++
++ /*
++ * This function flushes the DTEs for all devices in domain
++ */
++ static void domain_flush_devices(struct protection_domain *domain)
++ {
++ struct iommu_dev_data *dev_data;
++ unsigned long flags;
++
++ spin_lock_irqsave(&domain->lock, flags);
++
++ list_for_each_entry(dev_data, &domain->dev_list, list)
-static void do_attach(struct device *dev, struct protection_domain *domain)
+++ device_flush_dte(dev_data);
++
++ spin_unlock_irqrestore(&domain->lock, flags);
++ }
++
++ /****************************************************************************
++ *
++ * The functions below are used the create the page table mappings for
++ * unity mapped regions.
++ *
++ ****************************************************************************/
++
++ /*
++ * This function is used to add another level to an IO page table. Adding
++ * another level increases the size of the address space by 9 bits to a size up
++ * to 64 bits.
++ */
++ static bool increase_address_space(struct protection_domain *domain,
++ gfp_t gfp)
++ {
++ u64 *pte;
++
++ if (domain->mode == PAGE_MODE_6_LEVEL)
++ /* address space already 64 bit large */
++ return false;
++
++ pte = (void *)get_zeroed_page(gfp);
++ if (!pte)
++ return false;
++
++ *pte = PM_LEVEL_PDE(domain->mode,
++ virt_to_phys(domain->pt_root));
++ domain->pt_root = pte;
++ domain->mode += 1;
++ domain->updated = true;
++
++ return true;
++ }
++
++ static u64 *alloc_pte(struct protection_domain *domain,
++ unsigned long address,
++ unsigned long page_size,
++ u64 **pte_page,
++ gfp_t gfp)
++ {
++ int level, end_lvl;
++ u64 *pte, *page;
++
++ BUG_ON(!is_power_of_2(page_size));
++
++ while (address > PM_LEVEL_SIZE(domain->mode))
++ increase_address_space(domain, gfp);
++
++ level = domain->mode - 1;
++ pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
++ address = PAGE_SIZE_ALIGN(address, page_size);
++ end_lvl = PAGE_SIZE_LEVEL(page_size);
++
++ while (level > end_lvl) {
++ if (!IOMMU_PTE_PRESENT(*pte)) {
++ page = (u64 *)get_zeroed_page(gfp);
++ if (!page)
++ return NULL;
++ *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
++ }
++
++ /* No level skipping support yet */
++ if (PM_PTE_LEVEL(*pte) != level)
++ return NULL;
++
++ level -= 1;
++
++ pte = IOMMU_PTE_PAGE(*pte);
++
++ if (pte_page && level == end_lvl)
++ *pte_page = pte;
++
++ pte = &pte[PM_LEVEL_INDEX(level, address)];
++ }
++
++ return pte;
++ }
++
++ /*
++ * This function checks if there is a PTE for a given dma address. If
++ * there is one, it returns the pointer to it.
++ */
++ static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
++ {
++ int level;
++ u64 *pte;
++
++ if (address > PM_LEVEL_SIZE(domain->mode))
++ return NULL;
++
++ level = domain->mode - 1;
++ pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
++
++ while (level > 0) {
++
++ /* Not Present */
++ if (!IOMMU_PTE_PRESENT(*pte))
++ return NULL;
++
++ /* Large PTE */
++ if (PM_PTE_LEVEL(*pte) == 0x07) {
++ unsigned long pte_mask, __pte;
++
++ /*
++ * If we have a series of large PTEs, make
++ * sure to return a pointer to the first one.
++ */
++ pte_mask = PTE_PAGE_SIZE(*pte);
++ pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
++ __pte = ((unsigned long)pte) & pte_mask;
++
++ return (u64 *)__pte;
++ }
++
++ /* No level skipping support yet */
++ if (PM_PTE_LEVEL(*pte) != level)
++ return NULL;
++
++ level -= 1;
++
++ /* Walk to the next level */
++ pte = IOMMU_PTE_PAGE(*pte);
++ pte = &pte[PM_LEVEL_INDEX(level, address)];
++ }
++
++ return pte;
++ }
++
++ /*
++ * Generic mapping functions. It maps a physical address into a DMA
++ * address space. It allocates the page table pages if necessary.
++ * In the future it can be extended to a generic mapping function
++ * supporting all features of AMD IOMMU page tables like level skipping
++ * and full 64 bit address spaces.
++ */
++ static int iommu_map_page(struct protection_domain *dom,
++ unsigned long bus_addr,
++ unsigned long phys_addr,
++ int prot,
++ unsigned long page_size)
++ {
++ u64 __pte, *pte;
++ int i, count;
++
++ if (!(prot & IOMMU_PROT_MASK))
++ return -EINVAL;
++
++ bus_addr = PAGE_ALIGN(bus_addr);
++ phys_addr = PAGE_ALIGN(phys_addr);
++ count = PAGE_SIZE_PTE_COUNT(page_size);
++ pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
++
++ for (i = 0; i < count; ++i)
++ if (IOMMU_PTE_PRESENT(pte[i]))
++ return -EBUSY;
++
++ if (page_size > PAGE_SIZE) {
++ __pte = PAGE_SIZE_PTE(phys_addr, page_size);
++ __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
++ } else
++ __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
++
++ if (prot & IOMMU_PROT_IR)
++ __pte |= IOMMU_PTE_IR;
++ if (prot & IOMMU_PROT_IW)
++ __pte |= IOMMU_PTE_IW;
++
++ for (i = 0; i < count; ++i)
++ pte[i] = __pte;
++
++ update_domain(dom);
++
++ return 0;
++ }
++
++ static unsigned long iommu_unmap_page(struct protection_domain *dom,
++ unsigned long bus_addr,
++ unsigned long page_size)
++ {
++ unsigned long long unmap_size, unmapped;
++ u64 *pte;
++
++ BUG_ON(!is_power_of_2(page_size));
++
++ unmapped = 0;
++
++ while (unmapped < page_size) {
++
++ pte = fetch_pte(dom, bus_addr);
++
++ if (!pte) {
++ /*
++ * No PTE for this address
++ * move forward in 4kb steps
++ */
++ unmap_size = PAGE_SIZE;
++ } else if (PM_PTE_LEVEL(*pte) == 0) {
++ /* 4kb PTE found for this address */
++ unmap_size = PAGE_SIZE;
++ *pte = 0ULL;
++ } else {
++ int count, i;
++
++ /* Large PTE found which maps this address */
++ unmap_size = PTE_PAGE_SIZE(*pte);
++ count = PAGE_SIZE_PTE_COUNT(unmap_size);
++ for (i = 0; i < count; i++)
++ pte[i] = 0ULL;
++ }
++
++ bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
++ unmapped += unmap_size;
++ }
++
++ BUG_ON(!is_power_of_2(unmapped));
++
++ return unmapped;
++ }
++
++ /*
++ * This function checks if a specific unity mapping entry is needed for
++ * this specific IOMMU.
++ */
++ static int iommu_for_unity_map(struct amd_iommu *iommu,
++ struct unity_map_entry *entry)
++ {
++ u16 bdf, i;
++
++ for (i = entry->devid_start; i <= entry->devid_end; ++i) {
++ bdf = amd_iommu_alias_table[i];
++ if (amd_iommu_rlookup_table[bdf] == iommu)
++ return 1;
++ }
++
++ return 0;
++ }
++
++ /*
++ * This function actually applies the mapping to the page table of the
++ * dma_ops domain.
++ */
++ static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
++ struct unity_map_entry *e)
++ {
++ u64 addr;
++ int ret;
++
++ for (addr = e->address_start; addr < e->address_end;
++ addr += PAGE_SIZE) {
++ ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
++ PAGE_SIZE);
++ if (ret)
++ return ret;
++ /*
++ * if unity mapping is in aperture range mark the page
++ * as allocated in the aperture
++ */
++ if (addr < dma_dom->aperture_size)
++ __set_bit(addr >> PAGE_SHIFT,
++ dma_dom->aperture[0]->bitmap);
++ }
++
++ return 0;
++ }
++
++ /*
++ * Init the unity mappings for a specific IOMMU in the system
++ *
++ * Basically iterates over all unity mapping entries and applies them to
++ * the default domain DMA of that IOMMU if necessary.
++ */
++ static int iommu_init_unity_mappings(struct amd_iommu *iommu)
++ {
++ struct unity_map_entry *entry;
++ int ret;
++
++ list_for_each_entry(entry, &amd_iommu_unity_map, list) {
++ if (!iommu_for_unity_map(iommu, entry))
++ continue;
++ ret = dma_ops_unity_map(iommu->default_dom, entry);
++ if (ret)
++ return ret;
++ }
++
++ return 0;
++ }
++
++ /*
++ * Inits the unity mappings required for a specific device
++ */
++ static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
++ u16 devid)
++ {
++ struct unity_map_entry *e;
++ int ret;
++
++ list_for_each_entry(e, &amd_iommu_unity_map, list) {
++ if (!(devid >= e->devid_start && devid <= e->devid_end))
++ continue;
++ ret = dma_ops_unity_map(dma_dom, e);
++ if (ret)
++ return ret;
++ }
++
++ return 0;
++ }
++
++ /****************************************************************************
++ *
++ * The next functions belong to the address allocator for the dma_ops
++ * interface functions. They work like the allocators in the other IOMMU
++ * drivers. Its basically a bitmap which marks the allocated pages in
++ * the aperture. Maybe it could be enhanced in the future to a more
++ * efficient allocator.
++ *
++ ****************************************************************************/
++
++ /*
++ * The address allocator core functions.
++ *
++ * called with domain->lock held
++ */
++
++ /*
++ * Used to reserve address ranges in the aperture (e.g. for exclusion
++ * ranges.
++ */
++ static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
++ unsigned long start_page,
++ unsigned int pages)
++ {
++ unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
++
++ if (start_page + pages > last_page)
++ pages = last_page - start_page;
++
++ for (i = start_page; i < start_page + pages; ++i) {
++ int index = i / APERTURE_RANGE_PAGES;
++ int page = i % APERTURE_RANGE_PAGES;
++ __set_bit(page, dom->aperture[index]->bitmap);
++ }
++ }
++
++ /*
++ * This function is used to add a new aperture range to an existing
++ * aperture in case of dma_ops domain allocation or address allocation
++ * failure.
++ */
++ static int alloc_new_range(struct dma_ops_domain *dma_dom,
++ bool populate, gfp_t gfp)
++ {
++ int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
++ struct amd_iommu *iommu;
++ unsigned long i;
++
++ #ifdef CONFIG_IOMMU_STRESS
++ populate = false;
++ #endif
++
++ if (index >= APERTURE_MAX_RANGES)
++ return -ENOMEM;
++
++ dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
++ if (!dma_dom->aperture[index])
++ return -ENOMEM;
++
++ dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
++ if (!dma_dom->aperture[index]->bitmap)
++ goto out_free;
++
++ dma_dom->aperture[index]->offset = dma_dom->aperture_size;
++
++ if (populate) {
++ unsigned long address = dma_dom->aperture_size;
++ int i, num_ptes = APERTURE_RANGE_PAGES / 512;
++ u64 *pte, *pte_page;
++
++ for (i = 0; i < num_ptes; ++i) {
++ pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
++ &pte_page, gfp);
++ if (!pte)
++ goto out_free;
++
++ dma_dom->aperture[index]->pte_pages[i] = pte_page;
++
++ address += APERTURE_RANGE_SIZE / 64;
++ }
++ }
++
++ dma_dom->aperture_size += APERTURE_RANGE_SIZE;
++
++ /* Initialize the exclusion range if necessary */
++ for_each_iommu(iommu) {
++ if (iommu->exclusion_start &&
++ iommu->exclusion_start >= dma_dom->aperture[index]->offset
++ && iommu->exclusion_start < dma_dom->aperture_size) {
++ unsigned long startpage;
++ int pages = iommu_num_pages(iommu->exclusion_start,
++ iommu->exclusion_length,
++ PAGE_SIZE);
++ startpage = iommu->exclusion_start >> PAGE_SHIFT;
++ dma_ops_reserve_addresses(dma_dom, startpage, pages);
++ }
++ }
++
++ /*
++ * Check for areas already mapped as present in the new aperture
++ * range and mark those pages as reserved in the allocator. Such
++ * mappings may already exist as a result of requested unity
++ * mappings for devices.
++ */
++ for (i = dma_dom->aperture[index]->offset;
++ i < dma_dom->aperture_size;
++ i += PAGE_SIZE) {
++ u64 *pte = fetch_pte(&dma_dom->domain, i);
++ if (!pte || !IOMMU_PTE_PRESENT(*pte))
++ continue;
++
++ dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
++ }
++
++ update_domain(&dma_dom->domain);
++
++ return 0;
++
++ out_free:
++ update_domain(&dma_dom->domain);
++
++ free_page((unsigned long)dma_dom->aperture[index]->bitmap);
++
++ kfree(dma_dom->aperture[index]);
++ dma_dom->aperture[index] = NULL;
++
++ return -ENOMEM;
++ }
++
++ static unsigned long dma_ops_area_alloc(struct device *dev,
++ struct dma_ops_domain *dom,
++ unsigned int pages,
++ unsigned long align_mask,
++ u64 dma_mask,
++ unsigned long start)
++ {
++ unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
++ int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
++ int i = start >> APERTURE_RANGE_SHIFT;
++ unsigned long boundary_size;
++ unsigned long address = -1;
++ unsigned long limit;
++
++ next_bit >>= PAGE_SHIFT;
++
++ boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
++ PAGE_SIZE) >> PAGE_SHIFT;
++
++ for (;i < max_index; ++i) {
++ unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
++
++ if (dom->aperture[i]->offset >= dma_mask)
++ break;
++
++ limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
++ dma_mask >> PAGE_SHIFT);
++
++ address = iommu_area_alloc(dom->aperture[i]->bitmap,
++ limit, next_bit, pages, 0,
++ boundary_size, align_mask);
++ if (address != -1) {
++ address = dom->aperture[i]->offset +
++ (address << PAGE_SHIFT);
++ dom->next_address = address + (pages << PAGE_SHIFT);
++ break;
++ }
++
++ next_bit = 0;
++ }
++
++ return address;
++ }
++
++ static unsigned long dma_ops_alloc_addresses(struct device *dev,
++ struct dma_ops_domain *dom,
++ unsigned int pages,
++ unsigned long align_mask,
++ u64 dma_mask)
++ {
++ unsigned long address;
++
++ #ifdef CONFIG_IOMMU_STRESS
++ dom->next_address = 0;
++ dom->need_flush = true;
++ #endif
++
++ address = dma_ops_area_alloc(dev, dom, pages, align_mask,
++ dma_mask, dom->next_address);
++
++ if (address == -1) {
++ dom->next_address = 0;
++ address = dma_ops_area_alloc(dev, dom, pages, align_mask,
++ dma_mask, 0);
++ dom->need_flush = true;
++ }
++
++ if (unlikely(address == -1))
++ address = DMA_ERROR_CODE;
++
++ WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
++
++ return address;
++ }
++
++ /*
++ * The address free function.
++ *
++ * called with domain->lock held
++ */
++ static void dma_ops_free_addresses(struct dma_ops_domain *dom,
++ unsigned long address,
++ unsigned int pages)
++ {
++ unsigned i = address >> APERTURE_RANGE_SHIFT;
++ struct aperture_range *range = dom->aperture[i];
++
++ BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
++
++ #ifdef CONFIG_IOMMU_STRESS
++ if (i < 4)
++ return;
++ #endif
++
++ if (address >= dom->next_address)
++ dom->need_flush = true;
++
++ address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
++
++ bitmap_clear(range->bitmap, address, pages);
++
++ }
++
++ /****************************************************************************
++ *
++ * The next functions belong to the domain allocation. A domain is
++ * allocated for every IOMMU as the default domain. If device isolation
++ * is enabled, every device get its own domain. The most important thing
++ * about domains is the page table mapping the DMA address space they
++ * contain.
++ *
++ ****************************************************************************/
++
++ /*
++ * This function adds a protection domain to the global protection domain list
++ */
++ static void add_domain_to_list(struct protection_domain *domain)
++ {
++ unsigned long flags;
++
++ spin_lock_irqsave(&amd_iommu_pd_lock, flags);
++ list_add(&domain->list, &amd_iommu_pd_list);
++ spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
++ }
++
++ /*
++ * This function removes a protection domain to the global
++ * protection domain list
++ */
++ static void del_domain_from_list(struct protection_domain *domain)
++ {
++ unsigned long flags;
++
++ spin_lock_irqsave(&amd_iommu_pd_lock, flags);
++ list_del(&domain->list);
++ spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
++ }
++
++ static u16 domain_id_alloc(void)
++ {
++ unsigned long flags;
++ int id;
++
++ write_lock_irqsave(&amd_iommu_devtable_lock, flags);
++ id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
++ BUG_ON(id == 0);
++ if (id > 0 && id < MAX_DOMAIN_ID)
++ __set_bit(id, amd_iommu_pd_alloc_bitmap);
++ else
++ id = 0;
++ write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
++
++ return id;
++ }
++
++ static void domain_id_free(int id)
++ {
++ unsigned long flags;
++
++ write_lock_irqsave(&amd_iommu_devtable_lock, flags);
++ if (id > 0 && id < MAX_DOMAIN_ID)
++ __clear_bit(id, amd_iommu_pd_alloc_bitmap);
++ write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
++ }
++
++ static void free_pagetable(struct protection_domain *domain)
++ {
++ int i, j;
++ u64 *p1, *p2, *p3;
++
++ p1 = domain->pt_root;
++
++ if (!p1)
++ return;
++
++ for (i = 0; i < 512; ++i) {
++ if (!IOMMU_PTE_PRESENT(p1[i]))
++ continue;
++
++ p2 = IOMMU_PTE_PAGE(p1[i]);
++ for (j = 0; j < 512; ++j) {
++ if (!IOMMU_PTE_PRESENT(p2[j]))
++ continue;
++ p3 = IOMMU_PTE_PAGE(p2[j]);
++ free_page((unsigned long)p3);
++ }
++
++ free_page((unsigned long)p2);
++ }
++
++ free_page((unsigned long)p1);
++
++ domain->pt_root = NULL;
++ }
++
++ /*
++ * Free a domain, only used if something went wrong in the
++ * allocation path and we need to free an already allocated page table
++ */
++ static void dma_ops_domain_free(struct dma_ops_domain *dom)
++ {
++ int i;
++
++ if (!dom)
++ return;
++
++ del_domain_from_list(&dom->domain);
++
++ free_pagetable(&dom->domain);
++
++ for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
++ if (!dom->aperture[i])
++ continue;
++ free_page((unsigned long)dom->aperture[i]->bitmap);
++ kfree(dom->aperture[i]);
++ }
++
++ kfree(dom);
++ }
++
++ /*
++ * Allocates a new protection domain usable for the dma_ops functions.
++ * It also initializes the page table and the address allocator data
++ * structures required for the dma_ops interface
++ */
++ static struct dma_ops_domain *dma_ops_domain_alloc(void)
++ {
++ struct dma_ops_domain *dma_dom;
++
++ dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
++ if (!dma_dom)
++ return NULL;
++
++ spin_lock_init(&dma_dom->domain.lock);
++
++ dma_dom->domain.id = domain_id_alloc();
++ if (dma_dom->domain.id == 0)
++ goto free_dma_dom;
++ INIT_LIST_HEAD(&dma_dom->domain.dev_list);
++ dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
++ dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
++ dma_dom->domain.flags = PD_DMA_OPS_MASK;
++ dma_dom->domain.priv = dma_dom;
++ if (!dma_dom->domain.pt_root)
++ goto free_dma_dom;
++
++ dma_dom->need_flush = false;
++ dma_dom->target_dev = 0xffff;
++
++ add_domain_to_list(&dma_dom->domain);
++
++ if (alloc_new_range(dma_dom, true, GFP_KERNEL))
++ goto free_dma_dom;
++
++ /*
++ * mark the first page as allocated so we never return 0 as
++ * a valid dma-address. So we can use 0 as error value
++ */
++ dma_dom->aperture[0]->bitmap[0] = 1;
++ dma_dom->next_address = 0;
++
++
++ return dma_dom;
++
++ free_dma_dom:
++ dma_ops_domain_free(dma_dom);
++
++ return NULL;
++ }
++
++ /*
++ * little helper function to check whether a given protection domain is a
++ * dma_ops domain
++ */
++ static bool dma_ops_domain(struct protection_domain *domain)
++ {
++ return domain->flags & PD_DMA_OPS_MASK;
++ }
++
++ static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
++ {
++ u64 pte_root = virt_to_phys(domain->pt_root);
++ u32 flags = 0;
++
++ pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
++ << DEV_ENTRY_MODE_SHIFT;
++ pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
++
++ if (ats)
++ flags |= DTE_FLAG_IOTLB;
++
++ amd_iommu_dev_table[devid].data[3] |= flags;
++ amd_iommu_dev_table[devid].data[2] = domain->id;
++ amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
++ amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
++ }
++
++ static void clear_dte_entry(u16 devid)
++ {
++ /* remove entry from the device table seen by the hardware */
++ amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
++ amd_iommu_dev_table[devid].data[1] = 0;
++ amd_iommu_dev_table[devid].data[2] = 0;
++
++ amd_iommu_apply_erratum_63(devid);
++ }
++
- struct iommu_dev_data *dev_data;
+++static void do_attach(struct iommu_dev_data *dev_data,
+++ struct protection_domain *domain)
++ {
- struct pci_dev *pdev;
- bool ats = false;
- u16 devid;
-
- devid = get_device_id(dev);
- iommu = amd_iommu_rlookup_table[devid];
- dev_data = get_dev_data(dev);
- pdev = to_pci_dev(dev);
++ struct amd_iommu *iommu;
- if (amd_iommu_iotlb_sup)
- ats = pci_ats_enabled(pdev);
+++ bool ats;
++
- set_dte_entry(devid, domain, ats);
+++ iommu = amd_iommu_rlookup_table[dev_data->devid];
+++ ats = dev_data->ats.enabled;
++
++ /* Update data structures */
++ dev_data->domain = domain;
++ list_add(&dev_data->list, &domain->dev_list);
- device_flush_dte(dev);
+++ set_dte_entry(dev_data->devid, domain, ats);
++
++ /* Do reference counting */
++ domain->dev_iommu[iommu->index] += 1;
++ domain->dev_cnt += 1;
++
++ /* Flush the DTE entry */
-static void do_detach(struct device *dev)
+++ device_flush_dte(dev_data);
++ }
++
- struct iommu_dev_data *dev_data;
+++static void do_detach(struct iommu_dev_data *dev_data)
++ {
- u16 devid;
++ struct amd_iommu *iommu;
- devid = get_device_id(dev);
- iommu = amd_iommu_rlookup_table[devid];
- dev_data = get_dev_data(dev);
++
- clear_dte_entry(devid);
+++ iommu = amd_iommu_rlookup_table[dev_data->devid];
++
++ /* decrease reference counters */
++ dev_data->domain->dev_iommu[iommu->index] -= 1;
++ dev_data->domain->dev_cnt -= 1;
++
++ /* Update data structures */
++ dev_data->domain = NULL;
++ list_del(&dev_data->list);
- device_flush_dte(dev);
+++ clear_dte_entry(dev_data->devid);
++
++ /* Flush the DTE entry */
-static int __attach_device(struct device *dev,
+++ device_flush_dte(dev_data);
++ }
++
++ /*
++ * If a device is not yet associated with a domain, this function does
++ * assigns it visible for the hardware
++ */
- struct iommu_dev_data *dev_data, *alias_data;
+++static int __attach_device(struct iommu_dev_data *dev_data,
++ struct protection_domain *domain)
++ {
- dev_data = get_dev_data(dev);
- alias_data = get_dev_data(dev_data->alias);
-
- if (!alias_data)
- return -EINVAL;
-
++ int ret;
++
- /* Some sanity checks */
- ret = -EBUSY;
- if (alias_data->domain != NULL &&
- alias_data->domain != domain)
- goto out_unlock;
++ /* lock domain */
++ spin_lock(&domain->lock);
++
- if (dev_data->domain != NULL &&
- dev_data->domain != domain)
- goto out_unlock;
+++ if (dev_data->alias_data != NULL) {
+++ struct iommu_dev_data *alias_data = dev_data->alias_data;
+++
+++ /* Some sanity checks */
+++ ret = -EBUSY;
+++ if (alias_data->domain != NULL &&
+++ alias_data->domain != domain)
+++ goto out_unlock;
++
- /* Do real assignment */
- if (dev_data->alias != dev) {
- alias_data = get_dev_data(dev_data->alias);
+++ if (dev_data->domain != NULL &&
+++ dev_data->domain != domain)
+++ goto out_unlock;
++
- do_attach(dev_data->alias, domain);
+++ /* Do real assignment */
++ if (alias_data->domain == NULL)
- do_attach(dev, domain);
+++ do_attach(alias_data, domain);
++
++ atomic_inc(&alias_data->bind);
++ }
++
++ if (dev_data->domain == NULL)
- if (amd_iommu_iotlb_sup)
- pci_enable_ats(pdev, PAGE_SHIFT);
+++ do_attach(dev_data, domain);
++
++ atomic_inc(&dev_data->bind);
++
++ ret = 0;
++
++ out_unlock:
++
++ /* ready */
++ spin_unlock(&domain->lock);
++
++ return ret;
++ }
++
++ /*
++ * If a device is not yet associated with a domain, this function does
++ * assigns it visible for the hardware
++ */
++ static int attach_device(struct device *dev,
++ struct protection_domain *domain)
++ {
++ struct pci_dev *pdev = to_pci_dev(dev);
+++ struct iommu_dev_data *dev_data;
++ unsigned long flags;
++ int ret;
++
- ret = __attach_device(dev, domain);
+++ dev_data = get_dev_data(dev);
+++
+++ if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
+++ dev_data->ats.enabled = true;
+++ dev_data->ats.qdep = pci_ats_queue_depth(pdev);
+++ }
++
++ write_lock_irqsave(&amd_iommu_devtable_lock, flags);
-static void __detach_device(struct device *dev)
+++ ret = __attach_device(dev_data, domain);
++ write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
++
++ /*
++ * We might boot into a crash-kernel here. The crashed kernel
++ * left the caches in the IOMMU dirty. So we have to flush
++ * here to evict all dirty stuff.
++ */
++ domain_flush_tlb_pde(domain);
++
++ return ret;
++ }
++
++ /*
++ * Removes a device from a protection domain (unlocked)
++ */
- struct iommu_dev_data *dev_data = get_dev_data(dev);
- struct iommu_dev_data *alias_data;
+++static void __detach_device(struct iommu_dev_data *dev_data)
++ {
- if (dev_data->alias != dev) {
- alias_data = get_dev_data(dev_data->alias);
++ struct protection_domain *domain;
++ unsigned long flags;
++
++ BUG_ON(!dev_data->domain);
++
++ domain = dev_data->domain;
++
++ spin_lock_irqsave(&domain->lock, flags);
++
- do_detach(dev_data->alias);
+++ if (dev_data->alias_data != NULL) {
+++ struct iommu_dev_data *alias_data = dev_data->alias_data;
+++
++ if (atomic_dec_and_test(&alias_data->bind))
- do_detach(dev);
+++ do_detach(alias_data);
++ }
++
++ if (atomic_dec_and_test(&dev_data->bind))
- __attach_device(dev, pt_domain);
+++ do_detach(dev_data);
++
++ spin_unlock_irqrestore(&domain->lock, flags);
++
++ /*
++ * If we run in passthrough mode the device must be assigned to the
++ * passthrough domain if it is detached from any other domain.
++ * Make sure we can deassign from the pt_domain itself.
++ */
++ if (iommu_pass_through &&
++ (dev_data->domain == NULL && domain != pt_domain))
- struct pci_dev *pdev = to_pci_dev(dev);
+++ __attach_device(dev_data, pt_domain);
++ }
++
++ /*
++ * Removes a device from a protection domain (with devtable_lock held)
++ */
++ static void detach_device(struct device *dev)
++ {
- __detach_device(dev);
+++ struct iommu_dev_data *dev_data;
++ unsigned long flags;
++
+++ dev_data = get_dev_data(dev);
+++
++ /* lock device table */
++ write_lock_irqsave(&amd_iommu_devtable_lock, flags);
- if (amd_iommu_iotlb_sup && pci_ats_enabled(pdev))
- pci_disable_ats(pdev);
+++ __detach_device(dev_data);
++ write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
++
- struct protection_domain *dom;
- struct iommu_dev_data *dev_data, *alias_data;
+++ if (dev_data->ats.enabled) {
+++ pci_disable_ats(to_pci_dev(dev));
+++ dev_data->ats.enabled = false;
+++ }
++ }
++
++ /*
++ * Find out the protection domain structure for a given PCI device. This
++ * will give us the pointer to the page table root for example.
++ */
++ static struct protection_domain *domain_for_device(struct device *dev)
++ {
- u16 devid;
+++ struct iommu_dev_data *dev_data;
+++ struct protection_domain *dom = NULL;
++ unsigned long flags;
- devid = get_device_id(dev);
++
- alias_data = get_dev_data(dev_data->alias);
- if (!alias_data)
- return NULL;
++ dev_data = get_dev_data(dev);
- read_lock_irqsave(&amd_iommu_devtable_lock, flags);
- dom = dev_data->domain;
- if (dom == NULL &&
- alias_data->domain != NULL) {
- __attach_device(dev, alias_data->domain);
- dom = alias_data->domain;
- }
++
- read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
+++ if (dev_data->domain)
+++ return dev_data->domain;
++
- device_flush_dte(dev);
+++ if (dev_data->alias_data != NULL) {
+++ struct iommu_dev_data *alias_data = dev_data->alias_data;
+++
+++ read_lock_irqsave(&amd_iommu_devtable_lock, flags);
+++ if (alias_data->domain != NULL) {
+++ __attach_device(dev_data, alias_data->domain);
+++ dom = alias_data->domain;
+++ }
+++ read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
+++ }
++
++ return dom;
++ }
++
++ static int device_change_notifier(struct notifier_block *nb,
++ unsigned long action, void *data)
++ {
++ struct device *dev = data;
++ u16 devid;
++ struct protection_domain *domain;
++ struct dma_ops_domain *dma_domain;
++ struct amd_iommu *iommu;
++ unsigned long flags;
++
++ if (!check_device(dev))
++ return 0;
++
++ devid = get_device_id(dev);
++ iommu = amd_iommu_rlookup_table[devid];
++
++ switch (action) {
++ case BUS_NOTIFY_UNBOUND_DRIVER:
++
++ domain = domain_for_device(dev);
++
++ if (!domain)
++ goto out;
++ if (iommu_pass_through)
++ break;
++ detach_device(dev);
++ break;
++ case BUS_NOTIFY_ADD_DEVICE:
++
++ iommu_init_device(dev);
++
++ domain = domain_for_device(dev);
++
++ /* allocate a protection domain if a device is added */
++ dma_domain = find_protection_domain(devid);
++ if (dma_domain)
++ goto out;
++ dma_domain = dma_ops_domain_alloc();
++ if (!dma_domain)
++ goto out;
++ dma_domain->target_dev = devid;
++
++ spin_lock_irqsave(&iommu_pd_list_lock, flags);
++ list_add_tail(&dma_domain->list, &iommu_pd_list);
++ spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
++
++ break;
++ case BUS_NOTIFY_DEL_DEVICE:
++
++ iommu_uninit_device(dev);
++
++ default:
++ goto out;
++ }
++
- list_for_each_entry(dev_data, &domain->dev_list, list) {
- struct pci_dev *pdev = to_pci_dev(dev_data->dev);
- u16 devid = get_device_id(dev_data->dev);
- set_dte_entry(devid, domain, pci_ats_enabled(pdev));
- }
++ iommu_completion_wait(iommu);
++
++ out:
++ return 0;
++ }
++
++ static struct notifier_block device_nb = {
++ .notifier_call = device_change_notifier,
++ };
++
++ void amd_iommu_init_notifier(void)
++ {
++ bus_register_notifier(&pci_bus_type, &device_nb);
++ }
++
++ /*****************************************************************************
++ *
++ * The next functions belong to the dma_ops mapping/unmapping code.
++ *
++ *****************************************************************************/
++
++ /*
++ * In the dma_ops path we only have the struct device. This function
++ * finds the corresponding IOMMU, the protection domain and the
++ * requestor id for a given device.
++ * If the device is not yet associated with a domain this is also done
++ * in this function.
++ */
++ static struct protection_domain *get_domain(struct device *dev)
++ {
++ struct protection_domain *domain;
++ struct dma_ops_domain *dma_dom;
++ u16 devid = get_device_id(dev);
++
++ if (!check_device(dev))
++ return ERR_PTR(-EINVAL);
++
++ domain = domain_for_device(dev);
++ if (domain != NULL && !dma_ops_domain(domain))
++ return ERR_PTR(-EBUSY);
++
++ if (domain != NULL)
++ return domain;
++
++ /* Device not bount yet - bind it */
++ dma_dom = find_protection_domain(devid);
++ if (!dma_dom)
++ dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
++ attach_device(dev, &dma_dom->domain);
++ DUMP_printk("Using protection domain %d for device %s\n",
++ dma_dom->domain.id, dev_name(dev));
++
++ return &dma_dom->domain;
++ }
++
++ static void update_device_table(struct protection_domain *domain)
++ {
++ struct iommu_dev_data *dev_data;
++
- struct device *dev = dev_data->dev;
-
- __detach_device(dev);
+++ list_for_each_entry(dev_data, &domain->dev_list, list)
+++ set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
++ }
++
++ static void update_domain(struct protection_domain *domain)
++ {
++ if (!domain->updated)
++ return;
++
++ update_device_table(domain);
++
++ domain_flush_devices(domain);
++ domain_flush_tlb_pde(domain);
++
++ domain->updated = false;
++ }
++
++ /*
++ * This function fetches the PTE for a given address in the aperture
++ */
++ static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
++ unsigned long address)
++ {
++ struct aperture_range *aperture;
++ u64 *pte, *pte_page;
++
++ aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
++ if (!aperture)
++ return NULL;
++
++ pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
++ if (!pte) {
++ pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
++ GFP_ATOMIC);
++ aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
++ } else
++ pte += PM_LEVEL_INDEX(0, address);
++
++ update_domain(&dom->domain);
++
++ return pte;
++ }
++
++ /*
++ * This is the generic map function. It maps one 4kb page at paddr to
++ * the given address in the DMA address space for the domain.
++ */
++ static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
++ unsigned long address,
++ phys_addr_t paddr,
++ int direction)
++ {
++ u64 *pte, __pte;
++
++ WARN_ON(address > dom->aperture_size);
++
++ paddr &= PAGE_MASK;
++
++ pte = dma_ops_get_pte(dom, address);
++ if (!pte)
++ return DMA_ERROR_CODE;
++
++ __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
++
++ if (direction == DMA_TO_DEVICE)
++ __pte |= IOMMU_PTE_IR;
++ else if (direction == DMA_FROM_DEVICE)
++ __pte |= IOMMU_PTE_IW;
++ else if (direction == DMA_BIDIRECTIONAL)
++ __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
++
++ WARN_ON(*pte);
++
++ *pte = __pte;
++
++ return (dma_addr_t)address;
++ }
++
++ /*
++ * The generic unmapping function for on page in the DMA address space.
++ */
++ static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
++ unsigned long address)
++ {
++ struct aperture_range *aperture;
++ u64 *pte;
++
++ if (address >= dom->aperture_size)
++ return;
++
++ aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
++ if (!aperture)
++ return;
++
++ pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
++ if (!pte)
++ return;
++
++ pte += PM_LEVEL_INDEX(0, address);
++
++ WARN_ON(!*pte);
++
++ *pte = 0ULL;
++ }
++
++ /*
++ * This function contains common code for mapping of a physically
++ * contiguous memory region into DMA address space. It is used by all
++ * mapping functions provided with this IOMMU driver.
++ * Must be called with the domain lock held.
++ */
++ static dma_addr_t __map_single(struct device *dev,
++ struct dma_ops_domain *dma_dom,
++ phys_addr_t paddr,
++ size_t size,
++ int dir,
++ bool align,
++ u64 dma_mask)
++ {
++ dma_addr_t offset = paddr & ~PAGE_MASK;
++ dma_addr_t address, start, ret;
++ unsigned int pages;
++ unsigned long align_mask = 0;
++ int i;
++
++ pages = iommu_num_pages(paddr, size, PAGE_SIZE);
++ paddr &= PAGE_MASK;
++
++ INC_STATS_COUNTER(total_map_requests);
++
++ if (pages > 1)
++ INC_STATS_COUNTER(cross_page);
++
++ if (align)
++ align_mask = (1UL << get_order(size)) - 1;
++
++ retry:
++ address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
++ dma_mask);
++ if (unlikely(address == DMA_ERROR_CODE)) {
++ /*
++ * setting next_address here will let the address
++ * allocator only scan the new allocated range in the
++ * first run. This is a small optimization.
++ */
++ dma_dom->next_address = dma_dom->aperture_size;
++
++ if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
++ goto out;
++
++ /*
++ * aperture was successfully enlarged by 128 MB, try
++ * allocation again
++ */
++ goto retry;
++ }
++
++ start = address;
++ for (i = 0; i < pages; ++i) {
++ ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
++ if (ret == DMA_ERROR_CODE)
++ goto out_unmap;
++
++ paddr += PAGE_SIZE;
++ start += PAGE_SIZE;
++ }
++ address += offset;
++
++ ADD_STATS_COUNTER(alloced_io_mem, size);
++
++ if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
++ domain_flush_tlb(&dma_dom->domain);
++ dma_dom->need_flush = false;
++ } else if (unlikely(amd_iommu_np_cache))
++ domain_flush_pages(&dma_dom->domain, address, size);
++
++ out:
++ return address;
++
++ out_unmap:
++
++ for (--i; i >= 0; --i) {
++ start -= PAGE_SIZE;
++ dma_ops_domain_unmap(dma_dom, start);
++ }
++
++ dma_ops_free_addresses(dma_dom, address, pages);
++
++ return DMA_ERROR_CODE;
++ }
++
++ /*
++ * Does the reverse of the __map_single function. Must be called with
++ * the domain lock held too
++ */
++ static void __unmap_single(struct dma_ops_domain *dma_dom,
++ dma_addr_t dma_addr,
++ size_t size,
++ int dir)
++ {
++ dma_addr_t flush_addr;
++ dma_addr_t i, start;
++ unsigned int pages;
++
++ if ((dma_addr == DMA_ERROR_CODE) ||
++ (dma_addr + size > dma_dom->aperture_size))
++ return;
++
++ flush_addr = dma_addr;
++ pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
++ dma_addr &= PAGE_MASK;
++ start = dma_addr;
++
++ for (i = 0; i < pages; ++i) {
++ dma_ops_domain_unmap(dma_dom, start);
++ start += PAGE_SIZE;
++ }
++
++ SUB_STATS_COUNTER(alloced_io_mem, size);
++
++ dma_ops_free_addresses(dma_dom, dma_addr, pages);
++
++ if (amd_iommu_unmap_flush || dma_dom->need_flush) {
++ domain_flush_pages(&dma_dom->domain, flush_addr, size);
++ dma_dom->need_flush = false;
++ }
++ }
++
++ /*
++ * The exported map_single function for dma_ops.
++ */
++ static dma_addr_t map_page(struct device *dev, struct page *page,
++ unsigned long offset, size_t size,
++ enum dma_data_direction dir,
++ struct dma_attrs *attrs)
++ {
++ unsigned long flags;
++ struct protection_domain *domain;
++ dma_addr_t addr;
++ u64 dma_mask;
++ phys_addr_t paddr = page_to_phys(page) + offset;
++
++ INC_STATS_COUNTER(cnt_map_single);
++
++ domain = get_domain(dev);
++ if (PTR_ERR(domain) == -EINVAL)
++ return (dma_addr_t)paddr;
++ else if (IS_ERR(domain))
++ return DMA_ERROR_CODE;
++
++ dma_mask = *dev->dma_mask;
++
++ spin_lock_irqsave(&domain->lock, flags);
++
++ addr = __map_single(dev, domain->priv, paddr, size, dir, false,
++ dma_mask);
++ if (addr == DMA_ERROR_CODE)
++ goto out;
++
++ domain_flush_complete(domain);
++
++ out:
++ spin_unlock_irqrestore(&domain->lock, flags);
++
++ return addr;
++ }
++
++ /*
++ * The exported unmap_single function for dma_ops.
++ */
++ static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
++ enum dma_data_direction dir, struct dma_attrs *attrs)
++ {
++ unsigned long flags;
++ struct protection_domain *domain;
++
++ INC_STATS_COUNTER(cnt_unmap_single);
++
++ domain = get_domain(dev);
++ if (IS_ERR(domain))
++ return;
++
++ spin_lock_irqsave(&domain->lock, flags);
++
++ __unmap_single(domain->priv, dma_addr, size, dir);
++
++ domain_flush_complete(domain);
++
++ spin_unlock_irqrestore(&domain->lock, flags);
++ }
++
++ /*
++ * This is a special map_sg function which is used if we should map a
++ * device which is not handled by an AMD IOMMU in the system.
++ */
++ static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
++ int nelems, int dir)
++ {
++ struct scatterlist *s;
++ int i;
++
++ for_each_sg(sglist, s, nelems, i) {
++ s->dma_address = (dma_addr_t)sg_phys(s);
++ s->dma_length = s->length;
++ }
++
++ return nelems;
++ }
++
++ /*
++ * The exported map_sg function for dma_ops (handles scatter-gather
++ * lists).
++ */
++ static int map_sg(struct device *dev, struct scatterlist *sglist,
++ int nelems, enum dma_data_direction dir,
++ struct dma_attrs *attrs)
++ {
++ unsigned long flags;
++ struct protection_domain *domain;
++ int i;
++ struct scatterlist *s;
++ phys_addr_t paddr;
++ int mapped_elems = 0;
++ u64 dma_mask;
++
++ INC_STATS_COUNTER(cnt_map_sg);
++
++ domain = get_domain(dev);
++ if (PTR_ERR(domain) == -EINVAL)
++ return map_sg_no_iommu(dev, sglist, nelems, dir);
++ else if (IS_ERR(domain))
++ return 0;
++
++ dma_mask = *dev->dma_mask;
++
++ spin_lock_irqsave(&domain->lock, flags);
++
++ for_each_sg(sglist, s, nelems, i) {
++ paddr = sg_phys(s);
++
++ s->dma_address = __map_single(dev, domain->priv,
++ paddr, s->length, dir, false,
++ dma_mask);
++
++ if (s->dma_address) {
++ s->dma_length = s->length;
++ mapped_elems++;
++ } else
++ goto unmap;
++ }
++
++ domain_flush_complete(domain);
++
++ out:
++ spin_unlock_irqrestore(&domain->lock, flags);
++
++ return mapped_elems;
++ unmap:
++ for_each_sg(sglist, s, mapped_elems, i) {
++ if (s->dma_address)
++ __unmap_single(domain->priv, s->dma_address,
++ s->dma_length, dir);
++ s->dma_address = s->dma_length = 0;
++ }
++
++ mapped_elems = 0;
++
++ goto out;
++ }
++
++ /*
++ * The exported map_sg function for dma_ops (handles scatter-gather
++ * lists).
++ */
++ static void unmap_sg(struct device *dev, struct scatterlist *sglist,
++ int nelems, enum dma_data_direction dir,
++ struct dma_attrs *attrs)
++ {
++ unsigned long flags;
++ struct protection_domain *domain;
++ struct scatterlist *s;
++ int i;
++
++ INC_STATS_COUNTER(cnt_unmap_sg);
++
++ domain = get_domain(dev);
++ if (IS_ERR(domain))
++ return;
++
++ spin_lock_irqsave(&domain->lock, flags);
++
++ for_each_sg(sglist, s, nelems, i) {
++ __unmap_single(domain->priv, s->dma_address,
++ s->dma_length, dir);
++ s->dma_address = s->dma_length = 0;
++ }
++
++ domain_flush_complete(domain);
++
++ spin_unlock_irqrestore(&domain->lock, flags);
++ }
++
++ /*
++ * The exported alloc_coherent function for dma_ops.
++ */
++ static void *alloc_coherent(struct device *dev, size_t size,
++ dma_addr_t *dma_addr, gfp_t flag)
++ {
++ unsigned long flags;
++ void *virt_addr;
++ struct protection_domain *domain;
++ phys_addr_t paddr;
++ u64 dma_mask = dev->coherent_dma_mask;
++
++ INC_STATS_COUNTER(cnt_alloc_coherent);
++
++ domain = get_domain(dev);
++ if (PTR_ERR(domain) == -EINVAL) {
++ virt_addr = (void *)__get_free_pages(flag, get_order(size));
++ *dma_addr = __pa(virt_addr);
++ return virt_addr;
++ } else if (IS_ERR(domain))
++ return NULL;
++
++ dma_mask = dev->coherent_dma_mask;
++ flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
++ flag |= __GFP_ZERO;
++
++ virt_addr = (void *)__get_free_pages(flag, get_order(size));
++ if (!virt_addr)
++ return NULL;
++
++ paddr = virt_to_phys(virt_addr);
++
++ if (!dma_mask)
++ dma_mask = *dev->dma_mask;
++
++ spin_lock_irqsave(&domain->lock, flags);
++
++ *dma_addr = __map_single(dev, domain->priv, paddr,
++ size, DMA_BIDIRECTIONAL, true, dma_mask);
++
++ if (*dma_addr == DMA_ERROR_CODE) {
++ spin_unlock_irqrestore(&domain->lock, flags);
++ goto out_free;
++ }
++
++ domain_flush_complete(domain);
++
++ spin_unlock_irqrestore(&domain->lock, flags);
++
++ return virt_addr;
++
++ out_free:
++
++ free_pages((unsigned long)virt_addr, get_order(size));
++
++ return NULL;
++ }
++
++ /*
++ * The exported free_coherent function for dma_ops.
++ */
++ static void free_coherent(struct device *dev, size_t size,
++ void *virt_addr, dma_addr_t dma_addr)
++ {
++ unsigned long flags;
++ struct protection_domain *domain;
++
++ INC_STATS_COUNTER(cnt_free_coherent);
++
++ domain = get_domain(dev);
++ if (IS_ERR(domain))
++ goto free_mem;
++
++ spin_lock_irqsave(&domain->lock, flags);
++
++ __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
++
++ domain_flush_complete(domain);
++
++ spin_unlock_irqrestore(&domain->lock, flags);
++
++ free_mem:
++ free_pages((unsigned long)virt_addr, get_order(size));
++ }
++
++ /*
++ * This function is called by the DMA layer to find out if we can handle a
++ * particular device. It is part of the dma_ops.
++ */
++ static int amd_iommu_dma_supported(struct device *dev, u64 mask)
++ {
++ return check_device(dev);
++ }
++
++ /*
++ * The function for pre-allocating protection domains.
++ *
++ * If the driver core informs the DMA layer if a driver grabs a device
++ * we don't need to preallocate the protection domains anymore.
++ * For now we have to.
++ */
++ static void prealloc_protection_domains(void)
++ {
++ struct pci_dev *dev = NULL;
++ struct dma_ops_domain *dma_dom;
++ u16 devid;
++
++ for_each_pci_dev(dev) {
++
++ /* Do we handle this device? */
++ if (!check_device(&dev->dev))
++ continue;
++
++ /* Is there already any domain for it? */
++ if (domain_for_device(&dev->dev))
++ continue;
++
++ devid = get_device_id(&dev->dev);
++
++ dma_dom = dma_ops_domain_alloc();
++ if (!dma_dom)
++ continue;
++ init_unity_mappings_for_device(dma_dom, devid);
++ dma_dom->target_dev = devid;
++
++ attach_device(&dev->dev, &dma_dom->domain);
++
++ list_add_tail(&dma_dom->list, &iommu_pd_list);
++ }
++ }
++
++ static struct dma_map_ops amd_iommu_dma_ops = {
++ .alloc_coherent = alloc_coherent,
++ .free_coherent = free_coherent,
++ .map_page = map_page,
++ .unmap_page = unmap_page,
++ .map_sg = map_sg,
++ .unmap_sg = unmap_sg,
++ .dma_supported = amd_iommu_dma_supported,
++ };
++
++ static unsigned device_dma_ops_init(void)
++ {
++ struct pci_dev *pdev = NULL;
++ unsigned unhandled = 0;
++
++ for_each_pci_dev(pdev) {
++ if (!check_device(&pdev->dev)) {
++ unhandled += 1;
++ continue;
++ }
++
++ pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
++ }
++
++ return unhandled;
++ }
++
++ /*
++ * The function which clues the AMD IOMMU driver into dma_ops.
++ */
++
++ void __init amd_iommu_init_api(void)
++ {
++ register_iommu(&amd_iommu_ops);
++ }
++
++ int __init amd_iommu_init_dma_ops(void)
++ {
++ struct amd_iommu *iommu;
++ int ret, unhandled;
++
++ /*
++ * first allocate a default protection domain for every IOMMU we
++ * found in the system. Devices not assigned to any other
++ * protection domain will be assigned to the default one.
++ */
++ for_each_iommu(iommu) {
++ iommu->default_dom = dma_ops_domain_alloc();
++ if (iommu->default_dom == NULL)
++ return -ENOMEM;
++ iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
++ ret = iommu_init_unity_mappings(iommu);
++ if (ret)
++ goto free_domains;
++ }
++
++ /*
++ * Pre-allocate the protection domains for each device.
++ */
++ prealloc_protection_domains();
++
++ iommu_detected = 1;
++ swiotlb = 0;
++
++ /* Make the driver finally visible to the drivers */
++ unhandled = device_dma_ops_init();
++ if (unhandled && max_pfn > MAX_DMA32_PFN) {
++ /* There are unhandled devices - initialize swiotlb for them */
++ swiotlb = 1;
++ }
++
++ amd_iommu_stats_init();
++
++ return 0;
++
++ free_domains:
++
++ for_each_iommu(iommu) {
++ if (iommu->default_dom)
++ dma_ops_domain_free(iommu->default_dom);
++ }
++
++ return ret;
++ }
++
++ /*****************************************************************************
++ *
++ * The following functions belong to the exported interface of AMD IOMMU
++ *
++ * This interface allows access to lower level functions of the IOMMU
++ * like protection domain handling and assignement of devices to domains
++ * which is not possible with the dma_ops interface.
++ *
++ *****************************************************************************/
++
++ static void cleanup_domain(struct protection_domain *domain)
++ {
++ struct iommu_dev_data *dev_data, *next;
++ unsigned long flags;
++
++ write_lock_irqsave(&amd_iommu_devtable_lock, flags);
++
++ list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
- device_flush_dte(dev);
+++ __detach_device(dev_data);
++ atomic_set(&dev_data->bind, 0);
++ }
++
++ write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
++ }
++
++ static void protection_domain_free(struct protection_domain *domain)
++ {
++ if (!domain)
++ return;
++
++ del_domain_from_list(domain);
++
++ if (domain->id)
++ domain_id_free(domain->id);
++
++ kfree(domain);
++ }
++
++ static struct protection_domain *protection_domain_alloc(void)
++ {
++ struct protection_domain *domain;
++
++ domain = kzalloc(sizeof(*domain), GFP_KERNEL);
++ if (!domain)
++ return NULL;
++
++ spin_lock_init(&domain->lock);
++ mutex_init(&domain->api_lock);
++ domain->id = domain_id_alloc();
++ if (!domain->id)
++ goto out_err;
++ INIT_LIST_HEAD(&domain->dev_list);
++
++ add_domain_to_list(domain);
++
++ return domain;
++
++ out_err:
++ kfree(domain);
++
++ return NULL;
++ }
++
++ static int amd_iommu_domain_init(struct iommu_domain *dom)
++ {
++ struct protection_domain *domain;
++
++ domain = protection_domain_alloc();
++ if (!domain)
++ goto out_free;
++
++ domain->mode = PAGE_MODE_3_LEVEL;
++ domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
++ if (!domain->pt_root)
++ goto out_free;
++
++ dom->priv = domain;
++
++ return 0;
++
++ out_free:
++ protection_domain_free(domain);
++
++ return -ENOMEM;
++ }
++
++ static void amd_iommu_domain_destroy(struct iommu_domain *dom)
++ {
++ struct protection_domain *domain = dom->priv;
++
++ if (!domain)
++ return;
++
++ if (domain->dev_cnt > 0)
++ cleanup_domain(domain);
++
++ BUG_ON(domain->dev_cnt != 0);
++
++ free_pagetable(domain);
++
++ protection_domain_free(domain);
++
++ dom->priv = NULL;
++ }
++
++ static void amd_iommu_detach_device(struct iommu_domain *dom,
++ struct device *dev)
++ {
++ struct iommu_dev_data *dev_data = dev->archdata.iommu;
++ struct amd_iommu *iommu;
++ u16 devid;
++
++ if (!check_device(dev))
++ return;
++
++ devid = get_device_id(dev);
++
++ if (dev_data->domain != NULL)
++ detach_device(dev);
++
++ iommu = amd_iommu_rlookup_table[devid];
++ if (!iommu)
++ return;
++
- u16 devid;
++ iommu_completion_wait(iommu);
++ }
++
++ static int amd_iommu_attach_device(struct iommu_domain *dom,
++ struct device *dev)
++ {
++ struct protection_domain *domain = dom->priv;
++ struct iommu_dev_data *dev_data;
++ struct amd_iommu *iommu;
++ int ret;
- devid = get_device_id(dev);
-
- iommu = amd_iommu_rlookup_table[devid];
++
++ if (!check_device(dev))
++ return -EINVAL;
++
++ dev_data = dev->archdata.iommu;
++
+++ iommu = amd_iommu_rlookup_table[dev_data->devid];
++ if (!iommu)
++ return -EINVAL;
++
++ if (dev_data->domain)
++ detach_device(dev);
++
++ ret = attach_device(dev, domain);
++
++ iommu_completion_wait(iommu);
++
++ return ret;
++ }
++
++ static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
++ phys_addr_t paddr, int gfp_order, int iommu_prot)
++ {
++ unsigned long page_size = 0x1000UL << gfp_order;
++ struct protection_domain *domain = dom->priv;
++ int prot = 0;
++ int ret;
++
++ if (iommu_prot & IOMMU_READ)
++ prot |= IOMMU_PROT_IR;
++ if (iommu_prot & IOMMU_WRITE)
++ prot |= IOMMU_PROT_IW;
++
++ mutex_lock(&domain->api_lock);
++ ret = iommu_map_page(domain, iova, paddr, prot, page_size);
++ mutex_unlock(&domain->api_lock);
++
++ return ret;
++ }
++
++ static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
++ int gfp_order)
++ {
++ struct protection_domain *domain = dom->priv;
++ unsigned long page_size, unmap_size;
++
++ page_size = 0x1000UL << gfp_order;
++
++ mutex_lock(&domain->api_lock);
++ unmap_size = iommu_unmap_page(domain, iova, page_size);
++ mutex_unlock(&domain->api_lock);
++
++ domain_flush_tlb_pde(domain);
++
++ return get_order(unmap_size);
++ }
++
++ static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
++ unsigned long iova)
++ {
++ struct protection_domain *domain = dom->priv;
++ unsigned long offset_mask;
++ phys_addr_t paddr;
++ u64 *pte, __pte;
++
++ pte = fetch_pte(domain, iova);
++
++ if (!pte || !IOMMU_PTE_PRESENT(*pte))
++ return 0;
++
++ if (PM_PTE_LEVEL(*pte) == 0)
++ offset_mask = PAGE_SIZE - 1;
++ else
++ offset_mask = PTE_PAGE_SIZE(*pte) - 1;
++
++ __pte = *pte & PM_ADDR_MASK;
++ paddr = (__pte & ~offset_mask) | (iova & offset_mask);
++
++ return paddr;
++ }
++
++ static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
++ unsigned long cap)
++ {
++ switch (cap) {
++ case IOMMU_CAP_CACHE_COHERENCY:
++ return 1;
++ }
++
++ return 0;
++ }
++
++ static struct iommu_ops amd_iommu_ops = {
++ .domain_init = amd_iommu_domain_init,
++ .domain_destroy = amd_iommu_domain_destroy,
++ .attach_dev = amd_iommu_attach_device,
++ .detach_dev = amd_iommu_detach_device,
++ .map = amd_iommu_map,
++ .unmap = amd_iommu_unmap,
++ .iova_to_phys = amd_iommu_iova_to_phys,
++ .domain_has_cap = amd_iommu_domain_has_cap,
++ };
++
++ /*****************************************************************************
++ *
++ * The next functions do a basic initialization of IOMMU for pass through
++ * mode
++ *
++ * In passthrough mode the IOMMU is initialized and enabled but not used for
++ * DMA-API translation.
++ *
++ *****************************************************************************/
++
++ int __init amd_iommu_init_passthrough(void)
++ {
++ struct amd_iommu *iommu;
++ struct pci_dev *dev = NULL;
++ u16 devid;
++
++ /* allocate passthrough domain */
++ pt_domain = protection_domain_alloc();
++ if (!pt_domain)
++ return -ENOMEM;
++
++ pt_domain->mode |= PAGE_MODE_NONE;
++
++ for_each_pci_dev(dev) {
++ if (!check_device(&dev->dev))
++ continue;
++
++ devid = get_device_id(&dev->dev);
++
++ iommu = amd_iommu_rlookup_table[devid];
++ if (!iommu)
++ continue;
++
++ attach_device(&dev->dev, pt_domain);
++ }
++
++ pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
++
++ return 0;
++ }
--- /dev/null
--- /dev/null
- struct device *dev; /* Device this data belong to */
- struct device *alias; /* The Alias Device */
++ /*
++ * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
++ * Author: Joerg Roedel <joerg.roedel@amd.com>
++ * Leo Duran <leo.duran@amd.com>
++ *
++ * This program is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 as published
++ * by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this program; if not, write to the Free Software
++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
++ */
++
++ #ifndef _ASM_X86_AMD_IOMMU_TYPES_H
++ #define _ASM_X86_AMD_IOMMU_TYPES_H
++
++ #include <linux/types.h>
++ #include <linux/mutex.h>
++ #include <linux/list.h>
++ #include <linux/spinlock.h>
++
++ /*
++ * Maximum number of IOMMUs supported
++ */
++ #define MAX_IOMMUS 32
++
++ /*
++ * some size calculation constants
++ */
++ #define DEV_TABLE_ENTRY_SIZE 32
++ #define ALIAS_TABLE_ENTRY_SIZE 2
++ #define RLOOKUP_TABLE_ENTRY_SIZE (sizeof(void *))
++
++ /* Length of the MMIO region for the AMD IOMMU */
++ #define MMIO_REGION_LENGTH 0x4000
++
++ /* Capability offsets used by the driver */
++ #define MMIO_CAP_HDR_OFFSET 0x00
++ #define MMIO_RANGE_OFFSET 0x0c
++ #define MMIO_MISC_OFFSET 0x10
++
++ /* Masks, shifts and macros to parse the device range capability */
++ #define MMIO_RANGE_LD_MASK 0xff000000
++ #define MMIO_RANGE_FD_MASK 0x00ff0000
++ #define MMIO_RANGE_BUS_MASK 0x0000ff00
++ #define MMIO_RANGE_LD_SHIFT 24
++ #define MMIO_RANGE_FD_SHIFT 16
++ #define MMIO_RANGE_BUS_SHIFT 8
++ #define MMIO_GET_LD(x) (((x) & MMIO_RANGE_LD_MASK) >> MMIO_RANGE_LD_SHIFT)
++ #define MMIO_GET_FD(x) (((x) & MMIO_RANGE_FD_MASK) >> MMIO_RANGE_FD_SHIFT)
++ #define MMIO_GET_BUS(x) (((x) & MMIO_RANGE_BUS_MASK) >> MMIO_RANGE_BUS_SHIFT)
++ #define MMIO_MSI_NUM(x) ((x) & 0x1f)
++
++ /* Flag masks for the AMD IOMMU exclusion range */
++ #define MMIO_EXCL_ENABLE_MASK 0x01ULL
++ #define MMIO_EXCL_ALLOW_MASK 0x02ULL
++
++ /* Used offsets into the MMIO space */
++ #define MMIO_DEV_TABLE_OFFSET 0x0000
++ #define MMIO_CMD_BUF_OFFSET 0x0008
++ #define MMIO_EVT_BUF_OFFSET 0x0010
++ #define MMIO_CONTROL_OFFSET 0x0018
++ #define MMIO_EXCL_BASE_OFFSET 0x0020
++ #define MMIO_EXCL_LIMIT_OFFSET 0x0028
++ #define MMIO_EXT_FEATURES 0x0030
++ #define MMIO_CMD_HEAD_OFFSET 0x2000
++ #define MMIO_CMD_TAIL_OFFSET 0x2008
++ #define MMIO_EVT_HEAD_OFFSET 0x2010
++ #define MMIO_EVT_TAIL_OFFSET 0x2018
++ #define MMIO_STATUS_OFFSET 0x2020
++
++
++ /* Extended Feature Bits */
++ #define FEATURE_PREFETCH (1ULL<<0)
++ #define FEATURE_PPR (1ULL<<1)
++ #define FEATURE_X2APIC (1ULL<<2)
++ #define FEATURE_NX (1ULL<<3)
++ #define FEATURE_GT (1ULL<<4)
++ #define FEATURE_IA (1ULL<<6)
++ #define FEATURE_GA (1ULL<<7)
++ #define FEATURE_HE (1ULL<<8)
++ #define FEATURE_PC (1ULL<<9)
++
++ /* MMIO status bits */
++ #define MMIO_STATUS_COM_WAIT_INT_MASK 0x04
++
++ /* event logging constants */
++ #define EVENT_ENTRY_SIZE 0x10
++ #define EVENT_TYPE_SHIFT 28
++ #define EVENT_TYPE_MASK 0xf
++ #define EVENT_TYPE_ILL_DEV 0x1
++ #define EVENT_TYPE_IO_FAULT 0x2
++ #define EVENT_TYPE_DEV_TAB_ERR 0x3
++ #define EVENT_TYPE_PAGE_TAB_ERR 0x4
++ #define EVENT_TYPE_ILL_CMD 0x5
++ #define EVENT_TYPE_CMD_HARD_ERR 0x6
++ #define EVENT_TYPE_IOTLB_INV_TO 0x7
++ #define EVENT_TYPE_INV_DEV_REQ 0x8
++ #define EVENT_DEVID_MASK 0xffff
++ #define EVENT_DEVID_SHIFT 0
++ #define EVENT_DOMID_MASK 0xffff
++ #define EVENT_DOMID_SHIFT 0
++ #define EVENT_FLAGS_MASK 0xfff
++ #define EVENT_FLAGS_SHIFT 0x10
++
++ /* feature control bits */
++ #define CONTROL_IOMMU_EN 0x00ULL
++ #define CONTROL_HT_TUN_EN 0x01ULL
++ #define CONTROL_EVT_LOG_EN 0x02ULL
++ #define CONTROL_EVT_INT_EN 0x03ULL
++ #define CONTROL_COMWAIT_EN 0x04ULL
++ #define CONTROL_PASSPW_EN 0x08ULL
++ #define CONTROL_RESPASSPW_EN 0x09ULL
++ #define CONTROL_COHERENT_EN 0x0aULL
++ #define CONTROL_ISOC_EN 0x0bULL
++ #define CONTROL_CMDBUF_EN 0x0cULL
++ #define CONTROL_PPFLOG_EN 0x0dULL
++ #define CONTROL_PPFINT_EN 0x0eULL
++
++ /* command specific defines */
++ #define CMD_COMPL_WAIT 0x01
++ #define CMD_INV_DEV_ENTRY 0x02
++ #define CMD_INV_IOMMU_PAGES 0x03
++ #define CMD_INV_IOTLB_PAGES 0x04
++ #define CMD_INV_ALL 0x08
++
++ #define CMD_COMPL_WAIT_STORE_MASK 0x01
++ #define CMD_COMPL_WAIT_INT_MASK 0x02
++ #define CMD_INV_IOMMU_PAGES_SIZE_MASK 0x01
++ #define CMD_INV_IOMMU_PAGES_PDE_MASK 0x02
++
++ #define CMD_INV_IOMMU_ALL_PAGES_ADDRESS 0x7fffffffffffffffULL
++
++ /* macros and definitions for device table entries */
++ #define DEV_ENTRY_VALID 0x00
++ #define DEV_ENTRY_TRANSLATION 0x01
++ #define DEV_ENTRY_IR 0x3d
++ #define DEV_ENTRY_IW 0x3e
++ #define DEV_ENTRY_NO_PAGE_FAULT 0x62
++ #define DEV_ENTRY_EX 0x67
++ #define DEV_ENTRY_SYSMGT1 0x68
++ #define DEV_ENTRY_SYSMGT2 0x69
++ #define DEV_ENTRY_INIT_PASS 0xb8
++ #define DEV_ENTRY_EINT_PASS 0xb9
++ #define DEV_ENTRY_NMI_PASS 0xba
++ #define DEV_ENTRY_LINT0_PASS 0xbe
++ #define DEV_ENTRY_LINT1_PASS 0xbf
++ #define DEV_ENTRY_MODE_MASK 0x07
++ #define DEV_ENTRY_MODE_SHIFT 0x09
++
++ /* constants to configure the command buffer */
++ #define CMD_BUFFER_SIZE 8192
++ #define CMD_BUFFER_UNINITIALIZED 1
++ #define CMD_BUFFER_ENTRIES 512
++ #define MMIO_CMD_SIZE_SHIFT 56
++ #define MMIO_CMD_SIZE_512 (0x9ULL << MMIO_CMD_SIZE_SHIFT)
++
++ /* constants for event buffer handling */
++ #define EVT_BUFFER_SIZE 8192 /* 512 entries */
++ #define EVT_LEN_MASK (0x9ULL << 56)
++
++ #define PAGE_MODE_NONE 0x00
++ #define PAGE_MODE_1_LEVEL 0x01
++ #define PAGE_MODE_2_LEVEL 0x02
++ #define PAGE_MODE_3_LEVEL 0x03
++ #define PAGE_MODE_4_LEVEL 0x04
++ #define PAGE_MODE_5_LEVEL 0x05
++ #define PAGE_MODE_6_LEVEL 0x06
++
++ #define PM_LEVEL_SHIFT(x) (12 + ((x) * 9))
++ #define PM_LEVEL_SIZE(x) (((x) < 6) ? \
++ ((1ULL << PM_LEVEL_SHIFT((x))) - 1): \
++ (0xffffffffffffffffULL))
++ #define PM_LEVEL_INDEX(x, a) (((a) >> PM_LEVEL_SHIFT((x))) & 0x1ffULL)
++ #define PM_LEVEL_ENC(x) (((x) << 9) & 0xe00ULL)
++ #define PM_LEVEL_PDE(x, a) ((a) | PM_LEVEL_ENC((x)) | \
++ IOMMU_PTE_P | IOMMU_PTE_IR | IOMMU_PTE_IW)
++ #define PM_PTE_LEVEL(pte) (((pte) >> 9) & 0x7ULL)
++
++ #define PM_MAP_4k 0
++ #define PM_ADDR_MASK 0x000ffffffffff000ULL
++ #define PM_MAP_MASK(lvl) (PM_ADDR_MASK & \
++ (~((1ULL << (12 + ((lvl) * 9))) - 1)))
++ #define PM_ALIGNED(lvl, addr) ((PM_MAP_MASK(lvl) & (addr)) == (addr))
++
++ /*
++ * Returns the page table level to use for a given page size
++ * Pagesize is expected to be a power-of-two
++ */
++ #define PAGE_SIZE_LEVEL(pagesize) \
++ ((__ffs(pagesize) - 12) / 9)
++ /*
++ * Returns the number of ptes to use for a given page size
++ * Pagesize is expected to be a power-of-two
++ */
++ #define PAGE_SIZE_PTE_COUNT(pagesize) \
++ (1ULL << ((__ffs(pagesize) - 12) % 9))
++
++ /*
++ * Aligns a given io-virtual address to a given page size
++ * Pagesize is expected to be a power-of-two
++ */
++ #define PAGE_SIZE_ALIGN(address, pagesize) \
++ ((address) & ~((pagesize) - 1))
++ /*
++ * Creates an IOMMU PTE for an address an a given pagesize
++ * The PTE has no permission bits set
++ * Pagesize is expected to be a power-of-two larger than 4096
++ */
++ #define PAGE_SIZE_PTE(address, pagesize) \
++ (((address) | ((pagesize) - 1)) & \
++ (~(pagesize >> 1)) & PM_ADDR_MASK)
++
++ /*
++ * Takes a PTE value with mode=0x07 and returns the page size it maps
++ */
++ #define PTE_PAGE_SIZE(pte) \
++ (1ULL << (1 + ffz(((pte) | 0xfffULL))))
++
++ #define IOMMU_PTE_P (1ULL << 0)
++ #define IOMMU_PTE_TV (1ULL << 1)
++ #define IOMMU_PTE_U (1ULL << 59)
++ #define IOMMU_PTE_FC (1ULL << 60)
++ #define IOMMU_PTE_IR (1ULL << 61)
++ #define IOMMU_PTE_IW (1ULL << 62)
++
++ #define DTE_FLAG_IOTLB 0x01
++
++ #define IOMMU_PAGE_MASK (((1ULL << 52) - 1) & ~0xfffULL)
++ #define IOMMU_PTE_PRESENT(pte) ((pte) & IOMMU_PTE_P)
++ #define IOMMU_PTE_PAGE(pte) (phys_to_virt((pte) & IOMMU_PAGE_MASK))
++ #define IOMMU_PTE_MODE(pte) (((pte) >> 9) & 0x07)
++
++ #define IOMMU_PROT_MASK 0x03
++ #define IOMMU_PROT_IR 0x01
++ #define IOMMU_PROT_IW 0x02
++
++ /* IOMMU capabilities */
++ #define IOMMU_CAP_IOTLB 24
++ #define IOMMU_CAP_NPCACHE 26
++ #define IOMMU_CAP_EFR 27
++
++ #define MAX_DOMAIN_ID 65536
++
++ /* FIXME: move this macro to <linux/pci.h> */
++ #define PCI_BUS(x) (((x) >> 8) & 0xff)
++
++ /* Protection domain flags */
++ #define PD_DMA_OPS_MASK (1UL << 0) /* domain used for dma_ops */
++ #define PD_DEFAULT_MASK (1UL << 1) /* domain is a default dma_ops
++ domain for an IOMMU */
++ #define PD_PASSTHROUGH_MASK (1UL << 2) /* domain has no page
++ translation */
++
++ extern bool amd_iommu_dump;
++ #define DUMP_printk(format, arg...) \
++ do { \
++ if (amd_iommu_dump) \
++ printk(KERN_INFO "AMD-Vi: " format, ## arg); \
++ } while(0);
++
++ /* global flag if IOMMUs cache non-present entries */
++ extern bool amd_iommu_np_cache;
++ /* Only true if all IOMMUs support device IOTLBs */
++ extern bool amd_iommu_iotlb_sup;
++
++ /*
++ * Make iterating over all IOMMUs easier
++ */
++ #define for_each_iommu(iommu) \
++ list_for_each_entry((iommu), &amd_iommu_list, list)
++ #define for_each_iommu_safe(iommu, next) \
++ list_for_each_entry_safe((iommu), (next), &amd_iommu_list, list)
++
++ #define APERTURE_RANGE_SHIFT 27 /* 128 MB */
++ #define APERTURE_RANGE_SIZE (1ULL << APERTURE_RANGE_SHIFT)
++ #define APERTURE_RANGE_PAGES (APERTURE_RANGE_SIZE >> PAGE_SHIFT)
++ #define APERTURE_MAX_RANGES 32 /* allows 4GB of DMA address space */
++ #define APERTURE_RANGE_INDEX(a) ((a) >> APERTURE_RANGE_SHIFT)
++ #define APERTURE_PAGE_INDEX(a) (((a) >> 21) & 0x3fULL)
++
++ /*
++ * This structure contains generic data for IOMMU protection domains
++ * independent of their use.
++ */
++ struct protection_domain {
++ struct list_head list; /* for list of all protection domains */
++ struct list_head dev_list; /* List of all devices in this domain */
++ spinlock_t lock; /* mostly used to lock the page table*/
++ struct mutex api_lock; /* protect page tables in the iommu-api path */
++ u16 id; /* the domain id written to the device table */
++ int mode; /* paging mode (0-6 levels) */
++ u64 *pt_root; /* page table root pointer */
++ unsigned long flags; /* flags to find out type of domain */
++ bool updated; /* complete domain flush required */
++ unsigned dev_cnt; /* devices assigned to this domain */
++ unsigned dev_iommu[MAX_IOMMUS]; /* per-IOMMU reference count */
++ void *priv; /* private data */
++
++ };
++
++ /*
++ * This struct contains device specific data for the IOMMU
++ */
++ struct iommu_dev_data {
++ struct list_head list; /* For domain->dev_list */
+++ struct list_head dev_data_list; /* For global dev_data_list */
+++ struct iommu_dev_data *alias_data;/* The alias dev_data */
++ struct protection_domain *domain; /* Domain the device is bound to */
++ atomic_t bind; /* Domain attach reverent count */
+++ u16 devid; /* PCI Device ID */
+++ struct {
+++ bool enabled;
+++ int qdep;
+++ } ats; /* ATS state */
++ };
++
++ /*
++ * For dynamic growth the aperture size is split into ranges of 128MB of
++ * DMA address space each. This struct represents one such range.
++ */
++ struct aperture_range {
++
++ /* address allocation bitmap */
++ unsigned long *bitmap;
++
++ /*
++ * Array of PTE pages for the aperture. In this array we save all the
++ * leaf pages of the domain page table used for the aperture. This way
++ * we don't need to walk the page table to find a specific PTE. We can
++ * just calculate its address in constant time.
++ */
++ u64 *pte_pages[64];
++
++ unsigned long offset;
++ };
++
++ /*
++ * Data container for a dma_ops specific protection domain
++ */
++ struct dma_ops_domain {
++ struct list_head list;
++
++ /* generic protection domain information */
++ struct protection_domain domain;
++
++ /* size of the aperture for the mappings */
++ unsigned long aperture_size;
++
++ /* address we start to search for free addresses */
++ unsigned long next_address;
++
++ /* address space relevant data */
++ struct aperture_range *aperture[APERTURE_MAX_RANGES];
++
++ /* This will be set to true when TLB needs to be flushed */
++ bool need_flush;
++
++ /*
++ * if this is a preallocated domain, keep the device for which it was
++ * preallocated in this variable
++ */
++ u16 target_dev;
++ };
++
++ /*
++ * Structure where we save information about one hardware AMD IOMMU in the
++ * system.
++ */
++ struct amd_iommu {
++ struct list_head list;
++
++ /* Index within the IOMMU array */
++ int index;
++
++ /* locks the accesses to the hardware */
++ spinlock_t lock;
++
++ /* Pointer to PCI device of this IOMMU */
++ struct pci_dev *dev;
++
++ /* physical address of MMIO space */
++ u64 mmio_phys;
++ /* virtual address of MMIO space */
++ u8 *mmio_base;
++
++ /* capabilities of that IOMMU read from ACPI */
++ u32 cap;
++
++ /* flags read from acpi table */
++ u8 acpi_flags;
++
++ /* Extended features */
++ u64 features;
++
++ /*
++ * Capability pointer. There could be more than one IOMMU per PCI
++ * device function if there are more than one AMD IOMMU capability
++ * pointers.
++ */
++ u16 cap_ptr;
++
++ /* pci domain of this IOMMU */
++ u16 pci_seg;
++
++ /* first device this IOMMU handles. read from PCI */
++ u16 first_device;
++ /* last device this IOMMU handles. read from PCI */
++ u16 last_device;
++
++ /* start of exclusion range of that IOMMU */
++ u64 exclusion_start;
++ /* length of exclusion range of that IOMMU */
++ u64 exclusion_length;
++
++ /* command buffer virtual address */
++ u8 *cmd_buf;
++ /* size of command buffer */
++ u32 cmd_buf_size;
++
++ /* size of event buffer */
++ u32 evt_buf_size;
++ /* event buffer virtual address */
++ u8 *evt_buf;
++ /* MSI number for event interrupt */
++ u16 evt_msi_num;
++
++ /* true if interrupts for this IOMMU are already enabled */
++ bool int_enabled;
++
++ /* if one, we need to send a completion wait command */
++ bool need_sync;
++
++ /* default dma_ops domain for that IOMMU */
++ struct dma_ops_domain *default_dom;
++
++ /*
++ * We can't rely on the BIOS to restore all values on reinit, so we
++ * need to stash them
++ */
++
++ /* The iommu BAR */
++ u32 stored_addr_lo;
++ u32 stored_addr_hi;
++
++ /*
++ * Each iommu has 6 l1s, each of which is documented as having 0x12
++ * registers
++ */
++ u32 stored_l1[6][0x12];
++
++ /* The l2 indirect registers */
++ u32 stored_l2[0x83];
++ };
++
++ /*
++ * List with all IOMMUs in the system. This list is not locked because it is
++ * only written and read at driver initialization or suspend time
++ */
++ extern struct list_head amd_iommu_list;
++
++ /*
++ * Array with pointers to each IOMMU struct
++ * The indices are referenced in the protection domains
++ */
++ extern struct amd_iommu *amd_iommus[MAX_IOMMUS];
++
++ /* Number of IOMMUs present in the system */
++ extern int amd_iommus_present;
++
++ /*
++ * Declarations for the global list of all protection domains
++ */
++ extern spinlock_t amd_iommu_pd_lock;
++ extern struct list_head amd_iommu_pd_list;
++
++ /*
++ * Structure defining one entry in the device table
++ */
++ struct dev_table_entry {
++ u32 data[8];
++ };
++
++ /*
++ * One entry for unity mappings parsed out of the ACPI table.
++ */
++ struct unity_map_entry {
++ struct list_head list;
++
++ /* starting device id this entry is used for (including) */
++ u16 devid_start;
++ /* end device id this entry is used for (including) */
++ u16 devid_end;
++
++ /* start address to unity map (including) */
++ u64 address_start;
++ /* end address to unity map (including) */
++ u64 address_end;
++
++ /* required protection */
++ int prot;
++ };
++
++ /*
++ * List of all unity mappings. It is not locked because as runtime it is only
++ * read. It is created at ACPI table parsing time.
++ */
++ extern struct list_head amd_iommu_unity_map;
++
++ /*
++ * Data structures for device handling
++ */
++
++ /*
++ * Device table used by hardware. Read and write accesses by software are
++ * locked with the amd_iommu_pd_table lock.
++ */
++ extern struct dev_table_entry *amd_iommu_dev_table;
++
++ /*
++ * Alias table to find requestor ids to device ids. Not locked because only
++ * read on runtime.
++ */
++ extern u16 *amd_iommu_alias_table;
++
++ /*
++ * Reverse lookup table to find the IOMMU which translates a specific device.
++ */
++ extern struct amd_iommu **amd_iommu_rlookup_table;
++
++ /* size of the dma_ops aperture as power of 2 */
++ extern unsigned amd_iommu_aperture_order;
++
++ /* largest PCI device id we expect translation requests for */
++ extern u16 amd_iommu_last_bdf;
++
++ /* allocation bitmap for domain ids */
++ extern unsigned long *amd_iommu_pd_alloc_bitmap;
++
++ /*
++ * If true, the addresses will be flushed on unmap time, not when
++ * they are reused
++ */
++ extern bool amd_iommu_unmap_flush;
++
++ /* takes bus and device/function and returns the device id
++ * FIXME: should that be in generic PCI code? */
++ static inline u16 calc_devid(u8 bus, u8 devfn)
++ {
++ return (((u16)bus) << 8) | devfn;
++ }
++
++ #ifdef CONFIG_AMD_IOMMU_STATS
++
++ struct __iommu_counter {
++ char *name;
++ struct dentry *dent;
++ u64 value;
++ };
++
++ #define DECLARE_STATS_COUNTER(nm) \
++ static struct __iommu_counter nm = { \
++ .name = #nm, \
++ }
++
++ #define INC_STATS_COUNTER(name) name.value += 1
++ #define ADD_STATS_COUNTER(name, x) name.value += (x)
++ #define SUB_STATS_COUNTER(name, x) name.value -= (x)
++
++ #else /* CONFIG_AMD_IOMMU_STATS */
++
++ #define DECLARE_STATS_COUNTER(name)
++ #define INC_STATS_COUNTER(name)
++ #define ADD_STATS_COUNTER(name, x)
++ #define SUB_STATS_COUNTER(name, x)
++
++ #endif /* CONFIG_AMD_IOMMU_STATS */
++
++ #endif /* _ASM_X86_AMD_IOMMU_TYPES_H */