struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
-int __kprobes arch_prepare_kprobe(struct kprobe *p)
+int arch_prepare_kprobe(struct kprobe *p)
{
int ret = 0;
kprobe_opcode_t insn = *p->addr;
p->ainsn.boostable = 0;
return ret;
}
+NOKPROBE_SYMBOL(arch_prepare_kprobe);
-void __kprobes arch_arm_kprobe(struct kprobe *p)
+void arch_arm_kprobe(struct kprobe *p)
{
*p->addr = BREAKPOINT_INSTRUCTION;
flush_icache_range((unsigned long) p->addr,
(unsigned long) p->addr + sizeof(kprobe_opcode_t));
}
+NOKPROBE_SYMBOL(arch_arm_kprobe);
-void __kprobes arch_disarm_kprobe(struct kprobe *p)
+void arch_disarm_kprobe(struct kprobe *p)
{
*p->addr = p->opcode;
flush_icache_range((unsigned long) p->addr,
(unsigned long) p->addr + sizeof(kprobe_opcode_t));
}
+NOKPROBE_SYMBOL(arch_disarm_kprobe);
-void __kprobes arch_remove_kprobe(struct kprobe *p)
+void arch_remove_kprobe(struct kprobe *p)
{
if (p->ainsn.insn) {
free_insn_slot(p->ainsn.insn, 0);
p->ainsn.insn = NULL;
}
}
+NOKPROBE_SYMBOL(arch_remove_kprobe);
-static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
+static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
enable_single_step(regs);
regs->nip = (unsigned long)p->ainsn.insn;
}
-static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
+static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
}
-static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
+static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
kcb->kprobe_status = kcb->prev_kprobe.status;
kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
}
-static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
+static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
__this_cpu_write(current_kprobe, p);
kcb->kprobe_saved_msr = regs->msr;
}
-void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
- struct pt_regs *regs)
+void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
{
ri->ret_addr = (kprobe_opcode_t *)regs->link;
/* Replace the return addr with trampoline addr */
regs->link = (unsigned long)kretprobe_trampoline;
}
+NOKPROBE_SYMBOL(arch_prepare_kretprobe);
-int __kprobes kprobe_handler(struct pt_regs *regs)
+int kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
int ret = 0;
preempt_enable_no_resched();
return ret;
}
+NOKPROBE_SYMBOL(kprobe_handler);
/*
* Function return probe trampoline:
/*
* Called when the probe at kretprobe trampoline is hit
*/
-static int __kprobes trampoline_probe_handler(struct kprobe *p,
- struct pt_regs *regs)
+static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head, empty_rp;
*/
return 1;
}
+NOKPROBE_SYMBOL(trampoline_probe_handler);
/*
* Called after single-stepping. p->addr is the address of the
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*/
-int __kprobes kprobe_post_handler(struct pt_regs *regs)
+int kprobe_post_handler(struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
return 1;
}
+NOKPROBE_SYMBOL(kprobe_post_handler);
-int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
+int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
}
return 0;
}
+NOKPROBE_SYMBOL(kprobe_fault_handler);
unsigned long arch_deref_entry_point(void *entry)
{
return ppc_global_function_entry(entry);
}
+NOKPROBE_SYMBOL(arch_deref_entry_point);
-int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
+int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
return 1;
}
+NOKPROBE_SYMBOL(setjmp_pre_handler);
-void __used __kprobes jprobe_return(void)
+void __used jprobe_return(void)
{
asm volatile("trap" ::: "memory");
}
+NOKPROBE_SYMBOL(jprobe_return);
-static void __used __kprobes jprobe_return_end(void)
+static void __used jprobe_return_end(void)
{
-};
+}
+NOKPROBE_SYMBOL(jprobe_return_end);
-int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
+int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
preempt_enable_no_resched();
return 1;
}
+NOKPROBE_SYMBOL(longjmp_break_handler);
static struct kprobe trampoline_p = {
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
return register_kprobe(&trampoline_p);
}
-int __kprobes arch_trampoline_kprobe(struct kprobe *p)
+int arch_trampoline_kprobe(struct kprobe *p)
{
if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
return 1;
return 0;
}
+NOKPROBE_SYMBOL(arch_trampoline_kprobe);
/*
* Emulate the truncation of 64 bit values in 32-bit mode.
*/
-static unsigned long truncate_if_32bit(unsigned long msr, unsigned long val)
+static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
+ unsigned long val)
{
#ifdef __powerpc64__
if ((msr & MSR_64BIT) == 0)
/*
* Determine whether a conditional branch instruction would branch.
*/
-static int __kprobes branch_taken(unsigned int instr, struct pt_regs *regs)
+static nokprobe_inline int branch_taken(unsigned int instr, struct pt_regs *regs)
{
unsigned int bo = (instr >> 21) & 0x1f;
unsigned int bi;
return 1;
}
-
-static long __kprobes address_ok(struct pt_regs *regs, unsigned long ea, int nb)
+static nokprobe_inline long address_ok(struct pt_regs *regs, unsigned long ea, int nb)
{
if (!user_mode(regs))
return 1;
/*
* Calculate effective address for a D-form instruction
*/
-static unsigned long __kprobes dform_ea(unsigned int instr, struct pt_regs *regs)
+static nokprobe_inline unsigned long dform_ea(unsigned int instr, struct pt_regs *regs)
{
int ra;
unsigned long ea;
/*
* Calculate effective address for a DS-form instruction
*/
-static unsigned long __kprobes dsform_ea(unsigned int instr, struct pt_regs *regs)
+static nokprobe_inline unsigned long dsform_ea(unsigned int instr, struct pt_regs *regs)
{
int ra;
unsigned long ea;
/*
* Calculate effective address for an X-form instruction
*/
-static unsigned long __kprobes xform_ea(unsigned int instr,
- struct pt_regs *regs)
+static nokprobe_inline unsigned long xform_ea(unsigned int instr,
+ struct pt_regs *regs)
{
int ra, rb;
unsigned long ea;
* Return the largest power of 2, not greater than sizeof(unsigned long),
* such that x is a multiple of it.
*/
-static inline unsigned long max_align(unsigned long x)
+static nokprobe_inline unsigned long max_align(unsigned long x)
{
x |= sizeof(unsigned long);
return x & -x; /* isolates rightmost bit */
}
-static inline unsigned long byterev_2(unsigned long x)
+static nokprobe_inline unsigned long byterev_2(unsigned long x)
{
return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
}
-static inline unsigned long byterev_4(unsigned long x)
+static nokprobe_inline unsigned long byterev_4(unsigned long x)
{
return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
((x & 0xff00) << 8) | ((x & 0xff) << 24);
}
#ifdef __powerpc64__
-static inline unsigned long byterev_8(unsigned long x)
+static nokprobe_inline unsigned long byterev_8(unsigned long x)
{
return (byterev_4(x) << 32) | byterev_4(x >> 32);
}
#endif
-static int __kprobes read_mem_aligned(unsigned long *dest, unsigned long ea,
- int nb)
+static nokprobe_inline int read_mem_aligned(unsigned long *dest,
+ unsigned long ea, int nb)
{
int err = 0;
unsigned long x = 0;
return err;
}
-static int __kprobes read_mem_unaligned(unsigned long *dest, unsigned long ea,
- int nb, struct pt_regs *regs)
+static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
+ unsigned long ea, int nb, struct pt_regs *regs)
{
int err;
unsigned long x, b, c;
* Read memory at address ea for nb bytes, return 0 for success
* or -EFAULT if an error occurred.
*/
-static int __kprobes read_mem(unsigned long *dest, unsigned long ea, int nb,
+static int read_mem(unsigned long *dest, unsigned long ea, int nb,
struct pt_regs *regs)
{
if (!address_ok(regs, ea, nb))
return read_mem_aligned(dest, ea, nb);
return read_mem_unaligned(dest, ea, nb, regs);
}
+NOKPROBE_SYMBOL(read_mem);
-static int __kprobes write_mem_aligned(unsigned long val, unsigned long ea,
- int nb)
+static nokprobe_inline int write_mem_aligned(unsigned long val,
+ unsigned long ea, int nb)
{
int err = 0;
return err;
}
-static int __kprobes write_mem_unaligned(unsigned long val, unsigned long ea,
- int nb, struct pt_regs *regs)
+static nokprobe_inline int write_mem_unaligned(unsigned long val,
+ unsigned long ea, int nb, struct pt_regs *regs)
{
int err;
unsigned long c;
* Write memory at address ea for nb bytes, return 0 for success
* or -EFAULT if an error occurred.
*/
-static int __kprobes write_mem(unsigned long val, unsigned long ea, int nb,
+static int write_mem(unsigned long val, unsigned long ea, int nb,
struct pt_regs *regs)
{
if (!address_ok(regs, ea, nb))
return write_mem_aligned(val, ea, nb);
return write_mem_unaligned(val, ea, nb, regs);
}
+NOKPROBE_SYMBOL(write_mem);
#ifdef CONFIG_PPC_FPU
/*
* Check the address and alignment, and call func to do the actual
* load or store.
*/
-static int __kprobes do_fp_load(int rn, int (*func)(int, unsigned long),
+static int do_fp_load(int rn, int (*func)(int, unsigned long),
unsigned long ea, int nb,
struct pt_regs *regs)
{
return err;
return (*func)(rn, ptr);
}
+NOKPROBE_SYMBOL(do_fp_load);
-static int __kprobes do_fp_store(int rn, int (*func)(int, unsigned long),
+static int do_fp_store(int rn, int (*func)(int, unsigned long),
unsigned long ea, int nb,
struct pt_regs *regs)
{
}
return err;
}
+NOKPROBE_SYMBOL(do_fp_store);
#endif
#ifdef CONFIG_ALTIVEC
/* For Altivec/VMX, no need to worry about alignment */
-static int __kprobes do_vec_load(int rn, int (*func)(int, unsigned long),
+static nokprobe_inline int do_vec_load(int rn, int (*func)(int, unsigned long),
unsigned long ea, struct pt_regs *regs)
{
if (!address_ok(regs, ea & ~0xfUL, 16))
return (*func)(rn, ea);
}
-static int __kprobes do_vec_store(int rn, int (*func)(int, unsigned long),
+static nokprobe_inline int do_vec_store(int rn, int (*func)(int, unsigned long),
unsigned long ea, struct pt_regs *regs)
{
if (!address_ok(regs, ea & ~0xfUL, 16))
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
-static int __kprobes do_vsx_load(int rn, int (*func)(int, unsigned long),
+static nokprobe_inline int do_vsx_load(int rn, int (*func)(int, unsigned long),
unsigned long ea, struct pt_regs *regs)
{
int err;
return err;
}
-static int __kprobes do_vsx_store(int rn, int (*func)(int, unsigned long),
+static nokprobe_inline int do_vsx_store(int rn, int (*func)(int, unsigned long),
unsigned long ea, struct pt_regs *regs)
{
int err;
: "=r" (err) \
: "r" (addr), "i" (-EFAULT), "0" (err))
-static void __kprobes set_cr0(struct pt_regs *regs, int rd)
+static nokprobe_inline void set_cr0(struct pt_regs *regs, int rd)
{
long val = regs->gpr[rd];
regs->ccr |= 0x20000000;
}
-static void __kprobes add_with_carry(struct pt_regs *regs, int rd,
+static nokprobe_inline void add_with_carry(struct pt_regs *regs, int rd,
unsigned long val1, unsigned long val2,
unsigned long carry_in)
{
regs->xer &= ~XER_CA;
}
-static void __kprobes do_cmp_signed(struct pt_regs *regs, long v1, long v2,
+static nokprobe_inline void do_cmp_signed(struct pt_regs *regs, long v1, long v2,
int crfld)
{
unsigned int crval, shift;
regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift);
}
-static void __kprobes do_cmp_unsigned(struct pt_regs *regs, unsigned long v1,
+static nokprobe_inline void do_cmp_unsigned(struct pt_regs *regs, unsigned long v1,
unsigned long v2, int crfld)
{
unsigned int crval, shift;
regs->ccr = (regs->ccr & ~(0xf << shift)) | (crval << shift);
}
-static int __kprobes trap_compare(long v1, long v2)
+static nokprobe_inline int trap_compare(long v1, long v2)
{
int ret = 0;
* Returns 1 if the instruction has been executed, or 0 if not.
* Sets *op to indicate what the instruction does.
*/
-int __kprobes analyse_instr(struct instruction_op *op, struct pt_regs *regs,
+int analyse_instr(struct instruction_op *op, struct pt_regs *regs,
unsigned int instr)
{
unsigned int opcode, ra, rb, rd, spr, u;
#endif
}
EXPORT_SYMBOL_GPL(analyse_instr);
+NOKPROBE_SYMBOL(analyse_instr);
/*
* For PPC32 we always use stwu with r1 to change the stack pointer.
* don't emulate the real store operation. We will do real store
* operation safely in exception return code by checking this flag.
*/
-static __kprobes int handle_stack_update(unsigned long ea, struct pt_regs *regs)
+static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
{
#ifdef CONFIG_PPC32
/*
return 0;
}
-static __kprobes void do_signext(unsigned long *valp, int size)
+static nokprobe_inline void do_signext(unsigned long *valp, int size)
{
switch (size) {
case 2:
}
}
-static __kprobes void do_byterev(unsigned long *valp, int size)
+static nokprobe_inline void do_byterev(unsigned long *valp, int size)
{
switch (size) {
case 2:
* or -1 if the instruction is one that should not be stepped,
* such as an rfid, or a mtmsrd that would clear MSR_RI.
*/
-int __kprobes emulate_step(struct pt_regs *regs, unsigned int instr)
+int emulate_step(struct pt_regs *regs, unsigned int instr)
{
struct instruction_op op;
int r, err, size;
regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
return 1;
}
+NOKPROBE_SYMBOL(emulate_step);