sched: simplify adaptive latency
authorPeter Zijlstra <a.p.zijlstra@chello.nl>
Mon, 15 Oct 2007 15:00:05 +0000 (17:00 +0200)
committerIngo Molnar <mingo@elte.hu>
Mon, 15 Oct 2007 15:00:05 +0000 (17:00 +0200)
simplify adaptive latency.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Mike Galbraith <efault@gmx.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
kernel/sched_fair.c

index 95487e3c8b061936720f121dff5911ec95165b6b..3179d1129a80980d41a1e3ee9dd31f735768be57 100644 (file)
@@ -217,77 +217,14 @@ static u64 __sched_period(unsigned long nr_running)
        return period;
 }
 
-/*
- * Calculate the preemption granularity needed to schedule every
- * runnable task once per sysctl_sched_latency amount of time.
- * (down to a sensible low limit on granularity)
- *
- * For example, if there are 2 tasks running and latency is 10 msecs,
- * we switch tasks every 5 msecs. If we have 3 tasks running, we have
- * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
- * for each task. We do finer and finer scheduling up to until we
- * reach the minimum granularity value.
- *
- * To achieve this we use the following dynamic-granularity rule:
- *
- *    gran = lat/nr - lat/nr/nr
- *
- * This comes out of the following equations:
- *
- *    kA1 + gran = kB1
- *    kB2 + gran = kA2
- *    kA2 = kA1
- *    kB2 = kB1 - d + d/nr
- *    lat = d * nr
- *
- * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
- * '1' is start of time, '2' is end of time, 'd' is delay between
- * 1 and 2 (during which task B was running), 'nr' is number of tasks
- * running, 'lat' is the the period of each task. ('lat' is the
- * sched_latency that we aim for.)
- */
-static long
-sched_granularity(struct cfs_rq *cfs_rq)
+static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 {
-       unsigned int gran = sysctl_sched_latency;
-       unsigned int nr = cfs_rq->nr_running;
-
-       if (nr > 1) {
-               gran = gran/nr - gran/nr/nr;
-               gran = max(gran, sysctl_sched_min_granularity);
-       }
+       u64 period = __sched_period(cfs_rq->nr_running);
 
-       return gran;
-}
+       period *= se->load.weight;
+       do_div(period, cfs_rq->load.weight);
 
-/*
- * We rescale the rescheduling granularity of tasks according to their
- * nice level, but only linearly, not exponentially:
- */
-static long
-niced_granularity(struct sched_entity *curr, unsigned long granularity)
-{
-       u64 tmp;
-
-       if (likely(curr->load.weight == NICE_0_LOAD))
-               return granularity;
-       /*
-        * Positive nice levels get the same granularity as nice-0:
-        */
-       if (likely(curr->load.weight < NICE_0_LOAD)) {
-               tmp = curr->load.weight * (u64)granularity;
-               return (long) (tmp >> NICE_0_SHIFT);
-       }
-       /*
-        * Negative nice level tasks get linearly finer
-        * granularity:
-        */
-       tmp = curr->load.inv_weight * (u64)granularity;
-
-       /*
-        * It will always fit into 'long':
-        */
-       return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
+       return period;
 }
 
 static inline void
@@ -646,36 +583,13 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  */
 static void
 __check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
-                         struct sched_entity *curr, unsigned long granularity)
+                         struct sched_entity *curr)
 {
-       s64 __delta = curr->fair_key - se->fair_key;
        unsigned long ideal_runtime, delta_exec;
 
-       /*
-        * ideal_runtime is compared against sum_exec_runtime, which is
-        * walltime, hence do not scale.
-        */
-       ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
-                       (unsigned long)sysctl_sched_min_granularity);
-
-       /*
-        * If we executed more than what the latency constraint suggests,
-        * reduce the rescheduling granularity. This way the total latency
-        * of how much a task is not scheduled converges to
-        * sysctl_sched_latency:
-        */
+       ideal_runtime = sched_slice(cfs_rq, curr);
        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
        if (delta_exec > ideal_runtime)
-               granularity = 0;
-
-       /*
-        * Take scheduling granularity into account - do not
-        * preempt the current task unless the best task has
-        * a larger than sched_granularity fairness advantage:
-        *
-        * scale granularity as key space is in fair_clock.
-        */
-       if (__delta > niced_granularity(curr, granularity))
                resched_task(rq_of(cfs_rq)->curr);
 }
 
@@ -749,8 +663,7 @@ static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
        if (next == curr)
                return;
 
-       __check_preempt_curr_fair(cfs_rq, next, curr,
-                       sched_granularity(cfs_rq));
+       __check_preempt_curr_fair(cfs_rq, next, curr);
 }
 
 /**************************************************
@@ -944,7 +857,6 @@ static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
 {
        struct task_struct *curr = rq->curr;
        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
-       unsigned long gran;
 
        if (unlikely(rt_prio(p->prio))) {
                update_rq_clock(rq);
@@ -953,15 +865,8 @@ static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
                return;
        }
 
-       gran = sysctl_sched_wakeup_granularity;
-       /*
-        * Batch tasks prefer throughput over latency:
-        */
-       if (unlikely(p->policy == SCHED_BATCH))
-               gran = sysctl_sched_batch_wakeup_granularity;
-
        if (is_same_group(curr, p))
-               __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
+               __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se);
 }
 
 static struct task_struct *pick_next_task_fair(struct rq *rq)