#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
+/*
+ * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
+ *
+ * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
+ *
+ * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
+ * Both make kfree a no-op.
+ */
+#define ZERO_SIZE_PTR ((void *)16)
+
+#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) < \
+ (unsigned long)ZERO_SIZE_PTR)
+
/*
* struct kmem_cache related prototypes
*/
{
if (__builtin_constant_p(size)) {
int i = 0;
+
+ if (!size)
+ return ZERO_SIZE_PTR;
+
#define CACHE(x) \
if (size <= x) \
goto found; \
{
if (__builtin_constant_p(size)) {
int i = 0;
+
+ if (!size)
+ return ZERO_SIZE_PTR;
+
#define CACHE(x) \
if (size <= x) \
goto found; \
{
if (__builtin_constant_p(size)) {
int i = 0;
+
+ if (!size)
+ return ZERO_SIZE_PTR;
+
#define CACHE(x) \
if (size <= x) \
goto found; \
#define SLUB_DMA 0
#endif
-
-/*
- * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
- *
- * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
- *
- * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
- * Both make kfree a no-op.
- */
-#define ZERO_SIZE_PTR ((void *)16)
-
-
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
void *__kmalloc(size_t size, gfp_t flags);
*/
BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
#endif
+ if (!size)
+ return ZERO_SIZE_PTR;
+
while (size > csizep->cs_size)
csizep++;
* this should not happen at all.
* But leave a BUG_ON for some lucky dude.
*/
- BUG_ON(!cachep->slabp_cache);
+ BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
}
cachep->ctor = ctor;
cachep->name = name;
struct kmem_cache *cachep;
cachep = kmem_find_general_cachep(size, flags);
- if (unlikely(cachep == NULL))
- return NULL;
+ if (unlikely(ZERO_OR_NULL_PTR(cachep)))
+ return cachep;
return kmem_cache_alloc_node(cachep, flags, node);
}
struct kmem_cache *c;
unsigned long flags;
- if (unlikely(!objp))
+ if (unlikely(ZERO_OR_NULL_PTR(objp)))
return;
local_irq_save(flags);
kfree_debugcheck(objp);
*/
size_t ksize(const void *objp)
{
- if (unlikely(objp == NULL))
+ if (unlikely(ZERO_OR_NULL_PTR(objp)))
return 0;
return obj_size(virt_to_cache(objp));
slobidx_t units;
unsigned long flags;
- if (!block)
+ if (ZERO_OR_NULL_PTR(block))
return;
BUG_ON(!size);
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
+ unsigned int *m;
int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
if (size < PAGE_SIZE - align) {
- unsigned int *m;
+ if (!size)
+ return ZERO_SIZE_PTR;
+
m = slob_alloc(size + align, gfp, align, node);
if (m)
*m = size;
{
struct slob_page *sp;
- if (!block)
+ if (ZERO_OR_NULL_PTR(block))
return;
sp = (struct slob_page *)virt_to_page(block);
{
struct slob_page *sp;
- if (!block)
+ if (ZERO_OR_NULL_PTR(block))
return 0;
sp = (struct slob_page *)virt_to_page(block);
int index = kmalloc_index(size);
if (!index)
- return NULL;
+ return ZERO_SIZE_PTR;
/* Allocation too large? */
- BUG_ON(index < 0);
+ if (index < 0)
+ return NULL;
#ifdef CONFIG_ZONE_DMA
if ((flags & SLUB_DMA)) {
{
struct kmem_cache *s = get_slab(size, flags);
- if (s)
- return slab_alloc(s, flags, -1, __builtin_return_address(0));
- return ZERO_SIZE_PTR;
+ if (ZERO_OR_NULL_PTR(s))
+ return s;
+
+ return slab_alloc(s, flags, -1, __builtin_return_address(0));
}
EXPORT_SYMBOL(__kmalloc);
{
struct kmem_cache *s = get_slab(size, flags);
- if (s)
- return slab_alloc(s, flags, node, __builtin_return_address(0));
- return ZERO_SIZE_PTR;
+ if (ZERO_OR_NULL_PTR(s))
+ return s;
+
+ return slab_alloc(s, flags, node, __builtin_return_address(0));
}
EXPORT_SYMBOL(__kmalloc_node);
#endif
* this comparison would be true for all "negative" pointers
* (which would cover the whole upper half of the address space).
*/
- if ((unsigned long)x <= (unsigned long)ZERO_SIZE_PTR)
+ if (ZERO_OR_NULL_PTR(x))
return;
page = virt_to_head_page(x);
{
struct kmem_cache *s = get_slab(size, gfpflags);
- if (!s)
- return ZERO_SIZE_PTR;
+ if (ZERO_OR_NULL_PTR(s))
+ return s;
return slab_alloc(s, gfpflags, -1, caller);
}
{
struct kmem_cache *s = get_slab(size, gfpflags);
- if (!s)
- return ZERO_SIZE_PTR;
+ if (ZERO_OR_NULL_PTR(s))
+ return s;
return slab_alloc(s, gfpflags, node, caller);
}
if (unlikely(!new_size)) {
kfree(p);
- return NULL;
+ return ZERO_SIZE_PTR;
}
ks = ksize(p);