#include <linux/completion.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
+#include <linux/kthread.h>
#include <asm/uaccess.h>
goto out;
if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
goto out;
- lo->lo_pending++;
loop_add_bio(lo, old_bio);
+ wake_up(&lo->lo_event);
spin_unlock_irq(&lo->lo_lock);
- complete(&lo->lo_bh_done);
return 0;
out:
- if (lo->lo_pending == 0)
- complete(&lo->lo_bh_done);
spin_unlock_irq(&lo->lo_lock);
bio_io_error(old_bio, old_bio->bi_size);
return 0;
* to avoid blocking in our make_request_fn. it also does loop decrypting
* on reads for block backed loop, as that is too heavy to do from
* b_end_io context where irqs may be disabled.
+ *
+ * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
+ * calling kthread_stop(). Therefore once kthread_should_stop() is
+ * true, make_request will not place any more requests. Therefore
+ * once kthread_should_stop() is true and lo_bio is NULL, we are
+ * done with the loop.
*/
static int loop_thread(void *data)
{
struct loop_device *lo = data;
struct bio *bio;
- daemonize("loop%d", lo->lo_number);
-
/*
* loop can be used in an encrypted device,
* hence, it mustn't be stopped at all
set_user_nice(current, -20);
- lo->lo_state = Lo_bound;
- lo->lo_pending = 1;
-
- /*
- * complete it, we are running
- */
- complete(&lo->lo_done);
+ while (!kthread_should_stop() || lo->lo_bio) {
- for (;;) {
- int pending;
+ wait_event_interruptible(lo->lo_event,
+ lo->lo_bio || kthread_should_stop());
- if (wait_for_completion_interruptible(&lo->lo_bh_done))
+ if (!lo->lo_bio)
continue;
-
spin_lock_irq(&lo->lo_lock);
-
- /*
- * could be completed because of tear-down, not pending work
- */
- if (unlikely(!lo->lo_pending)) {
- spin_unlock_irq(&lo->lo_lock);
- break;
- }
-
bio = loop_get_bio(lo);
- lo->lo_pending--;
- pending = lo->lo_pending;
spin_unlock_irq(&lo->lo_lock);
BUG_ON(!bio);
loop_handle_bio(lo, bio);
-
- /*
- * upped both for pending work and tear-down, lo_pending
- * will hit zero then
- */
- if (unlikely(!pending))
- break;
}
- complete(&lo->lo_done);
return 0;
}
set_blocksize(bdev, lo_blocksize);
- error = kernel_thread(loop_thread, lo, CLONE_KERNEL);
- if (error < 0)
+ lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
+ lo->lo_number);
+ if (IS_ERR(lo->lo_thread)) {
+ error = PTR_ERR(lo->lo_thread);
+ lo->lo_thread = NULL;
goto out_putf;
- wait_for_completion(&lo->lo_done);
+ }
+ lo->lo_state = Lo_bound;
+ wake_up_process(lo->lo_thread);
return 0;
out_putf:
spin_lock_irq(&lo->lo_lock);
lo->lo_state = Lo_rundown;
- lo->lo_pending--;
- if (!lo->lo_pending)
- complete(&lo->lo_bh_done);
spin_unlock_irq(&lo->lo_lock);
- wait_for_completion(&lo->lo_done);
+ kthread_stop(lo->lo_thread);
lo->lo_backing_file = NULL;
lo->lo_sizelimit = 0;
lo->lo_encrypt_key_size = 0;
lo->lo_flags = 0;
+ lo->lo_thread = NULL;
memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
memset(lo->lo_file_name, 0, LO_NAME_SIZE);
if (!lo->lo_queue)
goto out_mem4;
mutex_init(&lo->lo_ctl_mutex);
- init_completion(&lo->lo_done);
- init_completion(&lo->lo_bh_done);
lo->lo_number = i;
+ lo->lo_thread = NULL;
+ init_waitqueue_head(&lo->lo_event);
spin_lock_init(&lo->lo_lock);
disk->major = LOOP_MAJOR;
disk->first_minor = i;