MISRA C-2012 Rules 10.1, 10.3, 17.8 and 20.7.
Change-Id: I3980bd2a1d845559af4bbe2887a0250d0506a064
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
unsigned int lowest_affinity_level);
int psci_migrate(u_register_t target_cpu);
int psci_migrate_info_type(void);
-long psci_migrate_info_up_cpu(void);
+u_register_t psci_migrate_info_up_cpu(void);
int psci_node_hw_state(u_register_t target_cpu,
unsigned int power_level);
int psci_features(unsigned int psci_fid);
.h.type = (uint8_t)PARAM_PSCI_LIB_ARGS, \
.h.version = (uint8_t)VERSION_1, \
.h.size = (uint16_t)sizeof(_name), \
- .h.attr = 0, \
+ .h.attr = 0U, \
.mailbox_ep = (_entry) \
}
/* Helper macro to verify the pointer to psci_lib_args_t structure */
-#define VERIFY_PSCI_LIB_ARGS_V1(_p) ((_p) \
+#define VERIFY_PSCI_LIB_ARGS_V1(_p) (((_p) != NULL) \
&& ((_p)->h.type == PARAM_PSCI_LIB_ARGS) \
&& ((_p)->h.version == VERSION_1) \
&& ((_p)->h.size == sizeof(*(_p))) \
&& ((_p)->h.attr == 0) \
- && ((_p)->mailbox_ep))
+ && ((_p)->mailbox_ep != NULL))
/******************************************************************************
* PSCI Library Interfaces
/******************************************************************************
* Check that the maximum power level supported by the platform makes sense
*****************************************************************************/
-CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \
- PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \
- assert_platform_max_pwrlvl_check);
+CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
+ (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
+ assert_platform_max_pwrlvl_check);
/*
* The plat_local_state used by the platform is one of these types: RUN,
* Check that the maximum retention level supported by the platform is less
* than the maximum off level.
*****************************************************************************/
-CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, \
+CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
assert_platform_max_off_and_retn_state_check);
/******************************************************************************
psci_power_state_t *state_info)
{
/* Check SBZ bits in power state are zero */
- if (psci_check_power_state(power_state))
+ if (psci_check_power_state(power_state) != 0U)
return PSCI_E_INVALID_PARAMS;
- assert(psci_plat_pm_ops->validate_power_state);
+ assert(psci_plat_pm_ops->validate_power_state != NULL);
/* Validate the power_state using platform pm_ops */
return psci_plat_pm_ops->validate_power_state(power_state, state_info);
* Assert that the required pm_ops hook is implemented to ensure that
* the capability detected during psci_setup() is valid.
*/
- assert(psci_plat_pm_ops->get_sys_suspend_power_state);
+ assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
/*
* Query the platform for the power_state required for system suspend
******************************************************************************/
unsigned int psci_is_last_on_cpu(void)
{
- unsigned int cpu_idx, my_idx = plat_my_core_pos();
+ int cpu_idx, my_idx = (int) plat_my_core_pos();
for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
if (cpu_idx == my_idx) {
assert(pwrlvl > PSCI_CPU_PWR_LVL);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
- psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state;
+ psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
#pragma GCC diagnostic pop
}
void psci_init_req_local_pwr_states(void)
{
/* Initialize the requested state of all non CPU power domains as OFF */
- memset(&psci_req_local_pwr_states, PLAT_MAX_OFF_STATE,
- sizeof(psci_req_local_pwr_states));
+ unsigned int pwrlvl;
+ int core;
+
+ for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
+ for (core = 0; core < PLATFORM_CORE_COUNT; core++) {
+ psci_req_local_pwr_states[pwrlvl][core] =
+ PLAT_MAX_OFF_STATE;
+ }
+ }
}
/******************************************************************************
* assertion is added to prevent us from accessing the CPU power level.
*****************************************************************************/
static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
- unsigned int cpu_idx)
+ int cpu_idx)
{
assert(pwrlvl > PSCI_CPU_PWR_LVL);
- return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx];
+ return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
}
/*
parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
/* Copy the local power state from node to state_info */
- for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
+ for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
/* Copy the local_state from state_info */
- for (lvl = 1; lvl <= end_pwrlvl; lvl++) {
+ for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
/*******************************************************************************
* PSCI helper function to get the parent nodes corresponding to a cpu_index.
******************************************************************************/
-void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
+void psci_get_parent_pwr_domain_nodes(int cpu_idx,
unsigned int end_lvl,
- unsigned int node_index[])
+ unsigned int *node_index)
{
unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
unsigned int i;
+ unsigned int *node = node_index;
- for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) {
- *node_index++ = parent_node;
+ for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
+ *node = parent_node;
+ node++;
parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
}
}
parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
/* Reset the local_state to RUN for the non cpu power domains. */
- for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
+ for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
set_non_cpu_pd_node_local_state(parent_idx,
PSCI_LOCAL_STATE_RUN);
psci_set_req_local_pwr_state(lvl,
psci_power_state_t *state_info)
{
unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
- unsigned int start_idx, ncpus;
+ int start_idx;
+ unsigned int ncpus;
plat_local_state_t target_state, *req_states;
assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
/* For level 0, the requested state will be equivalent
to target state */
- for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
+ for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
/* First update the requested power state */
psci_set_req_local_pwr_state(lvl, cpu_idx,
state_info->pwr_domain_state[lvl] = target_state;
/* Break early if the negotiated target power state is RUN */
- if (is_local_state_run(state_info->pwr_domain_state[lvl]))
+ if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
break;
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
* We update the requested power state from state_info and then
* set the target state as RUN.
*/
- for (lvl = lvl + 1; lvl <= end_pwrlvl; lvl++) {
+ for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
psci_set_req_local_pwr_state(lvl, cpu_idx,
state_info->pwr_domain_state[lvl]);
state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
/* All power domain levels are in a RUN state to begin with */
deepest_state_type = STATE_TYPE_RUN;
- for (i = target_lvl; i >= PSCI_CPU_PWR_LVL; i--) {
+ for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
state = state_info->pwr_domain_state[i];
req_state_type = find_local_state_type(state);
* has to be invalid and max retention level has to be a valid power
* level.
*/
- if (!is_power_down_state && (max_off_lvl != PSCI_INVALID_PWR_LVL ||
- max_retn_lvl == PSCI_INVALID_PWR_LVL))
+ if ((is_power_down_state == 0U) &&
+ ((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
+ (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
{
int i;
- for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
- if (is_local_state_off(state_info->pwr_domain_state[i]))
- return i;
+ for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
+ if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
+ return (unsigned int) i;
}
return PSCI_INVALID_PWR_LVL;
{
int i;
- for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
- if (!is_local_state_run(state_info->pwr_domain_state[i]))
- return i;
+ for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
+ if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
+ return (unsigned int) i;
}
return PSCI_INVALID_PWR_LVL;
* tree that the operation should be applied to. It picks up locks in order of
* increasing power domain level in the range specified.
******************************************************************************/
-void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
- unsigned int cpu_idx)
+void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx)
{
unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
unsigned int level;
/* No locking required for level 0. Hence start locking from level 1 */
- for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
+ for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
}
* tree that the operation should be applied to. It releases the locks in order
* of decreasing power domain level in the range specified.
******************************************************************************/
-void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
- unsigned int cpu_idx)
+void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx)
{
unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
- int level;
+ unsigned int level;
/* Get the parent nodes */
psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
/* Unlock top down. No unlocking required for level 0. */
- for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) {
- parent_idx = parent_nodes[level - 1];
+ for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) {
+ parent_idx = parent_nodes[level - 1U];
psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
}
}
u_register_t ns_scr_el3 = read_scr_el3();
u_register_t ns_sctlr_el1 = read_sctlr_el1();
- sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
+ sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
+ read_sctlr_el2() : ns_sctlr_el1;
ee = 0;
ep_attr = NON_SECURE | EP_ST_DISABLE;
- if (sctlr & SCTLR_EE_BIT) {
+ if ((sctlr & SCTLR_EE_BIT) != 0U) {
ep_attr |= EP_EE_BIG;
ee = 1;
}
* Figure out whether the cpu enters the non-secure address space
* in aarch32 or aarch64
*/
- if (ns_scr_el3 & SCR_RW_BIT) {
+ if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
/*
* Check whether a Thumb entry point has been provided for an
* aarch64 EL
*/
- if (entrypoint & 0x1)
+ if ((entrypoint & 0x1UL) != 0UL)
return PSCI_E_INVALID_ADDRESS;
- mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
+ mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
} else {
- mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
+ mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
+ MODE32_hyp : MODE32_svc;
/*
* TODO: Choose async. exception bits if HYP mode is not
int rc;
/* Validate the entrypoint using platform psci_ops */
- if (psci_plat_pm_ops->validate_ns_entrypoint) {
+ if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
if (rc != PSCI_E_SUCCESS)
return PSCI_E_INVALID_ADDRESS;
******************************************************************************/
void psci_warmboot_entrypoint(void)
{
- unsigned int end_pwrlvl, cpu_idx = plat_my_core_pos();
+ unsigned int end_pwrlvl;
+ int cpu_idx = (int) plat_my_core_pos();
psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
/*
* that by the time all locks are taken, the system topology is snapshot
* and state management can be done safely.
*/
- psci_acquire_pwr_domain_locks(end_pwrlvl,
- cpu_idx);
+ psci_acquire_pwr_domain_locks(end_pwrlvl, cpu_idx);
psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
* This loop releases the lock corresponding to each power level
* in the reverse order to which they were acquired.
*/
- psci_release_pwr_domain_locks(end_pwrlvl,
- cpu_idx);
+ psci_release_pwr_domain_locks(end_pwrlvl, cpu_idx);
}
/*******************************************************************************
******************************************************************************/
void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
{
- assert(pm);
+ assert(pm != NULL);
psci_spd_pm = pm;
- if (pm->svc_migrate)
+ if (pm->svc_migrate != NULL)
psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
- if (pm->svc_migrate_info)
+ if (pm->svc_migrate_info != NULL)
psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
| define_psci_cap(PSCI_MIG_INFO_TYPE);
}
{
int rc;
- if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
+ if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
return PSCI_E_NOT_SUPPORTED;
rc = psci_spd_pm->svc_migrate_info(mpidr);
- assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
- || rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);
+ assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
+ (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
return rc;
}
void psci_print_power_domain_map(void)
{
#if LOG_LEVEL >= LOG_LEVEL_INFO
- unsigned int idx;
+ int idx;
plat_local_state_t state;
plat_local_state_type_t state_type;
*****************************************************************************/
int psci_secondaries_brought_up(void)
{
- unsigned int idx, n_valid = 0;
+ unsigned int idx, n_valid = 0U;
- for (idx = 0; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
+ for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
n_valid++;
}
- assert(n_valid);
+ assert(n_valid > 0U);
- return (n_valid > 1);
+ return (n_valid > 1U) ? 1 : 0;
}
#if ENABLE_PLAT_COMPAT
return PSCI_INVALID_DATA;
/* Sanity check to verify that the CPU is in CPU_SUSPEND */
- if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_ON &&
- !is_local_state_run(psci_get_cpu_local_state_by_idx(cpu_idx)))
+ if ((psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_ON) &&
+ (!is_local_state_run(psci_get_cpu_local_state_by_idx(cpu_idx))))
return psci_get_pstate_id(psci_power_state_compat[cpu_idx]);
return PSCI_INVALID_DATA;
}
/* Fast path for CPU standby.*/
- if (is_cpu_standby_req(is_power_down_state, target_pwrlvl)) {
- if (!psci_plat_pm_ops->cpu_standby)
+ if (is_cpu_standby_req(is_power_down_state, target_pwrlvl) != 0) {
+ if (psci_plat_pm_ops->cpu_standby == NULL)
return PSCI_E_INVALID_PARAMS;
/*
* If a power down state has been requested, we need to verify entry
* point and program entry information.
*/
- if (is_power_down_state) {
+ if (is_power_down_state != 0U) {
rc = psci_validate_entry_point(&ep, entrypoint, context_id);
if (rc != PSCI_E_SUCCESS)
return rc;
entry_point_info_t ep;
/* Check if the current CPU is the last ON CPU in the system */
- if (!psci_is_last_on_cpu())
+ if (psci_is_last_on_cpu() == 0U)
return PSCI_E_DENIED;
/* Validate the entry point and get the entry_point_info */
assert(psci_find_target_suspend_lvl(&state_info) == PLAT_MAX_PWR_LVL);
assert(psci_validate_suspend_req(&state_info, PSTATE_TYPE_POWERDOWN)
== PSCI_E_SUCCESS);
- assert(is_local_state_off(state_info.pwr_domain_state[PLAT_MAX_PWR_LVL]));
+ assert(is_local_state_off(
+ state_info.pwr_domain_state[PLAT_MAX_PWR_LVL]) != 0);
/*
* Do what is needed to enter the system suspend state. This function
* target CPUs shutdown was not seen by the current CPU's cluster. And
* so the cache may contain stale data for the target CPU.
*/
- flush_cpu_data_by_index(target_idx, psci_svc_cpu_data.aff_info_state);
+ flush_cpu_data_by_index((unsigned int)target_idx,
+ psci_svc_cpu_data.aff_info_state);
return psci_get_aff_info_state_by_idx(target_idx);
}
if (rc != PSCI_E_SUCCESS)
return PSCI_E_INVALID_PARAMS;
- assert(psci_spd_pm && psci_spd_pm->svc_migrate);
+ assert((psci_spd_pm != NULL) && (psci_spd_pm->svc_migrate != NULL));
rc = psci_spd_pm->svc_migrate(read_mpidr_el1(), target_cpu);
- assert(rc == PSCI_E_SUCCESS || rc == PSCI_E_INTERN_FAIL);
+ assert((rc == PSCI_E_SUCCESS) || (rc == PSCI_E_INTERN_FAIL));
return rc;
}
return psci_spd_migrate_info(&resident_cpu_mpidr);
}
-long psci_migrate_info_up_cpu(void)
+u_register_t psci_migrate_info_up_cpu(void)
{
u_register_t resident_cpu_mpidr;
int rc;
* psci_spd_migrate_info() returns.
*/
rc = psci_spd_migrate_info(&resident_cpu_mpidr);
- if (rc != PSCI_TOS_NOT_UP_MIG_CAP && rc != PSCI_TOS_UP_MIG_CAP)
- return PSCI_E_INVALID_PARAMS;
+ if ((rc != PSCI_TOS_NOT_UP_MIG_CAP) && (rc != PSCI_TOS_UP_MIG_CAP))
+ return (u_register_t)(register_t) PSCI_E_INVALID_PARAMS;
return resident_cpu_mpidr;
}
* Dispatch this call to platform to query power controller, and pass on
* to the caller what it returns
*/
- assert(psci_plat_pm_ops->get_node_hw_state);
+ assert(psci_plat_pm_ops->get_node_hw_state != NULL);
rc = psci_plat_pm_ops->get_node_hw_state(target_cpu, power_level);
- assert((rc >= HW_ON && rc <= HW_STANDBY) || rc == PSCI_E_NOT_SUPPORTED
- || rc == PSCI_E_INVALID_PARAMS);
+ assert(((rc >= HW_ON) && (rc <= HW_STANDBY))
+ || (rc == PSCI_E_NOT_SUPPORTED)
+ || (rc == PSCI_E_INVALID_PARAMS));
return rc;
}
/* Check if the psci fid is supported or not */
- if (!(local_caps & define_psci_cap(psci_fid)))
+ if ((local_caps & define_psci_cap(psci_fid)) == 0U)
return PSCI_E_NOT_SUPPORTED;
/* Format the feature flags */
- if (psci_fid == PSCI_CPU_SUSPEND_AARCH32 ||
- psci_fid == PSCI_CPU_SUSPEND_AARCH64) {
+ if ((psci_fid == PSCI_CPU_SUSPEND_AARCH32) ||
+ (psci_fid == PSCI_CPU_SUSPEND_AARCH64)) {
/*
* The trusted firmware does not support OS Initiated Mode.
*/
- return (FF_PSTATE << FF_PSTATE_SHIFT) |
- ((!FF_SUPPORTS_OS_INIT_MODE) << FF_MODE_SUPPORT_SHIFT);
+ unsigned int ret = ((FF_PSTATE << FF_PSTATE_SHIFT) |
+ (((FF_SUPPORTS_OS_INIT_MODE == 1U) ? 0U : 1U)
+ << FF_MODE_SUPPORT_SHIFT));
+ return (int) ret;
}
/* Return 0 for all other fid's */
void *handle,
u_register_t flags)
{
+ u_register_t ret;
+
if (is_caller_secure(flags))
- return SMC_UNK;
+ return (u_register_t)SMC_UNK;
/* Check the fid against the capabilities */
- if (!(psci_caps & define_psci_cap(smc_fid)))
- return SMC_UNK;
+ if ((psci_caps & define_psci_cap(smc_fid)) == 0U)
+ return (u_register_t)SMC_UNK;
if (((smc_fid >> FUNCID_CC_SHIFT) & FUNCID_CC_MASK) == SMC_32) {
/* 32-bit PSCI function, clear top parameter bits */
- x1 = (uint32_t)x1;
- x2 = (uint32_t)x2;
- x3 = (uint32_t)x3;
+ uint32_t r1 = (uint32_t)x1;
+ uint32_t r2 = (uint32_t)x2;
+ uint32_t r3 = (uint32_t)x3;
switch (smc_fid) {
case PSCI_VERSION:
- return psci_version();
+ ret = (u_register_t)psci_version();
+ break;
case PSCI_CPU_OFF:
- return psci_cpu_off();
+ ret = (u_register_t)psci_cpu_off();
+ break;
case PSCI_CPU_SUSPEND_AARCH32:
- return psci_cpu_suspend(x1, x2, x3);
+ ret = (u_register_t)psci_cpu_suspend(r1, r2, r3);
+ break;
case PSCI_CPU_ON_AARCH32:
- return psci_cpu_on(x1, x2, x3);
+ ret = (u_register_t)psci_cpu_on(r1, r2, r3);
+ break;
case PSCI_AFFINITY_INFO_AARCH32:
- return psci_affinity_info(x1, x2);
+ ret = (u_register_t)psci_affinity_info(r1, r2);
+ break;
case PSCI_MIG_AARCH32:
- return psci_migrate(x1);
+ ret = (u_register_t)psci_migrate(r1);
+ break;
case PSCI_MIG_INFO_TYPE:
- return psci_migrate_info_type();
+ ret = (u_register_t)psci_migrate_info_type();
+ break;
case PSCI_MIG_INFO_UP_CPU_AARCH32:
- return psci_migrate_info_up_cpu();
+ ret = psci_migrate_info_up_cpu();
+ break;
case PSCI_NODE_HW_STATE_AARCH32:
- return psci_node_hw_state(x1, x2);
+ ret = (u_register_t)psci_node_hw_state(r1, r2);
+ break;
case PSCI_SYSTEM_SUSPEND_AARCH32:
- return psci_system_suspend(x1, x2);
+ ret = (u_register_t)psci_system_suspend(r1, r2);
+ break;
case PSCI_SYSTEM_OFF:
psci_system_off();
break;
case PSCI_FEATURES:
- return psci_features(x1);
+ ret = (u_register_t)psci_features(r1);
+ break;
#if ENABLE_PSCI_STAT
case PSCI_STAT_RESIDENCY_AARCH32:
- return psci_stat_residency(x1, x2);
+ ret = psci_stat_residency(r1, r2);
+ break;
case PSCI_STAT_COUNT_AARCH32:
- return psci_stat_count(x1, x2);
+ ret = psci_stat_count(r1, r2);
+ break;
#endif
case PSCI_MEM_PROTECT:
- return psci_mem_protect(x1);
+ ret = psci_mem_protect(r1);
+ break;
case PSCI_MEM_CHK_RANGE_AARCH32:
- return psci_mem_chk_range(x1, x2);
+ ret = psci_mem_chk_range(r1, r2);
+ break;
case PSCI_SYSTEM_RESET2_AARCH32:
/* We should never return from psci_system_reset2() */
- return psci_system_reset2(x1, x2);
+ ret = psci_system_reset2(r1, r2);
+ break;
default:
+ WARN("Unimplemented PSCI Call: 0x%x\n", smc_fid);
+ ret = (u_register_t)SMC_UNK;
break;
}
} else {
switch (smc_fid) {
case PSCI_CPU_SUSPEND_AARCH64:
- return psci_cpu_suspend(x1, x2, x3);
+ ret = (u_register_t)
+ psci_cpu_suspend((unsigned int)x1, x2, x3);
+ break;
case PSCI_CPU_ON_AARCH64:
- return psci_cpu_on(x1, x2, x3);
+ ret = (u_register_t)psci_cpu_on(x1, x2, x3);
+ break;
case PSCI_AFFINITY_INFO_AARCH64:
- return psci_affinity_info(x1, x2);
+ ret = (u_register_t)
+ psci_affinity_info(x1, (unsigned int)x2);
+ break;
case PSCI_MIG_AARCH64:
- return psci_migrate(x1);
+ ret = (u_register_t)psci_migrate(x1);
+ break;
case PSCI_MIG_INFO_UP_CPU_AARCH64:
- return psci_migrate_info_up_cpu();
+ ret = psci_migrate_info_up_cpu();
+ break;
case PSCI_NODE_HW_STATE_AARCH64:
- return psci_node_hw_state(x1, x2);
+ ret = (u_register_t)psci_node_hw_state(
+ x1, (unsigned int) x2);
+ break;
case PSCI_SYSTEM_SUSPEND_AARCH64:
- return psci_system_suspend(x1, x2);
+ ret = (u_register_t)psci_system_suspend(x1, x2);
+ break;
#if ENABLE_PSCI_STAT
case PSCI_STAT_RESIDENCY_AARCH64:
- return psci_stat_residency(x1, x2);
+ ret = psci_stat_residency(x1, (unsigned int) x2);
+ break;
case PSCI_STAT_COUNT_AARCH64:
- return psci_stat_count(x1, x2);
+ ret = psci_stat_count(x1, (unsigned int) x2);
+ break;
#endif
case PSCI_MEM_CHK_RANGE_AARCH64:
- return psci_mem_chk_range(x1, x2);
+ ret = psci_mem_chk_range(x1, x2);
+ break;
case PSCI_SYSTEM_RESET2_AARCH64:
/* We should never return from psci_system_reset2() */
- return psci_system_reset2(x1, x2);
+ ret = psci_system_reset2((uint32_t) x1, x2);
+ break;
default:
+ WARN("Unimplemented PSCI Call: 0x%x\n", smc_fid);
+ ret = (u_register_t)SMC_UNK;
break;
}
}
- WARN("Unimplemented PSCI Call: 0x%x \n", smc_fid);
- return SMC_UNK;
+ return ret;
}
psci_power_state_t *target_state);
int psci_validate_entry_point(entry_point_info_t *ep,
uintptr_t entrypoint, u_register_t context_id);
-void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
+void psci_get_parent_pwr_domain_nodes(int cpu_idx,
unsigned int end_lvl,
- unsigned int node_index[]);
+ unsigned int *node_index);
void psci_do_state_coordination(unsigned int end_pwrlvl,
psci_power_state_t *state_info);
-void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
- unsigned int cpu_idx);
-void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
- unsigned int cpu_idx);
+void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx);
+void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx);
int psci_validate_suspend_req(const psci_power_state_t *state_info,
unsigned int is_power_down_state);
unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info);
/*
- * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
+ * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
* Function which initializes the 'psci_non_cpu_pd_nodes' or the
* 'psci_cpu_pd_nodes' corresponding to the power level.
******************************************************************************/
-static void psci_init_pwr_domain_node(unsigned int node_idx,
+static void psci_init_pwr_domain_node(unsigned char node_idx,
unsigned int parent_idx,
- unsigned int level)
+ unsigned char level)
{
if (level > PSCI_CPU_PWR_LVL) {
psci_non_cpu_pd_nodes[node_idx].level = level;
*******************************************************************************/
static void psci_update_pwrlvl_limits(void)
{
- int j;
+ int j, cpu_idx;
unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0};
- unsigned int temp_index[PLAT_MAX_PWR_LVL], cpu_idx;
+ unsigned int temp_index[PLAT_MAX_PWR_LVL];
for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
psci_get_parent_pwr_domain_nodes(cpu_idx,
- PLAT_MAX_PWR_LVL,
+ (unsigned int)PLAT_MAX_PWR_LVL,
temp_index);
- for (j = PLAT_MAX_PWR_LVL - 1; j >= 0; j--) {
+ for (j = (int) PLAT_MAX_PWR_LVL - 1; j >= 0; j--) {
if (temp_index[j] != nodes_idx[j]) {
nodes_idx[j] = temp_index[j];
psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx
******************************************************************************/
static void populate_power_domain_tree(const unsigned char *topology)
{
- unsigned int i, j = 0, num_nodes_at_lvl = 1, num_nodes_at_next_lvl;
- unsigned int node_index = 0, parent_node_index = 0, num_children;
- int level = PLAT_MAX_PWR_LVL;
+ unsigned int i, j = 0U, num_nodes_at_lvl = 1U, num_nodes_at_next_lvl;
+ unsigned int node_index = 0U, num_children;
+ int parent_node_index = 0;
+ int level = (int) PLAT_MAX_PWR_LVL;
/*
* For each level the inputs are:
* - Index of first free entry in psci_non_cpu_pd_nodes[] or
* psci_cpu_pd_nodes[] i.e. node_index depending upon the level.
*/
- while (level >= PSCI_CPU_PWR_LVL) {
- num_nodes_at_next_lvl = 0;
+ while (level >= (int) PSCI_CPU_PWR_LVL) {
+ num_nodes_at_next_lvl = 0U;
/*
* For each entry (parent node) at this level in the plat_array:
* - Find the number of children
* - Increment parent_node_index to point to the next parent
* - Accumulate the number of children at next level.
*/
- for (i = 0; i < num_nodes_at_lvl; i++) {
+ for (i = 0U; i < num_nodes_at_lvl; i++) {
assert(parent_node_index <=
PSCI_NUM_NON_CPU_PWR_DOMAINS);
num_children = topology[parent_node_index];
for (j = node_index;
- j < node_index + num_children; j++)
- psci_init_pwr_domain_node(j,
+ j < (node_index + num_children); j++)
+ psci_init_pwr_domain_node((unsigned char)j,
parent_node_index - 1,
- level);
+ (unsigned char)level);
node_index = j;
num_nodes_at_next_lvl += num_children;
level--;
/* Reset the index for the cpu power domain array */
- if (level == PSCI_CPU_PWR_LVL)
+ if (level == (int) PSCI_CPU_PWR_LVL)
node_index = 0;
}
/* Validate the sanity of array exported by the platform */
- assert(j == PLATFORM_CORE_COUNT);
+ assert((int) j == PLATFORM_CORE_COUNT);
}
/*******************************************************************************
*/
psci_set_pwr_domains_to_run(PLAT_MAX_PWR_LVL);
- plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep, &psci_plat_pm_ops);
- assert(psci_plat_pm_ops);
+ (void) plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep,
+ &psci_plat_pm_ops);
+ assert(psci_plat_pm_ops != NULL);
/*
* Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs
/* Initialize the psci capability */
psci_caps = PSCI_GENERIC_CAP;
- if (psci_plat_pm_ops->pwr_domain_off)
+ if (psci_plat_pm_ops->pwr_domain_off != NULL)
psci_caps |= define_psci_cap(PSCI_CPU_OFF);
- if (psci_plat_pm_ops->pwr_domain_on &&
- psci_plat_pm_ops->pwr_domain_on_finish)
+ if ((psci_plat_pm_ops->pwr_domain_on != NULL) &&
+ (psci_plat_pm_ops->pwr_domain_on_finish != NULL))
psci_caps |= define_psci_cap(PSCI_CPU_ON_AARCH64);
- if (psci_plat_pm_ops->pwr_domain_suspend &&
- psci_plat_pm_ops->pwr_domain_suspend_finish) {
+ if ((psci_plat_pm_ops->pwr_domain_suspend != NULL) &&
+ (psci_plat_pm_ops->pwr_domain_suspend_finish != NULL)) {
psci_caps |= define_psci_cap(PSCI_CPU_SUSPEND_AARCH64);
- if (psci_plat_pm_ops->get_sys_suspend_power_state)
+ if (psci_plat_pm_ops->get_sys_suspend_power_state != NULL)
psci_caps |= define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64);
}
- if (psci_plat_pm_ops->system_off)
+ if (psci_plat_pm_ops->system_off != NULL)
psci_caps |= define_psci_cap(PSCI_SYSTEM_OFF);
- if (psci_plat_pm_ops->system_reset)
+ if (psci_plat_pm_ops->system_reset != NULL)
psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET);
- if (psci_plat_pm_ops->get_node_hw_state)
+ if (psci_plat_pm_ops->get_node_hw_state != NULL)
psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64);
- if (psci_plat_pm_ops->read_mem_protect &&
- psci_plat_pm_ops->write_mem_protect)
+ if ((psci_plat_pm_ops->read_mem_protect != NULL) &&
+ (psci_plat_pm_ops->write_mem_protect != NULL))
psci_caps |= define_psci_cap(PSCI_MEM_PROTECT);
- if (psci_plat_pm_ops->mem_protect_chk)
+ if (psci_plat_pm_ops->mem_protect_chk != NULL)
psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64);
- if (psci_plat_pm_ops->system_reset2)
+ if (psci_plat_pm_ops->system_reset2 != NULL)
psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET2_AARCH64);
#if ENABLE_PSCI_STAT
******************************************************************************/
void psci_arch_setup(void)
{
-#if ARM_ARCH_MAJOR > 7 || defined(ARMV7_SUPPORTS_GENERIC_TIMER)
+#if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_GENERIC_TIMER)
/* Program the counter frequency */
write_cntfrq_el0(plat_get_syscnt_freq2());
#endif