--- /dev/null
+--- /dev/null
++++ b/ext/sqlite/config.m4
+@@ -0,0 +1,157 @@
++dnl $Id$
++dnl config.m4 for extension sqlite
++dnl vim:et:ts=2:sw=2
++
++PHP_ARG_WITH(sqlite, for sqlite support,
++[ --without-sqlite=DIR Do not include sqlite support. DIR is the sqlite base
++ install directory [BUNDLED]], yes)
++
++PHP_ARG_ENABLE(sqlite-utf8, whether to enable UTF-8 support in sqlite (default: ISO-8859-1),
++[ --enable-sqlite-utf8 SQLite: Enable UTF-8 support for SQLite], no, no)
++
++
++
++dnl
++dnl PHP_PROG_LEMON
++dnl
++dnl Search for lemon binary and check its version
++dnl
++AC_DEFUN([PHP_PROG_LEMON],[
++ # we only support certain lemon versions
++ lemon_version_list="1.0"
++
++ AC_CHECK_PROG(LEMON, lemon, lemon)
++ if test "$LEMON"; then
++ AC_CACHE_CHECK([for lemon version], php_cv_lemon_version, [
++ lemon_version=`$LEMON -x 2>/dev/null | $SED -e 's/^.* //'`
++ php_cv_lemon_version=invalid
++ for lemon_check_version in $lemon_version_list; do
++ if test "$lemon_version" = "$lemon_check_version"; then
++ php_cv_lemon_version="$lemon_check_version (ok)"
++ fi
++ done
++ ])
++ else
++ lemon_version=none
++ fi
++ case $php_cv_lemon_version in
++ ""|invalid[)]
++ lemon_msg="lemon versions supported for regeneration of libsqlite parsers: $lemon_version_list (found: $lemon_version)."
++ AC_MSG_WARN([$lemon_msg])
++ LEMON="exit 0;"
++ ;;
++ esac
++ PHP_SUBST(LEMON)
++])
++
++
++if test "$PHP_SQLITE" != "no"; then
++ if test "$PHP_PDO" != "no"; then
++ PHP_CHECK_PDO_INCLUDES([], [AC_MSG_WARN([Cannot find php_pdo_driver.h.])])
++ if test -n "$pdo_inc_path"; then
++ AC_DEFINE([PHP_SQLITE2_HAVE_PDO], [1], [Have PDO])
++ pdo_inc_path="-I$pdo_inc_path"
++ fi
++ fi
++
++ if test "$PHP_SQLITE" != "yes"; then
++ SEARCH_PATH="/usr/local /usr"
++ SEARCH_FOR="/include/sqlite.h"
++ if test -r $PHP_SQLITE/; then # path given as parameter
++ SQLITE_DIR=$PHP_SQLITE
++ else # search default path list
++ AC_MSG_CHECKING([for sqlite files in default path])
++ for i in $SEARCH_PATH ; do
++ if test -r $i/$SEARCH_FOR; then
++ SQLITE_DIR=$i
++ AC_MSG_RESULT(found in $i)
++ fi
++ done
++ fi
++
++ if test -z "$SQLITE_DIR"; then
++ AC_MSG_RESULT([not found])
++ AC_MSG_ERROR([Please reinstall the sqlite distribution from http://www.sqlite.org])
++ fi
++
++ PHP_CHECK_LIBRARY(sqlite, sqlite_open, [
++ PHP_ADD_LIBRARY_WITH_PATH(sqlite, $SQLITE_DIR/$PHP_LIBDIR, SQLITE_SHARED_LIBADD)
++ PHP_ADD_INCLUDE($SQLITE_DIR/include)
++ ],[
++ AC_MSG_ERROR([wrong sqlite lib version or lib not found])
++ ],[
++ -L$SQLITE_DIR/$PHP_LIBDIR -lm
++ ])
++ SQLITE_MODULE_TYPE=external
++ PHP_SQLITE_CFLAGS=$pdo_inc_path
++ sqlite_extra_sources="libsqlite/src/encode.c"
++ else
++ # use bundled library
++ PHP_PROG_LEMON
++ SQLITE_MODULE_TYPE=builtin
++ PHP_SQLITE_CFLAGS="-I@ext_srcdir@/libsqlite/src -I@ext_builddir@/libsqlite/src $pdo_inc_path"
++ sqlite_extra_sources="libsqlite/src/opcodes.c \
++ libsqlite/src/parse.c libsqlite/src/encode.c \
++ libsqlite/src/auth.c libsqlite/src/btree.c libsqlite/src/build.c \
++ libsqlite/src/delete.c libsqlite/src/expr.c libsqlite/src/func.c \
++ libsqlite/src/hash.c libsqlite/src/insert.c libsqlite/src/main.c \
++ libsqlite/src/os.c libsqlite/src/pager.c \
++ libsqlite/src/printf.c libsqlite/src/random.c \
++ libsqlite/src/select.c libsqlite/src/table.c libsqlite/src/tokenize.c \
++ libsqlite/src/update.c libsqlite/src/util.c libsqlite/src/vdbe.c \
++ libsqlite/src/attach.c libsqlite/src/btree_rb.c libsqlite/src/pragma.c \
++ libsqlite/src/vacuum.c libsqlite/src/copy.c \
++ libsqlite/src/vdbeaux.c libsqlite/src/date.c \
++ libsqlite/src/where.c libsqlite/src/trigger.c"
++ fi
++ dnl
++ dnl Common for both bundled/external
++ dnl
++ sqlite_sources="sqlite.c sess_sqlite.c pdo_sqlite2.c $sqlite_extra_sources"
++ PHP_NEW_EXTENSION(sqlite, $sqlite_sources, $ext_shared,,$PHP_SQLITE_CFLAGS)
++ PHP_ADD_EXTENSION_DEP(sqlite, spl, true)
++ PHP_ADD_EXTENSION_DEP(sqlite, pdo, true)
++
++ PHP_ADD_MAKEFILE_FRAGMENT
++ PHP_SUBST(SQLITE_SHARED_LIBADD)
++ PHP_INSTALL_HEADERS([$ext_builddir/libsqlite/src/sqlite.h])
++
++ if test "$SQLITE_MODULE_TYPE" = "builtin"; then
++ PHP_ADD_BUILD_DIR($ext_builddir/libsqlite/src, 1)
++ AC_CHECK_SIZEOF(char *, 4)
++ AC_DEFINE(SQLITE_PTR_SZ, SIZEOF_CHAR_P, [Size of a pointer])
++ dnl use latin 1 for SQLite older than 2.8.9; the utf-8 handling
++ dnl in funcs.c uses assert(), which is a bit silly and something
++ dnl we want to avoid. This assert() was removed in SQLite 2.8.9.
++ if test "$PHP_SQLITE_UTF8" = "yes"; then
++ SQLITE_ENCODING="UTF8"
++ AC_DEFINE(SQLITE_UTF8, 1, [ ])
++ else
++ SQLITE_ENCODING="ISO8859"
++ fi
++ PHP_SUBST(SQLITE_ENCODING)
++
++ SQLITE_VERSION=`cat $ext_srcdir/libsqlite/VERSION`
++ PHP_SUBST(SQLITE_VERSION)
++
++ sed -e s/--VERS--/$SQLITE_VERSION/ -e s/--ENCODING--/$SQLITE_ENCODING/ $ext_srcdir/libsqlite/src/sqlite.h.in > $ext_builddir/libsqlite/src/sqlite.h
++
++ if test "$ext_shared" = "no" || test "$ext_srcdir" != "$abs_srcdir"; then
++ echo '#include <php_config.h>' > $ext_builddir/libsqlite/src/config.h
++ else
++ echo "#include \"$abs_builddir/config.h\"" > $ext_builddir/libsqlite/src/config.h
++ fi
++
++ cat >> $ext_builddir/libsqlite/src/config.h <<EOF
++#if ZTS
++# define THREADSAFE 1
++#endif
++#if !ZEND_DEBUG
++# define NDEBUG
++#endif
++EOF
++ fi
++
++ AC_CHECK_FUNCS(usleep nanosleep)
++ AC_CHECK_HEADERS(time.h)
++fi
+--- /dev/null
++++ b/ext/sqlite/config.w32
+@@ -0,0 +1,39 @@
++// $Id$
++// vim:ft=javascript
++
++ARG_WITH("sqlite", "SQLite support", "no");
++
++if (PHP_SQLITE != "no") {
++ copy_and_subst(configure_module_dirname + "\\libsqlite\\src\\sqlite.h.in",
++ configure_module_dirname + "\\libsqlite\\src\\sqlite.h", new Array(
++ "--VERS--", file_get_contents(configure_module_dirname + "\\libsqlite\\VERSION").replace(new RegExp("[\r\n]+", "g"), ""),
++ "--ENCODING--", "ISO8859"
++ ));
++
++ FSO.CopyFile(configure_module_dirname + "\\libsqlite\\src\\sqlite_config.w32.h",
++ configure_module_dirname + "\\libsqlite\\src\\config.h");
++
++ if (FSO.FileExists(configure_module_dirname + "\\..\\pdo\\php_pdo_driver.h")) {
++ PHP_SQLITE2_PDO_CFLAGS = " /DPHP_SQLITE2_HAVE_PDO=1 /I " + configure_module_dirname + "\\..";
++ ADD_EXTENSION_DEP('sqlite', 'pdo')
++ } else {
++ PHP_SQLITE2_PDO_CFLAGS = "";
++ }
++
++ EXTENSION("sqlite", "sqlite.c sess_sqlite.c pdo_sqlite2.c", null,
++ "/D PHP_SQLITE_EXPORTS /I " + configure_module_dirname + "/libsqlite/src" +
++ PHP_SQLITE2_PDO_CFLAGS);
++
++
++ ADD_SOURCES(configure_module_dirname + "/libsqlite/src", "opcodes.c parse.c encode.c \
++ auth.c btree.c build.c delete.c expr.c func.c hash.c insert.c \
++ main.c os.c pager.c printf.c random.c select.c table.c tokenize.c \
++ update.c util.c vdbe.c attach.c btree_rb.c pragma.c vacuum.c \
++ copy.c where.c trigger.c vdbeaux.c date.c", "sqlite");
++
++ AC_DEFINE("HAVE_SQLITE", 1, "SQLite support");
++ if (!PHP_SQLITE_SHARED) {
++ ADD_DEF_FILE(configure_module_dirname + "\\php_sqlite.def");
++ }
++ ADD_EXTENSION_DEP('sqlite', 'spl')
++}
+--- /dev/null
++++ b/ext/sqlite/CREDITS
+@@ -0,0 +1,2 @@
++SQLite
++Wez Furlong, Tal Peer, Marcus Boerger, Ilia Alshanetsky
+--- /dev/null
++++ b/ext/sqlite/libsqlite/README
+@@ -0,0 +1,37 @@
++This directory contains source code to
++
++ SQLite: An Embeddable SQL Database Engine
++
++To compile the project, first create a directory in which to place
++the build products. It is recommended, but not required, that the
++build directory be separate from the source directory. Cd into the
++build directory and then from the build directory run the configure
++script found at the root of the source tree. Then run "make".
++
++For example:
++
++ tar xzf sqlite.tar.gz ;# Unpack the source tree into "sqlite"
++ mkdir bld ;# Build will occur in a sibling directory
++ cd bld ;# Change to the build directory
++ ../sqlite/configure ;# Run the configure script
++ make ;# Run the makefile.
++
++The configure script uses autoconf 2.50 and libtool. If the configure
++script does not work out for you, there is a generic makefile named
++"Makefile.linux-gcc" in the top directory of the source tree that you
++can copy and edit to suite your needs. Comments on the generic makefile
++show what changes are needed.
++
++The linux binaries on the website are created using the generic makefile,
++not the configure script. The configure script is unmaintained. (You
++can volunteer to take over maintenance of the configure script, if you want!)
++The windows binaries on the website are created using MinGW32 configured
++as a cross-compiler running under Linux. For details, see the ./publish.sh
++script at the top-level of the source tree.
++
++Contacts:
++
++ http://www.sqlite.org/
++ http://www.hwaci.com/sw/sqlite/
++ http://groups.yahoo.com/group/sqlite/
++ drh@hwaci.com
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/attach.c
+@@ -0,0 +1,311 @@
++/*
++** 2003 April 6
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains code used to implement the ATTACH and DETACH commands.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++
++/*
++** This routine is called by the parser to process an ATTACH statement:
++**
++** ATTACH DATABASE filename AS dbname
++**
++** The pFilename and pDbname arguments are the tokens that define the
++** filename and dbname in the ATTACH statement.
++*/
++void sqliteAttach(Parse *pParse, Token *pFilename, Token *pDbname, Token *pKey){
++ Db *aNew;
++ int rc, i;
++ char *zFile, *zName;
++ sqlite *db;
++ Vdbe *v;
++
++ v = sqliteGetVdbe(pParse);
++ sqliteVdbeAddOp(v, OP_Halt, 0, 0);
++ if( pParse->explain ) return;
++ db = pParse->db;
++ if( db->file_format<4 ){
++ sqliteErrorMsg(pParse, "cannot attach auxiliary databases to an "
++ "older format master database", 0);
++ pParse->rc = SQLITE_ERROR;
++ return;
++ }
++ if( db->nDb>=MAX_ATTACHED+2 ){
++ sqliteErrorMsg(pParse, "too many attached databases - max %d",
++ MAX_ATTACHED);
++ pParse->rc = SQLITE_ERROR;
++ return;
++ }
++
++ zFile = 0;
++ sqliteSetNString(&zFile, pFilename->z, pFilename->n, 0);
++ if( zFile==0 ) return;
++ sqliteDequote(zFile);
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ if( sqliteAuthCheck(pParse, SQLITE_ATTACH, zFile, 0, 0)!=SQLITE_OK ){
++ sqliteFree(zFile);
++ return;
++ }
++#endif /* SQLITE_OMIT_AUTHORIZATION */
++
++ zName = 0;
++ sqliteSetNString(&zName, pDbname->z, pDbname->n, 0);
++ if( zName==0 ) return;
++ sqliteDequote(zName);
++ for(i=0; i<db->nDb; i++){
++ if( db->aDb[i].zName && sqliteStrICmp(db->aDb[i].zName, zName)==0 ){
++ sqliteErrorMsg(pParse, "database %z is already in use", zName);
++ pParse->rc = SQLITE_ERROR;
++ sqliteFree(zFile);
++ return;
++ }
++ }
++
++ if( db->aDb==db->aDbStatic ){
++ aNew = sqliteMalloc( sizeof(db->aDb[0])*3 );
++ if( aNew==0 ) return;
++ memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2);
++ }else{
++ aNew = sqliteRealloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) );
++ if( aNew==0 ) return;
++ }
++ db->aDb = aNew;
++ aNew = &db->aDb[db->nDb++];
++ memset(aNew, 0, sizeof(*aNew));
++ sqliteHashInit(&aNew->tblHash, SQLITE_HASH_STRING, 0);
++ sqliteHashInit(&aNew->idxHash, SQLITE_HASH_STRING, 0);
++ sqliteHashInit(&aNew->trigHash, SQLITE_HASH_STRING, 0);
++ sqliteHashInit(&aNew->aFKey, SQLITE_HASH_STRING, 1);
++ aNew->zName = zName;
++ rc = sqliteBtreeFactory(db, zFile, 0, MAX_PAGES, &aNew->pBt);
++ if( rc ){
++ sqliteErrorMsg(pParse, "unable to open database: %s", zFile);
++ }
++#if SQLITE_HAS_CODEC
++ {
++ extern int sqliteCodecAttach(sqlite*, int, void*, int);
++ char *zKey = 0;
++ int nKey;
++ if( pKey && pKey->z && pKey->n ){
++ sqliteSetNString(&zKey, pKey->z, pKey->n, 0);
++ sqliteDequote(zKey);
++ nKey = strlen(zKey);
++ }else{
++ zKey = 0;
++ nKey = 0;
++ }
++ sqliteCodecAttach(db, db->nDb-1, zKey, nKey);
++ }
++#endif
++ sqliteFree(zFile);
++ db->flags &= ~SQLITE_Initialized;
++ if( pParse->nErr ) return;
++ if( rc==SQLITE_OK ){
++ rc = sqliteInit(pParse->db, &pParse->zErrMsg);
++ }
++ if( rc ){
++ int i = db->nDb - 1;
++ assert( i>=2 );
++ if( db->aDb[i].pBt ){
++ sqliteBtreeClose(db->aDb[i].pBt);
++ db->aDb[i].pBt = 0;
++ }
++ sqliteResetInternalSchema(db, 0);
++ pParse->nErr++;
++ pParse->rc = SQLITE_ERROR;
++ }
++}
++
++/*
++** This routine is called by the parser to process a DETACH statement:
++**
++** DETACH DATABASE dbname
++**
++** The pDbname argument is the name of the database in the DETACH statement.
++*/
++void sqliteDetach(Parse *pParse, Token *pDbname){
++ int i;
++ sqlite *db;
++ Vdbe *v;
++ Db *pDb;
++
++ v = sqliteGetVdbe(pParse);
++ sqliteVdbeAddOp(v, OP_Halt, 0, 0);
++ if( pParse->explain ) return;
++ db = pParse->db;
++ for(i=0; i<db->nDb; i++){
++ pDb = &db->aDb[i];
++ if( pDb->pBt==0 || pDb->zName==0 ) continue;
++ if( strlen(pDb->zName)!=pDbname->n ) continue;
++ if( sqliteStrNICmp(pDb->zName, pDbname->z, pDbname->n)==0 ) break;
++ }
++ if( i>=db->nDb ){
++ sqliteErrorMsg(pParse, "no such database: %T", pDbname);
++ return;
++ }
++ if( i<2 ){
++ sqliteErrorMsg(pParse, "cannot detach database %T", pDbname);
++ return;
++ }
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ if( sqliteAuthCheck(pParse,SQLITE_DETACH,db->aDb[i].zName,0,0)!=SQLITE_OK ){
++ return;
++ }
++#endif /* SQLITE_OMIT_AUTHORIZATION */
++ sqliteBtreeClose(pDb->pBt);
++ pDb->pBt = 0;
++ sqliteFree(pDb->zName);
++ sqliteResetInternalSchema(db, i);
++ if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
++ db->nDb--;
++ if( i<db->nDb ){
++ db->aDb[i] = db->aDb[db->nDb];
++ memset(&db->aDb[db->nDb], 0, sizeof(db->aDb[0]));
++ sqliteResetInternalSchema(db, i);
++ }
++}
++
++/*
++** Initialize a DbFixer structure. This routine must be called prior
++** to passing the structure to one of the sqliteFixAAAA() routines below.
++**
++** The return value indicates whether or not fixation is required. TRUE
++** means we do need to fix the database references, FALSE means we do not.
++*/
++int sqliteFixInit(
++ DbFixer *pFix, /* The fixer to be initialized */
++ Parse *pParse, /* Error messages will be written here */
++ int iDb, /* This is the database that must must be used */
++ const char *zType, /* "view", "trigger", or "index" */
++ const Token *pName /* Name of the view, trigger, or index */
++){
++ sqlite *db;
++
++ if( iDb<0 || iDb==1 ) return 0;
++ db = pParse->db;
++ assert( db->nDb>iDb );
++ pFix->pParse = pParse;
++ pFix->zDb = db->aDb[iDb].zName;
++ pFix->zType = zType;
++ pFix->pName = pName;
++ return 1;
++}
++
++/*
++** The following set of routines walk through the parse tree and assign
++** a specific database to all table references where the database name
++** was left unspecified in the original SQL statement. The pFix structure
++** must have been initialized by a prior call to sqliteFixInit().
++**
++** These routines are used to make sure that an index, trigger, or
++** view in one database does not refer to objects in a different database.
++** (Exception: indices, triggers, and views in the TEMP database are
++** allowed to refer to anything.) If a reference is explicitly made
++** to an object in a different database, an error message is added to
++** pParse->zErrMsg and these routines return non-zero. If everything
++** checks out, these routines return 0.
++*/
++int sqliteFixSrcList(
++ DbFixer *pFix, /* Context of the fixation */
++ SrcList *pList /* The Source list to check and modify */
++){
++ int i;
++ const char *zDb;
++
++ if( pList==0 ) return 0;
++ zDb = pFix->zDb;
++ for(i=0; i<pList->nSrc; i++){
++ if( pList->a[i].zDatabase==0 ){
++ pList->a[i].zDatabase = sqliteStrDup(zDb);
++ }else if( sqliteStrICmp(pList->a[i].zDatabase,zDb)!=0 ){
++ sqliteErrorMsg(pFix->pParse,
++ "%s %z cannot reference objects in database %s",
++ pFix->zType, sqliteStrNDup(pFix->pName->z, pFix->pName->n),
++ pList->a[i].zDatabase);
++ return 1;
++ }
++ if( sqliteFixSelect(pFix, pList->a[i].pSelect) ) return 1;
++ if( sqliteFixExpr(pFix, pList->a[i].pOn) ) return 1;
++ }
++ return 0;
++}
++int sqliteFixSelect(
++ DbFixer *pFix, /* Context of the fixation */
++ Select *pSelect /* The SELECT statement to be fixed to one database */
++){
++ while( pSelect ){
++ if( sqliteFixExprList(pFix, pSelect->pEList) ){
++ return 1;
++ }
++ if( sqliteFixSrcList(pFix, pSelect->pSrc) ){
++ return 1;
++ }
++ if( sqliteFixExpr(pFix, pSelect->pWhere) ){
++ return 1;
++ }
++ if( sqliteFixExpr(pFix, pSelect->pHaving) ){
++ return 1;
++ }
++ pSelect = pSelect->pPrior;
++ }
++ return 0;
++}
++int sqliteFixExpr(
++ DbFixer *pFix, /* Context of the fixation */
++ Expr *pExpr /* The expression to be fixed to one database */
++){
++ while( pExpr ){
++ if( sqliteFixSelect(pFix, pExpr->pSelect) ){
++ return 1;
++ }
++ if( sqliteFixExprList(pFix, pExpr->pList) ){
++ return 1;
++ }
++ if( sqliteFixExpr(pFix, pExpr->pRight) ){
++ return 1;
++ }
++ pExpr = pExpr->pLeft;
++ }
++ return 0;
++}
++int sqliteFixExprList(
++ DbFixer *pFix, /* Context of the fixation */
++ ExprList *pList /* The expression to be fixed to one database */
++){
++ int i;
++ if( pList==0 ) return 0;
++ for(i=0; i<pList->nExpr; i++){
++ if( sqliteFixExpr(pFix, pList->a[i].pExpr) ){
++ return 1;
++ }
++ }
++ return 0;
++}
++int sqliteFixTriggerStep(
++ DbFixer *pFix, /* Context of the fixation */
++ TriggerStep *pStep /* The trigger step be fixed to one database */
++){
++ while( pStep ){
++ if( sqliteFixSelect(pFix, pStep->pSelect) ){
++ return 1;
++ }
++ if( sqliteFixExpr(pFix, pStep->pWhere) ){
++ return 1;
++ }
++ if( sqliteFixExprList(pFix, pStep->pExprList) ){
++ return 1;
++ }
++ pStep = pStep->pNext;
++ }
++ return 0;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/auth.c
+@@ -0,0 +1,219 @@
++/*
++** 2003 January 11
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains code used to implement the sqlite_set_authorizer()
++** API. This facility is an optional feature of the library. Embedded
++** systems that do not need this facility may omit it by recompiling
++** the library with -DSQLITE_OMIT_AUTHORIZATION=1
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++
++/*
++** All of the code in this file may be omitted by defining a single
++** macro.
++*/
++#ifndef SQLITE_OMIT_AUTHORIZATION
++
++/*
++** Set or clear the access authorization function.
++**
++** The access authorization function is be called during the compilation
++** phase to verify that the user has read and/or write access permission on
++** various fields of the database. The first argument to the auth function
++** is a copy of the 3rd argument to this routine. The second argument
++** to the auth function is one of these constants:
++**
++** SQLITE_COPY
++** SQLITE_CREATE_INDEX
++** SQLITE_CREATE_TABLE
++** SQLITE_CREATE_TEMP_INDEX
++** SQLITE_CREATE_TEMP_TABLE
++** SQLITE_CREATE_TEMP_TRIGGER
++** SQLITE_CREATE_TEMP_VIEW
++** SQLITE_CREATE_TRIGGER
++** SQLITE_CREATE_VIEW
++** SQLITE_DELETE
++** SQLITE_DROP_INDEX
++** SQLITE_DROP_TABLE
++** SQLITE_DROP_TEMP_INDEX
++** SQLITE_DROP_TEMP_TABLE
++** SQLITE_DROP_TEMP_TRIGGER
++** SQLITE_DROP_TEMP_VIEW
++** SQLITE_DROP_TRIGGER
++** SQLITE_DROP_VIEW
++** SQLITE_INSERT
++** SQLITE_PRAGMA
++** SQLITE_READ
++** SQLITE_SELECT
++** SQLITE_TRANSACTION
++** SQLITE_UPDATE
++**
++** The third and fourth arguments to the auth function are the name of
++** the table and the column that are being accessed. The auth function
++** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If
++** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY
++** means that the SQL statement will never-run - the sqlite_exec() call
++** will return with an error. SQLITE_IGNORE means that the SQL statement
++** should run but attempts to read the specified column will return NULL
++** and attempts to write the column will be ignored.
++**
++** Setting the auth function to NULL disables this hook. The default
++** setting of the auth function is NULL.
++*/
++int sqlite_set_authorizer(
++ sqlite *db,
++ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
++ void *pArg
++){
++ db->xAuth = xAuth;
++ db->pAuthArg = pArg;
++ return SQLITE_OK;
++}
++
++/*
++** Write an error message into pParse->zErrMsg that explains that the
++** user-supplied authorization function returned an illegal value.
++*/
++static void sqliteAuthBadReturnCode(Parse *pParse, int rc){
++ sqliteErrorMsg(pParse, "illegal return value (%d) from the "
++ "authorization function - should be SQLITE_OK, SQLITE_IGNORE, "
++ "or SQLITE_DENY", rc);
++ pParse->rc = SQLITE_MISUSE;
++}
++
++/*
++** The pExpr should be a TK_COLUMN expression. The table referred to
++** is in pTabList or else it is the NEW or OLD table of a trigger.
++** Check to see if it is OK to read this particular column.
++**
++** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN
++** instruction into a TK_NULL. If the auth function returns SQLITE_DENY,
++** then generate an error.
++*/
++void sqliteAuthRead(
++ Parse *pParse, /* The parser context */
++ Expr *pExpr, /* The expression to check authorization on */
++ SrcList *pTabList /* All table that pExpr might refer to */
++){
++ sqlite *db = pParse->db;
++ int rc;
++ Table *pTab; /* The table being read */
++ const char *zCol; /* Name of the column of the table */
++ int iSrc; /* Index in pTabList->a[] of table being read */
++ const char *zDBase; /* Name of database being accessed */
++ TriggerStack *pStack; /* The stack of current triggers */
++
++ if( db->xAuth==0 ) return;
++ assert( pExpr->op==TK_COLUMN );
++ for(iSrc=0; iSrc<pTabList->nSrc; iSrc++){
++ if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break;
++ }
++ if( iSrc>=0 && iSrc<pTabList->nSrc ){
++ pTab = pTabList->a[iSrc].pTab;
++ }else if( (pStack = pParse->trigStack)!=0 ){
++ /* This must be an attempt to read the NEW or OLD pseudo-tables
++ ** of a trigger.
++ */
++ assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx );
++ pTab = pStack->pTab;
++ }else{
++ return;
++ }
++ if( pTab==0 ) return;
++ if( pExpr->iColumn>=0 ){
++ assert( pExpr->iColumn<pTab->nCol );
++ zCol = pTab->aCol[pExpr->iColumn].zName;
++ }else if( pTab->iPKey>=0 ){
++ assert( pTab->iPKey<pTab->nCol );
++ zCol = pTab->aCol[pTab->iPKey].zName;
++ }else{
++ zCol = "ROWID";
++ }
++ assert( pExpr->iDb<db->nDb );
++ zDBase = db->aDb[pExpr->iDb].zName;
++ rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase,
++ pParse->zAuthContext);
++ if( rc==SQLITE_IGNORE ){
++ pExpr->op = TK_NULL;
++ }else if( rc==SQLITE_DENY ){
++ if( db->nDb>2 || pExpr->iDb!=0 ){
++ sqliteErrorMsg(pParse, "access to %s.%s.%s is prohibited",
++ zDBase, pTab->zName, zCol);
++ }else{
++ sqliteErrorMsg(pParse, "access to %s.%s is prohibited", pTab->zName,zCol);
++ }
++ pParse->rc = SQLITE_AUTH;
++ }else if( rc!=SQLITE_OK ){
++ sqliteAuthBadReturnCode(pParse, rc);
++ }
++}
++
++/*
++** Do an authorization check using the code and arguments given. Return
++** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY
++** is returned, then the error count and error message in pParse are
++** modified appropriately.
++*/
++int sqliteAuthCheck(
++ Parse *pParse,
++ int code,
++ const char *zArg1,
++ const char *zArg2,
++ const char *zArg3
++){
++ sqlite *db = pParse->db;
++ int rc;
++
++ if( db->init.busy || db->xAuth==0 ){
++ return SQLITE_OK;
++ }
++ rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext);
++ if( rc==SQLITE_DENY ){
++ sqliteErrorMsg(pParse, "not authorized");
++ pParse->rc = SQLITE_AUTH;
++ }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){
++ rc = SQLITE_DENY;
++ sqliteAuthBadReturnCode(pParse, rc);
++ }
++ return rc;
++}
++
++/*
++** Push an authorization context. After this routine is called, the
++** zArg3 argument to authorization callbacks will be zContext until
++** popped. Or if pParse==0, this routine is a no-op.
++*/
++void sqliteAuthContextPush(
++ Parse *pParse,
++ AuthContext *pContext,
++ const char *zContext
++){
++ pContext->pParse = pParse;
++ if( pParse ){
++ pContext->zAuthContext = pParse->zAuthContext;
++ pParse->zAuthContext = zContext;
++ }
++}
++
++/*
++** Pop an authorization context that was previously pushed
++** by sqliteAuthContextPush
++*/
++void sqliteAuthContextPop(AuthContext *pContext){
++ if( pContext->pParse ){
++ pContext->pParse->zAuthContext = pContext->zAuthContext;
++ pContext->pParse = 0;
++ }
++}
++
++#endif /* SQLITE_OMIT_AUTHORIZATION */
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/btree.c
+@@ -0,0 +1,3584 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** $Id$
++**
++** This file implements a external (disk-based) database using BTrees.
++** For a detailed discussion of BTrees, refer to
++**
++** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
++** "Sorting And Searching", pages 473-480. Addison-Wesley
++** Publishing Company, Reading, Massachusetts.
++**
++** The basic idea is that each page of the file contains N database
++** entries and N+1 pointers to subpages.
++**
++** ----------------------------------------------------------------
++** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
++** ----------------------------------------------------------------
++**
++** All of the keys on the page that Ptr(0) points to have values less
++** than Key(0). All of the keys on page Ptr(1) and its subpages have
++** values greater than Key(0) and less than Key(1). All of the keys
++** on Ptr(N+1) and its subpages have values greater than Key(N). And
++** so forth.
++**
++** Finding a particular key requires reading O(log(M)) pages from the
++** disk where M is the number of entries in the tree.
++**
++** In this implementation, a single file can hold one or more separate
++** BTrees. Each BTree is identified by the index of its root page. The
++** key and data for any entry are combined to form the "payload". Up to
++** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
++** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
++** then surplus bytes are stored on overflow pages. The payload for an
++** entry and the preceding pointer are combined to form a "Cell". Each
++** page has a small header which contains the Ptr(N+1) pointer.
++**
++** The first page of the file contains a magic string used to verify that
++** the file really is a valid BTree database, a pointer to a list of unused
++** pages in the file, and some meta information. The root of the first
++** BTree begins on page 2 of the file. (Pages are numbered beginning with
++** 1, not 0.) Thus a minimum database contains 2 pages.
++*/
++#include "sqliteInt.h"
++#include "pager.h"
++#include "btree.h"
++#include <assert.h>
++
++/* Forward declarations */
++static BtOps sqliteBtreeOps;
++static BtCursorOps sqliteBtreeCursorOps;
++
++/*
++** Macros used for byteswapping. B is a pointer to the Btree
++** structure. This is needed to access the Btree.needSwab boolean
++** in order to tell if byte swapping is needed or not.
++** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer.
++** SWAB32 byteswaps a 32-bit integer.
++*/
++#define SWAB16(B,X) ((B)->needSwab? swab16((u16)X) : ((u16)X))
++#define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X))
++#define SWAB_ADD(B,X,A) \
++ if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); }
++
++/*
++** The following global variable - available only if SQLITE_TEST is
++** defined - is used to determine whether new databases are created in
++** native byte order or in non-native byte order. Non-native byte order
++** databases are created for testing purposes only. Under normal operation,
++** only native byte-order databases should be created, but we should be
++** able to read or write existing databases regardless of the byteorder.
++*/
++#ifdef SQLITE_TEST
++int btree_native_byte_order = 1;
++#else
++# define btree_native_byte_order 1
++#endif
++
++/*
++** Forward declarations of structures used only in this file.
++*/
++typedef struct PageOne PageOne;
++typedef struct MemPage MemPage;
++typedef struct PageHdr PageHdr;
++typedef struct Cell Cell;
++typedef struct CellHdr CellHdr;
++typedef struct FreeBlk FreeBlk;
++typedef struct OverflowPage OverflowPage;
++typedef struct FreelistInfo FreelistInfo;
++
++/*
++** All structures on a database page are aligned to 4-byte boundries.
++** This routine rounds up a number of bytes to the next multiple of 4.
++**
++** This might need to change for computer architectures that require
++** and 8-byte alignment boundry for structures.
++*/
++#define ROUNDUP(X) ((X+3) & ~3)
++
++/*
++** This is a magic string that appears at the beginning of every
++** SQLite database in order to identify the file as a real database.
++*/
++static const char zMagicHeader[] =
++ "** This file contains an SQLite 2.1 database **";
++#define MAGIC_SIZE (sizeof(zMagicHeader))
++
++/*
++** This is a magic integer also used to test the integrity of the database
++** file. This integer is used in addition to the string above so that
++** if the file is written on a little-endian architecture and read
++** on a big-endian architectures (or vice versa) we can detect the
++** problem.
++**
++** The number used was obtained at random and has no special
++** significance other than the fact that it represents a different
++** integer on little-endian and big-endian machines.
++*/
++#define MAGIC 0xdae37528
++
++/*
++** The first page of the database file contains a magic header string
++** to identify the file as an SQLite database file. It also contains
++** a pointer to the first free page of the file. Page 2 contains the
++** root of the principle BTree. The file might contain other BTrees
++** rooted on pages above 2.
++**
++** The first page also contains SQLITE_N_BTREE_META integers that
++** can be used by higher-level routines.
++**
++** Remember that pages are numbered beginning with 1. (See pager.c
++** for additional information.) Page 0 does not exist and a page
++** number of 0 is used to mean "no such page".
++*/
++struct PageOne {
++ char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
++ int iMagic; /* Integer to verify correct byte order */
++ Pgno freeList; /* First free page in a list of all free pages */
++ int nFree; /* Number of pages on the free list */
++ int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
++};
++
++/*
++** Each database page has a header that is an instance of this
++** structure.
++**
++** PageHdr.firstFree is 0 if there is no free space on this page.
++** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
++** FreeBlk structure that describes the first block of free space.
++** All free space is defined by a linked list of FreeBlk structures.
++**
++** Data is stored in a linked list of Cell structures. PageHdr.firstCell
++** is the index into MemPage.u.aDisk[] of the first cell on the page. The
++** Cells are kept in sorted order.
++**
++** A Cell contains all information about a database entry and a pointer
++** to a child page that contains other entries less than itself. In
++** other words, the i-th Cell contains both Ptr(i) and Key(i). The
++** right-most pointer of the page is contained in PageHdr.rightChild.
++*/
++struct PageHdr {
++ Pgno rightChild; /* Child page that comes after all cells on this page */
++ u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
++ u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
++};
++
++/*
++** Entries on a page of the database are called "Cells". Each Cell
++** has a header and data. This structure defines the header. The
++** key and data (collectively the "payload") follow this header on
++** the database page.
++**
++** A definition of the complete Cell structure is given below. The
++** header for the cell must be defined first in order to do some
++** of the sizing #defines that follow.
++*/
++struct CellHdr {
++ Pgno leftChild; /* Child page that comes before this cell */
++ u16 nKey; /* Number of bytes in the key */
++ u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
++ u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */
++ u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */
++ u16 nData; /* Number of bytes of data */
++};
++
++/*
++** The key and data size are split into a lower 16-bit segment and an
++** upper 8-bit segment in order to pack them together into a smaller
++** space. The following macros reassembly a key or data size back
++** into an integer.
++*/
++#define NKEY(b,h) (SWAB16(b,h.nKey) + h.nKeyHi*65536)
++#define NDATA(b,h) (SWAB16(b,h.nData) + h.nDataHi*65536)
++
++/*
++** The minimum size of a complete Cell. The Cell must contain a header
++** and at least 4 bytes of payload.
++*/
++#define MIN_CELL_SIZE (sizeof(CellHdr)+4)
++
++/*
++** The maximum number of database entries that can be held in a single
++** page of the database.
++*/
++#define MX_CELL ((SQLITE_USABLE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
++
++/*
++** The amount of usable space on a single page of the BTree. This is the
++** page size minus the overhead of the page header.
++*/
++#define USABLE_SPACE (SQLITE_USABLE_SIZE - sizeof(PageHdr))
++
++/*
++** The maximum amount of payload (in bytes) that can be stored locally for
++** a database entry. If the entry contains more data than this, the
++** extra goes onto overflow pages.
++**
++** This number is chosen so that at least 4 cells will fit on every page.
++*/
++#define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
++
++/*
++** Data on a database page is stored as a linked list of Cell structures.
++** Both the key and the data are stored in aPayload[]. The key always comes
++** first. The aPayload[] field grows as necessary to hold the key and data,
++** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
++** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
++** page number of the first overflow page.
++**
++** Though this structure is fixed in size, the Cell on the database
++** page varies in size. Every cell has a CellHdr and at least 4 bytes
++** of payload space. Additional payload bytes (up to the maximum of
++** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
++** needed.
++*/
++struct Cell {
++ CellHdr h; /* The cell header */
++ char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
++ Pgno ovfl; /* The first overflow page */
++};
++
++/*
++** Free space on a page is remembered using a linked list of the FreeBlk
++** structures. Space on a database page is allocated in increments of
++** at least 4 bytes and is always aligned to a 4-byte boundry. The
++** linked list of FreeBlks is always kept in order by address.
++*/
++struct FreeBlk {
++ u16 iSize; /* Number of bytes in this block of free space */
++ u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
++};
++
++/*
++** The number of bytes of payload that will fit on a single overflow page.
++*/
++#define OVERFLOW_SIZE (SQLITE_USABLE_SIZE-sizeof(Pgno))
++
++/*
++** When the key and data for a single entry in the BTree will not fit in
++** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
++** then all extra bytes are written to a linked list of overflow pages.
++** Each overflow page is an instance of the following structure.
++**
++** Unused pages in the database are also represented by instances of
++** the OverflowPage structure. The PageOne.freeList field is the
++** page number of the first page in a linked list of unused database
++** pages.
++*/
++struct OverflowPage {
++ Pgno iNext;
++ char aPayload[OVERFLOW_SIZE];
++};
++
++/*
++** The PageOne.freeList field points to a linked list of overflow pages
++** hold information about free pages. The aPayload section of each
++** overflow page contains an instance of the following structure. The
++** aFree[] array holds the page number of nFree unused pages in the disk
++** file.
++*/
++struct FreelistInfo {
++ int nFree;
++ Pgno aFree[(OVERFLOW_SIZE-sizeof(int))/sizeof(Pgno)];
++};
++
++/*
++** For every page in the database file, an instance of the following structure
++** is stored in memory. The u.aDisk[] array contains the raw bits read from
++** the disk. The rest is auxiliary information held in memory only. The
++** auxiliary info is only valid for regular database pages - it is not
++** used for overflow pages and pages on the freelist.
++**
++** Of particular interest in the auxiliary info is the apCell[] entry. Each
++** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
++** put in this array so that they can be accessed in constant time, rather
++** than in linear time which would be needed if we had to walk the linked
++** list on every access.
++**
++** Note that apCell[] contains enough space to hold up to two more Cells
++** than can possibly fit on one page. In the steady state, every apCell[]
++** points to memory inside u.aDisk[]. But in the middle of an insert
++** operation, some apCell[] entries may temporarily point to data space
++** outside of u.aDisk[]. This is a transient situation that is quickly
++** resolved. But while it is happening, it is possible for a database
++** page to hold as many as two more cells than it might otherwise hold.
++** The extra two entries in apCell[] are an allowance for this situation.
++**
++** The pParent field points back to the parent page. This allows us to
++** walk up the BTree from any leaf to the root. Care must be taken to
++** unref() the parent page pointer when this page is no longer referenced.
++** The pageDestructor() routine handles that chore.
++*/
++struct MemPage {
++ union u_page_data {
++ char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
++ PageHdr hdr; /* Overlay page header */
++ } u;
++ u8 isInit; /* True if auxiliary data is initialized */
++ u8 idxShift; /* True if apCell[] indices have changed */
++ u8 isOverfull; /* Some apCell[] points outside u.aDisk[] */
++ MemPage *pParent; /* The parent of this page. NULL for root */
++ int idxParent; /* Index in pParent->apCell[] of this node */
++ int nFree; /* Number of free bytes in u.aDisk[] */
++ int nCell; /* Number of entries on this page */
++ Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
++};
++
++/*
++** The in-memory image of a disk page has the auxiliary information appended
++** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
++** that extra information.
++*/
++#define EXTRA_SIZE (sizeof(MemPage)-sizeof(union u_page_data))
++
++/*
++** Everything we need to know about an open database
++*/
++struct Btree {
++ BtOps *pOps; /* Function table */
++ Pager *pPager; /* The page cache */
++ BtCursor *pCursor; /* A list of all open cursors */
++ PageOne *page1; /* First page of the database */
++ u8 inTrans; /* True if a transaction is in progress */
++ u8 inCkpt; /* True if there is a checkpoint on the transaction */
++ u8 readOnly; /* True if the underlying file is readonly */
++ u8 needSwab; /* Need to byte-swapping */
++};
++typedef Btree Bt;
++
++/*
++** A cursor is a pointer to a particular entry in the BTree.
++** The entry is identified by its MemPage and the index in
++** MemPage.apCell[] of the entry.
++*/
++struct BtCursor {
++ BtCursorOps *pOps; /* Function table */
++ Btree *pBt; /* The Btree to which this cursor belongs */
++ BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
++ BtCursor *pShared; /* Loop of cursors with the same root page */
++ Pgno pgnoRoot; /* The root page of this tree */
++ MemPage *pPage; /* Page that contains the entry */
++ int idx; /* Index of the entry in pPage->apCell[] */
++ u8 wrFlag; /* True if writable */
++ u8 eSkip; /* Determines if next step operation is a no-op */
++ u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
++};
++
++/*
++** Legal values for BtCursor.eSkip.
++*/
++#define SKIP_NONE 0 /* Always step the cursor */
++#define SKIP_NEXT 1 /* The next sqliteBtreeNext() is a no-op */
++#define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */
++#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
++
++/* Forward declarations */
++static int fileBtreeCloseCursor(BtCursor *pCur);
++
++/*
++** Routines for byte swapping.
++*/
++u16 swab16(u16 x){
++ return ((x & 0xff)<<8) | ((x>>8)&0xff);
++}
++u32 swab32(u32 x){
++ return ((x & 0xff)<<24) | ((x & 0xff00)<<8) |
++ ((x>>8) & 0xff00) | ((x>>24)&0xff);
++}
++
++/*
++** Compute the total number of bytes that a Cell needs on the main
++** database page. The number returned includes the Cell header,
++** local payload storage, and the pointer to overflow pages (if
++** applicable). Additional space allocated on overflow pages
++** is NOT included in the value returned from this routine.
++*/
++static int cellSize(Btree *pBt, Cell *pCell){
++ int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
++ if( n>MX_LOCAL_PAYLOAD ){
++ n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
++ }else{
++ n = ROUNDUP(n);
++ }
++ n += sizeof(CellHdr);
++ return n;
++}
++
++/*
++** Defragment the page given. All Cells are moved to the
++** beginning of the page and all free space is collected
++** into one big FreeBlk at the end of the page.
++*/
++static void defragmentPage(Btree *pBt, MemPage *pPage){
++ int pc, i, n;
++ FreeBlk *pFBlk;
++ char newPage[SQLITE_USABLE_SIZE];
++
++ assert( sqlitepager_iswriteable(pPage) );
++ assert( pPage->isInit );
++ pc = sizeof(PageHdr);
++ pPage->u.hdr.firstCell = SWAB16(pBt, pc);
++ memcpy(newPage, pPage->u.aDisk, pc);
++ for(i=0; i<pPage->nCell; i++){
++ Cell *pCell = pPage->apCell[i];
++
++ /* This routine should never be called on an overfull page. The
++ ** following asserts verify that constraint. */
++ assert( Addr(pCell) > Addr(pPage) );
++ assert( Addr(pCell) < Addr(pPage) + SQLITE_USABLE_SIZE );
++
++ n = cellSize(pBt, pCell);
++ pCell->h.iNext = SWAB16(pBt, pc + n);
++ memcpy(&newPage[pc], pCell, n);
++ pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
++ pc += n;
++ }
++ assert( pPage->nFree==SQLITE_USABLE_SIZE-pc );
++ memcpy(pPage->u.aDisk, newPage, pc);
++ if( pPage->nCell>0 ){
++ pPage->apCell[pPage->nCell-1]->h.iNext = 0;
++ }
++ pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
++ pFBlk->iSize = SWAB16(pBt, SQLITE_USABLE_SIZE - pc);
++ pFBlk->iNext = 0;
++ pPage->u.hdr.firstFree = SWAB16(pBt, pc);
++ memset(&pFBlk[1], 0, SQLITE_USABLE_SIZE - pc - sizeof(FreeBlk));
++}
++
++/*
++** Allocate nByte bytes of space on a page. nByte must be a
++** multiple of 4.
++**
++** Return the index into pPage->u.aDisk[] of the first byte of
++** the new allocation. Or return 0 if there is not enough free
++** space on the page to satisfy the allocation request.
++**
++** If the page contains nBytes of free space but does not contain
++** nBytes of contiguous free space, then this routine automatically
++** calls defragementPage() to consolidate all free space before
++** allocating the new chunk.
++*/
++static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){
++ FreeBlk *p;
++ u16 *pIdx;
++ int start;
++ int iSize;
++#ifndef NDEBUG
++ int cnt = 0;
++#endif
++
++ assert( sqlitepager_iswriteable(pPage) );
++ assert( nByte==ROUNDUP(nByte) );
++ assert( pPage->isInit );
++ if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
++ pIdx = &pPage->u.hdr.firstFree;
++ p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
++ while( (iSize = SWAB16(pBt, p->iSize))<nByte ){
++ assert( cnt++ < SQLITE_USABLE_SIZE/4 );
++ if( p->iNext==0 ){
++ defragmentPage(pBt, pPage);
++ pIdx = &pPage->u.hdr.firstFree;
++ }else{
++ pIdx = &p->iNext;
++ }
++ p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
++ }
++ if( iSize==nByte ){
++ start = SWAB16(pBt, *pIdx);
++ *pIdx = p->iNext;
++ }else{
++ FreeBlk *pNew;
++ start = SWAB16(pBt, *pIdx);
++ pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
++ pNew->iNext = p->iNext;
++ pNew->iSize = SWAB16(pBt, iSize - nByte);
++ *pIdx = SWAB16(pBt, start + nByte);
++ }
++ pPage->nFree -= nByte;
++ return start;
++}
++
++/*
++** Return a section of the MemPage.u.aDisk[] to the freelist.
++** The first byte of the new free block is pPage->u.aDisk[start]
++** and the size of the block is "size" bytes. Size must be
++** a multiple of 4.
++**
++** Most of the effort here is involved in coalesing adjacent
++** free blocks into a single big free block.
++*/
++static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
++ int end = start + size;
++ u16 *pIdx, idx;
++ FreeBlk *pFBlk;
++ FreeBlk *pNew;
++ FreeBlk *pNext;
++ int iSize;
++
++ assert( sqlitepager_iswriteable(pPage) );
++ assert( size == ROUNDUP(size) );
++ assert( start == ROUNDUP(start) );
++ assert( pPage->isInit );
++ pIdx = &pPage->u.hdr.firstFree;
++ idx = SWAB16(pBt, *pIdx);
++ while( idx!=0 && idx<start ){
++ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
++ iSize = SWAB16(pBt, pFBlk->iSize);
++ if( idx + iSize == start ){
++ pFBlk->iSize = SWAB16(pBt, iSize + size);
++ if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
++ pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
++ if( pBt->needSwab ){
++ pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size);
++ }else{
++ pFBlk->iSize += pNext->iSize;
++ }
++ pFBlk->iNext = pNext->iNext;
++ }
++ pPage->nFree += size;
++ return;
++ }
++ pIdx = &pFBlk->iNext;
++ idx = SWAB16(pBt, *pIdx);
++ }
++ pNew = (FreeBlk*)&pPage->u.aDisk[start];
++ if( idx != end ){
++ pNew->iSize = SWAB16(pBt, size);
++ pNew->iNext = SWAB16(pBt, idx);
++ }else{
++ pNext = (FreeBlk*)&pPage->u.aDisk[idx];
++ pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize));
++ pNew->iNext = pNext->iNext;
++ }
++ *pIdx = SWAB16(pBt, start);
++ pPage->nFree += size;
++}
++
++/*
++** Initialize the auxiliary information for a disk block.
++**
++** The pParent parameter must be a pointer to the MemPage which
++** is the parent of the page being initialized. The root of the
++** BTree (usually page 2) has no parent and so for that page,
++** pParent==NULL.
++**
++** Return SQLITE_OK on success. If we see that the page does
++** not contain a well-formed database page, then return
++** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
++** guarantee that the page is well-formed. It only shows that
++** we failed to detect any corruption.
++*/
++static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
++ int idx; /* An index into pPage->u.aDisk[] */
++ Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
++ FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
++ int sz; /* The size of a Cell in bytes */
++ int freeSpace; /* Amount of free space on the page */
++
++ if( pPage->pParent ){
++ assert( pPage->pParent==pParent );
++ return SQLITE_OK;
++ }
++ if( pParent ){
++ pPage->pParent = pParent;
++ sqlitepager_ref(pParent);
++ }
++ if( pPage->isInit ) return SQLITE_OK;
++ pPage->isInit = 1;
++ pPage->nCell = 0;
++ freeSpace = USABLE_SPACE;
++ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
++ while( idx!=0 ){
++ if( idx>SQLITE_USABLE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
++ if( idx<sizeof(PageHdr) ) goto page_format_error;
++ if( idx!=ROUNDUP(idx) ) goto page_format_error;
++ pCell = (Cell*)&pPage->u.aDisk[idx];
++ sz = cellSize(pBt, pCell);
++ if( idx+sz > SQLITE_USABLE_SIZE ) goto page_format_error;
++ freeSpace -= sz;
++ pPage->apCell[pPage->nCell++] = pCell;
++ idx = SWAB16(pBt, pCell->h.iNext);
++ }
++ pPage->nFree = 0;
++ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
++ while( idx!=0 ){
++ int iNext;
++ if( idx>SQLITE_USABLE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
++ if( idx<sizeof(PageHdr) ) goto page_format_error;
++ pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
++ pPage->nFree += SWAB16(pBt, pFBlk->iSize);
++ iNext = SWAB16(pBt, pFBlk->iNext);
++ if( iNext>0 && iNext <= idx ) goto page_format_error;
++ idx = iNext;
++ }
++ if( pPage->nCell==0 && pPage->nFree==0 ){
++ /* As a special case, an uninitialized root page appears to be
++ ** an empty database */
++ return SQLITE_OK;
++ }
++ if( pPage->nFree!=freeSpace ) goto page_format_error;
++ return SQLITE_OK;
++
++page_format_error:
++ return SQLITE_CORRUPT;
++}
++
++/*
++** Set up a raw page so that it looks like a database page holding
++** no entries.
++*/
++static void zeroPage(Btree *pBt, MemPage *pPage){
++ PageHdr *pHdr;
++ FreeBlk *pFBlk;
++ assert( sqlitepager_iswriteable(pPage) );
++ memset(pPage, 0, SQLITE_USABLE_SIZE);
++ pHdr = &pPage->u.hdr;
++ pHdr->firstCell = 0;
++ pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr));
++ pFBlk = (FreeBlk*)&pHdr[1];
++ pFBlk->iNext = 0;
++ pPage->nFree = SQLITE_USABLE_SIZE - sizeof(*pHdr);
++ pFBlk->iSize = SWAB16(pBt, pPage->nFree);
++ pPage->nCell = 0;
++ pPage->isOverfull = 0;
++}
++
++/*
++** This routine is called when the reference count for a page
++** reaches zero. We need to unref the pParent pointer when that
++** happens.
++*/
++static void pageDestructor(void *pData){
++ MemPage *pPage = (MemPage*)pData;
++ if( pPage->pParent ){
++ MemPage *pParent = pPage->pParent;
++ pPage->pParent = 0;
++ sqlitepager_unref(pParent);
++ }
++}
++
++/*
++** Open a new database.
++**
++** Actually, this routine just sets up the internal data structures
++** for accessing the database. We do not open the database file
++** until the first page is loaded.
++**
++** zFilename is the name of the database file. If zFilename is NULL
++** a new database with a random name is created. This randomly named
++** database file will be deleted when sqliteBtreeClose() is called.
++*/
++int sqliteBtreeOpen(
++ const char *zFilename, /* Name of the file containing the BTree database */
++ int omitJournal, /* if TRUE then do not journal this file */
++ int nCache, /* How many pages in the page cache */
++ Btree **ppBtree /* Pointer to new Btree object written here */
++){
++ Btree *pBt;
++ int rc;
++
++ /*
++ ** The following asserts make sure that structures used by the btree are
++ ** the right size. This is to guard against size changes that result
++ ** when compiling on a different architecture.
++ */
++ assert( sizeof(u32)==4 );
++ assert( sizeof(u16)==2 );
++ assert( sizeof(Pgno)==4 );
++ assert( sizeof(PageHdr)==8 );
++ assert( sizeof(CellHdr)==12 );
++ assert( sizeof(FreeBlk)==4 );
++ assert( sizeof(OverflowPage)==SQLITE_USABLE_SIZE );
++ assert( sizeof(FreelistInfo)==OVERFLOW_SIZE );
++ assert( sizeof(ptr)==sizeof(char*) );
++ assert( sizeof(uptr)==sizeof(ptr) );
++
++ pBt = sqliteMalloc( sizeof(*pBt) );
++ if( pBt==0 ){
++ *ppBtree = 0;
++ return SQLITE_NOMEM;
++ }
++ if( nCache<10 ) nCache = 10;
++ rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
++ !omitJournal);
++ if( rc!=SQLITE_OK ){
++ if( pBt->pPager ) sqlitepager_close(pBt->pPager);
++ sqliteFree(pBt);
++ *ppBtree = 0;
++ return rc;
++ }
++ sqlitepager_set_destructor(pBt->pPager, pageDestructor);
++ pBt->pCursor = 0;
++ pBt->page1 = 0;
++ pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
++ pBt->pOps = &sqliteBtreeOps;
++ *ppBtree = pBt;
++ return SQLITE_OK;
++}
++
++/*
++** Close an open database and invalidate all cursors.
++*/
++static int fileBtreeClose(Btree *pBt){
++ while( pBt->pCursor ){
++ fileBtreeCloseCursor(pBt->pCursor);
++ }
++ sqlitepager_close(pBt->pPager);
++ sqliteFree(pBt);
++ return SQLITE_OK;
++}
++
++/*
++** Change the limit on the number of pages allowed in the cache.
++**
++** The maximum number of cache pages is set to the absolute
++** value of mxPage. If mxPage is negative, the pager will
++** operate asynchronously - it will not stop to do fsync()s
++** to insure data is written to the disk surface before
++** continuing. Transactions still work if synchronous is off,
++** and the database cannot be corrupted if this program
++** crashes. But if the operating system crashes or there is
++** an abrupt power failure when synchronous is off, the database
++** could be left in an inconsistent and unrecoverable state.
++** Synchronous is on by default so database corruption is not
++** normally a worry.
++*/
++static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){
++ sqlitepager_set_cachesize(pBt->pPager, mxPage);
++ return SQLITE_OK;
++}
++
++/*
++** Change the way data is synced to disk in order to increase or decrease
++** how well the database resists damage due to OS crashes and power
++** failures. Level 1 is the same as asynchronous (no syncs() occur and
++** there is a high probability of damage) Level 2 is the default. There
++** is a very low but non-zero probability of damage. Level 3 reduces the
++** probability of damage to near zero but with a write performance reduction.
++*/
++static int fileBtreeSetSafetyLevel(Btree *pBt, int level){
++ sqlitepager_set_safety_level(pBt->pPager, level);
++ return SQLITE_OK;
++}
++
++/*
++** Get a reference to page1 of the database file. This will
++** also acquire a readlock on that file.
++**
++** SQLITE_OK is returned on success. If the file is not a
++** well-formed database file, then SQLITE_CORRUPT is returned.
++** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
++** is returned if we run out of memory. SQLITE_PROTOCOL is returned
++** if there is a locking protocol violation.
++*/
++static int lockBtree(Btree *pBt){
++ int rc;
++ if( pBt->page1 ) return SQLITE_OK;
++ rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
++ if( rc!=SQLITE_OK ) return rc;
++
++ /* Do some checking to help insure the file we opened really is
++ ** a valid database file.
++ */
++ if( sqlitepager_pagecount(pBt->pPager)>0 ){
++ PageOne *pP1 = pBt->page1;
++ if( strcmp(pP1->zMagic,zMagicHeader)!=0 ||
++ (pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){
++ rc = SQLITE_NOTADB;
++ goto page1_init_failed;
++ }
++ pBt->needSwab = pP1->iMagic!=MAGIC;
++ }
++ return rc;
++
++page1_init_failed:
++ sqlitepager_unref(pBt->page1);
++ pBt->page1 = 0;
++ return rc;
++}
++
++/*
++** If there are no outstanding cursors and we are not in the middle
++** of a transaction but there is a read lock on the database, then
++** this routine unrefs the first page of the database file which
++** has the effect of releasing the read lock.
++**
++** If there are any outstanding cursors, this routine is a no-op.
++**
++** If there is a transaction in progress, this routine is a no-op.
++*/
++static void unlockBtreeIfUnused(Btree *pBt){
++ if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
++ sqlitepager_unref(pBt->page1);
++ pBt->page1 = 0;
++ pBt->inTrans = 0;
++ pBt->inCkpt = 0;
++ }
++}
++
++/*
++** Create a new database by initializing the first two pages of the
++** file.
++*/
++static int newDatabase(Btree *pBt){
++ MemPage *pRoot;
++ PageOne *pP1;
++ int rc;
++ if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
++ pP1 = pBt->page1;
++ rc = sqlitepager_write(pBt->page1);
++ if( rc ) return rc;
++ rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
++ if( rc ) return rc;
++ rc = sqlitepager_write(pRoot);
++ if( rc ){
++ sqlitepager_unref(pRoot);
++ return rc;
++ }
++ strcpy(pP1->zMagic, zMagicHeader);
++ if( btree_native_byte_order ){
++ pP1->iMagic = MAGIC;
++ pBt->needSwab = 0;
++ }else{
++ pP1->iMagic = swab32(MAGIC);
++ pBt->needSwab = 1;
++ }
++ zeroPage(pBt, pRoot);
++ sqlitepager_unref(pRoot);
++ return SQLITE_OK;
++}
++
++/*
++** Attempt to start a new transaction.
++**
++** A transaction must be started before attempting any changes
++** to the database. None of the following routines will work
++** unless a transaction is started first:
++**
++** sqliteBtreeCreateTable()
++** sqliteBtreeCreateIndex()
++** sqliteBtreeClearTable()
++** sqliteBtreeDropTable()
++** sqliteBtreeInsert()
++** sqliteBtreeDelete()
++** sqliteBtreeUpdateMeta()
++*/
++static int fileBtreeBeginTrans(Btree *pBt){
++ int rc;
++ if( pBt->inTrans ) return SQLITE_ERROR;
++ if( pBt->readOnly ) return SQLITE_READONLY;
++ if( pBt->page1==0 ){
++ rc = lockBtree(pBt);
++ if( rc!=SQLITE_OK ){
++ return rc;
++ }
++ }
++ rc = sqlitepager_begin(pBt->page1);
++ if( rc==SQLITE_OK ){
++ rc = newDatabase(pBt);
++ }
++ if( rc==SQLITE_OK ){
++ pBt->inTrans = 1;
++ pBt->inCkpt = 0;
++ }else{
++ unlockBtreeIfUnused(pBt);
++ }
++ return rc;
++}
++
++/*
++** Commit the transaction currently in progress.
++**
++** This will release the write lock on the database file. If there
++** are no active cursors, it also releases the read lock.
++*/
++static int fileBtreeCommit(Btree *pBt){
++ int rc;
++ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
++ pBt->inTrans = 0;
++ pBt->inCkpt = 0;
++ unlockBtreeIfUnused(pBt);
++ return rc;
++}
++
++/*
++** Rollback the transaction in progress. All cursors will be
++** invalided by this operation. Any attempt to use a cursor
++** that was open at the beginning of this operation will result
++** in an error.
++**
++** This will release the write lock on the database file. If there
++** are no active cursors, it also releases the read lock.
++*/
++static int fileBtreeRollback(Btree *pBt){
++ int rc;
++ BtCursor *pCur;
++ if( pBt->inTrans==0 ) return SQLITE_OK;
++ pBt->inTrans = 0;
++ pBt->inCkpt = 0;
++ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
++ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
++ if( pCur->pPage && pCur->pPage->isInit==0 ){
++ sqlitepager_unref(pCur->pPage);
++ pCur->pPage = 0;
++ }
++ }
++ unlockBtreeIfUnused(pBt);
++ return rc;
++}
++
++/*
++** Set the checkpoint for the current transaction. The checkpoint serves
++** as a sub-transaction that can be rolled back independently of the
++** main transaction. You must start a transaction before starting a
++** checkpoint. The checkpoint is ended automatically if the transaction
++** commits or rolls back.
++**
++** Only one checkpoint may be active at a time. It is an error to try
++** to start a new checkpoint if another checkpoint is already active.
++*/
++static int fileBtreeBeginCkpt(Btree *pBt){
++ int rc;
++ if( !pBt->inTrans || pBt->inCkpt ){
++ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
++ }
++ rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager);
++ pBt->inCkpt = 1;
++ return rc;
++}
++
++
++/*
++** Commit a checkpoint to transaction currently in progress. If no
++** checkpoint is active, this is a no-op.
++*/
++static int fileBtreeCommitCkpt(Btree *pBt){
++ int rc;
++ if( pBt->inCkpt && !pBt->readOnly ){
++ rc = sqlitepager_ckpt_commit(pBt->pPager);
++ }else{
++ rc = SQLITE_OK;
++ }
++ pBt->inCkpt = 0;
++ return rc;
++}
++
++/*
++** Rollback the checkpoint to the current transaction. If there
++** is no active checkpoint or transaction, this routine is a no-op.
++**
++** All cursors will be invalided by this operation. Any attempt
++** to use a cursor that was open at the beginning of this operation
++** will result in an error.
++*/
++static int fileBtreeRollbackCkpt(Btree *pBt){
++ int rc;
++ BtCursor *pCur;
++ if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
++ rc = sqlitepager_ckpt_rollback(pBt->pPager);
++ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
++ if( pCur->pPage && pCur->pPage->isInit==0 ){
++ sqlitepager_unref(pCur->pPage);
++ pCur->pPage = 0;
++ }
++ }
++ pBt->inCkpt = 0;
++ return rc;
++}
++
++/*
++** Create a new cursor for the BTree whose root is on the page
++** iTable. The act of acquiring a cursor gets a read lock on
++** the database file.
++**
++** If wrFlag==0, then the cursor can only be used for reading.
++** If wrFlag==1, then the cursor can be used for reading or for
++** writing if other conditions for writing are also met. These
++** are the conditions that must be met in order for writing to
++** be allowed:
++**
++** 1: The cursor must have been opened with wrFlag==1
++**
++** 2: No other cursors may be open with wrFlag==0 on the same table
++**
++** 3: The database must be writable (not on read-only media)
++**
++** 4: There must be an active transaction.
++**
++** Condition 2 warrants further discussion. If any cursor is opened
++** on a table with wrFlag==0, that prevents all other cursors from
++** writing to that table. This is a kind of "read-lock". When a cursor
++** is opened with wrFlag==0 it is guaranteed that the table will not
++** change as long as the cursor is open. This allows the cursor to
++** do a sequential scan of the table without having to worry about
++** entries being inserted or deleted during the scan. Cursors should
++** be opened with wrFlag==0 only if this read-lock property is needed.
++** That is to say, cursors should be opened with wrFlag==0 only if they
++** intend to use the sqliteBtreeNext() system call. All other cursors
++** should be opened with wrFlag==1 even if they never really intend
++** to write.
++**
++** No checking is done to make sure that page iTable really is the
++** root page of a b-tree. If it is not, then the cursor acquired
++** will not work correctly.
++*/
++static
++int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
++ int rc;
++ BtCursor *pCur, *pRing;
++
++ if( pBt->readOnly && wrFlag ){
++ *ppCur = 0;
++ return SQLITE_READONLY;
++ }
++ if( pBt->page1==0 ){
++ rc = lockBtree(pBt);
++ if( rc!=SQLITE_OK ){
++ *ppCur = 0;
++ return rc;
++ }
++ }
++ pCur = sqliteMalloc( sizeof(*pCur) );
++ if( pCur==0 ){
++ rc = SQLITE_NOMEM;
++ goto create_cursor_exception;
++ }
++ pCur->pgnoRoot = (Pgno)iTable;
++ rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
++ if( rc!=SQLITE_OK ){
++ goto create_cursor_exception;
++ }
++ rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
++ if( rc!=SQLITE_OK ){
++ goto create_cursor_exception;
++ }
++ pCur->pOps = &sqliteBtreeCursorOps;
++ pCur->pBt = pBt;
++ pCur->wrFlag = wrFlag;
++ pCur->idx = 0;
++ pCur->eSkip = SKIP_INVALID;
++ pCur->pNext = pBt->pCursor;
++ if( pCur->pNext ){
++ pCur->pNext->pPrev = pCur;
++ }
++ pCur->pPrev = 0;
++ pRing = pBt->pCursor;
++ while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
++ if( pRing ){
++ pCur->pShared = pRing->pShared;
++ pRing->pShared = pCur;
++ }else{
++ pCur->pShared = pCur;
++ }
++ pBt->pCursor = pCur;
++ *ppCur = pCur;
++ return SQLITE_OK;
++
++create_cursor_exception:
++ *ppCur = 0;
++ if( pCur ){
++ if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
++ sqliteFree(pCur);
++ }
++ unlockBtreeIfUnused(pBt);
++ return rc;
++}
++
++/*
++** Close a cursor. The read lock on the database file is released
++** when the last cursor is closed.
++*/
++static int fileBtreeCloseCursor(BtCursor *pCur){
++ Btree *pBt = pCur->pBt;
++ if( pCur->pPrev ){
++ pCur->pPrev->pNext = pCur->pNext;
++ }else{
++ pBt->pCursor = pCur->pNext;
++ }
++ if( pCur->pNext ){
++ pCur->pNext->pPrev = pCur->pPrev;
++ }
++ if( pCur->pPage ){
++ sqlitepager_unref(pCur->pPage);
++ }
++ if( pCur->pShared!=pCur ){
++ BtCursor *pRing = pCur->pShared;
++ while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
++ pRing->pShared = pCur->pShared;
++ }
++ unlockBtreeIfUnused(pBt);
++ sqliteFree(pCur);
++ return SQLITE_OK;
++}
++
++/*
++** Make a temporary cursor by filling in the fields of pTempCur.
++** The temporary cursor is not on the cursor list for the Btree.
++*/
++static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
++ memcpy(pTempCur, pCur, sizeof(*pCur));
++ pTempCur->pNext = 0;
++ pTempCur->pPrev = 0;
++ if( pTempCur->pPage ){
++ sqlitepager_ref(pTempCur->pPage);
++ }
++}
++
++/*
++** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
++** function above.
++*/
++static void releaseTempCursor(BtCursor *pCur){
++ if( pCur->pPage ){
++ sqlitepager_unref(pCur->pPage);
++ }
++}
++
++/*
++** Set *pSize to the number of bytes of key in the entry the
++** cursor currently points to. Always return SQLITE_OK.
++** Failure is not possible. If the cursor is not currently
++** pointing to an entry (which can happen, for example, if
++** the database is empty) then *pSize is set to 0.
++*/
++static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
++ Cell *pCell;
++ MemPage *pPage;
++
++ pPage = pCur->pPage;
++ assert( pPage!=0 );
++ if( pCur->idx >= pPage->nCell ){
++ *pSize = 0;
++ }else{
++ pCell = pPage->apCell[pCur->idx];
++ *pSize = NKEY(pCur->pBt, pCell->h);
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Read payload information from the entry that the pCur cursor is
++** pointing to. Begin reading the payload at "offset" and read
++** a total of "amt" bytes. Put the result in zBuf.
++**
++** This routine does not make a distinction between key and data.
++** It just reads bytes from the payload area.
++*/
++static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
++ char *aPayload;
++ Pgno nextPage;
++ int rc;
++ Btree *pBt = pCur->pBt;
++ assert( pCur!=0 && pCur->pPage!=0 );
++ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
++ aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
++ if( offset<MX_LOCAL_PAYLOAD ){
++ int a = amt;
++ if( a+offset>MX_LOCAL_PAYLOAD ){
++ a = MX_LOCAL_PAYLOAD - offset;
++ }
++ memcpy(zBuf, &aPayload[offset], a);
++ if( a==amt ){
++ return SQLITE_OK;
++ }
++ offset = 0;
++ zBuf += a;
++ amt -= a;
++ }else{
++ offset -= MX_LOCAL_PAYLOAD;
++ }
++ if( amt>0 ){
++ nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl);
++ }
++ while( amt>0 && nextPage ){
++ OverflowPage *pOvfl;
++ rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
++ if( rc!=0 ){
++ return rc;
++ }
++ nextPage = SWAB32(pBt, pOvfl->iNext);
++ if( offset<OVERFLOW_SIZE ){
++ int a = amt;
++ if( a + offset > OVERFLOW_SIZE ){
++ a = OVERFLOW_SIZE - offset;
++ }
++ memcpy(zBuf, &pOvfl->aPayload[offset], a);
++ offset = 0;
++ amt -= a;
++ zBuf += a;
++ }else{
++ offset -= OVERFLOW_SIZE;
++ }
++ sqlitepager_unref(pOvfl);
++ }
++ if( amt>0 ){
++ return SQLITE_CORRUPT;
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Read part of the key associated with cursor pCur. A maximum
++** of "amt" bytes will be transfered into zBuf[]. The transfer
++** begins at "offset". The number of bytes actually read is
++** returned.
++**
++** Change: It used to be that the amount returned will be smaller
++** than the amount requested if there are not enough bytes in the key
++** to satisfy the request. But now, it must be the case that there
++** is enough data available to satisfy the request. If not, an exception
++** is raised. The change was made in an effort to boost performance
++** by eliminating unneeded tests.
++*/
++static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
++ MemPage *pPage;
++
++ assert( amt>=0 );
++ assert( offset>=0 );
++ assert( pCur->pPage!=0 );
++ pPage = pCur->pPage;
++ if( pCur->idx >= pPage->nCell ){
++ return 0;
++ }
++ assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
++ getPayload(pCur, offset, amt, zBuf);
++ return amt;
++}
++
++/*
++** Set *pSize to the number of bytes of data in the entry the
++** cursor currently points to. Always return SQLITE_OK.
++** Failure is not possible. If the cursor is not currently
++** pointing to an entry (which can happen, for example, if
++** the database is empty) then *pSize is set to 0.
++*/
++static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
++ Cell *pCell;
++ MemPage *pPage;
++
++ pPage = pCur->pPage;
++ assert( pPage!=0 );
++ if( pCur->idx >= pPage->nCell ){
++ *pSize = 0;
++ }else{
++ pCell = pPage->apCell[pCur->idx];
++ *pSize = NDATA(pCur->pBt, pCell->h);
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Read part of the data associated with cursor pCur. A maximum
++** of "amt" bytes will be transfered into zBuf[]. The transfer
++** begins at "offset". The number of bytes actually read is
++** returned. The amount returned will be smaller than the
++** amount requested if there are not enough bytes in the data
++** to satisfy the request.
++*/
++static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
++ Cell *pCell;
++ MemPage *pPage;
++
++ assert( amt>=0 );
++ assert( offset>=0 );
++ assert( pCur->pPage!=0 );
++ pPage = pCur->pPage;
++ if( pCur->idx >= pPage->nCell ){
++ return 0;
++ }
++ pCell = pPage->apCell[pCur->idx];
++ assert( amt+offset <= NDATA(pCur->pBt, pCell->h) );
++ getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf);
++ return amt;
++}
++
++/*
++** Compare an external key against the key on the entry that pCur points to.
++**
++** The external key is pKey and is nKey bytes long. The last nIgnore bytes
++** of the key associated with pCur are ignored, as if they do not exist.
++** (The normal case is for nIgnore to be zero in which case the entire
++** internal key is used in the comparison.)
++**
++** The comparison result is written to *pRes as follows:
++**
++** *pRes<0 This means pCur<pKey
++**
++** *pRes==0 This means pCur==pKey for all nKey bytes
++**
++** *pRes>0 This means pCur>pKey
++**
++** When one key is an exact prefix of the other, the shorter key is
++** considered less than the longer one. In order to be equal the
++** keys must be exactly the same length. (The length of the pCur key
++** is the actual key length minus nIgnore bytes.)
++*/
++static int fileBtreeKeyCompare(
++ BtCursor *pCur, /* Pointer to entry to compare against */
++ const void *pKey, /* Key to compare against entry that pCur points to */
++ int nKey, /* Number of bytes in pKey */
++ int nIgnore, /* Ignore this many bytes at the end of pCur */
++ int *pResult /* Write the result here */
++){
++ Pgno nextPage;
++ int n, c, rc, nLocal;
++ Cell *pCell;
++ Btree *pBt = pCur->pBt;
++ const char *zKey = (const char*)pKey;
++
++ assert( pCur->pPage );
++ assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
++ pCell = pCur->pPage->apCell[pCur->idx];
++ nLocal = NKEY(pBt, pCell->h) - nIgnore;
++ if( nLocal<0 ) nLocal = 0;
++ n = nKey<nLocal ? nKey : nLocal;
++ if( n>MX_LOCAL_PAYLOAD ){
++ n = MX_LOCAL_PAYLOAD;
++ }
++ c = memcmp(pCell->aPayload, zKey, n);
++ if( c!=0 ){
++ *pResult = c;
++ return SQLITE_OK;
++ }
++ zKey += n;
++ nKey -= n;
++ nLocal -= n;
++ nextPage = SWAB32(pBt, pCell->ovfl);
++ while( nKey>0 && nLocal>0 ){
++ OverflowPage *pOvfl;
++ if( nextPage==0 ){
++ return SQLITE_CORRUPT;
++ }
++ rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
++ if( rc ){
++ return rc;
++ }
++ nextPage = SWAB32(pBt, pOvfl->iNext);
++ n = nKey<nLocal ? nKey : nLocal;
++ if( n>OVERFLOW_SIZE ){
++ n = OVERFLOW_SIZE;
++ }
++ c = memcmp(pOvfl->aPayload, zKey, n);
++ sqlitepager_unref(pOvfl);
++ if( c!=0 ){
++ *pResult = c;
++ return SQLITE_OK;
++ }
++ nKey -= n;
++ nLocal -= n;
++ zKey += n;
++ }
++ if( c==0 ){
++ c = nLocal - nKey;
++ }
++ *pResult = c;
++ return SQLITE_OK;
++}
++
++/*
++** Move the cursor down to a new child page. The newPgno argument is the
++** page number of the child page in the byte order of the disk image.
++*/
++static int moveToChild(BtCursor *pCur, int newPgno){
++ int rc;
++ MemPage *pNewPage;
++ Btree *pBt = pCur->pBt;
++
++ newPgno = SWAB32(pBt, newPgno);
++ rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
++ if( rc ) return rc;
++ rc = initPage(pBt, pNewPage, newPgno, pCur->pPage);
++ if( rc ) return rc;
++ assert( pCur->idx>=pCur->pPage->nCell
++ || pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) );
++ assert( pCur->idx<pCur->pPage->nCell
++ || pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) );
++ pNewPage->idxParent = pCur->idx;
++ pCur->pPage->idxShift = 0;
++ sqlitepager_unref(pCur->pPage);
++ pCur->pPage = pNewPage;
++ pCur->idx = 0;
++ if( pNewPage->nCell<1 ){
++ return SQLITE_CORRUPT;
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Move the cursor up to the parent page.
++**
++** pCur->idx is set to the cell index that contains the pointer
++** to the page we are coming from. If we are coming from the
++** right-most child page then pCur->idx is set to one more than
++** the largest cell index.
++*/
++static void moveToParent(BtCursor *pCur){
++ Pgno oldPgno;
++ MemPage *pParent;
++ MemPage *pPage;
++ int idxParent;
++ pPage = pCur->pPage;
++ assert( pPage!=0 );
++ pParent = pPage->pParent;
++ assert( pParent!=0 );
++ idxParent = pPage->idxParent;
++ sqlitepager_ref(pParent);
++ sqlitepager_unref(pPage);
++ pCur->pPage = pParent;
++ assert( pParent->idxShift==0 );
++ if( pParent->idxShift==0 ){
++ pCur->idx = idxParent;
++#ifndef NDEBUG
++ /* Verify that pCur->idx is the correct index to point back to the child
++ ** page we just came from
++ */
++ oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
++ if( pCur->idx<pParent->nCell ){
++ assert( pParent->apCell[idxParent]->h.leftChild==oldPgno );
++ }else{
++ assert( pParent->u.hdr.rightChild==oldPgno );
++ }
++#endif
++ }else{
++ /* The MemPage.idxShift flag indicates that cell indices might have
++ ** changed since idxParent was set and hence idxParent might be out
++ ** of date. So recompute the parent cell index by scanning all cells
++ ** and locating the one that points to the child we just came from.
++ */
++ int i;
++ pCur->idx = pParent->nCell;
++ oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
++ for(i=0; i<pParent->nCell; i++){
++ if( pParent->apCell[i]->h.leftChild==oldPgno ){
++ pCur->idx = i;
++ break;
++ }
++ }
++ }
++}
++
++/*
++** Move the cursor to the root page
++*/
++static int moveToRoot(BtCursor *pCur){
++ MemPage *pNew;
++ int rc;
++ Btree *pBt = pCur->pBt;
++
++ rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
++ if( rc ) return rc;
++ rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
++ if( rc ) return rc;
++ sqlitepager_unref(pCur->pPage);
++ pCur->pPage = pNew;
++ pCur->idx = 0;
++ return SQLITE_OK;
++}
++
++/*
++** Move the cursor down to the left-most leaf entry beneath the
++** entry to which it is currently pointing.
++*/
++static int moveToLeftmost(BtCursor *pCur){
++ Pgno pgno;
++ int rc;
++
++ while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
++ rc = moveToChild(pCur, pgno);
++ if( rc ) return rc;
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Move the cursor down to the right-most leaf entry beneath the
++** page to which it is currently pointing. Notice the difference
++** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
++** finds the left-most entry beneath the *entry* whereas moveToRightmost()
++** finds the right-most entry beneath the *page*.
++*/
++static int moveToRightmost(BtCursor *pCur){
++ Pgno pgno;
++ int rc;
++
++ while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
++ pCur->idx = pCur->pPage->nCell;
++ rc = moveToChild(pCur, pgno);
++ if( rc ) return rc;
++ }
++ pCur->idx = pCur->pPage->nCell - 1;
++ return SQLITE_OK;
++}
++
++/* Move the cursor to the first entry in the table. Return SQLITE_OK
++** on success. Set *pRes to 0 if the cursor actually points to something
++** or set *pRes to 1 if the table is empty.
++*/
++static int fileBtreeFirst(BtCursor *pCur, int *pRes){
++ int rc;
++ if( pCur->pPage==0 ) return SQLITE_ABORT;
++ rc = moveToRoot(pCur);
++ if( rc ) return rc;
++ if( pCur->pPage->nCell==0 ){
++ *pRes = 1;
++ return SQLITE_OK;
++ }
++ *pRes = 0;
++ rc = moveToLeftmost(pCur);
++ pCur->eSkip = SKIP_NONE;
++ return rc;
++}
++
++/* Move the cursor to the last entry in the table. Return SQLITE_OK
++** on success. Set *pRes to 0 if the cursor actually points to something
++** or set *pRes to 1 if the table is empty.
++*/
++static int fileBtreeLast(BtCursor *pCur, int *pRes){
++ int rc;
++ if( pCur->pPage==0 ) return SQLITE_ABORT;
++ rc = moveToRoot(pCur);
++ if( rc ) return rc;
++ assert( pCur->pPage->isInit );
++ if( pCur->pPage->nCell==0 ){
++ *pRes = 1;
++ return SQLITE_OK;
++ }
++ *pRes = 0;
++ rc = moveToRightmost(pCur);
++ pCur->eSkip = SKIP_NONE;
++ return rc;
++}
++
++/* Move the cursor so that it points to an entry near pKey.
++** Return a success code.
++**
++** If an exact match is not found, then the cursor is always
++** left pointing at a leaf page which would hold the entry if it
++** were present. The cursor might point to an entry that comes
++** before or after the key.
++**
++** The result of comparing the key with the entry to which the
++** cursor is left pointing is stored in pCur->iMatch. The same
++** value is also written to *pRes if pRes!=NULL. The meaning of
++** this value is as follows:
++**
++** *pRes<0 The cursor is left pointing at an entry that
++** is smaller than pKey or if the table is empty
++** and the cursor is therefore left point to nothing.
++**
++** *pRes==0 The cursor is left pointing at an entry that
++** exactly matches pKey.
++**
++** *pRes>0 The cursor is left pointing at an entry that
++** is larger than pKey.
++*/
++static
++int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
++ int rc;
++ if( pCur->pPage==0 ) return SQLITE_ABORT;
++ pCur->eSkip = SKIP_NONE;
++ rc = moveToRoot(pCur);
++ if( rc ) return rc;
++ for(;;){
++ int lwr, upr;
++ Pgno chldPg;
++ MemPage *pPage = pCur->pPage;
++ int c = -1; /* pRes return if table is empty must be -1 */
++ lwr = 0;
++ upr = pPage->nCell-1;
++ while( lwr<=upr ){
++ pCur->idx = (lwr+upr)/2;
++ rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
++ if( rc ) return rc;
++ if( c==0 ){
++ pCur->iMatch = c;
++ if( pRes ) *pRes = 0;
++ return SQLITE_OK;
++ }
++ if( c<0 ){
++ lwr = pCur->idx+1;
++ }else{
++ upr = pCur->idx-1;
++ }
++ }
++ assert( lwr==upr+1 );
++ assert( pPage->isInit );
++ if( lwr>=pPage->nCell ){
++ chldPg = pPage->u.hdr.rightChild;
++ }else{
++ chldPg = pPage->apCell[lwr]->h.leftChild;
++ }
++ if( chldPg==0 ){
++ pCur->iMatch = c;
++ if( pRes ) *pRes = c;
++ return SQLITE_OK;
++ }
++ pCur->idx = lwr;
++ rc = moveToChild(pCur, chldPg);
++ if( rc ) return rc;
++ }
++ /* NOT REACHED */
++}
++
++/*
++** Advance the cursor to the next entry in the database. If
++** successful then set *pRes=0. If the cursor
++** was already pointing to the last entry in the database before
++** this routine was called, then set *pRes=1.
++*/
++static int fileBtreeNext(BtCursor *pCur, int *pRes){
++ int rc;
++ MemPage *pPage = pCur->pPage;
++ assert( pRes!=0 );
++ if( pPage==0 ){
++ *pRes = 1;
++ return SQLITE_ABORT;
++ }
++ assert( pPage->isInit );
++ assert( pCur->eSkip!=SKIP_INVALID );
++ if( pPage->nCell==0 ){
++ *pRes = 1;
++ return SQLITE_OK;
++ }
++ assert( pCur->idx<pPage->nCell );
++ if( pCur->eSkip==SKIP_NEXT ){
++ pCur->eSkip = SKIP_NONE;
++ *pRes = 0;
++ return SQLITE_OK;
++ }
++ pCur->eSkip = SKIP_NONE;
++ pCur->idx++;
++ if( pCur->idx>=pPage->nCell ){
++ if( pPage->u.hdr.rightChild ){
++ rc = moveToChild(pCur, pPage->u.hdr.rightChild);
++ if( rc ) return rc;
++ rc = moveToLeftmost(pCur);
++ *pRes = 0;
++ return rc;
++ }
++ do{
++ if( pPage->pParent==0 ){
++ *pRes = 1;
++ return SQLITE_OK;
++ }
++ moveToParent(pCur);
++ pPage = pCur->pPage;
++ }while( pCur->idx>=pPage->nCell );
++ *pRes = 0;
++ return SQLITE_OK;
++ }
++ *pRes = 0;
++ if( pPage->u.hdr.rightChild==0 ){
++ return SQLITE_OK;
++ }
++ rc = moveToLeftmost(pCur);
++ return rc;
++}
++
++/*
++** Step the cursor to the back to the previous entry in the database. If
++** successful then set *pRes=0. If the cursor
++** was already pointing to the first entry in the database before
++** this routine was called, then set *pRes=1.
++*/
++static int fileBtreePrevious(BtCursor *pCur, int *pRes){
++ int rc;
++ Pgno pgno;
++ MemPage *pPage;
++ pPage = pCur->pPage;
++ if( pPage==0 ){
++ *pRes = 1;
++ return SQLITE_ABORT;
++ }
++ assert( pPage->isInit );
++ assert( pCur->eSkip!=SKIP_INVALID );
++ if( pPage->nCell==0 ){
++ *pRes = 1;
++ return SQLITE_OK;
++ }
++ if( pCur->eSkip==SKIP_PREV ){
++ pCur->eSkip = SKIP_NONE;
++ *pRes = 0;
++ return SQLITE_OK;
++ }
++ pCur->eSkip = SKIP_NONE;
++ assert( pCur->idx>=0 );
++ if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
++ rc = moveToChild(pCur, pgno);
++ if( rc ) return rc;
++ rc = moveToRightmost(pCur);
++ }else{
++ while( pCur->idx==0 ){
++ if( pPage->pParent==0 ){
++ if( pRes ) *pRes = 1;
++ return SQLITE_OK;
++ }
++ moveToParent(pCur);
++ pPage = pCur->pPage;
++ }
++ pCur->idx--;
++ rc = SQLITE_OK;
++ }
++ *pRes = 0;
++ return rc;
++}
++
++/*
++** Allocate a new page from the database file.
++**
++** The new page is marked as dirty. (In other words, sqlitepager_write()
++** has already been called on the new page.) The new page has also
++** been referenced and the calling routine is responsible for calling
++** sqlitepager_unref() on the new page when it is done.
++**
++** SQLITE_OK is returned on success. Any other return value indicates
++** an error. *ppPage and *pPgno are undefined in the event of an error.
++** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
++**
++** If the "nearby" parameter is not 0, then a (feeble) effort is made to
++** locate a page close to the page number "nearby". This can be used in an
++** attempt to keep related pages close to each other in the database file,
++** which in turn can make database access faster.
++*/
++static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
++ PageOne *pPage1 = pBt->page1;
++ int rc;
++ if( pPage1->freeList ){
++ OverflowPage *pOvfl;
++ FreelistInfo *pInfo;
++
++ rc = sqlitepager_write(pPage1);
++ if( rc ) return rc;
++ SWAB_ADD(pBt, pPage1->nFree, -1);
++ rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
++ (void**)&pOvfl);
++ if( rc ) return rc;
++ rc = sqlitepager_write(pOvfl);
++ if( rc ){
++ sqlitepager_unref(pOvfl);
++ return rc;
++ }
++ pInfo = (FreelistInfo*)pOvfl->aPayload;
++ if( pInfo->nFree==0 ){
++ *pPgno = SWAB32(pBt, pPage1->freeList);
++ pPage1->freeList = pOvfl->iNext;
++ *ppPage = (MemPage*)pOvfl;
++ }else{
++ int closest, n;
++ n = SWAB32(pBt, pInfo->nFree);
++ if( n>1 && nearby>0 ){
++ int i, dist;
++ closest = 0;
++ dist = SWAB32(pBt, pInfo->aFree[0]) - nearby;
++ if( dist<0 ) dist = -dist;
++ for(i=1; i<n; i++){
++ int d2 = SWAB32(pBt, pInfo->aFree[i]) - nearby;
++ if( d2<0 ) d2 = -d2;
++ if( d2<dist ) closest = i;
++ }
++ }else{
++ closest = 0;
++ }
++ SWAB_ADD(pBt, pInfo->nFree, -1);
++ *pPgno = SWAB32(pBt, pInfo->aFree[closest]);
++ pInfo->aFree[closest] = pInfo->aFree[n-1];
++ rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
++ sqlitepager_unref(pOvfl);
++ if( rc==SQLITE_OK ){
++ sqlitepager_dont_rollback(*ppPage);
++ rc = sqlitepager_write(*ppPage);
++ }
++ }
++ }else{
++ *pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
++ rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
++ if( rc ) return rc;
++ rc = sqlitepager_write(*ppPage);
++ }
++ return rc;
++}
++
++/*
++** Add a page of the database file to the freelist. Either pgno or
++** pPage but not both may be 0.
++**
++** sqlitepager_unref() is NOT called for pPage.
++*/
++static int freePage(Btree *pBt, void *pPage, Pgno pgno){
++ PageOne *pPage1 = pBt->page1;
++ OverflowPage *pOvfl = (OverflowPage*)pPage;
++ int rc;
++ int needUnref = 0;
++ MemPage *pMemPage;
++
++ if( pgno==0 ){
++ assert( pOvfl!=0 );
++ pgno = sqlitepager_pagenumber(pOvfl);
++ }
++ assert( pgno>2 );
++ assert( sqlitepager_pagenumber(pOvfl)==pgno );
++ pMemPage = (MemPage*)pPage;
++ pMemPage->isInit = 0;
++ if( pMemPage->pParent ){
++ sqlitepager_unref(pMemPage->pParent);
++ pMemPage->pParent = 0;
++ }
++ rc = sqlitepager_write(pPage1);
++ if( rc ){
++ return rc;
++ }
++ SWAB_ADD(pBt, pPage1->nFree, 1);
++ if( pPage1->nFree!=0 && pPage1->freeList!=0 ){
++ OverflowPage *pFreeIdx;
++ rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
++ (void**)&pFreeIdx);
++ if( rc==SQLITE_OK ){
++ FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload;
++ int n = SWAB32(pBt, pInfo->nFree);
++ if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){
++ rc = sqlitepager_write(pFreeIdx);
++ if( rc==SQLITE_OK ){
++ pInfo->aFree[n] = SWAB32(pBt, pgno);
++ SWAB_ADD(pBt, pInfo->nFree, 1);
++ sqlitepager_unref(pFreeIdx);
++ sqlitepager_dont_write(pBt->pPager, pgno);
++ return rc;
++ }
++ }
++ sqlitepager_unref(pFreeIdx);
++ }
++ }
++ if( pOvfl==0 ){
++ assert( pgno>0 );
++ rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
++ if( rc ) return rc;
++ needUnref = 1;
++ }
++ rc = sqlitepager_write(pOvfl);
++ if( rc ){
++ if( needUnref ) sqlitepager_unref(pOvfl);
++ return rc;
++ }
++ pOvfl->iNext = pPage1->freeList;
++ pPage1->freeList = SWAB32(pBt, pgno);
++ memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
++ if( needUnref ) rc = sqlitepager_unref(pOvfl);
++ return rc;
++}
++
++/*
++** Erase all the data out of a cell. This involves returning overflow
++** pages back the freelist.
++*/
++static int clearCell(Btree *pBt, Cell *pCell){
++ Pager *pPager = pBt->pPager;
++ OverflowPage *pOvfl;
++ Pgno ovfl, nextOvfl;
++ int rc;
++
++ if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){
++ return SQLITE_OK;
++ }
++ ovfl = SWAB32(pBt, pCell->ovfl);
++ pCell->ovfl = 0;
++ while( ovfl ){
++ rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
++ if( rc ) return rc;
++ nextOvfl = SWAB32(pBt, pOvfl->iNext);
++ rc = freePage(pBt, pOvfl, ovfl);
++ if( rc ) return rc;
++ sqlitepager_unref(pOvfl);
++ ovfl = nextOvfl;
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Create a new cell from key and data. Overflow pages are allocated as
++** necessary and linked to this cell.
++*/
++static int fillInCell(
++ Btree *pBt, /* The whole Btree. Needed to allocate pages */
++ Cell *pCell, /* Populate this Cell structure */
++ const void *pKey, int nKey, /* The key */
++ const void *pData,int nData /* The data */
++){
++ OverflowPage *pOvfl, *pPrior;
++ Pgno *pNext;
++ int spaceLeft;
++ int n, rc;
++ int nPayload;
++ const char *pPayload;
++ char *pSpace;
++ Pgno nearby = 0;
++
++ pCell->h.leftChild = 0;
++ pCell->h.nKey = SWAB16(pBt, nKey & 0xffff);
++ pCell->h.nKeyHi = nKey >> 16;
++ pCell->h.nData = SWAB16(pBt, nData & 0xffff);
++ pCell->h.nDataHi = nData >> 16;
++ pCell->h.iNext = 0;
++
++ pNext = &pCell->ovfl;
++ pSpace = pCell->aPayload;
++ spaceLeft = MX_LOCAL_PAYLOAD;
++ pPayload = pKey;
++ pKey = 0;
++ nPayload = nKey;
++ pPrior = 0;
++ while( nPayload>0 ){
++ if( spaceLeft==0 ){
++ rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby);
++ if( rc ){
++ *pNext = 0;
++ }else{
++ nearby = *pNext;
++ }
++ if( pPrior ) sqlitepager_unref(pPrior);
++ if( rc ){
++ clearCell(pBt, pCell);
++ return rc;
++ }
++ if( pBt->needSwab ) *pNext = swab32(*pNext);
++ pPrior = pOvfl;
++ spaceLeft = OVERFLOW_SIZE;
++ pSpace = pOvfl->aPayload;
++ pNext = &pOvfl->iNext;
++ }
++ n = nPayload;
++ if( n>spaceLeft ) n = spaceLeft;
++ memcpy(pSpace, pPayload, n);
++ nPayload -= n;
++ if( nPayload==0 && pData ){
++ pPayload = pData;
++ nPayload = nData;
++ pData = 0;
++ }else{
++ pPayload += n;
++ }
++ spaceLeft -= n;
++ pSpace += n;
++ }
++ *pNext = 0;
++ if( pPrior ){
++ sqlitepager_unref(pPrior);
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Change the MemPage.pParent pointer on the page whose number is
++** given in the second argument so that MemPage.pParent holds the
++** pointer in the third argument.
++*/
++static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){
++ MemPage *pThis;
++
++ if( pgno==0 ) return;
++ assert( pPager!=0 );
++ pThis = sqlitepager_lookup(pPager, pgno);
++ if( pThis && pThis->isInit ){
++ if( pThis->pParent!=pNewParent ){
++ if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
++ pThis->pParent = pNewParent;
++ if( pNewParent ) sqlitepager_ref(pNewParent);
++ }
++ pThis->idxParent = idx;
++ sqlitepager_unref(pThis);
++ }
++}
++
++/*
++** Reparent all children of the given page to be the given page.
++** In other words, for every child of pPage, invoke reparentPage()
++** to make sure that each child knows that pPage is its parent.
++**
++** This routine gets called after you memcpy() one page into
++** another.
++*/
++static void reparentChildPages(Btree *pBt, MemPage *pPage){
++ int i;
++ Pager *pPager = pBt->pPager;
++ for(i=0; i<pPage->nCell; i++){
++ reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i);
++ }
++ reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i);
++ pPage->idxShift = 0;
++}
++
++/*
++** Remove the i-th cell from pPage. This routine effects pPage only.
++** The cell content is not freed or deallocated. It is assumed that
++** the cell content has been copied someplace else. This routine just
++** removes the reference to the cell from pPage.
++**
++** "sz" must be the number of bytes in the cell.
++**
++** Do not bother maintaining the integrity of the linked list of Cells.
++** Only the pPage->apCell[] array is important. The relinkCellList()
++** routine will be called soon after this routine in order to rebuild
++** the linked list.
++*/
++static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){
++ int j;
++ assert( idx>=0 && idx<pPage->nCell );
++ assert( sz==cellSize(pBt, pPage->apCell[idx]) );
++ assert( sqlitepager_iswriteable(pPage) );
++ freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
++ for(j=idx; j<pPage->nCell-1; j++){
++ pPage->apCell[j] = pPage->apCell[j+1];
++ }
++ pPage->nCell--;
++ pPage->idxShift = 1;
++}
++
++/*
++** Insert a new cell on pPage at cell index "i". pCell points to the
++** content of the cell.
++**
++** If the cell content will fit on the page, then put it there. If it
++** will not fit, then just make pPage->apCell[i] point to the content
++** and set pPage->isOverfull.
++**
++** Do not bother maintaining the integrity of the linked list of Cells.
++** Only the pPage->apCell[] array is important. The relinkCellList()
++** routine will be called soon after this routine in order to rebuild
++** the linked list.
++*/
++static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){
++ int idx, j;
++ assert( i>=0 && i<=pPage->nCell );
++ assert( sz==cellSize(pBt, pCell) );
++ assert( sqlitepager_iswriteable(pPage) );
++ idx = allocateSpace(pBt, pPage, sz);
++ for(j=pPage->nCell; j>i; j--){
++ pPage->apCell[j] = pPage->apCell[j-1];
++ }
++ pPage->nCell++;
++ if( idx<=0 ){
++ pPage->isOverfull = 1;
++ pPage->apCell[i] = pCell;
++ }else{
++ memcpy(&pPage->u.aDisk[idx], pCell, sz);
++ pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
++ }
++ pPage->idxShift = 1;
++}
++
++/*
++** Rebuild the linked list of cells on a page so that the cells
++** occur in the order specified by the pPage->apCell[] array.
++** Invoke this routine once to repair damage after one or more
++** invocations of either insertCell() or dropCell().
++*/
++static void relinkCellList(Btree *pBt, MemPage *pPage){
++ int i;
++ u16 *pIdx;
++ assert( sqlitepager_iswriteable(pPage) );
++ pIdx = &pPage->u.hdr.firstCell;
++ for(i=0; i<pPage->nCell; i++){
++ int idx = Addr(pPage->apCell[i]) - Addr(pPage);
++ assert( idx>0 && idx<SQLITE_USABLE_SIZE );
++ *pIdx = SWAB16(pBt, idx);
++ pIdx = &pPage->apCell[i]->h.iNext;
++ }
++ *pIdx = 0;
++}
++
++/*
++** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
++** pointers that point into pFrom->u.aDisk[] must be adjusted to point
++** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
++** not point to pFrom->u.aDisk[]. Those are unchanged.
++*/
++static void copyPage(MemPage *pTo, MemPage *pFrom){
++ uptr from, to;
++ int i;
++ memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_USABLE_SIZE);
++ pTo->pParent = 0;
++ pTo->isInit = 1;
++ pTo->nCell = pFrom->nCell;
++ pTo->nFree = pFrom->nFree;
++ pTo->isOverfull = pFrom->isOverfull;
++ to = Addr(pTo);
++ from = Addr(pFrom);
++ for(i=0; i<pTo->nCell; i++){
++ uptr x = Addr(pFrom->apCell[i]);
++ if( x>from && x<from+SQLITE_USABLE_SIZE ){
++ *((uptr*)&pTo->apCell[i]) = x + to - from;
++ }else{
++ pTo->apCell[i] = pFrom->apCell[i];
++ }
++ }
++}
++
++/*
++** The following parameters determine how many adjacent pages get involved
++** in a balancing operation. NN is the number of neighbors on either side
++** of the page that participate in the balancing operation. NB is the
++** total number of pages that participate, including the target page and
++** NN neighbors on either side.
++**
++** The minimum value of NN is 1 (of course). Increasing NN above 1
++** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
++** in exchange for a larger degradation in INSERT and UPDATE performance.
++** The value of NN appears to give the best results overall.
++*/
++#define NN 1 /* Number of neighbors on either side of pPage */
++#define NB (NN*2+1) /* Total pages involved in the balance */
++
++/*
++** This routine redistributes Cells on pPage and up to two siblings
++** of pPage so that all pages have about the same amount of free space.
++** Usually one sibling on either side of pPage is used in the balancing,
++** though both siblings might come from one side if pPage is the first
++** or last child of its parent. If pPage has fewer than two siblings
++** (something which can only happen if pPage is the root page or a
++** child of root) then all available siblings participate in the balancing.
++**
++** The number of siblings of pPage might be increased or decreased by
++** one in an effort to keep pages between 66% and 100% full. The root page
++** is special and is allowed to be less than 66% full. If pPage is
++** the root page, then the depth of the tree might be increased
++** or decreased by one, as necessary, to keep the root page from being
++** overfull or empty.
++**
++** This routine calls relinkCellList() on its input page regardless of
++** whether or not it does any real balancing. Client routines will typically
++** invoke insertCell() or dropCell() before calling this routine, so we
++** need to call relinkCellList() to clean up the mess that those other
++** routines left behind.
++**
++** pCur is left pointing to the same cell as when this routine was called
++** even if that cell gets moved to a different page. pCur may be NULL.
++** Set the pCur parameter to NULL if you do not care about keeping track
++** of a cell as that will save this routine the work of keeping track of it.
++**
++** Note that when this routine is called, some of the Cells on pPage
++** might not actually be stored in pPage->u.aDisk[]. This can happen
++** if the page is overfull. Part of the job of this routine is to
++** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
++**
++** In the course of balancing the siblings of pPage, the parent of pPage
++** might become overfull or underfull. If that happens, then this routine
++** is called recursively on the parent.
++**
++** If this routine fails for any reason, it might leave the database
++** in a corrupted state. So if this routine fails, the database should
++** be rolled back.
++*/
++static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
++ MemPage *pParent; /* The parent of pPage */
++ int nCell; /* Number of cells in apCell[] */
++ int nOld; /* Number of pages in apOld[] */
++ int nNew; /* Number of pages in apNew[] */
++ int nDiv; /* Number of cells in apDiv[] */
++ int i, j, k; /* Loop counters */
++ int idx; /* Index of pPage in pParent->apCell[] */
++ int nxDiv; /* Next divider slot in pParent->apCell[] */
++ int rc; /* The return code */
++ int iCur; /* apCell[iCur] is the cell of the cursor */
++ MemPage *pOldCurPage; /* The cursor originally points to this page */
++ int subtotal; /* Subtotal of bytes in cells on one page */
++ MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
++ MemPage *apOld[NB]; /* pPage and up to two siblings */
++ Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
++ MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
++ Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
++ int idxDiv[NB]; /* Indices of divider cells in pParent */
++ Cell *apDiv[NB]; /* Divider cells in pParent */
++ Cell aTemp[NB]; /* Temporary holding area for apDiv[] */
++ int cntNew[NB+1]; /* Index in apCell[] of cell after i-th page */
++ int szNew[NB+1]; /* Combined size of cells place on i-th page */
++ MemPage aOld[NB]; /* Temporary copies of pPage and its siblings */
++ Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
++ int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
++
++ /*
++ ** Return without doing any work if pPage is neither overfull nor
++ ** underfull.
++ */
++ assert( sqlitepager_iswriteable(pPage) );
++ if( !pPage->isOverfull && pPage->nFree<SQLITE_USABLE_SIZE/2
++ && pPage->nCell>=2){
++ relinkCellList(pBt, pPage);
++ return SQLITE_OK;
++ }
++
++ /*
++ ** Find the parent of the page to be balanceed.
++ ** If there is no parent, it means this page is the root page and
++ ** special rules apply.
++ */
++ pParent = pPage->pParent;
++ if( pParent==0 ){
++ Pgno pgnoChild;
++ MemPage *pChild;
++ assert( pPage->isInit );
++ if( pPage->nCell==0 ){
++ if( pPage->u.hdr.rightChild ){
++ /*
++ ** The root page is empty. Copy the one child page
++ ** into the root page and return. This reduces the depth
++ ** of the BTree by one.
++ */
++ pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild);
++ rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
++ if( rc ) return rc;
++ memcpy(pPage, pChild, SQLITE_USABLE_SIZE);
++ pPage->isInit = 0;
++ rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0);
++ assert( rc==SQLITE_OK );
++ reparentChildPages(pBt, pPage);
++ if( pCur && pCur->pPage==pChild ){
++ sqlitepager_unref(pChild);
++ pCur->pPage = pPage;
++ sqlitepager_ref(pPage);
++ }
++ freePage(pBt, pChild, pgnoChild);
++ sqlitepager_unref(pChild);
++ }else{
++ relinkCellList(pBt, pPage);
++ }
++ return SQLITE_OK;
++ }
++ if( !pPage->isOverfull ){
++ /* It is OK for the root page to be less than half full.
++ */
++ relinkCellList(pBt, pPage);
++ return SQLITE_OK;
++ }
++ /*
++ ** If we get to here, it means the root page is overfull.
++ ** When this happens, Create a new child page and copy the
++ ** contents of the root into the child. Then make the root
++ ** page an empty page with rightChild pointing to the new
++ ** child. Then fall thru to the code below which will cause
++ ** the overfull child page to be split.
++ */
++ rc = sqlitepager_write(pPage);
++ if( rc ) return rc;
++ rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage));
++ if( rc ) return rc;
++ assert( sqlitepager_iswriteable(pChild) );
++ copyPage(pChild, pPage);
++ pChild->pParent = pPage;
++ pChild->idxParent = 0;
++ sqlitepager_ref(pPage);
++ pChild->isOverfull = 1;
++ if( pCur && pCur->pPage==pPage ){
++ sqlitepager_unref(pPage);
++ pCur->pPage = pChild;
++ }else{
++ extraUnref = pChild;
++ }
++ zeroPage(pBt, pPage);
++ pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild);
++ pParent = pPage;
++ pPage = pChild;
++ }
++ rc = sqlitepager_write(pParent);
++ if( rc ) return rc;
++ assert( pParent->isInit );
++
++ /*
++ ** Find the Cell in the parent page whose h.leftChild points back
++ ** to pPage. The "idx" variable is the index of that cell. If pPage
++ ** is the rightmost child of pParent then set idx to pParent->nCell
++ */
++ if( pParent->idxShift ){
++ Pgno pgno, swabPgno;
++ pgno = sqlitepager_pagenumber(pPage);
++ swabPgno = SWAB32(pBt, pgno);
++ for(idx=0; idx<pParent->nCell; idx++){
++ if( pParent->apCell[idx]->h.leftChild==swabPgno ){
++ break;
++ }
++ }
++ assert( idx<pParent->nCell || pParent->u.hdr.rightChild==swabPgno );
++ }else{
++ idx = pPage->idxParent;
++ }
++
++ /*
++ ** Initialize variables so that it will be safe to jump
++ ** directly to balance_cleanup at any moment.
++ */
++ nOld = nNew = 0;
++ sqlitepager_ref(pParent);
++
++ /*
++ ** Find sibling pages to pPage and the Cells in pParent that divide
++ ** the siblings. An attempt is made to find NN siblings on either
++ ** side of pPage. More siblings are taken from one side, however, if
++ ** pPage there are fewer than NN siblings on the other side. If pParent
++ ** has NB or fewer children then all children of pParent are taken.
++ */
++ nxDiv = idx - NN;
++ if( nxDiv + NB > pParent->nCell ){
++ nxDiv = pParent->nCell - NB + 1;
++ }
++ if( nxDiv<0 ){
++ nxDiv = 0;
++ }
++ nDiv = 0;
++ for(i=0, k=nxDiv; i<NB; i++, k++){
++ if( k<pParent->nCell ){
++ idxDiv[i] = k;
++ apDiv[i] = pParent->apCell[k];
++ nDiv++;
++ pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild);
++ }else if( k==pParent->nCell ){
++ pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild);
++ }else{
++ break;
++ }
++ rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
++ if( rc ) goto balance_cleanup;
++ rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
++ if( rc ) goto balance_cleanup;
++ apOld[i]->idxParent = k;
++ nOld++;
++ }
++
++ /*
++ ** Set iCur to be the index in apCell[] of the cell that the cursor
++ ** is pointing to. We will need this later on in order to keep the
++ ** cursor pointing at the same cell. If pCur points to a page that
++ ** has no involvement with this rebalancing, then set iCur to a large
++ ** number so that the iCur==j tests always fail in the main cell
++ ** distribution loop below.
++ */
++ if( pCur ){
++ iCur = 0;
++ for(i=0; i<nOld; i++){
++ if( pCur->pPage==apOld[i] ){
++ iCur += pCur->idx;
++ break;
++ }
++ iCur += apOld[i]->nCell;
++ if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
++ break;
++ }
++ iCur++;
++ }
++ pOldCurPage = pCur->pPage;
++ }
++
++ /*
++ ** Make copies of the content of pPage and its siblings into aOld[].
++ ** The rest of this function will use data from the copies rather
++ ** that the original pages since the original pages will be in the
++ ** process of being overwritten.
++ */
++ for(i=0; i<nOld; i++){
++ copyPage(&aOld[i], apOld[i]);
++ }
++
++ /*
++ ** Load pointers to all cells on sibling pages and the divider cells
++ ** into the local apCell[] array. Make copies of the divider cells
++ ** into aTemp[] and remove the the divider Cells from pParent.
++ */
++ nCell = 0;
++ for(i=0; i<nOld; i++){
++ MemPage *pOld = &aOld[i];
++ for(j=0; j<pOld->nCell; j++){
++ apCell[nCell] = pOld->apCell[j];
++ szCell[nCell] = cellSize(pBt, apCell[nCell]);
++ nCell++;
++ }
++ if( i<nOld-1 ){
++ szCell[nCell] = cellSize(pBt, apDiv[i]);
++ memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
++ apCell[nCell] = &aTemp[i];
++ dropCell(pBt, pParent, nxDiv, szCell[nCell]);
++ assert( SWAB32(pBt, apCell[nCell]->h.leftChild)==pgnoOld[i] );
++ apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
++ nCell++;
++ }
++ }
++
++ /*
++ ** Figure out the number of pages needed to hold all nCell cells.
++ ** Store this number in "k". Also compute szNew[] which is the total
++ ** size of all cells on the i-th page and cntNew[] which is the index
++ ** in apCell[] of the cell that divides path i from path i+1.
++ ** cntNew[k] should equal nCell.
++ **
++ ** This little patch of code is critical for keeping the tree
++ ** balanced.
++ */
++ for(subtotal=k=i=0; i<nCell; i++){
++ subtotal += szCell[i];
++ if( subtotal > USABLE_SPACE ){
++ szNew[k] = subtotal - szCell[i];
++ cntNew[k] = i;
++ subtotal = 0;
++ k++;
++ }
++ }
++ szNew[k] = subtotal;
++ cntNew[k] = nCell;
++ k++;
++ for(i=k-1; i>0; i--){
++ while( szNew[i]<USABLE_SPACE/2 ){
++ cntNew[i-1]--;
++ assert( cntNew[i-1]>0 );
++ szNew[i] += szCell[cntNew[i-1]];
++ szNew[i-1] -= szCell[cntNew[i-1]-1];
++ }
++ }
++ assert( cntNew[0]>0 );
++
++ /*
++ ** Allocate k new pages. Reuse old pages where possible.
++ */
++ for(i=0; i<k; i++){
++ if( i<nOld ){
++ apNew[i] = apOld[i];
++ pgnoNew[i] = pgnoOld[i];
++ apOld[i] = 0;
++ sqlitepager_write(apNew[i]);
++ }else{
++ rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]);
++ if( rc ) goto balance_cleanup;
++ }
++ nNew++;
++ zeroPage(pBt, apNew[i]);
++ apNew[i]->isInit = 1;
++ }
++
++ /* Free any old pages that were not reused as new pages.
++ */
++ while( i<nOld ){
++ rc = freePage(pBt, apOld[i], pgnoOld[i]);
++ if( rc ) goto balance_cleanup;
++ sqlitepager_unref(apOld[i]);
++ apOld[i] = 0;
++ i++;
++ }
++
++ /*
++ ** Put the new pages in accending order. This helps to
++ ** keep entries in the disk file in order so that a scan
++ ** of the table is a linear scan through the file. That
++ ** in turn helps the operating system to deliver pages
++ ** from the disk more rapidly.
++ **
++ ** An O(n^2) insertion sort algorithm is used, but since
++ ** n is never more than NB (a small constant), that should
++ ** not be a problem.
++ **
++ ** When NB==3, this one optimization makes the database
++ ** about 25% faster for large insertions and deletions.
++ */
++ for(i=0; i<k-1; i++){
++ int minV = pgnoNew[i];
++ int minI = i;
++ for(j=i+1; j<k; j++){
++ if( pgnoNew[j]<(unsigned)minV ){
++ minI = j;
++ minV = pgnoNew[j];
++ }
++ }
++ if( minI>i ){
++ int t;
++ MemPage *pT;
++ t = pgnoNew[i];
++ pT = apNew[i];
++ pgnoNew[i] = pgnoNew[minI];
++ apNew[i] = apNew[minI];
++ pgnoNew[minI] = t;
++ apNew[minI] = pT;
++ }
++ }
++
++ /*
++ ** Evenly distribute the data in apCell[] across the new pages.
++ ** Insert divider cells into pParent as necessary.
++ */
++ j = 0;
++ for(i=0; i<nNew; i++){
++ MemPage *pNew = apNew[i];
++ while( j<cntNew[i] ){
++ assert( pNew->nFree>=szCell[j] );
++ if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
++ insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]);
++ j++;
++ }
++ assert( pNew->nCell>0 );
++ assert( !pNew->isOverfull );
++ relinkCellList(pBt, pNew);
++ if( i<nNew-1 && j<nCell ){
++ pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
++ apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]);
++ if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
++ insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]);
++ j++;
++ nxDiv++;
++ }
++ }
++ assert( j==nCell );
++ apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild;
++ if( nxDiv==pParent->nCell ){
++ pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]);
++ }else{
++ pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]);
++ }
++ if( pCur ){
++ if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
++ assert( pCur->pPage==pOldCurPage );
++ pCur->idx += nNew - nOld;
++ }else{
++ assert( pOldCurPage!=0 );
++ sqlitepager_ref(pCur->pPage);
++ sqlitepager_unref(pOldCurPage);
++ }
++ }
++
++ /*
++ ** Reparent children of all cells.
++ */
++ for(i=0; i<nNew; i++){
++ reparentChildPages(pBt, apNew[i]);
++ }
++ reparentChildPages(pBt, pParent);
++
++ /*
++ ** balance the parent page.
++ */
++ rc = balance(pBt, pParent, pCur);
++
++ /*
++ ** Cleanup before returning.
++ */
++balance_cleanup:
++ if( extraUnref ){
++ sqlitepager_unref(extraUnref);
++ }
++ for(i=0; i<nOld; i++){
++ if( apOld[i]!=0 && apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
++ }
++ for(i=0; i<nNew; i++){
++ sqlitepager_unref(apNew[i]);
++ }
++ if( pCur && pCur->pPage==0 ){
++ pCur->pPage = pParent;
++ pCur->idx = 0;
++ }else{
++ sqlitepager_unref(pParent);
++ }
++ return rc;
++}
++
++/*
++** This routine checks all cursors that point to the same table
++** as pCur points to. If any of those cursors were opened with
++** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
++** cursors point to the same table were opened with wrFlag==1
++** then this routine returns SQLITE_OK.
++**
++** In addition to checking for read-locks (where a read-lock
++** means a cursor opened with wrFlag==0) this routine also moves
++** all cursors other than pCur so that they are pointing to the
++** first Cell on root page. This is necessary because an insert
++** or delete might change the number of cells on a page or delete
++** a page entirely and we do not want to leave any cursors
++** pointing to non-existant pages or cells.
++*/
++static int checkReadLocks(BtCursor *pCur){
++ BtCursor *p;
++ assert( pCur->wrFlag );
++ for(p=pCur->pShared; p!=pCur; p=p->pShared){
++ assert( p );
++ assert( p->pgnoRoot==pCur->pgnoRoot );
++ if( p->wrFlag==0 ) return SQLITE_LOCKED;
++ if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
++ moveToRoot(p);
++ }
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Insert a new record into the BTree. The key is given by (pKey,nKey)
++** and the data is given by (pData,nData). The cursor is used only to
++** define what database the record should be inserted into. The cursor
++** is left pointing at the new record.
++*/
++static int fileBtreeInsert(
++ BtCursor *pCur, /* Insert data into the table of this cursor */
++ const void *pKey, int nKey, /* The key of the new record */
++ const void *pData, int nData /* The data of the new record */
++){
++ Cell newCell;
++ int rc;
++ int loc;
++ int szNew;
++ MemPage *pPage;
++ Btree *pBt = pCur->pBt;
++
++ if( pCur->pPage==0 ){
++ return SQLITE_ABORT; /* A rollback destroyed this cursor */
++ }
++ if( !pBt->inTrans || nKey+nData==0 ){
++ /* Must start a transaction before doing an insert */
++ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
++ }
++ assert( !pBt->readOnly );
++ if( !pCur->wrFlag ){
++ return SQLITE_PERM; /* Cursor not open for writing */
++ }
++ if( checkReadLocks(pCur) ){
++ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
++ }
++ rc = fileBtreeMoveto(pCur, pKey, nKey, &loc);
++ if( rc ) return rc;
++ pPage = pCur->pPage;
++ assert( pPage->isInit );
++ rc = sqlitepager_write(pPage);
++ if( rc ) return rc;
++ rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
++ if( rc ) return rc;
++ szNew = cellSize(pBt, &newCell);
++ if( loc==0 ){
++ newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
++ rc = clearCell(pBt, pPage->apCell[pCur->idx]);
++ if( rc ) return rc;
++ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx]));
++ }else if( loc<0 && pPage->nCell>0 ){
++ assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
++ pCur->idx++;
++ }else{
++ assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
++ }
++ insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
++ rc = balance(pCur->pBt, pPage, pCur);
++ /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
++ /* fflush(stdout); */
++ pCur->eSkip = SKIP_INVALID;
++ return rc;
++}
++
++/*
++** Delete the entry that the cursor is pointing to.
++**
++** The cursor is left pointing at either the next or the previous
++** entry. If the cursor is left pointing to the next entry, then
++** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
++** sqliteBtreeNext() to be a no-op. That way, you can always call
++** sqliteBtreeNext() after a delete and the cursor will be left
++** pointing to the first entry after the deleted entry. Similarly,
++** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
++** the entry prior to the deleted entry so that a subsequent call to
++** sqliteBtreePrevious() will always leave the cursor pointing at the
++** entry immediately before the one that was deleted.
++*/
++static int fileBtreeDelete(BtCursor *pCur){
++ MemPage *pPage = pCur->pPage;
++ Cell *pCell;
++ int rc;
++ Pgno pgnoChild;
++ Btree *pBt = pCur->pBt;
++
++ assert( pPage->isInit );
++ if( pCur->pPage==0 ){
++ return SQLITE_ABORT; /* A rollback destroyed this cursor */
++ }
++ if( !pBt->inTrans ){
++ /* Must start a transaction before doing a delete */
++ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
++ }
++ assert( !pBt->readOnly );
++ if( pCur->idx >= pPage->nCell ){
++ return SQLITE_ERROR; /* The cursor is not pointing to anything */
++ }
++ if( !pCur->wrFlag ){
++ return SQLITE_PERM; /* Did not open this cursor for writing */
++ }
++ if( checkReadLocks(pCur) ){
++ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
++ }
++ rc = sqlitepager_write(pPage);
++ if( rc ) return rc;
++ pCell = pPage->apCell[pCur->idx];
++ pgnoChild = SWAB32(pBt, pCell->h.leftChild);
++ clearCell(pBt, pCell);
++ if( pgnoChild ){
++ /*
++ ** The entry we are about to delete is not a leaf so if we do not
++ ** do something we will leave a hole on an internal page.
++ ** We have to fill the hole by moving in a cell from a leaf. The
++ ** next Cell after the one to be deleted is guaranteed to exist and
++ ** to be a leaf so we can use it.
++ */
++ BtCursor leafCur;
++ Cell *pNext;
++ int szNext;
++ int notUsed;
++ getTempCursor(pCur, &leafCur);
++ rc = fileBtreeNext(&leafCur, ¬Used);
++ if( rc!=SQLITE_OK ){
++ if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
++ return rc;
++ }
++ rc = sqlitepager_write(leafCur.pPage);
++ if( rc ) return rc;
++ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
++ pNext = leafCur.pPage->apCell[leafCur.idx];
++ szNext = cellSize(pBt, pNext);
++ pNext->h.leftChild = SWAB32(pBt, pgnoChild);
++ insertCell(pBt, pPage, pCur->idx, pNext, szNext);
++ rc = balance(pBt, pPage, pCur);
++ if( rc ) return rc;
++ pCur->eSkip = SKIP_NEXT;
++ dropCell(pBt, leafCur.pPage, leafCur.idx, szNext);
++ rc = balance(pBt, leafCur.pPage, pCur);
++ releaseTempCursor(&leafCur);
++ }else{
++ dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
++ if( pCur->idx>=pPage->nCell ){
++ pCur->idx = pPage->nCell-1;
++ if( pCur->idx<0 ){
++ pCur->idx = 0;
++ pCur->eSkip = SKIP_NEXT;
++ }else{
++ pCur->eSkip = SKIP_PREV;
++ }
++ }else{
++ pCur->eSkip = SKIP_NEXT;
++ }
++ rc = balance(pBt, pPage, pCur);
++ }
++ return rc;
++}
++
++/*
++** Create a new BTree table. Write into *piTable the page
++** number for the root page of the new table.
++**
++** In the current implementation, BTree tables and BTree indices are the
++** the same. In the future, we may change this so that BTree tables
++** are restricted to having a 4-byte integer key and arbitrary data and
++** BTree indices are restricted to having an arbitrary key and no data.
++** But for now, this routine also serves to create indices.
++*/
++static int fileBtreeCreateTable(Btree *pBt, int *piTable){
++ MemPage *pRoot;
++ Pgno pgnoRoot;
++ int rc;
++ if( !pBt->inTrans ){
++ /* Must start a transaction first */
++ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
++ }
++ if( pBt->readOnly ){
++ return SQLITE_READONLY;
++ }
++ rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0);
++ if( rc ) return rc;
++ assert( sqlitepager_iswriteable(pRoot) );
++ zeroPage(pBt, pRoot);
++ sqlitepager_unref(pRoot);
++ *piTable = (int)pgnoRoot;
++ return SQLITE_OK;
++}
++
++/*
++** Erase the given database page and all its children. Return
++** the page to the freelist.
++*/
++static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
++ MemPage *pPage;
++ int rc;
++ Cell *pCell;
++ int idx;
++
++ rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
++ if( rc ) return rc;
++ rc = sqlitepager_write(pPage);
++ if( rc ) return rc;
++ rc = initPage(pBt, pPage, pgno, 0);
++ if( rc ) return rc;
++ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
++ while( idx>0 ){
++ pCell = (Cell*)&pPage->u.aDisk[idx];
++ idx = SWAB16(pBt, pCell->h.iNext);
++ if( pCell->h.leftChild ){
++ rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
++ if( rc ) return rc;
++ }
++ rc = clearCell(pBt, pCell);
++ if( rc ) return rc;
++ }
++ if( pPage->u.hdr.rightChild ){
++ rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
++ if( rc ) return rc;
++ }
++ if( freePageFlag ){
++ rc = freePage(pBt, pPage, pgno);
++ }else{
++ zeroPage(pBt, pPage);
++ }
++ sqlitepager_unref(pPage);
++ return rc;
++}
++
++/*
++** Delete all information from a single table in the database.
++*/
++static int fileBtreeClearTable(Btree *pBt, int iTable){
++ int rc;
++ BtCursor *pCur;
++ if( !pBt->inTrans ){
++ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
++ }
++ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
++ if( pCur->pgnoRoot==(Pgno)iTable ){
++ if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
++ moveToRoot(pCur);
++ }
++ }
++ rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
++ if( rc ){
++ fileBtreeRollback(pBt);
++ }
++ return rc;
++}
++
++/*
++** Erase all information in a table and add the root of the table to
++** the freelist. Except, the root of the principle table (the one on
++** page 2) is never added to the freelist.
++*/
++static int fileBtreeDropTable(Btree *pBt, int iTable){
++ int rc;
++ MemPage *pPage;
++ BtCursor *pCur;
++ if( !pBt->inTrans ){
++ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
++ }
++ for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
++ if( pCur->pgnoRoot==(Pgno)iTable ){
++ return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
++ }
++ }
++ rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
++ if( rc ) return rc;
++ rc = fileBtreeClearTable(pBt, iTable);
++ if( rc ) return rc;
++ if( iTable>2 ){
++ rc = freePage(pBt, pPage, iTable);
++ }else{
++ zeroPage(pBt, pPage);
++ }
++ sqlitepager_unref(pPage);
++ return rc;
++}
++
++#if 0 /* UNTESTED */
++/*
++** Copy all cell data from one database file into another.
++** pages back the freelist.
++*/
++static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){
++ Pager *pFromPager = pBtFrom->pPager;
++ OverflowPage *pOvfl;
++ Pgno ovfl, nextOvfl;
++ Pgno *pPrev;
++ int rc = SQLITE_OK;
++ MemPage *pNew, *pPrevPg;
++ Pgno new;
++
++ if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){
++ return SQLITE_OK;
++ }
++ pPrev = &pCell->ovfl;
++ pPrevPg = 0;
++ ovfl = SWAB32(pBtTo, pCell->ovfl);
++ while( ovfl && rc==SQLITE_OK ){
++ rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl);
++ if( rc ) return rc;
++ nextOvfl = SWAB32(pBtFrom, pOvfl->iNext);
++ rc = allocatePage(pBtTo, &pNew, &new, 0);
++ if( rc==SQLITE_OK ){
++ rc = sqlitepager_write(pNew);
++ if( rc==SQLITE_OK ){
++ memcpy(pNew, pOvfl, SQLITE_USABLE_SIZE);
++ *pPrev = SWAB32(pBtTo, new);
++ if( pPrevPg ){
++ sqlitepager_unref(pPrevPg);
++ }
++ pPrev = &pOvfl->iNext;
++ pPrevPg = pNew;
++ }
++ }
++ sqlitepager_unref(pOvfl);
++ ovfl = nextOvfl;
++ }
++ if( pPrevPg ){
++ sqlitepager_unref(pPrevPg);
++ }
++ return rc;
++}
++#endif
++
++
++#if 0 /* UNTESTED */
++/*
++** Copy a page of data from one database over to another.
++*/
++static int copyDatabasePage(
++ Btree *pBtFrom,
++ Pgno pgnoFrom,
++ Btree *pBtTo,
++ Pgno *pTo
++){
++ MemPage *pPageFrom, *pPage;
++ Pgno to;
++ int rc;
++ Cell *pCell;
++ int idx;
++
++ rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom);
++ if( rc ) return rc;
++ rc = allocatePage(pBt, &pPage, pTo, 0);
++ if( rc==SQLITE_OK ){
++ rc = sqlitepager_write(pPage);
++ }
++ if( rc==SQLITE_OK ){
++ memcpy(pPage, pPageFrom, SQLITE_USABLE_SIZE);
++ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
++ while( idx>0 ){
++ pCell = (Cell*)&pPage->u.aDisk[idx];
++ idx = SWAB16(pBt, pCell->h.iNext);
++ if( pCell->h.leftChild ){
++ Pgno newChld;
++ rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild),
++ pBtTo, &newChld);
++ if( rc ) return rc;
++ pCell->h.leftChild = SWAB32(pBtFrom, newChld);
++ }
++ rc = copyCell(pBtFrom, pBtTo, pCell);
++ if( rc ) return rc;
++ }
++ if( pPage->u.hdr.rightChild ){
++ Pgno newChld;
++ rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild),
++ pBtTo, &newChld);
++ if( rc ) return rc;
++ pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild);
++ }
++ }
++ sqlitepager_unref(pPage);
++ return rc;
++}
++#endif
++
++/*
++** Read the meta-information out of a database file.
++*/
++static int fileBtreeGetMeta(Btree *pBt, int *aMeta){
++ PageOne *pP1;
++ int rc;
++ int i;
++
++ rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
++ if( rc ) return rc;
++ aMeta[0] = SWAB32(pBt, pP1->nFree);
++ for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
++ aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]);
++ }
++ sqlitepager_unref(pP1);
++ return SQLITE_OK;
++}
++
++/*
++** Write meta-information back into the database.
++*/
++static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){
++ PageOne *pP1;
++ int rc, i;
++ if( !pBt->inTrans ){
++ return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
++ }
++ pP1 = pBt->page1;
++ rc = sqlitepager_write(pP1);
++ if( rc ) return rc;
++ for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
++ pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]);
++ }
++ return SQLITE_OK;
++}
++
++/******************************************************************************
++** The complete implementation of the BTree subsystem is above this line.
++** All the code the follows is for testing and troubleshooting the BTree
++** subsystem. None of the code that follows is used during normal operation.
++******************************************************************************/
++
++/*
++** Print a disassembly of the given page on standard output. This routine
++** is used for debugging and testing only.
++*/
++#ifdef SQLITE_TEST
++static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){
++ int rc;
++ MemPage *pPage;
++ int i, j;
++ int nFree;
++ u16 idx;
++ char range[20];
++ unsigned char payload[20];
++ rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
++ if( rc ){
++ return rc;
++ }
++ if( recursive ) printf("PAGE %d:\n", pgno);
++ i = 0;
++ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
++ while( idx>0 && idx<=SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
++ Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
++ int sz = cellSize(pBt, pCell);
++ sprintf(range,"%d..%d", idx, idx+sz-1);
++ sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
++ if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
++ memcpy(payload, pCell->aPayload, sz);
++ for(j=0; j<sz; j++){
++ if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
++ }
++ payload[sz] = 0;
++ printf(
++ "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
++ i, range, (int)pCell->h.leftChild,
++ NKEY(pBt, pCell->h), NDATA(pBt, pCell->h),
++ payload
++ );
++ if( pPage->isInit && pPage->apCell[i]!=pCell ){
++ printf("**** apCell[%d] does not match on prior entry ****\n", i);
++ }
++ i++;
++ idx = SWAB16(pBt, pCell->h.iNext);
++ }
++ if( idx!=0 ){
++ printf("ERROR: next cell index out of range: %d\n", idx);
++ }
++ printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild));
++ nFree = 0;
++ i = 0;
++ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
++ while( idx>0 && idx<SQLITE_USABLE_SIZE ){
++ FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
++ sprintf(range,"%d..%d", idx, idx+p->iSize-1);
++ nFree += SWAB16(pBt, p->iSize);
++ printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
++ i, range, SWAB16(pBt, p->iSize), nFree);
++ idx = SWAB16(pBt, p->iNext);
++ i++;
++ }
++ if( idx!=0 ){
++ printf("ERROR: next freeblock index out of range: %d\n", idx);
++ }
++ if( recursive && pPage->u.hdr.rightChild!=0 ){
++ idx = SWAB16(pBt, pPage->u.hdr.firstCell);
++ while( idx>0 && idx<SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
++ Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
++ fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
++ idx = SWAB16(pBt, pCell->h.iNext);
++ }
++ fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
++ }
++ sqlitepager_unref(pPage);
++ return SQLITE_OK;
++}
++#endif
++
++#ifdef SQLITE_TEST
++/*
++** Fill aResult[] with information about the entry and page that the
++** cursor is pointing to.
++**
++** aResult[0] = The page number
++** aResult[1] = The entry number
++** aResult[2] = Total number of entries on this page
++** aResult[3] = Size of this entry
++** aResult[4] = Number of free bytes on this page
++** aResult[5] = Number of free blocks on the page
++** aResult[6] = Page number of the left child of this entry
++** aResult[7] = Page number of the right child for the whole page
++**
++** This routine is used for testing and debugging only.
++*/
++static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){
++ int cnt, idx;
++ MemPage *pPage = pCur->pPage;
++ Btree *pBt = pCur->pBt;
++ aResult[0] = sqlitepager_pagenumber(pPage);
++ aResult[1] = pCur->idx;
++ aResult[2] = pPage->nCell;
++ if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
++ aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]);
++ aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild);
++ }else{
++ aResult[3] = 0;
++ aResult[6] = 0;
++ }
++ aResult[4] = pPage->nFree;
++ cnt = 0;
++ idx = SWAB16(pBt, pPage->u.hdr.firstFree);
++ while( idx>0 && idx<SQLITE_USABLE_SIZE ){
++ cnt++;
++ idx = SWAB16(pBt, ((FreeBlk*)&pPage->u.aDisk[idx])->iNext);
++ }
++ aResult[5] = cnt;
++ aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild);
++ return SQLITE_OK;
++}
++#endif
++
++/*
++** Return the pager associated with a BTree. This routine is used for
++** testing and debugging only.
++*/
++static Pager *fileBtreePager(Btree *pBt){
++ return pBt->pPager;
++}
++
++/*
++** This structure is passed around through all the sanity checking routines
++** in order to keep track of some global state information.
++*/
++typedef struct IntegrityCk IntegrityCk;
++struct IntegrityCk {
++ Btree *pBt; /* The tree being checked out */
++ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
++ int nPage; /* Number of pages in the database */
++ int *anRef; /* Number of times each page is referenced */
++ char *zErrMsg; /* An error message. NULL of no errors seen. */
++};
++
++/*
++** Append a message to the error message string.
++*/
++static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
++ if( pCheck->zErrMsg ){
++ char *zOld = pCheck->zErrMsg;
++ pCheck->zErrMsg = 0;
++ sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
++ sqliteFree(zOld);
++ }else{
++ sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
++ }
++}
++
++/*
++** Add 1 to the reference count for page iPage. If this is the second
++** reference to the page, add an error message to pCheck->zErrMsg.
++** Return 1 if there are 2 ore more references to the page and 0 if
++** if this is the first reference to the page.
++**
++** Also check that the page number is in bounds.
++*/
++static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
++ if( iPage==0 ) return 1;
++ if( iPage>pCheck->nPage || iPage<0 ){
++ char zBuf[100];
++ sprintf(zBuf, "invalid page number %d", iPage);
++ checkAppendMsg(pCheck, zContext, zBuf);
++ return 1;
++ }
++ if( pCheck->anRef[iPage]==1 ){
++ char zBuf[100];
++ sprintf(zBuf, "2nd reference to page %d", iPage);
++ checkAppendMsg(pCheck, zContext, zBuf);
++ return 1;
++ }
++ return (pCheck->anRef[iPage]++)>1;
++}
++
++/*
++** Check the integrity of the freelist or of an overflow page list.
++** Verify that the number of pages on the list is N.
++*/
++static void checkList(
++ IntegrityCk *pCheck, /* Integrity checking context */
++ int isFreeList, /* True for a freelist. False for overflow page list */
++ int iPage, /* Page number for first page in the list */
++ int N, /* Expected number of pages in the list */
++ char *zContext /* Context for error messages */
++){
++ int i;
++ char zMsg[100];
++ while( N-- > 0 ){
++ OverflowPage *pOvfl;
++ if( iPage<1 ){
++ sprintf(zMsg, "%d pages missing from overflow list", N+1);
++ checkAppendMsg(pCheck, zContext, zMsg);
++ break;
++ }
++ if( checkRef(pCheck, iPage, zContext) ) break;
++ if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
++ sprintf(zMsg, "failed to get page %d", iPage);
++ checkAppendMsg(pCheck, zContext, zMsg);
++ break;
++ }
++ if( isFreeList ){
++ FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
++ int n = SWAB32(pCheck->pBt, pInfo->nFree);
++ for(i=0; i<n; i++){
++ checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zContext);
++ }
++ N -= n;
++ }
++ iPage = SWAB32(pCheck->pBt, pOvfl->iNext);
++ sqlitepager_unref(pOvfl);
++ }
++}
++
++/*
++** Return negative if zKey1<zKey2.
++** Return zero if zKey1==zKey2.
++** Return positive if zKey1>zKey2.
++*/
++static int keyCompare(
++ const char *zKey1, int nKey1,
++ const char *zKey2, int nKey2
++){
++ int min = nKey1>nKey2 ? nKey2 : nKey1;
++ int c = memcmp(zKey1, zKey2, min);
++ if( c==0 ){
++ c = nKey1 - nKey2;
++ }
++ return c;
++}
++
++/*
++** Do various sanity checks on a single page of a tree. Return
++** the tree depth. Root pages return 0. Parents of root pages
++** return 1, and so forth.
++**
++** These checks are done:
++**
++** 1. Make sure that cells and freeblocks do not overlap
++** but combine to completely cover the page.
++** 2. Make sure cell keys are in order.
++** 3. Make sure no key is less than or equal to zLowerBound.
++** 4. Make sure no key is greater than or equal to zUpperBound.
++** 5. Check the integrity of overflow pages.
++** 6. Recursively call checkTreePage on all children.
++** 7. Verify that the depth of all children is the same.
++** 8. Make sure this page is at least 33% full or else it is
++** the root of the tree.
++*/
++static int checkTreePage(
++ IntegrityCk *pCheck, /* Context for the sanity check */
++ int iPage, /* Page number of the page to check */
++ MemPage *pParent, /* Parent page */
++ char *zParentContext, /* Parent context */
++ char *zLowerBound, /* All keys should be greater than this, if not NULL */
++ int nLower, /* Number of characters in zLowerBound */
++ char *zUpperBound, /* All keys should be less than this, if not NULL */
++ int nUpper /* Number of characters in zUpperBound */
++){
++ MemPage *pPage;
++ int i, rc, depth, d2, pgno;
++ char *zKey1, *zKey2;
++ int nKey1, nKey2;
++ BtCursor cur;
++ Btree *pBt;
++ char zMsg[100];
++ char zContext[100];
++ char hit[SQLITE_USABLE_SIZE];
++
++ /* Check that the page exists
++ */
++ cur.pBt = pBt = pCheck->pBt;
++ if( iPage==0 ) return 0;
++ if( checkRef(pCheck, iPage, zParentContext) ) return 0;
++ sprintf(zContext, "On tree page %d: ", iPage);
++ if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
++ sprintf(zMsg, "unable to get the page. error code=%d", rc);
++ checkAppendMsg(pCheck, zContext, zMsg);
++ return 0;
++ }
++ if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){
++ sprintf(zMsg, "initPage() returns error code %d", rc);
++ checkAppendMsg(pCheck, zContext, zMsg);
++ sqlitepager_unref(pPage);
++ return 0;
++ }
++
++ /* Check out all the cells.
++ */
++ depth = 0;
++ if( zLowerBound ){
++ zKey1 = sqliteMalloc( nLower+1 );
++ memcpy(zKey1, zLowerBound, nLower);
++ zKey1[nLower] = 0;
++ }else{
++ zKey1 = 0;
++ }
++ nKey1 = nLower;
++ cur.pPage = pPage;
++ for(i=0; i<pPage->nCell; i++){
++ Cell *pCell = pPage->apCell[i];
++ int sz;
++
++ /* Check payload overflow pages
++ */
++ nKey2 = NKEY(pBt, pCell->h);
++ sz = nKey2 + NDATA(pBt, pCell->h);
++ sprintf(zContext, "On page %d cell %d: ", iPage, i);
++ if( sz>MX_LOCAL_PAYLOAD ){
++ int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
++ checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext);
++ }
++
++ /* Check that keys are in the right order
++ */
++ cur.idx = i;
++ zKey2 = sqliteMallocRaw( nKey2+1 );
++ getPayload(&cur, 0, nKey2, zKey2);
++ if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){
++ checkAppendMsg(pCheck, zContext, "Key is out of order");
++ }
++
++ /* Check sanity of left child page.
++ */
++ pgno = SWAB32(pBt, pCell->h.leftChild);
++ d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2);
++ if( i>0 && d2!=depth ){
++ checkAppendMsg(pCheck, zContext, "Child page depth differs");
++ }
++ depth = d2;
++ sqliteFree(zKey1);
++ zKey1 = zKey2;
++ nKey1 = nKey2;
++ }
++ pgno = SWAB32(pBt, pPage->u.hdr.rightChild);
++ sprintf(zContext, "On page %d at right child: ", iPage);
++ checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper);
++ sqliteFree(zKey1);
++
++ /* Check for complete coverage of the page
++ */
++ memset(hit, 0, sizeof(hit));
++ memset(hit, 1, sizeof(PageHdr));
++ for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && i<SQLITE_USABLE_SIZE; ){
++ Cell *pCell = (Cell*)&pPage->u.aDisk[i];
++ int j;
++ for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++;
++ i = SWAB16(pBt, pCell->h.iNext);
++ }
++ for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && i<SQLITE_USABLE_SIZE; ){
++ FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
++ int j;
++ for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++;
++ i = SWAB16(pBt,pFBlk->iNext);
++ }
++ for(i=0; i<SQLITE_USABLE_SIZE; i++){
++ if( hit[i]==0 ){
++ sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
++ checkAppendMsg(pCheck, zMsg, 0);
++ break;
++ }else if( hit[i]>1 ){
++ sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
++ checkAppendMsg(pCheck, zMsg, 0);
++ break;
++ }
++ }
++
++ /* Check that free space is kept to a minimum
++ */
++#if 0
++ if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_USABLE_SIZE/4 ){
++ sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
++ SQLITE_USABLE_SIZE/3);
++ checkAppendMsg(pCheck, zContext, zMsg);
++ }
++#endif
++
++ sqlitepager_unref(pPage);
++ return depth;
++}
++
++/*
++** This routine does a complete check of the given BTree file. aRoot[] is
++** an array of pages numbers were each page number is the root page of
++** a table. nRoot is the number of entries in aRoot.
++**
++** If everything checks out, this routine returns NULL. If something is
++** amiss, an error message is written into memory obtained from malloc()
++** and a pointer to that error message is returned. The calling function
++** is responsible for freeing the error message when it is done.
++*/
++char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
++ int i;
++ int nRef;
++ IntegrityCk sCheck;
++
++ nRef = *sqlitepager_stats(pBt->pPager);
++ if( lockBtree(pBt)!=SQLITE_OK ){
++ return sqliteStrDup("Unable to acquire a read lock on the database");
++ }
++ sCheck.pBt = pBt;
++ sCheck.pPager = pBt->pPager;
++ sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
++ if( sCheck.nPage==0 ){
++ unlockBtreeIfUnused(pBt);
++ return 0;
++ }
++ sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
++ sCheck.anRef[1] = 1;
++ for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
++ sCheck.zErrMsg = 0;
++
++ /* Check the integrity of the freelist
++ */
++ checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList),
++ SWAB32(pBt, pBt->page1->nFree), "Main freelist: ");
++
++ /* Check all the tables.
++ */
++ for(i=0; i<nRoot; i++){
++ if( aRoot[i]==0 ) continue;
++ checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
++ }
++
++ /* Make sure every page in the file is referenced
++ */
++ for(i=1; i<=sCheck.nPage; i++){
++ if( sCheck.anRef[i]==0 ){
++ char zBuf[100];
++ sprintf(zBuf, "Page %d is never used", i);
++ checkAppendMsg(&sCheck, zBuf, 0);
++ }
++ }
++
++ /* Make sure this analysis did not leave any unref() pages
++ */
++ unlockBtreeIfUnused(pBt);
++ if( nRef != *sqlitepager_stats(pBt->pPager) ){
++ char zBuf[100];
++ sprintf(zBuf,
++ "Outstanding page count goes from %d to %d during this analysis",
++ nRef, *sqlitepager_stats(pBt->pPager)
++ );
++ checkAppendMsg(&sCheck, zBuf, 0);
++ }
++
++ /* Clean up and report errors.
++ */
++ sqliteFree(sCheck.anRef);
++ return sCheck.zErrMsg;
++}
++
++/*
++** Return the full pathname of the underlying database file.
++*/
++static const char *fileBtreeGetFilename(Btree *pBt){
++ assert( pBt->pPager!=0 );
++ return sqlitepager_filename(pBt->pPager);
++}
++
++/*
++** Copy the complete content of pBtFrom into pBtTo. A transaction
++** must be active for both files.
++**
++** The size of file pBtFrom may be reduced by this operation.
++** If anything goes wrong, the transaction on pBtFrom is rolled back.
++*/
++static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
++ int rc = SQLITE_OK;
++ Pgno i, nPage, nToPage;
++
++ if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
++ if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR;
++ if( pBtTo->pCursor ) return SQLITE_BUSY;
++ memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_USABLE_SIZE);
++ rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1);
++ nToPage = sqlitepager_pagecount(pBtTo->pPager);
++ nPage = sqlitepager_pagecount(pBtFrom->pPager);
++ for(i=2; rc==SQLITE_OK && i<=nPage; i++){
++ void *pPage;
++ rc = sqlitepager_get(pBtFrom->pPager, i, &pPage);
++ if( rc ) break;
++ rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage);
++ if( rc ) break;
++ sqlitepager_unref(pPage);
++ }
++ for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
++ void *pPage;
++ rc = sqlitepager_get(pBtTo->pPager, i, &pPage);
++ if( rc ) break;
++ rc = sqlitepager_write(pPage);
++ sqlitepager_unref(pPage);
++ sqlitepager_dont_write(pBtTo->pPager, i);
++ }
++ if( !rc && nPage<nToPage ){
++ rc = sqlitepager_truncate(pBtTo->pPager, nPage);
++ }
++ if( rc ){
++ fileBtreeRollback(pBtTo);
++ }
++ return rc;
++}
++
++/*
++** The following tables contain pointers to all of the interface
++** routines for this implementation of the B*Tree backend. To
++** substitute a different implemention of the backend, one has merely
++** to provide pointers to alternative functions in similar tables.
++*/
++static BtOps sqliteBtreeOps = {
++ fileBtreeClose,
++ fileBtreeSetCacheSize,
++ fileBtreeSetSafetyLevel,
++ fileBtreeBeginTrans,
++ fileBtreeCommit,
++ fileBtreeRollback,
++ fileBtreeBeginCkpt,
++ fileBtreeCommitCkpt,
++ fileBtreeRollbackCkpt,
++ fileBtreeCreateTable,
++ fileBtreeCreateTable, /* Really sqliteBtreeCreateIndex() */
++ fileBtreeDropTable,
++ fileBtreeClearTable,
++ fileBtreeCursor,
++ fileBtreeGetMeta,
++ fileBtreeUpdateMeta,
++ fileBtreeIntegrityCheck,
++ fileBtreeGetFilename,
++ fileBtreeCopyFile,
++ fileBtreePager,
++#ifdef SQLITE_TEST
++ fileBtreePageDump,
++#endif
++};
++static BtCursorOps sqliteBtreeCursorOps = {
++ fileBtreeMoveto,
++ fileBtreeDelete,
++ fileBtreeInsert,
++ fileBtreeFirst,
++ fileBtreeLast,
++ fileBtreeNext,
++ fileBtreePrevious,
++ fileBtreeKeySize,
++ fileBtreeKey,
++ fileBtreeKeyCompare,
++ fileBtreeDataSize,
++ fileBtreeData,
++ fileBtreeCloseCursor,
++#ifdef SQLITE_TEST
++ fileBtreeCursorDump,
++#endif
++};
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/btree.h
+@@ -0,0 +1,156 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This header file defines the interface that the sqlite B-Tree file
++** subsystem. See comments in the source code for a detailed description
++** of what each interface routine does.
++**
++** @(#) $Id$
++*/
++#ifndef _BTREE_H_
++#define _BTREE_H_
++
++/*
++** Forward declarations of structure
++*/
++typedef struct Btree Btree;
++typedef struct BtCursor BtCursor;
++typedef struct BtOps BtOps;
++typedef struct BtCursorOps BtCursorOps;
++
++
++/*
++** An instance of the following structure contains pointers to all
++** methods against an open BTree. Alternative BTree implementations
++** (examples: file based versus in-memory) can be created by substituting
++** different methods. Users of the BTree cannot tell the difference.
++**
++** In C++ we could do this by defining a virtual base class and then
++** creating subclasses for each different implementation. But this is
++** C not C++ so we have to be a little more explicit.
++*/
++struct BtOps {
++ int (*Close)(Btree*);
++ int (*SetCacheSize)(Btree*, int);
++ int (*SetSafetyLevel)(Btree*, int);
++ int (*BeginTrans)(Btree*);
++ int (*Commit)(Btree*);
++ int (*Rollback)(Btree*);
++ int (*BeginCkpt)(Btree*);
++ int (*CommitCkpt)(Btree*);
++ int (*RollbackCkpt)(Btree*);
++ int (*CreateTable)(Btree*, int*);
++ int (*CreateIndex)(Btree*, int*);
++ int (*DropTable)(Btree*, int);
++ int (*ClearTable)(Btree*, int);
++ int (*Cursor)(Btree*, int iTable, int wrFlag, BtCursor **ppCur);
++ int (*GetMeta)(Btree*, int*);
++ int (*UpdateMeta)(Btree*, int*);
++ char *(*IntegrityCheck)(Btree*, int*, int);
++ const char *(*GetFilename)(Btree*);
++ int (*Copyfile)(Btree*,Btree*);
++ struct Pager *(*Pager)(Btree*);
++#ifdef SQLITE_TEST
++ int (*PageDump)(Btree*, int, int);
++#endif
++};
++
++/*
++** An instance of this structure defines all of the methods that can
++** be executed against a cursor.
++*/
++struct BtCursorOps {
++ int (*Moveto)(BtCursor*, const void *pKey, int nKey, int *pRes);
++ int (*Delete)(BtCursor*);
++ int (*Insert)(BtCursor*, const void *pKey, int nKey,
++ const void *pData, int nData);
++ int (*First)(BtCursor*, int *pRes);
++ int (*Last)(BtCursor*, int *pRes);
++ int (*Next)(BtCursor*, int *pRes);
++ int (*Previous)(BtCursor*, int *pRes);
++ int (*KeySize)(BtCursor*, int *pSize);
++ int (*Key)(BtCursor*, int offset, int amt, char *zBuf);
++ int (*KeyCompare)(BtCursor*, const void *pKey, int nKey,
++ int nIgnore, int *pRes);
++ int (*DataSize)(BtCursor*, int *pSize);
++ int (*Data)(BtCursor*, int offset, int amt, char *zBuf);
++ int (*CloseCursor)(BtCursor*);
++#ifdef SQLITE_TEST
++ int (*CursorDump)(BtCursor*, int*);
++#endif
++};
++
++/*
++** The number of 4-byte "meta" values contained on the first page of each
++** database file.
++*/
++#define SQLITE_N_BTREE_META 10
++
++int sqliteBtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree);
++int sqliteRbtreeOpen(const char *zFilename, int mode, int nPg, Btree **ppBtree);
++
++#define btOps(pBt) (*((BtOps **)(pBt)))
++#define btCOps(pCur) (*((BtCursorOps **)(pCur)))
++
++#define sqliteBtreeClose(pBt) (btOps(pBt)->Close(pBt))
++#define sqliteBtreeSetCacheSize(pBt, sz) (btOps(pBt)->SetCacheSize(pBt, sz))
++#define sqliteBtreeSetSafetyLevel(pBt, sl) (btOps(pBt)->SetSafetyLevel(pBt, sl))
++#define sqliteBtreeBeginTrans(pBt) (btOps(pBt)->BeginTrans(pBt))
++#define sqliteBtreeCommit(pBt) (btOps(pBt)->Commit(pBt))
++#define sqliteBtreeRollback(pBt) (btOps(pBt)->Rollback(pBt))
++#define sqliteBtreeBeginCkpt(pBt) (btOps(pBt)->BeginCkpt(pBt))
++#define sqliteBtreeCommitCkpt(pBt) (btOps(pBt)->CommitCkpt(pBt))
++#define sqliteBtreeRollbackCkpt(pBt) (btOps(pBt)->RollbackCkpt(pBt))
++#define sqliteBtreeCreateTable(pBt,piTable)\
++ (btOps(pBt)->CreateTable(pBt,piTable))
++#define sqliteBtreeCreateIndex(pBt, piIndex)\
++ (btOps(pBt)->CreateIndex(pBt, piIndex))
++#define sqliteBtreeDropTable(pBt, iTable) (btOps(pBt)->DropTable(pBt, iTable))
++#define sqliteBtreeClearTable(pBt, iTable)\
++ (btOps(pBt)->ClearTable(pBt, iTable))
++#define sqliteBtreeCursor(pBt, iTable, wrFlag, ppCur)\
++ (btOps(pBt)->Cursor(pBt, iTable, wrFlag, ppCur))
++#define sqliteBtreeMoveto(pCur, pKey, nKey, pRes)\
++ (btCOps(pCur)->Moveto(pCur, pKey, nKey, pRes))
++#define sqliteBtreeDelete(pCur) (btCOps(pCur)->Delete(pCur))
++#define sqliteBtreeInsert(pCur, pKey, nKey, pData, nData) \
++ (btCOps(pCur)->Insert(pCur, pKey, nKey, pData, nData))
++#define sqliteBtreeFirst(pCur, pRes) (btCOps(pCur)->First(pCur, pRes))
++#define sqliteBtreeLast(pCur, pRes) (btCOps(pCur)->Last(pCur, pRes))
++#define sqliteBtreeNext(pCur, pRes) (btCOps(pCur)->Next(pCur, pRes))
++#define sqliteBtreePrevious(pCur, pRes) (btCOps(pCur)->Previous(pCur, pRes))
++#define sqliteBtreeKeySize(pCur, pSize) (btCOps(pCur)->KeySize(pCur, pSize) )
++#define sqliteBtreeKey(pCur, offset, amt, zBuf)\
++ (btCOps(pCur)->Key(pCur, offset, amt, zBuf))
++#define sqliteBtreeKeyCompare(pCur, pKey, nKey, nIgnore, pRes)\
++ (btCOps(pCur)->KeyCompare(pCur, pKey, nKey, nIgnore, pRes))
++#define sqliteBtreeDataSize(pCur, pSize) (btCOps(pCur)->DataSize(pCur, pSize))
++#define sqliteBtreeData(pCur, offset, amt, zBuf)\
++ (btCOps(pCur)->Data(pCur, offset, amt, zBuf))
++#define sqliteBtreeCloseCursor(pCur) (btCOps(pCur)->CloseCursor(pCur))
++#define sqliteBtreeGetMeta(pBt, aMeta) (btOps(pBt)->GetMeta(pBt, aMeta))
++#define sqliteBtreeUpdateMeta(pBt, aMeta) (btOps(pBt)->UpdateMeta(pBt, aMeta))
++#define sqliteBtreeIntegrityCheck(pBt, aRoot, nRoot)\
++ (btOps(pBt)->IntegrityCheck(pBt, aRoot, nRoot))
++#define sqliteBtreeGetFilename(pBt) (btOps(pBt)->GetFilename(pBt))
++#define sqliteBtreeCopyFile(pBt1, pBt2) (btOps(pBt1)->Copyfile(pBt1, pBt2))
++#define sqliteBtreePager(pBt) (btOps(pBt)->Pager(pBt))
++
++#ifdef SQLITE_TEST
++#define sqliteBtreePageDump(pBt, pgno, recursive)\
++ (btOps(pBt)->PageDump(pBt, pgno, recursive))
++#define sqliteBtreeCursorDump(pCur, aResult)\
++ (btCOps(pCur)->CursorDump(pCur, aResult))
++int btree_native_byte_order;
++#endif /* SQLITE_TEST */
++
++
++#endif /* _BTREE_H_ */
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/btree_rb.c
+@@ -0,0 +1,1488 @@
++/*
++** 2003 Feb 4
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** $Id$
++**
++** This file implements an in-core database using Red-Black balanced
++** binary trees.
++**
++** It was contributed to SQLite by anonymous on 2003-Feb-04 23:24:49 UTC.
++*/
++#include "btree.h"
++#include "sqliteInt.h"
++#include <assert.h>
++
++/*
++** Omit this whole file if the SQLITE_OMIT_INMEMORYDB macro is
++** defined. This allows a lot of code to be omitted for installations
++** that do not need it.
++*/
++#ifndef SQLITE_OMIT_INMEMORYDB
++
++
++typedef struct BtRbTree BtRbTree;
++typedef struct BtRbNode BtRbNode;
++typedef struct BtRollbackOp BtRollbackOp;
++typedef struct Rbtree Rbtree;
++typedef struct RbtCursor RbtCursor;
++
++/* Forward declarations */
++static BtOps sqliteRbtreeOps;
++static BtCursorOps sqliteRbtreeCursorOps;
++
++/*
++ * During each transaction (or checkpoint), a linked-list of
++ * "rollback-operations" is accumulated. If the transaction is rolled back,
++ * then the list of operations must be executed (to restore the database to
++ * it's state before the transaction started). If the transaction is to be
++ * committed, just delete the list.
++ *
++ * Each operation is represented as follows, depending on the value of eOp:
++ *
++ * ROLLBACK_INSERT -> Need to insert (pKey, pData) into table iTab.
++ * ROLLBACK_DELETE -> Need to delete the record (pKey) into table iTab.
++ * ROLLBACK_CREATE -> Need to create table iTab.
++ * ROLLBACK_DROP -> Need to drop table iTab.
++ */
++struct BtRollbackOp {
++ u8 eOp;
++ int iTab;
++ int nKey;
++ void *pKey;
++ int nData;
++ void *pData;
++ BtRollbackOp *pNext;
++};
++
++/*
++** Legal values for BtRollbackOp.eOp:
++*/
++#define ROLLBACK_INSERT 1 /* Insert a record */
++#define ROLLBACK_DELETE 2 /* Delete a record */
++#define ROLLBACK_CREATE 3 /* Create a table */
++#define ROLLBACK_DROP 4 /* Drop a table */
++
++struct Rbtree {
++ BtOps *pOps; /* Function table */
++ int aMetaData[SQLITE_N_BTREE_META];
++
++ int next_idx; /* next available table index */
++ Hash tblHash; /* All created tables, by index */
++ u8 isAnonymous; /* True if this Rbtree is to be deleted when closed */
++ u8 eTransState; /* State of this Rbtree wrt transactions */
++
++ BtRollbackOp *pTransRollback;
++ BtRollbackOp *pCheckRollback;
++ BtRollbackOp *pCheckRollbackTail;
++};
++
++/*
++** Legal values for Rbtree.eTransState.
++*/
++#define TRANS_NONE 0 /* No transaction is in progress */
++#define TRANS_INTRANSACTION 1 /* A transaction is in progress */
++#define TRANS_INCHECKPOINT 2 /* A checkpoint is in progress */
++#define TRANS_ROLLBACK 3 /* We are currently rolling back a checkpoint or
++ * transaction. */
++
++struct RbtCursor {
++ BtCursorOps *pOps; /* Function table */
++ Rbtree *pRbtree;
++ BtRbTree *pTree;
++ int iTree; /* Index of pTree in pRbtree */
++ BtRbNode *pNode;
++ RbtCursor *pShared; /* List of all cursors on the same Rbtree */
++ u8 eSkip; /* Determines if next step operation is a no-op */
++ u8 wrFlag; /* True if this cursor is open for writing */
++};
++
++/*
++** Legal values for RbtCursor.eSkip.
++*/
++#define SKIP_NONE 0 /* Always step the cursor */
++#define SKIP_NEXT 1 /* The next sqliteRbtreeNext() is a no-op */
++#define SKIP_PREV 2 /* The next sqliteRbtreePrevious() is a no-op */
++#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
++
++struct BtRbTree {
++ RbtCursor *pCursors; /* All cursors pointing to this tree */
++ BtRbNode *pHead; /* Head of the tree, or NULL */
++};
++
++struct BtRbNode {
++ int nKey;
++ void *pKey;
++ int nData;
++ void *pData;
++ u8 isBlack; /* true for a black node, 0 for a red node */
++ BtRbNode *pParent; /* Nodes parent node, NULL for the tree head */
++ BtRbNode *pLeft; /* Nodes left child, or NULL */
++ BtRbNode *pRight; /* Nodes right child, or NULL */
++
++ int nBlackHeight; /* Only used during the red-black integrity check */
++};
++
++/* Forward declarations */
++static int memRbtreeMoveto(
++ RbtCursor* pCur,
++ const void *pKey,
++ int nKey,
++ int *pRes
++);
++static int memRbtreeClearTable(Rbtree* tree, int n);
++static int memRbtreeNext(RbtCursor* pCur, int *pRes);
++static int memRbtreeLast(RbtCursor* pCur, int *pRes);
++static int memRbtreePrevious(RbtCursor* pCur, int *pRes);
++
++
++/*
++** This routine checks all cursors that point to the same table
++** as pCur points to. If any of those cursors were opened with
++** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
++** cursors point to the same table were opened with wrFlag==1
++** then this routine returns SQLITE_OK.
++**
++** In addition to checking for read-locks (where a read-lock
++** means a cursor opened with wrFlag==0) this routine also NULLs
++** out the pNode field of all other cursors.
++** This is necessary because an insert
++** or delete might change erase the node out from under
++** another cursor.
++*/
++static int checkReadLocks(RbtCursor *pCur){
++ RbtCursor *p;
++ assert( pCur->wrFlag );
++ for(p=pCur->pTree->pCursors; p; p=p->pShared){
++ if( p!=pCur ){
++ if( p->wrFlag==0 ) return SQLITE_LOCKED;
++ p->pNode = 0;
++ }
++ }
++ return SQLITE_OK;
++}
++
++/*
++ * The key-compare function for the red-black trees. Returns as follows:
++ *
++ * (key1 < key2) -1
++ * (key1 == key2) 0
++ * (key1 > key2) 1
++ *
++ * Keys are compared using memcmp(). If one key is an exact prefix of the
++ * other, then the shorter key is less than the longer key.
++ */
++static int key_compare(void const*pKey1, int nKey1, void const*pKey2, int nKey2)
++{
++ int mcmp = memcmp(pKey1, pKey2, (nKey1 <= nKey2)?nKey1:nKey2);
++ if( mcmp == 0){
++ if( nKey1 == nKey2 ) return 0;
++ return ((nKey1 < nKey2)?-1:1);
++ }
++ return ((mcmp>0)?1:-1);
++}
++
++/*
++ * Perform the LEFT-rotate transformation on node X of tree pTree. This
++ * transform is part of the red-black balancing code.
++ *
++ * | |
++ * X Y
++ * / \ / \
++ * a Y X c
++ * / \ / \
++ * b c a b
++ *
++ * BEFORE AFTER
++ */
++static void leftRotate(BtRbTree *pTree, BtRbNode *pX)
++{
++ BtRbNode *pY;
++ BtRbNode *pb;
++ pY = pX->pRight;
++ pb = pY->pLeft;
++
++ pY->pParent = pX->pParent;
++ if( pX->pParent ){
++ if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
++ else pX->pParent->pRight = pY;
++ }
++ pY->pLeft = pX;
++ pX->pParent = pY;
++ pX->pRight = pb;
++ if( pb ) pb->pParent = pX;
++ if( pTree->pHead == pX ) pTree->pHead = pY;
++}
++
++/*
++ * Perform the RIGHT-rotate transformation on node X of tree pTree. This
++ * transform is part of the red-black balancing code.
++ *
++ * | |
++ * X Y
++ * / \ / \
++ * Y c a X
++ * / \ / \
++ * a b b c
++ *
++ * BEFORE AFTER
++ */
++static void rightRotate(BtRbTree *pTree, BtRbNode *pX)
++{
++ BtRbNode *pY;
++ BtRbNode *pb;
++ pY = pX->pLeft;
++ pb = pY->pRight;
++
++ pY->pParent = pX->pParent;
++ if( pX->pParent ){
++ if( pX->pParent->pLeft == pX ) pX->pParent->pLeft = pY;
++ else pX->pParent->pRight = pY;
++ }
++ pY->pRight = pX;
++ pX->pParent = pY;
++ pX->pLeft = pb;
++ if( pb ) pb->pParent = pX;
++ if( pTree->pHead == pX ) pTree->pHead = pY;
++}
++
++/*
++ * A string-manipulation helper function for check_redblack_tree(). If (orig ==
++ * NULL) a copy of val is returned. If (orig != NULL) then a copy of the *
++ * concatenation of orig and val is returned. The original orig is deleted
++ * (using sqliteFree()).
++ */
++static char *append_val(char * orig, char const * val){
++ char *z;
++ if( !orig ){
++ z = sqliteStrDup( val );
++ } else{
++ z = 0;
++ sqliteSetString(&z, orig, val, (char*)0);
++ sqliteFree( orig );
++ }
++ return z;
++}
++
++/*
++ * Append a string representation of the entire node to orig and return it.
++ * This is used to produce debugging information if check_redblack_tree() finds
++ * a problem with a red-black binary tree.
++ */
++static char *append_node(char * orig, BtRbNode *pNode, int indent)
++{
++ char buf[128];
++ int i;
++
++ for( i=0; i<indent; i++ ){
++ orig = append_val(orig, " ");
++ }
++
++ sprintf(buf, "%p", pNode);
++ orig = append_val(orig, buf);
++
++ if( pNode ){
++ indent += 3;
++ if( pNode->isBlack ){
++ orig = append_val(orig, " B \n");
++ }else{
++ orig = append_val(orig, " R \n");
++ }
++ orig = append_node( orig, pNode->pLeft, indent );
++ orig = append_node( orig, pNode->pRight, indent );
++ }else{
++ orig = append_val(orig, "\n");
++ }
++ return orig;
++}
++
++/*
++ * Print a representation of a node to stdout. This function is only included
++ * so you can call it from within a debugger if things get really bad. It
++ * is not called from anyplace in the code.
++ */
++static void print_node(BtRbNode *pNode)
++{
++ char * str = append_node(0, pNode, 0);
++ printf("%s", str);
++
++ /* Suppress a warning message about print_node() being unused */
++ (void)print_node;
++}
++
++/*
++ * Check the following properties of the red-black tree:
++ * (1) - If a node is red, both of it's children are black
++ * (2) - Each path from a given node to a leaf (NULL) node passes thru the
++ * same number of black nodes
++ *
++ * If there is a problem, append a description (using append_val() ) to *msg.
++ */
++static void check_redblack_tree(BtRbTree * tree, char ** msg)
++{
++ BtRbNode *pNode;
++
++ /* 0 -> came from parent
++ * 1 -> came from left
++ * 2 -> came from right */
++ int prev_step = 0;
++
++ pNode = tree->pHead;
++ while( pNode ){
++ switch( prev_step ){
++ case 0:
++ if( pNode->pLeft ){
++ pNode = pNode->pLeft;
++ }else{
++ prev_step = 1;
++ }
++ break;
++ case 1:
++ if( pNode->pRight ){
++ pNode = pNode->pRight;
++ prev_step = 0;
++ }else{
++ prev_step = 2;
++ }
++ break;
++ case 2:
++ /* Check red-black property (1) */
++ if( !pNode->isBlack &&
++ ( (pNode->pLeft && !pNode->pLeft->isBlack) ||
++ (pNode->pRight && !pNode->pRight->isBlack) )
++ ){
++ char buf[128];
++ sprintf(buf, "Red node with red child at %p\n", pNode);
++ *msg = append_val(*msg, buf);
++ *msg = append_node(*msg, tree->pHead, 0);
++ *msg = append_val(*msg, "\n");
++ }
++
++ /* Check red-black property (2) */
++ {
++ int leftHeight = 0;
++ int rightHeight = 0;
++ if( pNode->pLeft ){
++ leftHeight += pNode->pLeft->nBlackHeight;
++ leftHeight += (pNode->pLeft->isBlack?1:0);
++ }
++ if( pNode->pRight ){
++ rightHeight += pNode->pRight->nBlackHeight;
++ rightHeight += (pNode->pRight->isBlack?1:0);
++ }
++ if( leftHeight != rightHeight ){
++ char buf[128];
++ sprintf(buf, "Different black-heights at %p\n", pNode);
++ *msg = append_val(*msg, buf);
++ *msg = append_node(*msg, tree->pHead, 0);
++ *msg = append_val(*msg, "\n");
++ }
++ pNode->nBlackHeight = leftHeight;
++ }
++
++ if( pNode->pParent ){
++ if( pNode == pNode->pParent->pLeft ) prev_step = 1;
++ else prev_step = 2;
++ }
++ pNode = pNode->pParent;
++ break;
++ default: assert(0);
++ }
++ }
++}
++
++/*
++ * Node pX has just been inserted into pTree (by code in sqliteRbtreeInsert()).
++ * It is possible that pX is a red node with a red parent, which is a violation
++ * of the red-black tree properties. This function performs rotations and
++ * color changes to rebalance the tree
++ */
++static void do_insert_balancing(BtRbTree *pTree, BtRbNode *pX)
++{
++ /* In the first iteration of this loop, pX points to the red node just
++ * inserted in the tree. If the parent of pX exists (pX is not the root
++ * node) and is red, then the properties of the red-black tree are
++ * violated.
++ *
++ * At the start of any subsequent iterations, pX points to a red node
++ * with a red parent. In all other respects the tree is a legal red-black
++ * binary tree. */
++ while( pX != pTree->pHead && !pX->pParent->isBlack ){
++ BtRbNode *pUncle;
++ BtRbNode *pGrandparent;
++
++ /* Grandparent of pX must exist and must be black. */
++ pGrandparent = pX->pParent->pParent;
++ assert( pGrandparent );
++ assert( pGrandparent->isBlack );
++
++ /* Uncle of pX may or may not exist. */
++ if( pX->pParent == pGrandparent->pLeft )
++ pUncle = pGrandparent->pRight;
++ else
++ pUncle = pGrandparent->pLeft;
++
++ /* If the uncle of pX exists and is red, we do the following:
++ * | |
++ * G(b) G(r)
++ * / \ / \
++ * U(r) P(r) U(b) P(b)
++ * \ \
++ * X(r) X(r)
++ *
++ * BEFORE AFTER
++ * pX is then set to G. If the parent of G is red, then the while loop
++ * will run again. */
++ if( pUncle && !pUncle->isBlack ){
++ pGrandparent->isBlack = 0;
++ pUncle->isBlack = 1;
++ pX->pParent->isBlack = 1;
++ pX = pGrandparent;
++ }else{
++
++ if( pX->pParent == pGrandparent->pLeft ){
++ if( pX == pX->pParent->pRight ){
++ /* If pX is a right-child, do the following transform, essentially
++ * to change pX into a left-child:
++ * | |
++ * G(b) G(b)
++ * / \ / \
++ * P(r) U(b) X(r) U(b)
++ * \ /
++ * X(r) P(r) <-- new X
++ *
++ * BEFORE AFTER
++ */
++ pX = pX->pParent;
++ leftRotate(pTree, pX);
++ }
++
++ /* Do the following transform, which balances the tree :)
++ * | |
++ * G(b) P(b)
++ * / \ / \
++ * P(r) U(b) X(r) G(r)
++ * / \
++ * X(r) U(b)
++ *
++ * BEFORE AFTER
++ */
++ assert( pGrandparent == pX->pParent->pParent );
++ pGrandparent->isBlack = 0;
++ pX->pParent->isBlack = 1;
++ rightRotate( pTree, pGrandparent );
++
++ }else{
++ /* This code is symetric to the illustrated case above. */
++ if( pX == pX->pParent->pLeft ){
++ pX = pX->pParent;
++ rightRotate(pTree, pX);
++ }
++ assert( pGrandparent == pX->pParent->pParent );
++ pGrandparent->isBlack = 0;
++ pX->pParent->isBlack = 1;
++ leftRotate( pTree, pGrandparent );
++ }
++ }
++ }
++ pTree->pHead->isBlack = 1;
++}
++
++/*
++ * A child of pParent, which in turn had child pX, has just been removed from
++ * pTree (the figure below depicts the operation, Z is being removed). pParent
++ * or pX, or both may be NULL.
++ * | |
++ * P P
++ * / \ / \
++ * Z X
++ * / \
++ * X nil
++ *
++ * This function is only called if Z was black. In this case the red-black tree
++ * properties have been violated, and pX has an "extra black". This function
++ * performs rotations and color-changes to re-balance the tree.
++ */
++static
++void do_delete_balancing(BtRbTree *pTree, BtRbNode *pX, BtRbNode *pParent)
++{
++ BtRbNode *pSib;
++
++ /* TODO: Comment this code! */
++ while( pX != pTree->pHead && (!pX || pX->isBlack) ){
++ if( pX == pParent->pLeft ){
++ pSib = pParent->pRight;
++ if( pSib && !(pSib->isBlack) ){
++ pSib->isBlack = 1;
++ pParent->isBlack = 0;
++ leftRotate(pTree, pParent);
++ pSib = pParent->pRight;
++ }
++ if( !pSib ){
++ pX = pParent;
++ }else if(
++ (!pSib->pLeft || pSib->pLeft->isBlack) &&
++ (!pSib->pRight || pSib->pRight->isBlack) ) {
++ pSib->isBlack = 0;
++ pX = pParent;
++ }else{
++ if( (!pSib->pRight || pSib->pRight->isBlack) ){
++ if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
++ pSib->isBlack = 0;
++ rightRotate( pTree, pSib );
++ pSib = pParent->pRight;
++ }
++ pSib->isBlack = pParent->isBlack;
++ pParent->isBlack = 1;
++ if( pSib->pRight ) pSib->pRight->isBlack = 1;
++ leftRotate(pTree, pParent);
++ pX = pTree->pHead;
++ }
++ }else{
++ pSib = pParent->pLeft;
++ if( pSib && !(pSib->isBlack) ){
++ pSib->isBlack = 1;
++ pParent->isBlack = 0;
++ rightRotate(pTree, pParent);
++ pSib = pParent->pLeft;
++ }
++ if( !pSib ){
++ pX = pParent;
++ }else if(
++ (!pSib->pLeft || pSib->pLeft->isBlack) &&
++ (!pSib->pRight || pSib->pRight->isBlack) ){
++ pSib->isBlack = 0;
++ pX = pParent;
++ }else{
++ if( (!pSib->pLeft || pSib->pLeft->isBlack) ){
++ if( pSib->pRight ) pSib->pRight->isBlack = 1;
++ pSib->isBlack = 0;
++ leftRotate( pTree, pSib );
++ pSib = pParent->pLeft;
++ }
++ pSib->isBlack = pParent->isBlack;
++ pParent->isBlack = 1;
++ if( pSib->pLeft ) pSib->pLeft->isBlack = 1;
++ rightRotate(pTree, pParent);
++ pX = pTree->pHead;
++ }
++ }
++ pParent = pX->pParent;
++ }
++ if( pX ) pX->isBlack = 1;
++}
++
++/*
++ * Create table n in tree pRbtree. Table n must not exist.
++ */
++static void btreeCreateTable(Rbtree* pRbtree, int n)
++{
++ BtRbTree *pNewTbl = sqliteMalloc(sizeof(BtRbTree));
++ sqliteHashInsert(&pRbtree->tblHash, 0, n, pNewTbl);
++}
++
++/*
++ * Log a single "rollback-op" for the given Rbtree. See comments for struct
++ * BtRollbackOp.
++ */
++static void btreeLogRollbackOp(Rbtree* pRbtree, BtRollbackOp *pRollbackOp)
++{
++ assert( pRbtree->eTransState == TRANS_INCHECKPOINT ||
++ pRbtree->eTransState == TRANS_INTRANSACTION );
++ if( pRbtree->eTransState == TRANS_INTRANSACTION ){
++ pRollbackOp->pNext = pRbtree->pTransRollback;
++ pRbtree->pTransRollback = pRollbackOp;
++ }
++ if( pRbtree->eTransState == TRANS_INCHECKPOINT ){
++ if( !pRbtree->pCheckRollback ){
++ pRbtree->pCheckRollbackTail = pRollbackOp;
++ }
++ pRollbackOp->pNext = pRbtree->pCheckRollback;
++ pRbtree->pCheckRollback = pRollbackOp;
++ }
++}
++
++int sqliteRbtreeOpen(
++ const char *zFilename,
++ int mode,
++ int nPg,
++ Btree **ppBtree
++){
++ Rbtree **ppRbtree = (Rbtree**)ppBtree;
++ *ppRbtree = (Rbtree *)sqliteMalloc(sizeof(Rbtree));
++ if( sqlite_malloc_failed ) goto open_no_mem;
++ sqliteHashInit(&(*ppRbtree)->tblHash, SQLITE_HASH_INT, 0);
++
++ /* Create a binary tree for the SQLITE_MASTER table at location 2 */
++ btreeCreateTable(*ppRbtree, 2);
++ if( sqlite_malloc_failed ) goto open_no_mem;
++ (*ppRbtree)->next_idx = 3;
++ (*ppRbtree)->pOps = &sqliteRbtreeOps;
++ /* Set file type to 4; this is so that "attach ':memory:' as ...." does not
++ ** think that the database in uninitialised and refuse to attach
++ */
++ (*ppRbtree)->aMetaData[2] = 4;
++
++ return SQLITE_OK;
++
++open_no_mem:
++ *ppBtree = 0;
++ return SQLITE_NOMEM;
++}
++
++/*
++ * Create a new table in the supplied Rbtree. Set *n to the new table number.
++ * Return SQLITE_OK if the operation is a success.
++ */
++static int memRbtreeCreateTable(Rbtree* tree, int* n)
++{
++ assert( tree->eTransState != TRANS_NONE );
++
++ *n = tree->next_idx++;
++ btreeCreateTable(tree, *n);
++ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
++
++ /* Set up the rollback structure (if we are not doing this as part of a
++ * rollback) */
++ if( tree->eTransState != TRANS_ROLLBACK ){
++ BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
++ if( pRollbackOp==0 ) return SQLITE_NOMEM;
++ pRollbackOp->eOp = ROLLBACK_DROP;
++ pRollbackOp->iTab = *n;
++ btreeLogRollbackOp(tree, pRollbackOp);
++ }
++
++ return SQLITE_OK;
++}
++
++/*
++ * Delete table n from the supplied Rbtree.
++ */
++static int memRbtreeDropTable(Rbtree* tree, int n)
++{
++ BtRbTree *pTree;
++ assert( tree->eTransState != TRANS_NONE );
++
++ memRbtreeClearTable(tree, n);
++ pTree = sqliteHashInsert(&tree->tblHash, 0, n, 0);
++ assert(pTree);
++ assert( pTree->pCursors==0 );
++ sqliteFree(pTree);
++
++ if( tree->eTransState != TRANS_ROLLBACK ){
++ BtRollbackOp *pRollbackOp = sqliteMalloc(sizeof(BtRollbackOp));
++ if( pRollbackOp==0 ) return SQLITE_NOMEM;
++ pRollbackOp->eOp = ROLLBACK_CREATE;
++ pRollbackOp->iTab = n;
++ btreeLogRollbackOp(tree, pRollbackOp);
++ }
++
++ return SQLITE_OK;
++}
++
++static int memRbtreeKeyCompare(RbtCursor* pCur, const void *pKey, int nKey,
++ int nIgnore, int *pRes)
++{
++ assert(pCur);
++
++ if( !pCur->pNode ) {
++ *pRes = -1;
++ } else {
++ if( (pCur->pNode->nKey - nIgnore) < 0 ){
++ *pRes = -1;
++ }else{
++ *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey-nIgnore,
++ pKey, nKey);
++ }
++ }
++ return SQLITE_OK;
++}
++
++/*
++ * Get a new cursor for table iTable of the supplied Rbtree. The wrFlag
++ * parameter indicates that the cursor is open for writing.
++ *
++ * Note that RbtCursor.eSkip and RbtCursor.pNode both initialize to 0.
++ */
++static int memRbtreeCursor(
++ Rbtree* tree,
++ int iTable,
++ int wrFlag,
++ RbtCursor **ppCur
++){
++ RbtCursor *pCur;
++ assert(tree);
++ pCur = *ppCur = sqliteMalloc(sizeof(RbtCursor));
++ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
++ pCur->pTree = sqliteHashFind(&tree->tblHash, 0, iTable);
++ assert( pCur->pTree );
++ pCur->pRbtree = tree;
++ pCur->iTree = iTable;
++ pCur->pOps = &sqliteRbtreeCursorOps;
++ pCur->wrFlag = wrFlag;
++ pCur->pShared = pCur->pTree->pCursors;
++ pCur->pTree->pCursors = pCur;
++
++ assert( (*ppCur)->pTree );
++ return SQLITE_OK;
++}
++
++/*
++ * Insert a new record into the Rbtree. The key is given by (pKey,nKey)
++ * and the data is given by (pData,nData). The cursor is used only to
++ * define what database the record should be inserted into. The cursor
++ * is left pointing at the new record.
++ *
++ * If the key exists already in the tree, just replace the data.
++ */
++static int memRbtreeInsert(
++ RbtCursor* pCur,
++ const void *pKey,
++ int nKey,
++ const void *pDataInput,
++ int nData
++){
++ void * pData;
++ int match;
++
++ /* It is illegal to call sqliteRbtreeInsert() if we are
++ ** not in a transaction */
++ assert( pCur->pRbtree->eTransState != TRANS_NONE );
++
++ /* Make sure some other cursor isn't trying to read this same table */
++ if( checkReadLocks(pCur) ){
++ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
++ }
++
++ /* Take a copy of the input data now, in case we need it for the
++ * replace case */
++ pData = sqliteMallocRaw(nData);
++ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
++ memcpy(pData, pDataInput, nData);
++
++ /* Move the cursor to a node near the key to be inserted. If the key already
++ * exists in the table, then (match == 0). In this case we can just replace
++ * the data associated with the entry, we don't need to manipulate the tree.
++ *
++ * If there is no exact match, then the cursor points at what would be either
++ * the predecessor (match == -1) or successor (match == 1) of the
++ * searched-for key, were it to be inserted. The new node becomes a child of
++ * this node.
++ *
++ * The new node is initially red.
++ */
++ memRbtreeMoveto( pCur, pKey, nKey, &match);
++ if( match ){
++ BtRbNode *pNode = sqliteMalloc(sizeof(BtRbNode));
++ if( pNode==0 ) return SQLITE_NOMEM;
++ pNode->nKey = nKey;
++ pNode->pKey = sqliteMallocRaw(nKey);
++ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
++ memcpy(pNode->pKey, pKey, nKey);
++ pNode->nData = nData;
++ pNode->pData = pData;
++ if( pCur->pNode ){
++ switch( match ){
++ case -1:
++ assert( !pCur->pNode->pRight );
++ pNode->pParent = pCur->pNode;
++ pCur->pNode->pRight = pNode;
++ break;
++ case 1:
++ assert( !pCur->pNode->pLeft );
++ pNode->pParent = pCur->pNode;
++ pCur->pNode->pLeft = pNode;
++ break;
++ default:
++ assert(0);
++ }
++ }else{
++ pCur->pTree->pHead = pNode;
++ }
++
++ /* Point the cursor at the node just inserted, as per SQLite requirements */
++ pCur->pNode = pNode;
++
++ /* A new node has just been inserted, so run the balancing code */
++ do_insert_balancing(pCur->pTree, pNode);
++
++ /* Set up a rollback-op in case we have to roll this operation back */
++ if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
++ BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
++ if( pOp==0 ) return SQLITE_NOMEM;
++ pOp->eOp = ROLLBACK_DELETE;
++ pOp->iTab = pCur->iTree;
++ pOp->nKey = pNode->nKey;
++ pOp->pKey = sqliteMallocRaw( pOp->nKey );
++ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
++ memcpy( pOp->pKey, pNode->pKey, pOp->nKey );
++ btreeLogRollbackOp(pCur->pRbtree, pOp);
++ }
++
++ }else{
++ /* No need to insert a new node in the tree, as the key already exists.
++ * Just clobber the current nodes data. */
++
++ /* Set up a rollback-op in case we have to roll this operation back */
++ if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
++ BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
++ if( pOp==0 ) return SQLITE_NOMEM;
++ pOp->iTab = pCur->iTree;
++ pOp->nKey = pCur->pNode->nKey;
++ pOp->pKey = sqliteMallocRaw( pOp->nKey );
++ if( sqlite_malloc_failed ) return SQLITE_NOMEM;
++ memcpy( pOp->pKey, pCur->pNode->pKey, pOp->nKey );
++ pOp->nData = pCur->pNode->nData;
++ pOp->pData = pCur->pNode->pData;
++ pOp->eOp = ROLLBACK_INSERT;
++ btreeLogRollbackOp(pCur->pRbtree, pOp);
++ }else{
++ sqliteFree( pCur->pNode->pData );
++ }
++
++ /* Actually clobber the nodes data */
++ pCur->pNode->pData = pData;
++ pCur->pNode->nData = nData;
++ }
++
++ return SQLITE_OK;
++}
++
++/* Move the cursor so that it points to an entry near pKey.
++** Return a success code.
++**
++** *pRes<0 The cursor is left pointing at an entry that
++** is smaller than pKey or if the table is empty
++** and the cursor is therefore left point to nothing.
++**
++** *pRes==0 The cursor is left pointing at an entry that
++** exactly matches pKey.
++**
++** *pRes>0 The cursor is left pointing at an entry that
++** is larger than pKey.
++*/
++static int memRbtreeMoveto(
++ RbtCursor* pCur,
++ const void *pKey,
++ int nKey,
++ int *pRes
++){
++ BtRbNode *pTmp = 0;
++
++ pCur->pNode = pCur->pTree->pHead;
++ *pRes = -1;
++ while( pCur->pNode && *pRes ) {
++ *pRes = key_compare(pCur->pNode->pKey, pCur->pNode->nKey, pKey, nKey);
++ pTmp = pCur->pNode;
++ switch( *pRes ){
++ case 1: /* cursor > key */
++ pCur->pNode = pCur->pNode->pLeft;
++ break;
++ case -1: /* cursor < key */
++ pCur->pNode = pCur->pNode->pRight;
++ break;
++ }
++ }
++
++ /* If (pCur->pNode == NULL), then we have failed to find a match. Set
++ * pCur->pNode to pTmp, which is either NULL (if the tree is empty) or the
++ * last node traversed in the search. In either case the relation ship
++ * between pTmp and the searched for key is already stored in *pRes. pTmp is
++ * either the successor or predecessor of the key we tried to move to. */
++ if( !pCur->pNode ) pCur->pNode = pTmp;
++ pCur->eSkip = SKIP_NONE;
++
++ return SQLITE_OK;
++}
++
++
++/*
++** Delete the entry that the cursor is pointing to.
++**
++** The cursor is left pointing at either the next or the previous
++** entry. If the cursor is left pointing to the next entry, then
++** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
++** sqliteRbtreeNext() to be a no-op. That way, you can always call
++** sqliteRbtreeNext() after a delete and the cursor will be left
++** pointing to the first entry after the deleted entry. Similarly,
++** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
++** the entry prior to the deleted entry so that a subsequent call to
++** sqliteRbtreePrevious() will always leave the cursor pointing at the
++** entry immediately before the one that was deleted.
++*/
++static int memRbtreeDelete(RbtCursor* pCur)
++{
++ BtRbNode *pZ; /* The one being deleted */
++ BtRbNode *pChild; /* The child of the spliced out node */
++
++ /* It is illegal to call sqliteRbtreeDelete() if we are
++ ** not in a transaction */
++ assert( pCur->pRbtree->eTransState != TRANS_NONE );
++
++ /* Make sure some other cursor isn't trying to read this same table */
++ if( checkReadLocks(pCur) ){
++ return SQLITE_LOCKED; /* The table pCur points to has a read lock */
++ }
++
++ pZ = pCur->pNode;
++ if( !pZ ){
++ return SQLITE_OK;
++ }
++
++ /* If we are not currently doing a rollback, set up a rollback op for this
++ * deletion */
++ if( pCur->pRbtree->eTransState != TRANS_ROLLBACK ){
++ BtRollbackOp *pOp = sqliteMalloc( sizeof(BtRollbackOp) );
++ if( pOp==0 ) return SQLITE_NOMEM;
++ pOp->iTab = pCur->iTree;
++ pOp->nKey = pZ->nKey;
++ pOp->pKey = pZ->pKey;
++ pOp->nData = pZ->nData;
++ pOp->pData = pZ->pData;
++ pOp->eOp = ROLLBACK_INSERT;
++ btreeLogRollbackOp(pCur->pRbtree, pOp);
++ }
++
++ /* First do a standard binary-tree delete (node pZ is to be deleted). How
++ * to do this depends on how many children pZ has:
++ *
++ * If pZ has no children or one child, then splice out pZ. If pZ has two
++ * children, splice out the successor of pZ and replace the key and data of
++ * pZ with the key and data of the spliced out successor. */
++ if( pZ->pLeft && pZ->pRight ){
++ BtRbNode *pTmp;
++ int dummy;
++ pCur->eSkip = SKIP_NONE;
++ memRbtreeNext(pCur, &dummy);
++ assert( dummy == 0 );
++ if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
++ sqliteFree(pZ->pKey);
++ sqliteFree(pZ->pData);
++ }
++ pZ->pData = pCur->pNode->pData;
++ pZ->nData = pCur->pNode->nData;
++ pZ->pKey = pCur->pNode->pKey;
++ pZ->nKey = pCur->pNode->nKey;
++ pTmp = pZ;
++ pZ = pCur->pNode;
++ pCur->pNode = pTmp;
++ pCur->eSkip = SKIP_NEXT;
++ }else{
++ int res;
++ pCur->eSkip = SKIP_NONE;
++ memRbtreeNext(pCur, &res);
++ pCur->eSkip = SKIP_NEXT;
++ if( res ){
++ memRbtreeLast(pCur, &res);
++ memRbtreePrevious(pCur, &res);
++ pCur->eSkip = SKIP_PREV;
++ }
++ if( pCur->pRbtree->eTransState == TRANS_ROLLBACK ){
++ sqliteFree(pZ->pKey);
++ sqliteFree(pZ->pData);
++ }
++ }
++
++ /* pZ now points at the node to be spliced out. This block does the
++ * splicing. */
++ {
++ BtRbNode **ppParentSlot = 0;
++ assert( !pZ->pLeft || !pZ->pRight ); /* pZ has at most one child */
++ pChild = ((pZ->pLeft)?pZ->pLeft:pZ->pRight);
++ if( pZ->pParent ){
++ assert( pZ == pZ->pParent->pLeft || pZ == pZ->pParent->pRight );
++ ppParentSlot = ((pZ == pZ->pParent->pLeft)
++ ?&pZ->pParent->pLeft:&pZ->pParent->pRight);
++ *ppParentSlot = pChild;
++ }else{
++ pCur->pTree->pHead = pChild;
++ }
++ if( pChild ) pChild->pParent = pZ->pParent;
++ }
++
++ /* pZ now points at the spliced out node. pChild is the only child of pZ, or
++ * NULL if pZ has no children. If pZ is black, and not the tree root, then we
++ * will have violated the "same number of black nodes in every path to a
++ * leaf" property of the red-black tree. The code in do_delete_balancing()
++ * repairs this. */
++ if( pZ->isBlack ){
++ do_delete_balancing(pCur->pTree, pChild, pZ->pParent);
++ }
++
++ sqliteFree(pZ);
++ return SQLITE_OK;
++}
++
++/*
++ * Empty table n of the Rbtree.
++ */
++static int memRbtreeClearTable(Rbtree* tree, int n)
++{
++ BtRbTree *pTree;
++ BtRbNode *pNode;
++
++ pTree = sqliteHashFind(&tree->tblHash, 0, n);
++ assert(pTree);
++
++ pNode = pTree->pHead;
++ while( pNode ){
++ if( pNode->pLeft ){
++ pNode = pNode->pLeft;
++ }
++ else if( pNode->pRight ){
++ pNode = pNode->pRight;
++ }
++ else {
++ BtRbNode *pTmp = pNode->pParent;
++ if( tree->eTransState == TRANS_ROLLBACK ){
++ sqliteFree( pNode->pKey );
++ sqliteFree( pNode->pData );
++ }else{
++ BtRollbackOp *pRollbackOp = sqliteMallocRaw(sizeof(BtRollbackOp));
++ if( pRollbackOp==0 ) return SQLITE_NOMEM;
++ pRollbackOp->eOp = ROLLBACK_INSERT;
++ pRollbackOp->iTab = n;
++ pRollbackOp->nKey = pNode->nKey;
++ pRollbackOp->pKey = pNode->pKey;
++ pRollbackOp->nData = pNode->nData;
++ pRollbackOp->pData = pNode->pData;
++ btreeLogRollbackOp(tree, pRollbackOp);
++ }
++ sqliteFree( pNode );
++ if( pTmp ){
++ if( pTmp->pLeft == pNode ) pTmp->pLeft = 0;
++ else if( pTmp->pRight == pNode ) pTmp->pRight = 0;
++ }
++ pNode = pTmp;
++ }
++ }
++
++ pTree->pHead = 0;
++ return SQLITE_OK;
++}
++
++static int memRbtreeFirst(RbtCursor* pCur, int *pRes)
++{
++ if( pCur->pTree->pHead ){
++ pCur->pNode = pCur->pTree->pHead;
++ while( pCur->pNode->pLeft ){
++ pCur->pNode = pCur->pNode->pLeft;
++ }
++ }
++ if( pCur->pNode ){
++ *pRes = 0;
++ }else{
++ *pRes = 1;
++ }
++ pCur->eSkip = SKIP_NONE;
++ return SQLITE_OK;
++}
++
++static int memRbtreeLast(RbtCursor* pCur, int *pRes)
++{
++ if( pCur->pTree->pHead ){
++ pCur->pNode = pCur->pTree->pHead;
++ while( pCur->pNode->pRight ){
++ pCur->pNode = pCur->pNode->pRight;
++ }
++ }
++ if( pCur->pNode ){
++ *pRes = 0;
++ }else{
++ *pRes = 1;
++ }
++ pCur->eSkip = SKIP_NONE;
++ return SQLITE_OK;
++}
++
++/*
++** Advance the cursor to the next entry in the database. If
++** successful then set *pRes=0. If the cursor
++** was already pointing to the last entry in the database before
++** this routine was called, then set *pRes=1.
++*/
++static int memRbtreeNext(RbtCursor* pCur, int *pRes)
++{
++ if( pCur->pNode && pCur->eSkip != SKIP_NEXT ){
++ if( pCur->pNode->pRight ){
++ pCur->pNode = pCur->pNode->pRight;
++ while( pCur->pNode->pLeft )
++ pCur->pNode = pCur->pNode->pLeft;
++ }else{
++ BtRbNode * pX = pCur->pNode;
++ pCur->pNode = pX->pParent;
++ while( pCur->pNode && (pCur->pNode->pRight == pX) ){
++ pX = pCur->pNode;
++ pCur->pNode = pX->pParent;
++ }
++ }
++ }
++ pCur->eSkip = SKIP_NONE;
++
++ if( !pCur->pNode ){
++ *pRes = 1;
++ }else{
++ *pRes = 0;
++ }
++
++ return SQLITE_OK;
++}
++
++static int memRbtreePrevious(RbtCursor* pCur, int *pRes)
++{
++ if( pCur->pNode && pCur->eSkip != SKIP_PREV ){
++ if( pCur->pNode->pLeft ){
++ pCur->pNode = pCur->pNode->pLeft;
++ while( pCur->pNode->pRight )
++ pCur->pNode = pCur->pNode->pRight;
++ }else{
++ BtRbNode * pX = pCur->pNode;
++ pCur->pNode = pX->pParent;
++ while( pCur->pNode && (pCur->pNode->pLeft == pX) ){
++ pX = pCur->pNode;
++ pCur->pNode = pX->pParent;
++ }
++ }
++ }
++ pCur->eSkip = SKIP_NONE;
++
++ if( !pCur->pNode ){
++ *pRes = 1;
++ }else{
++ *pRes = 0;
++ }
++
++ return SQLITE_OK;
++}
++
++static int memRbtreeKeySize(RbtCursor* pCur, int *pSize)
++{
++ if( pCur->pNode ){
++ *pSize = pCur->pNode->nKey;
++ }else{
++ *pSize = 0;
++ }
++ return SQLITE_OK;
++}
++
++static int memRbtreeKey(RbtCursor* pCur, int offset, int amt, char *zBuf)
++{
++ if( !pCur->pNode ) return 0;
++ if( !pCur->pNode->pKey || ((amt + offset) <= pCur->pNode->nKey) ){
++ memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, amt);
++ }else{
++ memcpy(zBuf, ((char*)pCur->pNode->pKey)+offset, pCur->pNode->nKey-offset);
++ amt = pCur->pNode->nKey-offset;
++ }
++ return amt;
++}
++
++static int memRbtreeDataSize(RbtCursor* pCur, int *pSize)
++{
++ if( pCur->pNode ){
++ *pSize = pCur->pNode->nData;
++ }else{
++ *pSize = 0;
++ }
++ return SQLITE_OK;
++}
++
++static int memRbtreeData(RbtCursor *pCur, int offset, int amt, char *zBuf)
++{
++ if( !pCur->pNode ) return 0;
++ if( (amt + offset) <= pCur->pNode->nData ){
++ memcpy(zBuf, ((char*)pCur->pNode->pData)+offset, amt);
++ }else{
++ memcpy(zBuf, ((char*)pCur->pNode->pData)+offset ,pCur->pNode->nData-offset);
++ amt = pCur->pNode->nData-offset;
++ }
++ return amt;
++}
++
++static int memRbtreeCloseCursor(RbtCursor* pCur)
++{
++ if( pCur->pTree->pCursors==pCur ){
++ pCur->pTree->pCursors = pCur->pShared;
++ }else{
++ RbtCursor *p = pCur->pTree->pCursors;
++ while( p && p->pShared!=pCur ){ p = p->pShared; }
++ assert( p!=0 );
++ if( p ){
++ p->pShared = pCur->pShared;
++ }
++ }
++ sqliteFree(pCur);
++ return SQLITE_OK;
++}
++
++static int memRbtreeGetMeta(Rbtree* tree, int* aMeta)
++{
++ memcpy( aMeta, tree->aMetaData, sizeof(int) * SQLITE_N_BTREE_META );
++ return SQLITE_OK;
++}
++
++static int memRbtreeUpdateMeta(Rbtree* tree, int* aMeta)
++{
++ memcpy( tree->aMetaData, aMeta, sizeof(int) * SQLITE_N_BTREE_META );
++ return SQLITE_OK;
++}
++
++/*
++ * Check that each table in the Rbtree meets the requirements for a red-black
++ * binary tree. If an error is found, return an explanation of the problem in
++ * memory obtained from sqliteMalloc(). Parameters aRoot and nRoot are ignored.
++ */
++static char *memRbtreeIntegrityCheck(Rbtree* tree, int* aRoot, int nRoot)
++{
++ char * msg = 0;
++ HashElem *p;
++
++ for(p=sqliteHashFirst(&tree->tblHash); p; p=sqliteHashNext(p)){
++ BtRbTree *pTree = sqliteHashData(p);
++ check_redblack_tree(pTree, &msg);
++ }
++
++ return msg;
++}
++
++static int memRbtreeSetCacheSize(Rbtree* tree, int sz)
++{
++ return SQLITE_OK;
++}
++
++static int memRbtreeSetSafetyLevel(Rbtree *pBt, int level){
++ return SQLITE_OK;
++}
++
++static int memRbtreeBeginTrans(Rbtree* tree)
++{
++ if( tree->eTransState != TRANS_NONE )
++ return SQLITE_ERROR;
++
++ assert( tree->pTransRollback == 0 );
++ tree->eTransState = TRANS_INTRANSACTION;
++ return SQLITE_OK;
++}
++
++/*
++** Delete a linked list of BtRollbackOp structures.
++*/
++static void deleteRollbackList(BtRollbackOp *pOp){
++ while( pOp ){
++ BtRollbackOp *pTmp = pOp->pNext;
++ sqliteFree(pOp->pData);
++ sqliteFree(pOp->pKey);
++ sqliteFree(pOp);
++ pOp = pTmp;
++ }
++}
++
++static int memRbtreeCommit(Rbtree* tree){
++ /* Just delete pTransRollback and pCheckRollback */
++ deleteRollbackList(tree->pCheckRollback);
++ deleteRollbackList(tree->pTransRollback);
++ tree->pTransRollback = 0;
++ tree->pCheckRollback = 0;
++ tree->pCheckRollbackTail = 0;
++ tree->eTransState = TRANS_NONE;
++ return SQLITE_OK;
++}
++
++/*
++ * Close the supplied Rbtree. Delete everything associated with it.
++ */
++static int memRbtreeClose(Rbtree* tree)
++{
++ HashElem *p;
++ memRbtreeCommit(tree);
++ while( (p=sqliteHashFirst(&tree->tblHash))!=0 ){
++ tree->eTransState = TRANS_ROLLBACK;
++ memRbtreeDropTable(tree, sqliteHashKeysize(p));
++ }
++ sqliteHashClear(&tree->tblHash);
++ sqliteFree(tree);
++ return SQLITE_OK;
++}
++
++/*
++ * Execute and delete the supplied rollback-list on pRbtree.
++ */
++static void execute_rollback_list(Rbtree *pRbtree, BtRollbackOp *pList)
++{
++ BtRollbackOp *pTmp;
++ RbtCursor cur;
++ int res;
++
++ cur.pRbtree = pRbtree;
++ cur.wrFlag = 1;
++ while( pList ){
++ switch( pList->eOp ){
++ case ROLLBACK_INSERT:
++ cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
++ assert(cur.pTree);
++ cur.iTree = pList->iTab;
++ cur.eSkip = SKIP_NONE;
++ memRbtreeInsert( &cur, pList->pKey,
++ pList->nKey, pList->pData, pList->nData );
++ break;
++ case ROLLBACK_DELETE:
++ cur.pTree = sqliteHashFind( &pRbtree->tblHash, 0, pList->iTab );
++ assert(cur.pTree);
++ cur.iTree = pList->iTab;
++ cur.eSkip = SKIP_NONE;
++ memRbtreeMoveto(&cur, pList->pKey, pList->nKey, &res);
++ assert(res == 0);
++ memRbtreeDelete( &cur );
++ break;
++ case ROLLBACK_CREATE:
++ btreeCreateTable(pRbtree, pList->iTab);
++ break;
++ case ROLLBACK_DROP:
++ memRbtreeDropTable(pRbtree, pList->iTab);
++ break;
++ default:
++ assert(0);
++ }
++ sqliteFree(pList->pKey);
++ sqliteFree(pList->pData);
++ pTmp = pList->pNext;
++ sqliteFree(pList);
++ pList = pTmp;
++ }
++}
++
++static int memRbtreeRollback(Rbtree* tree)
++{
++ tree->eTransState = TRANS_ROLLBACK;
++ execute_rollback_list(tree, tree->pCheckRollback);
++ execute_rollback_list(tree, tree->pTransRollback);
++ tree->pTransRollback = 0;
++ tree->pCheckRollback = 0;
++ tree->pCheckRollbackTail = 0;
++ tree->eTransState = TRANS_NONE;
++ return SQLITE_OK;
++}
++
++static int memRbtreeBeginCkpt(Rbtree* tree)
++{
++ if( tree->eTransState != TRANS_INTRANSACTION )
++ return SQLITE_ERROR;
++
++ assert( tree->pCheckRollback == 0 );
++ assert( tree->pCheckRollbackTail == 0 );
++ tree->eTransState = TRANS_INCHECKPOINT;
++ return SQLITE_OK;
++}
++
++static int memRbtreeCommitCkpt(Rbtree* tree)
++{
++ if( tree->eTransState == TRANS_INCHECKPOINT ){
++ if( tree->pCheckRollback ){
++ tree->pCheckRollbackTail->pNext = tree->pTransRollback;
++ tree->pTransRollback = tree->pCheckRollback;
++ tree->pCheckRollback = 0;
++ tree->pCheckRollbackTail = 0;
++ }
++ tree->eTransState = TRANS_INTRANSACTION;
++ }
++ return SQLITE_OK;
++}
++
++static int memRbtreeRollbackCkpt(Rbtree* tree)
++{
++ if( tree->eTransState != TRANS_INCHECKPOINT ) return SQLITE_OK;
++ tree->eTransState = TRANS_ROLLBACK;
++ execute_rollback_list(tree, tree->pCheckRollback);
++ tree->pCheckRollback = 0;
++ tree->pCheckRollbackTail = 0;
++ tree->eTransState = TRANS_INTRANSACTION;
++ return SQLITE_OK;
++}
++
++#ifdef SQLITE_TEST
++static int memRbtreePageDump(Rbtree* tree, int pgno, int rec)
++{
++ assert(!"Cannot call sqliteRbtreePageDump");
++ return SQLITE_OK;
++}
++
++static int memRbtreeCursorDump(RbtCursor* pCur, int* aRes)
++{
++ assert(!"Cannot call sqliteRbtreeCursorDump");
++ return SQLITE_OK;
++}
++#endif
++
++static struct Pager *memRbtreePager(Rbtree* tree)
++{
++ return 0;
++}
++
++/*
++** Return the full pathname of the underlying database file.
++*/
++static const char *memRbtreeGetFilename(Rbtree *pBt){
++ return 0; /* A NULL return indicates there is no underlying file */
++}
++
++/*
++** The copy file function is not implemented for the in-memory database
++*/
++static int memRbtreeCopyFile(Rbtree *pBt, Rbtree *pBt2){
++ return SQLITE_INTERNAL; /* Not implemented */
++}
++
++static BtOps sqliteRbtreeOps = {
++ (int(*)(Btree*)) memRbtreeClose,
++ (int(*)(Btree*,int)) memRbtreeSetCacheSize,
++ (int(*)(Btree*,int)) memRbtreeSetSafetyLevel,
++ (int(*)(Btree*)) memRbtreeBeginTrans,
++ (int(*)(Btree*)) memRbtreeCommit,
++ (int(*)(Btree*)) memRbtreeRollback,
++ (int(*)(Btree*)) memRbtreeBeginCkpt,
++ (int(*)(Btree*)) memRbtreeCommitCkpt,
++ (int(*)(Btree*)) memRbtreeRollbackCkpt,
++ (int(*)(Btree*,int*)) memRbtreeCreateTable,
++ (int(*)(Btree*,int*)) memRbtreeCreateTable,
++ (int(*)(Btree*,int)) memRbtreeDropTable,
++ (int(*)(Btree*,int)) memRbtreeClearTable,
++ (int(*)(Btree*,int,int,BtCursor**)) memRbtreeCursor,
++ (int(*)(Btree*,int*)) memRbtreeGetMeta,
++ (int(*)(Btree*,int*)) memRbtreeUpdateMeta,
++ (char*(*)(Btree*,int*,int)) memRbtreeIntegrityCheck,
++ (const char*(*)(Btree*)) memRbtreeGetFilename,
++ (int(*)(Btree*,Btree*)) memRbtreeCopyFile,
++ (struct Pager*(*)(Btree*)) memRbtreePager,
++#ifdef SQLITE_TEST
++ (int(*)(Btree*,int,int)) memRbtreePageDump,
++#endif
++};
++
++static BtCursorOps sqliteRbtreeCursorOps = {
++ (int(*)(BtCursor*,const void*,int,int*)) memRbtreeMoveto,
++ (int(*)(BtCursor*)) memRbtreeDelete,
++ (int(*)(BtCursor*,const void*,int,const void*,int)) memRbtreeInsert,
++ (int(*)(BtCursor*,int*)) memRbtreeFirst,
++ (int(*)(BtCursor*,int*)) memRbtreeLast,
++ (int(*)(BtCursor*,int*)) memRbtreeNext,
++ (int(*)(BtCursor*,int*)) memRbtreePrevious,
++ (int(*)(BtCursor*,int*)) memRbtreeKeySize,
++ (int(*)(BtCursor*,int,int,char*)) memRbtreeKey,
++ (int(*)(BtCursor*,const void*,int,int,int*)) memRbtreeKeyCompare,
++ (int(*)(BtCursor*,int*)) memRbtreeDataSize,
++ (int(*)(BtCursor*,int,int,char*)) memRbtreeData,
++ (int(*)(BtCursor*)) memRbtreeCloseCursor,
++#ifdef SQLITE_TEST
++ (int(*)(BtCursor*,int*)) memRbtreeCursorDump,
++#endif
++
++};
++
++#endif /* SQLITE_OMIT_INMEMORYDB */
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/build.c
+@@ -0,0 +1,2156 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains C code routines that are called by the SQLite parser
++** when syntax rules are reduced. The routines in this file handle the
++** following kinds of SQL syntax:
++**
++** CREATE TABLE
++** DROP TABLE
++** CREATE INDEX
++** DROP INDEX
++** creating ID lists
++** BEGIN TRANSACTION
++** COMMIT
++** ROLLBACK
++** PRAGMA
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++#include <ctype.h>
++
++/*
++** This routine is called when a new SQL statement is beginning to
++** be parsed. Check to see if the schema for the database needs
++** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
++** If it does, then read it.
++*/
++void sqliteBeginParse(Parse *pParse, int explainFlag){
++ sqlite *db = pParse->db;
++ int i;
++ pParse->explain = explainFlag;
++ if((db->flags & SQLITE_Initialized)==0 && db->init.busy==0 ){
++ int rc = sqliteInit(db, &pParse->zErrMsg);
++ if( rc!=SQLITE_OK ){
++ pParse->rc = rc;
++ pParse->nErr++;
++ }
++ }
++ for(i=0; i<db->nDb; i++){
++ DbClearProperty(db, i, DB_Locked);
++ if( !db->aDb[i].inTrans ){
++ DbClearProperty(db, i, DB_Cookie);
++ }
++ }
++ pParse->nVar = 0;
++}
++
++/*
++** This routine is called after a single SQL statement has been
++** parsed and we want to execute the VDBE code to implement
++** that statement. Prior action routines should have already
++** constructed VDBE code to do the work of the SQL statement.
++** This routine just has to execute the VDBE code.
++**
++** Note that if an error occurred, it might be the case that
++** no VDBE code was generated.
++*/
++void sqliteExec(Parse *pParse){
++ sqlite *db = pParse->db;
++ Vdbe *v = pParse->pVdbe;
++
++ if( v==0 && (v = sqliteGetVdbe(pParse))!=0 ){
++ sqliteVdbeAddOp(v, OP_Halt, 0, 0);
++ }
++ if( sqlite_malloc_failed ) return;
++ if( v && pParse->nErr==0 ){
++ FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
++ sqliteVdbeTrace(v, trace);
++ sqliteVdbeMakeReady(v, pParse->nVar, pParse->explain);
++ pParse->rc = pParse->nErr ? SQLITE_ERROR : SQLITE_DONE;
++ pParse->colNamesSet = 0;
++ }else if( pParse->rc==SQLITE_OK ){
++ pParse->rc = SQLITE_ERROR;
++ }
++ pParse->nTab = 0;
++ pParse->nMem = 0;
++ pParse->nSet = 0;
++ pParse->nAgg = 0;
++ pParse->nVar = 0;
++}
++
++/*
++** Locate the in-memory structure that describes
++** a particular database table given the name
++** of that table and (optionally) the name of the database
++** containing the table. Return NULL if not found.
++**
++** If zDatabase is 0, all databases are searched for the
++** table and the first matching table is returned. (No checking
++** for duplicate table names is done.) The search order is
++** TEMP first, then MAIN, then any auxiliary databases added
++** using the ATTACH command.
++**
++** See also sqliteLocateTable().
++*/
++Table *sqliteFindTable(sqlite *db, const char *zName, const char *zDatabase){
++ Table *p = 0;
++ int i;
++ for(i=0; i<db->nDb; i++){
++ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
++ if( zDatabase!=0 && sqliteStrICmp(zDatabase, db->aDb[j].zName) ) continue;
++ p = sqliteHashFind(&db->aDb[j].tblHash, zName, strlen(zName)+1);
++ if( p ) break;
++ }
++ return p;
++}
++
++/*
++** Locate the in-memory structure that describes
++** a particular database table given the name
++** of that table and (optionally) the name of the database
++** containing the table. Return NULL if not found.
++** Also leave an error message in pParse->zErrMsg.
++**
++** The difference between this routine and sqliteFindTable()
++** is that this routine leaves an error message in pParse->zErrMsg
++** where sqliteFindTable() does not.
++*/
++Table *sqliteLocateTable(Parse *pParse, const char *zName, const char *zDbase){
++ Table *p;
++
++ p = sqliteFindTable(pParse->db, zName, zDbase);
++ if( p==0 ){
++ if( zDbase ){
++ sqliteErrorMsg(pParse, "no such table: %s.%s", zDbase, zName);
++ }else if( sqliteFindTable(pParse->db, zName, 0)!=0 ){
++ sqliteErrorMsg(pParse, "table \"%s\" is not in database \"%s\"",
++ zName, zDbase);
++ }else{
++ sqliteErrorMsg(pParse, "no such table: %s", zName);
++ }
++ }
++ return p;
++}
++
++/*
++** Locate the in-memory structure that describes
++** a particular index given the name of that index
++** and the name of the database that contains the index.
++** Return NULL if not found.
++**
++** If zDatabase is 0, all databases are searched for the
++** table and the first matching index is returned. (No checking
++** for duplicate index names is done.) The search order is
++** TEMP first, then MAIN, then any auxiliary databases added
++** using the ATTACH command.
++*/
++Index *sqliteFindIndex(sqlite *db, const char *zName, const char *zDb){
++ Index *p = 0;
++ int i;
++ for(i=0; i<db->nDb; i++){
++ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
++ if( zDb && sqliteStrICmp(zDb, db->aDb[j].zName) ) continue;
++ p = sqliteHashFind(&db->aDb[j].idxHash, zName, strlen(zName)+1);
++ if( p ) break;
++ }
++ return p;
++}
++
++/*
++** Remove the given index from the index hash table, and free
++** its memory structures.
++**
++** The index is removed from the database hash tables but
++** it is not unlinked from the Table that it indexes.
++** Unlinking from the Table must be done by the calling function.
++*/
++static void sqliteDeleteIndex(sqlite *db, Index *p){
++ Index *pOld;
++
++ assert( db!=0 && p->zName!=0 );
++ pOld = sqliteHashInsert(&db->aDb[p->iDb].idxHash, p->zName,
++ strlen(p->zName)+1, 0);
++ if( pOld!=0 && pOld!=p ){
++ sqliteHashInsert(&db->aDb[p->iDb].idxHash, pOld->zName,
++ strlen(pOld->zName)+1, pOld);
++ }
++ sqliteFree(p);
++}
++
++/*
++** Unlink the given index from its table, then remove
++** the index from the index hash table and free its memory
++** structures.
++*/
++void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
++ if( pIndex->pTable->pIndex==pIndex ){
++ pIndex->pTable->pIndex = pIndex->pNext;
++ }else{
++ Index *p;
++ for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
++ if( p && p->pNext==pIndex ){
++ p->pNext = pIndex->pNext;
++ }
++ }
++ sqliteDeleteIndex(db, pIndex);
++}
++
++/*
++** Erase all schema information from the in-memory hash tables of
++** database connection. This routine is called to reclaim memory
++** before the connection closes. It is also called during a rollback
++** if there were schema changes during the transaction.
++**
++** If iDb<=0 then reset the internal schema tables for all database
++** files. If iDb>=2 then reset the internal schema for only the
++** single file indicated.
++*/
++void sqliteResetInternalSchema(sqlite *db, int iDb){
++ HashElem *pElem;
++ Hash temp1;
++ Hash temp2;
++ int i, j;
++
++ assert( iDb>=0 && iDb<db->nDb );
++ db->flags &= ~SQLITE_Initialized;
++ for(i=iDb; i<db->nDb; i++){
++ Db *pDb = &db->aDb[i];
++ temp1 = pDb->tblHash;
++ temp2 = pDb->trigHash;
++ sqliteHashInit(&pDb->trigHash, SQLITE_HASH_STRING, 0);
++ sqliteHashClear(&pDb->aFKey);
++ sqliteHashClear(&pDb->idxHash);
++ for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
++ Trigger *pTrigger = sqliteHashData(pElem);
++ sqliteDeleteTrigger(pTrigger);
++ }
++ sqliteHashClear(&temp2);
++ sqliteHashInit(&pDb->tblHash, SQLITE_HASH_STRING, 0);
++ for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
++ Table *pTab = sqliteHashData(pElem);
++ sqliteDeleteTable(db, pTab);
++ }
++ sqliteHashClear(&temp1);
++ DbClearProperty(db, i, DB_SchemaLoaded);
++ if( iDb>0 ) return;
++ }
++ assert( iDb==0 );
++ db->flags &= ~SQLITE_InternChanges;
++
++ /* If one or more of the auxiliary database files has been closed,
++ ** then remove then from the auxiliary database list. We take the
++ ** opportunity to do this here since we have just deleted all of the
++ ** schema hash tables and therefore do not have to make any changes
++ ** to any of those tables.
++ */
++ for(i=0; i<db->nDb; i++){
++ struct Db *pDb = &db->aDb[i];
++ if( pDb->pBt==0 ){
++ if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
++ pDb->pAux = 0;
++ }
++ }
++ for(i=j=2; i<db->nDb; i++){
++ struct Db *pDb = &db->aDb[i];
++ if( pDb->pBt==0 ){
++ sqliteFree(pDb->zName);
++ pDb->zName = 0;
++ continue;
++ }
++ if( j<i ){
++ db->aDb[j] = db->aDb[i];
++ }
++ j++;
++ }
++ memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
++ db->nDb = j;
++ if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
++ memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
++ sqliteFree(db->aDb);
++ db->aDb = db->aDbStatic;
++ }
++}
++
++/*
++** This routine is called whenever a rollback occurs. If there were
++** schema changes during the transaction, then we have to reset the
++** internal hash tables and reload them from disk.
++*/
++void sqliteRollbackInternalChanges(sqlite *db){
++ if( db->flags & SQLITE_InternChanges ){
++ sqliteResetInternalSchema(db, 0);
++ }
++}
++
++/*
++** This routine is called when a commit occurs.
++*/
++void sqliteCommitInternalChanges(sqlite *db){
++ db->aDb[0].schema_cookie = db->next_cookie;
++ db->flags &= ~SQLITE_InternChanges;
++}
++
++/*
++** Remove the memory data structures associated with the given
++** Table. No changes are made to disk by this routine.
++**
++** This routine just deletes the data structure. It does not unlink
++** the table data structure from the hash table. Nor does it remove
++** foreign keys from the sqlite.aFKey hash table. But it does destroy
++** memory structures of the indices and foreign keys associated with
++** the table.
++**
++** Indices associated with the table are unlinked from the "db"
++** data structure if db!=NULL. If db==NULL, indices attached to
++** the table are deleted, but it is assumed they have already been
++** unlinked.
++*/
++void sqliteDeleteTable(sqlite *db, Table *pTable){
++ int i;
++ Index *pIndex, *pNext;
++ FKey *pFKey, *pNextFKey;
++
++ if( pTable==0 ) return;
++
++ /* Delete all indices associated with this table
++ */
++ for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
++ pNext = pIndex->pNext;
++ assert( pIndex->iDb==pTable->iDb || (pTable->iDb==0 && pIndex->iDb==1) );
++ sqliteDeleteIndex(db, pIndex);
++ }
++
++ /* Delete all foreign keys associated with this table. The keys
++ ** should have already been unlinked from the db->aFKey hash table
++ */
++ for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
++ pNextFKey = pFKey->pNextFrom;
++ assert( pTable->iDb<db->nDb );
++ assert( sqliteHashFind(&db->aDb[pTable->iDb].aFKey,
++ pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
++ sqliteFree(pFKey);
++ }
++
++ /* Delete the Table structure itself.
++ */
++ for(i=0; i<pTable->nCol; i++){
++ sqliteFree(pTable->aCol[i].zName);
++ sqliteFree(pTable->aCol[i].zDflt);
++ sqliteFree(pTable->aCol[i].zType);
++ }
++ sqliteFree(pTable->zName);
++ sqliteFree(pTable->aCol);
++ sqliteSelectDelete(pTable->pSelect);
++ sqliteFree(pTable);
++}
++
++/*
++** Unlink the given table from the hash tables and the delete the
++** table structure with all its indices and foreign keys.
++*/
++static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
++ Table *pOld;
++ FKey *pF1, *pF2;
++ int i = p->iDb;
++ assert( db!=0 );
++ pOld = sqliteHashInsert(&db->aDb[i].tblHash, p->zName, strlen(p->zName)+1, 0);
++ assert( pOld==0 || pOld==p );
++ for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
++ int nTo = strlen(pF1->zTo) + 1;
++ pF2 = sqliteHashFind(&db->aDb[i].aFKey, pF1->zTo, nTo);
++ if( pF2==pF1 ){
++ sqliteHashInsert(&db->aDb[i].aFKey, pF1->zTo, nTo, pF1->pNextTo);
++ }else{
++ while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
++ if( pF2 ){
++ pF2->pNextTo = pF1->pNextTo;
++ }
++ }
++ }
++ sqliteDeleteTable(db, p);
++}
++
++/*
++** Construct the name of a user table or index from a token.
++**
++** Space to hold the name is obtained from sqliteMalloc() and must
++** be freed by the calling function.
++*/
++char *sqliteTableNameFromToken(Token *pName){
++ char *zName = sqliteStrNDup(pName->z, pName->n);
++ sqliteDequote(zName);
++ return zName;
++}
++
++/*
++** Generate code to open the appropriate master table. The table
++** opened will be SQLITE_MASTER for persistent tables and
++** SQLITE_TEMP_MASTER for temporary tables. The table is opened
++** on cursor 0.
++*/
++void sqliteOpenMasterTable(Vdbe *v, int isTemp){
++ sqliteVdbeAddOp(v, OP_Integer, isTemp, 0);
++ sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
++}
++
++/*
++** Begin constructing a new table representation in memory. This is
++** the first of several action routines that get called in response
++** to a CREATE TABLE statement. In particular, this routine is called
++** after seeing tokens "CREATE" and "TABLE" and the table name. The
++** pStart token is the CREATE and pName is the table name. The isTemp
++** flag is true if the table should be stored in the auxiliary database
++** file instead of in the main database file. This is normally the case
++** when the "TEMP" or "TEMPORARY" keyword occurs in between
++** CREATE and TABLE.
++**
++** The new table record is initialized and put in pParse->pNewTable.
++** As more of the CREATE TABLE statement is parsed, additional action
++** routines will be called to add more information to this record.
++** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
++** is called to complete the construction of the new table record.
++*/
++void sqliteStartTable(
++ Parse *pParse, /* Parser context */
++ Token *pStart, /* The "CREATE" token */
++ Token *pName, /* Name of table or view to create */
++ int isTemp, /* True if this is a TEMP table */
++ int isView /* True if this is a VIEW */
++){
++ Table *pTable;
++ Index *pIdx;
++ char *zName;
++ sqlite *db = pParse->db;
++ Vdbe *v;
++ int iDb;
++
++ pParse->sFirstToken = *pStart;
++ zName = sqliteTableNameFromToken(pName);
++ if( zName==0 ) return;
++ if( db->init.iDb==1 ) isTemp = 1;
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ assert( (isTemp & 1)==isTemp );
++ {
++ int code;
++ char *zDb = isTemp ? "temp" : "main";
++ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
++ sqliteFree(zName);
++ return;
++ }
++ if( isView ){
++ if( isTemp ){
++ code = SQLITE_CREATE_TEMP_VIEW;
++ }else{
++ code = SQLITE_CREATE_VIEW;
++ }
++ }else{
++ if( isTemp ){
++ code = SQLITE_CREATE_TEMP_TABLE;
++ }else{
++ code = SQLITE_CREATE_TABLE;
++ }
++ }
++ if( sqliteAuthCheck(pParse, code, zName, 0, zDb) ){
++ sqliteFree(zName);
++ return;
++ }
++ }
++#endif
++
++
++ /* Before trying to create a temporary table, make sure the Btree for
++ ** holding temporary tables is open.
++ */
++ if( isTemp && db->aDb[1].pBt==0 && !pParse->explain ){
++ int rc = sqliteBtreeFactory(db, 0, 0, MAX_PAGES, &db->aDb[1].pBt);
++ if( rc!=SQLITE_OK ){
++ sqliteErrorMsg(pParse, "unable to open a temporary database "
++ "file for storing temporary tables");
++ pParse->nErr++;
++ return;
++ }
++ if( db->flags & SQLITE_InTrans ){
++ rc = sqliteBtreeBeginTrans(db->aDb[1].pBt);
++ if( rc!=SQLITE_OK ){
++ sqliteErrorMsg(pParse, "unable to get a write lock on "
++ "the temporary database file");
++ return;
++ }
++ }
++ }
++
++ /* Make sure the new table name does not collide with an existing
++ ** index or table name. Issue an error message if it does.
++ **
++ ** If we are re-reading the sqlite_master table because of a schema
++ ** change and a new permanent table is found whose name collides with
++ ** an existing temporary table, that is not an error.
++ */
++ pTable = sqliteFindTable(db, zName, 0);
++ iDb = isTemp ? 1 : db->init.iDb;
++ if( pTable!=0 && (pTable->iDb==iDb || !db->init.busy) ){
++ sqliteErrorMsg(pParse, "table %T already exists", pName);
++ sqliteFree(zName);
++ return;
++ }
++ if( (pIdx = sqliteFindIndex(db, zName, 0))!=0 &&
++ (pIdx->iDb==0 || !db->init.busy) ){
++ sqliteErrorMsg(pParse, "there is already an index named %s", zName);
++ sqliteFree(zName);
++ return;
++ }
++ pTable = sqliteMalloc( sizeof(Table) );
++ if( pTable==0 ){
++ sqliteFree(zName);
++ return;
++ }
++ pTable->zName = zName;
++ pTable->nCol = 0;
++ pTable->aCol = 0;
++ pTable->iPKey = -1;
++ pTable->pIndex = 0;
++ pTable->iDb = iDb;
++ if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
++ pParse->pNewTable = pTable;
++
++ /* Begin generating the code that will insert the table record into
++ ** the SQLITE_MASTER table. Note in particular that we must go ahead
++ ** and allocate the record number for the table entry now. Before any
++ ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
++ ** indices to be created and the table record must come before the
++ ** indices. Hence, the record number for the table must be allocated
++ ** now.
++ */
++ if( !db->init.busy && (v = sqliteGetVdbe(pParse))!=0 ){
++ sqliteBeginWriteOperation(pParse, 0, isTemp);
++ if( !isTemp ){
++ sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
++ sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
++ }
++ sqliteOpenMasterTable(v, isTemp);
++ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
++ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
++ }
++}
++
++/*
++** Add a new column to the table currently being constructed.
++**
++** The parser calls this routine once for each column declaration
++** in a CREATE TABLE statement. sqliteStartTable() gets called
++** first to get things going. Then this routine is called for each
++** column.
++*/
++void sqliteAddColumn(Parse *pParse, Token *pName){
++ Table *p;
++ int i;
++ char *z = 0;
++ Column *pCol;
++ if( (p = pParse->pNewTable)==0 ) return;
++ sqliteSetNString(&z, pName->z, pName->n, 0);
++ if( z==0 ) return;
++ sqliteDequote(z);
++ for(i=0; i<p->nCol; i++){
++ if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
++ sqliteErrorMsg(pParse, "duplicate column name: %s", z);
++ sqliteFree(z);
++ return;
++ }
++ }
++ if( (p->nCol & 0x7)==0 ){
++ Column *aNew;
++ aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
++ if( aNew==0 ) return;
++ p->aCol = aNew;
++ }
++ pCol = &p->aCol[p->nCol];
++ memset(pCol, 0, sizeof(p->aCol[0]));
++ pCol->zName = z;
++ pCol->sortOrder = SQLITE_SO_NUM;
++ p->nCol++;
++}
++
++/*
++** This routine is called by the parser while in the middle of
++** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
++** been seen on a column. This routine sets the notNull flag on
++** the column currently under construction.
++*/
++void sqliteAddNotNull(Parse *pParse, int onError){
++ Table *p;
++ int i;
++ if( (p = pParse->pNewTable)==0 ) return;
++ i = p->nCol-1;
++ if( i>=0 ) p->aCol[i].notNull = onError;
++}
++
++/*
++** This routine is called by the parser while in the middle of
++** parsing a CREATE TABLE statement. The pFirst token is the first
++** token in the sequence of tokens that describe the type of the
++** column currently under construction. pLast is the last token
++** in the sequence. Use this information to construct a string
++** that contains the typename of the column and store that string
++** in zType.
++*/
++void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
++ Table *p;
++ int i, j;
++ int n;
++ char *z, **pz;
++ Column *pCol;
++ if( (p = pParse->pNewTable)==0 ) return;
++ i = p->nCol-1;
++ if( i<0 ) return;
++ pCol = &p->aCol[i];
++ pz = &pCol->zType;
++ n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
++ sqliteSetNString(pz, pFirst->z, n, 0);
++ z = *pz;
++ if( z==0 ) return;
++ for(i=j=0; z[i]; i++){
++ int c = z[i];
++ if( isspace(c) ) continue;
++ z[j++] = c;
++ }
++ z[j] = 0;
++ if( pParse->db->file_format>=4 ){
++ pCol->sortOrder = sqliteCollateType(z, n);
++ }else{
++ pCol->sortOrder = SQLITE_SO_NUM;
++ }
++}
++
++/*
++** The given token is the default value for the last column added to
++** the table currently under construction. If "minusFlag" is true, it
++** means the value token was preceded by a minus sign.
++**
++** This routine is called by the parser while in the middle of
++** parsing a CREATE TABLE statement.
++*/
++void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
++ Table *p;
++ int i;
++ char **pz;
++ if( (p = pParse->pNewTable)==0 ) return;
++ i = p->nCol-1;
++ if( i<0 ) return;
++ pz = &p->aCol[i].zDflt;
++ if( minusFlag ){
++ sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
++ }else{
++ sqliteSetNString(pz, pVal->z, pVal->n, 0);
++ }
++ sqliteDequote(*pz);
++}
++
++/*
++** Designate the PRIMARY KEY for the table. pList is a list of names
++** of columns that form the primary key. If pList is NULL, then the
++** most recently added column of the table is the primary key.
++**
++** A table can have at most one primary key. If the table already has
++** a primary key (and this is the second primary key) then create an
++** error.
++**
++** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
++** then we will try to use that column as the row id. (Exception:
++** For backwards compatibility with older databases, do not do this
++** if the file format version number is less than 1.) Set the Table.iPKey
++** field of the table under construction to be the index of the
++** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
++** no INTEGER PRIMARY KEY.
++**
++** If the key is not an INTEGER PRIMARY KEY, then create a unique
++** index for the key. No index is created for INTEGER PRIMARY KEYs.
++*/
++void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
++ Table *pTab = pParse->pNewTable;
++ char *zType = 0;
++ int iCol = -1, i;
++ if( pTab==0 ) goto primary_key_exit;
++ if( pTab->hasPrimKey ){
++ sqliteErrorMsg(pParse,
++ "table \"%s\" has more than one primary key", pTab->zName);
++ goto primary_key_exit;
++ }
++ pTab->hasPrimKey = 1;
++ if( pList==0 ){
++ iCol = pTab->nCol - 1;
++ pTab->aCol[iCol].isPrimKey = 1;
++ }else{
++ for(i=0; i<pList->nId; i++){
++ for(iCol=0; iCol<pTab->nCol; iCol++){
++ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ) break;
++ }
++ if( iCol<pTab->nCol ) pTab->aCol[iCol].isPrimKey = 1;
++ }
++ if( pList->nId>1 ) iCol = -1;
++ }
++ if( iCol>=0 && iCol<pTab->nCol ){
++ zType = pTab->aCol[iCol].zType;
++ }
++ if( pParse->db->file_format>=1 &&
++ zType && sqliteStrICmp(zType, "INTEGER")==0 ){
++ pTab->iPKey = iCol;
++ pTab->keyConf = onError;
++ }else{
++ sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
++ pList = 0;
++ }
++
++primary_key_exit:
++ sqliteIdListDelete(pList);
++ return;
++}
++
++/*
++** Return the appropriate collating type given a type name.
++**
++** The collation type is text (SQLITE_SO_TEXT) if the type
++** name contains the character stream "text" or "blob" or
++** "clob". Any other type name is collated as numeric
++** (SQLITE_SO_NUM).
++*/
++int sqliteCollateType(const char *zType, int nType){
++ int i;
++ for(i=0; i<nType-3; i++){
++ int c = *(zType++) | 0x60;
++ if( (c=='b' || c=='c') && sqliteStrNICmp(zType, "lob", 3)==0 ){
++ return SQLITE_SO_TEXT;
++ }
++ if( c=='c' && sqliteStrNICmp(zType, "har", 3)==0 ){
++ return SQLITE_SO_TEXT;
++ }
++ if( c=='t' && sqliteStrNICmp(zType, "ext", 3)==0 ){
++ return SQLITE_SO_TEXT;
++ }
++ }
++ return SQLITE_SO_NUM;
++}
++
++/*
++** This routine is called by the parser while in the middle of
++** parsing a CREATE TABLE statement. A "COLLATE" clause has
++** been seen on a column. This routine sets the Column.sortOrder on
++** the column currently under construction.
++*/
++void sqliteAddCollateType(Parse *pParse, int collType){
++ Table *p;
++ int i;
++ if( (p = pParse->pNewTable)==0 ) return;
++ i = p->nCol-1;
++ if( i>=0 ) p->aCol[i].sortOrder = collType;
++}
++
++/*
++** Come up with a new random value for the schema cookie. Make sure
++** the new value is different from the old.
++**
++** The schema cookie is used to determine when the schema for the
++** database changes. After each schema change, the cookie value
++** changes. When a process first reads the schema it records the
++** cookie. Thereafter, whenever it goes to access the database,
++** it checks the cookie to make sure the schema has not changed
++** since it was last read.
++**
++** This plan is not completely bullet-proof. It is possible for
++** the schema to change multiple times and for the cookie to be
++** set back to prior value. But schema changes are infrequent
++** and the probability of hitting the same cookie value is only
++** 1 chance in 2^32. So we're safe enough.
++*/
++void sqliteChangeCookie(sqlite *db, Vdbe *v){
++ if( db->next_cookie==db->aDb[0].schema_cookie ){
++ unsigned char r;
++ sqliteRandomness(1, &r);
++ db->next_cookie = db->aDb[0].schema_cookie + r + 1;
++ db->flags |= SQLITE_InternChanges;
++ sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
++ sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
++ }
++}
++
++/*
++** Measure the number of characters needed to output the given
++** identifier. The number returned includes any quotes used
++** but does not include the null terminator.
++*/
++static int identLength(const char *z){
++ int n;
++ int needQuote = 0;
++ for(n=0; *z; n++, z++){
++ if( *z=='\'' ){ n++; needQuote=1; }
++ }
++ return n + needQuote*2;
++}
++
++/*
++** Write an identifier onto the end of the given string. Add
++** quote characters as needed.
++*/
++static void identPut(char *z, int *pIdx, char *zIdent){
++ int i, j, needQuote;
++ i = *pIdx;
++ for(j=0; zIdent[j]; j++){
++ if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
++ }
++ needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
++ || sqliteKeywordCode(zIdent, j)!=TK_ID;
++ if( needQuote ) z[i++] = '\'';
++ for(j=0; zIdent[j]; j++){
++ z[i++] = zIdent[j];
++ if( zIdent[j]=='\'' ) z[i++] = '\'';
++ }
++ if( needQuote ) z[i++] = '\'';
++ z[i] = 0;
++ *pIdx = i;
++}
++
++/*
++** Generate a CREATE TABLE statement appropriate for the given
++** table. Memory to hold the text of the statement is obtained
++** from sqliteMalloc() and must be freed by the calling function.
++*/
++static char *createTableStmt(Table *p){
++ int i, k, n;
++ char *zStmt;
++ char *zSep, *zSep2, *zEnd;
++ n = 0;
++ for(i=0; i<p->nCol; i++){
++ n += identLength(p->aCol[i].zName);
++ }
++ n += identLength(p->zName);
++ if( n<40 ){
++ zSep = "";
++ zSep2 = ",";
++ zEnd = ")";
++ }else{
++ zSep = "\n ";
++ zSep2 = ",\n ";
++ zEnd = "\n)";
++ }
++ n += 35 + 6*p->nCol;
++ zStmt = sqliteMallocRaw( n );
++ if( zStmt==0 ) return 0;
++ strcpy(zStmt, p->iDb==1 ? "CREATE TEMP TABLE " : "CREATE TABLE ");
++ k = strlen(zStmt);
++ identPut(zStmt, &k, p->zName);
++ zStmt[k++] = '(';
++ for(i=0; i<p->nCol; i++){
++ strcpy(&zStmt[k], zSep);
++ k += strlen(&zStmt[k]);
++ zSep = zSep2;
++ identPut(zStmt, &k, p->aCol[i].zName);
++ }
++ strcpy(&zStmt[k], zEnd);
++ return zStmt;
++}
++
++/*
++** This routine is called to report the final ")" that terminates
++** a CREATE TABLE statement.
++**
++** The table structure that other action routines have been building
++** is added to the internal hash tables, assuming no errors have
++** occurred.
++**
++** An entry for the table is made in the master table on disk, unless
++** this is a temporary table or db->init.busy==1. When db->init.busy==1
++** it means we are reading the sqlite_master table because we just
++** connected to the database or because the sqlite_master table has
++** recently changes, so the entry for this table already exists in
++** the sqlite_master table. We do not want to create it again.
++**
++** If the pSelect argument is not NULL, it means that this routine
++** was called to create a table generated from a
++** "CREATE TABLE ... AS SELECT ..." statement. The column names of
++** the new table will match the result set of the SELECT.
++*/
++void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
++ Table *p;
++ sqlite *db = pParse->db;
++
++ if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
++ p = pParse->pNewTable;
++ if( p==0 ) return;
++
++ /* If the table is generated from a SELECT, then construct the
++ ** list of columns and the text of the table.
++ */
++ if( pSelect ){
++ Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
++ if( pSelTab==0 ) return;
++ assert( p->aCol==0 );
++ p->nCol = pSelTab->nCol;
++ p->aCol = pSelTab->aCol;
++ pSelTab->nCol = 0;
++ pSelTab->aCol = 0;
++ sqliteDeleteTable(0, pSelTab);
++ }
++
++ /* If the db->init.busy is 1 it means we are reading the SQL off the
++ ** "sqlite_master" or "sqlite_temp_master" table on the disk.
++ ** So do not write to the disk again. Extract the root page number
++ ** for the table from the db->init.newTnum field. (The page number
++ ** should have been put there by the sqliteOpenCb routine.)
++ */
++ if( db->init.busy ){
++ p->tnum = db->init.newTnum;
++ }
++
++ /* If not initializing, then create a record for the new table
++ ** in the SQLITE_MASTER table of the database. The record number
++ ** for the new table entry should already be on the stack.
++ **
++ ** If this is a TEMPORARY table, write the entry into the auxiliary
++ ** file instead of into the main database file.
++ */
++ if( !db->init.busy ){
++ int n;
++ Vdbe *v;
++
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ) return;
++ if( p->pSelect==0 ){
++ /* A regular table */
++ sqliteVdbeOp3(v, OP_CreateTable, 0, p->iDb, (char*)&p->tnum, P3_POINTER);
++ }else{
++ /* A view */
++ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
++ }
++ p->tnum = 0;
++ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0, p->pSelect==0?"table":"view", P3_STATIC);
++ sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0, p->zName, 0);
++ sqliteVdbeAddOp(v, OP_Dup, 4, 0);
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ if( pSelect ){
++ char *z = createTableStmt(p);
++ n = z ? strlen(z) : 0;
++ sqliteVdbeChangeP3(v, -1, z, n);
++ sqliteFree(z);
++ }else{
++ assert( pEnd!=0 );
++ n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
++ sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
++ }
++ sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
++ if( !p->iDb ){
++ sqliteChangeCookie(db, v);
++ }
++ sqliteVdbeAddOp(v, OP_Close, 0, 0);
++ if( pSelect ){
++ sqliteVdbeAddOp(v, OP_Integer, p->iDb, 0);
++ sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
++ pParse->nTab = 2;
++ sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
++ }
++ sqliteEndWriteOperation(pParse);
++ }
++
++ /* Add the table to the in-memory representation of the database.
++ */
++ if( pParse->explain==0 && pParse->nErr==0 ){
++ Table *pOld;
++ FKey *pFKey;
++ pOld = sqliteHashInsert(&db->aDb[p->iDb].tblHash,
++ p->zName, strlen(p->zName)+1, p);
++ if( pOld ){
++ assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
++ return;
++ }
++ for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
++ int nTo = strlen(pFKey->zTo) + 1;
++ pFKey->pNextTo = sqliteHashFind(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo);
++ sqliteHashInsert(&db->aDb[p->iDb].aFKey, pFKey->zTo, nTo, pFKey);
++ }
++ pParse->pNewTable = 0;
++ db->nTable++;
++ db->flags |= SQLITE_InternChanges;
++ }
++}
++
++/*
++** The parser calls this routine in order to create a new VIEW
++*/
++void sqliteCreateView(
++ Parse *pParse, /* The parsing context */
++ Token *pBegin, /* The CREATE token that begins the statement */
++ Token *pName, /* The token that holds the name of the view */
++ Select *pSelect, /* A SELECT statement that will become the new view */
++ int isTemp /* TRUE for a TEMPORARY view */
++){
++ Table *p;
++ int n;
++ const char *z;
++ Token sEnd;
++ DbFixer sFix;
++
++ sqliteStartTable(pParse, pBegin, pName, isTemp, 1);
++ p = pParse->pNewTable;
++ if( p==0 || pParse->nErr ){
++ sqliteSelectDelete(pSelect);
++ return;
++ }
++ if( sqliteFixInit(&sFix, pParse, p->iDb, "view", pName)
++ && sqliteFixSelect(&sFix, pSelect)
++ ){
++ sqliteSelectDelete(pSelect);
++ return;
++ }
++
++ /* Make a copy of the entire SELECT statement that defines the view.
++ ** This will force all the Expr.token.z values to be dynamically
++ ** allocated rather than point to the input string - which means that
++ ** they will persist after the current sqlite_exec() call returns.
++ */
++ p->pSelect = sqliteSelectDup(pSelect);
++ sqliteSelectDelete(pSelect);
++ if( !pParse->db->init.busy ){
++ sqliteViewGetColumnNames(pParse, p);
++ }
++
++ /* Locate the end of the CREATE VIEW statement. Make sEnd point to
++ ** the end.
++ */
++ sEnd = pParse->sLastToken;
++ if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
++ sEnd.z += sEnd.n;
++ }
++ sEnd.n = 0;
++ n = sEnd.z - pBegin->z;
++ z = pBegin->z;
++ while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
++ sEnd.z = &z[n-1];
++ sEnd.n = 1;
++
++ /* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
++ sqliteEndTable(pParse, &sEnd, 0);
++ return;
++}
++
++/*
++** The Table structure pTable is really a VIEW. Fill in the names of
++** the columns of the view in the pTable structure. Return the number
++** of errors. If an error is seen leave an error message in pParse->zErrMsg.
++*/
++int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
++ ExprList *pEList;
++ Select *pSel;
++ Table *pSelTab;
++ int nErr = 0;
++
++ assert( pTable );
++
++ /* A positive nCol means the columns names for this view are
++ ** already known.
++ */
++ if( pTable->nCol>0 ) return 0;
++
++ /* A negative nCol is a special marker meaning that we are currently
++ ** trying to compute the column names. If we enter this routine with
++ ** a negative nCol, it means two or more views form a loop, like this:
++ **
++ ** CREATE VIEW one AS SELECT * FROM two;
++ ** CREATE VIEW two AS SELECT * FROM one;
++ **
++ ** Actually, this error is caught previously and so the following test
++ ** should always fail. But we will leave it in place just to be safe.
++ */
++ if( pTable->nCol<0 ){
++ sqliteErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
++ return 1;
++ }
++
++ /* If we get this far, it means we need to compute the table names.
++ */
++ assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
++ pSel = pTable->pSelect;
++
++ /* Note that the call to sqliteResultSetOfSelect() will expand any
++ ** "*" elements in this list. But we will need to restore the list
++ ** back to its original configuration afterwards, so we save a copy of
++ ** the original in pEList.
++ */
++ pEList = pSel->pEList;
++ pSel->pEList = sqliteExprListDup(pEList);
++ if( pSel->pEList==0 ){
++ pSel->pEList = pEList;
++ return 1; /* Malloc failed */
++ }
++ pTable->nCol = -1;
++ pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
++ if( pSelTab ){
++ assert( pTable->aCol==0 );
++ pTable->nCol = pSelTab->nCol;
++ pTable->aCol = pSelTab->aCol;
++ pSelTab->nCol = 0;
++ pSelTab->aCol = 0;
++ sqliteDeleteTable(0, pSelTab);
++ DbSetProperty(pParse->db, pTable->iDb, DB_UnresetViews);
++ }else{
++ pTable->nCol = 0;
++ nErr++;
++ }
++ sqliteSelectUnbind(pSel);
++ sqliteExprListDelete(pSel->pEList);
++ pSel->pEList = pEList;
++ return nErr;
++}
++
++/*
++** Clear the column names from the VIEW pTable.
++**
++** This routine is called whenever any other table or view is modified.
++** The view passed into this routine might depend directly or indirectly
++** on the modified or deleted table so we need to clear the old column
++** names so that they will be recomputed.
++*/
++static void sqliteViewResetColumnNames(Table *pTable){
++ int i;
++ Column *pCol;
++ assert( pTable!=0 && pTable->pSelect!=0 );
++ for(i=0, pCol=pTable->aCol; i<pTable->nCol; i++, pCol++){
++ sqliteFree(pCol->zName);
++ sqliteFree(pCol->zDflt);
++ sqliteFree(pCol->zType);
++ }
++ sqliteFree(pTable->aCol);
++ pTable->aCol = 0;
++ pTable->nCol = 0;
++}
++
++/*
++** Clear the column names from every VIEW in database idx.
++*/
++static void sqliteViewResetAll(sqlite *db, int idx){
++ HashElem *i;
++ if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
++ for(i=sqliteHashFirst(&db->aDb[idx].tblHash); i; i=sqliteHashNext(i)){
++ Table *pTab = sqliteHashData(i);
++ if( pTab->pSelect ){
++ sqliteViewResetColumnNames(pTab);
++ }
++ }
++ DbClearProperty(db, idx, DB_UnresetViews);
++}
++
++/*
++** Given a token, look up a table with that name. If not found, leave
++** an error for the parser to find and return NULL.
++*/
++Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
++ char *zName;
++ Table *pTab;
++ zName = sqliteTableNameFromToken(pTok);
++ if( zName==0 ) return 0;
++ pTab = sqliteFindTable(pParse->db, zName, 0);
++ sqliteFree(zName);
++ if( pTab==0 ){
++ sqliteErrorMsg(pParse, "no such table: %T", pTok);
++ }
++ return pTab;
++}
++
++/*
++** This routine is called to do the work of a DROP TABLE statement.
++** pName is the name of the table to be dropped.
++*/
++void sqliteDropTable(Parse *pParse, Token *pName, int isView){
++ Table *pTable;
++ Vdbe *v;
++ int base;
++ sqlite *db = pParse->db;
++ int iDb;
++
++ if( pParse->nErr || sqlite_malloc_failed ) return;
++ pTable = sqliteTableFromToken(pParse, pName);
++ if( pTable==0 ) return;
++ iDb = pTable->iDb;
++ assert( iDb>=0 && iDb<db->nDb );
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ {
++ int code;
++ const char *zTab = SCHEMA_TABLE(pTable->iDb);
++ const char *zDb = db->aDb[pTable->iDb].zName;
++ if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
++ return;
++ }
++ if( isView ){
++ if( iDb==1 ){
++ code = SQLITE_DROP_TEMP_VIEW;
++ }else{
++ code = SQLITE_DROP_VIEW;
++ }
++ }else{
++ if( iDb==1 ){
++ code = SQLITE_DROP_TEMP_TABLE;
++ }else{
++ code = SQLITE_DROP_TABLE;
++ }
++ }
++ if( sqliteAuthCheck(pParse, code, pTable->zName, 0, zDb) ){
++ return;
++ }
++ if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTable->zName, 0, zDb) ){
++ return;
++ }
++ }
++#endif
++ if( pTable->readOnly ){
++ sqliteErrorMsg(pParse, "table %s may not be dropped", pTable->zName);
++ pParse->nErr++;
++ return;
++ }
++ if( isView && pTable->pSelect==0 ){
++ sqliteErrorMsg(pParse, "use DROP TABLE to delete table %s", pTable->zName);
++ return;
++ }
++ if( !isView && pTable->pSelect ){
++ sqliteErrorMsg(pParse, "use DROP VIEW to delete view %s", pTable->zName);
++ return;
++ }
++
++ /* Generate code to remove the table from the master table
++ ** on disk.
++ */
++ v = sqliteGetVdbe(pParse);
++ if( v ){
++ static VdbeOpList dropTable[] = {
++ { OP_Rewind, 0, ADDR(8), 0},
++ { OP_String, 0, 0, 0}, /* 1 */
++ { OP_MemStore, 1, 1, 0},
++ { OP_MemLoad, 1, 0, 0}, /* 3 */
++ { OP_Column, 0, 2, 0},
++ { OP_Ne, 0, ADDR(7), 0},
++ { OP_Delete, 0, 0, 0},
++ { OP_Next, 0, ADDR(3), 0}, /* 7 */
++ };
++ Index *pIdx;
++ Trigger *pTrigger;
++ sqliteBeginWriteOperation(pParse, 0, pTable->iDb);
++
++ /* Drop all triggers associated with the table being dropped */
++ pTrigger = pTable->pTrigger;
++ while( pTrigger ){
++ assert( pTrigger->iDb==pTable->iDb || pTrigger->iDb==1 );
++ sqliteDropTriggerPtr(pParse, pTrigger, 1);
++ if( pParse->explain ){
++ pTrigger = pTrigger->pNext;
++ }else{
++ pTrigger = pTable->pTrigger;
++ }
++ }
++
++ /* Drop all SQLITE_MASTER entries that refer to the table */
++ sqliteOpenMasterTable(v, pTable->iDb);
++ base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
++ sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
++
++ /* Drop all SQLITE_TEMP_MASTER entries that refer to the table */
++ if( pTable->iDb!=1 ){
++ sqliteOpenMasterTable(v, 1);
++ base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
++ sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
++ }
++
++ if( pTable->iDb==0 ){
++ sqliteChangeCookie(db, v);
++ }
++ sqliteVdbeAddOp(v, OP_Close, 0, 0);
++ if( !isView ){
++ sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->iDb);
++ for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
++ sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pIdx->iDb);
++ }
++ }
++ sqliteEndWriteOperation(pParse);
++ }
++
++ /* Delete the in-memory description of the table.
++ **
++ ** Exception: if the SQL statement began with the EXPLAIN keyword,
++ ** then no changes should be made.
++ */
++ if( !pParse->explain ){
++ sqliteUnlinkAndDeleteTable(db, pTable);
++ db->flags |= SQLITE_InternChanges;
++ }
++ sqliteViewResetAll(db, iDb);
++}
++
++/*
++** This routine constructs a P3 string suitable for an OP_MakeIdxKey
++** opcode and adds that P3 string to the most recently inserted instruction
++** in the virtual machine. The P3 string consists of a single character
++** for each column in the index pIdx of table pTab. If the column uses
++** a numeric sort order, then the P3 string character corresponding to
++** that column is 'n'. If the column uses a text sort order, then the
++** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
++** additional information. See also the sqliteAddKeyType() routine.
++*/
++void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
++ char *zType;
++ Table *pTab;
++ int i, n;
++ assert( pIdx!=0 && pIdx->pTable!=0 );
++ pTab = pIdx->pTable;
++ n = pIdx->nColumn;
++ zType = sqliteMallocRaw( n+1 );
++ if( zType==0 ) return;
++ for(i=0; i<n; i++){
++ int iCol = pIdx->aiColumn[i];
++ assert( iCol>=0 && iCol<pTab->nCol );
++ if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
++ zType[i] = 't';
++ }else{
++ zType[i] = 'n';
++ }
++ }
++ zType[n] = 0;
++ sqliteVdbeChangeP3(v, -1, zType, n);
++ sqliteFree(zType);
++}
++
++/*
++** This routine is called to create a new foreign key on the table
++** currently under construction. pFromCol determines which columns
++** in the current table point to the foreign key. If pFromCol==0 then
++** connect the key to the last column inserted. pTo is the name of
++** the table referred to. pToCol is a list of tables in the other
++** pTo table that the foreign key points to. flags contains all
++** information about the conflict resolution algorithms specified
++** in the ON DELETE, ON UPDATE and ON INSERT clauses.
++**
++** An FKey structure is created and added to the table currently
++** under construction in the pParse->pNewTable field. The new FKey
++** is not linked into db->aFKey at this point - that does not happen
++** until sqliteEndTable().
++**
++** The foreign key is set for IMMEDIATE processing. A subsequent call
++** to sqliteDeferForeignKey() might change this to DEFERRED.
++*/
++void sqliteCreateForeignKey(
++ Parse *pParse, /* Parsing context */
++ IdList *pFromCol, /* Columns in this table that point to other table */
++ Token *pTo, /* Name of the other table */
++ IdList *pToCol, /* Columns in the other table */
++ int flags /* Conflict resolution algorithms. */
++){
++ Table *p = pParse->pNewTable;
++ int nByte;
++ int i;
++ int nCol;
++ char *z;
++ FKey *pFKey = 0;
++
++ assert( pTo!=0 );
++ if( p==0 || pParse->nErr ) goto fk_end;
++ if( pFromCol==0 ){
++ int iCol = p->nCol-1;
++ if( iCol<0 ) goto fk_end;
++ if( pToCol && pToCol->nId!=1 ){
++ sqliteErrorMsg(pParse, "foreign key on %s"
++ " should reference only one column of table %T",
++ p->aCol[iCol].zName, pTo);
++ goto fk_end;
++ }
++ nCol = 1;
++ }else if( pToCol && pToCol->nId!=pFromCol->nId ){
++ sqliteErrorMsg(pParse,
++ "number of columns in foreign key does not match the number of "
++ "columns in the referenced table");
++ goto fk_end;
++ }else{
++ nCol = pFromCol->nId;
++ }
++ nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
++ if( pToCol ){
++ for(i=0; i<pToCol->nId; i++){
++ nByte += strlen(pToCol->a[i].zName) + 1;
++ }
++ }
++ pFKey = sqliteMalloc( nByte );
++ if( pFKey==0 ) goto fk_end;
++ pFKey->pFrom = p;
++ pFKey->pNextFrom = p->pFKey;
++ z = (char*)&pFKey[1];
++ pFKey->aCol = (struct sColMap*)z;
++ z += sizeof(struct sColMap)*nCol;
++ pFKey->zTo = z;
++ memcpy(z, pTo->z, pTo->n);
++ z[pTo->n] = 0;
++ z += pTo->n+1;
++ pFKey->pNextTo = 0;
++ pFKey->nCol = nCol;
++ if( pFromCol==0 ){
++ pFKey->aCol[0].iFrom = p->nCol-1;
++ }else{
++ for(i=0; i<nCol; i++){
++ int j;
++ for(j=0; j<p->nCol; j++){
++ if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
++ pFKey->aCol[i].iFrom = j;
++ break;
++ }
++ }
++ if( j>=p->nCol ){
++ sqliteErrorMsg(pParse,
++ "unknown column \"%s\" in foreign key definition",
++ pFromCol->a[i].zName);
++ goto fk_end;
++ }
++ }
++ }
++ if( pToCol ){
++ for(i=0; i<nCol; i++){
++ int n = strlen(pToCol->a[i].zName);
++ pFKey->aCol[i].zCol = z;
++ memcpy(z, pToCol->a[i].zName, n);
++ z[n] = 0;
++ z += n+1;
++ }
++ }
++ pFKey->isDeferred = 0;
++ pFKey->deleteConf = flags & 0xff;
++ pFKey->updateConf = (flags >> 8 ) & 0xff;
++ pFKey->insertConf = (flags >> 16 ) & 0xff;
++
++ /* Link the foreign key to the table as the last step.
++ */
++ p->pFKey = pFKey;
++ pFKey = 0;
++
++fk_end:
++ sqliteFree(pFKey);
++ sqliteIdListDelete(pFromCol);
++ sqliteIdListDelete(pToCol);
++}
++
++/*
++** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
++** clause is seen as part of a foreign key definition. The isDeferred
++** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
++** The behavior of the most recently created foreign key is adjusted
++** accordingly.
++*/
++void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
++ Table *pTab;
++ FKey *pFKey;
++ if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
++ pFKey->isDeferred = isDeferred;
++}
++
++/*
++** Create a new index for an SQL table. pIndex is the name of the index
++** and pTable is the name of the table that is to be indexed. Both will
++** be NULL for a primary key or an index that is created to satisfy a
++** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
++** as the table to be indexed. pParse->pNewTable is a table that is
++** currently being constructed by a CREATE TABLE statement.
++**
++** pList is a list of columns to be indexed. pList will be NULL if this
++** is a primary key or unique-constraint on the most recent column added
++** to the table currently under construction.
++*/
++void sqliteCreateIndex(
++ Parse *pParse, /* All information about this parse */
++ Token *pName, /* Name of the index. May be NULL */
++ SrcList *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
++ IdList *pList, /* A list of columns to be indexed */
++ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
++ Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
++ Token *pEnd /* The ")" that closes the CREATE INDEX statement */
++){
++ Table *pTab; /* Table to be indexed */
++ Index *pIndex; /* The index to be created */
++ char *zName = 0;
++ int i, j;
++ Token nullId; /* Fake token for an empty ID list */
++ DbFixer sFix; /* For assigning database names to pTable */
++ int isTemp; /* True for a temporary index */
++ sqlite *db = pParse->db;
++
++ if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
++ if( db->init.busy
++ && sqliteFixInit(&sFix, pParse, db->init.iDb, "index", pName)
++ && sqliteFixSrcList(&sFix, pTable)
++ ){
++ goto exit_create_index;
++ }
++
++ /*
++ ** Find the table that is to be indexed. Return early if not found.
++ */
++ if( pTable!=0 ){
++ assert( pName!=0 );
++ assert( pTable->nSrc==1 );
++ pTab = sqliteSrcListLookup(pParse, pTable);
++ }else{
++ assert( pName==0 );
++ pTab = pParse->pNewTable;
++ }
++ if( pTab==0 || pParse->nErr ) goto exit_create_index;
++ if( pTab->readOnly ){
++ sqliteErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
++ goto exit_create_index;
++ }
++ if( pTab->iDb>=2 && db->init.busy==0 ){
++ sqliteErrorMsg(pParse, "table %s may not have indices added", pTab->zName);
++ goto exit_create_index;
++ }
++ if( pTab->pSelect ){
++ sqliteErrorMsg(pParse, "views may not be indexed");
++ goto exit_create_index;
++ }
++ isTemp = pTab->iDb==1;
++
++ /*
++ ** Find the name of the index. Make sure there is not already another
++ ** index or table with the same name.
++ **
++ ** Exception: If we are reading the names of permanent indices from the
++ ** sqlite_master table (because some other process changed the schema) and
++ ** one of the index names collides with the name of a temporary table or
++ ** index, then we will continue to process this index.
++ **
++ ** If pName==0 it means that we are
++ ** dealing with a primary key or UNIQUE constraint. We have to invent our
++ ** own name.
++ */
++ if( pName && !db->init.busy ){
++ Index *pISameName; /* Another index with the same name */
++ Table *pTSameName; /* A table with same name as the index */
++ zName = sqliteTableNameFromToken(pName);
++ if( zName==0 ) goto exit_create_index;
++ if( (pISameName = sqliteFindIndex(db, zName, 0))!=0 ){
++ sqliteErrorMsg(pParse, "index %s already exists", zName);
++ goto exit_create_index;
++ }
++ if( (pTSameName = sqliteFindTable(db, zName, 0))!=0 ){
++ sqliteErrorMsg(pParse, "there is already a table named %s", zName);
++ goto exit_create_index;
++ }
++ }else if( pName==0 ){
++ char zBuf[30];
++ int n;
++ Index *pLoop;
++ for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
++ sprintf(zBuf,"%d)",n);
++ zName = 0;
++ sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, (char*)0);
++ if( zName==0 ) goto exit_create_index;
++ }else{
++ zName = sqliteTableNameFromToken(pName);
++ }
++
++ /* Check for authorization to create an index.
++ */
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ {
++ const char *zDb = db->aDb[pTab->iDb].zName;
++
++ assert( pTab->iDb==db->init.iDb || isTemp );
++ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
++ goto exit_create_index;
++ }
++ i = SQLITE_CREATE_INDEX;
++ if( isTemp ) i = SQLITE_CREATE_TEMP_INDEX;
++ if( sqliteAuthCheck(pParse, i, zName, pTab->zName, zDb) ){
++ goto exit_create_index;
++ }
++ }
++#endif
++
++ /* If pList==0, it means this routine was called to make a primary
++ ** key out of the last column added to the table under construction.
++ ** So create a fake list to simulate this.
++ */
++ if( pList==0 ){
++ nullId.z = pTab->aCol[pTab->nCol-1].zName;
++ nullId.n = strlen(nullId.z);
++ pList = sqliteIdListAppend(0, &nullId);
++ if( pList==0 ) goto exit_create_index;
++ }
++
++ /*
++ ** Allocate the index structure.
++ */
++ pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
++ sizeof(int)*pList->nId );
++ if( pIndex==0 ) goto exit_create_index;
++ pIndex->aiColumn = (int*)&pIndex[1];
++ pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
++ strcpy(pIndex->zName, zName);
++ pIndex->pTable = pTab;
++ pIndex->nColumn = pList->nId;
++ pIndex->onError = onError;
++ pIndex->autoIndex = pName==0;
++ pIndex->iDb = isTemp ? 1 : db->init.iDb;
++
++ /* Scan the names of the columns of the table to be indexed and
++ ** load the column indices into the Index structure. Report an error
++ ** if any column is not found.
++ */
++ for(i=0; i<pList->nId; i++){
++ for(j=0; j<pTab->nCol; j++){
++ if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
++ }
++ if( j>=pTab->nCol ){
++ sqliteErrorMsg(pParse, "table %s has no column named %s",
++ pTab->zName, pList->a[i].zName);
++ sqliteFree(pIndex);
++ goto exit_create_index;
++ }
++ pIndex->aiColumn[i] = j;
++ }
++
++ /* Link the new Index structure to its table and to the other
++ ** in-memory database structures.
++ */
++ if( !pParse->explain ){
++ Index *p;
++ p = sqliteHashInsert(&db->aDb[pIndex->iDb].idxHash,
++ pIndex->zName, strlen(pIndex->zName)+1, pIndex);
++ if( p ){
++ assert( p==pIndex ); /* Malloc must have failed */
++ sqliteFree(pIndex);
++ goto exit_create_index;
++ }
++ db->flags |= SQLITE_InternChanges;
++ }
++
++ /* When adding an index to the list of indices for a table, make
++ ** sure all indices labeled OE_Replace come after all those labeled
++ ** OE_Ignore. This is necessary for the correct operation of UPDATE
++ ** and INSERT.
++ */
++ if( onError!=OE_Replace || pTab->pIndex==0
++ || pTab->pIndex->onError==OE_Replace){
++ pIndex->pNext = pTab->pIndex;
++ pTab->pIndex = pIndex;
++ }else{
++ Index *pOther = pTab->pIndex;
++ while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
++ pOther = pOther->pNext;
++ }
++ pIndex->pNext = pOther->pNext;
++ pOther->pNext = pIndex;
++ }
++
++ /* If the db->init.busy is 1 it means we are reading the SQL off the
++ ** "sqlite_master" table on the disk. So do not write to the disk
++ ** again. Extract the table number from the db->init.newTnum field.
++ */
++ if( db->init.busy && pTable!=0 ){
++ pIndex->tnum = db->init.newTnum;
++ }
++
++ /* If the db->init.busy is 0 then create the index on disk. This
++ ** involves writing the index into the master table and filling in the
++ ** index with the current table contents.
++ **
++ ** The db->init.busy is 0 when the user first enters a CREATE INDEX
++ ** command. db->init.busy is 1 when a database is opened and
++ ** CREATE INDEX statements are read out of the master table. In
++ ** the latter case the index already exists on disk, which is why
++ ** we don't want to recreate it.
++ **
++ ** If pTable==0 it means this index is generated as a primary key
++ ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
++ ** has just been created, it contains no data and the index initialization
++ ** step can be skipped.
++ */
++ else if( db->init.busy==0 ){
++ int n;
++ Vdbe *v;
++ int lbl1, lbl2;
++ int i;
++ int addr;
++
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ) goto exit_create_index;
++ if( pTable!=0 ){
++ sqliteBeginWriteOperation(pParse, 0, isTemp);
++ sqliteOpenMasterTable(v, isTemp);
++ }
++ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0, "index", P3_STATIC);
++ sqliteVdbeOp3(v, OP_String, 0, 0, pIndex->zName, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->zName, 0);
++ sqliteVdbeOp3(v, OP_CreateIndex, 0, isTemp,(char*)&pIndex->tnum,P3_POINTER);
++ pIndex->tnum = 0;
++ if( pTable ){
++ sqliteVdbeCode(v,
++ OP_Dup, 0, 0,
++ OP_Integer, isTemp, 0,
++ OP_OpenWrite, 1, 0,
++ 0);
++ }
++ addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
++ if( pStart && pEnd ){
++ n = Addr(pEnd->z) - Addr(pStart->z) + 1;
++ sqliteVdbeChangeP3(v, addr, pStart->z, n);
++ }
++ sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
++ if( pTable ){
++ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
++ sqliteVdbeOp3(v, OP_OpenRead, 2, pTab->tnum, pTab->zName, 0);
++ lbl2 = sqliteVdbeMakeLabel(v);
++ sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
++ lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
++ for(i=0; i<pIndex->nColumn; i++){
++ int iCol = pIndex->aiColumn[i];
++ if( pTab->iPKey==iCol ){
++ sqliteVdbeAddOp(v, OP_Dup, i, 0);
++ }else{
++ sqliteVdbeAddOp(v, OP_Column, 2, iCol);
++ }
++ }
++ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
++ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
++ sqliteVdbeOp3(v, OP_IdxPut, 1, pIndex->onError!=OE_None,
++ "indexed columns are not unique", P3_STATIC);
++ sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
++ sqliteVdbeResolveLabel(v, lbl2);
++ sqliteVdbeAddOp(v, OP_Close, 2, 0);
++ sqliteVdbeAddOp(v, OP_Close, 1, 0);
++ }
++ if( pTable!=0 ){
++ if( !isTemp ){
++ sqliteChangeCookie(db, v);
++ }
++ sqliteVdbeAddOp(v, OP_Close, 0, 0);
++ sqliteEndWriteOperation(pParse);
++ }
++ }
++
++ /* Clean up before exiting */
++exit_create_index:
++ sqliteIdListDelete(pList);
++ sqliteSrcListDelete(pTable);
++ sqliteFree(zName);
++ return;
++}
++
++/*
++** This routine will drop an existing named index. This routine
++** implements the DROP INDEX statement.
++*/
++void sqliteDropIndex(Parse *pParse, SrcList *pName){
++ Index *pIndex;
++ Vdbe *v;
++ sqlite *db = pParse->db;
++
++ if( pParse->nErr || sqlite_malloc_failed ) return;
++ assert( pName->nSrc==1 );
++ pIndex = sqliteFindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
++ if( pIndex==0 ){
++ sqliteErrorMsg(pParse, "no such index: %S", pName, 0);
++ goto exit_drop_index;
++ }
++ if( pIndex->autoIndex ){
++ sqliteErrorMsg(pParse, "index associated with UNIQUE "
++ "or PRIMARY KEY constraint cannot be dropped", 0);
++ goto exit_drop_index;
++ }
++ if( pIndex->iDb>1 ){
++ sqliteErrorMsg(pParse, "cannot alter schema of attached "
++ "databases", 0);
++ goto exit_drop_index;
++ }
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ {
++ int code = SQLITE_DROP_INDEX;
++ Table *pTab = pIndex->pTable;
++ const char *zDb = db->aDb[pIndex->iDb].zName;
++ const char *zTab = SCHEMA_TABLE(pIndex->iDb);
++ if( sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
++ goto exit_drop_index;
++ }
++ if( pIndex->iDb ) code = SQLITE_DROP_TEMP_INDEX;
++ if( sqliteAuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
++ goto exit_drop_index;
++ }
++ }
++#endif
++
++ /* Generate code to remove the index and from the master table */
++ v = sqliteGetVdbe(pParse);
++ if( v ){
++ static VdbeOpList dropIndex[] = {
++ { OP_Rewind, 0, ADDR(9), 0},
++ { OP_String, 0, 0, 0}, /* 1 */
++ { OP_MemStore, 1, 1, 0},
++ { OP_MemLoad, 1, 0, 0}, /* 3 */
++ { OP_Column, 0, 1, 0},
++ { OP_Eq, 0, ADDR(8), 0},
++ { OP_Next, 0, ADDR(3), 0},
++ { OP_Goto, 0, ADDR(9), 0},
++ { OP_Delete, 0, 0, 0}, /* 8 */
++ };
++ int base;
++
++ sqliteBeginWriteOperation(pParse, 0, pIndex->iDb);
++ sqliteOpenMasterTable(v, pIndex->iDb);
++ base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
++ sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
++ if( pIndex->iDb==0 ){
++ sqliteChangeCookie(db, v);
++ }
++ sqliteVdbeAddOp(v, OP_Close, 0, 0);
++ sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pIndex->iDb);
++ sqliteEndWriteOperation(pParse);
++ }
++
++ /* Delete the in-memory description of this index.
++ */
++ if( !pParse->explain ){
++ sqliteUnlinkAndDeleteIndex(db, pIndex);
++ db->flags |= SQLITE_InternChanges;
++ }
++
++exit_drop_index:
++ sqliteSrcListDelete(pName);
++}
++
++/*
++** Append a new element to the given IdList. Create a new IdList if
++** need be.
++**
++** A new IdList is returned, or NULL if malloc() fails.
++*/
++IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
++ if( pList==0 ){
++ pList = sqliteMalloc( sizeof(IdList) );
++ if( pList==0 ) return 0;
++ pList->nAlloc = 0;
++ }
++ if( pList->nId>=pList->nAlloc ){
++ struct IdList_item *a;
++ pList->nAlloc = pList->nAlloc*2 + 5;
++ a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
++ if( a==0 ){
++ sqliteIdListDelete(pList);
++ return 0;
++ }
++ pList->a = a;
++ }
++ memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
++ if( pToken ){
++ char **pz = &pList->a[pList->nId].zName;
++ sqliteSetNString(pz, pToken->z, pToken->n, 0);
++ if( *pz==0 ){
++ sqliteIdListDelete(pList);
++ return 0;
++ }else{
++ sqliteDequote(*pz);
++ }
++ }
++ pList->nId++;
++ return pList;
++}
++
++/*
++** Append a new table name to the given SrcList. Create a new SrcList if
++** need be. A new entry is created in the SrcList even if pToken is NULL.
++**
++** A new SrcList is returned, or NULL if malloc() fails.
++**
++** If pDatabase is not null, it means that the table has an optional
++** database name prefix. Like this: "database.table". The pDatabase
++** points to the table name and the pTable points to the database name.
++** The SrcList.a[].zName field is filled with the table name which might
++** come from pTable (if pDatabase is NULL) or from pDatabase.
++** SrcList.a[].zDatabase is filled with the database name from pTable,
++** or with NULL if no database is specified.
++**
++** In other words, if call like this:
++**
++** sqliteSrcListAppend(A,B,0);
++**
++** Then B is a table name and the database name is unspecified. If called
++** like this:
++**
++** sqliteSrcListAppend(A,B,C);
++**
++** Then C is the table name and B is the database name.
++*/
++SrcList *sqliteSrcListAppend(SrcList *pList, Token *pTable, Token *pDatabase){
++ if( pList==0 ){
++ pList = sqliteMalloc( sizeof(SrcList) );
++ if( pList==0 ) return 0;
++ pList->nAlloc = 1;
++ }
++ if( pList->nSrc>=pList->nAlloc ){
++ SrcList *pNew;
++ pList->nAlloc *= 2;
++ pNew = sqliteRealloc(pList,
++ sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
++ if( pNew==0 ){
++ sqliteSrcListDelete(pList);
++ return 0;
++ }
++ pList = pNew;
++ }
++ memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
++ if( pDatabase && pDatabase->z==0 ){
++ pDatabase = 0;
++ }
++ if( pDatabase && pTable ){
++ Token *pTemp = pDatabase;
++ pDatabase = pTable;
++ pTable = pTemp;
++ }
++ if( pTable ){
++ char **pz = &pList->a[pList->nSrc].zName;
++ sqliteSetNString(pz, pTable->z, pTable->n, 0);
++ if( *pz==0 ){
++ sqliteSrcListDelete(pList);
++ return 0;
++ }else{
++ sqliteDequote(*pz);
++ }
++ }
++ if( pDatabase ){
++ char **pz = &pList->a[pList->nSrc].zDatabase;
++ sqliteSetNString(pz, pDatabase->z, pDatabase->n, 0);
++ if( *pz==0 ){
++ sqliteSrcListDelete(pList);
++ return 0;
++ }else{
++ sqliteDequote(*pz);
++ }
++ }
++ pList->a[pList->nSrc].iCursor = -1;
++ pList->nSrc++;
++ return pList;
++}
++
++/*
++** Assign cursors to all tables in a SrcList
++*/
++void sqliteSrcListAssignCursors(Parse *pParse, SrcList *pList){
++ int i;
++ for(i=0; i<pList->nSrc; i++){
++ if( pList->a[i].iCursor<0 ){
++ pList->a[i].iCursor = pParse->nTab++;
++ }
++ }
++}
++
++/*
++** Add an alias to the last identifier on the given identifier list.
++*/
++void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
++ if( pList && pList->nSrc>0 ){
++ int i = pList->nSrc - 1;
++ sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
++ sqliteDequote(pList->a[i].zAlias);
++ }
++}
++
++/*
++** Delete an IdList.
++*/
++void sqliteIdListDelete(IdList *pList){
++ int i;
++ if( pList==0 ) return;
++ for(i=0; i<pList->nId; i++){
++ sqliteFree(pList->a[i].zName);
++ }
++ sqliteFree(pList->a);
++ sqliteFree(pList);
++}
++
++/*
++** Return the index in pList of the identifier named zId. Return -1
++** if not found.
++*/
++int sqliteIdListIndex(IdList *pList, const char *zName){
++ int i;
++ if( pList==0 ) return -1;
++ for(i=0; i<pList->nId; i++){
++ if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
++ }
++ return -1;
++}
++
++/*
++** Delete an entire SrcList including all its substructure.
++*/
++void sqliteSrcListDelete(SrcList *pList){
++ int i;
++ if( pList==0 ) return;
++ for(i=0; i<pList->nSrc; i++){
++ sqliteFree(pList->a[i].zDatabase);
++ sqliteFree(pList->a[i].zName);
++ sqliteFree(pList->a[i].zAlias);
++ if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
++ sqliteDeleteTable(0, pList->a[i].pTab);
++ }
++ sqliteSelectDelete(pList->a[i].pSelect);
++ sqliteExprDelete(pList->a[i].pOn);
++ sqliteIdListDelete(pList->a[i].pUsing);
++ }
++ sqliteFree(pList);
++}
++
++/*
++** Begin a transaction
++*/
++void sqliteBeginTransaction(Parse *pParse, int onError){
++ sqlite *db;
++
++ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
++ if( pParse->nErr || sqlite_malloc_failed ) return;
++ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
++ if( db->flags & SQLITE_InTrans ){
++ sqliteErrorMsg(pParse, "cannot start a transaction within a transaction");
++ return;
++ }
++ sqliteBeginWriteOperation(pParse, 0, 0);
++ if( !pParse->explain ){
++ db->flags |= SQLITE_InTrans;
++ db->onError = onError;
++ }
++}
++
++/*
++** Commit a transaction
++*/
++void sqliteCommitTransaction(Parse *pParse){
++ sqlite *db;
++
++ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
++ if( pParse->nErr || sqlite_malloc_failed ) return;
++ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
++ if( (db->flags & SQLITE_InTrans)==0 ){
++ sqliteErrorMsg(pParse, "cannot commit - no transaction is active");
++ return;
++ }
++ if( !pParse->explain ){
++ db->flags &= ~SQLITE_InTrans;
++ }
++ sqliteEndWriteOperation(pParse);
++ if( !pParse->explain ){
++ db->onError = OE_Default;
++ }
++}
++
++/*
++** Rollback a transaction
++*/
++void sqliteRollbackTransaction(Parse *pParse){
++ sqlite *db;
++ Vdbe *v;
++
++ if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
++ if( pParse->nErr || sqlite_malloc_failed ) return;
++ if( sqliteAuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
++ if( (db->flags & SQLITE_InTrans)==0 ){
++ sqliteErrorMsg(pParse, "cannot rollback - no transaction is active");
++ return;
++ }
++ v = sqliteGetVdbe(pParse);
++ if( v ){
++ sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
++ }
++ if( !pParse->explain ){
++ db->flags &= ~SQLITE_InTrans;
++ db->onError = OE_Default;
++ }
++}
++
++/*
++** Generate VDBE code that will verify the schema cookie for all
++** named database files.
++*/
++void sqliteCodeVerifySchema(Parse *pParse, int iDb){
++ sqlite *db = pParse->db;
++ Vdbe *v = sqliteGetVdbe(pParse);
++ assert( iDb>=0 && iDb<db->nDb );
++ assert( db->aDb[iDb].pBt!=0 );
++ if( iDb!=1 && !DbHasProperty(db, iDb, DB_Cookie) ){
++ sqliteVdbeAddOp(v, OP_VerifyCookie, iDb, db->aDb[iDb].schema_cookie);
++ DbSetProperty(db, iDb, DB_Cookie);
++ }
++}
++
++/*
++** Generate VDBE code that prepares for doing an operation that
++** might change the database.
++**
++** This routine starts a new transaction if we are not already within
++** a transaction. If we are already within a transaction, then a checkpoint
++** is set if the setCheckpoint parameter is true. A checkpoint should
++** be set for operations that might fail (due to a constraint) part of
++** the way through and which will need to undo some writes without having to
++** rollback the whole transaction. For operations where all constraints
++** can be checked before any changes are made to the database, it is never
++** necessary to undo a write and the checkpoint should not be set.
++**
++** Only database iDb and the temp database are made writable by this call.
++** If iDb==0, then the main and temp databases are made writable. If
++** iDb==1 then only the temp database is made writable. If iDb>1 then the
++** specified auxiliary database and the temp database are made writable.
++*/
++void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int iDb){
++ Vdbe *v;
++ sqlite *db = pParse->db;
++ if( DbHasProperty(db, iDb, DB_Locked) ) return;
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ) return;
++ if( !db->aDb[iDb].inTrans ){
++ sqliteVdbeAddOp(v, OP_Transaction, iDb, 0);
++ DbSetProperty(db, iDb, DB_Locked);
++ sqliteCodeVerifySchema(pParse, iDb);
++ if( iDb!=1 ){
++ sqliteBeginWriteOperation(pParse, setCheckpoint, 1);
++ }
++ }else if( setCheckpoint ){
++ sqliteVdbeAddOp(v, OP_Checkpoint, iDb, 0);
++ DbSetProperty(db, iDb, DB_Locked);
++ }
++}
++
++/*
++** Generate code that concludes an operation that may have changed
++** the database. If a statement transaction was started, then emit
++** an OP_Commit that will cause the changes to be committed to disk.
++**
++** Note that checkpoints are automatically committed at the end of
++** a statement. Note also that there can be multiple calls to
++** sqliteBeginWriteOperation() but there should only be a single
++** call to sqliteEndWriteOperation() at the conclusion of the statement.
++*/
++void sqliteEndWriteOperation(Parse *pParse){
++ Vdbe *v;
++ sqlite *db = pParse->db;
++ if( pParse->trigStack ) return; /* if this is in a trigger */
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ) return;
++ if( db->flags & SQLITE_InTrans ){
++ /* A BEGIN has executed. Do not commit until we see an explicit
++ ** COMMIT statement. */
++ }else{
++ sqliteVdbeAddOp(v, OP_Commit, 0, 0);
++ }
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/config_static.w32.h
+@@ -0,0 +1 @@
++#define SQLITE_PTR_SZ 4
+\ No newline at end of file
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/copy.c
+@@ -0,0 +1,110 @@
++/*
++** 2003 April 6
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains code used to implement the COPY command.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++
++/*
++** The COPY command is for compatibility with PostgreSQL and specificially
++** for the ability to read the output of pg_dump. The format is as
++** follows:
++**
++** COPY table FROM file [USING DELIMITERS string]
++**
++** "table" is an existing table name. We will read lines of code from
++** file to fill this table with data. File might be "stdin". The optional
++** delimiter string identifies the field separators. The default is a tab.
++*/
++void sqliteCopy(
++ Parse *pParse, /* The parser context */
++ SrcList *pTableName, /* The name of the table into which we will insert */
++ Token *pFilename, /* The file from which to obtain information */
++ Token *pDelimiter, /* Use this as the field delimiter */
++ int onError /* What to do if a constraint fails */
++){
++ Table *pTab;
++ int i;
++ Vdbe *v;
++ int addr, end;
++ char *zFile = 0;
++ const char *zDb;
++ sqlite *db = pParse->db;
++
++
++ if( sqlite_malloc_failed ) goto copy_cleanup;
++ assert( pTableName->nSrc==1 );
++ pTab = sqliteSrcListLookup(pParse, pTableName);
++ if( pTab==0 || sqliteIsReadOnly(pParse, pTab, 0) ) goto copy_cleanup;
++ zFile = sqliteStrNDup(pFilename->z, pFilename->n);
++ sqliteDequote(zFile);
++ assert( pTab->iDb<db->nDb );
++ zDb = db->aDb[pTab->iDb].zName;
++ if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb)
++ || sqliteAuthCheck(pParse, SQLITE_COPY, pTab->zName, zFile, zDb) ){
++ goto copy_cleanup;
++ }
++ v = sqliteGetVdbe(pParse);
++ if( v ){
++ sqliteBeginWriteOperation(pParse, 1, pTab->iDb);
++ addr = sqliteVdbeOp3(v, OP_FileOpen, 0, 0, pFilename->z, pFilename->n);
++ sqliteVdbeDequoteP3(v, addr);
++ sqliteOpenTableAndIndices(pParse, pTab, 0);
++ if( db->flags & SQLITE_CountRows ){
++ sqliteVdbeAddOp(v, OP_Integer, 0, 0); /* Initialize the row count */
++ }
++ end = sqliteVdbeMakeLabel(v);
++ addr = sqliteVdbeAddOp(v, OP_FileRead, pTab->nCol, end);
++ if( pDelimiter ){
++ sqliteVdbeChangeP3(v, addr, pDelimiter->z, pDelimiter->n);
++ sqliteVdbeDequoteP3(v, addr);
++ }else{
++ sqliteVdbeChangeP3(v, addr, "\t", 1);
++ }
++ if( pTab->iPKey>=0 ){
++ sqliteVdbeAddOp(v, OP_FileColumn, pTab->iPKey, 0);
++ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
++ }else{
++ sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
++ }
++ for(i=0; i<pTab->nCol; i++){
++ if( i==pTab->iPKey ){
++ /* The integer primary key column is filled with NULL since its
++ ** value is always pulled from the record number */
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ }else{
++ sqliteVdbeAddOp(v, OP_FileColumn, i, 0);
++ }
++ }
++ sqliteGenerateConstraintChecks(pParse, pTab, 0, 0, pTab->iPKey>=0,
++ 0, onError, addr);
++ sqliteCompleteInsertion(pParse, pTab, 0, 0, 0, 0, -1);
++ if( (db->flags & SQLITE_CountRows)!=0 ){
++ sqliteVdbeAddOp(v, OP_AddImm, 1, 0); /* Increment row count */
++ }
++ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
++ sqliteVdbeResolveLabel(v, end);
++ sqliteVdbeAddOp(v, OP_Noop, 0, 0);
++ sqliteEndWriteOperation(pParse);
++ if( db->flags & SQLITE_CountRows ){
++ sqliteVdbeAddOp(v, OP_ColumnName, 0, 1);
++ sqliteVdbeChangeP3(v, -1, "rows inserted", P3_STATIC);
++ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
++ }
++ }
++
++copy_cleanup:
++ sqliteSrcListDelete(pTableName);
++ sqliteFree(zFile);
++ return;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/date.c
+@@ -0,0 +1,881 @@
++/*
++** 2003 October 31
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains the C functions that implement date and time
++** functions for SQLite.
++**
++** There is only one exported symbol in this file - the function
++** sqliteRegisterDateTimeFunctions() found at the bottom of the file.
++** All other code has file scope.
++**
++** $Id$
++**
++** NOTES:
++**
++** SQLite processes all times and dates as Julian Day numbers. The
++** dates and times are stored as the number of days since noon
++** in Greenwich on November 24, 4714 B.C. according to the Gregorian
++** calendar system.
++**
++** 1970-01-01 00:00:00 is JD 2440587.5
++** 2000-01-01 00:00:00 is JD 2451544.5
++**
++** This implemention requires years to be expressed as a 4-digit number
++** which means that only dates between 0000-01-01 and 9999-12-31 can
++** be represented, even though julian day numbers allow a much wider
++** range of dates.
++**
++** The Gregorian calendar system is used for all dates and times,
++** even those that predate the Gregorian calendar. Historians usually
++** use the Julian calendar for dates prior to 1582-10-15 and for some
++** dates afterwards, depending on locale. Beware of this difference.
++**
++** The conversion algorithms are implemented based on descriptions
++** in the following text:
++**
++** Jean Meeus
++** Astronomical Algorithms, 2nd Edition, 1998
++** ISBM 0-943396-61-1
++** Willmann-Bell, Inc
++** Richmond, Virginia (USA)
++*/
++#include "os.h"
++#include "sqliteInt.h"
++#include <ctype.h>
++#include <stdlib.h>
++#include <assert.h>
++#include <time.h>
++#ifndef PHP_WIN32
++#include "main/php_reentrancy.h"
++#endif
++
++#ifndef SQLITE_OMIT_DATETIME_FUNCS
++
++/*
++** A structure for holding a single date and time.
++*/
++typedef struct DateTime DateTime;
++struct DateTime {
++ double rJD; /* The julian day number */
++ int Y, M, D; /* Year, month, and day */
++ int h, m; /* Hour and minutes */
++ int tz; /* Timezone offset in minutes */
++ double s; /* Seconds */
++ char validYMD; /* True if Y,M,D are valid */
++ char validHMS; /* True if h,m,s are valid */
++ char validJD; /* True if rJD is valid */
++ char validTZ; /* True if tz is valid */
++};
++
++
++/*
++** Convert zDate into one or more integers. Additional arguments
++** come in groups of 5 as follows:
++**
++** N number of digits in the integer
++** min minimum allowed value of the integer
++** max maximum allowed value of the integer
++** nextC first character after the integer
++** pVal where to write the integers value.
++**
++** Conversions continue until one with nextC==0 is encountered.
++** The function returns the number of successful conversions.
++*/
++static int getDigits(const char *zDate, ...){
++ va_list ap;
++ int val;
++ int N;
++ int min;
++ int max;
++ int nextC;
++ int *pVal;
++ int cnt = 0;
++ va_start(ap, zDate);
++ do{
++ N = va_arg(ap, int);
++ min = va_arg(ap, int);
++ max = va_arg(ap, int);
++ nextC = va_arg(ap, int);
++ pVal = va_arg(ap, int*);
++ val = 0;
++ while( N-- ){
++ if( !isdigit(*zDate) ){
++ return cnt;
++ }
++ val = val*10 + *zDate - '0';
++ zDate++;
++ }
++ if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
++ return cnt;
++ }
++ *pVal = val;
++ zDate++;
++ cnt++;
++ }while( nextC );
++ return cnt;
++}
++
++/*
++** Read text from z[] and convert into a floating point number. Return
++** the number of digits converted.
++*/
++static int getValue(const char *z, double *pR){
++ const char *zEnd;
++ *pR = sqliteAtoF(z, &zEnd);
++ return zEnd - z;
++}
++
++/*
++** Parse a timezone extension on the end of a date-time.
++** The extension is of the form:
++**
++** (+/-)HH:MM
++**
++** If the parse is successful, write the number of minutes
++** of change in *pnMin and return 0. If a parser error occurs,
++** return 0.
++**
++** A missing specifier is not considered an error.
++*/
++static int parseTimezone(const char *zDate, DateTime *p){
++ int sgn = 0;
++ int nHr, nMn;
++ while( isspace(*zDate) ){ zDate++; }
++ p->tz = 0;
++ if( *zDate=='-' ){
++ sgn = -1;
++ }else if( *zDate=='+' ){
++ sgn = +1;
++ }else{
++ return *zDate!=0;
++ }
++ zDate++;
++ if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
++ return 1;
++ }
++ zDate += 5;
++ p->tz = sgn*(nMn + nHr*60);
++ while( isspace(*zDate) ){ zDate++; }
++ return *zDate!=0;
++}
++
++/*
++** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
++** The HH, MM, and SS must each be exactly 2 digits. The
++** fractional seconds FFFF can be one or more digits.
++**
++** Return 1 if there is a parsing error and 0 on success.
++*/
++static int parseHhMmSs(const char *zDate, DateTime *p){
++ int h, m, s;
++ double ms = 0.0;
++ if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
++ return 1;
++ }
++ zDate += 5;
++ if( *zDate==':' ){
++ zDate++;
++ if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
++ return 1;
++ }
++ zDate += 2;
++ if( *zDate=='.' && isdigit(zDate[1]) ){
++ double rScale = 1.0;
++ zDate++;
++ while( isdigit(*zDate) ){
++ ms = ms*10.0 + *zDate - '0';
++ rScale *= 10.0;
++ zDate++;
++ }
++ ms /= rScale;
++ }
++ }else{
++ s = 0;
++ }
++ p->validJD = 0;
++ p->validHMS = 1;
++ p->h = h;
++ p->m = m;
++ p->s = s + ms;
++ if( parseTimezone(zDate, p) ) return 1;
++ p->validTZ = p->tz!=0;
++ return 0;
++}
++
++/*
++** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
++** that the YYYY-MM-DD is according to the Gregorian calendar.
++**
++** Reference: Meeus page 61
++*/
++static void computeJD(DateTime *p){
++ int Y, M, D, A, B, X1, X2;
++
++ if( p->validJD ) return;
++ if( p->validYMD ){
++ Y = p->Y;
++ M = p->M;
++ D = p->D;
++ }else{
++ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
++ M = 1;
++ D = 1;
++ }
++ if( M<=2 ){
++ Y--;
++ M += 12;
++ }
++ A = Y/100;
++ B = 2 - A + (A/4);
++ X1 = 365.25*(Y+4716);
++ X2 = 30.6001*(M+1);
++ p->rJD = X1 + X2 + D + B - 1524.5;
++ p->validJD = 1;
++ p->validYMD = 0;
++ if( p->validHMS ){
++ p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
++ if( p->validTZ ){
++ p->rJD += p->tz*60/86400.0;
++ p->validHMS = 0;
++ p->validTZ = 0;
++ }
++ }
++}
++
++/*
++** Parse dates of the form
++**
++** YYYY-MM-DD HH:MM:SS.FFF
++** YYYY-MM-DD HH:MM:SS
++** YYYY-MM-DD HH:MM
++** YYYY-MM-DD
++**
++** Write the result into the DateTime structure and return 0
++** on success and 1 if the input string is not a well-formed
++** date.
++*/
++static int parseYyyyMmDd(const char *zDate, DateTime *p){
++ int Y, M, D, neg;
++
++ if( zDate[0]=='-' ){
++ zDate++;
++ neg = 1;
++ }else{
++ neg = 0;
++ }
++ if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
++ return 1;
++ }
++ zDate += 10;
++ while( isspace(*zDate) ){ zDate++; }
++ if( parseHhMmSs(zDate, p)==0 ){
++ /* We got the time */
++ }else if( *zDate==0 ){
++ p->validHMS = 0;
++ }else{
++ return 1;
++ }
++ p->validJD = 0;
++ p->validYMD = 1;
++ p->Y = neg ? -Y : Y;
++ p->M = M;
++ p->D = D;
++ if( p->validTZ ){
++ computeJD(p);
++ }
++ return 0;
++}
++
++/*
++** Attempt to parse the given string into a Julian Day Number. Return
++** the number of errors.
++**
++** The following are acceptable forms for the input string:
++**
++** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
++** DDDD.DD
++** now
++**
++** In the first form, the +/-HH:MM is always optional. The fractional
++** seconds extension (the ".FFF") is optional. The seconds portion
++** (":SS.FFF") is option. The year and date can be omitted as long
++** as there is a time string. The time string can be omitted as long
++** as there is a year and date.
++*/
++static int parseDateOrTime(const char *zDate, DateTime *p){
++ memset(p, 0, sizeof(*p));
++ if( parseYyyyMmDd(zDate,p)==0 ){
++ return 0;
++ }else if( parseHhMmSs(zDate, p)==0 ){
++ return 0;
++ }else if( sqliteStrICmp(zDate,"now")==0){
++ double r;
++ if( sqliteOsCurrentTime(&r)==0 ){
++ p->rJD = r;
++ p->validJD = 1;
++ return 0;
++ }
++ return 1;
++ }else if( sqliteIsNumber(zDate) ){
++ p->rJD = sqliteAtoF(zDate, 0);
++ p->validJD = 1;
++ return 0;
++ }
++ return 1;
++}
++
++/*
++** Compute the Year, Month, and Day from the julian day number.
++*/
++static void computeYMD(DateTime *p){
++ int Z, A, B, C, D, E, X1;
++ if( p->validYMD ) return;
++ if( !p->validJD ){
++ p->Y = 2000;
++ p->M = 1;
++ p->D = 1;
++ }else{
++ Z = p->rJD + 0.5;
++ A = (Z - 1867216.25)/36524.25;
++ A = Z + 1 + A - (A/4);
++ B = A + 1524;
++ C = (B - 122.1)/365.25;
++ D = 365.25*C;
++ E = (B-D)/30.6001;
++ X1 = 30.6001*E;
++ p->D = B - D - X1;
++ p->M = E<14 ? E-1 : E-13;
++ p->Y = p->M>2 ? C - 4716 : C - 4715;
++ }
++ p->validYMD = 1;
++}
++
++/*
++** Compute the Hour, Minute, and Seconds from the julian day number.
++*/
++static void computeHMS(DateTime *p){
++ int Z, s;
++ if( p->validHMS ) return;
++ Z = p->rJD + 0.5;
++ s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
++ p->s = 0.001*s;
++ s = p->s;
++ p->s -= s;
++ p->h = s/3600;
++ s -= p->h*3600;
++ p->m = s/60;
++ p->s += s - p->m*60;
++ p->validHMS = 1;
++}
++
++/*
++** Compute both YMD and HMS
++*/
++static void computeYMD_HMS(DateTime *p){
++ computeYMD(p);
++ computeHMS(p);
++}
++
++/*
++** Clear the YMD and HMS and the TZ
++*/
++static void clearYMD_HMS_TZ(DateTime *p){
++ p->validYMD = 0;
++ p->validHMS = 0;
++ p->validTZ = 0;
++}
++
++/*
++** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
++** for the time value p where p is in UTC.
++*/
++static double localtimeOffset(DateTime *p){
++ DateTime x, y;
++ time_t t;
++ struct tm *pTm, tmbuf;
++ x = *p;
++ computeYMD_HMS(&x);
++ if( x.Y<1971 || x.Y>=2038 ){
++ x.Y = 2000;
++ x.M = 1;
++ x.D = 1;
++ x.h = 0;
++ x.m = 0;
++ x.s = 0.0;
++ } else {
++ int s = x.s + 0.5;
++ x.s = s;
++ }
++ x.tz = 0;
++ x.validJD = 0;
++ computeJD(&x);
++ t = (x.rJD-2440587.5)*86400.0 + 0.5;
++ sqliteOsEnterMutex();
++ pTm = php_localtime_r(&t, &tmbuf);
++ if (!pTm) {
++ return 0;
++ }
++ y.Y = pTm->tm_year + 1900;
++ y.M = pTm->tm_mon + 1;
++ y.D = pTm->tm_mday;
++ y.h = pTm->tm_hour;
++ y.m = pTm->tm_min;
++ y.s = pTm->tm_sec;
++ sqliteOsLeaveMutex();
++ y.validYMD = 1;
++ y.validHMS = 1;
++ y.validJD = 0;
++ y.validTZ = 0;
++ computeJD(&y);
++ return y.rJD - x.rJD;
++}
++
++/*
++** Process a modifier to a date-time stamp. The modifiers are
++** as follows:
++**
++** NNN days
++** NNN hours
++** NNN minutes
++** NNN.NNNN seconds
++** NNN months
++** NNN years
++** start of month
++** start of year
++** start of week
++** start of day
++** weekday N
++** unixepoch
++** localtime
++** utc
++**
++** Return 0 on success and 1 if there is any kind of error.
++*/
++static int parseModifier(const char *zMod, DateTime *p){
++ int rc = 1;
++ int n;
++ double r;
++ char *z, zBuf[30];
++ z = zBuf;
++ for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
++ z[n] = tolower(zMod[n]);
++ }
++ z[n] = 0;
++ switch( z[0] ){
++ case 'l': {
++ /* localtime
++ **
++ ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
++ ** show local time.
++ */
++ if( strcmp(z, "localtime")==0 ){
++ computeJD(p);
++ p->rJD += localtimeOffset(p);
++ clearYMD_HMS_TZ(p);
++ rc = 0;
++ }
++ break;
++ }
++ case 'u': {
++ /*
++ ** unixepoch
++ **
++ ** Treat the current value of p->rJD as the number of
++ ** seconds since 1970. Convert to a real julian day number.
++ */
++ if( strcmp(z, "unixepoch")==0 && p->validJD ){
++ p->rJD = p->rJD/86400.0 + 2440587.5;
++ clearYMD_HMS_TZ(p);
++ rc = 0;
++ }else if( strcmp(z, "utc")==0 ){
++ double c1;
++ computeJD(p);
++ c1 = localtimeOffset(p);
++ p->rJD -= c1;
++ clearYMD_HMS_TZ(p);
++ p->rJD += c1 - localtimeOffset(p);
++ rc = 0;
++ }
++ break;
++ }
++ case 'w': {
++ /*
++ ** weekday N
++ **
++ ** Move the date to the same time on the next occurrance of
++ ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
++ ** date is already on the appropriate weekday, this is a no-op.
++ */
++ if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
++ && (n=r)==r && n>=0 && r<7 ){
++ int Z;
++ computeYMD_HMS(p);
++ p->validTZ = 0;
++ p->validJD = 0;
++ computeJD(p);
++ Z = p->rJD + 1.5;
++ Z %= 7;
++ if( Z>n ) Z -= 7;
++ p->rJD += n - Z;
++ clearYMD_HMS_TZ(p);
++ rc = 0;
++ }
++ break;
++ }
++ case 's': {
++ /*
++ ** start of TTTTT
++ **
++ ** Move the date backwards to the beginning of the current day,
++ ** or month or year.
++ */
++ if( strncmp(z, "start of ", 9)!=0 ) break;
++ z += 9;
++ computeYMD(p);
++ p->validHMS = 1;
++ p->h = p->m = 0;
++ p->s = 0.0;
++ p->validTZ = 0;
++ p->validJD = 0;
++ if( strcmp(z,"month")==0 ){
++ p->D = 1;
++ rc = 0;
++ }else if( strcmp(z,"year")==0 ){
++ computeYMD(p);
++ p->M = 1;
++ p->D = 1;
++ rc = 0;
++ }else if( strcmp(z,"day")==0 ){
++ rc = 0;
++ }
++ break;
++ }
++ case '+':
++ case '-':
++ case '0':
++ case '1':
++ case '2':
++ case '3':
++ case '4':
++ case '5':
++ case '6':
++ case '7':
++ case '8':
++ case '9': {
++ n = getValue(z, &r);
++ if( n<=0 ) break;
++ if( z[n]==':' ){
++ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
++ ** specified number of hours, minutes, seconds, and fractional seconds
++ ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
++ ** omitted.
++ */
++ const char *z2 = z;
++ DateTime tx;
++ int day;
++ if( !isdigit(*z2) ) z2++;
++ memset(&tx, 0, sizeof(tx));
++ if( parseHhMmSs(z2, &tx) ) break;
++ computeJD(&tx);
++ tx.rJD -= 0.5;
++ day = (int)tx.rJD;
++ tx.rJD -= day;
++ if( z[0]=='-' ) tx.rJD = -tx.rJD;
++ computeJD(p);
++ clearYMD_HMS_TZ(p);
++ p->rJD += tx.rJD;
++ rc = 0;
++ break;
++ }
++ z += n;
++ while( isspace(z[0]) ) z++;
++ n = strlen(z);
++ if( n>10 || n<3 ) break;
++ if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
++ computeJD(p);
++ rc = 0;
++ if( n==3 && strcmp(z,"day")==0 ){
++ p->rJD += r;
++ }else if( n==4 && strcmp(z,"hour")==0 ){
++ p->rJD += r/24.0;
++ }else if( n==6 && strcmp(z,"minute")==0 ){
++ p->rJD += r/(24.0*60.0);
++ }else if( n==6 && strcmp(z,"second")==0 ){
++ p->rJD += r/(24.0*60.0*60.0);
++ }else if( n==5 && strcmp(z,"month")==0 ){
++ int x, y;
++ computeYMD_HMS(p);
++ p->M += r;
++ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
++ p->Y += x;
++ p->M -= x*12;
++ p->validJD = 0;
++ computeJD(p);
++ y = r;
++ if( y!=r ){
++ p->rJD += (r - y)*30.0;
++ }
++ }else if( n==4 && strcmp(z,"year")==0 ){
++ computeYMD_HMS(p);
++ p->Y += r;
++ p->validJD = 0;
++ computeJD(p);
++ }else{
++ rc = 1;
++ }
++ clearYMD_HMS_TZ(p);
++ break;
++ }
++ default: {
++ break;
++ }
++ }
++ return rc;
++}
++
++/*
++** Process time function arguments. argv[0] is a date-time stamp.
++** argv[1] and following are modifiers. Parse them all and write
++** the resulting time into the DateTime structure p. Return 0
++** on success and 1 if there are any errors.
++*/
++static int isDate(int argc, const char **argv, DateTime *p){
++ int i;
++ if( argc==0 ) return 1;
++ if( argv[0]==0 || parseDateOrTime(argv[0], p) ) return 1;
++ for(i=1; i<argc; i++){
++ if( argv[i]==0 || parseModifier(argv[i], p) ) return 1;
++ }
++ return 0;
++}
++
++
++/*
++** The following routines implement the various date and time functions
++** of SQLite.
++*/
++
++/*
++** julianday( TIMESTRING, MOD, MOD, ...)
++**
++** Return the julian day number of the date specified in the arguments
++*/
++static void juliandayFunc(sqlite_func *context, int argc, const char **argv){
++ DateTime x;
++ if( isDate(argc, argv, &x)==0 ){
++ computeJD(&x);
++ sqlite_set_result_double(context, x.rJD);
++ }
++}
++
++/*
++** datetime( TIMESTRING, MOD, MOD, ...)
++**
++** Return YYYY-MM-DD HH:MM:SS
++*/
++static void datetimeFunc(sqlite_func *context, int argc, const char **argv){
++ DateTime x;
++ if( isDate(argc, argv, &x)==0 ){
++ char zBuf[100];
++ computeYMD_HMS(&x);
++ sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
++ (int)(x.s));
++ sqlite_set_result_string(context, zBuf, -1);
++ }
++}
++
++/*
++** time( TIMESTRING, MOD, MOD, ...)
++**
++** Return HH:MM:SS
++*/
++static void timeFunc(sqlite_func *context, int argc, const char **argv){
++ DateTime x;
++ if( isDate(argc, argv, &x)==0 ){
++ char zBuf[100];
++ computeHMS(&x);
++ sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
++ sqlite_set_result_string(context, zBuf, -1);
++ }
++}
++
++/*
++** date( TIMESTRING, MOD, MOD, ...)
++**
++** Return YYYY-MM-DD
++*/
++static void dateFunc(sqlite_func *context, int argc, const char **argv){
++ DateTime x;
++ if( isDate(argc, argv, &x)==0 ){
++ char zBuf[100];
++ computeYMD(&x);
++ sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
++ sqlite_set_result_string(context, zBuf, -1);
++ }
++}
++
++/*
++** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
++**
++** Return a string described by FORMAT. Conversions as follows:
++**
++** %d day of month
++** %f ** fractional seconds SS.SSS
++** %H hour 00-24
++** %j day of year 000-366
++** %J ** Julian day number
++** %m month 01-12
++** %M minute 00-59
++** %s seconds since 1970-01-01
++** %S seconds 00-59
++** %w day of week 0-6 sunday==0
++** %W week of year 00-53
++** %Y year 0000-9999
++** %% %
++*/
++static void strftimeFunc(sqlite_func *context, int argc, const char **argv){
++ DateTime x;
++ int n, i, j;
++ char *z;
++ const char *zFmt = argv[0];
++ char zBuf[100];
++ if( argv[0]==0 || isDate(argc-1, argv+1, &x) ) return;
++ for(i=0, n=1; zFmt[i]; i++, n++){
++ if( zFmt[i]=='%' ){
++ switch( zFmt[i+1] ){
++ case 'd':
++ case 'H':
++ case 'm':
++ case 'M':
++ case 'S':
++ case 'W':
++ n++;
++ /* fall thru */
++ case 'w':
++ case '%':
++ break;
++ case 'f':
++ n += 8;
++ break;
++ case 'j':
++ n += 3;
++ break;
++ case 'Y':
++ n += 8;
++ break;
++ case 's':
++ case 'J':
++ n += 50;
++ break;
++ default:
++ return; /* ERROR. return a NULL */
++ }
++ i++;
++ }
++ }
++ if( n<sizeof(zBuf) ){
++ z = zBuf;
++ }else{
++ z = sqliteMalloc( n );
++ if( z==0 ) return;
++ }
++ computeJD(&x);
++ computeYMD_HMS(&x);
++ for(i=j=0; zFmt[i]; i++){
++ if( zFmt[i]!='%' ){
++ z[j++] = zFmt[i];
++ }else{
++ i++;
++ switch( zFmt[i] ){
++ case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break;
++ case 'f': {
++ int s = x.s;
++ int ms = (x.s - s)*1000.0;
++ sprintf(&z[j],"%02d.%03d",s,ms);
++ j += strlen(&z[j]);
++ break;
++ }
++ case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break;
++ case 'W': /* Fall thru */
++ case 'j': {
++ int n; /* Number of days since 1st day of year */
++ DateTime y = x;
++ y.validJD = 0;
++ y.M = 1;
++ y.D = 1;
++ computeJD(&y);
++ n = x.rJD - y.rJD;
++ if( zFmt[i]=='W' ){
++ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
++ wd = ((int)(x.rJD+0.5)) % 7;
++ sprintf(&z[j],"%02d",(n+7-wd)/7);
++ j += 2;
++ }else{
++ sprintf(&z[j],"%03d",n+1);
++ j += 3;
++ }
++ break;
++ }
++ case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
++ case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break;
++ case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break;
++ case 's': {
++ sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
++ j += strlen(&z[j]);
++ break;
++ }
++ case 'S': sprintf(&z[j],"%02d",(int)(x.s+0.5)); j+=2; break;
++ case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
++ case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
++ case '%': z[j++] = '%'; break;
++ }
++ }
++ }
++ z[j] = 0;
++ sqlite_set_result_string(context, z, -1);
++ if( z!=zBuf ){
++ sqliteFree(z);
++ }
++}
++
++
++#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
++
++/*
++** This function registered all of the above C functions as SQL
++** functions. This should be the only routine in this file with
++** external linkage.
++*/
++void sqliteRegisterDateTimeFunctions(sqlite *db){
++#ifndef SQLITE_OMIT_DATETIME_FUNCS
++ static struct {
++ char *zName;
++ int nArg;
++ int dataType;
++ void (*xFunc)(sqlite_func*,int,const char**);
++ } aFuncs[] = {
++ { "julianday", -1, SQLITE_NUMERIC, juliandayFunc },
++ { "date", -1, SQLITE_TEXT, dateFunc },
++ { "time", -1, SQLITE_TEXT, timeFunc },
++ { "datetime", -1, SQLITE_TEXT, datetimeFunc },
++ { "strftime", -1, SQLITE_TEXT, strftimeFunc },
++ };
++ int i;
++
++ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
++ sqlite_create_function(db, aFuncs[i].zName,
++ aFuncs[i].nArg, aFuncs[i].xFunc, 0);
++ if( aFuncs[i].xFunc ){
++ sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
++ }
++ }
++#endif
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/delete.c
+@@ -0,0 +1,393 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains C code routines that are called by the parser
++** to handle DELETE FROM statements.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++
++/*
++** Look up every table that is named in pSrc. If any table is not found,
++** add an error message to pParse->zErrMsg and return NULL. If all tables
++** are found, return a pointer to the last table.
++*/
++Table *sqliteSrcListLookup(Parse *pParse, SrcList *pSrc){
++ Table *pTab = 0;
++ int i;
++ for(i=0; i<pSrc->nSrc; i++){
++ const char *zTab = pSrc->a[i].zName;
++ const char *zDb = pSrc->a[i].zDatabase;
++ pTab = sqliteLocateTable(pParse, zTab, zDb);
++ pSrc->a[i].pTab = pTab;
++ }
++ return pTab;
++}
++
++/*
++** Check to make sure the given table is writable. If it is not
++** writable, generate an error message and return 1. If it is
++** writable return 0;
++*/
++int sqliteIsReadOnly(Parse *pParse, Table *pTab, int viewOk){
++ if( pTab->readOnly ){
++ sqliteErrorMsg(pParse, "table %s may not be modified", pTab->zName);
++ return 1;
++ }
++ if( !viewOk && pTab->pSelect ){
++ sqliteErrorMsg(pParse, "cannot modify %s because it is a view",pTab->zName);
++ return 1;
++ }
++ return 0;
++}
++
++/*
++** Process a DELETE FROM statement.
++*/
++void sqliteDeleteFrom(
++ Parse *pParse, /* The parser context */
++ SrcList *pTabList, /* The table from which we should delete things */
++ Expr *pWhere /* The WHERE clause. May be null */
++){
++ Vdbe *v; /* The virtual database engine */
++ Table *pTab; /* The table from which records will be deleted */
++ const char *zDb; /* Name of database holding pTab */
++ int end, addr; /* A couple addresses of generated code */
++ int i; /* Loop counter */
++ WhereInfo *pWInfo; /* Information about the WHERE clause */
++ Index *pIdx; /* For looping over indices of the table */
++ int iCur; /* VDBE Cursor number for pTab */
++ sqlite *db; /* Main database structure */
++ int isView; /* True if attempting to delete from a view */
++ AuthContext sContext; /* Authorization context */
++
++ int row_triggers_exist = 0; /* True if any triggers exist */
++ int before_triggers; /* True if there are BEFORE triggers */
++ int after_triggers; /* True if there are AFTER triggers */
++ int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */
++
++ sContext.pParse = 0;
++ if( pParse->nErr || sqlite_malloc_failed ){
++ pTabList = 0;
++ goto delete_from_cleanup;
++ }
++ db = pParse->db;
++ assert( pTabList->nSrc==1 );
++
++ /* Locate the table which we want to delete. This table has to be
++ ** put in an SrcList structure because some of the subroutines we
++ ** will be calling are designed to work with multiple tables and expect
++ ** an SrcList* parameter instead of just a Table* parameter.
++ */
++ pTab = sqliteSrcListLookup(pParse, pTabList);
++ if( pTab==0 ) goto delete_from_cleanup;
++ before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
++ TK_DELETE, TK_BEFORE, TK_ROW, 0);
++ after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
++ TK_DELETE, TK_AFTER, TK_ROW, 0);
++ row_triggers_exist = before_triggers || after_triggers;
++ isView = pTab->pSelect!=0;
++ if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
++ goto delete_from_cleanup;
++ }
++ assert( pTab->iDb<db->nDb );
++ zDb = db->aDb[pTab->iDb].zName;
++ if( sqliteAuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
++ goto delete_from_cleanup;
++ }
++
++ /* If pTab is really a view, make sure it has been initialized.
++ */
++ if( isView && sqliteViewGetColumnNames(pParse, pTab) ){
++ goto delete_from_cleanup;
++ }
++
++ /* Allocate a cursor used to store the old.* data for a trigger.
++ */
++ if( row_triggers_exist ){
++ oldIdx = pParse->nTab++;
++ }
++
++ /* Resolve the column names in all the expressions.
++ */
++ assert( pTabList->nSrc==1 );
++ iCur = pTabList->a[0].iCursor = pParse->nTab++;
++ if( pWhere ){
++ if( sqliteExprResolveIds(pParse, pTabList, 0, pWhere) ){
++ goto delete_from_cleanup;
++ }
++ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
++ goto delete_from_cleanup;
++ }
++ }
++
++ /* Start the view context
++ */
++ if( isView ){
++ sqliteAuthContextPush(pParse, &sContext, pTab->zName);
++ }
++
++ /* Begin generating code.
++ */
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ){
++ goto delete_from_cleanup;
++ }
++ sqliteBeginWriteOperation(pParse, row_triggers_exist, pTab->iDb);
++
++ /* If we are trying to delete from a view, construct that view into
++ ** a temporary table.
++ */
++ if( isView ){
++ Select *pView = sqliteSelectDup(pTab->pSelect);
++ sqliteSelect(pParse, pView, SRT_TempTable, iCur, 0, 0, 0);
++ sqliteSelectDelete(pView);
++ }
++
++ /* Initialize the counter of the number of rows deleted, if
++ ** we are counting rows.
++ */
++ if( db->flags & SQLITE_CountRows ){
++ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
++ }
++
++ /* Special case: A DELETE without a WHERE clause deletes everything.
++ ** It is easier just to erase the whole table. Note, however, that
++ ** this means that the row change count will be incorrect.
++ */
++ if( pWhere==0 && !row_triggers_exist ){
++ if( db->flags & SQLITE_CountRows ){
++ /* If counting rows deleted, just count the total number of
++ ** entries in the table. */
++ int endOfLoop = sqliteVdbeMakeLabel(v);
++ int addr;
++ if( !isView ){
++ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
++ sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
++ }
++ sqliteVdbeAddOp(v, OP_Rewind, iCur, sqliteVdbeCurrentAddr(v)+2);
++ addr = sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
++ sqliteVdbeAddOp(v, OP_Next, iCur, addr);
++ sqliteVdbeResolveLabel(v, endOfLoop);
++ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
++ }
++ if( !isView ){
++ sqliteVdbeAddOp(v, OP_Clear, pTab->tnum, pTab->iDb);
++ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
++ sqliteVdbeAddOp(v, OP_Clear, pIdx->tnum, pIdx->iDb);
++ }
++ }
++ }
++
++ /* The usual case: There is a WHERE clause so we have to scan through
++ ** the table and pick which records to delete.
++ */
++ else{
++ /* Begin the database scan
++ */
++ pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1, 0);
++ if( pWInfo==0 ) goto delete_from_cleanup;
++
++ /* Remember the key of every item to be deleted.
++ */
++ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0);
++ if( db->flags & SQLITE_CountRows ){
++ sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
++ }
++
++ /* End the database scan loop.
++ */
++ sqliteWhereEnd(pWInfo);
++
++ /* Open the pseudo-table used to store OLD if there are triggers.
++ */
++ if( row_triggers_exist ){
++ sqliteVdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
++ }
++
++ /* Delete every item whose key was written to the list during the
++ ** database scan. We have to delete items after the scan is complete
++ ** because deleting an item can change the scan order.
++ */
++ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
++ end = sqliteVdbeMakeLabel(v);
++
++ /* This is the beginning of the delete loop when there are
++ ** row triggers.
++ */
++ if( row_triggers_exist ){
++ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
++ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
++ if( !isView ){
++ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
++ sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
++ }
++ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
++
++ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
++ sqliteVdbeAddOp(v, OP_RowData, iCur, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0);
++ if( !isView ){
++ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
++ }
++
++ sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_BEFORE, pTab, -1,
++ oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
++ addr);
++ }
++
++ if( !isView ){
++ /* Open cursors for the table we are deleting from and all its
++ ** indices. If there are row triggers, this happens inside the
++ ** OP_ListRead loop because the cursor have to all be closed
++ ** before the trigger fires. If there are no row triggers, the
++ ** cursors are opened only once on the outside the loop.
++ */
++ pParse->nTab = iCur + 1;
++ sqliteOpenTableAndIndices(pParse, pTab, iCur);
++
++ /* This is the beginning of the delete loop when there are no
++ ** row triggers */
++ if( !row_triggers_exist ){
++ addr = sqliteVdbeAddOp(v, OP_ListRead, 0, end);
++ }
++
++ /* Delete the row */
++ sqliteGenerateRowDelete(db, v, pTab, iCur, pParse->trigStack==0);
++ }
++
++ /* If there are row triggers, close all cursors then invoke
++ ** the AFTER triggers
++ */
++ if( row_triggers_exist ){
++ if( !isView ){
++ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
++ sqliteVdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
++ }
++ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
++ }
++ sqliteCodeRowTrigger(pParse, TK_DELETE, 0, TK_AFTER, pTab, -1,
++ oldIdx, (pParse->trigStack)?pParse->trigStack->orconf:OE_Default,
++ addr);
++ }
++
++ /* End of the delete loop */
++ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
++ sqliteVdbeResolveLabel(v, end);
++ sqliteVdbeAddOp(v, OP_ListReset, 0, 0);
++
++ /* Close the cursors after the loop if there are no row triggers */
++ if( !row_triggers_exist ){
++ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
++ sqliteVdbeAddOp(v, OP_Close, iCur + i, pIdx->tnum);
++ }
++ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
++ pParse->nTab = iCur;
++ }
++ }
++ sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
++ sqliteEndWriteOperation(pParse);
++
++ /*
++ ** Return the number of rows that were deleted.
++ */
++ if( db->flags & SQLITE_CountRows ){
++ sqliteVdbeAddOp(v, OP_ColumnName, 0, 1);
++ sqliteVdbeChangeP3(v, -1, "rows deleted", P3_STATIC);
++ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
++ }
++
++delete_from_cleanup:
++ sqliteAuthContextPop(&sContext);
++ sqliteSrcListDelete(pTabList);
++ sqliteExprDelete(pWhere);
++ return;
++}
++
++/*
++** This routine generates VDBE code that causes a single row of a
++** single table to be deleted.
++**
++** The VDBE must be in a particular state when this routine is called.
++** These are the requirements:
++**
++** 1. A read/write cursor pointing to pTab, the table containing the row
++** to be deleted, must be opened as cursor number "base".
++**
++** 2. Read/write cursors for all indices of pTab must be open as
++** cursor number base+i for the i-th index.
++**
++** 3. The record number of the row to be deleted must be on the top
++** of the stack.
++**
++** This routine pops the top of the stack to remove the record number
++** and then generates code to remove both the table record and all index
++** entries that point to that record.
++*/
++void sqliteGenerateRowDelete(
++ sqlite *db, /* The database containing the index */
++ Vdbe *v, /* Generate code into this VDBE */
++ Table *pTab, /* Table containing the row to be deleted */
++ int iCur, /* Cursor number for the table */
++ int count /* Increment the row change counter */
++){
++ int addr;
++ addr = sqliteVdbeAddOp(v, OP_NotExists, iCur, 0);
++ sqliteGenerateRowIndexDelete(db, v, pTab, iCur, 0);
++ sqliteVdbeAddOp(v, OP_Delete, iCur,
++ (count?OPFLAG_NCHANGE:0) | OPFLAG_CSCHANGE);
++ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
++}
++
++/*
++** This routine generates VDBE code that causes the deletion of all
++** index entries associated with a single row of a single table.
++**
++** The VDBE must be in a particular state when this routine is called.
++** These are the requirements:
++**
++** 1. A read/write cursor pointing to pTab, the table containing the row
++** to be deleted, must be opened as cursor number "iCur".
++**
++** 2. Read/write cursors for all indices of pTab must be open as
++** cursor number iCur+i for the i-th index.
++**
++** 3. The "iCur" cursor must be pointing to the row that is to be
++** deleted.
++*/
++void sqliteGenerateRowIndexDelete(
++ sqlite *db, /* The database containing the index */
++ Vdbe *v, /* Generate code into this VDBE */
++ Table *pTab, /* Table containing the row to be deleted */
++ int iCur, /* Cursor number for the table */
++ char *aIdxUsed /* Only delete if aIdxUsed!=0 && aIdxUsed[i]!=0 */
++){
++ int i;
++ Index *pIdx;
++
++ for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){
++ int j;
++ if( aIdxUsed!=0 && aIdxUsed[i-1]==0 ) continue;
++ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
++ for(j=0; j<pIdx->nColumn; j++){
++ int idx = pIdx->aiColumn[j];
++ if( idx==pTab->iPKey ){
++ sqliteVdbeAddOp(v, OP_Dup, j, 0);
++ }else{
++ sqliteVdbeAddOp(v, OP_Column, iCur, idx);
++ }
++ }
++ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
++ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
++ sqliteVdbeAddOp(v, OP_IdxDelete, iCur+i, 0);
++ }
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/encode.c
+@@ -0,0 +1,257 @@
++/*
++** 2002 April 25
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains helper routines used to translate binary data into
++** a null-terminated string (suitable for use in SQLite) and back again.
++** These are convenience routines for use by people who want to store binary
++** data in an SQLite database. The code in this file is not used by any other
++** part of the SQLite library.
++**
++** $Id$
++*/
++#include <string.h>
++#include <assert.h>
++
++/*
++** How This Encoder Works
++**
++** The output is allowed to contain any character except 0x27 (') and
++** 0x00. This is accomplished by using an escape character to encode
++** 0x27 and 0x00 as a two-byte sequence. The escape character is always
++** 0x01. An 0x00 is encoded as the two byte sequence 0x01 0x01. The
++** 0x27 character is encoded as the two byte sequence 0x01 0x28. Finally,
++** the escape character itself is encoded as the two-character sequence
++** 0x01 0x02.
++**
++** To summarize, the encoder works by using an escape sequences as follows:
++**
++** 0x00 -> 0x01 0x01
++** 0x01 -> 0x01 0x02
++** 0x27 -> 0x01 0x28
++**
++** If that were all the encoder did, it would work, but in certain cases
++** it could double the size of the encoded string. For example, to
++** encode a string of 100 0x27 characters would require 100 instances of
++** the 0x01 0x03 escape sequence resulting in a 200-character output.
++** We would prefer to keep the size of the encoded string smaller than
++** this.
++**
++** To minimize the encoding size, we first add a fixed offset value to each
++** byte in the sequence. The addition is modulo 256. (That is to say, if
++** the sum of the original character value and the offset exceeds 256, then
++** the higher order bits are truncated.) The offset is chosen to minimize
++** the number of characters in the string that need to be escaped. For
++** example, in the case above where the string was composed of 100 0x27
++** characters, the offset might be 0x01. Each of the 0x27 characters would
++** then be converted into an 0x28 character which would not need to be
++** escaped at all and so the 100 character input string would be converted
++** into just 100 characters of output. Actually 101 characters of output -
++** we have to record the offset used as the first byte in the sequence so
++** that the string can be decoded. Since the offset value is stored as
++** part of the output string and the output string is not allowed to contain
++** characters 0x00 or 0x27, the offset cannot be 0x00 or 0x27.
++**
++** Here, then, are the encoding steps:
++**
++** (1) Choose an offset value and make it the first character of
++** output.
++**
++** (2) Copy each input character into the output buffer, one by
++** one, adding the offset value as you copy.
++**
++** (3) If the value of an input character plus offset is 0x00, replace
++** that one character by the two-character sequence 0x01 0x01.
++** If the sum is 0x01, replace it with 0x01 0x02. If the sum
++** is 0x27, replace it with 0x01 0x03.
++**
++** (4) Put a 0x00 terminator at the end of the output.
++**
++** Decoding is obvious:
++**
++** (5) Copy encoded characters except the first into the decode
++** buffer. Set the first encoded character aside for use as
++** the offset in step 7 below.
++**
++** (6) Convert each 0x01 0x01 sequence into a single character 0x00.
++** Convert 0x01 0x02 into 0x01. Convert 0x01 0x28 into 0x27.
++**
++** (7) Subtract the offset value that was the first character of
++** the encoded buffer from all characters in the output buffer.
++**
++** The only tricky part is step (1) - how to compute an offset value to
++** minimize the size of the output buffer. This is accomplished by testing
++** all offset values and picking the one that results in the fewest number
++** of escapes. To do that, we first scan the entire input and count the
++** number of occurances of each character value in the input. Suppose
++** the number of 0x00 characters is N(0), the number of occurances of 0x01
++** is N(1), and so forth up to the number of occurances of 0xff is N(255).
++** An offset of 0 is not allowed so we don't have to test it. The number
++** of escapes required for an offset of 1 is N(1)+N(2)+N(40). The number
++** of escapes required for an offset of 2 is N(2)+N(3)+N(41). And so forth.
++** In this way we find the offset that gives the minimum number of escapes,
++** and thus minimizes the length of the output string.
++*/
++
++/*
++** Encode a binary buffer "in" of size n bytes so that it contains
++** no instances of characters '\'' or '\000'. The output is
++** null-terminated and can be used as a string value in an INSERT
++** or UPDATE statement. Use sqlite_decode_binary() to convert the
++** string back into its original binary.
++**
++** The result is written into a preallocated output buffer "out".
++** "out" must be able to hold at least 2 +(257*n)/254 bytes.
++** In other words, the output will be expanded by as much as 3
++** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
++** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
++**
++** The return value is the number of characters in the encoded
++** string, excluding the "\000" terminator.
++**
++** If out==NULL then no output is generated but the routine still returns
++** the number of characters that would have been generated if out had
++** not been NULL.
++*/
++int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out){
++ int i, j, e, m;
++ unsigned char x;
++ int cnt[256];
++ if( n<=0 ){
++ if( out ){
++ out[0] = 'x';
++ out[1] = 0;
++ }
++ return 1;
++ }
++ memset(cnt, 0, sizeof(cnt));
++ for(i=n-1; i>=0; i--){ cnt[in[i]]++; }
++ m = n;
++ for(i=1; i<256; i++){
++ int sum;
++ if( i=='\'' ) continue;
++ sum = cnt[i] + cnt[(i+1)&0xff] + cnt[(i+'\'')&0xff];
++ if( sum<m ){
++ m = sum;
++ e = i;
++ if( m==0 ) break;
++ }
++ }
++ if( out==0 ){
++ return n+m+1;
++ }
++ out[0] = e;
++ j = 1;
++ for(i=0; i<n; i++){
++ x = in[i] - e;
++ if( x==0 || x==1 || x=='\''){
++ out[j++] = 1;
++ x++;
++ }
++ out[j++] = x;
++ }
++ out[j] = 0;
++ assert( j==n+m+1 );
++ return j;
++}
++
++/*
++** Decode the string "in" into binary data and write it into "out".
++** This routine reverses the encoding created by sqlite_encode_binary().
++** The output will always be a few bytes less than the input. The number
++** of bytes of output is returned. If the input is not a well-formed
++** encoding, -1 is returned.
++**
++** The "in" and "out" parameters may point to the same buffer in order
++** to decode a string in place.
++*/
++int sqlite_decode_binary(const unsigned char *in, unsigned char *out){
++ int i, e;
++ unsigned char c;
++ e = *(in++);
++ if (e == 0) {
++ return 0;
++ }
++ i = 0;
++ while( (c = *(in++))!=0 ){
++ if (c == 1) {
++ c = *(in++) - 1;
++ }
++ out[i++] = c + e;
++ }
++ return i;
++}
++
++#ifdef ENCODER_TEST
++#include <stdio.h>
++/*
++** The subroutines above are not tested by the usual test suite. To test
++** these routines, compile just this one file with a -DENCODER_TEST=1 option
++** and run the result.
++*/
++int main(int argc, char **argv){
++ int i, j, n, m, nOut, nByteIn, nByteOut;
++ unsigned char in[30000];
++ unsigned char out[33000];
++
++ nByteIn = nByteOut = 0;
++ for(i=0; i<sizeof(in); i++){
++ printf("Test %d: ", i+1);
++ n = rand() % (i+1);
++ if( i%100==0 ){
++ int k;
++ for(j=k=0; j<n; j++){
++ /* if( k==0 || k=='\'' ) k++; */
++ in[j] = k;
++ k = (k+1)&0xff;
++ }
++ }else{
++ for(j=0; j<n; j++) in[j] = rand() & 0xff;
++ }
++ nByteIn += n;
++ nOut = sqlite_encode_binary(in, n, out);
++ nByteOut += nOut;
++ if( nOut!=strlen(out) ){
++ printf(" ERROR return value is %d instead of %d\n", nOut, strlen(out));
++ exit(1);
++ }
++ if( nOut!=sqlite_encode_binary(in, n, 0) ){
++ printf(" ERROR actual output size disagrees with predicted size\n");
++ exit(1);
++ }
++ m = (256*n + 1262)/253;
++ printf("size %d->%d (max %d)", n, strlen(out)+1, m);
++ if( strlen(out)+1>m ){
++ printf(" ERROR output too big\n");
++ exit(1);
++ }
++ for(j=0; out[j]; j++){
++ if( out[j]=='\'' ){
++ printf(" ERROR contains (')\n");
++ exit(1);
++ }
++ }
++ j = sqlite_decode_binary(out, out);
++ if( j!=n ){
++ printf(" ERROR decode size %d\n", j);
++ exit(1);
++ }
++ if( memcmp(in, out, n)!=0 ){
++ printf(" ERROR decode mismatch\n");
++ exit(1);
++ }
++ printf(" OK\n");
++ }
++ fprintf(stderr,"Finished. Total encoding: %d->%d bytes\n",
++ nByteIn, nByteOut);
++ fprintf(stderr,"Avg size increase: %.3f%%\n",
++ (nByteOut-nByteIn)*100.0/(double)nByteIn);
++}
++#endif /* ENCODER_TEST */
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/expr.c
+@@ -0,0 +1,1662 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains routines used for analyzing expressions and
++** for generating VDBE code that evaluates expressions in SQLite.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++#include <ctype.h>
++
++/*
++** Construct a new expression node and return a pointer to it. Memory
++** for this node is obtained from sqliteMalloc(). The calling function
++** is responsible for making sure the node eventually gets freed.
++*/
++Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
++ Expr *pNew;
++ pNew = sqliteMalloc( sizeof(Expr) );
++ if( pNew==0 ){
++ /* When malloc fails, we leak memory from pLeft and pRight */
++ return 0;
++ }
++ pNew->op = op;
++ pNew->pLeft = pLeft;
++ pNew->pRight = pRight;
++ if( pToken ){
++ assert( pToken->dyn==0 );
++ pNew->token = *pToken;
++ pNew->span = *pToken;
++ }else{
++ assert( pNew->token.dyn==0 );
++ assert( pNew->token.z==0 );
++ assert( pNew->token.n==0 );
++ if( pLeft && pRight ){
++ sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
++ }else{
++ pNew->span = pNew->token;
++ }
++ }
++ return pNew;
++}
++
++/*
++** Set the Expr.span field of the given expression to span all
++** text between the two given tokens.
++*/
++void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
++ assert( pRight!=0 );
++ assert( pLeft!=0 );
++ /* Note: pExpr might be NULL due to a prior malloc failure */
++ if( pExpr && pRight->z && pLeft->z ){
++ if( pLeft->dyn==0 && pRight->dyn==0 ){
++ pExpr->span.z = pLeft->z;
++ pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
++ }else{
++ pExpr->span.z = 0;
++ }
++ }
++}
++
++/*
++** Construct a new expression node for a function with multiple
++** arguments.
++*/
++Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
++ Expr *pNew;
++ pNew = sqliteMalloc( sizeof(Expr) );
++ if( pNew==0 ){
++ /* sqliteExprListDelete(pList); // Leak pList when malloc fails */
++ return 0;
++ }
++ pNew->op = TK_FUNCTION;
++ pNew->pList = pList;
++ if( pToken ){
++ assert( pToken->dyn==0 );
++ pNew->token = *pToken;
++ }else{
++ pNew->token.z = 0;
++ }
++ pNew->span = pNew->token;
++ return pNew;
++}
++
++/*
++** Recursively delete an expression tree.
++*/
++void sqliteExprDelete(Expr *p){
++ if( p==0 ) return;
++ if( p->span.dyn ) sqliteFree((char*)p->span.z);
++ if( p->token.dyn ) sqliteFree((char*)p->token.z);
++ sqliteExprDelete(p->pLeft);
++ sqliteExprDelete(p->pRight);
++ sqliteExprListDelete(p->pList);
++ sqliteSelectDelete(p->pSelect);
++ sqliteFree(p);
++}
++
++
++/*
++** The following group of routines make deep copies of expressions,
++** expression lists, ID lists, and select statements. The copies can
++** be deleted (by being passed to their respective ...Delete() routines)
++** without effecting the originals.
++**
++** The expression list, ID, and source lists return by sqliteExprListDup(),
++** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded
++** by subsequent calls to sqlite*ListAppend() routines.
++**
++** Any tables that the SrcList might point to are not duplicated.
++*/
++Expr *sqliteExprDup(Expr *p){
++ Expr *pNew;
++ if( p==0 ) return 0;
++ pNew = sqliteMallocRaw( sizeof(*p) );
++ if( pNew==0 ) return 0;
++ memcpy(pNew, p, sizeof(*pNew));
++ if( p->token.z!=0 ){
++ pNew->token.z = sqliteStrNDup(p->token.z, p->token.n);
++ pNew->token.dyn = 1;
++ }else{
++ assert( pNew->token.z==0 );
++ }
++ pNew->span.z = 0;
++ pNew->pLeft = sqliteExprDup(p->pLeft);
++ pNew->pRight = sqliteExprDup(p->pRight);
++ pNew->pList = sqliteExprListDup(p->pList);
++ pNew->pSelect = sqliteSelectDup(p->pSelect);
++ return pNew;
++}
++void sqliteTokenCopy(Token *pTo, Token *pFrom){
++ if( pTo->dyn ) sqliteFree((char*)pTo->z);
++ if( pFrom->z ){
++ pTo->n = pFrom->n;
++ pTo->z = sqliteStrNDup(pFrom->z, pFrom->n);
++ pTo->dyn = 1;
++ }else{
++ pTo->z = 0;
++ }
++}
++ExprList *sqliteExprListDup(ExprList *p){
++ ExprList *pNew;
++ struct ExprList_item *pItem;
++ int i;
++ if( p==0 ) return 0;
++ pNew = sqliteMalloc( sizeof(*pNew) );
++ if( pNew==0 ) return 0;
++ pNew->nExpr = pNew->nAlloc = p->nExpr;
++ pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
++ if( pItem==0 ){
++ sqliteFree(pNew);
++ return 0;
++ }
++ for(i=0; i<p->nExpr; i++, pItem++){
++ Expr *pNewExpr, *pOldExpr;
++ pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
++ if( pOldExpr->span.z!=0 && pNewExpr ){
++ /* Always make a copy of the span for top-level expressions in the
++ ** expression list. The logic in SELECT processing that determines
++ ** the names of columns in the result set needs this information */
++ sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
++ }
++ assert( pNewExpr==0 || pNewExpr->span.z!=0
++ || pOldExpr->span.z==0 || sqlite_malloc_failed );
++ pItem->zName = sqliteStrDup(p->a[i].zName);
++ pItem->sortOrder = p->a[i].sortOrder;
++ pItem->isAgg = p->a[i].isAgg;
++ pItem->done = 0;
++ }
++ return pNew;
++}
++SrcList *sqliteSrcListDup(SrcList *p){
++ SrcList *pNew;
++ int i;
++ int nByte;
++ if( p==0 ) return 0;
++ nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
++ pNew = sqliteMallocRaw( nByte );
++ if( pNew==0 ) return 0;
++ pNew->nSrc = pNew->nAlloc = p->nSrc;
++ for(i=0; i<p->nSrc; i++){
++ struct SrcList_item *pNewItem = &pNew->a[i];
++ struct SrcList_item *pOldItem = &p->a[i];
++ pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
++ pNewItem->zName = sqliteStrDup(pOldItem->zName);
++ pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
++ pNewItem->jointype = pOldItem->jointype;
++ pNewItem->iCursor = pOldItem->iCursor;
++ pNewItem->pTab = 0;
++ pNewItem->pSelect = sqliteSelectDup(pOldItem->pSelect);
++ pNewItem->pOn = sqliteExprDup(pOldItem->pOn);
++ pNewItem->pUsing = sqliteIdListDup(pOldItem->pUsing);
++ }
++ return pNew;
++}
++IdList *sqliteIdListDup(IdList *p){
++ IdList *pNew;
++ int i;
++ if( p==0 ) return 0;
++ pNew = sqliteMallocRaw( sizeof(*pNew) );
++ if( pNew==0 ) return 0;
++ pNew->nId = pNew->nAlloc = p->nId;
++ pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
++ if( pNew->a==0 ) return 0;
++ for(i=0; i<p->nId; i++){
++ struct IdList_item *pNewItem = &pNew->a[i];
++ struct IdList_item *pOldItem = &p->a[i];
++ pNewItem->zName = sqliteStrDup(pOldItem->zName);
++ pNewItem->idx = pOldItem->idx;
++ }
++ return pNew;
++}
++Select *sqliteSelectDup(Select *p){
++ Select *pNew;
++ if( p==0 ) return 0;
++ pNew = sqliteMallocRaw( sizeof(*p) );
++ if( pNew==0 ) return 0;
++ pNew->isDistinct = p->isDistinct;
++ pNew->pEList = sqliteExprListDup(p->pEList);
++ pNew->pSrc = sqliteSrcListDup(p->pSrc);
++ pNew->pWhere = sqliteExprDup(p->pWhere);
++ pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
++ pNew->pHaving = sqliteExprDup(p->pHaving);
++ pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
++ pNew->op = p->op;
++ pNew->pPrior = sqliteSelectDup(p->pPrior);
++ pNew->nLimit = p->nLimit;
++ pNew->nOffset = p->nOffset;
++ pNew->zSelect = 0;
++ pNew->iLimit = -1;
++ pNew->iOffset = -1;
++ return pNew;
++}
++
++
++/*
++** Add a new element to the end of an expression list. If pList is
++** initially NULL, then create a new expression list.
++*/
++ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
++ if( pList==0 ){
++ pList = sqliteMalloc( sizeof(ExprList) );
++ if( pList==0 ){
++ /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
++ return 0;
++ }
++ assert( pList->nAlloc==0 );
++ }
++ if( pList->nAlloc<=pList->nExpr ){
++ pList->nAlloc = pList->nAlloc*2 + 4;
++ pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
++ if( pList->a==0 ){
++ /* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
++ pList->nExpr = pList->nAlloc = 0;
++ return pList;
++ }
++ }
++ assert( pList->a!=0 );
++ if( pExpr || pName ){
++ struct ExprList_item *pItem = &pList->a[pList->nExpr++];
++ memset(pItem, 0, sizeof(*pItem));
++ pItem->pExpr = pExpr;
++ if( pName ){
++ sqliteSetNString(&pItem->zName, pName->z, pName->n, 0);
++ sqliteDequote(pItem->zName);
++ }
++ }
++ return pList;
++}
++
++/*
++** Delete an entire expression list.
++*/
++void sqliteExprListDelete(ExprList *pList){
++ int i;
++ if( pList==0 ) return;
++ assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
++ assert( pList->nExpr<=pList->nAlloc );
++ for(i=0; i<pList->nExpr; i++){
++ sqliteExprDelete(pList->a[i].pExpr);
++ sqliteFree(pList->a[i].zName);
++ }
++ sqliteFree(pList->a);
++ sqliteFree(pList);
++}
++
++/*
++** Walk an expression tree. Return 1 if the expression is constant
++** and 0 if it involves variables.
++**
++** For the purposes of this function, a double-quoted string (ex: "abc")
++** is considered a variable but a single-quoted string (ex: 'abc') is
++** a constant.
++*/
++int sqliteExprIsConstant(Expr *p){
++ switch( p->op ){
++ case TK_ID:
++ case TK_COLUMN:
++ case TK_DOT:
++ case TK_FUNCTION:
++ return 0;
++ case TK_NULL:
++ case TK_STRING:
++ case TK_INTEGER:
++ case TK_FLOAT:
++ case TK_VARIABLE:
++ return 1;
++ default: {
++ if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
++ if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
++ if( p->pList ){
++ int i;
++ for(i=0; i<p->pList->nExpr; i++){
++ if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
++ }
++ }
++ return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
++ }
++ }
++ return 0;
++}
++
++/*
++** If the given expression codes a constant integer that is small enough
++** to fit in a 32-bit integer, return 1 and put the value of the integer
++** in *pValue. If the expression is not an integer or if it is too big
++** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
++*/
++int sqliteExprIsInteger(Expr *p, int *pValue){
++ switch( p->op ){
++ case TK_INTEGER: {
++ if( sqliteFitsIn32Bits(p->token.z) ){
++ *pValue = atoi(p->token.z);
++ return 1;
++ }
++ break;
++ }
++ case TK_STRING: {
++ const char *z = p->token.z;
++ int n = p->token.n;
++ if( n>0 && z[0]=='-' ){ z++; n--; }
++ while( n>0 && *z && isdigit(*z) ){ z++; n--; }
++ if( n==0 && sqliteFitsIn32Bits(p->token.z) ){
++ *pValue = atoi(p->token.z);
++ return 1;
++ }
++ break;
++ }
++ case TK_UPLUS: {
++ return sqliteExprIsInteger(p->pLeft, pValue);
++ }
++ case TK_UMINUS: {
++ int v;
++ if( sqliteExprIsInteger(p->pLeft, &v) ){
++ *pValue = -v;
++ return 1;
++ }
++ break;
++ }
++ default: break;
++ }
++ return 0;
++}
++
++/*
++** Return TRUE if the given string is a row-id column name.
++*/
++int sqliteIsRowid(const char *z){
++ if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
++ if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
++ if( sqliteStrICmp(z, "OID")==0 ) return 1;
++ return 0;
++}
++
++/*
++** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
++** that name in the set of source tables in pSrcList and make the pExpr
++** expression node refer back to that source column. The following changes
++** are made to pExpr:
++**
++** pExpr->iDb Set the index in db->aDb[] of the database holding
++** the table.
++** pExpr->iTable Set to the cursor number for the table obtained
++** from pSrcList.
++** pExpr->iColumn Set to the column number within the table.
++** pExpr->dataType Set to the appropriate data type for the column.
++** pExpr->op Set to TK_COLUMN.
++** pExpr->pLeft Any expression this points to is deleted
++** pExpr->pRight Any expression this points to is deleted.
++**
++** The pDbToken is the name of the database (the "X"). This value may be
++** NULL meaning that name is of the form Y.Z or Z. Any available database
++** can be used. The pTableToken is the name of the table (the "Y"). This
++** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
++** means that the form of the name is Z and that columns from any table
++** can be used.
++**
++** If the name cannot be resolved unambiguously, leave an error message
++** in pParse and return non-zero. Return zero on success.
++*/
++static int lookupName(
++ Parse *pParse, /* The parsing context */
++ Token *pDbToken, /* Name of the database containing table, or NULL */
++ Token *pTableToken, /* Name of table containing column, or NULL */
++ Token *pColumnToken, /* Name of the column. */
++ SrcList *pSrcList, /* List of tables used to resolve column names */
++ ExprList *pEList, /* List of expressions used to resolve "AS" */
++ Expr *pExpr /* Make this EXPR node point to the selected column */
++){
++ char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
++ char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
++ char *zCol = 0; /* Name of the column. The "Z" */
++ int i, j; /* Loop counters */
++ int cnt = 0; /* Number of matching column names */
++ int cntTab = 0; /* Number of matching table names */
++ sqlite *db = pParse->db; /* The database */
++
++ assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
++ if( pDbToken && pDbToken->z ){
++ zDb = sqliteStrNDup(pDbToken->z, pDbToken->n);
++ sqliteDequote(zDb);
++ }else{
++ zDb = 0;
++ }
++ if( pTableToken && pTableToken->z ){
++ zTab = sqliteStrNDup(pTableToken->z, pTableToken->n);
++ sqliteDequote(zTab);
++ }else{
++ assert( zDb==0 );
++ zTab = 0;
++ }
++ zCol = sqliteStrNDup(pColumnToken->z, pColumnToken->n);
++ sqliteDequote(zCol);
++ if( sqlite_malloc_failed ){
++ return 1; /* Leak memory (zDb and zTab) if malloc fails */
++ }
++ assert( zTab==0 || pEList==0 );
++
++ pExpr->iTable = -1;
++ for(i=0; i<pSrcList->nSrc; i++){
++ struct SrcList_item *pItem = &pSrcList->a[i];
++ Table *pTab = pItem->pTab;
++ Column *pCol;
++
++ if( pTab==0 ) continue;
++ assert( pTab->nCol>0 );
++ if( zTab ){
++ if( pItem->zAlias ){
++ char *zTabName = pItem->zAlias;
++ if( sqliteStrICmp(zTabName, zTab)!=0 ) continue;
++ }else{
++ char *zTabName = pTab->zName;
++ if( zTabName==0 || sqliteStrICmp(zTabName, zTab)!=0 ) continue;
++ if( zDb!=0 && sqliteStrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
++ continue;
++ }
++ }
++ }
++ if( 0==(cntTab++) ){
++ pExpr->iTable = pItem->iCursor;
++ pExpr->iDb = pTab->iDb;
++ }
++ for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
++ if( sqliteStrICmp(pCol->zName, zCol)==0 ){
++ cnt++;
++ pExpr->iTable = pItem->iCursor;
++ pExpr->iDb = pTab->iDb;
++ /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
++ pExpr->iColumn = j==pTab->iPKey ? -1 : j;
++ pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
++ break;
++ }
++ }
++ }
++
++ /* If we have not already resolved the name, then maybe
++ ** it is a new.* or old.* trigger argument reference
++ */
++ if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
++ TriggerStack *pTriggerStack = pParse->trigStack;
++ Table *pTab = 0;
++ if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zTab) == 0 ){
++ pExpr->iTable = pTriggerStack->newIdx;
++ assert( pTriggerStack->pTab );
++ pTab = pTriggerStack->pTab;
++ }else if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zTab) == 0 ){
++ pExpr->iTable = pTriggerStack->oldIdx;
++ assert( pTriggerStack->pTab );
++ pTab = pTriggerStack->pTab;
++ }
++
++ if( pTab ){
++ int j;
++ Column *pCol = pTab->aCol;
++
++ pExpr->iDb = pTab->iDb;
++ cntTab++;
++ for(j=0; j < pTab->nCol; j++, pCol++) {
++ if( sqliteStrICmp(pCol->zName, zCol)==0 ){
++ cnt++;
++ pExpr->iColumn = j==pTab->iPKey ? -1 : j;
++ pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
++ break;
++ }
++ }
++ }
++ }
++
++ /*
++ ** Perhaps the name is a reference to the ROWID
++ */
++ if( cnt==0 && cntTab==1 && sqliteIsRowid(zCol) ){
++ cnt = 1;
++ pExpr->iColumn = -1;
++ pExpr->dataType = SQLITE_SO_NUM;
++ }
++
++ /*
++ ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
++ ** might refer to an result-set alias. This happens, for example, when
++ ** we are resolving names in the WHERE clause of the following command:
++ **
++ ** SELECT a+b AS x FROM table WHERE x<10;
++ **
++ ** In cases like this, replace pExpr with a copy of the expression that
++ ** forms the result set entry ("a+b" in the example) and return immediately.
++ ** Note that the expression in the result set should have already been
++ ** resolved by the time the WHERE clause is resolved.
++ */
++ if( cnt==0 && pEList!=0 ){
++ for(j=0; j<pEList->nExpr; j++){
++ char *zAs = pEList->a[j].zName;
++ if( zAs!=0 && sqliteStrICmp(zAs, zCol)==0 ){
++ assert( pExpr->pLeft==0 && pExpr->pRight==0 );
++ pExpr->op = TK_AS;
++ pExpr->iColumn = j;
++ pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr);
++ sqliteFree(zCol);
++ assert( zTab==0 && zDb==0 );
++ return 0;
++ }
++ }
++ }
++
++ /*
++ ** If X and Y are NULL (in other words if only the column name Z is
++ ** supplied) and the value of Z is enclosed in double-quotes, then
++ ** Z is a string literal if it doesn't match any column names. In that
++ ** case, we need to return right away and not make any changes to
++ ** pExpr.
++ */
++ if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
++ sqliteFree(zCol);
++ return 0;
++ }
++
++ /*
++ ** cnt==0 means there was not match. cnt>1 means there were two or
++ ** more matches. Either way, we have an error.
++ */
++ if( cnt!=1 ){
++ char *z = 0;
++ char *zErr;
++ zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
++ if( zDb ){
++ sqliteSetString(&z, zDb, ".", zTab, ".", zCol, 0);
++ }else if( zTab ){
++ sqliteSetString(&z, zTab, ".", zCol, 0);
++ }else{
++ z = sqliteStrDup(zCol);
++ }
++ sqliteErrorMsg(pParse, zErr, z);
++ sqliteFree(z);
++ }
++
++ /* Clean up and return
++ */
++ sqliteFree(zDb);
++ sqliteFree(zTab);
++ sqliteFree(zCol);
++ sqliteExprDelete(pExpr->pLeft);
++ pExpr->pLeft = 0;
++ sqliteExprDelete(pExpr->pRight);
++ pExpr->pRight = 0;
++ pExpr->op = TK_COLUMN;
++ sqliteAuthRead(pParse, pExpr, pSrcList);
++ return cnt!=1;
++}
++
++/*
++** This routine walks an expression tree and resolves references to
++** table columns. Nodes of the form ID.ID or ID resolve into an
++** index to the table in the table list and a column offset. The
++** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
++** value is changed to the index of the referenced table in pTabList
++** plus the "base" value. The base value will ultimately become the
++** VDBE cursor number for a cursor that is pointing into the referenced
++** table. The Expr.iColumn value is changed to the index of the column
++** of the referenced table. The Expr.iColumn value for the special
++** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
++** alias for ROWID.
++**
++** We also check for instances of the IN operator. IN comes in two
++** forms:
++**
++** expr IN (exprlist)
++** and
++** expr IN (SELECT ...)
++**
++** The first form is handled by creating a set holding the list
++** of allowed values. The second form causes the SELECT to generate
++** a temporary table.
++**
++** This routine also looks for scalar SELECTs that are part of an expression.
++** If it finds any, it generates code to write the value of that select
++** into a memory cell.
++**
++** Unknown columns or tables provoke an error. The function returns
++** the number of errors seen and leaves an error message on pParse->zErrMsg.
++*/
++int sqliteExprResolveIds(
++ Parse *pParse, /* The parser context */
++ SrcList *pSrcList, /* List of tables used to resolve column names */
++ ExprList *pEList, /* List of expressions used to resolve "AS" */
++ Expr *pExpr /* The expression to be analyzed. */
++){
++ int i;
++
++ if( pExpr==0 || pSrcList==0 ) return 0;
++ for(i=0; i<pSrcList->nSrc; i++){
++ assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab );
++ }
++ switch( pExpr->op ){
++ /* Double-quoted strings (ex: "abc") are used as identifiers if
++ ** possible. Otherwise they remain as strings. Single-quoted
++ ** strings (ex: 'abc') are always string literals.
++ */
++ case TK_STRING: {
++ if( pExpr->token.z[0]=='\'' ) break;
++ /* Fall thru into the TK_ID case if this is a double-quoted string */
++ }
++ /* A lone identifier is the name of a columnd.
++ */
++ case TK_ID: {
++ if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){
++ return 1;
++ }
++ break;
++ }
++
++ /* A table name and column name: ID.ID
++ ** Or a database, table and column: ID.ID.ID
++ */
++ case TK_DOT: {
++ Token *pColumn;
++ Token *pTable;
++ Token *pDb;
++ Expr *pRight;
++
++ pRight = pExpr->pRight;
++ if( pRight->op==TK_ID ){
++ pDb = 0;
++ pTable = &pExpr->pLeft->token;
++ pColumn = &pRight->token;
++ }else{
++ assert( pRight->op==TK_DOT );
++ pDb = &pExpr->pLeft->token;
++ pTable = &pRight->pLeft->token;
++ pColumn = &pRight->pRight->token;
++ }
++ if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){
++ return 1;
++ }
++ break;
++ }
++
++ case TK_IN: {
++ Vdbe *v = sqliteGetVdbe(pParse);
++ if( v==0 ) return 1;
++ if( sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
++ return 1;
++ }
++ if( pExpr->pSelect ){
++ /* Case 1: expr IN (SELECT ...)
++ **
++ ** Generate code to write the results of the select into a temporary
++ ** table. The cursor number of the temporary table has already
++ ** been put in iTable by sqliteExprResolveInSelect().
++ */
++ pExpr->iTable = pParse->nTab++;
++ sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
++ sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
++ }else if( pExpr->pList ){
++ /* Case 2: expr IN (exprlist)
++ **
++ ** Create a set to put the exprlist values in. The Set id is stored
++ ** in iTable.
++ */
++ int i, iSet;
++ for(i=0; i<pExpr->pList->nExpr; i++){
++ Expr *pE2 = pExpr->pList->a[i].pExpr;
++ if( !sqliteExprIsConstant(pE2) ){
++ sqliteErrorMsg(pParse,
++ "right-hand side of IN operator must be constant");
++ return 1;
++ }
++ if( sqliteExprCheck(pParse, pE2, 0, 0) ){
++ return 1;
++ }
++ }
++ iSet = pExpr->iTable = pParse->nSet++;
++ for(i=0; i<pExpr->pList->nExpr; i++){
++ Expr *pE2 = pExpr->pList->a[i].pExpr;
++ switch( pE2->op ){
++ case TK_FLOAT:
++ case TK_INTEGER:
++ case TK_STRING: {
++ int addr;
++ assert( pE2->token.z );
++ addr = sqliteVdbeOp3(v, OP_SetInsert, iSet, 0,
++ pE2->token.z, pE2->token.n);
++ sqliteVdbeDequoteP3(v, addr);
++ break;
++ }
++ default: {
++ sqliteExprCode(pParse, pE2);
++ sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
++ break;
++ }
++ }
++ }
++ }
++ break;
++ }
++
++ case TK_SELECT: {
++ /* This has to be a scalar SELECT. Generate code to put the
++ ** value of this select in a memory cell and record the number
++ ** of the memory cell in iColumn.
++ */
++ pExpr->iColumn = pParse->nMem++;
++ if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){
++ return 1;
++ }
++ break;
++ }
++
++ /* For all else, just recursively walk the tree */
++ default: {
++ if( pExpr->pLeft
++ && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
++ return 1;
++ }
++ if( pExpr->pRight
++ && sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){
++ return 1;
++ }
++ if( pExpr->pList ){
++ int i;
++ ExprList *pList = pExpr->pList;
++ for(i=0; i<pList->nExpr; i++){
++ Expr *pArg = pList->a[i].pExpr;
++ if( sqliteExprResolveIds(pParse, pSrcList, pEList, pArg) ){
++ return 1;
++ }
++ }
++ }
++ }
++ }
++ return 0;
++}
++
++/*
++** pExpr is a node that defines a function of some kind. It might
++** be a syntactic function like "count(x)" or it might be a function
++** that implements an operator, like "a LIKE b".
++**
++** This routine makes *pzName point to the name of the function and
++** *pnName hold the number of characters in the function name.
++*/
++static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
++ switch( pExpr->op ){
++ case TK_FUNCTION: {
++ *pzName = pExpr->token.z;
++ *pnName = pExpr->token.n;
++ break;
++ }
++ case TK_LIKE: {
++ *pzName = "like";
++ *pnName = 4;
++ break;
++ }
++ case TK_GLOB: {
++ *pzName = "glob";
++ *pnName = 4;
++ break;
++ }
++ default: {
++ *pzName = "can't happen";
++ *pnName = 12;
++ break;
++ }
++ }
++}
++
++/*
++** Error check the functions in an expression. Make sure all
++** function names are recognized and all functions have the correct
++** number of arguments. Leave an error message in pParse->zErrMsg
++** if anything is amiss. Return the number of errors.
++**
++** if pIsAgg is not null and this expression is an aggregate function
++** (like count(*) or max(value)) then write a 1 into *pIsAgg.
++*/
++int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
++ int nErr = 0;
++ if( pExpr==0 ) return 0;
++ switch( pExpr->op ){
++ case TK_GLOB:
++ case TK_LIKE:
++ case TK_FUNCTION: {
++ int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */
++ int no_such_func = 0; /* True if no such function exists */
++ int wrong_num_args = 0; /* True if wrong number of arguments */
++ int is_agg = 0; /* True if is an aggregate function */
++ int i;
++ int nId; /* Number of characters in function name */
++ const char *zId; /* The function name. */
++ FuncDef *pDef;
++
++ getFunctionName(pExpr, &zId, &nId);
++ pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0);
++ if( pDef==0 ){
++ pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0);
++ if( pDef==0 ){
++ no_such_func = 1;
++ }else{
++ wrong_num_args = 1;
++ }
++ }else{
++ is_agg = pDef->xFunc==0;
++ }
++ if( is_agg && !allowAgg ){
++ sqliteErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId);
++ nErr++;
++ is_agg = 0;
++ }else if( no_such_func ){
++ sqliteErrorMsg(pParse, "no such function: %.*s", nId, zId);
++ nErr++;
++ }else if( wrong_num_args ){
++ sqliteErrorMsg(pParse,"wrong number of arguments to function %.*s()",
++ nId, zId);
++ nErr++;
++ }
++ if( is_agg ){
++ pExpr->op = TK_AGG_FUNCTION;
++ if( pIsAgg ) *pIsAgg = 1;
++ }
++ for(i=0; nErr==0 && i<n; i++){
++ nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
++ allowAgg && !is_agg, pIsAgg);
++ }
++ if( pDef==0 ){
++ /* Already reported an error */
++ }else if( pDef->dataType>=0 ){
++ if( pDef->dataType<n ){
++ pExpr->dataType =
++ sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr);
++ }else{
++ pExpr->dataType = SQLITE_SO_NUM;
++ }
++ }else if( pDef->dataType==SQLITE_ARGS ){
++ pDef->dataType = SQLITE_SO_TEXT;
++ for(i=0; i<n; i++){
++ if( sqliteExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){
++ pExpr->dataType = SQLITE_SO_NUM;
++ break;
++ }
++ }
++ }else if( pDef->dataType==SQLITE_NUMERIC ){
++ pExpr->dataType = SQLITE_SO_NUM;
++ }else{
++ pExpr->dataType = SQLITE_SO_TEXT;
++ }
++ }
++ default: {
++ if( pExpr->pLeft ){
++ nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
++ }
++ if( nErr==0 && pExpr->pRight ){
++ nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
++ }
++ if( nErr==0 && pExpr->pList ){
++ int n = pExpr->pList->nExpr;
++ int i;
++ for(i=0; nErr==0 && i<n; i++){
++ Expr *pE2 = pExpr->pList->a[i].pExpr;
++ nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
++ }
++ }
++ break;
++ }
++ }
++ return nErr;
++}
++
++/*
++** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the
++** given expression should sort as numeric values or as text.
++**
++** The sqliteExprResolveIds() and sqliteExprCheck() routines must have
++** both been called on the expression before it is passed to this routine.
++*/
++int sqliteExprType(Expr *p){
++ if( p==0 ) return SQLITE_SO_NUM;
++ while( p ) switch( p->op ){
++ case TK_PLUS:
++ case TK_MINUS:
++ case TK_STAR:
++ case TK_SLASH:
++ case TK_AND:
++ case TK_OR:
++ case TK_ISNULL:
++ case TK_NOTNULL:
++ case TK_NOT:
++ case TK_UMINUS:
++ case TK_UPLUS:
++ case TK_BITAND:
++ case TK_BITOR:
++ case TK_BITNOT:
++ case TK_LSHIFT:
++ case TK_RSHIFT:
++ case TK_REM:
++ case TK_INTEGER:
++ case TK_FLOAT:
++ case TK_IN:
++ case TK_BETWEEN:
++ case TK_GLOB:
++ case TK_LIKE:
++ return SQLITE_SO_NUM;
++
++ case TK_STRING:
++ case TK_NULL:
++ case TK_CONCAT:
++ case TK_VARIABLE:
++ return SQLITE_SO_TEXT;
++
++ case TK_LT:
++ case TK_LE:
++ case TK_GT:
++ case TK_GE:
++ case TK_NE:
++ case TK_EQ:
++ if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){
++ return SQLITE_SO_NUM;
++ }
++ p = p->pRight;
++ break;
++
++ case TK_AS:
++ p = p->pLeft;
++ break;
++
++ case TK_COLUMN:
++ case TK_FUNCTION:
++ case TK_AGG_FUNCTION:
++ return p->dataType;
++
++ case TK_SELECT:
++ assert( p->pSelect );
++ assert( p->pSelect->pEList );
++ assert( p->pSelect->pEList->nExpr>0 );
++ p = p->pSelect->pEList->a[0].pExpr;
++ break;
++
++ case TK_CASE: {
++ if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){
++ return SQLITE_SO_NUM;
++ }
++ if( p->pList ){
++ int i;
++ ExprList *pList = p->pList;
++ for(i=1; i<pList->nExpr; i+=2){
++ if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
++ return SQLITE_SO_NUM;
++ }
++ }
++ }
++ return SQLITE_SO_TEXT;
++ }
++
++ default:
++ assert( p->op==TK_ABORT ); /* Can't Happen */
++ break;
++ }
++ return SQLITE_SO_NUM;
++}
++
++/*
++** Generate code into the current Vdbe to evaluate the given
++** expression and leave the result on the top of stack.
++*/
++void sqliteExprCode(Parse *pParse, Expr *pExpr){
++ Vdbe *v = pParse->pVdbe;
++ int op;
++ if( v==0 || pExpr==0 ) return;
++ switch( pExpr->op ){
++ case TK_PLUS: op = OP_Add; break;
++ case TK_MINUS: op = OP_Subtract; break;
++ case TK_STAR: op = OP_Multiply; break;
++ case TK_SLASH: op = OP_Divide; break;
++ case TK_AND: op = OP_And; break;
++ case TK_OR: op = OP_Or; break;
++ case TK_LT: op = OP_Lt; break;
++ case TK_LE: op = OP_Le; break;
++ case TK_GT: op = OP_Gt; break;
++ case TK_GE: op = OP_Ge; break;
++ case TK_NE: op = OP_Ne; break;
++ case TK_EQ: op = OP_Eq; break;
++ case TK_ISNULL: op = OP_IsNull; break;
++ case TK_NOTNULL: op = OP_NotNull; break;
++ case TK_NOT: op = OP_Not; break;
++ case TK_UMINUS: op = OP_Negative; break;
++ case TK_BITAND: op = OP_BitAnd; break;
++ case TK_BITOR: op = OP_BitOr; break;
++ case TK_BITNOT: op = OP_BitNot; break;
++ case TK_LSHIFT: op = OP_ShiftLeft; break;
++ case TK_RSHIFT: op = OP_ShiftRight; break;
++ case TK_REM: op = OP_Remainder; break;
++ default: break;
++ }
++ switch( pExpr->op ){
++ case TK_COLUMN: {
++ if( pParse->useAgg ){
++ sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
++ }else if( pExpr->iColumn>=0 ){
++ sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
++ }else{
++ sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
++ }
++ break;
++ }
++ case TK_STRING:
++ case TK_FLOAT:
++ case TK_INTEGER: {
++ if( pExpr->op==TK_INTEGER && sqliteFitsIn32Bits(pExpr->token.z) ){
++ sqliteVdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0);
++ }else{
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ }
++ assert( pExpr->token.z );
++ sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
++ sqliteVdbeDequoteP3(v, -1);
++ break;
++ }
++ case TK_NULL: {
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ break;
++ }
++ case TK_VARIABLE: {
++ sqliteVdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
++ break;
++ }
++ case TK_LT:
++ case TK_LE:
++ case TK_GT:
++ case TK_GE:
++ case TK_NE:
++ case TK_EQ: {
++ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
++ op += 6; /* Convert numeric opcodes to text opcodes */
++ }
++ /* Fall through into the next case */
++ }
++ case TK_AND:
++ case TK_OR:
++ case TK_PLUS:
++ case TK_STAR:
++ case TK_MINUS:
++ case TK_REM:
++ case TK_BITAND:
++ case TK_BITOR:
++ case TK_SLASH: {
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteExprCode(pParse, pExpr->pRight);
++ sqliteVdbeAddOp(v, op, 0, 0);
++ break;
++ }
++ case TK_LSHIFT:
++ case TK_RSHIFT: {
++ sqliteExprCode(pParse, pExpr->pRight);
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteVdbeAddOp(v, op, 0, 0);
++ break;
++ }
++ case TK_CONCAT: {
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteExprCode(pParse, pExpr->pRight);
++ sqliteVdbeAddOp(v, OP_Concat, 2, 0);
++ break;
++ }
++ case TK_UMINUS: {
++ assert( pExpr->pLeft );
++ if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
++ Token *p = &pExpr->pLeft->token;
++ char *z = sqliteMalloc( p->n + 2 );
++ sprintf(z, "-%.*s", p->n, p->z);
++ if( pExpr->pLeft->op==TK_INTEGER && sqliteFitsIn32Bits(z) ){
++ sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0);
++ }else{
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ }
++ sqliteVdbeChangeP3(v, -1, z, p->n+1);
++ sqliteFree(z);
++ break;
++ }
++ /* Fall through into TK_NOT */
++ }
++ case TK_BITNOT:
++ case TK_NOT: {
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteVdbeAddOp(v, op, 0, 0);
++ break;
++ }
++ case TK_ISNULL:
++ case TK_NOTNULL: {
++ int dest;
++ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
++ sqliteExprCode(pParse, pExpr->pLeft);
++ dest = sqliteVdbeCurrentAddr(v) + 2;
++ sqliteVdbeAddOp(v, op, 1, dest);
++ sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
++ break;
++ }
++ case TK_AGG_FUNCTION: {
++ sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
++ break;
++ }
++ case TK_GLOB:
++ case TK_LIKE:
++ case TK_FUNCTION: {
++ ExprList *pList = pExpr->pList;
++ int nExpr = pList ? pList->nExpr : 0;
++ FuncDef *pDef;
++ int nId;
++ const char *zId;
++ getFunctionName(pExpr, &zId, &nId);
++ pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0);
++ assert( pDef!=0 );
++ nExpr = sqliteExprCodeExprList(pParse, pList, pDef->includeTypes);
++ sqliteVdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER);
++ break;
++ }
++ case TK_SELECT: {
++ sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
++ break;
++ }
++ case TK_IN: {
++ int addr;
++ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
++ sqliteExprCode(pParse, pExpr->pLeft);
++ addr = sqliteVdbeCurrentAddr(v);
++ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4);
++ sqliteVdbeAddOp(v, OP_Pop, 2, 0);
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, addr+6);
++ if( pExpr->pSelect ){
++ sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6);
++ }else{
++ sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6);
++ }
++ sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
++ break;
++ }
++ case TK_BETWEEN: {
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
++ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
++ sqliteVdbeAddOp(v, OP_Ge, 0, 0);
++ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
++ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
++ sqliteVdbeAddOp(v, OP_Le, 0, 0);
++ sqliteVdbeAddOp(v, OP_And, 0, 0);
++ break;
++ }
++ case TK_UPLUS:
++ case TK_AS: {
++ sqliteExprCode(pParse, pExpr->pLeft);
++ break;
++ }
++ case TK_CASE: {
++ int expr_end_label;
++ int jumpInst;
++ int addr;
++ int nExpr;
++ int i;
++
++ assert(pExpr->pList);
++ assert((pExpr->pList->nExpr % 2) == 0);
++ assert(pExpr->pList->nExpr > 0);
++ nExpr = pExpr->pList->nExpr;
++ expr_end_label = sqliteVdbeMakeLabel(v);
++ if( pExpr->pLeft ){
++ sqliteExprCode(pParse, pExpr->pLeft);
++ }
++ for(i=0; i<nExpr; i=i+2){
++ sqliteExprCode(pParse, pExpr->pList->a[i].pExpr);
++ if( pExpr->pLeft ){
++ sqliteVdbeAddOp(v, OP_Dup, 1, 1);
++ jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0);
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ }else{
++ jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0);
++ }
++ sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr);
++ sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label);
++ addr = sqliteVdbeCurrentAddr(v);
++ sqliteVdbeChangeP2(v, jumpInst, addr);
++ }
++ if( pExpr->pLeft ){
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ }
++ if( pExpr->pRight ){
++ sqliteExprCode(pParse, pExpr->pRight);
++ }else{
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ }
++ sqliteVdbeResolveLabel(v, expr_end_label);
++ break;
++ }
++ case TK_RAISE: {
++ if( !pParse->trigStack ){
++ sqliteErrorMsg(pParse,
++ "RAISE() may only be used within a trigger-program");
++ pParse->nErr++;
++ return;
++ }
++ if( pExpr->iColumn == OE_Rollback ||
++ pExpr->iColumn == OE_Abort ||
++ pExpr->iColumn == OE_Fail ){
++ sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
++ pExpr->token.z, pExpr->token.n);
++ sqliteVdbeDequoteP3(v, -1);
++ } else {
++ assert( pExpr->iColumn == OE_Ignore );
++ sqliteVdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump,
++ "(IGNORE jump)", 0);
++ }
++ }
++ break;
++ }
++}
++
++/*
++** Generate code that pushes the value of every element of the given
++** expression list onto the stack. If the includeTypes flag is true,
++** then also push a string that is the datatype of each element onto
++** the stack after the value.
++**
++** Return the number of elements pushed onto the stack.
++*/
++int sqliteExprCodeExprList(
++ Parse *pParse, /* Parsing context */
++ ExprList *pList, /* The expression list to be coded */
++ int includeTypes /* TRUE to put datatypes on the stack too */
++){
++ struct ExprList_item *pItem;
++ int i, n;
++ Vdbe *v;
++ if( pList==0 ) return 0;
++ v = sqliteGetVdbe(pParse);
++ n = pList->nExpr;
++ for(pItem=pList->a, i=0; i<n; i++, pItem++){
++ sqliteExprCode(pParse, pItem->pExpr);
++ if( includeTypes ){
++ sqliteVdbeOp3(v, OP_String, 0, 0,
++ sqliteExprType(pItem->pExpr)==SQLITE_SO_NUM ? "numeric" : "text",
++ P3_STATIC);
++ }
++ }
++ return includeTypes ? n*2 : n;
++}
++
++/*
++** Generate code for a boolean expression such that a jump is made
++** to the label "dest" if the expression is true but execution
++** continues straight thru if the expression is false.
++**
++** If the expression evaluates to NULL (neither true nor false), then
++** take the jump if the jumpIfNull flag is true.
++*/
++void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
++ Vdbe *v = pParse->pVdbe;
++ int op = 0;
++ if( v==0 || pExpr==0 ) return;
++ switch( pExpr->op ){
++ case TK_LT: op = OP_Lt; break;
++ case TK_LE: op = OP_Le; break;
++ case TK_GT: op = OP_Gt; break;
++ case TK_GE: op = OP_Ge; break;
++ case TK_NE: op = OP_Ne; break;
++ case TK_EQ: op = OP_Eq; break;
++ case TK_ISNULL: op = OP_IsNull; break;
++ case TK_NOTNULL: op = OP_NotNull; break;
++ default: break;
++ }
++ switch( pExpr->op ){
++ case TK_AND: {
++ int d2 = sqliteVdbeMakeLabel(v);
++ sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
++ sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
++ sqliteVdbeResolveLabel(v, d2);
++ break;
++ }
++ case TK_OR: {
++ sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
++ sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
++ break;
++ }
++ case TK_NOT: {
++ sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
++ break;
++ }
++ case TK_LT:
++ case TK_LE:
++ case TK_GT:
++ case TK_GE:
++ case TK_NE:
++ case TK_EQ: {
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteExprCode(pParse, pExpr->pRight);
++ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
++ op += 6; /* Convert numeric opcodes to text opcodes */
++ }
++ sqliteVdbeAddOp(v, op, jumpIfNull, dest);
++ break;
++ }
++ case TK_ISNULL:
++ case TK_NOTNULL: {
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteVdbeAddOp(v, op, 1, dest);
++ break;
++ }
++ case TK_IN: {
++ int addr;
++ sqliteExprCode(pParse, pExpr->pLeft);
++ addr = sqliteVdbeCurrentAddr(v);
++ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
++ if( pExpr->pSelect ){
++ sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
++ }else{
++ sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
++ }
++ break;
++ }
++ case TK_BETWEEN: {
++ int addr;
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
++ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
++ addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0);
++ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
++ sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest);
++ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
++ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ break;
++ }
++ default: {
++ sqliteExprCode(pParse, pExpr);
++ sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest);
++ break;
++ }
++ }
++}
++
++/*
++** Generate code for a boolean expression such that a jump is made
++** to the label "dest" if the expression is false but execution
++** continues straight thru if the expression is true.
++**
++** If the expression evaluates to NULL (neither true nor false) then
++** jump if jumpIfNull is true or fall through if jumpIfNull is false.
++*/
++void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
++ Vdbe *v = pParse->pVdbe;
++ int op = 0;
++ if( v==0 || pExpr==0 ) return;
++ switch( pExpr->op ){
++ case TK_LT: op = OP_Ge; break;
++ case TK_LE: op = OP_Gt; break;
++ case TK_GT: op = OP_Le; break;
++ case TK_GE: op = OP_Lt; break;
++ case TK_NE: op = OP_Eq; break;
++ case TK_EQ: op = OP_Ne; break;
++ case TK_ISNULL: op = OP_NotNull; break;
++ case TK_NOTNULL: op = OP_IsNull; break;
++ default: break;
++ }
++ switch( pExpr->op ){
++ case TK_AND: {
++ sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
++ sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
++ break;
++ }
++ case TK_OR: {
++ int d2 = sqliteVdbeMakeLabel(v);
++ sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
++ sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
++ sqliteVdbeResolveLabel(v, d2);
++ break;
++ }
++ case TK_NOT: {
++ sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
++ break;
++ }
++ case TK_LT:
++ case TK_LE:
++ case TK_GT:
++ case TK_GE:
++ case TK_NE:
++ case TK_EQ: {
++ if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
++ /* Convert numeric comparison opcodes into text comparison opcodes.
++ ** This step depends on the fact that the text comparision opcodes are
++ ** always 6 greater than their corresponding numeric comparison
++ ** opcodes.
++ */
++ assert( OP_Eq+6 == OP_StrEq );
++ op += 6;
++ }
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteExprCode(pParse, pExpr->pRight);
++ sqliteVdbeAddOp(v, op, jumpIfNull, dest);
++ break;
++ }
++ case TK_ISNULL:
++ case TK_NOTNULL: {
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteVdbeAddOp(v, op, 1, dest);
++ break;
++ }
++ case TK_IN: {
++ int addr;
++ sqliteExprCode(pParse, pExpr->pLeft);
++ addr = sqliteVdbeCurrentAddr(v);
++ sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
++ if( pExpr->pSelect ){
++ sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
++ }else{
++ sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
++ }
++ break;
++ }
++ case TK_BETWEEN: {
++ int addr;
++ sqliteExprCode(pParse, pExpr->pLeft);
++ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
++ sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
++ addr = sqliteVdbeCurrentAddr(v);
++ sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3);
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, dest);
++ sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
++ sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest);
++ break;
++ }
++ default: {
++ sqliteExprCode(pParse, pExpr);
++ sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
++ break;
++ }
++ }
++}
++
++/*
++** Do a deep comparison of two expression trees. Return TRUE (non-zero)
++** if they are identical and return FALSE if they differ in any way.
++*/
++int sqliteExprCompare(Expr *pA, Expr *pB){
++ int i;
++ if( pA==0 ){
++ return pB==0;
++ }else if( pB==0 ){
++ return 0;
++ }
++ if( pA->op!=pB->op ) return 0;
++ if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
++ if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
++ if( pA->pList ){
++ if( pB->pList==0 ) return 0;
++ if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
++ for(i=0; i<pA->pList->nExpr; i++){
++ if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
++ return 0;
++ }
++ }
++ }else if( pB->pList ){
++ return 0;
++ }
++ if( pA->pSelect || pB->pSelect ) return 0;
++ if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
++ if( pA->token.z ){
++ if( pB->token.z==0 ) return 0;
++ if( pB->token.n!=pA->token.n ) return 0;
++ if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
++ }
++ return 1;
++}
++
++/*
++** Add a new element to the pParse->aAgg[] array and return its index.
++*/
++static int appendAggInfo(Parse *pParse){
++ if( (pParse->nAgg & 0x7)==0 ){
++ int amt = pParse->nAgg + 8;
++ AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
++ if( aAgg==0 ){
++ return -1;
++ }
++ pParse->aAgg = aAgg;
++ }
++ memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
++ return pParse->nAgg++;
++}
++
++/*
++** Analyze the given expression looking for aggregate functions and
++** for variables that need to be added to the pParse->aAgg[] array.
++** Make additional entries to the pParse->aAgg[] array as necessary.
++**
++** This routine should only be called after the expression has been
++** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
++**
++** If errors are seen, leave an error message in zErrMsg and return
++** the number of errors.
++*/
++int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
++ int i;
++ AggExpr *aAgg;
++ int nErr = 0;
++
++ if( pExpr==0 ) return 0;
++ switch( pExpr->op ){
++ case TK_COLUMN: {
++ aAgg = pParse->aAgg;
++ for(i=0; i<pParse->nAgg; i++){
++ if( aAgg[i].isAgg ) continue;
++ if( aAgg[i].pExpr->iTable==pExpr->iTable
++ && aAgg[i].pExpr->iColumn==pExpr->iColumn ){
++ break;
++ }
++ }
++ if( i>=pParse->nAgg ){
++ i = appendAggInfo(pParse);
++ if( i<0 ) return 1;
++ pParse->aAgg[i].isAgg = 0;
++ pParse->aAgg[i].pExpr = pExpr;
++ }
++ pExpr->iAgg = i;
++ break;
++ }
++ case TK_AGG_FUNCTION: {
++ aAgg = pParse->aAgg;
++ for(i=0; i<pParse->nAgg; i++){
++ if( !aAgg[i].isAgg ) continue;
++ if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
++ break;
++ }
++ }
++ if( i>=pParse->nAgg ){
++ i = appendAggInfo(pParse);
++ if( i<0 ) return 1;
++ pParse->aAgg[i].isAgg = 1;
++ pParse->aAgg[i].pExpr = pExpr;
++ pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db,
++ pExpr->token.z, pExpr->token.n,
++ pExpr->pList ? pExpr->pList->nExpr : 0, 0);
++ }
++ pExpr->iAgg = i;
++ break;
++ }
++ default: {
++ if( pExpr->pLeft ){
++ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
++ }
++ if( nErr==0 && pExpr->pRight ){
++ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
++ }
++ if( nErr==0 && pExpr->pList ){
++ int n = pExpr->pList->nExpr;
++ int i;
++ for(i=0; nErr==0 && i<n; i++){
++ nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
++ }
++ }
++ break;
++ }
++ }
++ return nErr;
++}
++
++/*
++** Locate a user function given a name and a number of arguments.
++** Return a pointer to the FuncDef structure that defines that
++** function, or return NULL if the function does not exist.
++**
++** If the createFlag argument is true, then a new (blank) FuncDef
++** structure is created and liked into the "db" structure if a
++** no matching function previously existed. When createFlag is true
++** and the nArg parameter is -1, then only a function that accepts
++** any number of arguments will be returned.
++**
++** If createFlag is false and nArg is -1, then the first valid
++** function found is returned. A function is valid if either xFunc
++** or xStep is non-zero.
++*/
++FuncDef *sqliteFindFunction(
++ sqlite *db, /* An open database */
++ const char *zName, /* Name of the function. Not null-terminated */
++ int nName, /* Number of characters in the name */
++ int nArg, /* Number of arguments. -1 means any number */
++ int createFlag /* Create new entry if true and does not otherwise exist */
++){
++ FuncDef *pFirst, *p, *pMaybe;
++ pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
++ if( p && !createFlag && nArg<0 ){
++ while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
++ return p;
++ }
++ pMaybe = 0;
++ while( p && p->nArg!=nArg ){
++ if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
++ p = p->pNext;
++ }
++ if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
++ return 0;
++ }
++ if( p==0 && pMaybe ){
++ assert( createFlag==0 );
++ return pMaybe;
++ }
++ if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
++ p->nArg = nArg;
++ p->pNext = pFirst;
++ p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
++ sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
++ }
++ return p;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/func.c
+@@ -0,0 +1,658 @@
++/*
++** 2002 February 23
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains the C functions that implement various SQL
++** functions of SQLite.
++**
++** There is only one exported symbol in this file - the function
++** sqliteRegisterBuildinFunctions() found at the bottom of the file.
++** All other code has file scope.
++**
++** $Id$
++*/
++#include <ctype.h>
++#include <math.h>
++#include <stdlib.h>
++#include <assert.h>
++#include "sqliteInt.h"
++#include "os.h"
++
++/*
++** Implementation of the non-aggregate min() and max() functions
++*/
++static void minmaxFunc(sqlite_func *context, int argc, const char **argv){
++ const char *zBest;
++ int i;
++ int (*xCompare)(const char*, const char*);
++ int mask; /* 0 for min() or 0xffffffff for max() */
++
++ if( argc==0 ) return;
++ mask = (int)sqlite_user_data(context);
++ zBest = argv[0];
++ if( zBest==0 ) return;
++ if( argv[1][0]=='n' ){
++ xCompare = sqliteCompare;
++ }else{
++ xCompare = strcmp;
++ }
++ for(i=2; i<argc; i+=2){
++ if( argv[i]==0 ) return;
++ if( (xCompare(argv[i], zBest)^mask)<0 ){
++ zBest = argv[i];
++ }
++ }
++ sqlite_set_result_string(context, zBest, -1);
++}
++
++/*
++** Return the type of the argument.
++*/
++static void typeofFunc(sqlite_func *context, int argc, const char **argv){
++ assert( argc==2 );
++ sqlite_set_result_string(context, argv[1], -1);
++}
++
++/*
++** Implementation of the length() function
++*/
++static void lengthFunc(sqlite_func *context, int argc, const char **argv){
++ const char *z;
++ int len;
++
++ assert( argc==1 );
++ z = argv[0];
++ if( z==0 ) return;
++#ifdef SQLITE_UTF8
++ for(len=0; *z; z++){ if( (0xc0&*z)!=0x80 ) len++; }
++#else
++ len = strlen(z);
++#endif
++ sqlite_set_result_int(context, len);
++}
++
++/*
++** Implementation of the abs() function
++*/
++static void absFunc(sqlite_func *context, int argc, const char **argv){
++ const char *z;
++ assert( argc==1 );
++ z = argv[0];
++ if( z==0 ) return;
++ if( z[0]=='-' && isdigit(z[1]) ) z++;
++ sqlite_set_result_string(context, z, -1);
++}
++
++/*
++** Implementation of the substr() function
++*/
++static void substrFunc(sqlite_func *context, int argc, const char **argv){
++ const char *z;
++#ifdef SQLITE_UTF8
++ const char *z2;
++ int i;
++#endif
++ int p1, p2, len;
++ assert( argc==3 );
++ z = argv[0];
++ if( z==0 ) return;
++ p1 = atoi(argv[1]?argv[1]:0);
++ p2 = atoi(argv[2]?argv[2]:0);
++#ifdef SQLITE_UTF8
++ for(len=0, z2=z; *z2; z2++){ if( (0xc0&*z2)!=0x80 ) len++; }
++#else
++ len = strlen(z);
++#endif
++ if( p1<0 ){
++ p1 += len;
++ if( p1<0 ){
++ p2 += p1;
++ p1 = 0;
++ }
++ }else if( p1>0 ){
++ p1--;
++ }
++ if( p1+p2>len ){
++ p2 = len-p1;
++ }
++#ifdef SQLITE_UTF8
++ for(i=0; i<p1 && z[i]; i++){
++ if( (z[i]&0xc0)==0x80 ) p1++;
++ }
++ while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p1++; }
++ for(; i<p1+p2 && z[i]; i++){
++ if( (z[i]&0xc0)==0x80 ) p2++;
++ }
++ while( z[i] && (z[i]&0xc0)==0x80 ){ i++; p2++; }
++#endif
++ if( p2<0 ) p2 = 0;
++ sqlite_set_result_string(context, &z[p1], p2);
++}
++
++/*
++** Implementation of the round() function
++*/
++static void roundFunc(sqlite_func *context, int argc, const char **argv){
++ int n;
++ double r;
++ char zBuf[100];
++ assert( argc==1 || argc==2 );
++ if( argv[0]==0 || (argc==2 && argv[1]==0) ) return;
++ n = argc==2 ? atoi(argv[1]) : 0;
++ if( n>30 ) n = 30;
++ if( n<0 ) n = 0;
++ r = sqliteAtoF(argv[0], 0);
++ sprintf(zBuf,"%.*f",n,r);
++ sqlite_set_result_string(context, zBuf, -1);
++}
++
++/*
++** Implementation of the upper() and lower() SQL functions.
++*/
++static void upperFunc(sqlite_func *context, int argc, const char **argv){
++ unsigned char *z;
++ int i;
++ if( argc<1 || argv[0]==0 ) return;
++ z = (unsigned char*)sqlite_set_result_string(context, argv[0], -1);
++ if( z==0 ) return;
++ for(i=0; z[i]; i++){
++ if( islower(z[i]) ) z[i] = toupper(z[i]);
++ }
++}
++static void lowerFunc(sqlite_func *context, int argc, const char **argv){
++ unsigned char *z;
++ int i;
++ if( argc<1 || argv[0]==0 ) return;
++ z = (unsigned char*)sqlite_set_result_string(context, argv[0], -1);
++ if( z==0 ) return;
++ for(i=0; z[i]; i++){
++ if( isupper(z[i]) ) z[i] = tolower(z[i]);
++ }
++}
++
++/*
++** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
++** All three do the same thing. They return the first non-NULL
++** argument.
++*/
++static void ifnullFunc(sqlite_func *context, int argc, const char **argv){
++ int i;
++ for(i=0; i<argc; i++){
++ if( argv[i] ){
++ sqlite_set_result_string(context, argv[i], -1);
++ break;
++ }
++ }
++}
++
++/*
++** Implementation of random(). Return a random integer.
++*/
++static void randomFunc(sqlite_func *context, int argc, const char **argv){
++ int r;
++ sqliteRandomness(sizeof(r), &r);
++ sqlite_set_result_int(context, r);
++}
++
++/*
++** Implementation of the last_insert_rowid() SQL function. The return
++** value is the same as the sqlite_last_insert_rowid() API function.
++*/
++static void last_insert_rowid(sqlite_func *context, int arg, const char **argv){
++ sqlite *db = sqlite_user_data(context);
++ sqlite_set_result_int(context, sqlite_last_insert_rowid(db));
++}
++
++/*
++** Implementation of the change_count() SQL function. The return
++** value is the same as the sqlite_changes() API function.
++*/
++static void change_count(sqlite_func *context, int arg, const char **argv){
++ sqlite *db = sqlite_user_data(context);
++ sqlite_set_result_int(context, sqlite_changes(db));
++}
++
++/*
++** Implementation of the last_statement_change_count() SQL function. The
++** return value is the same as the sqlite_last_statement_changes() API function.
++*/
++static void last_statement_change_count(sqlite_func *context, int arg,
++ const char **argv){
++ sqlite *db = sqlite_user_data(context);
++ sqlite_set_result_int(context, sqlite_last_statement_changes(db));
++}
++
++/*
++** Implementation of the like() SQL function. This function implements
++** the build-in LIKE operator. The first argument to the function is the
++** string and the second argument is the pattern. So, the SQL statements:
++**
++** A LIKE B
++**
++** is implemented as like(A,B).
++*/
++static void likeFunc(sqlite_func *context, int arg, const char **argv){
++ if( argv[0]==0 || argv[1]==0 ) return;
++ sqlite_set_result_int(context,
++ sqliteLikeCompare((const unsigned char*)argv[0],
++ (const unsigned char*)argv[1]));
++}
++
++/*
++** Implementation of the glob() SQL function. This function implements
++** the build-in GLOB operator. The first argument to the function is the
++** string and the second argument is the pattern. So, the SQL statements:
++**
++** A GLOB B
++**
++** is implemented as glob(A,B).
++*/
++static void globFunc(sqlite_func *context, int arg, const char **argv){
++ if( argv[0]==0 || argv[1]==0 ) return;
++ sqlite_set_result_int(context,
++ sqliteGlobCompare((const unsigned char*)argv[0],
++ (const unsigned char*)argv[1]));
++}
++
++/*
++** Implementation of the NULLIF(x,y) function. The result is the first
++** argument if the arguments are different. The result is NULL if the
++** arguments are equal to each other.
++*/
++static void nullifFunc(sqlite_func *context, int argc, const char **argv){
++ if( argv[0]!=0 && sqliteCompare(argv[0],argv[1])!=0 ){
++ sqlite_set_result_string(context, argv[0], -1);
++ }
++}
++
++/*
++** Implementation of the VERSION(*) function. The result is the version
++** of the SQLite library that is running.
++*/
++static void versionFunc(sqlite_func *context, int argc, const char **argv){
++ sqlite_set_result_string(context, sqlite_version, -1);
++}
++
++/*
++** EXPERIMENTAL - This is not an official function. The interface may
++** change. This function may disappear. Do not write code that depends
++** on this function.
++**
++** Implementation of the QUOTE() function. This function takes a single
++** argument. If the argument is numeric, the return value is the same as
++** the argument. If the argument is NULL, the return value is the string
++** "NULL". Otherwise, the argument is enclosed in single quotes with
++** single-quote escapes.
++*/
++static void quoteFunc(sqlite_func *context, int argc, const char **argv){
++ if( argc<1 ) return;
++ if( argv[0]==0 ){
++ sqlite_set_result_string(context, "NULL", 4);
++ }else if( sqliteIsNumber(argv[0]) ){
++ sqlite_set_result_string(context, argv[0], -1);
++ }else{
++ int i,j,n;
++ char *z;
++ for(i=n=0; argv[0][i]; i++){ if( argv[0][i]=='\'' ) n++; }
++ z = sqliteMalloc( i+n+3 );
++ if( z==0 ) return;
++ z[0] = '\'';
++ for(i=0, j=1; argv[0][i]; i++){
++ z[j++] = argv[0][i];
++ if( argv[0][i]=='\'' ){
++ z[j++] = '\'';
++ }
++ }
++ z[j++] = '\'';
++ z[j] = 0;
++ sqlite_set_result_string(context, z, j);
++ sqliteFree(z);
++ }
++}
++
++#ifdef SQLITE_SOUNDEX
++/*
++** Compute the soundex encoding of a word.
++*/
++static void soundexFunc(sqlite_func *context, int argc, const char **argv){
++ char zResult[8];
++ const char *zIn;
++ int i, j;
++ static const unsigned char iCode[] = {
++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
++ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
++ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
++ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
++ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
++ };
++ assert( argc==1 );
++ zIn = argv[0];
++ for(i=0; zIn[i] && !isalpha(zIn[i]); i++){}
++ if( zIn[i] ){
++ zResult[0] = toupper(zIn[i]);
++ for(j=1; j<4 && zIn[i]; i++){
++ int code = iCode[zIn[i]&0x7f];
++ if( code>0 ){
++ zResult[j++] = code + '0';
++ }
++ }
++ while( j<4 ){
++ zResult[j++] = '0';
++ }
++ zResult[j] = 0;
++ sqlite_set_result_string(context, zResult, 4);
++ }else{
++ sqlite_set_result_string(context, "?000", 4);
++ }
++}
++#endif
++
++#ifdef SQLITE_TEST
++/*
++** This function generates a string of random characters. Used for
++** generating test data.
++*/
++static void randStr(sqlite_func *context, int argc, const char **argv){
++ static const unsigned char zSrc[] =
++ "abcdefghijklmnopqrstuvwxyz"
++ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
++ "0123456789"
++ ".-!,:*^+=_|?/<> ";
++ int iMin, iMax, n, r, i;
++ unsigned char zBuf[1000];
++ if( argc>=1 ){
++ iMin = atoi(argv[0]);
++ if( iMin<0 ) iMin = 0;
++ if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
++ }else{
++ iMin = 1;
++ }
++ if( argc>=2 ){
++ iMax = atoi(argv[1]);
++ if( iMax<iMin ) iMax = iMin;
++ if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
++ }else{
++ iMax = 50;
++ }
++ n = iMin;
++ if( iMax>iMin ){
++ sqliteRandomness(sizeof(r), &r);
++ r &= 0x7fffffff;
++ n += r%(iMax + 1 - iMin);
++ }
++ assert( n<sizeof(zBuf) );
++ sqliteRandomness(n, zBuf);
++ for(i=0; i<n; i++){
++ zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
++ }
++ zBuf[n] = 0;
++ sqlite_set_result_string(context, zBuf, n);
++}
++#endif
++
++/*
++** An instance of the following structure holds the context of a
++** sum() or avg() aggregate computation.
++*/
++typedef struct SumCtx SumCtx;
++struct SumCtx {
++ double sum; /* Sum of terms */
++ int cnt; /* Number of elements summed */
++};
++
++/*
++** Routines used to compute the sum or average.
++*/
++static void sumStep(sqlite_func *context, int argc, const char **argv){
++ SumCtx *p;
++ if( argc<1 ) return;
++ p = sqlite_aggregate_context(context, sizeof(*p));
++ if( p && argv[0] ){
++ p->sum += sqliteAtoF(argv[0], 0);
++ p->cnt++;
++ }
++}
++static void sumFinalize(sqlite_func *context){
++ SumCtx *p;
++ p = sqlite_aggregate_context(context, sizeof(*p));
++ sqlite_set_result_double(context, p ? p->sum : 0.0);
++}
++static void avgFinalize(sqlite_func *context){
++ SumCtx *p;
++ p = sqlite_aggregate_context(context, sizeof(*p));
++ if( p && p->cnt>0 ){
++ sqlite_set_result_double(context, p->sum/(double)p->cnt);
++ }
++}
++
++/*
++** An instance of the following structure holds the context of a
++** variance or standard deviation computation.
++*/
++typedef struct StdDevCtx StdDevCtx;
++struct StdDevCtx {
++ double sum; /* Sum of terms */
++ double sum2; /* Sum of the squares of terms */
++ int cnt; /* Number of terms counted */
++};
++
++#if 0 /* Omit because math library is required */
++/*
++** Routines used to compute the standard deviation as an aggregate.
++*/
++static void stdDevStep(sqlite_func *context, int argc, const char **argv){
++ StdDevCtx *p;
++ double x;
++ if( argc<1 ) return;
++ p = sqlite_aggregate_context(context, sizeof(*p));
++ if( p && argv[0] ){
++ x = sqliteAtoF(argv[0], 0);
++ p->sum += x;
++ p->sum2 += x*x;
++ p->cnt++;
++ }
++}
++static void stdDevFinalize(sqlite_func *context){
++ double rN = sqlite_aggregate_count(context);
++ StdDevCtx *p = sqlite_aggregate_context(context, sizeof(*p));
++ if( p && p->cnt>1 ){
++ double rCnt = cnt;
++ sqlite_set_result_double(context,
++ sqrt((p->sum2 - p->sum*p->sum/rCnt)/(rCnt-1.0)));
++ }
++}
++#endif
++
++/*
++** The following structure keeps track of state information for the
++** count() aggregate function.
++*/
++typedef struct CountCtx CountCtx;
++struct CountCtx {
++ int n;
++};
++
++/*
++** Routines to implement the count() aggregate function.
++*/
++static void countStep(sqlite_func *context, int argc, const char **argv){
++ CountCtx *p;
++ p = sqlite_aggregate_context(context, sizeof(*p));
++ if( (argc==0 || argv[0]) && p ){
++ p->n++;
++ }
++}
++static void countFinalize(sqlite_func *context){
++ CountCtx *p;
++ p = sqlite_aggregate_context(context, sizeof(*p));
++ sqlite_set_result_int(context, p ? p->n : 0);
++}
++
++/*
++** This function tracks state information for the min() and max()
++** aggregate functions.
++*/
++typedef struct MinMaxCtx MinMaxCtx;
++struct MinMaxCtx {
++ char *z; /* The best so far */
++ char zBuf[28]; /* Space that can be used for storage */
++};
++
++/*
++** Routines to implement min() and max() aggregate functions.
++*/
++static void minmaxStep(sqlite_func *context, int argc, const char **argv){
++ MinMaxCtx *p;
++ int (*xCompare)(const char*, const char*);
++ int mask; /* 0 for min() or 0xffffffff for max() */
++
++ assert( argc==2 );
++ if( argv[0]==0 ) return; /* Ignore NULL values */
++ if( argv[1][0]=='n' ){
++ xCompare = sqliteCompare;
++ }else{
++ xCompare = strcmp;
++ }
++ mask = (int)sqlite_user_data(context);
++ assert( mask==0 || mask==-1 );
++ p = sqlite_aggregate_context(context, sizeof(*p));
++ if( p==0 || argc<1 ) return;
++ if( p->z==0 || (xCompare(argv[0],p->z)^mask)<0 ){
++ int len;
++ if( p->zBuf[0] ){
++ sqliteFree(p->z);
++ }
++ len = strlen(argv[0]);
++ if( len < sizeof(p->zBuf)-1 ){
++ p->z = &p->zBuf[1];
++ p->zBuf[0] = 0;
++ }else{
++ p->z = sqliteMalloc( len+1 );
++ p->zBuf[0] = 1;
++ if( p->z==0 ) return;
++ }
++ strcpy(p->z, argv[0]);
++ }
++}
++static void minMaxFinalize(sqlite_func *context){
++ MinMaxCtx *p;
++ p = sqlite_aggregate_context(context, sizeof(*p));
++ if( p && p->z && p->zBuf[0]<2 ){
++ sqlite_set_result_string(context, p->z, strlen(p->z));
++ }
++ if( p && p->zBuf[0] ){
++ sqliteFree(p->z);
++ }
++}
++
++/*
++** This function registered all of the above C functions as SQL
++** functions. This should be the only routine in this file with
++** external linkage.
++*/
++void sqliteRegisterBuiltinFunctions(sqlite *db){
++ static struct {
++ char *zName;
++ signed char nArg;
++ signed char dataType;
++ u8 argType; /* 0: none. 1: db 2: (-1) */
++ void (*xFunc)(sqlite_func*,int,const char**);
++ } aFuncs[] = {
++ { "min", -1, SQLITE_ARGS, 0, minmaxFunc },
++ { "min", 0, 0, 0, 0 },
++ { "max", -1, SQLITE_ARGS, 2, minmaxFunc },
++ { "max", 0, 0, 2, 0 },
++ { "typeof", 1, SQLITE_TEXT, 0, typeofFunc },
++ { "length", 1, SQLITE_NUMERIC, 0, lengthFunc },
++ { "substr", 3, SQLITE_TEXT, 0, substrFunc },
++ { "abs", 1, SQLITE_NUMERIC, 0, absFunc },
++ { "round", 1, SQLITE_NUMERIC, 0, roundFunc },
++ { "round", 2, SQLITE_NUMERIC, 0, roundFunc },
++ { "upper", 1, SQLITE_TEXT, 0, upperFunc },
++ { "lower", 1, SQLITE_TEXT, 0, lowerFunc },
++ { "coalesce", -1, SQLITE_ARGS, 0, ifnullFunc },
++ { "coalesce", 0, 0, 0, 0 },
++ { "coalesce", 1, 0, 0, 0 },
++ { "ifnull", 2, SQLITE_ARGS, 0, ifnullFunc },
++ { "random", -1, SQLITE_NUMERIC, 0, randomFunc },
++ { "like", 2, SQLITE_NUMERIC, 0, likeFunc },
++ { "glob", 2, SQLITE_NUMERIC, 0, globFunc },
++ { "nullif", 2, SQLITE_ARGS, 0, nullifFunc },
++ { "sqlite_version",0,SQLITE_TEXT, 0, versionFunc},
++ { "quote", 1, SQLITE_ARGS, 0, quoteFunc },
++ { "last_insert_rowid", 0, SQLITE_NUMERIC, 1, last_insert_rowid },
++ { "change_count", 0, SQLITE_NUMERIC, 1, change_count },
++ { "last_statement_change_count",
++ 0, SQLITE_NUMERIC, 1, last_statement_change_count },
++#ifdef SQLITE_SOUNDEX
++ { "soundex", 1, SQLITE_TEXT, 0, soundexFunc},
++#endif
++#ifdef SQLITE_TEST
++ { "randstr", 2, SQLITE_TEXT, 0, randStr },
++#endif
++ };
++ static struct {
++ char *zName;
++ signed char nArg;
++ signed char dataType;
++ u8 argType;
++ void (*xStep)(sqlite_func*,int,const char**);
++ void (*xFinalize)(sqlite_func*);
++ } aAggs[] = {
++ { "min", 1, 0, 0, minmaxStep, minMaxFinalize },
++ { "max", 1, 0, 2, minmaxStep, minMaxFinalize },
++ { "sum", 1, SQLITE_NUMERIC, 0, sumStep, sumFinalize },
++ { "avg", 1, SQLITE_NUMERIC, 0, sumStep, avgFinalize },
++ { "count", 0, SQLITE_NUMERIC, 0, countStep, countFinalize },
++ { "count", 1, SQLITE_NUMERIC, 0, countStep, countFinalize },
++#if 0
++ { "stddev", 1, SQLITE_NUMERIC, 0, stdDevStep, stdDevFinalize },
++#endif
++ };
++ static const char *azTypeFuncs[] = { "min", "max", "typeof" };
++ int i;
++
++ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
++ void *pArg;
++ switch( aFuncs[i].argType ){
++ case 0: pArg = 0; break;
++ case 1: pArg = db; break;
++ case 2: pArg = (void*)(-1); break;
++ }
++ sqlite_create_function(db, aFuncs[i].zName,
++ aFuncs[i].nArg, aFuncs[i].xFunc, pArg);
++ if( aFuncs[i].xFunc ){
++ sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType);
++ }
++ }
++ for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){
++ void *pArg;
++ switch( aAggs[i].argType ){
++ case 0: pArg = 0; break;
++ case 1: pArg = db; break;
++ case 2: pArg = (void*)(-1); break;
++ }
++ sqlite_create_aggregate(db, aAggs[i].zName,
++ aAggs[i].nArg, aAggs[i].xStep, aAggs[i].xFinalize, pArg);
++ sqlite_function_type(db, aAggs[i].zName, aAggs[i].dataType);
++ }
++ for(i=0; i<sizeof(azTypeFuncs)/sizeof(azTypeFuncs[0]); i++){
++ int n = strlen(azTypeFuncs[i]);
++ FuncDef *p = sqliteHashFind(&db->aFunc, azTypeFuncs[i], n);
++ while( p ){
++ p->includeTypes = 1;
++ p = p->pNext;
++ }
++ }
++ sqliteRegisterDateTimeFunctions(db);
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/hash.c
+@@ -0,0 +1,356 @@
++/*
++** 2001 September 22
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This is the implementation of generic hash-tables
++** used in SQLite.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++#include <assert.h>
++
++/* Turn bulk memory into a hash table object by initializing the
++** fields of the Hash structure.
++**
++** "new" is a pointer to the hash table that is to be initialized.
++** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
++** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass
++** determines what kind of key the hash table will use. "copyKey" is
++** true if the hash table should make its own private copy of keys and
++** false if it should just use the supplied pointer. CopyKey only makes
++** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
++** for other key classes.
++*/
++void sqliteHashInit(Hash *new, int keyClass, int copyKey){
++ assert( new!=0 );
++ assert( keyClass>=SQLITE_HASH_INT && keyClass<=SQLITE_HASH_BINARY );
++ new->keyClass = keyClass;
++ new->copyKey = copyKey &&
++ (keyClass==SQLITE_HASH_STRING || keyClass==SQLITE_HASH_BINARY);
++ new->first = 0;
++ new->count = 0;
++ new->htsize = 0;
++ new->ht = 0;
++}
++
++/* Remove all entries from a hash table. Reclaim all memory.
++** Call this routine to delete a hash table or to reset a hash table
++** to the empty state.
++*/
++void sqliteHashClear(Hash *pH){
++ HashElem *elem; /* For looping over all elements of the table */
++
++ assert( pH!=0 );
++ elem = pH->first;
++ pH->first = 0;
++ if( pH->ht ) sqliteFree(pH->ht);
++ pH->ht = 0;
++ pH->htsize = 0;
++ while( elem ){
++ HashElem *next_elem = elem->next;
++ if( pH->copyKey && elem->pKey ){
++ sqliteFree(elem->pKey);
++ }
++ sqliteFree(elem);
++ elem = next_elem;
++ }
++ pH->count = 0;
++}
++
++/*
++** Hash and comparison functions when the mode is SQLITE_HASH_INT
++*/
++static int intHash(const void *pKey, int nKey){
++ return nKey ^ (nKey<<8) ^ (nKey>>8);
++}
++static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
++ return n2 - n1;
++}
++
++#if 0 /* NOT USED */
++/*
++** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
++*/
++static int ptrHash(const void *pKey, int nKey){
++ uptr x = Addr(pKey);
++ return x ^ (x<<8) ^ (x>>8);
++}
++static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
++ if( pKey1==pKey2 ) return 0;
++ if( pKey1<pKey2 ) return -1;
++ return 1;
++}
++#endif
++
++/*
++** Hash and comparison functions when the mode is SQLITE_HASH_STRING
++*/
++static int strHash(const void *pKey, int nKey){
++ return sqliteHashNoCase((const char*)pKey, nKey);
++}
++static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
++ if( n1!=n2 ) return n2-n1;
++ return sqliteStrNICmp((const char*)pKey1,(const char*)pKey2,n1);
++}
++
++/*
++** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
++*/
++static int binHash(const void *pKey, int nKey){
++ int h = 0;
++ const char *z = (const char *)pKey;
++ while( nKey-- > 0 ){
++ h = (h<<3) ^ h ^ *(z++);
++ }
++ return h & 0x7fffffff;
++}
++static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
++ if( n1!=n2 ) return n2-n1;
++ return memcmp(pKey1,pKey2,n1);
++}
++
++/*
++** Return a pointer to the appropriate hash function given the key class.
++**
++** The C syntax in this function definition may be unfamilar to some
++** programmers, so we provide the following additional explanation:
++**
++** The name of the function is "hashFunction". The function takes a
++** single parameter "keyClass". The return value of hashFunction()
++** is a pointer to another function. Specifically, the return value
++** of hashFunction() is a pointer to a function that takes two parameters
++** with types "const void*" and "int" and returns an "int".
++*/
++static int (*hashFunction(int keyClass))(const void*,int){
++ switch( keyClass ){
++ case SQLITE_HASH_INT: return &intHash;
++ /* case SQLITE_HASH_POINTER: return &ptrHash; // NOT USED */
++ case SQLITE_HASH_STRING: return &strHash;
++ case SQLITE_HASH_BINARY: return &binHash;;
++ default: break;
++ }
++ return 0;
++}
++
++/*
++** Return a pointer to the appropriate hash function given the key class.
++**
++** For help in interpreted the obscure C code in the function definition,
++** see the header comment on the previous function.
++*/
++static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
++ switch( keyClass ){
++ case SQLITE_HASH_INT: return &intCompare;
++ /* case SQLITE_HASH_POINTER: return &ptrCompare; // NOT USED */
++ case SQLITE_HASH_STRING: return &strCompare;
++ case SQLITE_HASH_BINARY: return &binCompare;
++ default: break;
++ }
++ return 0;
++}
++
++
++/* Resize the hash table so that it cantains "new_size" buckets.
++** "new_size" must be a power of 2. The hash table might fail
++** to resize if sqliteMalloc() fails.
++*/
++static void rehash(Hash *pH, int new_size){
++ struct _ht *new_ht; /* The new hash table */
++ HashElem *elem, *next_elem; /* For looping over existing elements */
++ HashElem *x; /* Element being copied to new hash table */
++ int (*xHash)(const void*,int); /* The hash function */
++
++ assert( (new_size & (new_size-1))==0 );
++ new_ht = (struct _ht *)sqliteMalloc( new_size*sizeof(struct _ht) );
++ if( new_ht==0 ) return;
++ if( pH->ht ) sqliteFree(pH->ht);
++ pH->ht = new_ht;
++ pH->htsize = new_size;
++ xHash = hashFunction(pH->keyClass);
++ for(elem=pH->first, pH->first=0; elem; elem = next_elem){
++ int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
++ next_elem = elem->next;
++ x = new_ht[h].chain;
++ if( x ){
++ elem->next = x;
++ elem->prev = x->prev;
++ if( x->prev ) x->prev->next = elem;
++ else pH->first = elem;
++ x->prev = elem;
++ }else{
++ elem->next = pH->first;
++ if( pH->first ) pH->first->prev = elem;
++ elem->prev = 0;
++ pH->first = elem;
++ }
++ new_ht[h].chain = elem;
++ new_ht[h].count++;
++ }
++}
++
++/* This function (for internal use only) locates an element in an
++** hash table that matches the given key. The hash for this key has
++** already been computed and is passed as the 4th parameter.
++*/
++static HashElem *findElementGivenHash(
++ const Hash *pH, /* The pH to be searched */
++ const void *pKey, /* The key we are searching for */
++ int nKey,
++ int h /* The hash for this key. */
++){
++ HashElem *elem; /* Used to loop thru the element list */
++ int count; /* Number of elements left to test */
++ int (*xCompare)(const void*,int,const void*,int); /* comparison function */
++
++ if( pH->ht ){
++ elem = pH->ht[h].chain;
++ count = pH->ht[h].count;
++ xCompare = compareFunction(pH->keyClass);
++ while( count-- && elem ){
++ if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
++ return elem;
++ }
++ elem = elem->next;
++ }
++ }
++ return 0;
++}
++
++/* Remove a single entry from the hash table given a pointer to that
++** element and a hash on the element's key.
++*/
++static void removeElementGivenHash(
++ Hash *pH, /* The pH containing "elem" */
++ HashElem* elem, /* The element to be removed from the pH */
++ int h /* Hash value for the element */
++){
++ if( elem->prev ){
++ elem->prev->next = elem->next;
++ }else{
++ pH->first = elem->next;
++ }
++ if( elem->next ){
++ elem->next->prev = elem->prev;
++ }
++ if( pH->ht[h].chain==elem ){
++ pH->ht[h].chain = elem->next;
++ }
++ pH->ht[h].count--;
++ if( pH->ht[h].count<=0 ){
++ pH->ht[h].chain = 0;
++ }
++ if( pH->copyKey && elem->pKey ){
++ sqliteFree(elem->pKey);
++ }
++ sqliteFree( elem );
++ pH->count--;
++}
++
++/* Attempt to locate an element of the hash table pH with a key
++** that matches pKey,nKey. Return the data for this element if it is
++** found, or NULL if there is no match.
++*/
++void *sqliteHashFind(const Hash *pH, const void *pKey, int nKey){
++ int h; /* A hash on key */
++ HashElem *elem; /* The element that matches key */
++ int (*xHash)(const void*,int); /* The hash function */
++
++ if( pH==0 || pH->ht==0 ) return 0;
++ xHash = hashFunction(pH->keyClass);
++ assert( xHash!=0 );
++ h = (*xHash)(pKey,nKey);
++ assert( (pH->htsize & (pH->htsize-1))==0 );
++ elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
++ return elem ? elem->data : 0;
++}
++
++/* Insert an element into the hash table pH. The key is pKey,nKey
++** and the data is "data".
++**
++** If no element exists with a matching key, then a new
++** element is created. A copy of the key is made if the copyKey
++** flag is set. NULL is returned.
++**
++** If another element already exists with the same key, then the
++** new data replaces the old data and the old data is returned.
++** The key is not copied in this instance. If a malloc fails, then
++** the new data is returned and the hash table is unchanged.
++**
++** If the "data" parameter to this function is NULL, then the
++** element corresponding to "key" is removed from the hash table.
++*/
++void *sqliteHashInsert(Hash *pH, const void *pKey, int nKey, void *data){
++ int hraw; /* Raw hash value of the key */
++ int h; /* the hash of the key modulo hash table size */
++ HashElem *elem; /* Used to loop thru the element list */
++ HashElem *new_elem; /* New element added to the pH */
++ int (*xHash)(const void*,int); /* The hash function */
++
++ assert( pH!=0 );
++ xHash = hashFunction(pH->keyClass);
++ assert( xHash!=0 );
++ hraw = (*xHash)(pKey, nKey);
++ assert( (pH->htsize & (pH->htsize-1))==0 );
++ h = hraw & (pH->htsize-1);
++ elem = findElementGivenHash(pH,pKey,nKey,h);
++ if( elem ){
++ void *old_data = elem->data;
++ if( data==0 ){
++ removeElementGivenHash(pH,elem,h);
++ }else{
++ elem->data = data;
++ }
++ return old_data;
++ }
++ if( data==0 ) return 0;
++ new_elem = (HashElem*)sqliteMalloc( sizeof(HashElem) );
++ if( new_elem==0 ) return data;
++ if( pH->copyKey && pKey!=0 ){
++ new_elem->pKey = sqliteMallocRaw( nKey );
++ if( new_elem->pKey==0 ){
++ sqliteFree(new_elem);
++ return data;
++ }
++ memcpy((void*)new_elem->pKey, pKey, nKey);
++ }else{
++ new_elem->pKey = (void*)pKey;
++ }
++ new_elem->nKey = nKey;
++ pH->count++;
++ if( pH->htsize==0 ) rehash(pH,8);
++ if( pH->htsize==0 ){
++ pH->count = 0;
++ sqliteFree(new_elem);
++ return data;
++ }
++ if( pH->count > pH->htsize ){
++ rehash(pH,pH->htsize*2);
++ }
++ assert( (pH->htsize & (pH->htsize-1))==0 );
++ h = hraw & (pH->htsize-1);
++ elem = pH->ht[h].chain;
++ if( elem ){
++ new_elem->next = elem;
++ new_elem->prev = elem->prev;
++ if( elem->prev ){ elem->prev->next = new_elem; }
++ else { pH->first = new_elem; }
++ elem->prev = new_elem;
++ }else{
++ new_elem->next = pH->first;
++ new_elem->prev = 0;
++ if( pH->first ){ pH->first->prev = new_elem; }
++ pH->first = new_elem;
++ }
++ pH->ht[h].count++;
++ pH->ht[h].chain = new_elem;
++ new_elem->data = data;
++ return 0;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/hash.h
+@@ -0,0 +1,109 @@
++/*
++** 2001 September 22
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This is the header file for the generic hash-table implemenation
++** used in SQLite.
++**
++** $Id$
++*/
++#ifndef _SQLITE_HASH_H_
++#define _SQLITE_HASH_H_
++
++/* Forward declarations of structures. */
++typedef struct Hash Hash;
++typedef struct HashElem HashElem;
++
++/* A complete hash table is an instance of the following structure.
++** The internals of this structure are intended to be opaque -- client
++** code should not attempt to access or modify the fields of this structure
++** directly. Change this structure only by using the routines below.
++** However, many of the "procedures" and "functions" for modifying and
++** accessing this structure are really macros, so we can't really make
++** this structure opaque.
++*/
++struct Hash {
++ char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */
++ char copyKey; /* True if copy of key made on insert */
++ int count; /* Number of entries in this table */
++ HashElem *first; /* The first element of the array */
++ int htsize; /* Number of buckets in the hash table */
++ struct _ht { /* the hash table */
++ int count; /* Number of entries with this hash */
++ HashElem *chain; /* Pointer to first entry with this hash */
++ } *ht;
++};
++
++/* Each element in the hash table is an instance of the following
++** structure. All elements are stored on a single doubly-linked list.
++**
++** Again, this structure is intended to be opaque, but it can't really
++** be opaque because it is used by macros.
++*/
++struct HashElem {
++ HashElem *next, *prev; /* Next and previous elements in the table */
++ void *data; /* Data associated with this element */
++ void *pKey; int nKey; /* Key associated with this element */
++};
++
++/*
++** There are 4 different modes of operation for a hash table:
++**
++** SQLITE_HASH_INT nKey is used as the key and pKey is ignored.
++**
++** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored.
++**
++** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long
++** (including the null-terminator, if any). Case
++** is ignored in comparisons.
++**
++** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long.
++** memcmp() is used to compare keys.
++**
++** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY
++** if the copyKey parameter to HashInit is 1.
++*/
++#define SQLITE_HASH_INT 1
++/* #define SQLITE_HASH_POINTER 2 // NOT USED */
++#define SQLITE_HASH_STRING 3
++#define SQLITE_HASH_BINARY 4
++
++/*
++** Access routines. To delete, insert a NULL pointer.
++*/
++void sqliteHashInit(Hash*, int keytype, int copyKey);
++void *sqliteHashInsert(Hash*, const void *pKey, int nKey, void *pData);
++void *sqliteHashFind(const Hash*, const void *pKey, int nKey);
++void sqliteHashClear(Hash*);
++
++/*
++** Macros for looping over all elements of a hash table. The idiom is
++** like this:
++**
++** Hash h;
++** HashElem *p;
++** ...
++** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){
++** SomeStructure *pData = sqliteHashData(p);
++** // do something with pData
++** }
++*/
++#define sqliteHashFirst(H) ((H)->first)
++#define sqliteHashNext(E) ((E)->next)
++#define sqliteHashData(E) ((E)->data)
++#define sqliteHashKey(E) ((E)->pKey)
++#define sqliteHashKeysize(E) ((E)->nKey)
++
++/*
++** Number of entries in a hash table
++*/
++#define sqliteHashCount(H) ((H)->count)
++
++#endif /* _SQLITE_HASH_H_ */
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/insert.c
+@@ -0,0 +1,919 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains C code routines that are called by the parser
++** to handle INSERT statements in SQLite.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++
++/*
++** This routine is call to handle SQL of the following forms:
++**
++** insert into TABLE (IDLIST) values(EXPRLIST)
++** insert into TABLE (IDLIST) select
++**
++** The IDLIST following the table name is always optional. If omitted,
++** then a list of all columns for the table is substituted. The IDLIST
++** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
++**
++** The pList parameter holds EXPRLIST in the first form of the INSERT
++** statement above, and pSelect is NULL. For the second form, pList is
++** NULL and pSelect is a pointer to the select statement used to generate
++** data for the insert.
++**
++** The code generated follows one of three templates. For a simple
++** select with data coming from a VALUES clause, the code executes
++** once straight down through. The template looks like this:
++**
++** open write cursor to <table> and its indices
++** puts VALUES clause expressions onto the stack
++** write the resulting record into <table>
++** cleanup
++**
++** If the statement is of the form
++**
++** INSERT INTO <table> SELECT ...
++**
++** And the SELECT clause does not read from <table> at any time, then
++** the generated code follows this template:
++**
++** goto B
++** A: setup for the SELECT
++** loop over the tables in the SELECT
++** gosub C
++** end loop
++** cleanup after the SELECT
++** goto D
++** B: open write cursor to <table> and its indices
++** goto A
++** C: insert the select result into <table>
++** return
++** D: cleanup
++**
++** The third template is used if the insert statement takes its
++** values from a SELECT but the data is being inserted into a table
++** that is also read as part of the SELECT. In the third form,
++** we have to use a intermediate table to store the results of
++** the select. The template is like this:
++**
++** goto B
++** A: setup for the SELECT
++** loop over the tables in the SELECT
++** gosub C
++** end loop
++** cleanup after the SELECT
++** goto D
++** C: insert the select result into the intermediate table
++** return
++** B: open a cursor to an intermediate table
++** goto A
++** D: open write cursor to <table> and its indices
++** loop over the intermediate table
++** transfer values form intermediate table into <table>
++** end the loop
++** cleanup
++*/
++void sqliteInsert(
++ Parse *pParse, /* Parser context */
++ SrcList *pTabList, /* Name of table into which we are inserting */
++ ExprList *pList, /* List of values to be inserted */
++ Select *pSelect, /* A SELECT statement to use as the data source */
++ IdList *pColumn, /* Column names corresponding to IDLIST. */
++ int onError /* How to handle constraint errors */
++){
++ Table *pTab; /* The table to insert into */
++ char *zTab; /* Name of the table into which we are inserting */
++ const char *zDb; /* Name of the database holding this table */
++ int i, j, idx; /* Loop counters */
++ Vdbe *v; /* Generate code into this virtual machine */
++ Index *pIdx; /* For looping over indices of the table */
++ int nColumn; /* Number of columns in the data */
++ int base; /* VDBE Cursor number for pTab */
++ int iCont, iBreak; /* Beginning and end of the loop over srcTab */
++ sqlite *db; /* The main database structure */
++ int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
++ int endOfLoop; /* Label for the end of the insertion loop */
++ int useTempTable; /* Store SELECT results in intermediate table */
++ int srcTab; /* Data comes from this temporary cursor if >=0 */
++ int iSelectLoop; /* Address of code that implements the SELECT */
++ int iCleanup; /* Address of the cleanup code */
++ int iInsertBlock; /* Address of the subroutine used to insert data */
++ int iCntMem; /* Memory cell used for the row counter */
++ int isView; /* True if attempting to insert into a view */
++
++ int row_triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
++ int before_triggers; /* True if there are BEFORE triggers */
++ int after_triggers; /* True if there are AFTER triggers */
++ int newIdx = -1; /* Cursor for the NEW table */
++
++ if( pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
++ db = pParse->db;
++
++ /* Locate the table into which we will be inserting new information.
++ */
++ assert( pTabList->nSrc==1 );
++ zTab = pTabList->a[0].zName;
++ if( zTab==0 ) goto insert_cleanup;
++ pTab = sqliteSrcListLookup(pParse, pTabList);
++ if( pTab==0 ){
++ goto insert_cleanup;
++ }
++ assert( pTab->iDb<db->nDb );
++ zDb = db->aDb[pTab->iDb].zName;
++ if( sqliteAuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
++ goto insert_cleanup;
++ }
++
++ /* Ensure that:
++ * (a) the table is not read-only,
++ * (b) that if it is a view then ON INSERT triggers exist
++ */
++ before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
++ TK_BEFORE, TK_ROW, 0);
++ after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger, TK_INSERT,
++ TK_AFTER, TK_ROW, 0);
++ row_triggers_exist = before_triggers || after_triggers;
++ isView = pTab->pSelect!=0;
++ if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
++ goto insert_cleanup;
++ }
++ if( pTab==0 ) goto insert_cleanup;
++
++ /* If pTab is really a view, make sure it has been initialized.
++ */
++ if( isView && sqliteViewGetColumnNames(pParse, pTab) ){
++ goto insert_cleanup;
++ }
++
++ /* Allocate a VDBE
++ */
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ) goto insert_cleanup;
++ sqliteBeginWriteOperation(pParse, pSelect || row_triggers_exist, pTab->iDb);
++
++ /* if there are row triggers, allocate a temp table for new.* references. */
++ if( row_triggers_exist ){
++ newIdx = pParse->nTab++;
++ }
++
++ /* Figure out how many columns of data are supplied. If the data
++ ** is coming from a SELECT statement, then this step also generates
++ ** all the code to implement the SELECT statement and invoke a subroutine
++ ** to process each row of the result. (Template 2.) If the SELECT
++ ** statement uses the the table that is being inserted into, then the
++ ** subroutine is also coded here. That subroutine stores the SELECT
++ ** results in a temporary table. (Template 3.)
++ */
++ if( pSelect ){
++ /* Data is coming from a SELECT. Generate code to implement that SELECT
++ */
++ int rc, iInitCode;
++ iInitCode = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
++ iSelectLoop = sqliteVdbeCurrentAddr(v);
++ iInsertBlock = sqliteVdbeMakeLabel(v);
++ rc = sqliteSelect(pParse, pSelect, SRT_Subroutine, iInsertBlock, 0,0,0);
++ if( rc || pParse->nErr || sqlite_malloc_failed ) goto insert_cleanup;
++ iCleanup = sqliteVdbeMakeLabel(v);
++ sqliteVdbeAddOp(v, OP_Goto, 0, iCleanup);
++ assert( pSelect->pEList );
++ nColumn = pSelect->pEList->nExpr;
++
++ /* Set useTempTable to TRUE if the result of the SELECT statement
++ ** should be written into a temporary table. Set to FALSE if each
++ ** row of the SELECT can be written directly into the result table.
++ **
++ ** A temp table must be used if the table being updated is also one
++ ** of the tables being read by the SELECT statement. Also use a
++ ** temp table in the case of row triggers.
++ */
++ if( row_triggers_exist ){
++ useTempTable = 1;
++ }else{
++ int addr = sqliteVdbeFindOp(v, OP_OpenRead, pTab->tnum);
++ useTempTable = 0;
++ if( addr>0 ){
++ VdbeOp *pOp = sqliteVdbeGetOp(v, addr-2);
++ if( pOp->opcode==OP_Integer && pOp->p1==pTab->iDb ){
++ useTempTable = 1;
++ }
++ }
++ }
++
++ if( useTempTable ){
++ /* Generate the subroutine that SELECT calls to process each row of
++ ** the result. Store the result in a temporary table
++ */
++ srcTab = pParse->nTab++;
++ sqliteVdbeResolveLabel(v, iInsertBlock);
++ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
++ sqliteVdbeAddOp(v, OP_NewRecno, srcTab, 0);
++ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, srcTab, 0);
++ sqliteVdbeAddOp(v, OP_Return, 0, 0);
++
++ /* The following code runs first because the GOTO at the very top
++ ** of the program jumps to it. Create the temporary table, then jump
++ ** back up and execute the SELECT code above.
++ */
++ sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
++ sqliteVdbeAddOp(v, OP_OpenTemp, srcTab, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
++ sqliteVdbeResolveLabel(v, iCleanup);
++ }else{
++ sqliteVdbeChangeP2(v, iInitCode, sqliteVdbeCurrentAddr(v));
++ }
++ }else{
++ /* This is the case if the data for the INSERT is coming from a VALUES
++ ** clause
++ */
++ SrcList dummy;
++ assert( pList!=0 );
++ srcTab = -1;
++ useTempTable = 0;
++ assert( pList );
++ nColumn = pList->nExpr;
++ dummy.nSrc = 0;
++ for(i=0; i<nColumn; i++){
++ if( sqliteExprResolveIds(pParse, &dummy, 0, pList->a[i].pExpr) ){
++ goto insert_cleanup;
++ }
++ if( sqliteExprCheck(pParse, pList->a[i].pExpr, 0, 0) ){
++ goto insert_cleanup;
++ }
++ }
++ }
++
++ /* Make sure the number of columns in the source data matches the number
++ ** of columns to be inserted into the table.
++ */
++ if( pColumn==0 && nColumn!=pTab->nCol ){
++ sqliteErrorMsg(pParse,
++ "table %S has %d columns but %d values were supplied",
++ pTabList, 0, pTab->nCol, nColumn);
++ goto insert_cleanup;
++ }
++ if( pColumn!=0 && nColumn!=pColumn->nId ){
++ sqliteErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
++ goto insert_cleanup;
++ }
++
++ /* If the INSERT statement included an IDLIST term, then make sure
++ ** all elements of the IDLIST really are columns of the table and
++ ** remember the column indices.
++ **
++ ** If the table has an INTEGER PRIMARY KEY column and that column
++ ** is named in the IDLIST, then record in the keyColumn variable
++ ** the index into IDLIST of the primary key column. keyColumn is
++ ** the index of the primary key as it appears in IDLIST, not as
++ ** is appears in the original table. (The index of the primary
++ ** key in the original table is pTab->iPKey.)
++ */
++ if( pColumn ){
++ for(i=0; i<pColumn->nId; i++){
++ pColumn->a[i].idx = -1;
++ }
++ for(i=0; i<pColumn->nId; i++){
++ for(j=0; j<pTab->nCol; j++){
++ if( sqliteStrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
++ pColumn->a[i].idx = j;
++ if( j==pTab->iPKey ){
++ keyColumn = i;
++ }
++ break;
++ }
++ }
++ if( j>=pTab->nCol ){
++ if( sqliteIsRowid(pColumn->a[i].zName) ){
++ keyColumn = i;
++ }else{
++ sqliteErrorMsg(pParse, "table %S has no column named %s",
++ pTabList, 0, pColumn->a[i].zName);
++ pParse->nErr++;
++ goto insert_cleanup;
++ }
++ }
++ }
++ }
++
++ /* If there is no IDLIST term but the table has an integer primary
++ ** key, the set the keyColumn variable to the primary key column index
++ ** in the original table definition.
++ */
++ if( pColumn==0 ){
++ keyColumn = pTab->iPKey;
++ }
++
++ /* Open the temp table for FOR EACH ROW triggers
++ */
++ if( row_triggers_exist ){
++ sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
++ }
++
++ /* Initialize the count of rows to be inserted
++ */
++ if( db->flags & SQLITE_CountRows ){
++ iCntMem = pParse->nMem++;
++ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
++ sqliteVdbeAddOp(v, OP_MemStore, iCntMem, 1);
++ }
++
++ /* Open tables and indices if there are no row triggers */
++ if( !row_triggers_exist ){
++ base = pParse->nTab;
++ idx = sqliteOpenTableAndIndices(pParse, pTab, base);
++ pParse->nTab += idx;
++ }
++
++ /* If the data source is a temporary table, then we have to create
++ ** a loop because there might be multiple rows of data. If the data
++ ** source is a subroutine call from the SELECT statement, then we need
++ ** to launch the SELECT statement processing.
++ */
++ if( useTempTable ){
++ iBreak = sqliteVdbeMakeLabel(v);
++ sqliteVdbeAddOp(v, OP_Rewind, srcTab, iBreak);
++ iCont = sqliteVdbeCurrentAddr(v);
++ }else if( pSelect ){
++ sqliteVdbeAddOp(v, OP_Goto, 0, iSelectLoop);
++ sqliteVdbeResolveLabel(v, iInsertBlock);
++ }
++
++ /* Run the BEFORE and INSTEAD OF triggers, if there are any
++ */
++ endOfLoop = sqliteVdbeMakeLabel(v);
++ if( before_triggers ){
++
++ /* build the NEW.* reference row. Note that if there is an INTEGER
++ ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
++ ** translated into a unique ID for the row. But on a BEFORE trigger,
++ ** we do not know what the unique ID will be (because the insert has
++ ** not happened yet) so we substitute a rowid of -1
++ */
++ if( keyColumn<0 ){
++ sqliteVdbeAddOp(v, OP_Integer, -1, 0);
++ }else if( useTempTable ){
++ sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
++ }else if( pSelect ){
++ sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
++ }else{
++ sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
++ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ sqliteVdbeAddOp(v, OP_Integer, -1, 0);
++ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
++ }
++
++ /* Create the new column data
++ */
++ for(i=0; i<pTab->nCol; i++){
++ if( pColumn==0 ){
++ j = i;
++ }else{
++ for(j=0; j<pColumn->nId; j++){
++ if( pColumn->a[j].idx==i ) break;
++ }
++ }
++ if( pColumn && j>=pColumn->nId ){
++ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
++ }else if( useTempTable ){
++ sqliteVdbeAddOp(v, OP_Column, srcTab, j);
++ }else if( pSelect ){
++ sqliteVdbeAddOp(v, OP_Dup, nColumn-j-1, 1);
++ }else{
++ sqliteExprCode(pParse, pList->a[j].pExpr);
++ }
++ }
++ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
++
++ /* Fire BEFORE or INSTEAD OF triggers */
++ if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_BEFORE, pTab,
++ newIdx, -1, onError, endOfLoop) ){
++ goto insert_cleanup;
++ }
++ }
++
++ /* If any triggers exists, the opening of tables and indices is deferred
++ ** until now.
++ */
++ if( row_triggers_exist && !isView ){
++ base = pParse->nTab;
++ idx = sqliteOpenTableAndIndices(pParse, pTab, base);
++ pParse->nTab += idx;
++ }
++
++ /* Push the record number for the new entry onto the stack. The
++ ** record number is a randomly generate integer created by NewRecno
++ ** except when the table has an INTEGER PRIMARY KEY column, in which
++ ** case the record number is the same as that column.
++ */
++ if( !isView ){
++ if( keyColumn>=0 ){
++ if( useTempTable ){
++ sqliteVdbeAddOp(v, OP_Column, srcTab, keyColumn);
++ }else if( pSelect ){
++ sqliteVdbeAddOp(v, OP_Dup, nColumn - keyColumn - 1, 1);
++ }else{
++ sqliteExprCode(pParse, pList->a[keyColumn].pExpr);
++ }
++ /* If the PRIMARY KEY expression is NULL, then use OP_NewRecno
++ ** to generate a unique primary key value.
++ */
++ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
++ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
++ }else{
++ sqliteVdbeAddOp(v, OP_NewRecno, base, 0);
++ }
++
++ /* Push onto the stack, data for all columns of the new entry, beginning
++ ** with the first column.
++ */
++ for(i=0; i<pTab->nCol; i++){
++ if( i==pTab->iPKey ){
++ /* The value of the INTEGER PRIMARY KEY column is always a NULL.
++ ** Whenever this column is read, the record number will be substituted
++ ** in its place. So will fill this column with a NULL to avoid
++ ** taking up data space with information that will never be used. */
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ continue;
++ }
++ if( pColumn==0 ){
++ j = i;
++ }else{
++ for(j=0; j<pColumn->nId; j++){
++ if( pColumn->a[j].idx==i ) break;
++ }
++ }
++ if( pColumn && j>=pColumn->nId ){
++ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
++ }else if( useTempTable ){
++ sqliteVdbeAddOp(v, OP_Column, srcTab, j);
++ }else if( pSelect ){
++ sqliteVdbeAddOp(v, OP_Dup, i+nColumn-j, 1);
++ }else{
++ sqliteExprCode(pParse, pList->a[j].pExpr);
++ }
++ }
++
++ /* Generate code to check constraints and generate index keys and
++ ** do the insertion.
++ */
++ sqliteGenerateConstraintChecks(pParse, pTab, base, 0, keyColumn>=0,
++ 0, onError, endOfLoop);
++ sqliteCompleteInsertion(pParse, pTab, base, 0,0,0,
++ after_triggers ? newIdx : -1);
++ }
++
++ /* Update the count of rows that are inserted
++ */
++ if( (db->flags & SQLITE_CountRows)!=0 ){
++ sqliteVdbeAddOp(v, OP_MemIncr, iCntMem, 0);
++ }
++
++ if( row_triggers_exist ){
++ /* Close all tables opened */
++ if( !isView ){
++ sqliteVdbeAddOp(v, OP_Close, base, 0);
++ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
++ sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
++ }
++ }
++
++ /* Code AFTER triggers */
++ if( sqliteCodeRowTrigger(pParse, TK_INSERT, 0, TK_AFTER, pTab, newIdx, -1,
++ onError, endOfLoop) ){
++ goto insert_cleanup;
++ }
++ }
++
++ /* The bottom of the loop, if the data source is a SELECT statement
++ */
++ sqliteVdbeResolveLabel(v, endOfLoop);
++ if( useTempTable ){
++ sqliteVdbeAddOp(v, OP_Next, srcTab, iCont);
++ sqliteVdbeResolveLabel(v, iBreak);
++ sqliteVdbeAddOp(v, OP_Close, srcTab, 0);
++ }else if( pSelect ){
++ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
++ sqliteVdbeAddOp(v, OP_Return, 0, 0);
++ sqliteVdbeResolveLabel(v, iCleanup);
++ }
++
++ if( !row_triggers_exist ){
++ /* Close all tables opened */
++ sqliteVdbeAddOp(v, OP_Close, base, 0);
++ for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
++ sqliteVdbeAddOp(v, OP_Close, idx+base, 0);
++ }
++ }
++
++ sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
++ sqliteEndWriteOperation(pParse);
++
++ /*
++ ** Return the number of rows inserted.
++ */
++ if( db->flags & SQLITE_CountRows ){
++ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows inserted", P3_STATIC);
++ sqliteVdbeAddOp(v, OP_MemLoad, iCntMem, 0);
++ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
++ }
++
++insert_cleanup:
++ sqliteSrcListDelete(pTabList);
++ if( pList ) sqliteExprListDelete(pList);
++ if( pSelect ) sqliteSelectDelete(pSelect);
++ sqliteIdListDelete(pColumn);
++}
++
++/*
++** Generate code to do a constraint check prior to an INSERT or an UPDATE.
++**
++** When this routine is called, the stack contains (from bottom to top)
++** the following values:
++**
++** 1. The recno of the row to be updated before the update. This
++** value is omitted unless we are doing an UPDATE that involves a
++** change to the record number.
++**
++** 2. The recno of the row after the update.
++**
++** 3. The data in the first column of the entry after the update.
++**
++** i. Data from middle columns...
++**
++** N. The data in the last column of the entry after the update.
++**
++** The old recno shown as entry (1) above is omitted unless both isUpdate
++** and recnoChng are 1. isUpdate is true for UPDATEs and false for
++** INSERTs and recnoChng is true if the record number is being changed.
++**
++** The code generated by this routine pushes additional entries onto
++** the stack which are the keys for new index entries for the new record.
++** The order of index keys is the same as the order of the indices on
++** the pTable->pIndex list. A key is only created for index i if
++** aIdxUsed!=0 and aIdxUsed[i]!=0.
++**
++** This routine also generates code to check constraints. NOT NULL,
++** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
++** then the appropriate action is performed. There are five possible
++** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
++**
++** Constraint type Action What Happens
++** --------------- ---------- ----------------------------------------
++** any ROLLBACK The current transaction is rolled back and
++** sqlite_exec() returns immediately with a
++** return code of SQLITE_CONSTRAINT.
++**
++** any ABORT Back out changes from the current command
++** only (do not do a complete rollback) then
++** cause sqlite_exec() to return immediately
++** with SQLITE_CONSTRAINT.
++**
++** any FAIL Sqlite_exec() returns immediately with a
++** return code of SQLITE_CONSTRAINT. The
++** transaction is not rolled back and any
++** prior changes are retained.
++**
++** any IGNORE The record number and data is popped from
++** the stack and there is an immediate jump
++** to label ignoreDest.
++**
++** NOT NULL REPLACE The NULL value is replace by the default
++** value for that column. If the default value
++** is NULL, the action is the same as ABORT.
++**
++** UNIQUE REPLACE The other row that conflicts with the row
++** being inserted is removed.
++**
++** CHECK REPLACE Illegal. The results in an exception.
++**
++** Which action to take is determined by the overrideError parameter.
++** Or if overrideError==OE_Default, then the pParse->onError parameter
++** is used. Or if pParse->onError==OE_Default then the onError value
++** for the constraint is used.
++**
++** The calling routine must open a read/write cursor for pTab with
++** cursor number "base". All indices of pTab must also have open
++** read/write cursors with cursor number base+i for the i-th cursor.
++** Except, if there is no possibility of a REPLACE action then
++** cursors do not need to be open for indices where aIdxUsed[i]==0.
++**
++** If the isUpdate flag is true, it means that the "base" cursor is
++** initially pointing to an entry that is being updated. The isUpdate
++** flag causes extra code to be generated so that the "base" cursor
++** is still pointing at the same entry after the routine returns.
++** Without the isUpdate flag, the "base" cursor might be moved.
++*/
++void sqliteGenerateConstraintChecks(
++ Parse *pParse, /* The parser context */
++ Table *pTab, /* the table into which we are inserting */
++ int base, /* Index of a read/write cursor pointing at pTab */
++ char *aIdxUsed, /* Which indices are used. NULL means all are used */
++ int recnoChng, /* True if the record number will change */
++ int isUpdate, /* True for UPDATE, False for INSERT */
++ int overrideError, /* Override onError to this if not OE_Default */
++ int ignoreDest /* Jump to this label on an OE_Ignore resolution */
++){
++ int i;
++ Vdbe *v;
++ int nCol;
++ int onError;
++ int addr;
++ int extra;
++ int iCur;
++ Index *pIdx;
++ int seenReplace = 0;
++ int jumpInst1, jumpInst2;
++ int contAddr;
++ int hasTwoRecnos = (isUpdate && recnoChng);
++
++ v = sqliteGetVdbe(pParse);
++ assert( v!=0 );
++ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
++ nCol = pTab->nCol;
++
++ /* Test all NOT NULL constraints.
++ */
++ for(i=0; i<nCol; i++){
++ if( i==pTab->iPKey ){
++ continue;
++ }
++ onError = pTab->aCol[i].notNull;
++ if( onError==OE_None ) continue;
++ if( overrideError!=OE_Default ){
++ onError = overrideError;
++ }else if( pParse->db->onError!=OE_Default ){
++ onError = pParse->db->onError;
++ }else if( onError==OE_Default ){
++ onError = OE_Abort;
++ }
++ if( onError==OE_Replace && pTab->aCol[i].zDflt==0 ){
++ onError = OE_Abort;
++ }
++ sqliteVdbeAddOp(v, OP_Dup, nCol-1-i, 1);
++ addr = sqliteVdbeAddOp(v, OP_NotNull, 1, 0);
++ switch( onError ){
++ case OE_Rollback:
++ case OE_Abort:
++ case OE_Fail: {
++ char *zMsg = 0;
++ sqliteVdbeAddOp(v, OP_Halt, SQLITE_CONSTRAINT, onError);
++ sqliteSetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName,
++ " may not be NULL", (char*)0);
++ sqliteVdbeChangeP3(v, -1, zMsg, P3_DYNAMIC);
++ break;
++ }
++ case OE_Ignore: {
++ sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
++ break;
++ }
++ case OE_Replace: {
++ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zDflt, P3_STATIC);
++ sqliteVdbeAddOp(v, OP_Push, nCol-i, 0);
++ break;
++ }
++ default: assert(0);
++ }
++ sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
++ }
++
++ /* Test all CHECK constraints
++ */
++ /**** TBD ****/
++
++ /* If we have an INTEGER PRIMARY KEY, make sure the primary key
++ ** of the new record does not previously exist. Except, if this
++ ** is an UPDATE and the primary key is not changing, that is OK.
++ */
++ if( recnoChng ){
++ onError = pTab->keyConf;
++ if( overrideError!=OE_Default ){
++ onError = overrideError;
++ }else if( pParse->db->onError!=OE_Default ){
++ onError = pParse->db->onError;
++ }else if( onError==OE_Default ){
++ onError = OE_Abort;
++ }
++
++ if( isUpdate ){
++ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
++ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
++ jumpInst1 = sqliteVdbeAddOp(v, OP_Eq, 0, 0);
++ }
++ sqliteVdbeAddOp(v, OP_Dup, nCol, 1);
++ jumpInst2 = sqliteVdbeAddOp(v, OP_NotExists, base, 0);
++ switch( onError ){
++ default: {
++ onError = OE_Abort;
++ /* Fall thru into the next case */
++ }
++ case OE_Rollback:
++ case OE_Abort:
++ case OE_Fail: {
++ sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError,
++ "PRIMARY KEY must be unique", P3_STATIC);
++ break;
++ }
++ case OE_Replace: {
++ sqliteGenerateRowIndexDelete(pParse->db, v, pTab, base, 0);
++ if( isUpdate ){
++ sqliteVdbeAddOp(v, OP_Dup, nCol+hasTwoRecnos, 1);
++ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
++ }
++ seenReplace = 1;
++ break;
++ }
++ case OE_Ignore: {
++ assert( seenReplace==0 );
++ sqliteVdbeAddOp(v, OP_Pop, nCol+1+hasTwoRecnos, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
++ break;
++ }
++ }
++ contAddr = sqliteVdbeCurrentAddr(v);
++ sqliteVdbeChangeP2(v, jumpInst2, contAddr);
++ if( isUpdate ){
++ sqliteVdbeChangeP2(v, jumpInst1, contAddr);
++ sqliteVdbeAddOp(v, OP_Dup, nCol+1, 1);
++ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
++ }
++ }
++
++ /* Test all UNIQUE constraints by creating entries for each UNIQUE
++ ** index and making sure that duplicate entries do not already exist.
++ ** Add the new records to the indices as we go.
++ */
++ extra = -1;
++ for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
++ if( aIdxUsed && aIdxUsed[iCur]==0 ) continue; /* Skip unused indices */
++ extra++;
++
++ /* Create a key for accessing the index entry */
++ sqliteVdbeAddOp(v, OP_Dup, nCol+extra, 1);
++ for(i=0; i<pIdx->nColumn; i++){
++ int idx = pIdx->aiColumn[i];
++ if( idx==pTab->iPKey ){
++ sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol+1, 1);
++ }else{
++ sqliteVdbeAddOp(v, OP_Dup, i+extra+nCol-idx, 1);
++ }
++ }
++ jumpInst1 = sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
++ if( pParse->db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
++
++ /* Find out what action to take in case there is an indexing conflict */
++ onError = pIdx->onError;
++ if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
++ if( overrideError!=OE_Default ){
++ onError = overrideError;
++ }else if( pParse->db->onError!=OE_Default ){
++ onError = pParse->db->onError;
++ }else if( onError==OE_Default ){
++ onError = OE_Abort;
++ }
++ if( seenReplace ){
++ if( onError==OE_Ignore ) onError = OE_Replace;
++ else if( onError==OE_Fail ) onError = OE_Abort;
++ }
++
++
++ /* Check to see if the new index entry will be unique */
++ sqliteVdbeAddOp(v, OP_Dup, extra+nCol+1+hasTwoRecnos, 1);
++ jumpInst2 = sqliteVdbeAddOp(v, OP_IsUnique, base+iCur+1, 0);
++
++ /* Generate code that executes if the new index entry is not unique */
++ switch( onError ){
++ case OE_Rollback:
++ case OE_Abort:
++ case OE_Fail: {
++ int j, n1, n2;
++ char zErrMsg[200];
++ strcpy(zErrMsg, pIdx->nColumn>1 ? "columns " : "column ");
++ n1 = strlen(zErrMsg);
++ for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
++ char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
++ n2 = strlen(zCol);
++ if( j>0 ){
++ strcpy(&zErrMsg[n1], ", ");
++ n1 += 2;
++ }
++ if( n1+n2>sizeof(zErrMsg)-30 ){
++ strcpy(&zErrMsg[n1], "...");
++ n1 += 3;
++ break;
++ }else{
++ strcpy(&zErrMsg[n1], zCol);
++ n1 += n2;
++ }
++ }
++ strcpy(&zErrMsg[n1],
++ pIdx->nColumn>1 ? " are not unique" : " is not unique");
++ sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, onError, zErrMsg, 0);
++ break;
++ }
++ case OE_Ignore: {
++ assert( seenReplace==0 );
++ sqliteVdbeAddOp(v, OP_Pop, nCol+extra+3+hasTwoRecnos, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, ignoreDest);
++ break;
++ }
++ case OE_Replace: {
++ sqliteGenerateRowDelete(pParse->db, v, pTab, base, 0);
++ if( isUpdate ){
++ sqliteVdbeAddOp(v, OP_Dup, nCol+extra+1+hasTwoRecnos, 1);
++ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
++ }
++ seenReplace = 1;
++ break;
++ }
++ default: assert(0);
++ }
++ contAddr = sqliteVdbeCurrentAddr(v);
++#if NULL_DISTINCT_FOR_UNIQUE
++ sqliteVdbeChangeP2(v, jumpInst1, contAddr);
++#endif
++ sqliteVdbeChangeP2(v, jumpInst2, contAddr);
++ }
++}
++
++/*
++** This routine generates code to finish the INSERT or UPDATE operation
++** that was started by a prior call to sqliteGenerateConstraintChecks.
++** The stack must contain keys for all active indices followed by data
++** and the recno for the new entry. This routine creates the new
++** entries in all indices and in the main table.
++**
++** The arguments to this routine should be the same as the first six
++** arguments to sqliteGenerateConstraintChecks.
++*/
++void sqliteCompleteInsertion(
++ Parse *pParse, /* The parser context */
++ Table *pTab, /* the table into which we are inserting */
++ int base, /* Index of a read/write cursor pointing at pTab */
++ char *aIdxUsed, /* Which indices are used. NULL means all are used */
++ int recnoChng, /* True if the record number will change */
++ int isUpdate, /* True for UPDATE, False for INSERT */
++ int newIdx /* Index of NEW table for triggers. -1 if none */
++){
++ int i;
++ Vdbe *v;
++ int nIdx;
++ Index *pIdx;
++
++ v = sqliteGetVdbe(pParse);
++ assert( v!=0 );
++ assert( pTab->pSelect==0 ); /* This table is not a VIEW */
++ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
++ for(i=nIdx-1; i>=0; i--){
++ if( aIdxUsed && aIdxUsed[i]==0 ) continue;
++ sqliteVdbeAddOp(v, OP_IdxPut, base+i+1, 0);
++ }
++ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
++ if( newIdx>=0 ){
++ sqliteVdbeAddOp(v, OP_Dup, 1, 0);
++ sqliteVdbeAddOp(v, OP_Dup, 1, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
++ }
++ sqliteVdbeAddOp(v, OP_PutIntKey, base,
++ (pParse->trigStack?0:OPFLAG_NCHANGE) |
++ (isUpdate?0:OPFLAG_LASTROWID) | OPFLAG_CSCHANGE);
++ if( isUpdate && recnoChng ){
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ }
++}
++
++/*
++** Generate code that will open write cursors for a table and for all
++** indices of that table. The "base" parameter is the cursor number used
++** for the table. Indices are opened on subsequent cursors.
++**
++** Return the total number of cursors opened. This is always at least
++** 1 (for the main table) plus more for each cursor.
++*/
++int sqliteOpenTableAndIndices(Parse *pParse, Table *pTab, int base){
++ int i;
++ Index *pIdx;
++ Vdbe *v = sqliteGetVdbe(pParse);
++ assert( v!=0 );
++ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
++ sqliteVdbeOp3(v, OP_OpenWrite, base, pTab->tnum, pTab->zName, P3_STATIC);
++ for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
++ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
++ sqliteVdbeOp3(v, OP_OpenWrite, i+base, pIdx->tnum, pIdx->zName, P3_STATIC);
++ }
++ return i;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/libsqlite.dsp
+@@ -0,0 +1,353 @@
++# Microsoft Developer Studio Project File - Name="libsqlite" - Package Owner=<4>\r
++# Microsoft Developer Studio Generated Build File, Format Version 6.00\r
++# ** DO NOT EDIT **\r
++\r
++# TARGTYPE "Win32 (x86) Static Library" 0x0104\r
++\r
++CFG=libsqlite - Win32 Debug_TS\r
++!MESSAGE This is not a valid makefile. To build this project using NMAKE,\r
++!MESSAGE use the Export Makefile command and run\r
++!MESSAGE \r
++!MESSAGE NMAKE /f "libsqlite.mak".\r
++!MESSAGE \r
++!MESSAGE You can specify a configuration when running NMAKE\r
++!MESSAGE by defining the macro CFG on the command line. For example:\r
++!MESSAGE \r
++!MESSAGE NMAKE /f "libsqlite.mak" CFG="libsqlite - Win32 Debug_TS"\r
++!MESSAGE \r
++!MESSAGE Possible choices for configuration are:\r
++!MESSAGE \r
++!MESSAGE "libsqlite - Win32 Debug_TS" (based on "Win32 (x86) Static Library")\r
++!MESSAGE "libsqlite - Win32 Release_TS" (based on "Win32 (x86) Static Library")\r
++!MESSAGE "libsqlite - Win32 Release_TSDbg" (based on "Win32 (x86) Static Library")\r
++!MESSAGE \r
++\r
++# Begin Project\r
++# PROP AllowPerConfigDependencies 0\r
++# PROP Scc_ProjName ""\r
++# PROP Scc_LocalPath ""\r
++CPP=cl.exe\r
++RSC=rc.exe\r
++\r
++!IF "$(CFG)" == "libsqlite - Win32 Debug_TS"\r
++\r
++# PROP BASE Use_MFC 0\r
++# PROP BASE Use_Debug_Libraries 1\r
++# PROP BASE Output_Dir "Debug_TS"\r
++# PROP BASE Intermediate_Dir "Debug_TS"\r
++# PROP BASE Target_Dir ""\r
++# PROP Use_MFC 0\r
++# PROP Use_Debug_Libraries 1\r
++# PROP Output_Dir "..\..\Debug_TS"\r
++# PROP Intermediate_Dir "..\..\Debug_TS"\r
++# PROP Target_Dir ""\r
++# ADD BASE CPP /nologo /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /YX /FD /GZ /c\r
++# ADD CPP /nologo /MDd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_MBCS" /D "_LIB" /D THREADSAFE=1 /YX /FD /GZ /c\r
++# ADD BASE RSC /l 0x406 /d "_DEBUG"\r
++# ADD RSC /l 0x406 /d "_DEBUG"\r
++BSC32=bscmake.exe\r
++# ADD BASE BSC32 /nologo\r
++# ADD BSC32 /nologo\r
++LIB32=link.exe -lib\r
++# ADD BASE LIB32 /nologo\r
++# ADD LIB32 /nologo\r
++\r
++!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TS"\r
++\r
++# PROP BASE Use_MFC 0\r
++# PROP BASE Use_Debug_Libraries 0\r
++# PROP BASE Output_Dir "Release_TS"\r
++# PROP BASE Intermediate_Dir "Release_TS"\r
++# PROP BASE Target_Dir ""\r
++# PROP Use_MFC 0\r
++# PROP Use_Debug_Libraries 0\r
++# PROP Output_Dir "..\..\Release_TS"\r
++# PROP Intermediate_Dir "..\..\Release_TS"\r
++# PROP Target_Dir ""\r
++# ADD BASE CPP /nologo /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /YX /FD /c\r
++# ADD CPP /nologo /MD /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /D THREADSAFE=1 /YX /FD /c\r
++# ADD BASE RSC /l 0x406 /d "NDEBUG"\r
++# ADD RSC /l 0x406 /d "NDEBUG"\r
++BSC32=bscmake.exe\r
++# ADD BASE BSC32 /nologo\r
++# ADD BSC32 /nologo\r
++LIB32=link.exe -lib\r
++# ADD BASE LIB32 /nologo\r
++# ADD LIB32 /nologo\r
++\r
++!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TSDbg"\r
++\r
++# PROP BASE Use_MFC 0\r
++# PROP BASE Use_Debug_Libraries 0\r
++# PROP BASE Output_Dir "libsqlite___Win32_Release_TSDbg"\r
++# PROP BASE Intermediate_Dir "libsqlite___Win32_Release_TSDbg"\r
++# PROP BASE Target_Dir ""\r
++# PROP Use_MFC 0\r
++# PROP Use_Debug_Libraries 0\r
++# PROP Output_Dir "..\..\Release_TSDbg"\r
++# PROP Intermediate_Dir "..\..\Release_TSDbg"\r
++# PROP Target_Dir ""\r
++# ADD BASE CPP /nologo /MD /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /D THREADSAFE=1 /YX /FD /c\r
++# ADD CPP /nologo /MD /W3 /GX /Zi /Od /D "WIN32" /D "NDEBUG" /D "_MBCS" /D "_LIB" /D THREADSAFE=1 /YX /FD /c\r
++# ADD BASE RSC /l 0x406 /d "NDEBUG"\r
++# ADD RSC /l 0x406 /d "NDEBUG"\r
++BSC32=bscmake.exe\r
++# ADD BASE BSC32 /nologo\r
++# ADD BSC32 /nologo\r
++LIB32=link.exe -lib\r
++# ADD BASE LIB32 /nologo /out:"Release_TS\libsqlite.lib"\r
++# ADD LIB32 /nologo\r
++\r
++!ENDIF \r
++\r
++# Begin Target\r
++\r
++# Name "libsqlite - Win32 Debug_TS"\r
++# Name "libsqlite - Win32 Release_TS"\r
++# Name "libsqlite - Win32 Release_TSDbg"\r
++# Begin Group "Source Files"\r
++\r
++# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"\r
++# Begin Source File\r
++\r
++SOURCE=attach.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=auth.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=btree.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=btree_rb.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=build.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=copy.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\date.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=delete.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=encode.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=expr.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=func.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=hash.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=insert.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=main.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=opcodes.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=os.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=pager.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=parse.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=pragma.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=printf.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=random.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=select.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=table.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=tokenize.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=trigger.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=update.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=util.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=vacuum.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=vdbe.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\vdbeaux.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=where.c\r
++# End Source File\r
++# End Group\r
++# Begin Group "Header Files"\r
++\r
++# PROP Default_Filter "h;hpp;hxx;hm;inl"\r
++# Begin Source File\r
++\r
++SOURCE=btree.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=config_static.w32.h\r
++\r
++!IF "$(CFG)" == "libsqlite - Win32 Debug_TS"\r
++\r
++# Begin Custom Build\r
++InputDir=.\r
++InputPath=config_static.w32.h\r
++\r
++"$(InputDir)\config.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"\r
++ copy $(InputPath) $(InputDir)\config.h\r
++\r
++# End Custom Build\r
++\r
++!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TS"\r
++\r
++# Begin Custom Build\r
++InputDir=.\r
++InputPath=config_static.w32.h\r
++\r
++"$(InputDir)\config.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"\r
++ copy $(InputPath) $(InputDir)\config.h\r
++\r
++# End Custom Build\r
++\r
++!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TSDbg"\r
++\r
++# Begin Custom Build\r
++InputDir=.\r
++InputPath=config_static.w32.h\r
++\r
++"$(InputDir)\config.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"\r
++ copy $(InputPath) $(InputDir)\config.h\r
++\r
++# End Custom Build\r
++\r
++!ENDIF \r
++\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=hash.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=opcodes.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=os.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=pager.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=parse.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=sqlite.w32.h\r
++\r
++!IF "$(CFG)" == "libsqlite - Win32 Debug_TS"\r
++\r
++# Begin Custom Build\r
++InputDir=.\r
++InputPath=sqlite.w32.h\r
++\r
++"$(InputDir)\sqlite.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"\r
++ copy $(InputPath) $(InputDir)\sqlite.h\r
++\r
++# End Custom Build\r
++\r
++!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TS"\r
++\r
++# Begin Custom Build\r
++InputDir=.\r
++InputPath=sqlite.w32.h\r
++\r
++"$(InputDir)\sqlite.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"\r
++ copy $(InputPath) $(InputDir)\sqlite.h\r
++\r
++# End Custom Build\r
++\r
++!ELSEIF "$(CFG)" == "libsqlite - Win32 Release_TSDbg"\r
++\r
++# Begin Custom Build\r
++InputDir=.\r
++InputPath=sqlite.w32.h\r
++\r
++"$(InputDir)\sqlite.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"\r
++ copy $(InputPath) $(InputDir)\sqlite.h\r
++\r
++# End Custom Build\r
++\r
++!ENDIF \r
++\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=sqliteInt.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=vdbe.h\r
++# End Source File\r
++# End Group\r
++# End Target\r
++# End Project\r
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/main.c
+@@ -0,0 +1,1143 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** Main file for the SQLite library. The routines in this file
++** implement the programmer interface to the library. Routines in
++** other files are for internal use by SQLite and should not be
++** accessed by users of the library.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++#include "os.h"
++#include <ctype.h>
++
++/*
++** A pointer to this structure is used to communicate information
++** from sqliteInit into the sqliteInitCallback.
++*/
++typedef struct {
++ sqlite *db; /* The database being initialized */
++ char **pzErrMsg; /* Error message stored here */
++} InitData;
++
++/*
++** Fill the InitData structure with an error message that indicates
++** that the database is corrupt.
++*/
++static void corruptSchema(InitData *pData, const char *zExtra){
++ sqliteSetString(pData->pzErrMsg, "malformed database schema",
++ zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0);
++}
++
++/*
++** This is the callback routine for the code that initializes the
++** database. See sqliteInit() below for additional information.
++**
++** Each callback contains the following information:
++**
++** argv[0] = "file-format" or "schema-cookie" or "table" or "index"
++** argv[1] = table or index name or meta statement type.
++** argv[2] = root page number for table or index. NULL for meta.
++** argv[3] = SQL text for a CREATE TABLE or CREATE INDEX statement.
++** argv[4] = "1" for temporary files, "0" for main database, "2" or more
++** for auxiliary database files.
++**
++*/
++static
++int sqliteInitCallback(void *pInit, int argc, char **argv, char **azColName){
++ InitData *pData = (InitData*)pInit;
++ int nErr = 0;
++
++ assert( argc==5 );
++ if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */
++ if( argv[0]==0 ){
++ corruptSchema(pData, 0);
++ return 1;
++ }
++ switch( argv[0][0] ){
++ case 'v':
++ case 'i':
++ case 't': { /* CREATE TABLE, CREATE INDEX, or CREATE VIEW statements */
++ sqlite *db = pData->db;
++ if( argv[2]==0 || argv[4]==0 ){
++ corruptSchema(pData, 0);
++ return 1;
++ }
++ if( argv[3] && argv[3][0] ){
++ /* Call the parser to process a CREATE TABLE, INDEX or VIEW.
++ ** But because db->init.busy is set to 1, no VDBE code is generated
++ ** or executed. All the parser does is build the internal data
++ ** structures that describe the table, index, or view.
++ */
++ char *zErr;
++ assert( db->init.busy );
++ db->init.iDb = atoi(argv[4]);
++ assert( db->init.iDb>=0 && db->init.iDb<db->nDb );
++ db->init.newTnum = atoi(argv[2]);
++ if( sqlite_exec(db, argv[3], 0, 0, &zErr) ){
++ corruptSchema(pData, zErr);
++ sqlite_freemem(zErr);
++ }
++ db->init.iDb = 0;
++ }else{
++ /* If the SQL column is blank it means this is an index that
++ ** was created to be the PRIMARY KEY or to fulfill a UNIQUE
++ ** constraint for a CREATE TABLE. The index should have already
++ ** been created when we processed the CREATE TABLE. All we have
++ ** to do here is record the root page number for that index.
++ */
++ int iDb;
++ Index *pIndex;
++
++ iDb = atoi(argv[4]);
++ assert( iDb>=0 && iDb<db->nDb );
++ pIndex = sqliteFindIndex(db, argv[1], db->aDb[iDb].zName);
++ if( pIndex==0 || pIndex->tnum!=0 ){
++ /* This can occur if there exists an index on a TEMP table which
++ ** has the same name as another index on a permanent index. Since
++ ** the permanent table is hidden by the TEMP table, we can also
++ ** safely ignore the index on the permanent table.
++ */
++ /* Do Nothing */;
++ }else{
++ pIndex->tnum = atoi(argv[2]);
++ }
++ }
++ break;
++ }
++ default: {
++ /* This can not happen! */
++ nErr = 1;
++ assert( nErr==0 );
++ }
++ }
++ return nErr;
++}
++
++/*
++** This is a callback procedure used to reconstruct a table. The
++** name of the table to be reconstructed is passed in as argv[0].
++**
++** This routine is used to automatically upgrade a database from
++** format version 1 or 2 to version 3. The correct operation of
++** this routine relys on the fact that no indices are used when
++** copying a table out to a temporary file.
++**
++** The change from version 2 to version 3 occurred between SQLite
++** version 2.5.6 and 2.6.0 on 2002-July-18.
++*/
++static
++int upgrade_3_callback(void *pInit, int argc, char **argv, char **NotUsed){
++ InitData *pData = (InitData*)pInit;
++ int rc;
++ Table *pTab;
++ Trigger *pTrig;
++ char *zErr = 0;
++
++ pTab = sqliteFindTable(pData->db, argv[0], 0);
++ assert( pTab!=0 );
++ assert( sqliteStrICmp(pTab->zName, argv[0])==0 );
++ if( pTab ){
++ pTrig = pTab->pTrigger;
++ pTab->pTrigger = 0; /* Disable all triggers before rebuilding the table */
++ }
++ rc = sqlite_exec_printf(pData->db,
++ "CREATE TEMP TABLE sqlite_x AS SELECT * FROM '%q'; "
++ "DELETE FROM '%q'; "
++ "INSERT INTO '%q' SELECT * FROM sqlite_x; "
++ "DROP TABLE sqlite_x;",
++ 0, 0, &zErr, argv[0], argv[0], argv[0]);
++ if( zErr ){
++ if( *pData->pzErrMsg ) sqlite_freemem(*pData->pzErrMsg);
++ *pData->pzErrMsg = zErr;
++ }
++
++ /* If an error occurred in the SQL above, then the transaction will
++ ** rollback which will delete the internal symbol tables. This will
++ ** cause the structure that pTab points to be deleted. In case that
++ ** happened, we need to refetch pTab.
++ */
++ pTab = sqliteFindTable(pData->db, argv[0], 0);
++ if( pTab ){
++ assert( sqliteStrICmp(pTab->zName, argv[0])==0 );
++ pTab->pTrigger = pTrig; /* Re-enable triggers */
++ }
++ return rc!=SQLITE_OK;
++}
++
++
++
++/*
++** Attempt to read the database schema and initialize internal
++** data structures for a single database file. The index of the
++** database file is given by iDb. iDb==0 is used for the main
++** database. iDb==1 should never be used. iDb>=2 is used for
++** auxiliary databases. Return one of the SQLITE_ error codes to
++** indicate success or failure.
++*/
++static int sqliteInitOne(sqlite *db, int iDb, char **pzErrMsg){
++ int rc;
++ BtCursor *curMain;
++ int size;
++ Table *pTab;
++ char const *azArg[6];
++ char zDbNum[30];
++ int meta[SQLITE_N_BTREE_META];
++ InitData initData;
++ char const *zMasterSchema;
++ char const *zMasterName;
++ char *zSql = 0;
++
++ /*
++ ** The master database table has a structure like this
++ */
++ static char master_schema[] =
++ "CREATE TABLE sqlite_master(\n"
++ " type text,\n"
++ " name text,\n"
++ " tbl_name text,\n"
++ " rootpage integer,\n"
++ " sql text\n"
++ ")"
++ ;
++ static char temp_master_schema[] =
++ "CREATE TEMP TABLE sqlite_temp_master(\n"
++ " type text,\n"
++ " name text,\n"
++ " tbl_name text,\n"
++ " rootpage integer,\n"
++ " sql text\n"
++ ")"
++ ;
++
++ assert( iDb>=0 && iDb<db->nDb );
++
++ /* zMasterSchema and zInitScript are set to point at the master schema
++ ** and initialisation script appropriate for the database being
++ ** initialised. zMasterName is the name of the master table.
++ */
++ if( iDb==1 ){
++ zMasterSchema = temp_master_schema;
++ zMasterName = TEMP_MASTER_NAME;
++ }else{
++ zMasterSchema = master_schema;
++ zMasterName = MASTER_NAME;
++ }
++
++ /* Construct the schema table.
++ */
++ sqliteSafetyOff(db);
++ azArg[0] = "table";
++ azArg[1] = zMasterName;
++ azArg[2] = "2";
++ azArg[3] = zMasterSchema;
++ sprintf(zDbNum, "%d", iDb);
++ azArg[4] = zDbNum;
++ azArg[5] = 0;
++ initData.db = db;
++ initData.pzErrMsg = pzErrMsg;
++ sqliteInitCallback(&initData, 5, (char **)azArg, 0);
++ pTab = sqliteFindTable(db, zMasterName, db->aDb[iDb].zName);
++ if( pTab ){
++ pTab->readOnly = 1;
++ }else{
++ return SQLITE_NOMEM;
++ }
++ sqliteSafetyOn(db);
++
++ /* Create a cursor to hold the database open
++ */
++ if( db->aDb[iDb].pBt==0 ) return SQLITE_OK;
++ rc = sqliteBtreeCursor(db->aDb[iDb].pBt, 2, 0, &curMain);
++ if( rc ){
++ sqliteSetString(pzErrMsg, sqlite_error_string(rc), (char*)0);
++ return rc;
++ }
++
++ /* Get the database meta information
++ */
++ rc = sqliteBtreeGetMeta(db->aDb[iDb].pBt, meta);
++ if( rc ){
++ sqliteSetString(pzErrMsg, sqlite_error_string(rc), (char*)0);
++ sqliteBtreeCloseCursor(curMain);
++ return rc;
++ }
++ db->aDb[iDb].schema_cookie = meta[1];
++ if( iDb==0 ){
++ db->next_cookie = meta[1];
++ db->file_format = meta[2];
++ size = meta[3];
++ if( size==0 ){ size = MAX_PAGES; }
++ db->cache_size = size;
++ db->safety_level = meta[4];
++ if( meta[6]>0 && meta[6]<=2 && db->temp_store==0 ){
++ db->temp_store = meta[6];
++ }
++ if( db->safety_level==0 ) db->safety_level = 2;
++
++ /*
++ ** file_format==1 Version 2.1.0.
++ ** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY.
++ ** file_format==3 Version 2.6.0. Fix empty-string index bug.
++ ** file_format==4 Version 2.7.0. Add support for separate numeric and
++ ** text datatypes.
++ */
++ if( db->file_format==0 ){
++ /* This happens if the database was initially empty */
++ db->file_format = 4;
++ }else if( db->file_format>4 ){
++ sqliteBtreeCloseCursor(curMain);
++ sqliteSetString(pzErrMsg, "unsupported file format", (char*)0);
++ return SQLITE_ERROR;
++ }
++ }else if( iDb!=1 && (db->file_format!=meta[2] || db->file_format<4) ){
++ assert( db->file_format>=4 );
++ if( meta[2]==0 ){
++ sqliteSetString(pzErrMsg, "cannot attach empty database: ",
++ db->aDb[iDb].zName, (char*)0);
++ }else{
++ sqliteSetString(pzErrMsg, "incompatible file format in auxiliary "
++ "database: ", db->aDb[iDb].zName, (char*)0);
++ }
++ sqliteBtreeClose(db->aDb[iDb].pBt);
++ db->aDb[iDb].pBt = 0;
++ return SQLITE_FORMAT;
++ }
++ sqliteBtreeSetCacheSize(db->aDb[iDb].pBt, db->cache_size);
++ sqliteBtreeSetSafetyLevel(db->aDb[iDb].pBt, meta[4]==0 ? 2 : meta[4]);
++
++ /* Read the schema information out of the schema tables
++ */
++ assert( db->init.busy );
++ sqliteSafetyOff(db);
++
++ /* The following SQL will read the schema from the master tables.
++ ** The first version works with SQLite file formats 2 or greater.
++ ** The second version is for format 1 files.
++ **
++ ** Beginning with file format 2, the rowid for new table entries
++ ** (including entries in sqlite_master) is an increasing integer.
++ ** So for file format 2 and later, we can play back sqlite_master
++ ** and all the CREATE statements will appear in the right order.
++ ** But with file format 1, table entries were random and so we
++ ** have to make sure the CREATE TABLEs occur before their corresponding
++ ** CREATE INDEXs. (We don't have to deal with CREATE VIEW or
++ ** CREATE TRIGGER in file format 1 because those constructs did
++ ** not exist then.)
++ */
++ if( db->file_format>=2 ){
++ sqliteSetString(&zSql,
++ "SELECT type, name, rootpage, sql, ", zDbNum, " FROM \"",
++ db->aDb[iDb].zName, "\".", zMasterName, (char*)0);
++ }else{
++ sqliteSetString(&zSql,
++ "SELECT type, name, rootpage, sql, ", zDbNum, " FROM \"",
++ db->aDb[iDb].zName, "\".", zMasterName,
++ " WHERE type IN ('table', 'index')"
++ " ORDER BY CASE type WHEN 'table' THEN 0 ELSE 1 END", (char*)0);
++ }
++ rc = sqlite_exec(db, zSql, sqliteInitCallback, &initData, 0);
++
++ sqliteFree(zSql);
++ sqliteSafetyOn(db);
++ sqliteBtreeCloseCursor(curMain);
++ if( sqlite_malloc_failed ){
++ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
++ rc = SQLITE_NOMEM;
++ sqliteResetInternalSchema(db, 0);
++ }
++ if( rc==SQLITE_OK ){
++ DbSetProperty(db, iDb, DB_SchemaLoaded);
++ }else{
++ sqliteResetInternalSchema(db, iDb);
++ }
++ return rc;
++}
++
++/*
++** Initialize all database files - the main database file, the file
++** used to store temporary tables, and any additional database files
++** created using ATTACH statements. Return a success code. If an
++** error occurs, write an error message into *pzErrMsg.
++**
++** After the database is initialized, the SQLITE_Initialized
++** bit is set in the flags field of the sqlite structure. An
++** attempt is made to initialize the database as soon as it
++** is opened. If that fails (perhaps because another process
++** has the sqlite_master table locked) than another attempt
++** is made the first time the database is accessed.
++*/
++int sqliteInit(sqlite *db, char **pzErrMsg){
++ int i, rc;
++
++ if( db->init.busy ) return SQLITE_OK;
++ assert( (db->flags & SQLITE_Initialized)==0 );
++ rc = SQLITE_OK;
++ db->init.busy = 1;
++ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
++ if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
++ rc = sqliteInitOne(db, i, pzErrMsg);
++ if( rc ){
++ sqliteResetInternalSchema(db, i);
++ }
++ }
++
++ /* Once all the other databases have been initialised, load the schema
++ ** for the TEMP database. This is loaded last, as the TEMP database
++ ** schema may contain references to objects in other databases.
++ */
++ if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){
++ rc = sqliteInitOne(db, 1, pzErrMsg);
++ if( rc ){
++ sqliteResetInternalSchema(db, 1);
++ }
++ }
++
++ db->init.busy = 0;
++ if( rc==SQLITE_OK ){
++ db->flags |= SQLITE_Initialized;
++ sqliteCommitInternalChanges(db);
++ }
++
++ /* If the database is in formats 1 or 2, then upgrade it to
++ ** version 3. This will reconstruct all indices. If the
++ ** upgrade fails for any reason (ex: out of disk space, database
++ ** is read only, interrupt received, etc.) then fail the init.
++ */
++ if( rc==SQLITE_OK && db->file_format<3 ){
++ char *zErr = 0;
++ InitData initData;
++ int meta[SQLITE_N_BTREE_META];
++
++ db->magic = SQLITE_MAGIC_OPEN;
++ initData.db = db;
++ initData.pzErrMsg = &zErr;
++ db->file_format = 3;
++ rc = sqlite_exec(db,
++ "BEGIN; SELECT name FROM sqlite_master WHERE type='table';",
++ upgrade_3_callback,
++ &initData,
++ &zErr);
++ if( rc==SQLITE_OK ){
++ sqliteBtreeGetMeta(db->aDb[0].pBt, meta);
++ meta[2] = 4;
++ sqliteBtreeUpdateMeta(db->aDb[0].pBt, meta);
++ sqlite_exec(db, "COMMIT", 0, 0, 0);
++ }
++ if( rc!=SQLITE_OK ){
++ sqliteSetString(pzErrMsg,
++ "unable to upgrade database to the version 2.6 format",
++ zErr ? ": " : 0, zErr, (char*)0);
++ }
++ sqlite_freemem(zErr);
++ }
++
++ if( rc!=SQLITE_OK ){
++ db->flags &= ~SQLITE_Initialized;
++ }
++ return rc;
++}
++
++/*
++** The version of the library
++*/
++const char rcsid[] = "@(#) \044Id: SQLite version " SQLITE_VERSION " $";
++const char sqlite_version[] = SQLITE_VERSION;
++
++/*
++** Does the library expect data to be encoded as UTF-8 or iso8859? The
++** following global constant always lets us know.
++*/
++#ifdef SQLITE_UTF8
++const char sqlite_encoding[] = "UTF-8";
++#else
++const char sqlite_encoding[] = "iso8859";
++#endif
++
++/*
++** Open a new SQLite database. Construct an "sqlite" structure to define
++** the state of this database and return a pointer to that structure.
++**
++** An attempt is made to initialize the in-memory data structures that
++** hold the database schema. But if this fails (because the schema file
++** is locked) then that step is deferred until the first call to
++** sqlite_exec().
++*/
++sqlite *sqlite_open(const char *zFilename, int mode, char **pzErrMsg){
++ sqlite *db;
++ int rc, i;
++
++ /* Allocate the sqlite data structure */
++ db = sqliteMalloc( sizeof(sqlite) );
++ if( pzErrMsg ) *pzErrMsg = 0;
++ if( db==0 ) goto no_mem_on_open;
++ db->onError = OE_Default;
++ db->priorNewRowid = 0;
++ db->magic = SQLITE_MAGIC_BUSY;
++ db->nDb = 2;
++ db->aDb = db->aDbStatic;
++ /* db->flags |= SQLITE_ShortColNames; */
++ sqliteHashInit(&db->aFunc, SQLITE_HASH_STRING, 1);
++ for(i=0; i<db->nDb; i++){
++ sqliteHashInit(&db->aDb[i].tblHash, SQLITE_HASH_STRING, 0);
++ sqliteHashInit(&db->aDb[i].idxHash, SQLITE_HASH_STRING, 0);
++ sqliteHashInit(&db->aDb[i].trigHash, SQLITE_HASH_STRING, 0);
++ sqliteHashInit(&db->aDb[i].aFKey, SQLITE_HASH_STRING, 1);
++ }
++
++ /* Open the backend database driver */
++ if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){
++ db->temp_store = 2;
++ }
++ rc = sqliteBtreeFactory(db, zFilename, 0, MAX_PAGES, &db->aDb[0].pBt);
++ if( rc!=SQLITE_OK ){
++ switch( rc ){
++ default: {
++ sqliteSetString(pzErrMsg, "unable to open database: ",
++ zFilename, (char*)0);
++ }
++ }
++ sqliteFree(db);
++ sqliteStrRealloc(pzErrMsg);
++ return 0;
++ }
++ db->aDb[0].zName = "main";
++ db->aDb[1].zName = "temp";
++
++ /* Attempt to read the schema */
++ sqliteRegisterBuiltinFunctions(db);
++ rc = sqliteInit(db, pzErrMsg);
++ db->magic = SQLITE_MAGIC_OPEN;
++ if( sqlite_malloc_failed ){
++ sqlite_close(db);
++ goto no_mem_on_open;
++ }else if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
++ sqlite_close(db);
++ sqliteStrRealloc(pzErrMsg);
++ return 0;
++ }else if( pzErrMsg ){
++ sqliteFree(*pzErrMsg);
++ *pzErrMsg = 0;
++ }
++
++ /* Return a pointer to the newly opened database structure */
++ return db;
++
++no_mem_on_open:
++ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
++ sqliteStrRealloc(pzErrMsg);
++ return 0;
++}
++
++/*
++** Return the ROWID of the most recent insert
++*/
++int sqlite_last_insert_rowid(sqlite *db){
++ return db->lastRowid;
++}
++
++/*
++** Return the number of changes in the most recent call to sqlite_exec().
++*/
++int sqlite_changes(sqlite *db){
++ return db->nChange;
++}
++
++/*
++** Return the number of changes produced by the last INSERT, UPDATE, or
++** DELETE statement to complete execution. The count does not include
++** changes due to SQL statements executed in trigger programs that were
++** triggered by that statement
++*/
++int sqlite_last_statement_changes(sqlite *db){
++ return db->lsChange;
++}
++
++/*
++** Close an existing SQLite database
++*/
++void sqlite_close(sqlite *db){
++ HashElem *i;
++ int j;
++ db->want_to_close = 1;
++ if( sqliteSafetyCheck(db) || sqliteSafetyOn(db) ){
++ /* printf("DID NOT CLOSE\n"); fflush(stdout); */
++ return;
++ }
++ db->magic = SQLITE_MAGIC_CLOSED;
++ for(j=0; j<db->nDb; j++){
++ struct Db *pDb = &db->aDb[j];
++ if( pDb->pBt ){
++ sqliteBtreeClose(pDb->pBt);
++ pDb->pBt = 0;
++ }
++ }
++ sqliteResetInternalSchema(db, 0);
++ assert( db->nDb<=2 );
++ assert( db->aDb==db->aDbStatic );
++ for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){
++ FuncDef *pFunc, *pNext;
++ for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){
++ pNext = pFunc->pNext;
++ sqliteFree(pFunc);
++ }
++ }
++ sqliteHashClear(&db->aFunc);
++ sqliteFree(db);
++}
++
++/*
++** Rollback all database files.
++*/
++void sqliteRollbackAll(sqlite *db){
++ int i;
++ for(i=0; i<db->nDb; i++){
++ if( db->aDb[i].pBt ){
++ sqliteBtreeRollback(db->aDb[i].pBt);
++ db->aDb[i].inTrans = 0;
++ }
++ }
++ sqliteResetInternalSchema(db, 0);
++ /* sqliteRollbackInternalChanges(db); */
++}
++
++/*
++** Execute SQL code. Return one of the SQLITE_ success/failure
++** codes. Also write an error message into memory obtained from
++** malloc() and make *pzErrMsg point to that message.
++**
++** If the SQL is a query, then for each row in the query result
++** the xCallback() function is called. pArg becomes the first
++** argument to xCallback(). If xCallback=NULL then no callback
++** is invoked, even for queries.
++*/
++int sqlite_exec(
++ sqlite *db, /* The database on which the SQL executes */
++ const char *zSql, /* The SQL to be executed */
++ sqlite_callback xCallback, /* Invoke this callback routine */
++ void *pArg, /* First argument to xCallback() */
++ char **pzErrMsg /* Write error messages here */
++){
++ int rc = SQLITE_OK;
++ const char *zLeftover;
++ sqlite_vm *pVm;
++ int nRetry = 0;
++ int nChange = 0;
++ int nCallback;
++
++ if( zSql==0 ) return SQLITE_OK;
++ while( rc==SQLITE_OK && zSql[0] ){
++ pVm = 0;
++ rc = sqlite_compile(db, zSql, &zLeftover, &pVm, pzErrMsg);
++ if( rc!=SQLITE_OK ){
++ assert( pVm==0 || sqlite_malloc_failed );
++ return rc;
++ }
++ if( pVm==0 ){
++ /* This happens if the zSql input contained only whitespace */
++ break;
++ }
++ db->nChange += nChange;
++ nCallback = 0;
++ while(1){
++ int nArg;
++ char **azArg, **azCol;
++ rc = sqlite_step(pVm, &nArg, (const char***)&azArg,(const char***)&azCol);
++ if( rc==SQLITE_ROW ){
++ if( xCallback!=0 && xCallback(pArg, nArg, azArg, azCol) ){
++ sqlite_finalize(pVm, 0);
++ return SQLITE_ABORT;
++ }
++ nCallback++;
++ }else{
++ if( rc==SQLITE_DONE && nCallback==0
++ && (db->flags & SQLITE_NullCallback)!=0 && xCallback!=0 ){
++ xCallback(pArg, nArg, azArg, azCol);
++ }
++ rc = sqlite_finalize(pVm, pzErrMsg);
++ if( rc==SQLITE_SCHEMA && nRetry<2 ){
++ nRetry++;
++ rc = SQLITE_OK;
++ break;
++ }
++ if( db->pVdbe==0 ){
++ nChange = db->nChange;
++ }
++ nRetry = 0;
++ zSql = zLeftover;
++ while( isspace(zSql[0]) ) zSql++;
++ break;
++ }
++ }
++ }
++ return rc;
++}
++
++
++/*
++** Compile a single statement of SQL into a virtual machine. Return one
++** of the SQLITE_ success/failure codes. Also write an error message into
++** memory obtained from malloc() and make *pzErrMsg point to that message.
++*/
++int sqlite_compile(
++ sqlite *db, /* The database on which the SQL executes */
++ const char *zSql, /* The SQL to be executed */
++ const char **pzTail, /* OUT: Next statement after the first */
++ sqlite_vm **ppVm, /* OUT: The virtual machine */
++ char **pzErrMsg /* OUT: Write error messages here */
++){
++ Parse sParse;
++
++ if( pzErrMsg ) *pzErrMsg = 0;
++ if( sqliteSafetyOn(db) ) goto exec_misuse;
++ if( !db->init.busy ){
++ if( (db->flags & SQLITE_Initialized)==0 ){
++ int rc, cnt = 1;
++ while( (rc = sqliteInit(db, pzErrMsg))==SQLITE_BUSY
++ && db->xBusyCallback
++ && db->xBusyCallback(db->pBusyArg, "", cnt++)!=0 ){}
++ if( rc!=SQLITE_OK ){
++ sqliteStrRealloc(pzErrMsg);
++ sqliteSafetyOff(db);
++ return rc;
++ }
++ if( pzErrMsg ){
++ sqliteFree(*pzErrMsg);
++ *pzErrMsg = 0;
++ }
++ }
++ if( db->file_format<3 ){
++ sqliteSafetyOff(db);
++ sqliteSetString(pzErrMsg, "obsolete database file format", (char*)0);
++ return SQLITE_ERROR;
++ }
++ }
++ assert( (db->flags & SQLITE_Initialized)!=0 || db->init.busy );
++ if( db->pVdbe==0 ){ db->nChange = 0; }
++ memset(&sParse, 0, sizeof(sParse));
++ sParse.db = db;
++ sqliteRunParser(&sParse, zSql, pzErrMsg);
++ if( db->xTrace && !db->init.busy ){
++ /* Trace only the statment that was compiled.
++ ** Make a copy of that part of the SQL string since zSQL is const
++ ** and we must pass a zero terminated string to the trace function
++ ** The copy is unnecessary if the tail pointer is pointing at the
++ ** beginnig or end of the SQL string.
++ */
++ if( sParse.zTail && sParse.zTail!=zSql && *sParse.zTail ){
++ char *tmpSql = sqliteStrNDup(zSql, sParse.zTail - zSql);
++ if( tmpSql ){
++ db->xTrace(db->pTraceArg, tmpSql);
++ free(tmpSql);
++ }else{
++ /* If a memory error occurred during the copy,
++ ** trace entire SQL string and fall through to the
++ ** sqlite_malloc_failed test to report the error.
++ */
++ db->xTrace(db->pTraceArg, zSql);
++ }
++ }else{
++ db->xTrace(db->pTraceArg, zSql);
++ }
++ }
++ if( sqlite_malloc_failed ){
++ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
++ sParse.rc = SQLITE_NOMEM;
++ sqliteRollbackAll(db);
++ sqliteResetInternalSchema(db, 0);
++ db->flags &= ~SQLITE_InTrans;
++ }
++ if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK;
++ if( sParse.rc!=SQLITE_OK && pzErrMsg && *pzErrMsg==0 ){
++ sqliteSetString(pzErrMsg, sqlite_error_string(sParse.rc), (char*)0);
++ }
++ sqliteStrRealloc(pzErrMsg);
++ if( sParse.rc==SQLITE_SCHEMA ){
++ sqliteResetInternalSchema(db, 0);
++ }
++ assert( ppVm );
++ *ppVm = (sqlite_vm*)sParse.pVdbe;
++ if( pzTail ) *pzTail = sParse.zTail;
++ if( sqliteSafetyOff(db) ) goto exec_misuse;
++ return sParse.rc;
++
++exec_misuse:
++ if( pzErrMsg ){
++ *pzErrMsg = 0;
++ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
++ sqliteStrRealloc(pzErrMsg);
++ }
++ return SQLITE_MISUSE;
++}
++
++
++/*
++** The following routine destroys a virtual machine that is created by
++** the sqlite_compile() routine.
++**
++** The integer returned is an SQLITE_ success/failure code that describes
++** the result of executing the virtual machine. An error message is
++** written into memory obtained from malloc and *pzErrMsg is made to
++** point to that error if pzErrMsg is not NULL. The calling routine
++** should use sqlite_freemem() to delete the message when it has finished
++** with it.
++*/
++int sqlite_finalize(
++ sqlite_vm *pVm, /* The virtual machine to be destroyed */
++ char **pzErrMsg /* OUT: Write error messages here */
++){
++ int rc = sqliteVdbeFinalize((Vdbe*)pVm, pzErrMsg);
++ sqliteStrRealloc(pzErrMsg);
++ return rc;
++}
++
++/*
++** Terminate the current execution of a virtual machine then
++** reset the virtual machine back to its starting state so that it
++** can be reused. Any error message resulting from the prior execution
++** is written into *pzErrMsg. A success code from the prior execution
++** is returned.
++*/
++int sqlite_reset(
++ sqlite_vm *pVm, /* The virtual machine to be destroyed */
++ char **pzErrMsg /* OUT: Write error messages here */
++){
++ int rc = sqliteVdbeReset((Vdbe*)pVm, pzErrMsg);
++ sqliteVdbeMakeReady((Vdbe*)pVm, -1, 0);
++ sqliteStrRealloc(pzErrMsg);
++ return rc;
++}
++
++/*
++** Return a static string that describes the kind of error specified in the
++** argument.
++*/
++const char *sqlite_error_string(int rc){
++ const char *z;
++ switch( rc ){
++ case SQLITE_OK: z = "not an error"; break;
++ case SQLITE_ERROR: z = "SQL logic error or missing database"; break;
++ case SQLITE_INTERNAL: z = "internal SQLite implementation flaw"; break;
++ case SQLITE_PERM: z = "access permission denied"; break;
++ case SQLITE_ABORT: z = "callback requested query abort"; break;
++ case SQLITE_BUSY: z = "database is locked"; break;
++ case SQLITE_LOCKED: z = "database table is locked"; break;
++ case SQLITE_NOMEM: z = "out of memory"; break;
++ case SQLITE_READONLY: z = "attempt to write a readonly database"; break;
++ case SQLITE_INTERRUPT: z = "interrupted"; break;
++ case SQLITE_IOERR: z = "disk I/O error"; break;
++ case SQLITE_CORRUPT: z = "database disk image is malformed"; break;
++ case SQLITE_NOTFOUND: z = "table or record not found"; break;
++ case SQLITE_FULL: z = "database is full"; break;
++ case SQLITE_CANTOPEN: z = "unable to open database file"; break;
++ case SQLITE_PROTOCOL: z = "database locking protocol failure"; break;
++ case SQLITE_EMPTY: z = "table contains no data"; break;
++ case SQLITE_SCHEMA: z = "database schema has changed"; break;
++ case SQLITE_TOOBIG: z = "too much data for one table row"; break;
++ case SQLITE_CONSTRAINT: z = "constraint failed"; break;
++ case SQLITE_MISMATCH: z = "datatype mismatch"; break;
++ case SQLITE_MISUSE: z = "library routine called out of sequence";break;
++ case SQLITE_NOLFS: z = "kernel lacks large file support"; break;
++ case SQLITE_AUTH: z = "authorization denied"; break;
++ case SQLITE_FORMAT: z = "auxiliary database format error"; break;
++ case SQLITE_RANGE: z = "bind index out of range"; break;
++ case SQLITE_NOTADB: z = "file is encrypted or is not a database";break;
++ default: z = "unknown error"; break;
++ }
++ return z;
++}
++
++/*
++** This routine implements a busy callback that sleeps and tries
++** again until a timeout value is reached. The timeout value is
++** an integer number of milliseconds passed in as the first
++** argument.
++*/
++static int sqliteDefaultBusyCallback(
++ void *Timeout, /* Maximum amount of time to wait */
++ const char *NotUsed, /* The name of the table that is busy */
++ int count /* Number of times table has been busy */
++){
++#if SQLITE_MIN_SLEEP_MS==1
++ static const char delays[] =
++ { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 50, 100};
++ static const short int totals[] =
++ { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228, 287};
++# define NDELAY (sizeof(delays)/sizeof(delays[0]))
++ int timeout = (int)(long)Timeout;
++ int delay, prior;
++
++ if( count <= NDELAY ){
++ delay = delays[count-1];
++ prior = totals[count-1];
++ }else{
++ delay = delays[NDELAY-1];
++ prior = totals[NDELAY-1] + delay*(count-NDELAY-1);
++ }
++ if( prior + delay > timeout ){
++ delay = timeout - prior;
++ if( delay<=0 ) return 0;
++ }
++ sqliteOsSleep(delay);
++ return 1;
++#else
++ int timeout = (int)(long)Timeout;
++ if( (count+1)*1000 > timeout ){
++ return 0;
++ }
++ sqliteOsSleep(1000);
++ return 1;
++#endif
++}
++
++/*
++** This routine sets the busy callback for an Sqlite database to the
++** given callback function with the given argument.
++*/
++void sqlite_busy_handler(
++ sqlite *db,
++ int (*xBusy)(void*,const char*,int),
++ void *pArg
++){
++ db->xBusyCallback = xBusy;
++ db->pBusyArg = pArg;
++}
++
++#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
++/*
++** This routine sets the progress callback for an Sqlite database to the
++** given callback function with the given argument. The progress callback will
++** be invoked every nOps opcodes.
++*/
++void sqlite_progress_handler(
++ sqlite *db,
++ int nOps,
++ int (*xProgress)(void*),
++ void *pArg
++){
++ if( nOps>0 ){
++ db->xProgress = xProgress;
++ db->nProgressOps = nOps;
++ db->pProgressArg = pArg;
++ }else{
++ db->xProgress = 0;
++ db->nProgressOps = 0;
++ db->pProgressArg = 0;
++ }
++}
++#endif
++
++
++/*
++** This routine installs a default busy handler that waits for the
++** specified number of milliseconds before returning 0.
++*/
++void sqlite_busy_timeout(sqlite *db, int ms){
++ if( ms>0 ){
++ sqlite_busy_handler(db, sqliteDefaultBusyCallback, (void*)(long)ms);
++ }else{
++ sqlite_busy_handler(db, 0, 0);
++ }
++}
++
++/*
++** Cause any pending operation to stop at its earliest opportunity.
++*/
++void sqlite_interrupt(sqlite *db){
++ db->flags |= SQLITE_Interrupt;
++}
++
++/*
++** Windows systems should call this routine to free memory that
++** is returned in the in the errmsg parameter of sqlite_open() when
++** SQLite is a DLL. For some reason, it does not work to call free()
++** directly.
++**
++** Note that we need to call free() not sqliteFree() here, since every
++** string that is exported from SQLite should have already passed through
++** sqliteStrRealloc().
++*/
++void sqlite_freemem(void *p){ free(p); }
++
++/*
++** Windows systems need functions to call to return the sqlite_version
++** and sqlite_encoding strings since they are unable to access constants
++** within DLLs.
++*/
++const char *sqlite_libversion(void){ return sqlite_version; }
++const char *sqlite_libencoding(void){ return sqlite_encoding; }
++
++/*
++** Create new user-defined functions. The sqlite_create_function()
++** routine creates a regular function and sqlite_create_aggregate()
++** creates an aggregate function.
++**
++** Passing a NULL xFunc argument or NULL xStep and xFinalize arguments
++** disables the function. Calling sqlite_create_function() with the
++** same name and number of arguments as a prior call to
++** sqlite_create_aggregate() disables the prior call to
++** sqlite_create_aggregate(), and vice versa.
++**
++** If nArg is -1 it means that this function will accept any number
++** of arguments, including 0. The maximum allowed value of nArg is 127.
++*/
++int sqlite_create_function(
++ sqlite *db, /* Add the function to this database connection */
++ const char *zName, /* Name of the function to add */
++ int nArg, /* Number of arguments */
++ void (*xFunc)(sqlite_func*,int,const char**), /* The implementation */
++ void *pUserData /* User data */
++){
++ FuncDef *p;
++ int nName;
++ if( db==0 || zName==0 || sqliteSafetyCheck(db) ) return 1;
++ if( nArg<-1 || nArg>127 ) return 1;
++ nName = strlen(zName);
++ if( nName>255 ) return 1;
++ p = sqliteFindFunction(db, zName, nName, nArg, 1);
++ if( p==0 ) return 1;
++ p->xFunc = xFunc;
++ p->xStep = 0;
++ p->xFinalize = 0;
++ p->pUserData = pUserData;
++ return 0;
++}
++int sqlite_create_aggregate(
++ sqlite *db, /* Add the function to this database connection */
++ const char *zName, /* Name of the function to add */
++ int nArg, /* Number of arguments */
++ void (*xStep)(sqlite_func*,int,const char**), /* The step function */
++ void (*xFinalize)(sqlite_func*), /* The finalizer */
++ void *pUserData /* User data */
++){
++ FuncDef *p;
++ int nName;
++ if( db==0 || zName==0 || sqliteSafetyCheck(db) ) return 1;
++ if( nArg<-1 || nArg>127 ) return 1;
++ nName = strlen(zName);
++ if( nName>255 ) return 1;
++ p = sqliteFindFunction(db, zName, nName, nArg, 1);
++ if( p==0 ) return 1;
++ p->xFunc = 0;
++ p->xStep = xStep;
++ p->xFinalize = xFinalize;
++ p->pUserData = pUserData;
++ return 0;
++}
++
++/*
++** Change the datatype for all functions with a given name. See the
++** header comment for the prototype of this function in sqlite.h for
++** additional information.
++*/
++int sqlite_function_type(sqlite *db, const char *zName, int dataType){
++ FuncDef *p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, strlen(zName));
++ while( p ){
++ p->dataType = dataType;
++ p = p->pNext;
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Register a trace function. The pArg from the previously registered trace
++** is returned.
++**
++** A NULL trace function means that no tracing is executes. A non-NULL
++** trace is a pointer to a function that is invoked at the start of each
++** sqlite_exec().
++*/
++void *sqlite_trace(sqlite *db, void (*xTrace)(void*,const char*), void *pArg){
++ void *pOld = db->pTraceArg;
++ db->xTrace = xTrace;
++ db->pTraceArg = pArg;
++ return pOld;
++}
++
++/*** EXPERIMENTAL ***
++**
++** Register a function to be invoked when a transaction comments.
++** If either function returns non-zero, then the commit becomes a
++** rollback.
++*/
++void *sqlite_commit_hook(
++ sqlite *db, /* Attach the hook to this database */
++ int (*xCallback)(void*), /* Function to invoke on each commit */
++ void *pArg /* Argument to the function */
++){
++ void *pOld = db->pCommitArg;
++ db->xCommitCallback = xCallback;
++ db->pCommitArg = pArg;
++ return pOld;
++}
++
++
++/*
++** This routine is called to create a connection to a database BTree
++** driver. If zFilename is the name of a file, then that file is
++** opened and used. If zFilename is the magic name ":memory:" then
++** the database is stored in memory (and is thus forgotten as soon as
++** the connection is closed.) If zFilename is NULL then the database
++** is for temporary use only and is deleted as soon as the connection
++** is closed.
++**
++** A temporary database can be either a disk file (that is automatically
++** deleted when the file is closed) or a set of red-black trees held in memory,
++** depending on the values of the TEMP_STORE compile-time macro and the
++** db->temp_store variable, according to the following chart:
++**
++** TEMP_STORE db->temp_store Location of temporary database
++** ---------- -------------- ------------------------------
++** 0 any file
++** 1 1 file
++** 1 2 memory
++** 1 0 file
++** 2 1 file
++** 2 2 memory
++** 2 0 memory
++** 3 any memory
++*/
++int sqliteBtreeFactory(
++ const sqlite *db, /* Main database when opening aux otherwise 0 */
++ const char *zFilename, /* Name of the file containing the BTree database */
++ int omitJournal, /* if TRUE then do not journal this file */
++ int nCache, /* How many pages in the page cache */
++ Btree **ppBtree){ /* Pointer to new Btree object written here */
++
++ assert( ppBtree != 0);
++
++#ifndef SQLITE_OMIT_INMEMORYDB
++ if( zFilename==0 ){
++ if (TEMP_STORE == 0) {
++ /* Always use file based temporary DB */
++ return sqliteBtreeOpen(0, omitJournal, nCache, ppBtree);
++ } else if (TEMP_STORE == 1 || TEMP_STORE == 2) {
++ /* Switch depending on compile-time and/or runtime settings. */
++ int location = db->temp_store==0 ? TEMP_STORE : db->temp_store;
++
++ if (location == 1) {
++ return sqliteBtreeOpen(zFilename, omitJournal, nCache, ppBtree);
++ } else {
++ return sqliteRbtreeOpen(0, 0, 0, ppBtree);
++ }
++ } else {
++ /* Always use in-core DB */
++ return sqliteRbtreeOpen(0, 0, 0, ppBtree);
++ }
++ }else if( zFilename[0]==':' && strcmp(zFilename,":memory:")==0 ){
++ return sqliteRbtreeOpen(0, 0, 0, ppBtree);
++ }else
++#endif
++ {
++ return sqliteBtreeOpen(zFilename, omitJournal, nCache, ppBtree);
++ }
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/opcodes.c
+@@ -0,0 +1,140 @@
++/* Automatically generated file. Do not edit */
++char *sqliteOpcodeNames[] = { "???",
++ "Goto",
++ "Gosub",
++ "Return",
++ "Halt",
++ "Integer",
++ "String",
++ "Variable",
++ "Pop",
++ "Dup",
++ "Pull",
++ "Push",
++ "ColumnName",
++ "Callback",
++ "Concat",
++ "Add",
++ "Subtract",
++ "Multiply",
++ "Divide",
++ "Remainder",
++ "Function",
++ "BitAnd",
++ "BitOr",
++ "ShiftLeft",
++ "ShiftRight",
++ "AddImm",
++ "ForceInt",
++ "MustBeInt",
++ "Eq",
++ "Ne",
++ "Lt",
++ "Le",
++ "Gt",
++ "Ge",
++ "StrEq",
++ "StrNe",
++ "StrLt",
++ "StrLe",
++ "StrGt",
++ "StrGe",
++ "And",
++ "Or",
++ "Negative",
++ "AbsValue",
++ "Not",
++ "BitNot",
++ "Noop",
++ "If",
++ "IfNot",
++ "IsNull",
++ "NotNull",
++ "MakeRecord",
++ "MakeIdxKey",
++ "MakeKey",
++ "IncrKey",
++ "Checkpoint",
++ "Transaction",
++ "Commit",
++ "Rollback",
++ "ReadCookie",
++ "SetCookie",
++ "VerifyCookie",
++ "OpenRead",
++ "OpenWrite",
++ "OpenTemp",
++ "OpenPseudo",
++ "Close",
++ "MoveLt",
++ "MoveTo",
++ "Distinct",
++ "NotFound",
++ "Found",
++ "IsUnique",
++ "NotExists",
++ "NewRecno",
++ "PutIntKey",
++ "PutStrKey",
++ "Delete",
++ "SetCounts",
++ "KeyAsData",
++ "RowKey",
++ "RowData",
++ "Column",
++ "Recno",
++ "FullKey",
++ "NullRow",
++ "Last",
++ "Rewind",
++ "Prev",
++ "Next",
++ "IdxPut",
++ "IdxDelete",
++ "IdxRecno",
++ "IdxLT",
++ "IdxGT",
++ "IdxGE",
++ "IdxIsNull",
++ "Destroy",
++ "Clear",
++ "CreateIndex",
++ "CreateTable",
++ "IntegrityCk",
++ "ListWrite",
++ "ListRewind",
++ "ListRead",
++ "ListReset",
++ "ListPush",
++ "ListPop",
++ "ContextPush",
++ "ContextPop",
++ "SortPut",
++ "SortMakeRec",
++ "SortMakeKey",
++ "Sort",
++ "SortNext",
++ "SortCallback",
++ "SortReset",
++ "FileOpen",
++ "FileRead",
++ "FileColumn",
++ "MemStore",
++ "MemLoad",
++ "MemIncr",
++ "AggReset",
++ "AggInit",
++ "AggFunc",
++ "AggFocus",
++ "AggSet",
++ "AggGet",
++ "AggNext",
++ "SetInsert",
++ "SetFound",
++ "SetNotFound",
++ "SetFirst",
++ "SetNext",
++ "Vacuum",
++ "StackDepth",
++ "StackReset",
++};
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/opcodes.h
+@@ -0,0 +1,138 @@
++/* Automatically generated file. Do not edit */
++#define OP_Goto 1
++#define OP_Gosub 2
++#define OP_Return 3
++#define OP_Halt 4
++#define OP_Integer 5
++#define OP_String 6
++#define OP_Variable 7
++#define OP_Pop 8
++#define OP_Dup 9
++#define OP_Pull 10
++#define OP_Push 11
++#define OP_ColumnName 12
++#define OP_Callback 13
++#define OP_Concat 14
++#define OP_Add 15
++#define OP_Subtract 16
++#define OP_Multiply 17
++#define OP_Divide 18
++#define OP_Remainder 19
++#define OP_Function 20
++#define OP_BitAnd 21
++#define OP_BitOr 22
++#define OP_ShiftLeft 23
++#define OP_ShiftRight 24
++#define OP_AddImm 25
++#define OP_ForceInt 26
++#define OP_MustBeInt 27
++#define OP_Eq 28
++#define OP_Ne 29
++#define OP_Lt 30
++#define OP_Le 31
++#define OP_Gt 32
++#define OP_Ge 33
++#define OP_StrEq 34
++#define OP_StrNe 35
++#define OP_StrLt 36
++#define OP_StrLe 37
++#define OP_StrGt 38
++#define OP_StrGe 39
++#define OP_And 40
++#define OP_Or 41
++#define OP_Negative 42
++#define OP_AbsValue 43
++#define OP_Not 44
++#define OP_BitNot 45
++#define OP_Noop 46
++#define OP_If 47
++#define OP_IfNot 48
++#define OP_IsNull 49
++#define OP_NotNull 50
++#define OP_MakeRecord 51
++#define OP_MakeIdxKey 52
++#define OP_MakeKey 53
++#define OP_IncrKey 54
++#define OP_Checkpoint 55
++#define OP_Transaction 56
++#define OP_Commit 57
++#define OP_Rollback 58
++#define OP_ReadCookie 59
++#define OP_SetCookie 60
++#define OP_VerifyCookie 61
++#define OP_OpenRead 62
++#define OP_OpenWrite 63
++#define OP_OpenTemp 64
++#define OP_OpenPseudo 65
++#define OP_Close 66
++#define OP_MoveLt 67
++#define OP_MoveTo 68
++#define OP_Distinct 69
++#define OP_NotFound 70
++#define OP_Found 71
++#define OP_IsUnique 72
++#define OP_NotExists 73
++#define OP_NewRecno 74
++#define OP_PutIntKey 75
++#define OP_PutStrKey 76
++#define OP_Delete 77
++#define OP_SetCounts 78
++#define OP_KeyAsData 79
++#define OP_RowKey 80
++#define OP_RowData 81
++#define OP_Column 82
++#define OP_Recno 83
++#define OP_FullKey 84
++#define OP_NullRow 85
++#define OP_Last 86
++#define OP_Rewind 87
++#define OP_Prev 88
++#define OP_Next 89
++#define OP_IdxPut 90
++#define OP_IdxDelete 91
++#define OP_IdxRecno 92
++#define OP_IdxLT 93
++#define OP_IdxGT 94
++#define OP_IdxGE 95
++#define OP_IdxIsNull 96
++#define OP_Destroy 97
++#define OP_Clear 98
++#define OP_CreateIndex 99
++#define OP_CreateTable 100
++#define OP_IntegrityCk 101
++#define OP_ListWrite 102
++#define OP_ListRewind 103
++#define OP_ListRead 104
++#define OP_ListReset 105
++#define OP_ListPush 106
++#define OP_ListPop 107
++#define OP_ContextPush 108
++#define OP_ContextPop 109
++#define OP_SortPut 110
++#define OP_SortMakeRec 111
++#define OP_SortMakeKey 112
++#define OP_Sort 113
++#define OP_SortNext 114
++#define OP_SortCallback 115
++#define OP_SortReset 116
++#define OP_FileOpen 117
++#define OP_FileRead 118
++#define OP_FileColumn 119
++#define OP_MemStore 120
++#define OP_MemLoad 121
++#define OP_MemIncr 122
++#define OP_AggReset 123
++#define OP_AggInit 124
++#define OP_AggFunc 125
++#define OP_AggFocus 126
++#define OP_AggSet 127
++#define OP_AggGet 128
++#define OP_AggNext 129
++#define OP_SetInsert 130
++#define OP_SetFound 131
++#define OP_SetNotFound 132
++#define OP_SetFirst 133
++#define OP_SetNext 134
++#define OP_Vacuum 135
++#define OP_StackDepth 136
++#define OP_StackReset 137
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/os.c
+@@ -0,0 +1,1850 @@
++/*
++** 2001 September 16
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++******************************************************************************
++**
++** This file contains code that is specific to particular operating
++** systems. The purpose of this file is to provide a uniform abstraction
++** on which the rest of SQLite can operate.
++*/
++#include "os.h" /* Must be first to enable large file support */
++#include "sqliteInt.h"
++
++#if OS_UNIX
++# include <time.h>
++# include <errno.h>
++# include <unistd.h>
++# ifndef O_LARGEFILE
++# define O_LARGEFILE 0
++# endif
++# ifdef SQLITE_DISABLE_LFS
++# undef O_LARGEFILE
++# define O_LARGEFILE 0
++# endif
++# ifndef O_NOFOLLOW
++# define O_NOFOLLOW 0
++# endif
++# ifndef O_BINARY
++# define O_BINARY 0
++# endif
++#endif
++
++
++#if OS_WIN
++# include <winbase.h>
++#endif
++
++#if OS_MAC
++# include <extras.h>
++# include <path2fss.h>
++# include <TextUtils.h>
++# include <FinderRegistry.h>
++# include <Folders.h>
++# include <Timer.h>
++# include <OSUtils.h>
++#endif
++
++/*
++** The DJGPP compiler environment looks mostly like Unix, but it
++** lacks the fcntl() system call. So redefine fcntl() to be something
++** that always succeeds. This means that locking does not occur under
++** DJGPP. But its DOS - what did you expect?
++*/
++#ifdef __DJGPP__
++# define fcntl(A,B,C) 0
++#endif
++
++/*
++** Macros used to determine whether or not to use threads. The
++** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for
++** Posix threads and SQLITE_W32_THREADS is defined if we are
++** synchronizing using Win32 threads.
++*/
++#if OS_UNIX && defined(THREADSAFE) && THREADSAFE
++# include <pthread.h>
++# define SQLITE_UNIX_THREADS 1
++#endif
++#if OS_WIN && defined(THREADSAFE) && THREADSAFE
++# define SQLITE_W32_THREADS 1
++#endif
++#if OS_MAC && defined(THREADSAFE) && THREADSAFE
++# include <Multiprocessing.h>
++# define SQLITE_MACOS_MULTITASKING 1
++#endif
++
++/*
++** Macros for performance tracing. Normally turned off
++*/
++#if 0
++static int last_page = 0;
++__inline__ unsigned long long int hwtime(void){
++ unsigned long long int x;
++ __asm__("rdtsc\n\t"
++ "mov %%edx, %%ecx\n\t"
++ :"=A" (x));
++ return x;
++}
++static unsigned long long int g_start;
++static unsigned int elapse;
++#define TIMER_START g_start=hwtime()
++#define TIMER_END elapse=hwtime()-g_start
++#define SEEK(X) last_page=(X)
++#define TRACE1(X) fprintf(stderr,X)
++#define TRACE2(X,Y) fprintf(stderr,X,Y)
++#define TRACE3(X,Y,Z) fprintf(stderr,X,Y,Z)
++#define TRACE4(X,Y,Z,A) fprintf(stderr,X,Y,Z,A)
++#define TRACE5(X,Y,Z,A,B) fprintf(stderr,X,Y,Z,A,B)
++#else
++#define TIMER_START
++#define TIMER_END
++#define SEEK(X)
++#define TRACE1(X)
++#define TRACE2(X,Y)
++#define TRACE3(X,Y,Z)
++#define TRACE4(X,Y,Z,A)
++#define TRACE5(X,Y,Z,A,B)
++#endif
++
++
++#if OS_UNIX
++/*
++** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
++** section 6.5.2.2 lines 483 through 490 specify that when a process
++** sets or clears a lock, that operation overrides any prior locks set
++** by the same process. It does not explicitly say so, but this implies
++** that it overrides locks set by the same process using a different
++** file descriptor. Consider this test case:
++**
++** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
++** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
++**
++** Suppose ./file1 and ./file2 are really the same file (because
++** one is a hard or symbolic link to the other) then if you set
++** an exclusive lock on fd1, then try to get an exclusive lock
++** on fd2, it works. I would have expected the second lock to
++** fail since there was already a lock on the file due to fd1.
++** But not so. Since both locks came from the same process, the
++** second overrides the first, even though they were on different
++** file descriptors opened on different file names.
++**
++** Bummer. If you ask me, this is broken. Badly broken. It means
++** that we cannot use POSIX locks to synchronize file access among
++** competing threads of the same process. POSIX locks will work fine
++** to synchronize access for threads in separate processes, but not
++** threads within the same process.
++**
++** To work around the problem, SQLite has to manage file locks internally
++** on its own. Whenever a new database is opened, we have to find the
++** specific inode of the database file (the inode is determined by the
++** st_dev and st_ino fields of the stat structure that fstat() fills in)
++** and check for locks already existing on that inode. When locks are
++** created or removed, we have to look at our own internal record of the
++** locks to see if another thread has previously set a lock on that same
++** inode.
++**
++** The OsFile structure for POSIX is no longer just an integer file
++** descriptor. It is now a structure that holds the integer file
++** descriptor and a pointer to a structure that describes the internal
++** locks on the corresponding inode. There is one locking structure
++** per inode, so if the same inode is opened twice, both OsFile structures
++** point to the same locking structure. The locking structure keeps
++** a reference count (so we will know when to delete it) and a "cnt"
++** field that tells us its internal lock status. cnt==0 means the
++** file is unlocked. cnt==-1 means the file has an exclusive lock.
++** cnt>0 means there are cnt shared locks on the file.
++**
++** Any attempt to lock or unlock a file first checks the locking
++** structure. The fcntl() system call is only invoked to set a
++** POSIX lock if the internal lock structure transitions between
++** a locked and an unlocked state.
++**
++** 2004-Jan-11:
++** More recent discoveries about POSIX advisory locks. (The more
++** I discover, the more I realize the a POSIX advisory locks are
++** an abomination.)
++**
++** If you close a file descriptor that points to a file that has locks,
++** all locks on that file that are owned by the current process are
++** released. To work around this problem, each OsFile structure contains
++** a pointer to an openCnt structure. There is one openCnt structure
++** per open inode, which means that multiple OsFiles can point to a single
++** openCnt. When an attempt is made to close an OsFile, if there are
++** other OsFiles open on the same inode that are holding locks, the call
++** to close() the file descriptor is deferred until all of the locks clear.
++** The openCnt structure keeps a list of file descriptors that need to
++** be closed and that list is walked (and cleared) when the last lock
++** clears.
++**
++** First, under Linux threads, because each thread has a separate
++** process ID, lock operations in one thread do not override locks
++** to the same file in other threads. Linux threads behave like
++** separate processes in this respect. But, if you close a file
++** descriptor in linux threads, all locks are cleared, even locks
++** on other threads and even though the other threads have different
++** process IDs. Linux threads is inconsistent in this respect.
++** (I'm beginning to think that linux threads is an abomination too.)
++** The consequence of this all is that the hash table for the lockInfo
++** structure has to include the process id as part of its key because
++** locks in different threads are treated as distinct. But the
++** openCnt structure should not include the process id in its
++** key because close() clears lock on all threads, not just the current
++** thread. Were it not for this goofiness in linux threads, we could
++** combine the lockInfo and openCnt structures into a single structure.
++*/
++
++/*
++** An instance of the following structure serves as the key used
++** to locate a particular lockInfo structure given its inode. Note
++** that we have to include the process ID as part of the key. On some
++** threading implementations (ex: linux), each thread has a separate
++** process ID.
++*/
++struct lockKey {
++ dev_t dev; /* Device number */
++ ino_t ino; /* Inode number */
++ pid_t pid; /* Process ID */
++};
++
++/*
++** An instance of the following structure is allocated for each open
++** inode on each thread with a different process ID. (Threads have
++** different process IDs on linux, but not on most other unixes.)
++**
++** A single inode can have multiple file descriptors, so each OsFile
++** structure contains a pointer to an instance of this object and this
++** object keeps a count of the number of OsFiles pointing to it.
++*/
++struct lockInfo {
++ struct lockKey key; /* The lookup key */
++ int cnt; /* 0: unlocked. -1: write lock. 1...: read lock. */
++ int nRef; /* Number of pointers to this structure */
++};
++
++/*
++** An instance of the following structure serves as the key used
++** to locate a particular openCnt structure given its inode. This
++** is the same as the lockKey except that the process ID is omitted.
++*/
++struct openKey {
++ dev_t dev; /* Device number */
++ ino_t ino; /* Inode number */
++};
++
++/*
++** An instance of the following structure is allocated for each open
++** inode. This structure keeps track of the number of locks on that
++** inode. If a close is attempted against an inode that is holding
++** locks, the close is deferred until all locks clear by adding the
++** file descriptor to be closed to the pending list.
++*/
++struct openCnt {
++ struct openKey key; /* The lookup key */
++ int nRef; /* Number of pointers to this structure */
++ int nLock; /* Number of outstanding locks */
++ int nPending; /* Number of pending close() operations */
++ int *aPending; /* Malloced space holding fd's awaiting a close() */
++};
++
++/*
++** These hash table maps inodes and process IDs into lockInfo and openCnt
++** structures. Access to these hash tables must be protected by a mutex.
++*/
++static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
++static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
++
++/*
++** Release a lockInfo structure previously allocated by findLockInfo().
++*/
++static void releaseLockInfo(struct lockInfo *pLock){
++ pLock->nRef--;
++ if( pLock->nRef==0 ){
++ sqliteHashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
++ sqliteFree(pLock);
++ }
++}
++
++/*
++** Release a openCnt structure previously allocated by findLockInfo().
++*/
++static void releaseOpenCnt(struct openCnt *pOpen){
++ pOpen->nRef--;
++ if( pOpen->nRef==0 ){
++ sqliteHashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
++ sqliteFree(pOpen->aPending);
++ sqliteFree(pOpen);
++ }
++}
++
++/*
++** Given a file descriptor, locate lockInfo and openCnt structures that
++** describes that file descriptor. Create a new ones if necessary. The
++** return values might be unset if an error occurs.
++**
++** Return the number of errors.
++*/
++int findLockInfo(
++ int fd, /* The file descriptor used in the key */
++ struct lockInfo **ppLock, /* Return the lockInfo structure here */
++ struct openCnt **ppOpen /* Return the openCnt structure here */
++){
++ int rc;
++ struct lockKey key1;
++ struct openKey key2;
++ struct stat statbuf;
++ struct lockInfo *pLock;
++ struct openCnt *pOpen;
++ rc = fstat(fd, &statbuf);
++ if( rc!=0 ) return 1;
++ memset(&key1, 0, sizeof(key1));
++ key1.dev = statbuf.st_dev;
++ key1.ino = statbuf.st_ino;
++ key1.pid = getpid();
++ memset(&key2, 0, sizeof(key2));
++ key2.dev = statbuf.st_dev;
++ key2.ino = statbuf.st_ino;
++ pLock = (struct lockInfo*)sqliteHashFind(&lockHash, &key1, sizeof(key1));
++ if( pLock==0 ){
++ struct lockInfo *pOld;
++ pLock = sqliteMallocRaw( sizeof(*pLock) );
++ if( pLock==0 ) return 1;
++ pLock->key = key1;
++ pLock->nRef = 1;
++ pLock->cnt = 0;
++ pOld = sqliteHashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
++ if( pOld!=0 ){
++ assert( pOld==pLock );
++ sqliteFree(pLock);
++ return 1;
++ }
++ }else{
++ pLock->nRef++;
++ }
++ *ppLock = pLock;
++ pOpen = (struct openCnt*)sqliteHashFind(&openHash, &key2, sizeof(key2));
++ if( pOpen==0 ){
++ struct openCnt *pOld;
++ pOpen = sqliteMallocRaw( sizeof(*pOpen) );
++ if( pOpen==0 ){
++ releaseLockInfo(pLock);
++ return 1;
++ }
++ pOpen->key = key2;
++ pOpen->nRef = 1;
++ pOpen->nLock = 0;
++ pOpen->nPending = 0;
++ pOpen->aPending = 0;
++ pOld = sqliteHashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
++ if( pOld!=0 ){
++ assert( pOld==pOpen );
++ sqliteFree(pOpen);
++ releaseLockInfo(pLock);
++ return 1;
++ }
++ }else{
++ pOpen->nRef++;
++ }
++ *ppOpen = pOpen;
++ return 0;
++}
++
++#endif /** POSIX advisory lock work-around **/
++
++/*
++** If we compile with the SQLITE_TEST macro set, then the following block
++** of code will give us the ability to simulate a disk I/O error. This
++** is used for testing the I/O recovery logic.
++*/
++#ifdef SQLITE_TEST
++int sqlite_io_error_pending = 0;
++#define SimulateIOError(A) \
++ if( sqlite_io_error_pending ) \
++ if( sqlite_io_error_pending-- == 1 ){ local_ioerr(); return A; }
++static void local_ioerr(){
++ sqlite_io_error_pending = 0; /* Really just a place to set a breakpoint */
++}
++#else
++#define SimulateIOError(A)
++#endif
++
++/*
++** When testing, keep a count of the number of open files.
++*/
++#ifdef SQLITE_TEST
++int sqlite_open_file_count = 0;
++#define OpenCounter(X) sqlite_open_file_count+=(X)
++#else
++#define OpenCounter(X)
++#endif
++
++
++/*
++** Delete the named file
++*/
++int sqliteOsDelete(const char *zFilename){
++#if OS_UNIX
++ unlink(zFilename);
++#endif
++#if OS_WIN
++ DeleteFile(zFilename);
++#endif
++#if OS_MAC
++ unlink(zFilename);
++#endif
++ return SQLITE_OK;
++}
++
++/*
++** Return TRUE if the named file exists.
++*/
++int sqliteOsFileExists(const char *zFilename){
++#if OS_UNIX
++ return access(zFilename, 0)==0;
++#endif
++#if OS_WIN
++ return GetFileAttributes(zFilename) != 0xffffffff;
++#endif
++#if OS_MAC
++ return access(zFilename, 0)==0;
++#endif
++}
++
++
++#if 0 /* NOT USED */
++/*
++** Change the name of an existing file.
++*/
++int sqliteOsFileRename(const char *zOldName, const char *zNewName){
++#if OS_UNIX
++ if( link(zOldName, zNewName) ){
++ return SQLITE_ERROR;
++ }
++ unlink(zOldName);
++ return SQLITE_OK;
++#endif
++#if OS_WIN
++ if( !MoveFile(zOldName, zNewName) ){
++ return SQLITE_ERROR;
++ }
++ return SQLITE_OK;
++#endif
++#if OS_MAC
++ /**** FIX ME ***/
++ return SQLITE_ERROR;
++#endif
++}
++#endif /* NOT USED */
++
++/*
++** Attempt to open a file for both reading and writing. If that
++** fails, try opening it read-only. If the file does not exist,
++** try to create it.
++**
++** On success, a handle for the open file is written to *id
++** and *pReadonly is set to 0 if the file was opened for reading and
++** writing or 1 if the file was opened read-only. The function returns
++** SQLITE_OK.
++**
++** On failure, the function returns SQLITE_CANTOPEN and leaves
++** *id and *pReadonly unchanged.
++*/
++int sqliteOsOpenReadWrite(
++ const char *zFilename,
++ OsFile *id,
++ int *pReadonly
++){
++#if OS_UNIX
++ int rc;
++ id->dirfd = -1;
++ id->fd = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644);
++ if( id->fd<0 ){
++#ifdef EISDIR
++ if( errno==EISDIR ){
++ return SQLITE_CANTOPEN;
++ }
++#endif
++ id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
++ if( id->fd<0 ){
++ return SQLITE_CANTOPEN;
++ }
++ *pReadonly = 1;
++ }else{
++ *pReadonly = 0;
++ }
++ sqliteOsEnterMutex();
++ rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
++ sqliteOsLeaveMutex();
++ if( rc ){
++ close(id->fd);
++ return SQLITE_NOMEM;
++ }
++ id->locked = 0;
++ TRACE3("OPEN %-3d %s\n", id->fd, zFilename);
++ OpenCounter(+1);
++ return SQLITE_OK;
++#endif
++#if OS_WIN
++ HANDLE h = CreateFile(zFilename,
++ GENERIC_READ | GENERIC_WRITE,
++ FILE_SHARE_READ | FILE_SHARE_WRITE,
++ NULL,
++ OPEN_ALWAYS,
++ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
++ NULL
++ );
++ if( h==INVALID_HANDLE_VALUE ){
++ h = CreateFile(zFilename,
++ GENERIC_READ,
++ FILE_SHARE_READ,
++ NULL,
++ OPEN_ALWAYS,
++ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
++ NULL
++ );
++ if( h==INVALID_HANDLE_VALUE ){
++ return SQLITE_CANTOPEN;
++ }
++ *pReadonly = 1;
++ }else{
++ *pReadonly = 0;
++ }
++ id->h = h;
++ id->locked = 0;
++ OpenCounter(+1);
++ return SQLITE_OK;
++#endif
++#if OS_MAC
++ FSSpec fsSpec;
++# ifdef _LARGE_FILE
++ HFSUniStr255 dfName;
++ FSRef fsRef;
++ if( __path2fss(zFilename, &fsSpec) != noErr ){
++ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
++ return SQLITE_CANTOPEN;
++ }
++ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
++ return SQLITE_CANTOPEN;
++ FSGetDataForkName(&dfName);
++ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
++ fsRdWrShPerm, &(id->refNum)) != noErr ){
++ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
++ fsRdWrPerm, &(id->refNum)) != noErr ){
++ if (FSOpenFork(&fsRef, dfName.length, dfName.unicode,
++ fsRdPerm, &(id->refNum)) != noErr )
++ return SQLITE_CANTOPEN;
++ else
++ *pReadonly = 1;
++ } else
++ *pReadonly = 0;
++ } else
++ *pReadonly = 0;
++# else
++ __path2fss(zFilename, &fsSpec);
++ if( !sqliteOsFileExists(zFilename) ){
++ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
++ return SQLITE_CANTOPEN;
++ }
++ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNum)) != noErr ){
++ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr ){
++ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
++ return SQLITE_CANTOPEN;
++ else
++ *pReadonly = 1;
++ } else
++ *pReadonly = 0;
++ } else
++ *pReadonly = 0;
++# endif
++ if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
++ id->refNumRF = -1;
++ }
++ id->locked = 0;
++ id->delOnClose = 0;
++ OpenCounter(+1);
++ return SQLITE_OK;
++#endif
++}
++
++
++/*
++** Attempt to open a new file for exclusive access by this process.
++** The file will be opened for both reading and writing. To avoid
++** a potential security problem, we do not allow the file to have
++** previously existed. Nor do we allow the file to be a symbolic
++** link.
++**
++** If delFlag is true, then make arrangements to automatically delete
++** the file when it is closed.
++**
++** On success, write the file handle into *id and return SQLITE_OK.
++**
++** On failure, return SQLITE_CANTOPEN.
++*/
++int sqliteOsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
++#if OS_UNIX
++ int rc;
++ if( access(zFilename, 0)==0 ){
++ return SQLITE_CANTOPEN;
++ }
++ id->dirfd = -1;
++ id->fd = open(zFilename,
++ O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600);
++ if( id->fd<0 ){
++ return SQLITE_CANTOPEN;
++ }
++ sqliteOsEnterMutex();
++ rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
++ sqliteOsLeaveMutex();
++ if( rc ){
++ close(id->fd);
++ unlink(zFilename);
++ return SQLITE_NOMEM;
++ }
++ id->locked = 0;
++ if( delFlag ){
++ unlink(zFilename);
++ }
++ TRACE3("OPEN-EX %-3d %s\n", id->fd, zFilename);
++ OpenCounter(+1);
++ return SQLITE_OK;
++#endif
++#if OS_WIN
++ HANDLE h;
++ int fileflags;
++ if( delFlag ){
++ fileflags = FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG_RANDOM_ACCESS
++ | FILE_FLAG_DELETE_ON_CLOSE;
++ }else{
++ fileflags = FILE_FLAG_RANDOM_ACCESS;
++ }
++ h = CreateFile(zFilename,
++ GENERIC_READ | GENERIC_WRITE,
++ 0,
++ NULL,
++ CREATE_ALWAYS,
++ fileflags,
++ NULL
++ );
++ if( h==INVALID_HANDLE_VALUE ){
++ return SQLITE_CANTOPEN;
++ }
++ id->h = h;
++ id->locked = 0;
++ OpenCounter(+1);
++ return SQLITE_OK;
++#endif
++#if OS_MAC
++ FSSpec fsSpec;
++# ifdef _LARGE_FILE
++ HFSUniStr255 dfName;
++ FSRef fsRef;
++ __path2fss(zFilename, &fsSpec);
++ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
++ return SQLITE_CANTOPEN;
++ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
++ return SQLITE_CANTOPEN;
++ FSGetDataForkName(&dfName);
++ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
++ fsRdWrPerm, &(id->refNum)) != noErr )
++ return SQLITE_CANTOPEN;
++# else
++ __path2fss(zFilename, &fsSpec);
++ if( HCreate(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, 'SQLI', cDocumentFile) != noErr )
++ return SQLITE_CANTOPEN;
++ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrPerm, &(id->refNum)) != noErr )
++ return SQLITE_CANTOPEN;
++# endif
++ id->refNumRF = -1;
++ id->locked = 0;
++ id->delOnClose = delFlag;
++ if (delFlag)
++ id->pathToDel = sqliteOsFullPathname(zFilename);
++ OpenCounter(+1);
++ return SQLITE_OK;
++#endif
++}
++
++/*
++** Attempt to open a new file for read-only access.
++**
++** On success, write the file handle into *id and return SQLITE_OK.
++**
++** On failure, return SQLITE_CANTOPEN.
++*/
++int sqliteOsOpenReadOnly(const char *zFilename, OsFile *id){
++#if OS_UNIX
++ int rc;
++ id->dirfd = -1;
++ id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
++ if( id->fd<0 ){
++ return SQLITE_CANTOPEN;
++ }
++ sqliteOsEnterMutex();
++ rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
++ sqliteOsLeaveMutex();
++ if( rc ){
++ close(id->fd);
++ return SQLITE_NOMEM;
++ }
++ id->locked = 0;
++ TRACE3("OPEN-RO %-3d %s\n", id->fd, zFilename);
++ OpenCounter(+1);
++ return SQLITE_OK;
++#endif
++#if OS_WIN
++ HANDLE h = CreateFile(zFilename,
++ GENERIC_READ,
++ 0,
++ NULL,
++ OPEN_EXISTING,
++ FILE_ATTRIBUTE_NORMAL | FILE_FLAG_RANDOM_ACCESS,
++ NULL
++ );
++ if( h==INVALID_HANDLE_VALUE ){
++ return SQLITE_CANTOPEN;
++ }
++ id->h = h;
++ id->locked = 0;
++ OpenCounter(+1);
++ return SQLITE_OK;
++#endif
++#if OS_MAC
++ FSSpec fsSpec;
++# ifdef _LARGE_FILE
++ HFSUniStr255 dfName;
++ FSRef fsRef;
++ if( __path2fss(zFilename, &fsSpec) != noErr )
++ return SQLITE_CANTOPEN;
++ if( FSpMakeFSRef(&fsSpec, &fsRef) != noErr )
++ return SQLITE_CANTOPEN;
++ FSGetDataForkName(&dfName);
++ if( FSOpenFork(&fsRef, dfName.length, dfName.unicode,
++ fsRdPerm, &(id->refNum)) != noErr )
++ return SQLITE_CANTOPEN;
++# else
++ __path2fss(zFilename, &fsSpec);
++ if( HOpenDF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdPerm, &(id->refNum)) != noErr )
++ return SQLITE_CANTOPEN;
++# endif
++ if( HOpenRF(fsSpec.vRefNum, fsSpec.parID, fsSpec.name, fsRdWrShPerm, &(id->refNumRF)) != noErr){
++ id->refNumRF = -1;
++ }
++ id->locked = 0;
++ id->delOnClose = 0;
++ OpenCounter(+1);
++ return SQLITE_OK;
++#endif
++}
++
++/*
++** Attempt to open a file descriptor for the directory that contains a
++** file. This file descriptor can be used to fsync() the directory
++** in order to make sure the creation of a new file is actually written
++** to disk.
++**
++** This routine is only meaningful for Unix. It is a no-op under
++** windows since windows does not support hard links.
++**
++** On success, a handle for a previously open file is at *id is
++** updated with the new directory file descriptor and SQLITE_OK is
++** returned.
++**
++** On failure, the function returns SQLITE_CANTOPEN and leaves
++** *id unchanged.
++*/
++int sqliteOsOpenDirectory(
++ const char *zDirname,
++ OsFile *id
++){
++#if OS_UNIX
++ if( id->fd<0 ){
++ /* Do not open the directory if the corresponding file is not already
++ ** open. */
++ return SQLITE_CANTOPEN;
++ }
++ assert( id->dirfd<0 );
++ id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644);
++ if( id->dirfd<0 ){
++ return SQLITE_CANTOPEN;
++ }
++ TRACE3("OPENDIR %-3d %s\n", id->dirfd, zDirname);
++#endif
++ return SQLITE_OK;
++}
++
++/*
++** If the following global variable points to a string which is the
++** name of a directory, then that directory will be used to store
++** temporary files.
++*/
++const char *sqlite_temp_directory = 0;
++
++/*
++** Create a temporary file name in zBuf. zBuf must be big enough to
++** hold at least SQLITE_TEMPNAME_SIZE characters.
++*/
++int sqliteOsTempFileName(char *zBuf){
++#if OS_UNIX
++ static const char *azDirs[] = {
++ 0,
++ "/var/tmp",
++ "/usr/tmp",
++ "/tmp",
++ ".",
++ };
++ static unsigned char zChars[] =
++ "abcdefghijklmnopqrstuvwxyz"
++ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
++ "0123456789";
++ int i, j;
++ struct stat buf;
++ const char *zDir = ".";
++ azDirs[0] = sqlite_temp_directory;
++ for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
++ if( azDirs[i]==0 ) continue;
++ if( stat(azDirs[i], &buf) ) continue;
++ if( !S_ISDIR(buf.st_mode) ) continue;
++ if( access(azDirs[i], 07) ) continue;
++ zDir = azDirs[i];
++ break;
++ }
++ do{
++ sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
++ j = strlen(zBuf);
++ sqliteRandomness(15, &zBuf[j]);
++ for(i=0; i<15; i++, j++){
++ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
++ }
++ zBuf[j] = 0;
++ }while( access(zBuf,0)==0 );
++#endif
++#if OS_WIN
++ static char zChars[] =
++ "abcdefghijklmnopqrstuvwxyz"
++ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
++ "0123456789";
++ int i, j;
++ const char *zDir;
++ char zTempPath[SQLITE_TEMPNAME_SIZE];
++ if( sqlite_temp_directory==0 ){
++ GetTempPath(SQLITE_TEMPNAME_SIZE-30, zTempPath);
++ for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){}
++ zTempPath[i] = 0;
++ zDir = zTempPath;
++ }else{
++ zDir = sqlite_temp_directory;
++ }
++ for(;;){
++ sprintf(zBuf, "%s\\"TEMP_FILE_PREFIX, zDir);
++ j = strlen(zBuf);
++ sqliteRandomness(15, &zBuf[j]);
++ for(i=0; i<15; i++, j++){
++ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
++ }
++ zBuf[j] = 0;
++ if( !sqliteOsFileExists(zBuf) ) break;
++ }
++#endif
++#if OS_MAC
++ static char zChars[] =
++ "abcdefghijklmnopqrstuvwxyz"
++ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
++ "0123456789";
++ int i, j;
++ char *zDir;
++ char zTempPath[SQLITE_TEMPNAME_SIZE];
++ char zdirName[32];
++ CInfoPBRec infoRec;
++ Str31 dirName;
++ memset(&infoRec, 0, sizeof(infoRec));
++ memset(zTempPath, 0, SQLITE_TEMPNAME_SIZE);
++ if( sqlite_temp_directory!=0 ){
++ zDir = sqlite_temp_directory;
++ }else if( FindFolder(kOnSystemDisk, kTemporaryFolderType, kCreateFolder,
++ &(infoRec.dirInfo.ioVRefNum), &(infoRec.dirInfo.ioDrParID)) == noErr ){
++ infoRec.dirInfo.ioNamePtr = dirName;
++ do{
++ infoRec.dirInfo.ioFDirIndex = -1;
++ infoRec.dirInfo.ioDrDirID = infoRec.dirInfo.ioDrParID;
++ if( PBGetCatInfoSync(&infoRec) == noErr ){
++ CopyPascalStringToC(dirName, zdirName);
++ i = strlen(zdirName);
++ memmove(&(zTempPath[i+1]), zTempPath, strlen(zTempPath));
++ strcpy(zTempPath, zdirName);
++ zTempPath[i] = ':';
++ }else{
++ *zTempPath = 0;
++ break;
++ }
++ } while( infoRec.dirInfo.ioDrDirID != fsRtDirID );
++ zDir = zTempPath;
++ }
++ if( zDir[0]==0 ){
++ getcwd(zTempPath, SQLITE_TEMPNAME_SIZE-24);
++ zDir = zTempPath;
++ }
++ for(;;){
++ sprintf(zBuf, "%s"TEMP_FILE_PREFIX, zDir);
++ j = strlen(zBuf);
++ sqliteRandomness(15, &zBuf[j]);
++ for(i=0; i<15; i++, j++){
++ zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
++ }
++ zBuf[j] = 0;
++ if( !sqliteOsFileExists(zBuf) ) break;
++ }
++#endif
++ return SQLITE_OK;
++}
++
++/*
++** Close a file.
++*/
++int sqliteOsClose(OsFile *id){
++#if OS_UNIX
++ sqliteOsUnlock(id);
++ if( id->dirfd>=0 ) close(id->dirfd);
++ id->dirfd = -1;
++ sqliteOsEnterMutex();
++ if( id->pOpen->nLock ){
++ /* If there are outstanding locks, do not actually close the file just
++ ** yet because that would clear those locks. Instead, add the file
++ ** descriptor to pOpen->aPending. It will be automatically closed when
++ ** the last lock is cleared.
++ */
++ int *aNew;
++ struct openCnt *pOpen = id->pOpen;
++ pOpen->nPending++;
++ aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) );
++ if( aNew==0 ){
++ /* If a malloc fails, just leak the file descriptor */
++ }else{
++ pOpen->aPending = aNew;
++ pOpen->aPending[pOpen->nPending-1] = id->fd;
++ }
++ }else{
++ /* There are no outstanding locks so we can close the file immediately */
++ close(id->fd);
++ }
++ releaseLockInfo(id->pLock);
++ releaseOpenCnt(id->pOpen);
++ sqliteOsLeaveMutex();
++ TRACE2("CLOSE %-3d\n", id->fd);
++ OpenCounter(-1);
++ return SQLITE_OK;
++#endif
++#if OS_WIN
++ CloseHandle(id->h);
++ OpenCounter(-1);
++ return SQLITE_OK;
++#endif
++#if OS_MAC
++ if( id->refNumRF!=-1 )
++ FSClose(id->refNumRF);
++# ifdef _LARGE_FILE
++ FSCloseFork(id->refNum);
++# else
++ FSClose(id->refNum);
++# endif
++ if( id->delOnClose ){
++ unlink(id->pathToDel);
++ sqliteFree(id->pathToDel);
++ }
++ OpenCounter(-1);
++ return SQLITE_OK;
++#endif
++}
++
++/*
++** Read data from a file into a buffer. Return SQLITE_OK if all
++** bytes were read successfully and SQLITE_IOERR if anything goes
++** wrong.
++*/
++int sqliteOsRead(OsFile *id, void *pBuf, int amt){
++#if OS_UNIX
++ int got;
++ SimulateIOError(SQLITE_IOERR);
++ TIMER_START;
++ got = read(id->fd, pBuf, amt);
++ TIMER_END;
++ TRACE4("READ %-3d %7d %d\n", id->fd, last_page, elapse);
++ SEEK(0);
++ /* if( got<0 ) got = 0; */
++ if( got==amt ){
++ return SQLITE_OK;
++ }else{
++ return SQLITE_IOERR;
++ }
++#endif
++#if OS_WIN
++ DWORD got;
++ SimulateIOError(SQLITE_IOERR);
++ TRACE2("READ %d\n", last_page);
++ if( !ReadFile(id->h, pBuf, amt, &got, 0) ){
++ got = 0;
++ }
++ if( got==(DWORD)amt ){
++ return SQLITE_OK;
++ }else{
++ return SQLITE_IOERR;
++ }
++#endif
++#if OS_MAC
++ int got;
++ SimulateIOError(SQLITE_IOERR);
++ TRACE2("READ %d\n", last_page);
++# ifdef _LARGE_FILE
++ FSReadFork(id->refNum, fsAtMark, 0, (ByteCount)amt, pBuf, (ByteCount*)&got);
++# else
++ got = amt;
++ FSRead(id->refNum, &got, pBuf);
++# endif
++ if( got==amt ){
++ return SQLITE_OK;
++ }else{
++ return SQLITE_IOERR;
++ }
++#endif
++}
++
++/*
++** Write data from a buffer into a file. Return SQLITE_OK on success
++** or some other error code on failure.
++*/
++int sqliteOsWrite(OsFile *id, const void *pBuf, int amt){
++#if OS_UNIX
++ int wrote = 0;
++ SimulateIOError(SQLITE_IOERR);
++ TIMER_START;
++ while( amt>0 && (wrote = write(id->fd, pBuf, amt))>0 ){
++ amt -= wrote;
++ pBuf = &((char*)pBuf)[wrote];
++ }
++ TIMER_END;
++ TRACE4("WRITE %-3d %7d %d\n", id->fd, last_page, elapse);
++ SEEK(0);
++ if( amt>0 ){
++ return SQLITE_FULL;
++ }
++ return SQLITE_OK;
++#endif
++#if OS_WIN
++ int rc;
++ DWORD wrote;
++ SimulateIOError(SQLITE_IOERR);
++ TRACE2("WRITE %d\n", last_page);
++ while( amt>0 && (rc = WriteFile(id->h, pBuf, amt, &wrote, 0))!=0 && wrote>0 ){
++ amt -= wrote;
++ pBuf = &((char*)pBuf)[wrote];
++ }
++ if( !rc || amt>(int)wrote ){
++ return SQLITE_FULL;
++ }
++ return SQLITE_OK;
++#endif
++#if OS_MAC
++ OSErr oserr;
++ int wrote = 0;
++ SimulateIOError(SQLITE_IOERR);
++ TRACE2("WRITE %d\n", last_page);
++ while( amt>0 ){
++# ifdef _LARGE_FILE
++ oserr = FSWriteFork(id->refNum, fsAtMark, 0,
++ (ByteCount)amt, pBuf, (ByteCount*)&wrote);
++# else
++ wrote = amt;
++ oserr = FSWrite(id->refNum, &wrote, pBuf);
++# endif
++ if( wrote == 0 || oserr != noErr)
++ break;
++ amt -= wrote;
++ pBuf = &((char*)pBuf)[wrote];
++ }
++ if( oserr != noErr || amt>wrote ){
++ return SQLITE_FULL;
++ }
++ return SQLITE_OK;
++#endif
++}
++
++/*
++** Move the read/write pointer in a file.
++*/
++int sqliteOsSeek(OsFile *id, off_t offset){
++ SEEK(offset/1024 + 1);
++#if OS_UNIX
++ lseek(id->fd, offset, SEEK_SET);
++ return SQLITE_OK;
++#endif
++#if OS_WIN
++ {
++ LONG upperBits = offset>>32;
++ LONG lowerBits = offset & 0xffffffff;
++ DWORD rc;
++ rc = SetFilePointer(id->h, lowerBits, &upperBits, FILE_BEGIN);
++ /* TRACE3("SEEK rc=0x%x upper=0x%x\n", rc, upperBits); */
++ }
++ return SQLITE_OK;
++#endif
++#if OS_MAC
++ {
++ off_t curSize;
++ if( sqliteOsFileSize(id, &curSize) != SQLITE_OK ){
++ return SQLITE_IOERR;
++ }
++ if( offset >= curSize ){
++ if( sqliteOsTruncate(id, offset+1) != SQLITE_OK ){
++ return SQLITE_IOERR;
++ }
++ }
++# ifdef _LARGE_FILE
++ if( FSSetForkPosition(id->refNum, fsFromStart, offset) != noErr ){
++# else
++ if( SetFPos(id->refNum, fsFromStart, offset) != noErr ){
++# endif
++ return SQLITE_IOERR;
++ }else{
++ return SQLITE_OK;
++ }
++ }
++#endif
++}
++
++#ifdef SQLITE_NOSYNC
++# define fsync(X) 0
++#endif
++
++/*
++** Make sure all writes to a particular file are committed to disk.
++**
++** Under Unix, also make sure that the directory entry for the file
++** has been created by fsync-ing the directory that contains the file.
++** If we do not do this and we encounter a power failure, the directory
++** entry for the journal might not exist after we reboot. The next
++** SQLite to access the file will not know that the journal exists (because
++** the directory entry for the journal was never created) and the transaction
++** will not roll back - possibly leading to database corruption.
++*/
++int sqliteOsSync(OsFile *id){
++#if OS_UNIX
++ SimulateIOError(SQLITE_IOERR);
++ TRACE2("SYNC %-3d\n", id->fd);
++ if( fsync(id->fd) ){
++ return SQLITE_IOERR;
++ }else{
++ if( id->dirfd>=0 ){
++ TRACE2("DIRSYNC %-3d\n", id->dirfd);
++ fsync(id->dirfd);
++ close(id->dirfd); /* Only need to sync once, so close the directory */
++ id->dirfd = -1; /* when we are done. */
++ }
++ return SQLITE_OK;
++ }
++#endif
++#if OS_WIN
++ if( FlushFileBuffers(id->h) ){
++ return SQLITE_OK;
++ }else{
++ return SQLITE_IOERR;
++ }
++#endif
++#if OS_MAC
++# ifdef _LARGE_FILE
++ if( FSFlushFork(id->refNum) != noErr ){
++# else
++ ParamBlockRec params;
++ memset(¶ms, 0, sizeof(ParamBlockRec));
++ params.ioParam.ioRefNum = id->refNum;
++ if( PBFlushFileSync(¶ms) != noErr ){
++# endif
++ return SQLITE_IOERR;
++ }else{
++ return SQLITE_OK;
++ }
++#endif
++}
++
++/*
++** Truncate an open file to a specified size
++*/
++int sqliteOsTruncate(OsFile *id, off_t nByte){
++ SimulateIOError(SQLITE_IOERR);
++#if OS_UNIX
++ return ftruncate(id->fd, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
++#endif
++#if OS_WIN
++ {
++ LONG upperBits = nByte>>32;
++ SetFilePointer(id->h, nByte, &upperBits, FILE_BEGIN);
++ SetEndOfFile(id->h);
++ }
++ return SQLITE_OK;
++#endif
++#if OS_MAC
++# ifdef _LARGE_FILE
++ if( FSSetForkSize(id->refNum, fsFromStart, nByte) != noErr){
++# else
++ if( SetEOF(id->refNum, nByte) != noErr ){
++# endif
++ return SQLITE_IOERR;
++ }else{
++ return SQLITE_OK;
++ }
++#endif
++}
++
++/*
++** Determine the current size of a file in bytes
++*/
++int sqliteOsFileSize(OsFile *id, off_t *pSize){
++#if OS_UNIX
++ struct stat buf;
++ SimulateIOError(SQLITE_IOERR);
++ if( fstat(id->fd, &buf)!=0 ){
++ return SQLITE_IOERR;
++ }
++ *pSize = buf.st_size;
++ return SQLITE_OK;
++#endif
++#if OS_WIN
++ DWORD upperBits, lowerBits;
++ SimulateIOError(SQLITE_IOERR);
++ lowerBits = GetFileSize(id->h, &upperBits);
++ *pSize = (((off_t)upperBits)<<32) + lowerBits;
++ return SQLITE_OK;
++#endif
++#if OS_MAC
++# ifdef _LARGE_FILE
++ if( FSGetForkSize(id->refNum, pSize) != noErr){
++# else
++ if( GetEOF(id->refNum, pSize) != noErr ){
++# endif
++ return SQLITE_IOERR;
++ }else{
++ return SQLITE_OK;
++ }
++#endif
++}
++
++#if OS_WIN
++/*
++** Return true (non-zero) if we are running under WinNT, Win2K or WinXP.
++** Return false (zero) for Win95, Win98, or WinME.
++**
++** Here is an interesting observation: Win95, Win98, and WinME lack
++** the LockFileEx() API. But we can still statically link against that
++** API as long as we don't call it win running Win95/98/ME. A call to
++** this routine is used to determine if the host is Win95/98/ME or
++** WinNT/2K/XP so that we will know whether or not we can safely call
++** the LockFileEx() API.
++*/
++int isNT(void){
++ static int osType = 0; /* 0=unknown 1=win95 2=winNT */
++ if( osType==0 ){
++ OSVERSIONINFO sInfo;
++ sInfo.dwOSVersionInfoSize = sizeof(sInfo);
++ GetVersionEx(&sInfo);
++ osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1;
++ }
++ return osType==2;
++}
++#endif
++
++/*
++** Windows file locking notes: [similar issues apply to MacOS]
++**
++** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because
++** those functions are not available. So we use only LockFile() and
++** UnlockFile().
++**
++** LockFile() prevents not just writing but also reading by other processes.
++** (This is a design error on the part of Windows, but there is nothing
++** we can do about that.) So the region used for locking is at the
++** end of the file where it is unlikely to ever interfere with an
++** actual read attempt.
++**
++** A database read lock is obtained by locking a single randomly-chosen
++** byte out of a specific range of bytes. The lock byte is obtained at
++** random so two separate readers can probably access the file at the
++** same time, unless they are unlucky and choose the same lock byte.
++** A database write lock is obtained by locking all bytes in the range.
++** There can only be one writer.
++**
++** A lock is obtained on the first byte of the lock range before acquiring
++** either a read lock or a write lock. This prevents two processes from
++** attempting to get a lock at a same time. The semantics of
++** sqliteOsReadLock() require that if there is already a write lock, that
++** lock is converted into a read lock atomically. The lock on the first
++** byte allows us to drop the old write lock and get the read lock without
++** another process jumping into the middle and messing us up. The same
++** argument applies to sqliteOsWriteLock().
++**
++** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available,
++** which means we can use reader/writer locks. When reader writer locks
++** are used, the lock is placed on the same range of bytes that is used
++** for probabilistic locking in Win95/98/ME. Hence, the locking scheme
++** will support two or more Win95 readers or two or more WinNT readers.
++** But a single Win95 reader will lock out all WinNT readers and a single
++** WinNT reader will lock out all other Win95 readers.
++**
++** Note: On MacOS we use the resource fork for locking.
++**
++** The following #defines specify the range of bytes used for locking.
++** N_LOCKBYTE is the number of bytes available for doing the locking.
++** The first byte used to hold the lock while the lock is changing does
++** not count toward this number. FIRST_LOCKBYTE is the address of
++** the first byte in the range of bytes used for locking.
++*/
++#define N_LOCKBYTE 10239
++#if OS_MAC
++# define FIRST_LOCKBYTE (0x000fffff - N_LOCKBYTE)
++#else
++# define FIRST_LOCKBYTE (0xffffffff - N_LOCKBYTE)
++#endif
++
++/*
++** Change the status of the lock on the file "id" to be a readlock.
++** If the file was write locked, then this reduces the lock to a read.
++** If the file was read locked, then this acquires a new read lock.
++**
++** Return SQLITE_OK on success and SQLITE_BUSY on failure. If this
++** library was compiled with large file support (LFS) but LFS is not
++** available on the host, then an SQLITE_NOLFS is returned.
++*/
++int sqliteOsReadLock(OsFile *id){
++#if OS_UNIX
++ int rc;
++ sqliteOsEnterMutex();
++ if( id->pLock->cnt>0 ){
++ if( !id->locked ){
++ id->pLock->cnt++;
++ id->locked = 1;
++ id->pOpen->nLock++;
++ }
++ rc = SQLITE_OK;
++ }else if( id->locked || id->pLock->cnt==0 ){
++ struct flock lock;
++ int s;
++ lock.l_type = F_RDLCK;
++ lock.l_whence = SEEK_SET;
++ lock.l_start = lock.l_len = 0L;
++ s = fcntl(id->fd, F_SETLK, &lock);
++ if( s!=0 ){
++ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
++ }else{
++ rc = SQLITE_OK;
++ if( !id->locked ){
++ id->pOpen->nLock++;
++ id->locked = 1;
++ }
++ id->pLock->cnt = 1;
++ }
++ }else{
++ rc = SQLITE_BUSY;
++ }
++ sqliteOsLeaveMutex();
++ return rc;
++#endif
++#if OS_WIN
++ int rc;
++ if( id->locked>0 ){
++ rc = SQLITE_OK;
++ }else{
++ int lk;
++ int res;
++ int cnt = 100;
++ sqliteRandomness(sizeof(lk), &lk);
++ lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1;
++ while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0))==0 ){
++ Sleep(1);
++ }
++ if( res ){
++ UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
++ if( isNT() ){
++ OVERLAPPED ovlp;
++ ovlp.Offset = FIRST_LOCKBYTE+1;
++ ovlp.OffsetHigh = 0;
++ ovlp.hEvent = 0;
++ res = LockFileEx(id->h, LOCKFILE_FAIL_IMMEDIATELY,
++ 0, N_LOCKBYTE, 0, &ovlp);
++ }else{
++ res = LockFile(id->h, FIRST_LOCKBYTE+lk, 0, 1, 0);
++ }
++ UnlockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0);
++ }
++ if( res ){
++ id->locked = lk;
++ rc = SQLITE_OK;
++ }else{
++ rc = SQLITE_BUSY;
++ }
++ }
++ return rc;
++#endif
++#if OS_MAC
++ int rc;
++ if( id->locked>0 || id->refNumRF == -1 ){
++ rc = SQLITE_OK;
++ }else{
++ int lk;
++ OSErr res;
++ int cnt = 5;
++ ParamBlockRec params;
++ sqliteRandomness(sizeof(lk), &lk);
++ lk = (lk & 0x7fffffff)%N_LOCKBYTE + 1;
++ memset(¶ms, 0, sizeof(params));
++ params.ioParam.ioRefNum = id->refNumRF;
++ params.ioParam.ioPosMode = fsFromStart;
++ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
++ params.ioParam.ioReqCount = 1;
++ while( cnt-->0 && (res = PBLockRangeSync(¶ms))!=noErr ){
++ UInt32 finalTicks;
++ Delay(1, &finalTicks); /* 1/60 sec */
++ }
++ if( res == noErr ){
++ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
++ params.ioParam.ioReqCount = N_LOCKBYTE;
++ PBUnlockRangeSync(¶ms);
++ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+lk;
++ params.ioParam.ioReqCount = 1;
++ res = PBLockRangeSync(¶ms);
++ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
++ params.ioParam.ioReqCount = 1;
++ PBUnlockRangeSync(¶ms);
++ }
++ if( res == noErr ){
++ id->locked = lk;
++ rc = SQLITE_OK;
++ }else{
++ rc = SQLITE_BUSY;
++ }
++ }
++ return rc;
++#endif
++}
++
++/*
++** Change the lock status to be an exclusive or write lock. Return
++** SQLITE_OK on success and SQLITE_BUSY on a failure. If this
++** library was compiled with large file support (LFS) but LFS is not
++** available on the host, then an SQLITE_NOLFS is returned.
++*/
++int sqliteOsWriteLock(OsFile *id){
++#if OS_UNIX
++ int rc;
++ sqliteOsEnterMutex();
++ if( id->pLock->cnt==0 || (id->pLock->cnt==1 && id->locked==1) ){
++ struct flock lock;
++ int s;
++ lock.l_type = F_WRLCK;
++ lock.l_whence = SEEK_SET;
++ lock.l_start = lock.l_len = 0L;
++ s = fcntl(id->fd, F_SETLK, &lock);
++ if( s!=0 ){
++ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
++ }else{
++ rc = SQLITE_OK;
++ if( !id->locked ){
++ id->pOpen->nLock++;
++ id->locked = 1;
++ }
++ id->pLock->cnt = -1;
++ }
++ }else{
++ rc = SQLITE_BUSY;
++ }
++ sqliteOsLeaveMutex();
++ return rc;
++#endif
++#if OS_WIN
++ int rc;
++ if( id->locked<0 ){
++ rc = SQLITE_OK;
++ }else{
++ int res;
++ int cnt = 100;
++ while( cnt-->0 && (res = LockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0))==0 ){
++ Sleep(1);
++ }
++ if( res ){
++ if( id->locked>0 ){
++ if( isNT() ){
++ UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
++ }else{
++ res = UnlockFile(id->h, FIRST_LOCKBYTE + id->locked, 0, 1, 0);
++ }
++ }
++ if( res ){
++ res = LockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
++ }else{
++ res = 0;
++ }
++ UnlockFile(id->h, FIRST_LOCKBYTE, 0, 1, 0);
++ }
++ if( res ){
++ id->locked = -1;
++ rc = SQLITE_OK;
++ }else{
++ rc = SQLITE_BUSY;
++ }
++ }
++ return rc;
++#endif
++#if OS_MAC
++ int rc;
++ if( id->locked<0 || id->refNumRF == -1 ){
++ rc = SQLITE_OK;
++ }else{
++ OSErr res;
++ int cnt = 5;
++ ParamBlockRec params;
++ memset(¶ms, 0, sizeof(params));
++ params.ioParam.ioRefNum = id->refNumRF;
++ params.ioParam.ioPosMode = fsFromStart;
++ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
++ params.ioParam.ioReqCount = 1;
++ while( cnt-->0 && (res = PBLockRangeSync(¶ms))!=noErr ){
++ UInt32 finalTicks;
++ Delay(1, &finalTicks); /* 1/60 sec */
++ }
++ if( res == noErr ){
++ params.ioParam.ioPosOffset = FIRST_LOCKBYTE + id->locked;
++ params.ioParam.ioReqCount = 1;
++ if( id->locked==0
++ || PBUnlockRangeSync(¶ms)==noErr ){
++ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
++ params.ioParam.ioReqCount = N_LOCKBYTE;
++ res = PBLockRangeSync(¶ms);
++ }else{
++ res = afpRangeNotLocked;
++ }
++ params.ioParam.ioPosOffset = FIRST_LOCKBYTE;
++ params.ioParam.ioReqCount = 1;
++ PBUnlockRangeSync(¶ms);
++ }
++ if( res == noErr ){
++ id->locked = -1;
++ rc = SQLITE_OK;
++ }else{
++ rc = SQLITE_BUSY;
++ }
++ }
++ return rc;
++#endif
++}
++
++/*
++** Unlock the given file descriptor. If the file descriptor was
++** not previously locked, then this routine is a no-op. If this
++** library was compiled with large file support (LFS) but LFS is not
++** available on the host, then an SQLITE_NOLFS is returned.
++*/
++int sqliteOsUnlock(OsFile *id){
++#if OS_UNIX
++ int rc;
++ if( !id->locked ) return SQLITE_OK;
++ sqliteOsEnterMutex();
++ assert( id->pLock->cnt!=0 );
++ if( id->pLock->cnt>1 ){
++ id->pLock->cnt--;
++ rc = SQLITE_OK;
++ }else{
++ struct flock lock;
++ int s;
++ lock.l_type = F_UNLCK;
++ lock.l_whence = SEEK_SET;
++ lock.l_start = lock.l_len = 0L;
++ s = fcntl(id->fd, F_SETLK, &lock);
++ if( s!=0 ){
++ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
++ }else{
++ rc = SQLITE_OK;
++ id->pLock->cnt = 0;
++ }
++ }
++ if( rc==SQLITE_OK ){
++ /* Decrement the count of locks against this same file. When the
++ ** count reaches zero, close any other file descriptors whose close
++ ** was deferred because of outstanding locks.
++ */
++ struct openCnt *pOpen = id->pOpen;
++ pOpen->nLock--;
++ assert( pOpen->nLock>=0 );
++ if( pOpen->nLock==0 && pOpen->nPending>0 ){
++ int i;
++ for(i=0; i<pOpen->nPending; i++){
++ close(pOpen->aPending[i]);
++ }
++ sqliteFree(pOpen->aPending);
++ pOpen->nPending = 0;
++ pOpen->aPending = 0;
++ }
++ }
++ sqliteOsLeaveMutex();
++ id->locked = 0;
++ return rc;
++#endif
++#if OS_WIN
++ int rc;
++ if( id->locked==0 ){
++ rc = SQLITE_OK;
++ }else if( isNT() || id->locked<0 ){
++ UnlockFile(id->h, FIRST_LOCKBYTE+1, 0, N_LOCKBYTE, 0);
++ rc = SQLITE_OK;
++ id->locked = 0;
++ }else{
++ UnlockFile(id->h, FIRST_LOCKBYTE+id->locked, 0, 1, 0);
++ rc = SQLITE_OK;
++ id->locked = 0;
++ }
++ return rc;
++#endif
++#if OS_MAC
++ int rc;
++ ParamBlockRec params;
++ memset(¶ms, 0, sizeof(params));
++ params.ioParam.ioRefNum = id->refNumRF;
++ params.ioParam.ioPosMode = fsFromStart;
++ if( id->locked==0 || id->refNumRF == -1 ){
++ rc = SQLITE_OK;
++ }else if( id->locked<0 ){
++ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+1;
++ params.ioParam.ioReqCount = N_LOCKBYTE;
++ PBUnlockRangeSync(¶ms);
++ rc = SQLITE_OK;
++ id->locked = 0;
++ }else{
++ params.ioParam.ioPosOffset = FIRST_LOCKBYTE+id->locked;
++ params.ioParam.ioReqCount = 1;
++ PBUnlockRangeSync(¶ms);
++ rc = SQLITE_OK;
++ id->locked = 0;
++ }
++ return rc;
++#endif
++}
++
++/*
++** Get information to seed the random number generator. The seed
++** is written into the buffer zBuf[256]. The calling function must
++** supply a sufficiently large buffer.
++*/
++int sqliteOsRandomSeed(char *zBuf){
++ /* We have to initialize zBuf to prevent valgrind from reporting
++ ** errors. The reports issued by valgrind are incorrect - we would
++ ** prefer that the randomness be increased by making use of the
++ ** uninitialized space in zBuf - but valgrind errors tend to worry
++ ** some users. Rather than argue, it seems easier just to initialize
++ ** the whole array and silence valgrind, even if that means less randomness
++ ** in the random seed.
++ **
++ ** When testing, initializing zBuf[] to zero is all we do. That means
++ ** that we always use the same random number sequence.* This makes the
++ ** tests repeatable.
++ */
++ memset(zBuf, 0, 256);
++#if OS_UNIX && !defined(SQLITE_TEST)
++ {
++ int pid;
++ time((time_t*)zBuf);
++ pid = getpid();
++ memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
++ }
++#endif
++#if OS_WIN && !defined(SQLITE_TEST)
++ GetSystemTime((LPSYSTEMTIME)zBuf);
++#endif
++#if OS_MAC
++ {
++ int pid;
++ Microseconds((UnsignedWide*)zBuf);
++ pid = getpid();
++ memcpy(&zBuf[sizeof(UnsignedWide)], &pid, sizeof(pid));
++ }
++#endif
++ return SQLITE_OK;
++}
++
++/*
++** Sleep for a little while. Return the amount of time slept.
++*/
++int sqliteOsSleep(int ms){
++#if OS_UNIX
++#if defined(HAVE_USLEEP) && HAVE_USLEEP
++ usleep(ms*1000);
++ return ms;
++#else
++ sleep((ms+999)/1000);
++ return 1000*((ms+999)/1000);
++#endif
++#endif
++#if OS_WIN
++ Sleep(ms);
++ return ms;
++#endif
++#if OS_MAC
++ UInt32 finalTicks;
++ UInt32 ticks = (((UInt32)ms+16)*3)/50; /* 1/60 sec per tick */
++ Delay(ticks, &finalTicks);
++ return (int)((ticks*50)/3);
++#endif
++}
++
++/*
++** Static variables used for thread synchronization
++*/
++static int inMutex = 0;
++#ifdef SQLITE_UNIX_THREADS
++ static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
++#endif
++#ifdef SQLITE_W32_THREADS
++ static CRITICAL_SECTION cs;
++#endif
++#ifdef SQLITE_MACOS_MULTITASKING
++ static MPCriticalRegionID criticalRegion;
++#endif
++
++/*
++** The following pair of routine implement mutual exclusion for
++** multi-threaded processes. Only a single thread is allowed to
++** executed code that is surrounded by EnterMutex() and LeaveMutex().
++**
++** SQLite uses only a single Mutex. There is not much critical
++** code and what little there is executes quickly and without blocking.
++*/
++void sqliteOsEnterMutex(){
++#ifdef SQLITE_UNIX_THREADS
++ pthread_mutex_lock(&mutex);
++#endif
++#ifdef SQLITE_W32_THREADS
++ static int isInit = 0;
++ while( !isInit ){
++ static long lock = 0;
++ if( InterlockedIncrement(&lock)==1 ){
++ InitializeCriticalSection(&cs);
++ isInit = 1;
++ }else{
++ Sleep(1);
++ }
++ }
++ EnterCriticalSection(&cs);
++#endif
++#ifdef SQLITE_MACOS_MULTITASKING
++ static volatile int notInit = 1;
++ if( notInit ){
++ if( notInit == 2 ) /* as close as you can get to thread safe init */
++ MPYield();
++ else{
++ notInit = 2;
++ MPCreateCriticalRegion(&criticalRegion);
++ notInit = 0;
++ }
++ }
++ MPEnterCriticalRegion(criticalRegion, kDurationForever);
++#endif
++ assert( !inMutex );
++ inMutex = 1;
++}
++void sqliteOsLeaveMutex(){
++ assert( inMutex );
++ inMutex = 0;
++#ifdef SQLITE_UNIX_THREADS
++ pthread_mutex_unlock(&mutex);
++#endif
++#ifdef SQLITE_W32_THREADS
++ LeaveCriticalSection(&cs);
++#endif
++#ifdef SQLITE_MACOS_MULTITASKING
++ MPExitCriticalRegion(criticalRegion);
++#endif
++}
++
++/*
++** Turn a relative pathname into a full pathname. Return a pointer
++** to the full pathname stored in space obtained from sqliteMalloc().
++** The calling function is responsible for freeing this space once it
++** is no longer needed.
++*/
++char *sqliteOsFullPathname(const char *zRelative){
++#if OS_UNIX
++ char *zFull = 0;
++ if( zRelative[0]=='/' ){
++ sqliteSetString(&zFull, zRelative, (char*)0);
++ }else{
++ char zBuf[5000];
++ zBuf[0] = 0;
++ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative,
++ (char*)0);
++ }
++ return zFull;
++#endif
++#if OS_WIN
++ char *zNotUsed;
++ char *zFull;
++ int nByte;
++ nByte = GetFullPathName(zRelative, 0, 0, &zNotUsed) + 1;
++ zFull = sqliteMalloc( nByte );
++ if( zFull==0 ) return 0;
++ GetFullPathName(zRelative, nByte, zFull, &zNotUsed);
++ return zFull;
++#endif
++#if OS_MAC
++ char *zFull = 0;
++ if( zRelative[0]==':' ){
++ char zBuf[_MAX_PATH+1];
++ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), &(zRelative[1]),
++ (char*)0);
++ }else{
++ if( strchr(zRelative, ':') ){
++ sqliteSetString(&zFull, zRelative, (char*)0);
++ }else{
++ char zBuf[_MAX_PATH+1];
++ sqliteSetString(&zFull, getcwd(zBuf, sizeof(zBuf)), zRelative, (char*)0);
++ }
++ }
++ return zFull;
++#endif
++}
++
++/*
++** The following variable, if set to a non-zero value, becomes the result
++** returned from sqliteOsCurrentTime(). This is used for testing.
++*/
++#ifdef SQLITE_TEST
++int sqlite_current_time = 0;
++#endif
++
++/*
++** Find the current time (in Universal Coordinated Time). Write the
++** current time and date as a Julian Day number into *prNow and
++** return 0. Return 1 if the time and date cannot be found.
++*/
++int sqliteOsCurrentTime(double *prNow){
++#if OS_UNIX
++ time_t t;
++ time(&t);
++ *prNow = t/86400.0 + 2440587.5;
++#endif
++#if OS_WIN
++ FILETIME ft;
++ /* FILETIME structure is a 64-bit value representing the number of
++ 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5).
++ */
++ double now;
++ GetSystemTimeAsFileTime( &ft );
++ now = ((double)ft.dwHighDateTime) * 4294967296.0;
++ *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5;
++#endif
++#ifdef SQLITE_TEST
++ if( sqlite_current_time ){
++ *prNow = sqlite_current_time/86400.0 + 2440587.5;
++ }
++#endif
++ return 0;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/os.h
+@@ -0,0 +1,191 @@
++/*
++** 2001 September 16
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++******************************************************************************
++**
++** This header file (together with is companion C source-code file
++** "os.c") attempt to abstract the underlying operating system so that
++** the SQLite library will work on both POSIX and windows systems.
++*/
++#ifndef _SQLITE_OS_H_
++#define _SQLITE_OS_H_
++
++/*
++** Helpful hint: To get this to compile on HP/UX, add -D_INCLUDE_POSIX_SOURCE
++** to the compiler command line.
++*/
++
++/*
++** These #defines should enable >2GB file support on Posix if the
++** underlying operating system supports it. If the OS lacks
++** large file support, or if the OS is windows, these should be no-ops.
++**
++** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
++** on the compiler command line. This is necessary if you are compiling
++** on a recent machine (ex: RedHat 7.2) but you want your code to work
++** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
++** without this option, LFS is enable. But LFS does not exist in the kernel
++** in RedHat 6.0, so the code won't work. Hence, for maximum binary
++** portability you should omit LFS.
++**
++** Similar is true for MacOS. LFS is only supported on MacOS 9 and later.
++*/
++#ifndef SQLITE_DISABLE_LFS
++# define _LARGE_FILE 1
++# ifndef _FILE_OFFSET_BITS
++# define _FILE_OFFSET_BITS 64
++# endif
++# define _LARGEFILE_SOURCE 1
++#endif
++
++/*
++** Temporary files are named starting with this prefix followed by 16 random
++** alphanumeric characters, and no file extension. They are stored in the
++** OS's standard temporary file directory, and are deleted prior to exit.
++** If sqlite is being embedded in another program, you may wish to change the
++** prefix to reflect your program's name, so that if your program exits
++** prematurely, old temporary files can be easily identified. This can be done
++** using -DTEMP_FILE_PREFIX=myprefix_ on the compiler command line.
++*/
++#ifndef TEMP_FILE_PREFIX
++# define TEMP_FILE_PREFIX "sqlite_"
++#endif
++
++/*
++** Figure out if we are dealing with Unix, Windows or MacOS.
++**
++** N.B. MacOS means Mac Classic (or Carbon). Treat Darwin (OS X) as Unix.
++** The MacOS build is designed to use CodeWarrior (tested with v8)
++*/
++#ifndef OS_UNIX
++# ifndef OS_WIN
++# ifndef OS_MAC
++# if defined(__MACOS__)
++# define OS_MAC 1
++# define OS_WIN 0
++# define OS_UNIX 0
++# elif defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
++# define OS_MAC 0
++# define OS_WIN 1
++# define OS_UNIX 0
++# else
++# define OS_MAC 0
++# define OS_WIN 0
++# define OS_UNIX 1
++# endif
++# else
++# define OS_WIN 0
++# define OS_UNIX 0
++# endif
++# else
++# define OS_MAC 0
++# define OS_UNIX 0
++# endif
++#else
++# define OS_MAC 0
++# ifndef OS_WIN
++# define OS_WIN 0
++# endif
++#endif
++
++/*
++** A handle for an open file is stored in an OsFile object.
++*/
++#if OS_UNIX
++# include <sys/types.h>
++# include <sys/stat.h>
++# include <fcntl.h>
++# include <unistd.h>
++ typedef struct OsFile OsFile;
++ struct OsFile {
++ struct openCnt *pOpen; /* Info about all open fd's on this inode */
++ struct lockInfo *pLock; /* Info about locks on this inode */
++ int fd; /* The file descriptor */
++ int locked; /* True if this instance holds the lock */
++ int dirfd; /* File descriptor for the directory */
++ };
++# define SQLITE_TEMPNAME_SIZE 200
++# if defined(HAVE_USLEEP) && HAVE_USLEEP
++# define SQLITE_MIN_SLEEP_MS 1
++# else
++# define SQLITE_MIN_SLEEP_MS 1000
++# endif
++#endif
++
++#if OS_WIN
++#include <windows.h>
++#include <winbase.h>
++ typedef struct OsFile OsFile;
++ struct OsFile {
++ HANDLE h; /* Handle for accessing the file */
++ int locked; /* 0: unlocked, <0: write lock, >0: read lock */
++ };
++# if defined(_MSC_VER) || defined(__BORLANDC__)
++ typedef __int64 off_t;
++# else
++# if !defined(_CYGWIN_TYPES_H)
++ typedef long long off_t;
++# if defined(__MINGW32__)
++# define _OFF_T_
++# endif
++# endif
++# endif
++# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50)
++# define SQLITE_MIN_SLEEP_MS 1
++#endif
++
++#if OS_MAC
++# include <unistd.h>
++# include <Files.h>
++ typedef struct OsFile OsFile;
++ struct OsFile {
++ SInt16 refNum; /* Data fork/file reference number */
++ SInt16 refNumRF; /* Resource fork reference number (for locking) */
++ int locked; /* 0: unlocked, <0: write lock, >0: read lock */
++ int delOnClose; /* True if file is to be deleted on close */
++ char *pathToDel; /* Name of file to delete on close */
++ };
++# ifdef _LARGE_FILE
++ typedef SInt64 off_t;
++# else
++ typedef SInt32 off_t;
++# endif
++# define SQLITE_TEMPNAME_SIZE _MAX_PATH
++# define SQLITE_MIN_SLEEP_MS 17
++#endif
++
++int sqliteOsDelete(const char*);
++int sqliteOsFileExists(const char*);
++int sqliteOsFileRename(const char*, const char*);
++int sqliteOsOpenReadWrite(const char*, OsFile*, int*);
++int sqliteOsOpenExclusive(const char*, OsFile*, int);
++int sqliteOsOpenReadOnly(const char*, OsFile*);
++int sqliteOsOpenDirectory(const char*, OsFile*);
++int sqliteOsTempFileName(char*);
++int sqliteOsClose(OsFile*);
++int sqliteOsRead(OsFile*, void*, int amt);
++int sqliteOsWrite(OsFile*, const void*, int amt);
++int sqliteOsSeek(OsFile*, off_t offset);
++int sqliteOsSync(OsFile*);
++int sqliteOsTruncate(OsFile*, off_t size);
++int sqliteOsFileSize(OsFile*, off_t *pSize);
++int sqliteOsReadLock(OsFile*);
++int sqliteOsWriteLock(OsFile*);
++int sqliteOsUnlock(OsFile*);
++int sqliteOsRandomSeed(char*);
++int sqliteOsSleep(int ms);
++int sqliteOsCurrentTime(double*);
++void sqliteOsEnterMutex(void);
++void sqliteOsLeaveMutex(void);
++char *sqliteOsFullPathname(const char*);
++
++
++
++#endif /* _SQLITE_OS_H_ */
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/pager.c
+@@ -0,0 +1,2220 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This is the implementation of the page cache subsystem or "pager".
++**
++** The pager is used to access a database disk file. It implements
++** atomic commit and rollback through the use of a journal file that
++** is separate from the database file. The pager also implements file
++** locking to prevent two processes from writing the same database
++** file simultaneously, or one process from reading the database while
++** another is writing.
++**
++** @(#) $Id$
++*/
++#include "os.h" /* Must be first to enable large file support */
++#include "sqliteInt.h"
++#include "pager.h"
++#include <assert.h>
++#include <string.h>
++
++/*
++** Macros for troubleshooting. Normally turned off
++*/
++#if 0
++static Pager *mainPager = 0;
++#define SET_PAGER(X) if( mainPager==0 ) mainPager = (X)
++#define CLR_PAGER(X) if( mainPager==(X) ) mainPager = 0
++#define TRACE1(X) if( pPager==mainPager ) fprintf(stderr,X)
++#define TRACE2(X,Y) if( pPager==mainPager ) fprintf(stderr,X,Y)
++#define TRACE3(X,Y,Z) if( pPager==mainPager ) fprintf(stderr,X,Y,Z)
++#else
++#define SET_PAGER(X)
++#define CLR_PAGER(X)
++#define TRACE1(X)
++#define TRACE2(X,Y)
++#define TRACE3(X,Y,Z)
++#endif
++
++
++/*
++** The page cache as a whole is always in one of the following
++** states:
++**
++** SQLITE_UNLOCK The page cache is not currently reading or
++** writing the database file. There is no
++** data held in memory. This is the initial
++** state.
++**
++** SQLITE_READLOCK The page cache is reading the database.
++** Writing is not permitted. There can be
++** multiple readers accessing the same database
++** file at the same time.
++**
++** SQLITE_WRITELOCK The page cache is writing the database.
++** Access is exclusive. No other processes or
++** threads can be reading or writing while one
++** process is writing.
++**
++** The page cache comes up in SQLITE_UNLOCK. The first time a
++** sqlite_page_get() occurs, the state transitions to SQLITE_READLOCK.
++** After all pages have been released using sqlite_page_unref(),
++** the state transitions back to SQLITE_UNLOCK. The first time
++** that sqlite_page_write() is called, the state transitions to
++** SQLITE_WRITELOCK. (Note that sqlite_page_write() can only be
++** called on an outstanding page which means that the pager must
++** be in SQLITE_READLOCK before it transitions to SQLITE_WRITELOCK.)
++** The sqlite_page_rollback() and sqlite_page_commit() functions
++** transition the state from SQLITE_WRITELOCK back to SQLITE_READLOCK.
++*/
++#define SQLITE_UNLOCK 0
++#define SQLITE_READLOCK 1
++#define SQLITE_WRITELOCK 2
++
++
++/*
++** Each in-memory image of a page begins with the following header.
++** This header is only visible to this pager module. The client
++** code that calls pager sees only the data that follows the header.
++**
++** Client code should call sqlitepager_write() on a page prior to making
++** any modifications to that page. The first time sqlitepager_write()
++** is called, the original page contents are written into the rollback
++** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
++** the journal page has made it onto the disk surface, PgHdr.needSync
++** is cleared. The modified page cannot be written back into the original
++** database file until the journal pages has been synced to disk and the
++** PgHdr.needSync has been cleared.
++**
++** The PgHdr.dirty flag is set when sqlitepager_write() is called and
++** is cleared again when the page content is written back to the original
++** database file.
++*/
++typedef struct PgHdr PgHdr;
++struct PgHdr {
++ Pager *pPager; /* The pager to which this page belongs */
++ Pgno pgno; /* The page number for this page */
++ PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
++ int nRef; /* Number of users of this page */
++ PgHdr *pNextFree, *pPrevFree; /* Freelist of pages where nRef==0 */
++ PgHdr *pNextAll, *pPrevAll; /* A list of all pages */
++ PgHdr *pNextCkpt, *pPrevCkpt; /* List of pages in the checkpoint journal */
++ u8 inJournal; /* TRUE if has been written to journal */
++ u8 inCkpt; /* TRUE if written to the checkpoint journal */
++ u8 dirty; /* TRUE if we need to write back changes */
++ u8 needSync; /* Sync journal before writing this page */
++ u8 alwaysRollback; /* Disable dont_rollback() for this page */
++ PgHdr *pDirty; /* Dirty pages sorted by PgHdr.pgno */
++ /* SQLITE_PAGE_SIZE bytes of page data follow this header */
++ /* Pager.nExtra bytes of local data follow the page data */
++};
++
++
++/*
++** A macro used for invoking the codec if there is one
++*/
++#ifdef SQLITE_HAS_CODEC
++# define CODEC(P,D,N,X) if( P->xCodec ){ P->xCodec(P->pCodecArg,D,N,X); }
++#else
++# define CODEC(P,D,N,X)
++#endif
++
++/*
++** Convert a pointer to a PgHdr into a pointer to its data
++** and back again.
++*/
++#define PGHDR_TO_DATA(P) ((void*)(&(P)[1]))
++#define DATA_TO_PGHDR(D) (&((PgHdr*)(D))[-1])
++#define PGHDR_TO_EXTRA(P) ((void*)&((char*)(&(P)[1]))[SQLITE_PAGE_SIZE])
++
++/*
++** How big to make the hash table used for locating in-memory pages
++** by page number.
++*/
++#define N_PG_HASH 2048
++
++/*
++** Hash a page number
++*/
++#define pager_hash(PN) ((PN)&(N_PG_HASH-1))
++
++/*
++** A open page cache is an instance of the following structure.
++*/
++struct Pager {
++ char *zFilename; /* Name of the database file */
++ char *zJournal; /* Name of the journal file */
++ char *zDirectory; /* Directory hold database and journal files */
++ OsFile fd, jfd; /* File descriptors for database and journal */
++ OsFile cpfd; /* File descriptor for the checkpoint journal */
++ int dbSize; /* Number of pages in the file */
++ int origDbSize; /* dbSize before the current change */
++ int ckptSize; /* Size of database (in pages) at ckpt_begin() */
++ off_t ckptJSize; /* Size of journal at ckpt_begin() */
++ int nRec; /* Number of pages written to the journal */
++ u32 cksumInit; /* Quasi-random value added to every checksum */
++ int ckptNRec; /* Number of records in the checkpoint journal */
++ int nExtra; /* Add this many bytes to each in-memory page */
++ void (*xDestructor)(void*); /* Call this routine when freeing pages */
++ int nPage; /* Total number of in-memory pages */
++ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
++ int mxPage; /* Maximum number of pages to hold in cache */
++ int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */
++ void (*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
++ void *pCodecArg; /* First argument to xCodec() */
++ u8 journalOpen; /* True if journal file descriptors is valid */
++ u8 journalStarted; /* True if header of journal is synced */
++ u8 useJournal; /* Use a rollback journal on this file */
++ u8 ckptOpen; /* True if the checkpoint journal is open */
++ u8 ckptInUse; /* True we are in a checkpoint */
++ u8 ckptAutoopen; /* Open ckpt journal when main journal is opened*/
++ u8 noSync; /* Do not sync the journal if true */
++ u8 fullSync; /* Do extra syncs of the journal for robustness */
++ u8 state; /* SQLITE_UNLOCK, _READLOCK or _WRITELOCK */
++ u8 errMask; /* One of several kinds of errors */
++ u8 tempFile; /* zFilename is a temporary file */
++ u8 readOnly; /* True for a read-only database */
++ u8 needSync; /* True if an fsync() is needed on the journal */
++ u8 dirtyFile; /* True if database file has changed in any way */
++ u8 alwaysRollback; /* Disable dont_rollback() for all pages */
++ u8 *aInJournal; /* One bit for each page in the database file */
++ u8 *aInCkpt; /* One bit for each page in the database */
++ PgHdr *pFirst, *pLast; /* List of free pages */
++ PgHdr *pFirstSynced; /* First free page with PgHdr.needSync==0 */
++ PgHdr *pAll; /* List of all pages */
++ PgHdr *pCkpt; /* List of pages in the checkpoint journal */
++ PgHdr *aHash[N_PG_HASH]; /* Hash table to map page number of PgHdr */
++};
++
++/*
++** These are bits that can be set in Pager.errMask.
++*/
++#define PAGER_ERR_FULL 0x01 /* a write() failed */
++#define PAGER_ERR_MEM 0x02 /* malloc() failed */
++#define PAGER_ERR_LOCK 0x04 /* error in the locking protocol */
++#define PAGER_ERR_CORRUPT 0x08 /* database or journal corruption */
++#define PAGER_ERR_DISK 0x10 /* general disk I/O error - bad hard drive? */
++
++/*
++** The journal file contains page records in the following
++** format.
++**
++** Actually, this structure is the complete page record for pager
++** formats less than 3. Beginning with format 3, this record is surrounded
++** by two checksums.
++*/
++typedef struct PageRecord PageRecord;
++struct PageRecord {
++ Pgno pgno; /* The page number */
++ char aData[SQLITE_PAGE_SIZE]; /* Original data for page pgno */
++};
++
++/*
++** Journal files begin with the following magic string. The data
++** was obtained from /dev/random. It is used only as a sanity check.
++**
++** There are three journal formats (so far). The 1st journal format writes
++** 32-bit integers in the byte-order of the host machine. New
++** formats writes integers as big-endian. All new journals use the
++** new format, but we have to be able to read an older journal in order
++** to rollback journals created by older versions of the library.
++**
++** The 3rd journal format (added for 2.8.0) adds additional sanity
++** checking information to the journal. If the power fails while the
++** journal is being written, semi-random garbage data might appear in
++** the journal file after power is restored. If an attempt is then made
++** to roll the journal back, the database could be corrupted. The additional
++** sanity checking data is an attempt to discover the garbage in the
++** journal and ignore it.
++**
++** The sanity checking information for the 3rd journal format consists
++** of a 32-bit checksum on each page of data. The checksum covers both
++** the page number and the SQLITE_PAGE_SIZE bytes of data for the page.
++** This cksum is initialized to a 32-bit random value that appears in the
++** journal file right after the header. The random initializer is important,
++** because garbage data that appears at the end of a journal is likely
++** data that was once in other files that have now been deleted. If the
++** garbage data came from an obsolete journal file, the checksums might
++** be correct. But by initializing the checksum to random value which
++** is different for every journal, we minimize that risk.
++*/
++static const unsigned char aJournalMagic1[] = {
++ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd4,
++};
++static const unsigned char aJournalMagic2[] = {
++ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd5,
++};
++static const unsigned char aJournalMagic3[] = {
++ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd6,
++};
++#define JOURNAL_FORMAT_1 1
++#define JOURNAL_FORMAT_2 2
++#define JOURNAL_FORMAT_3 3
++
++/*
++** The following integer determines what format to use when creating
++** new primary journal files. By default we always use format 3.
++** When testing, we can set this value to older journal formats in order to
++** make sure that newer versions of the library are able to rollback older
++** journal files.
++**
++** Note that checkpoint journals always use format 2 and omit the header.
++*/
++#ifdef SQLITE_TEST
++int journal_format = 3;
++#else
++# define journal_format 3
++#endif
++
++/*
++** The size of the header and of each page in the journal varies according
++** to which journal format is being used. The following macros figure out
++** the sizes based on format numbers.
++*/
++#define JOURNAL_HDR_SZ(X) \
++ (sizeof(aJournalMagic1) + sizeof(Pgno) + ((X)>=3)*2*sizeof(u32))
++#define JOURNAL_PG_SZ(X) \
++ (SQLITE_PAGE_SIZE + sizeof(Pgno) + ((X)>=3)*sizeof(u32))
++
++/*
++** Enable reference count tracking here:
++*/
++#ifdef SQLITE_TEST
++ int pager_refinfo_enable = 0;
++ static void pager_refinfo(PgHdr *p){
++ static int cnt = 0;
++ if( !pager_refinfo_enable ) return;
++ printf(
++ "REFCNT: %4d addr=0x%08x nRef=%d\n",
++ p->pgno, (int)PGHDR_TO_DATA(p), p->nRef
++ );
++ cnt++; /* Something to set a breakpoint on */
++ }
++# define REFINFO(X) pager_refinfo(X)
++#else
++# define REFINFO(X)
++#endif
++
++/*
++** Read a 32-bit integer from the given file descriptor. Store the integer
++** that is read in *pRes. Return SQLITE_OK if everything worked, or an
++** error code is something goes wrong.
++**
++** If the journal format is 2 or 3, read a big-endian integer. If the
++** journal format is 1, read an integer in the native byte-order of the
++** host machine.
++*/
++static int read32bits(int format, OsFile *fd, u32 *pRes){
++ u32 res;
++ int rc;
++ rc = sqliteOsRead(fd, &res, sizeof(res));
++ if( rc==SQLITE_OK && format>JOURNAL_FORMAT_1 ){
++ unsigned char ac[4];
++ memcpy(ac, &res, 4);
++ res = (ac[0]<<24) | (ac[1]<<16) | (ac[2]<<8) | ac[3];
++ }
++ *pRes = res;
++ return rc;
++}
++
++/*
++** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
++** on success or an error code is something goes wrong.
++**
++** If the journal format is 2 or 3, write the integer as 4 big-endian
++** bytes. If the journal format is 1, write the integer in the native
++** byte order. In normal operation, only formats 2 and 3 are used.
++** Journal format 1 is only used for testing.
++*/
++static int write32bits(OsFile *fd, u32 val){
++ unsigned char ac[4];
++ if( journal_format<=1 ){
++ return sqliteOsWrite(fd, &val, 4);
++ }
++ ac[0] = (val>>24) & 0xff;
++ ac[1] = (val>>16) & 0xff;
++ ac[2] = (val>>8) & 0xff;
++ ac[3] = val & 0xff;
++ return sqliteOsWrite(fd, ac, 4);
++}
++
++/*
++** Write a 32-bit integer into a page header right before the
++** page data. This will overwrite the PgHdr.pDirty pointer.
++**
++** The integer is big-endian for formats 2 and 3 and native byte order
++** for journal format 1.
++*/
++static void store32bits(u32 val, PgHdr *p, int offset){
++ unsigned char *ac;
++ ac = &((unsigned char*)PGHDR_TO_DATA(p))[offset];
++ if( journal_format<=1 ){
++ memcpy(ac, &val, 4);
++ }else{
++ ac[0] = (val>>24) & 0xff;
++ ac[1] = (val>>16) & 0xff;
++ ac[2] = (val>>8) & 0xff;
++ ac[3] = val & 0xff;
++ }
++}
++
++
++/*
++** Convert the bits in the pPager->errMask into an approprate
++** return code.
++*/
++static int pager_errcode(Pager *pPager){
++ int rc = SQLITE_OK;
++ if( pPager->errMask & PAGER_ERR_LOCK ) rc = SQLITE_PROTOCOL;
++ if( pPager->errMask & PAGER_ERR_DISK ) rc = SQLITE_IOERR;
++ if( pPager->errMask & PAGER_ERR_FULL ) rc = SQLITE_FULL;
++ if( pPager->errMask & PAGER_ERR_MEM ) rc = SQLITE_NOMEM;
++ if( pPager->errMask & PAGER_ERR_CORRUPT ) rc = SQLITE_CORRUPT;
++ return rc;
++}
++
++/*
++** Add or remove a page from the list of all pages that are in the
++** checkpoint journal.
++**
++** The Pager keeps a separate list of pages that are currently in
++** the checkpoint journal. This helps the sqlitepager_ckpt_commit()
++** routine run MUCH faster for the common case where there are many
++** pages in memory but only a few are in the checkpoint journal.
++*/
++static void page_add_to_ckpt_list(PgHdr *pPg){
++ Pager *pPager = pPg->pPager;
++ if( pPg->inCkpt ) return;
++ assert( pPg->pPrevCkpt==0 && pPg->pNextCkpt==0 );
++ pPg->pPrevCkpt = 0;
++ if( pPager->pCkpt ){
++ pPager->pCkpt->pPrevCkpt = pPg;
++ }
++ pPg->pNextCkpt = pPager->pCkpt;
++ pPager->pCkpt = pPg;
++ pPg->inCkpt = 1;
++}
++static void page_remove_from_ckpt_list(PgHdr *pPg){
++ if( !pPg->inCkpt ) return;
++ if( pPg->pPrevCkpt ){
++ assert( pPg->pPrevCkpt->pNextCkpt==pPg );
++ pPg->pPrevCkpt->pNextCkpt = pPg->pNextCkpt;
++ }else{
++ assert( pPg->pPager->pCkpt==pPg );
++ pPg->pPager->pCkpt = pPg->pNextCkpt;
++ }
++ if( pPg->pNextCkpt ){
++ assert( pPg->pNextCkpt->pPrevCkpt==pPg );
++ pPg->pNextCkpt->pPrevCkpt = pPg->pPrevCkpt;
++ }
++ pPg->pNextCkpt = 0;
++ pPg->pPrevCkpt = 0;
++ pPg->inCkpt = 0;
++}
++
++/*
++** Find a page in the hash table given its page number. Return
++** a pointer to the page or NULL if not found.
++*/
++static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
++ PgHdr *p = pPager->aHash[pager_hash(pgno)];
++ while( p && p->pgno!=pgno ){
++ p = p->pNextHash;
++ }
++ return p;
++}
++
++/*
++** Unlock the database and clear the in-memory cache. This routine
++** sets the state of the pager back to what it was when it was first
++** opened. Any outstanding pages are invalidated and subsequent attempts
++** to access those pages will likely result in a coredump.
++*/
++static void pager_reset(Pager *pPager){
++ PgHdr *pPg, *pNext;
++ for(pPg=pPager->pAll; pPg; pPg=pNext){
++ pNext = pPg->pNextAll;
++ sqliteFree(pPg);
++ }
++ pPager->pFirst = 0;
++ pPager->pFirstSynced = 0;
++ pPager->pLast = 0;
++ pPager->pAll = 0;
++ memset(pPager->aHash, 0, sizeof(pPager->aHash));
++ pPager->nPage = 0;
++ if( pPager->state>=SQLITE_WRITELOCK ){
++ sqlitepager_rollback(pPager);
++ }
++ sqliteOsUnlock(&pPager->fd);
++ pPager->state = SQLITE_UNLOCK;
++ pPager->dbSize = -1;
++ pPager->nRef = 0;
++ assert( pPager->journalOpen==0 );
++}
++
++/*
++** When this routine is called, the pager has the journal file open and
++** a write lock on the database. This routine releases the database
++** write lock and acquires a read lock in its place. The journal file
++** is deleted and closed.
++**
++** TODO: Consider keeping the journal file open for temporary databases.
++** This might give a performance improvement on windows where opening
++** a file is an expensive operation.
++*/
++static int pager_unwritelock(Pager *pPager){
++ int rc;
++ PgHdr *pPg;
++ if( pPager->state<SQLITE_WRITELOCK ) return SQLITE_OK;
++ sqlitepager_ckpt_commit(pPager);
++ if( pPager->ckptOpen ){
++ sqliteOsClose(&pPager->cpfd);
++ pPager->ckptOpen = 0;
++ }
++ if( pPager->journalOpen ){
++ sqliteOsClose(&pPager->jfd);
++ pPager->journalOpen = 0;
++ sqliteOsDelete(pPager->zJournal);
++ sqliteFree( pPager->aInJournal );
++ pPager->aInJournal = 0;
++ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
++ pPg->inJournal = 0;
++ pPg->dirty = 0;
++ pPg->needSync = 0;
++ }
++ }else{
++ assert( pPager->dirtyFile==0 || pPager->useJournal==0 );
++ }
++ rc = sqliteOsReadLock(&pPager->fd);
++ if( rc==SQLITE_OK ){
++ pPager->state = SQLITE_READLOCK;
++ }else{
++ /* This can only happen if a process does a BEGIN, then forks and the
++ ** child process does the COMMIT. Because of the semantics of unix
++ ** file locking, the unlock will fail.
++ */
++ pPager->state = SQLITE_UNLOCK;
++ }
++ return rc;
++}
++
++/*
++** Compute and return a checksum for the page of data.
++**
++** This is not a real checksum. It is really just the sum of the
++** random initial value and the page number. We considered do a checksum
++** of the database, but that was found to be too slow.
++*/
++static u32 pager_cksum(Pager *pPager, Pgno pgno, const char *aData){
++ u32 cksum = pPager->cksumInit + pgno;
++ return cksum;
++}
++
++/*
++** Read a single page from the journal file opened on file descriptor
++** jfd. Playback this one page.
++**
++** There are three different journal formats. The format parameter determines
++** which format is used by the journal that is played back.
++*/
++static int pager_playback_one_page(Pager *pPager, OsFile *jfd, int format){
++ int rc;
++ PgHdr *pPg; /* An existing page in the cache */
++ PageRecord pgRec;
++ u32 cksum;
++
++ rc = read32bits(format, jfd, &pgRec.pgno);
++ if( rc!=SQLITE_OK ) return rc;
++ rc = sqliteOsRead(jfd, &pgRec.aData, sizeof(pgRec.aData));
++ if( rc!=SQLITE_OK ) return rc;
++
++ /* Sanity checking on the page. This is more important that I originally
++ ** thought. If a power failure occurs while the journal is being written,
++ ** it could cause invalid data to be written into the journal. We need to
++ ** detect this invalid data (with high probability) and ignore it.
++ */
++ if( pgRec.pgno==0 ){
++ return SQLITE_DONE;
++ }
++ if( pgRec.pgno>(unsigned)pPager->dbSize ){
++ return SQLITE_OK;
++ }
++ if( format>=JOURNAL_FORMAT_3 ){
++ rc = read32bits(format, jfd, &cksum);
++ if( rc ) return rc;
++ if( pager_cksum(pPager, pgRec.pgno, pgRec.aData)!=cksum ){
++ return SQLITE_DONE;
++ }
++ }
++
++ /* Playback the page. Update the in-memory copy of the page
++ ** at the same time, if there is one.
++ */
++ pPg = pager_lookup(pPager, pgRec.pgno);
++ TRACE2("PLAYBACK %d\n", pgRec.pgno);
++ sqliteOsSeek(&pPager->fd, (pgRec.pgno-1)*(off_t)SQLITE_PAGE_SIZE);
++ rc = sqliteOsWrite(&pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE);
++ if( pPg ){
++ /* No page should ever be rolled back that is in use, except for page
++ ** 1 which is held in use in order to keep the lock on the database
++ ** active.
++ */
++ assert( pPg->nRef==0 || pPg->pgno==1 );
++ memcpy(PGHDR_TO_DATA(pPg), pgRec.aData, SQLITE_PAGE_SIZE);
++ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
++ pPg->dirty = 0;
++ pPg->needSync = 0;
++ CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
++ }
++ return rc;
++}
++
++/*
++** Playback the journal and thus restore the database file to
++** the state it was in before we started making changes.
++**
++** The journal file format is as follows:
++**
++** * 8 byte prefix. One of the aJournalMagic123 vectors defined
++** above. The format of the journal file is determined by which
++** of the three prefix vectors is seen.
++** * 4 byte big-endian integer which is the number of valid page records
++** in the journal. If this value is 0xffffffff, then compute the
++** number of page records from the journal size. This field appears
++** in format 3 only.
++** * 4 byte big-endian integer which is the initial value for the
++** sanity checksum. This field appears in format 3 only.
++** * 4 byte integer which is the number of pages to truncate the
++** database to during a rollback.
++** * Zero or more pages instances, each as follows:
++** + 4 byte page number.
++** + SQLITE_PAGE_SIZE bytes of data.
++** + 4 byte checksum (format 3 only)
++**
++** When we speak of the journal header, we mean the first 4 bullets above.
++** Each entry in the journal is an instance of the 5th bullet. Note that
++** bullets 2 and 3 only appear in format-3 journals.
++**
++** Call the value from the second bullet "nRec". nRec is the number of
++** valid page entries in the journal. In most cases, you can compute the
++** value of nRec from the size of the journal file. But if a power
++** failure occurred while the journal was being written, it could be the
++** case that the size of the journal file had already been increased but
++** the extra entries had not yet made it safely to disk. In such a case,
++** the value of nRec computed from the file size would be too large. For
++** that reason, we always use the nRec value in the header.
++**
++** If the nRec value is 0xffffffff it means that nRec should be computed
++** from the file size. This value is used when the user selects the
++** no-sync option for the journal. A power failure could lead to corruption
++** in this case. But for things like temporary table (which will be
++** deleted when the power is restored) we don't care.
++**
++** Journal formats 1 and 2 do not have an nRec value in the header so we
++** have to compute nRec from the file size. This has risks (as described
++** above) which is why all persistent tables have been changed to use
++** format 3.
++**
++** If the file opened as the journal file is not a well-formed
++** journal file then the database will likely already be
++** corrupted, so the PAGER_ERR_CORRUPT bit is set in pPager->errMask
++** and SQLITE_CORRUPT is returned. If it all works, then this routine
++** returns SQLITE_OK.
++*/
++static int pager_playback(Pager *pPager, int useJournalSize){
++ off_t szJ; /* Size of the journal file in bytes */
++ int nRec; /* Number of Records in the journal */
++ int i; /* Loop counter */
++ Pgno mxPg = 0; /* Size of the original file in pages */
++ int format; /* Format of the journal file. */
++ unsigned char aMagic[sizeof(aJournalMagic1)];
++ int rc;
++
++ /* Figure out how many records are in the journal. Abort early if
++ ** the journal is empty.
++ */
++ assert( pPager->journalOpen );
++ sqliteOsSeek(&pPager->jfd, 0);
++ rc = sqliteOsFileSize(&pPager->jfd, &szJ);
++ if( rc!=SQLITE_OK ){
++ goto end_playback;
++ }
++
++ /* If the journal file is too small to contain a complete header,
++ ** it must mean that the process that created the journal was just
++ ** beginning to write the journal file when it died. In that case,
++ ** the database file should have still been completely unchanged.
++ ** Nothing needs to be rolled back. We can safely ignore this journal.
++ */
++ if( szJ < sizeof(aMagic)+sizeof(Pgno) ){
++ goto end_playback;
++ }
++
++ /* Read the beginning of the journal and truncate the
++ ** database file back to its original size.
++ */
++ rc = sqliteOsRead(&pPager->jfd, aMagic, sizeof(aMagic));
++ if( rc!=SQLITE_OK ){
++ rc = SQLITE_PROTOCOL;
++ goto end_playback;
++ }
++ if( memcmp(aMagic, aJournalMagic3, sizeof(aMagic))==0 ){
++ format = JOURNAL_FORMAT_3;
++ }else if( memcmp(aMagic, aJournalMagic2, sizeof(aMagic))==0 ){
++ format = JOURNAL_FORMAT_2;
++ }else if( memcmp(aMagic, aJournalMagic1, sizeof(aMagic))==0 ){
++ format = JOURNAL_FORMAT_1;
++ }else{
++ rc = SQLITE_PROTOCOL;
++ goto end_playback;
++ }
++ if( format>=JOURNAL_FORMAT_3 ){
++ if( szJ < sizeof(aMagic) + 3*sizeof(u32) ){
++ /* Ignore the journal if it is too small to contain a complete
++ ** header. We already did this test once above, but at the prior
++ ** test, we did not know the journal format and so we had to assume
++ ** the smallest possible header. Now we know the header is bigger
++ ** than the minimum so we test again.
++ */
++ goto end_playback;
++ }
++ rc = read32bits(format, &pPager->jfd, (u32*)&nRec);
++ if( rc ) goto end_playback;
++ rc = read32bits(format, &pPager->jfd, &pPager->cksumInit);
++ if( rc ) goto end_playback;
++ if( nRec==0xffffffff || useJournalSize ){
++ nRec = (szJ - JOURNAL_HDR_SZ(3))/JOURNAL_PG_SZ(3);
++ }
++ }else{
++ nRec = (szJ - JOURNAL_HDR_SZ(2))/JOURNAL_PG_SZ(2);
++ assert( nRec*JOURNAL_PG_SZ(2)+JOURNAL_HDR_SZ(2)==szJ );
++ }
++ rc = read32bits(format, &pPager->jfd, &mxPg);
++ if( rc!=SQLITE_OK ){
++ goto end_playback;
++ }
++ assert( pPager->origDbSize==0 || pPager->origDbSize==mxPg );
++ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)mxPg);
++ if( rc!=SQLITE_OK ){
++ goto end_playback;
++ }
++ pPager->dbSize = mxPg;
++
++ /* Copy original pages out of the journal and back into the database file.
++ */
++ for(i=0; i<nRec; i++){
++ rc = pager_playback_one_page(pPager, &pPager->jfd, format);
++ if( rc!=SQLITE_OK ){
++ if( rc==SQLITE_DONE ){
++ rc = SQLITE_OK;
++ }
++ break;
++ }
++ }
++
++ /* Pages that have been written to the journal but never synced
++ ** where not restored by the loop above. We have to restore those
++ ** pages by reading them back from the original database.
++ */
++ if( rc==SQLITE_OK ){
++ PgHdr *pPg;
++ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
++ char zBuf[SQLITE_PAGE_SIZE];
++ if( !pPg->dirty ) continue;
++ if( (int)pPg->pgno <= pPager->origDbSize ){
++ sqliteOsSeek(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)(pPg->pgno-1));
++ rc = sqliteOsRead(&pPager->fd, zBuf, SQLITE_PAGE_SIZE);
++ TRACE2("REFETCH %d\n", pPg->pgno);
++ CODEC(pPager, zBuf, pPg->pgno, 2);
++ if( rc ) break;
++ }else{
++ memset(zBuf, 0, SQLITE_PAGE_SIZE);
++ }
++ if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE) ){
++ memcpy(PGHDR_TO_DATA(pPg), zBuf, SQLITE_PAGE_SIZE);
++ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
++ }
++ pPg->needSync = 0;
++ pPg->dirty = 0;
++ }
++ }
++
++end_playback:
++ if( rc!=SQLITE_OK ){
++ pager_unwritelock(pPager);
++ pPager->errMask |= PAGER_ERR_CORRUPT;
++ rc = SQLITE_CORRUPT;
++ }else{
++ rc = pager_unwritelock(pPager);
++ }
++ return rc;
++}
++
++/*
++** Playback the checkpoint journal.
++**
++** This is similar to playing back the transaction journal but with
++** a few extra twists.
++**
++** (1) The number of pages in the database file at the start of
++** the checkpoint is stored in pPager->ckptSize, not in the
++** journal file itself.
++**
++** (2) In addition to playing back the checkpoint journal, also
++** playback all pages of the transaction journal beginning
++** at offset pPager->ckptJSize.
++*/
++static int pager_ckpt_playback(Pager *pPager){
++ off_t szJ; /* Size of the full journal */
++ int nRec; /* Number of Records */
++ int i; /* Loop counter */
++ int rc;
++
++ /* Truncate the database back to its original size.
++ */
++ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)pPager->ckptSize);
++ pPager->dbSize = pPager->ckptSize;
++
++ /* Figure out how many records are in the checkpoint journal.
++ */
++ assert( pPager->ckptInUse && pPager->journalOpen );
++ sqliteOsSeek(&pPager->cpfd, 0);
++ nRec = pPager->ckptNRec;
++
++ /* Copy original pages out of the checkpoint journal and back into the
++ ** database file. Note that the checkpoint journal always uses format
++ ** 2 instead of format 3 since it does not need to be concerned with
++ ** power failures corrupting the journal and can thus omit the checksums.
++ */
++ for(i=nRec-1; i>=0; i--){
++ rc = pager_playback_one_page(pPager, &pPager->cpfd, 2);
++ assert( rc!=SQLITE_DONE );
++ if( rc!=SQLITE_OK ) goto end_ckpt_playback;
++ }
++
++ /* Figure out how many pages need to be copied out of the transaction
++ ** journal.
++ */
++ rc = sqliteOsSeek(&pPager->jfd, pPager->ckptJSize);
++ if( rc!=SQLITE_OK ){
++ goto end_ckpt_playback;
++ }
++ rc = sqliteOsFileSize(&pPager->jfd, &szJ);
++ if( rc!=SQLITE_OK ){
++ goto end_ckpt_playback;
++ }
++ nRec = (szJ - pPager->ckptJSize)/JOURNAL_PG_SZ(journal_format);
++ for(i=nRec-1; i>=0; i--){
++ rc = pager_playback_one_page(pPager, &pPager->jfd, journal_format);
++ if( rc!=SQLITE_OK ){
++ assert( rc!=SQLITE_DONE );
++ goto end_ckpt_playback;
++ }
++ }
++
++end_ckpt_playback:
++ if( rc!=SQLITE_OK ){
++ pPager->errMask |= PAGER_ERR_CORRUPT;
++ rc = SQLITE_CORRUPT;
++ }
++ return rc;
++}
++
++/*
++** Change the maximum number of in-memory pages that are allowed.
++**
++** The maximum number is the absolute value of the mxPage parameter.
++** If mxPage is negative, the noSync flag is also set. noSync bypasses
++** calls to sqliteOsSync(). The pager runs much faster with noSync on,
++** but if the operating system crashes or there is an abrupt power
++** failure, the database file might be left in an inconsistent and
++** unrepairable state.
++*/
++void sqlitepager_set_cachesize(Pager *pPager, int mxPage){
++ if( mxPage>=0 ){
++ pPager->noSync = pPager->tempFile;
++ if( pPager->noSync==0 ) pPager->needSync = 0;
++ }else{
++ pPager->noSync = 1;
++ mxPage = -mxPage;
++ }
++ if( mxPage>10 ){
++ pPager->mxPage = mxPage;
++ }
++}
++
++/*
++** Adjust the robustness of the database to damage due to OS crashes
++** or power failures by changing the number of syncs()s when writing
++** the rollback journal. There are three levels:
++**
++** OFF sqliteOsSync() is never called. This is the default
++** for temporary and transient files.
++**
++** NORMAL The journal is synced once before writes begin on the
++** database. This is normally adequate protection, but
++** it is theoretically possible, though very unlikely,
++** that an inopertune power failure could leave the journal
++** in a state which would cause damage to the database
++** when it is rolled back.
++**
++** FULL The journal is synced twice before writes begin on the
++** database (with some additional information - the nRec field
++** of the journal header - being written in between the two
++** syncs). If we assume that writing a
++** single disk sector is atomic, then this mode provides
++** assurance that the journal will not be corrupted to the
++** point of causing damage to the database during rollback.
++**
++** Numeric values associated with these states are OFF==1, NORMAL=2,
++** and FULL=3.
++*/
++void sqlitepager_set_safety_level(Pager *pPager, int level){
++ pPager->noSync = level==1 || pPager->tempFile;
++ pPager->fullSync = level==3 && !pPager->tempFile;
++ if( pPager->noSync==0 ) pPager->needSync = 0;
++}
++
++/*
++** Open a temporary file. Write the name of the file into zName
++** (zName must be at least SQLITE_TEMPNAME_SIZE bytes long.) Write
++** the file descriptor into *fd. Return SQLITE_OK on success or some
++** other error code if we fail.
++**
++** The OS will automatically delete the temporary file when it is
++** closed.
++*/
++static int sqlitepager_opentemp(char *zFile, OsFile *fd){
++ int cnt = 8;
++ int rc;
++ do{
++ cnt--;
++ sqliteOsTempFileName(zFile);
++ rc = sqliteOsOpenExclusive(zFile, fd, 1);
++ }while( cnt>0 && rc!=SQLITE_OK );
++ return rc;
++}
++
++/*
++** Create a new page cache and put a pointer to the page cache in *ppPager.
++** The file to be cached need not exist. The file is not locked until
++** the first call to sqlitepager_get() and is only held open until the
++** last page is released using sqlitepager_unref().
++**
++** If zFilename is NULL then a randomly-named temporary file is created
++** and used as the file to be cached. The file will be deleted
++** automatically when it is closed.
++*/
++int sqlitepager_open(
++ Pager **ppPager, /* Return the Pager structure here */
++ const char *zFilename, /* Name of the database file to open */
++ int mxPage, /* Max number of in-memory cache pages */
++ int nExtra, /* Extra bytes append to each in-memory page */
++ int useJournal /* TRUE to use a rollback journal on this file */
++){
++ Pager *pPager;
++ char *zFullPathname;
++ int nameLen;
++ OsFile fd;
++ int rc, i;
++ int tempFile;
++ int readOnly = 0;
++ char zTemp[SQLITE_TEMPNAME_SIZE];
++
++ *ppPager = 0;
++ if( sqlite_malloc_failed ){
++ return SQLITE_NOMEM;
++ }
++ if( zFilename && zFilename[0] ){
++ zFullPathname = sqliteOsFullPathname(zFilename);
++ rc = sqliteOsOpenReadWrite(zFullPathname, &fd, &readOnly);
++ tempFile = 0;
++ }else{
++ rc = sqlitepager_opentemp(zTemp, &fd);
++ zFilename = zTemp;
++ zFullPathname = sqliteOsFullPathname(zFilename);
++ tempFile = 1;
++ }
++ if( sqlite_malloc_failed ){
++ return SQLITE_NOMEM;
++ }
++ if( rc!=SQLITE_OK ){
++ sqliteFree(zFullPathname);
++ return SQLITE_CANTOPEN;
++ }
++ nameLen = strlen(zFullPathname);
++ pPager = sqliteMalloc( sizeof(*pPager) + nameLen*3 + 30 );
++ if( pPager==0 ){
++ sqliteOsClose(&fd);
++ sqliteFree(zFullPathname);
++ return SQLITE_NOMEM;
++ }
++ SET_PAGER(pPager);
++ pPager->zFilename = (char*)&pPager[1];
++ pPager->zDirectory = &pPager->zFilename[nameLen+1];
++ pPager->zJournal = &pPager->zDirectory[nameLen+1];
++ strcpy(pPager->zFilename, zFullPathname);
++ strcpy(pPager->zDirectory, zFullPathname);
++ for(i=nameLen; i>0 && pPager->zDirectory[i-1]!='/'; i--){}
++ if( i>0 ) pPager->zDirectory[i-1] = 0;
++ strcpy(pPager->zJournal, zFullPathname);
++ sqliteFree(zFullPathname);
++ strcpy(&pPager->zJournal[nameLen], "-journal");
++ pPager->fd = fd;
++ pPager->journalOpen = 0;
++ pPager->useJournal = useJournal;
++ pPager->ckptOpen = 0;
++ pPager->ckptInUse = 0;
++ pPager->nRef = 0;
++ pPager->dbSize = -1;
++ pPager->ckptSize = 0;
++ pPager->ckptJSize = 0;
++ pPager->nPage = 0;
++ pPager->mxPage = mxPage>5 ? mxPage : 10;
++ pPager->state = SQLITE_UNLOCK;
++ pPager->errMask = 0;
++ pPager->tempFile = tempFile;
++ pPager->readOnly = readOnly;
++ pPager->needSync = 0;
++ pPager->noSync = pPager->tempFile || !useJournal;
++ pPager->pFirst = 0;
++ pPager->pFirstSynced = 0;
++ pPager->pLast = 0;
++ pPager->nExtra = nExtra;
++ memset(pPager->aHash, 0, sizeof(pPager->aHash));
++ *ppPager = pPager;
++ return SQLITE_OK;
++}
++
++/*
++** Set the destructor for this pager. If not NULL, the destructor is called
++** when the reference count on each page reaches zero. The destructor can
++** be used to clean up information in the extra segment appended to each page.
++**
++** The destructor is not called as a result sqlitepager_close().
++** Destructors are only called by sqlitepager_unref().
++*/
++void sqlitepager_set_destructor(Pager *pPager, void (*xDesc)(void*)){
++ pPager->xDestructor = xDesc;
++}
++
++/*
++** Return the total number of pages in the disk file associated with
++** pPager.
++*/
++int sqlitepager_pagecount(Pager *pPager){
++ off_t n;
++ assert( pPager!=0 );
++ if( pPager->dbSize>=0 ){
++ return pPager->dbSize;
++ }
++ if( sqliteOsFileSize(&pPager->fd, &n)!=SQLITE_OK ){
++ pPager->errMask |= PAGER_ERR_DISK;
++ return 0;
++ }
++ n /= SQLITE_PAGE_SIZE;
++ if( pPager->state!=SQLITE_UNLOCK ){
++ pPager->dbSize = n;
++ }
++ return n;
++}
++
++/*
++** Forward declaration
++*/
++static int syncJournal(Pager*);
++
++/*
++** Truncate the file to the number of pages specified.
++*/
++int sqlitepager_truncate(Pager *pPager, Pgno nPage){
++ int rc;
++ if( pPager->dbSize<0 ){
++ sqlitepager_pagecount(pPager);
++ }
++ if( pPager->errMask!=0 ){
++ rc = pager_errcode(pPager);
++ return rc;
++ }
++ if( nPage>=(unsigned)pPager->dbSize ){
++ return SQLITE_OK;
++ }
++ syncJournal(pPager);
++ rc = sqliteOsTruncate(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)nPage);
++ if( rc==SQLITE_OK ){
++ pPager->dbSize = nPage;
++ }
++ return rc;
++}
++
++/*
++** Shutdown the page cache. Free all memory and close all files.
++**
++** If a transaction was in progress when this routine is called, that
++** transaction is rolled back. All outstanding pages are invalidated
++** and their memory is freed. Any attempt to use a page associated
++** with this page cache after this function returns will likely
++** result in a coredump.
++*/
++int sqlitepager_close(Pager *pPager){
++ PgHdr *pPg, *pNext;
++ switch( pPager->state ){
++ case SQLITE_WRITELOCK: {
++ sqlitepager_rollback(pPager);
++ sqliteOsUnlock(&pPager->fd);
++ assert( pPager->journalOpen==0 );
++ break;
++ }
++ case SQLITE_READLOCK: {
++ sqliteOsUnlock(&pPager->fd);
++ break;
++ }
++ default: {
++ /* Do nothing */
++ break;
++ }
++ }
++ for(pPg=pPager->pAll; pPg; pPg=pNext){
++ pNext = pPg->pNextAll;
++ sqliteFree(pPg);
++ }
++ sqliteOsClose(&pPager->fd);
++ assert( pPager->journalOpen==0 );
++ /* Temp files are automatically deleted by the OS
++ ** if( pPager->tempFile ){
++ ** sqliteOsDelete(pPager->zFilename);
++ ** }
++ */
++ CLR_PAGER(pPager);
++ if( pPager->zFilename!=(char*)&pPager[1] ){
++ assert( 0 ); /* Cannot happen */
++ sqliteFree(pPager->zFilename);
++ sqliteFree(pPager->zJournal);
++ sqliteFree(pPager->zDirectory);
++ }
++ sqliteFree(pPager);
++ return SQLITE_OK;
++}
++
++/*
++** Return the page number for the given page data.
++*/
++Pgno sqlitepager_pagenumber(void *pData){
++ PgHdr *p = DATA_TO_PGHDR(pData);
++ return p->pgno;
++}
++
++/*
++** Increment the reference count for a page. If the page is
++** currently on the freelist (the reference count is zero) then
++** remove it from the freelist.
++*/
++#define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
++static void _page_ref(PgHdr *pPg){
++ if( pPg->nRef==0 ){
++ /* The page is currently on the freelist. Remove it. */
++ if( pPg==pPg->pPager->pFirstSynced ){
++ PgHdr *p = pPg->pNextFree;
++ while( p && p->needSync ){ p = p->pNextFree; }
++ pPg->pPager->pFirstSynced = p;
++ }
++ if( pPg->pPrevFree ){
++ pPg->pPrevFree->pNextFree = pPg->pNextFree;
++ }else{
++ pPg->pPager->pFirst = pPg->pNextFree;
++ }
++ if( pPg->pNextFree ){
++ pPg->pNextFree->pPrevFree = pPg->pPrevFree;
++ }else{
++ pPg->pPager->pLast = pPg->pPrevFree;
++ }
++ pPg->pPager->nRef++;
++ }
++ pPg->nRef++;
++ REFINFO(pPg);
++}
++
++/*
++** Increment the reference count for a page. The input pointer is
++** a reference to the page data.
++*/
++int sqlitepager_ref(void *pData){
++ PgHdr *pPg = DATA_TO_PGHDR(pData);
++ page_ref(pPg);
++ return SQLITE_OK;
++}
++
++/*
++** Sync the journal. In other words, make sure all the pages that have
++** been written to the journal have actually reached the surface of the
++** disk. It is not safe to modify the original database file until after
++** the journal has been synced. If the original database is modified before
++** the journal is synced and a power failure occurs, the unsynced journal
++** data would be lost and we would be unable to completely rollback the
++** database changes. Database corruption would occur.
++**
++** This routine also updates the nRec field in the header of the journal.
++** (See comments on the pager_playback() routine for additional information.)
++** If the sync mode is FULL, two syncs will occur. First the whole journal
++** is synced, then the nRec field is updated, then a second sync occurs.
++**
++** For temporary databases, we do not care if we are able to rollback
++** after a power failure, so sync occurs.
++**
++** This routine clears the needSync field of every page current held in
++** memory.
++*/
++static int syncJournal(Pager *pPager){
++ PgHdr *pPg;
++ int rc = SQLITE_OK;
++
++ /* Sync the journal before modifying the main database
++ ** (assuming there is a journal and it needs to be synced.)
++ */
++ if( pPager->needSync ){
++ if( !pPager->tempFile ){
++ assert( pPager->journalOpen );
++ /* assert( !pPager->noSync ); // noSync might be set if synchronous
++ ** was turned off after the transaction was started. Ticket #615 */
++#ifndef NDEBUG
++ {
++ /* Make sure the pPager->nRec counter we are keeping agrees
++ ** with the nRec computed from the size of the journal file.
++ */
++ off_t hdrSz, pgSz, jSz;
++ hdrSz = JOURNAL_HDR_SZ(journal_format);
++ pgSz = JOURNAL_PG_SZ(journal_format);
++ rc = sqliteOsFileSize(&pPager->jfd, &jSz);
++ if( rc!=0 ) return rc;
++ assert( pPager->nRec*pgSz+hdrSz==jSz );
++ }
++#endif
++ if( journal_format>=3 ){
++ /* Write the nRec value into the journal file header */
++ off_t szJ;
++ if( pPager->fullSync ){
++ TRACE1("SYNC\n");
++ rc = sqliteOsSync(&pPager->jfd);
++ if( rc!=0 ) return rc;
++ }
++ sqliteOsSeek(&pPager->jfd, sizeof(aJournalMagic1));
++ rc = write32bits(&pPager->jfd, pPager->nRec);
++ if( rc ) return rc;
++ szJ = JOURNAL_HDR_SZ(journal_format) +
++ pPager->nRec*JOURNAL_PG_SZ(journal_format);
++ sqliteOsSeek(&pPager->jfd, szJ);
++ }
++ TRACE1("SYNC\n");
++ rc = sqliteOsSync(&pPager->jfd);
++ if( rc!=0 ) return rc;
++ pPager->journalStarted = 1;
++ }
++ pPager->needSync = 0;
++
++ /* Erase the needSync flag from every page.
++ */
++ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
++ pPg->needSync = 0;
++ }
++ pPager->pFirstSynced = pPager->pFirst;
++ }
++
++#ifndef NDEBUG
++ /* If the Pager.needSync flag is clear then the PgHdr.needSync
++ ** flag must also be clear for all pages. Verify that this
++ ** invariant is true.
++ */
++ else{
++ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
++ assert( pPg->needSync==0 );
++ }
++ assert( pPager->pFirstSynced==pPager->pFirst );
++ }
++#endif
++
++ return rc;
++}
++
++/*
++** Given a list of pages (connected by the PgHdr.pDirty pointer) write
++** every one of those pages out to the database file and mark them all
++** as clean.
++*/
++static int pager_write_pagelist(PgHdr *pList){
++ Pager *pPager;
++ int rc;
++
++ if( pList==0 ) return SQLITE_OK;
++ pPager = pList->pPager;
++ while( pList ){
++ assert( pList->dirty );
++ sqliteOsSeek(&pPager->fd, (pList->pgno-1)*(off_t)SQLITE_PAGE_SIZE);
++ CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
++ TRACE2("STORE %d\n", pList->pgno);
++ rc = sqliteOsWrite(&pPager->fd, PGHDR_TO_DATA(pList), SQLITE_PAGE_SIZE);
++ CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 0);
++ if( rc ) return rc;
++ pList->dirty = 0;
++ pList = pList->pDirty;
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Collect every dirty page into a dirty list and
++** return a pointer to the head of that list. All pages are
++** collected even if they are still in use.
++*/
++static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
++ PgHdr *p, *pList;
++ pList = 0;
++ for(p=pPager->pAll; p; p=p->pNextAll){
++ if( p->dirty ){
++ p->pDirty = pList;
++ pList = p;
++ }
++ }
++ return pList;
++}
++
++/*
++** Acquire a page.
++**
++** A read lock on the disk file is obtained when the first page is acquired.
++** This read lock is dropped when the last page is released.
++**
++** A _get works for any page number greater than 0. If the database
++** file is smaller than the requested page, then no actual disk
++** read occurs and the memory image of the page is initialized to
++** all zeros. The extra data appended to a page is always initialized
++** to zeros the first time a page is loaded into memory.
++**
++** The acquisition might fail for several reasons. In all cases,
++** an appropriate error code is returned and *ppPage is set to NULL.
++**
++** See also sqlitepager_lookup(). Both this routine and _lookup() attempt
++** to find a page in the in-memory cache first. If the page is not already
++** in memory, this routine goes to disk to read it in whereas _lookup()
++** just returns 0. This routine acquires a read-lock the first time it
++** has to go to disk, and could also playback an old journal if necessary.
++** Since _lookup() never goes to disk, it never has to deal with locks
++** or journal files.
++*/
++int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage){
++ PgHdr *pPg;
++ int rc;
++
++ /* Make sure we have not hit any critical errors.
++ */
++ assert( pPager!=0 );
++ assert( pgno!=0 );
++ *ppPage = 0;
++ if( pPager->errMask & ~(PAGER_ERR_FULL) ){
++ return pager_errcode(pPager);
++ }
++
++ /* If this is the first page accessed, then get a read lock
++ ** on the database file.
++ */
++ if( pPager->nRef==0 ){
++ rc = sqliteOsReadLock(&pPager->fd);
++ if( rc!=SQLITE_OK ){
++ return rc;
++ }
++ pPager->state = SQLITE_READLOCK;
++
++ /* If a journal file exists, try to play it back.
++ */
++ if( pPager->useJournal && sqliteOsFileExists(pPager->zJournal) ){
++ int rc;
++
++ /* Get a write lock on the database
++ */
++ rc = sqliteOsWriteLock(&pPager->fd);
++ if( rc!=SQLITE_OK ){
++ if( sqliteOsUnlock(&pPager->fd)!=SQLITE_OK ){
++ /* This should never happen! */
++ rc = SQLITE_INTERNAL;
++ }
++ return rc;
++ }
++ pPager->state = SQLITE_WRITELOCK;
++
++ /* Open the journal for reading only. Return SQLITE_BUSY if
++ ** we are unable to open the journal file.
++ **
++ ** The journal file does not need to be locked itself. The
++ ** journal file is never open unless the main database file holds
++ ** a write lock, so there is never any chance of two or more
++ ** processes opening the journal at the same time.
++ */
++ rc = sqliteOsOpenReadOnly(pPager->zJournal, &pPager->jfd);
++ if( rc!=SQLITE_OK ){
++ rc = sqliteOsUnlock(&pPager->fd);
++ assert( rc==SQLITE_OK );
++ return SQLITE_BUSY;
++ }
++ pPager->journalOpen = 1;
++ pPager->journalStarted = 0;
++
++ /* Playback and delete the journal. Drop the database write
++ ** lock and reacquire the read lock.
++ */
++ rc = pager_playback(pPager, 0);
++ if( rc!=SQLITE_OK ){
++ return rc;
++ }
++ }
++ pPg = 0;
++ }else{
++ /* Search for page in cache */
++ pPg = pager_lookup(pPager, pgno);
++ }
++ if( pPg==0 ){
++ /* The requested page is not in the page cache. */
++ int h;
++ pPager->nMiss++;
++ if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 ){
++ /* Create a new page */
++ pPg = sqliteMallocRaw( sizeof(*pPg) + SQLITE_PAGE_SIZE
++ + sizeof(u32) + pPager->nExtra );
++ if( pPg==0 ){
++ pager_unwritelock(pPager);
++ pPager->errMask |= PAGER_ERR_MEM;
++ return SQLITE_NOMEM;
++ }
++ memset(pPg, 0, sizeof(*pPg));
++ pPg->pPager = pPager;
++ pPg->pNextAll = pPager->pAll;
++ if( pPager->pAll ){
++ pPager->pAll->pPrevAll = pPg;
++ }
++ pPg->pPrevAll = 0;
++ pPager->pAll = pPg;
++ pPager->nPage++;
++ }else{
++ /* Find a page to recycle. Try to locate a page that does not
++ ** require us to do an fsync() on the journal.
++ */
++ pPg = pPager->pFirstSynced;
++
++ /* If we could not find a page that does not require an fsync()
++ ** on the journal file then fsync the journal file. This is a
++ ** very slow operation, so we work hard to avoid it. But sometimes
++ ** it can't be helped.
++ */
++ if( pPg==0 ){
++ int rc = syncJournal(pPager);
++ if( rc!=0 ){
++ sqlitepager_rollback(pPager);
++ return SQLITE_IOERR;
++ }
++ pPg = pPager->pFirst;
++ }
++ assert( pPg->nRef==0 );
++
++ /* Write the page to the database file if it is dirty.
++ */
++ if( pPg->dirty ){
++ assert( pPg->needSync==0 );
++ pPg->pDirty = 0;
++ rc = pager_write_pagelist( pPg );
++ if( rc!=SQLITE_OK ){
++ sqlitepager_rollback(pPager);
++ return SQLITE_IOERR;
++ }
++ }
++ assert( pPg->dirty==0 );
++
++ /* If the page we are recycling is marked as alwaysRollback, then
++ ** set the global alwaysRollback flag, thus disabling the
++ ** sqlite_dont_rollback() optimization for the rest of this transaction.
++ ** It is necessary to do this because the page marked alwaysRollback
++ ** might be reloaded at a later time but at that point we won't remember
++ ** that is was marked alwaysRollback. This means that all pages must
++ ** be marked as alwaysRollback from here on out.
++ */
++ if( pPg->alwaysRollback ){
++ pPager->alwaysRollback = 1;
++ }
++
++ /* Unlink the old page from the free list and the hash table
++ */
++ if( pPg==pPager->pFirstSynced ){
++ PgHdr *p = pPg->pNextFree;
++ while( p && p->needSync ){ p = p->pNextFree; }
++ pPager->pFirstSynced = p;
++ }
++ if( pPg->pPrevFree ){
++ pPg->pPrevFree->pNextFree = pPg->pNextFree;
++ }else{
++ assert( pPager->pFirst==pPg );
++ pPager->pFirst = pPg->pNextFree;
++ }
++ if( pPg->pNextFree ){
++ pPg->pNextFree->pPrevFree = pPg->pPrevFree;
++ }else{
++ assert( pPager->pLast==pPg );
++ pPager->pLast = pPg->pPrevFree;
++ }
++ pPg->pNextFree = pPg->pPrevFree = 0;
++ if( pPg->pNextHash ){
++ pPg->pNextHash->pPrevHash = pPg->pPrevHash;
++ }
++ if( pPg->pPrevHash ){
++ pPg->pPrevHash->pNextHash = pPg->pNextHash;
++ }else{
++ h = pager_hash(pPg->pgno);
++ assert( pPager->aHash[h]==pPg );
++ pPager->aHash[h] = pPg->pNextHash;
++ }
++ pPg->pNextHash = pPg->pPrevHash = 0;
++ pPager->nOvfl++;
++ }
++ pPg->pgno = pgno;
++ if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
++ sqliteCheckMemory(pPager->aInJournal, pgno/8);
++ assert( pPager->journalOpen );
++ pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
++ pPg->needSync = 0;
++ }else{
++ pPg->inJournal = 0;
++ pPg->needSync = 0;
++ }
++ if( pPager->aInCkpt && (int)pgno<=pPager->ckptSize
++ && (pPager->aInCkpt[pgno/8] & (1<<(pgno&7)))!=0 ){
++ page_add_to_ckpt_list(pPg);
++ }else{
++ page_remove_from_ckpt_list(pPg);
++ }
++ pPg->dirty = 0;
++ pPg->nRef = 1;
++ REFINFO(pPg);
++ pPager->nRef++;
++ h = pager_hash(pgno);
++ pPg->pNextHash = pPager->aHash[h];
++ pPager->aHash[h] = pPg;
++ if( pPg->pNextHash ){
++ assert( pPg->pNextHash->pPrevHash==0 );
++ pPg->pNextHash->pPrevHash = pPg;
++ }
++ if( pPager->nExtra>0 ){
++ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
++ }
++ if( pPager->dbSize<0 ) sqlitepager_pagecount(pPager);
++ if( pPager->errMask!=0 ){
++ sqlitepager_unref(PGHDR_TO_DATA(pPg));
++ rc = pager_errcode(pPager);
++ return rc;
++ }
++ if( pPager->dbSize<(int)pgno ){
++ memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
++ }else{
++ int rc;
++ sqliteOsSeek(&pPager->fd, (pgno-1)*(off_t)SQLITE_PAGE_SIZE);
++ rc = sqliteOsRead(&pPager->fd, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE);
++ TRACE2("FETCH %d\n", pPg->pgno);
++ CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
++ if( rc!=SQLITE_OK ){
++ off_t fileSize;
++ if( sqliteOsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK
++ || fileSize>=pgno*SQLITE_PAGE_SIZE ){
++ sqlitepager_unref(PGHDR_TO_DATA(pPg));
++ return rc;
++ }else{
++ memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
++ }
++ }
++ }
++ }else{
++ /* The requested page is in the page cache. */
++ pPager->nHit++;
++ page_ref(pPg);
++ }
++ *ppPage = PGHDR_TO_DATA(pPg);
++ return SQLITE_OK;
++}
++
++/*
++** Acquire a page if it is already in the in-memory cache. Do
++** not read the page from disk. Return a pointer to the page,
++** or 0 if the page is not in cache.
++**
++** See also sqlitepager_get(). The difference between this routine
++** and sqlitepager_get() is that _get() will go to the disk and read
++** in the page if the page is not already in cache. This routine
++** returns NULL if the page is not in cache or if a disk I/O error
++** has ever happened.
++*/
++void *sqlitepager_lookup(Pager *pPager, Pgno pgno){
++ PgHdr *pPg;
++
++ assert( pPager!=0 );
++ assert( pgno!=0 );
++ if( pPager->errMask & ~(PAGER_ERR_FULL) ){
++ return 0;
++ }
++ /* if( pPager->nRef==0 ){
++ ** return 0;
++ ** }
++ */
++ pPg = pager_lookup(pPager, pgno);
++ if( pPg==0 ) return 0;
++ page_ref(pPg);
++ return PGHDR_TO_DATA(pPg);
++}
++
++/*
++** Release a page.
++**
++** If the number of references to the page drop to zero, then the
++** page is added to the LRU list. When all references to all pages
++** are released, a rollback occurs and the lock on the database is
++** removed.
++*/
++int sqlitepager_unref(void *pData){
++ PgHdr *pPg;
++
++ /* Decrement the reference count for this page
++ */
++ pPg = DATA_TO_PGHDR(pData);
++ assert( pPg->nRef>0 );
++ pPg->nRef--;
++ REFINFO(pPg);
++
++ /* When the number of references to a page reach 0, call the
++ ** destructor and add the page to the freelist.
++ */
++ if( pPg->nRef==0 ){
++ Pager *pPager;
++ pPager = pPg->pPager;
++ pPg->pNextFree = 0;
++ pPg->pPrevFree = pPager->pLast;
++ pPager->pLast = pPg;
++ if( pPg->pPrevFree ){
++ pPg->pPrevFree->pNextFree = pPg;
++ }else{
++ pPager->pFirst = pPg;
++ }
++ if( pPg->needSync==0 && pPager->pFirstSynced==0 ){
++ pPager->pFirstSynced = pPg;
++ }
++ if( pPager->xDestructor ){
++ pPager->xDestructor(pData);
++ }
++
++ /* When all pages reach the freelist, drop the read lock from
++ ** the database file.
++ */
++ pPager->nRef--;
++ assert( pPager->nRef>=0 );
++ if( pPager->nRef==0 ){
++ pager_reset(pPager);
++ }
++ }
++ return SQLITE_OK;
++}
++
++/*
++** Create a journal file for pPager. There should already be a write
++** lock on the database file when this routine is called.
++**
++** Return SQLITE_OK if everything. Return an error code and release the
++** write lock if anything goes wrong.
++*/
++static int pager_open_journal(Pager *pPager){
++ int rc;
++ assert( pPager->state==SQLITE_WRITELOCK );
++ assert( pPager->journalOpen==0 );
++ assert( pPager->useJournal );
++ sqlitepager_pagecount(pPager);
++ pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
++ if( pPager->aInJournal==0 ){
++ sqliteOsReadLock(&pPager->fd);
++ pPager->state = SQLITE_READLOCK;
++ return SQLITE_NOMEM;
++ }
++ rc = sqliteOsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile);
++ if( rc!=SQLITE_OK ){
++ sqliteFree(pPager->aInJournal);
++ pPager->aInJournal = 0;
++ sqliteOsReadLock(&pPager->fd);
++ pPager->state = SQLITE_READLOCK;
++ return SQLITE_CANTOPEN;
++ }
++ sqliteOsOpenDirectory(pPager->zDirectory, &pPager->jfd);
++ pPager->journalOpen = 1;
++ pPager->journalStarted = 0;
++ pPager->needSync = 0;
++ pPager->alwaysRollback = 0;
++ pPager->nRec = 0;
++ if( pPager->errMask!=0 ){
++ rc = pager_errcode(pPager);
++ return rc;
++ }
++ pPager->origDbSize = pPager->dbSize;
++ if( journal_format==JOURNAL_FORMAT_3 ){
++ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic3, sizeof(aJournalMagic3));
++ if( rc==SQLITE_OK ){
++ rc = write32bits(&pPager->jfd, pPager->noSync ? 0xffffffff : 0);
++ }
++ if( rc==SQLITE_OK ){
++ sqliteRandomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
++ rc = write32bits(&pPager->jfd, pPager->cksumInit);
++ }
++ }else if( journal_format==JOURNAL_FORMAT_2 ){
++ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic2, sizeof(aJournalMagic2));
++ }else{
++ assert( journal_format==JOURNAL_FORMAT_1 );
++ rc = sqliteOsWrite(&pPager->jfd, aJournalMagic1, sizeof(aJournalMagic1));
++ }
++ if( rc==SQLITE_OK ){
++ rc = write32bits(&pPager->jfd, pPager->dbSize);
++ }
++ if( pPager->ckptAutoopen && rc==SQLITE_OK ){
++ rc = sqlitepager_ckpt_begin(pPager);
++ }
++ if( rc!=SQLITE_OK ){
++ rc = pager_unwritelock(pPager);
++ if( rc==SQLITE_OK ){
++ rc = SQLITE_FULL;
++ }
++ }
++ return rc;
++}
++
++/*
++** Acquire a write-lock on the database. The lock is removed when
++** the any of the following happen:
++**
++** * sqlitepager_commit() is called.
++** * sqlitepager_rollback() is called.
++** * sqlitepager_close() is called.
++** * sqlitepager_unref() is called to on every outstanding page.
++**
++** The parameter to this routine is a pointer to any open page of the
++** database file. Nothing changes about the page - it is used merely
++** to acquire a pointer to the Pager structure and as proof that there
++** is already a read-lock on the database.
++**
++** A journal file is opened if this is not a temporary file. For
++** temporary files, the opening of the journal file is deferred until
++** there is an actual need to write to the journal.
++**
++** If the database is already write-locked, this routine is a no-op.
++*/
++int sqlitepager_begin(void *pData){
++ PgHdr *pPg = DATA_TO_PGHDR(pData);
++ Pager *pPager = pPg->pPager;
++ int rc = SQLITE_OK;
++ assert( pPg->nRef>0 );
++ assert( pPager->state!=SQLITE_UNLOCK );
++ if( pPager->state==SQLITE_READLOCK ){
++ assert( pPager->aInJournal==0 );
++ rc = sqliteOsWriteLock(&pPager->fd);
++ if( rc!=SQLITE_OK ){
++ return rc;
++ }
++ pPager->state = SQLITE_WRITELOCK;
++ pPager->dirtyFile = 0;
++ TRACE1("TRANSACTION\n");
++ if( pPager->useJournal && !pPager->tempFile ){
++ rc = pager_open_journal(pPager);
++ }
++ }
++ return rc;
++}
++
++/*
++** Mark a data page as writeable. The page is written into the journal
++** if it is not there already. This routine must be called before making
++** changes to a page.
++**
++** The first time this routine is called, the pager creates a new
++** journal and acquires a write lock on the database. If the write
++** lock could not be acquired, this routine returns SQLITE_BUSY. The
++** calling routine must check for that return value and be careful not to
++** change any page data until this routine returns SQLITE_OK.
++**
++** If the journal file could not be written because the disk is full,
++** then this routine returns SQLITE_FULL and does an immediate rollback.
++** All subsequent write attempts also return SQLITE_FULL until there
++** is a call to sqlitepager_commit() or sqlitepager_rollback() to
++** reset.
++*/
++int sqlitepager_write(void *pData){
++ PgHdr *pPg = DATA_TO_PGHDR(pData);
++ Pager *pPager = pPg->pPager;
++ int rc = SQLITE_OK;
++
++ /* Check for errors
++ */
++ if( pPager->errMask ){
++ return pager_errcode(pPager);
++ }
++ if( pPager->readOnly ){
++ return SQLITE_PERM;
++ }
++
++ /* Mark the page as dirty. If the page has already been written
++ ** to the journal then we can return right away.
++ */
++ pPg->dirty = 1;
++ if( pPg->inJournal && (pPg->inCkpt || pPager->ckptInUse==0) ){
++ pPager->dirtyFile = 1;
++ return SQLITE_OK;
++ }
++
++ /* If we get this far, it means that the page needs to be
++ ** written to the transaction journal or the ckeckpoint journal
++ ** or both.
++ **
++ ** First check to see that the transaction journal exists and
++ ** create it if it does not.
++ */
++ assert( pPager->state!=SQLITE_UNLOCK );
++ rc = sqlitepager_begin(pData);
++ if( rc!=SQLITE_OK ){
++ return rc;
++ }
++ assert( pPager->state==SQLITE_WRITELOCK );
++ if( !pPager->journalOpen && pPager->useJournal ){
++ rc = pager_open_journal(pPager);
++ if( rc!=SQLITE_OK ) return rc;
++ }
++ assert( pPager->journalOpen || !pPager->useJournal );
++ pPager->dirtyFile = 1;
++
++ /* The transaction journal now exists and we have a write lock on the
++ ** main database file. Write the current page to the transaction
++ ** journal if it is not there already.
++ */
++ if( !pPg->inJournal && pPager->useJournal ){
++ if( (int)pPg->pgno <= pPager->origDbSize ){
++ int szPg;
++ u32 saved;
++ if( journal_format>=JOURNAL_FORMAT_3 ){
++ u32 cksum = pager_cksum(pPager, pPg->pgno, pData);
++ saved = *(u32*)PGHDR_TO_EXTRA(pPg);
++ store32bits(cksum, pPg, SQLITE_PAGE_SIZE);
++ szPg = SQLITE_PAGE_SIZE+8;
++ }else{
++ szPg = SQLITE_PAGE_SIZE+4;
++ }
++ store32bits(pPg->pgno, pPg, -4);
++ CODEC(pPager, pData, pPg->pgno, 7);
++ rc = sqliteOsWrite(&pPager->jfd, &((char*)pData)[-4], szPg);
++ TRACE3("JOURNAL %d %d\n", pPg->pgno, pPg->needSync);
++ CODEC(pPager, pData, pPg->pgno, 0);
++ if( journal_format>=JOURNAL_FORMAT_3 ){
++ *(u32*)PGHDR_TO_EXTRA(pPg) = saved;
++ }
++ if( rc!=SQLITE_OK ){
++ sqlitepager_rollback(pPager);
++ pPager->errMask |= PAGER_ERR_FULL;
++ return rc;
++ }
++ pPager->nRec++;
++ assert( pPager->aInJournal!=0 );
++ pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
++ pPg->needSync = !pPager->noSync;
++ pPg->inJournal = 1;
++ if( pPager->ckptInUse ){
++ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
++ page_add_to_ckpt_list(pPg);
++ }
++ }else{
++ pPg->needSync = !pPager->journalStarted && !pPager->noSync;
++ TRACE3("APPEND %d %d\n", pPg->pgno, pPg->needSync);
++ }
++ if( pPg->needSync ){
++ pPager->needSync = 1;
++ }
++ }
++
++ /* If the checkpoint journal is open and the page is not in it,
++ ** then write the current page to the checkpoint journal. Note that
++ ** the checkpoint journal always uses the simplier format 2 that lacks
++ ** checksums. The header is also omitted from the checkpoint journal.
++ */
++ if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
++ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
++ store32bits(pPg->pgno, pPg, -4);
++ CODEC(pPager, pData, pPg->pgno, 7);
++ rc = sqliteOsWrite(&pPager->cpfd, &((char*)pData)[-4], SQLITE_PAGE_SIZE+4);
++ TRACE2("CKPT-JOURNAL %d\n", pPg->pgno);
++ CODEC(pPager, pData, pPg->pgno, 0);
++ if( rc!=SQLITE_OK ){
++ sqlitepager_rollback(pPager);
++ pPager->errMask |= PAGER_ERR_FULL;
++ return rc;
++ }
++ pPager->ckptNRec++;
++ assert( pPager->aInCkpt!=0 );
++ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
++ page_add_to_ckpt_list(pPg);
++ }
++
++ /* Update the database size and return.
++ */
++ if( pPager->dbSize<(int)pPg->pgno ){
++ pPager->dbSize = pPg->pgno;
++ }
++ return rc;
++}
++
++/*
++** Return TRUE if the page given in the argument was previously passed
++** to sqlitepager_write(). In other words, return TRUE if it is ok
++** to change the content of the page.
++*/
++int sqlitepager_iswriteable(void *pData){
++ PgHdr *pPg = DATA_TO_PGHDR(pData);
++ return pPg->dirty;
++}
++
++/*
++** Replace the content of a single page with the information in the third
++** argument.
++*/
++int sqlitepager_overwrite(Pager *pPager, Pgno pgno, void *pData){
++ void *pPage;
++ int rc;
++
++ rc = sqlitepager_get(pPager, pgno, &pPage);
++ if( rc==SQLITE_OK ){
++ rc = sqlitepager_write(pPage);
++ if( rc==SQLITE_OK ){
++ memcpy(pPage, pData, SQLITE_PAGE_SIZE);
++ }
++ sqlitepager_unref(pPage);
++ }
++ return rc;
++}
++
++/*
++** A call to this routine tells the pager that it is not necessary to
++** write the information on page "pgno" back to the disk, even though
++** that page might be marked as dirty.
++**
++** The overlying software layer calls this routine when all of the data
++** on the given page is unused. The pager marks the page as clean so
++** that it does not get written to disk.
++**
++** Tests show that this optimization, together with the
++** sqlitepager_dont_rollback() below, more than double the speed
++** of large INSERT operations and quadruple the speed of large DELETEs.
++**
++** When this routine is called, set the alwaysRollback flag to true.
++** Subsequent calls to sqlitepager_dont_rollback() for the same page
++** will thereafter be ignored. This is necessary to avoid a problem
++** where a page with data is added to the freelist during one part of
++** a transaction then removed from the freelist during a later part
++** of the same transaction and reused for some other purpose. When it
++** is first added to the freelist, this routine is called. When reused,
++** the dont_rollback() routine is called. But because the page contains
++** critical data, we still need to be sure it gets rolled back in spite
++** of the dont_rollback() call.
++*/
++void sqlitepager_dont_write(Pager *pPager, Pgno pgno){
++ PgHdr *pPg;
++
++ pPg = pager_lookup(pPager, pgno);
++ pPg->alwaysRollback = 1;
++ if( pPg && pPg->dirty && !pPager->ckptInUse ){
++ if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
++ /* If this pages is the last page in the file and the file has grown
++ ** during the current transaction, then do NOT mark the page as clean.
++ ** When the database file grows, we must make sure that the last page
++ ** gets written at least once so that the disk file will be the correct
++ ** size. If you do not write this page and the size of the file
++ ** on the disk ends up being too small, that can lead to database
++ ** corruption during the next transaction.
++ */
++ }else{
++ TRACE2("DONT_WRITE %d\n", pgno);
++ pPg->dirty = 0;
++ }
++ }
++}
++
++/*
++** A call to this routine tells the pager that if a rollback occurs,
++** it is not necessary to restore the data on the given page. This
++** means that the pager does not have to record the given page in the
++** rollback journal.
++*/
++void sqlitepager_dont_rollback(void *pData){
++ PgHdr *pPg = DATA_TO_PGHDR(pData);
++ Pager *pPager = pPg->pPager;
++
++ if( pPager->state!=SQLITE_WRITELOCK || pPager->journalOpen==0 ) return;
++ if( pPg->alwaysRollback || pPager->alwaysRollback ) return;
++ if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
++ assert( pPager->aInJournal!=0 );
++ pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
++ pPg->inJournal = 1;
++ if( pPager->ckptInUse ){
++ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
++ page_add_to_ckpt_list(pPg);
++ }
++ TRACE2("DONT_ROLLBACK %d\n", pPg->pgno);
++ }
++ if( pPager->ckptInUse && !pPg->inCkpt && (int)pPg->pgno<=pPager->ckptSize ){
++ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
++ assert( pPager->aInCkpt!=0 );
++ pPager->aInCkpt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
++ page_add_to_ckpt_list(pPg);
++ }
++}
++
++/*
++** Commit all changes to the database and release the write lock.
++**
++** If the commit fails for any reason, a rollback attempt is made
++** and an error code is returned. If the commit worked, SQLITE_OK
++** is returned.
++*/
++int sqlitepager_commit(Pager *pPager){
++ int rc;
++ PgHdr *pPg;
++
++ if( pPager->errMask==PAGER_ERR_FULL ){
++ rc = sqlitepager_rollback(pPager);
++ if( rc==SQLITE_OK ){
++ rc = SQLITE_FULL;
++ }
++ return rc;
++ }
++ if( pPager->errMask!=0 ){
++ rc = pager_errcode(pPager);
++ return rc;
++ }
++ if( pPager->state!=SQLITE_WRITELOCK ){
++ return SQLITE_ERROR;
++ }
++ TRACE1("COMMIT\n");
++ if( pPager->dirtyFile==0 ){
++ /* Exit early (without doing the time-consuming sqliteOsSync() calls)
++ ** if there have been no changes to the database file. */
++ assert( pPager->needSync==0 );
++ rc = pager_unwritelock(pPager);
++ pPager->dbSize = -1;
++ return rc;
++ }
++ assert( pPager->journalOpen );
++ rc = syncJournal(pPager);
++ if( rc!=SQLITE_OK ){
++ goto commit_abort;
++ }
++ pPg = pager_get_all_dirty_pages(pPager);
++ if( pPg ){
++ rc = pager_write_pagelist(pPg);
++ if( rc || (!pPager->noSync && sqliteOsSync(&pPager->fd)!=SQLITE_OK) ){
++ goto commit_abort;
++ }
++ }
++ rc = pager_unwritelock(pPager);
++ pPager->dbSize = -1;
++ return rc;
++
++ /* Jump here if anything goes wrong during the commit process.
++ */
++commit_abort:
++ rc = sqlitepager_rollback(pPager);
++ if( rc==SQLITE_OK ){
++ rc = SQLITE_FULL;
++ }
++ return rc;
++}
++
++/*
++** Rollback all changes. The database falls back to read-only mode.
++** All in-memory cache pages revert to their original data contents.
++** The journal is deleted.
++**
++** This routine cannot fail unless some other process is not following
++** the correct locking protocol (SQLITE_PROTOCOL) or unless some other
++** process is writing trash into the journal file (SQLITE_CORRUPT) or
++** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
++** codes are returned for all these occasions. Otherwise,
++** SQLITE_OK is returned.
++*/
++int sqlitepager_rollback(Pager *pPager){
++ int rc;
++ TRACE1("ROLLBACK\n");
++ if( !pPager->dirtyFile || !pPager->journalOpen ){
++ rc = pager_unwritelock(pPager);
++ pPager->dbSize = -1;
++ return rc;
++ }
++
++ if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){
++ if( pPager->state>=SQLITE_WRITELOCK ){
++ pager_playback(pPager, 1);
++ }
++ return pager_errcode(pPager);
++ }
++ if( pPager->state!=SQLITE_WRITELOCK ){
++ return SQLITE_OK;
++ }
++ rc = pager_playback(pPager, 1);
++ if( rc!=SQLITE_OK ){
++ rc = SQLITE_CORRUPT;
++ pPager->errMask |= PAGER_ERR_CORRUPT;
++ }
++ pPager->dbSize = -1;
++ return rc;
++}
++
++/*
++** Return TRUE if the database file is opened read-only. Return FALSE
++** if the database is (in theory) writable.
++*/
++int sqlitepager_isreadonly(Pager *pPager){
++ return pPager->readOnly;
++}
++
++/*
++** This routine is used for testing and analysis only.
++*/
++int *sqlitepager_stats(Pager *pPager){
++ static int a[9];
++ a[0] = pPager->nRef;
++ a[1] = pPager->nPage;
++ a[2] = pPager->mxPage;
++ a[3] = pPager->dbSize;
++ a[4] = pPager->state;
++ a[5] = pPager->errMask;
++ a[6] = pPager->nHit;
++ a[7] = pPager->nMiss;
++ a[8] = pPager->nOvfl;
++ return a;
++}
++
++/*
++** Set the checkpoint.
++**
++** This routine should be called with the transaction journal already
++** open. A new checkpoint journal is created that can be used to rollback
++** changes of a single SQL command within a larger transaction.
++*/
++int sqlitepager_ckpt_begin(Pager *pPager){
++ int rc;
++ char zTemp[SQLITE_TEMPNAME_SIZE];
++ if( !pPager->journalOpen ){
++ pPager->ckptAutoopen = 1;
++ return SQLITE_OK;
++ }
++ assert( pPager->journalOpen );
++ assert( !pPager->ckptInUse );
++ pPager->aInCkpt = sqliteMalloc( pPager->dbSize/8 + 1 );
++ if( pPager->aInCkpt==0 ){
++ sqliteOsReadLock(&pPager->fd);
++ return SQLITE_NOMEM;
++ }
++#ifndef NDEBUG
++ rc = sqliteOsFileSize(&pPager->jfd, &pPager->ckptJSize);
++ if( rc ) goto ckpt_begin_failed;
++ assert( pPager->ckptJSize ==
++ pPager->nRec*JOURNAL_PG_SZ(journal_format)+JOURNAL_HDR_SZ(journal_format) );
++#endif
++ pPager->ckptJSize = pPager->nRec*JOURNAL_PG_SZ(journal_format)
++ + JOURNAL_HDR_SZ(journal_format);
++ pPager->ckptSize = pPager->dbSize;
++ if( !pPager->ckptOpen ){
++ rc = sqlitepager_opentemp(zTemp, &pPager->cpfd);
++ if( rc ) goto ckpt_begin_failed;
++ pPager->ckptOpen = 1;
++ pPager->ckptNRec = 0;
++ }
++ pPager->ckptInUse = 1;
++ return SQLITE_OK;
++
++ckpt_begin_failed:
++ if( pPager->aInCkpt ){
++ sqliteFree(pPager->aInCkpt);
++ pPager->aInCkpt = 0;
++ }
++ return rc;
++}
++
++/*
++** Commit a checkpoint.
++*/
++int sqlitepager_ckpt_commit(Pager *pPager){
++ if( pPager->ckptInUse ){
++ PgHdr *pPg, *pNext;
++ sqliteOsSeek(&pPager->cpfd, 0);
++ /* sqliteOsTruncate(&pPager->cpfd, 0); */
++ pPager->ckptNRec = 0;
++ pPager->ckptInUse = 0;
++ sqliteFree( pPager->aInCkpt );
++ pPager->aInCkpt = 0;
++ for(pPg=pPager->pCkpt; pPg; pPg=pNext){
++ pNext = pPg->pNextCkpt;
++ assert( pPg->inCkpt );
++ pPg->inCkpt = 0;
++ pPg->pPrevCkpt = pPg->pNextCkpt = 0;
++ }
++ pPager->pCkpt = 0;
++ }
++ pPager->ckptAutoopen = 0;
++ return SQLITE_OK;
++}
++
++/*
++** Rollback a checkpoint.
++*/
++int sqlitepager_ckpt_rollback(Pager *pPager){
++ int rc;
++ if( pPager->ckptInUse ){
++ rc = pager_ckpt_playback(pPager);
++ sqlitepager_ckpt_commit(pPager);
++ }else{
++ rc = SQLITE_OK;
++ }
++ pPager->ckptAutoopen = 0;
++ return rc;
++}
++
++/*
++** Return the full pathname of the database file.
++*/
++const char *sqlitepager_filename(Pager *pPager){
++ return pPager->zFilename;
++}
++
++/*
++** Set the codec for this pager
++*/
++void sqlitepager_set_codec(
++ Pager *pPager,
++ void (*xCodec)(void*,void*,Pgno,int),
++ void *pCodecArg
++){
++ pPager->xCodec = xCodec;
++ pPager->pCodecArg = pCodecArg;
++}
++
++#ifdef SQLITE_TEST
++/*
++** Print a listing of all referenced pages and their ref count.
++*/
++void sqlitepager_refdump(Pager *pPager){
++ PgHdr *pPg;
++ for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
++ if( pPg->nRef<=0 ) continue;
++ printf("PAGE %3d addr=0x%08x nRef=%d\n",
++ pPg->pgno, (int)PGHDR_TO_DATA(pPg), pPg->nRef);
++ }
++}
++#endif
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/pager.h
+@@ -0,0 +1,107 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This header file defines the interface that the sqlite page cache
++** subsystem. The page cache subsystem reads and writes a file a page
++** at a time and provides a journal for rollback.
++**
++** @(#) $Id$
++*/
++
++/*
++** The size of one page
++**
++** You can change this value to another (reasonable) value you want.
++** It need not be a power of two, though the interface to the disk
++** will likely be faster if it is.
++**
++** Experiments show that a page size of 1024 gives the best speed
++** for common usages. The speed differences for different sizes
++** such as 512, 2048, 4096, an so forth, is minimal. Note, however,
++** that changing the page size results in a completely imcompatible
++** file format.
++*/
++#ifndef SQLITE_PAGE_SIZE
++#define SQLITE_PAGE_SIZE 1024
++#endif
++
++/*
++** Number of extra bytes of data allocated at the end of each page and
++** stored on disk but not used by the higher level btree layer. Changing
++** this value results in a completely incompatible file format.
++*/
++#ifndef SQLITE_PAGE_RESERVE
++#define SQLITE_PAGE_RESERVE 0
++#endif
++
++/*
++** The total number of usable bytes stored on disk for each page.
++** The usable bytes come at the beginning of the page and the reserve
++** bytes come at the end.
++*/
++#define SQLITE_USABLE_SIZE (SQLITE_PAGE_SIZE-SQLITE_PAGE_RESERVE)
++
++/*
++** Maximum number of pages in one database. (This is a limitation of
++** imposed by 4GB files size limits.)
++*/
++#define SQLITE_MAX_PAGE 1073741823
++
++/*
++** The type used to represent a page number. The first page in a file
++** is called page 1. 0 is used to represent "not a page".
++*/
++typedef unsigned int Pgno;
++
++/*
++** Each open file is managed by a separate instance of the "Pager" structure.
++*/
++typedef struct Pager Pager;
++
++/*
++** See source code comments for a detailed description of the following
++** routines:
++*/
++int sqlitepager_open(Pager **ppPager, const char *zFilename,
++ int nPage, int nExtra, int useJournal);
++void sqlitepager_set_destructor(Pager*, void(*)(void*));
++void sqlitepager_set_cachesize(Pager*, int);
++int sqlitepager_close(Pager *pPager);
++int sqlitepager_get(Pager *pPager, Pgno pgno, void **ppPage);
++void *sqlitepager_lookup(Pager *pPager, Pgno pgno);
++int sqlitepager_ref(void*);
++int sqlitepager_unref(void*);
++Pgno sqlitepager_pagenumber(void*);
++int sqlitepager_write(void*);
++int sqlitepager_iswriteable(void*);
++int sqlitepager_overwrite(Pager *pPager, Pgno pgno, void*);
++int sqlitepager_pagecount(Pager*);
++int sqlitepager_truncate(Pager*,Pgno);
++int sqlitepager_begin(void*);
++int sqlitepager_commit(Pager*);
++int sqlitepager_rollback(Pager*);
++int sqlitepager_isreadonly(Pager*);
++int sqlitepager_ckpt_begin(Pager*);
++int sqlitepager_ckpt_commit(Pager*);
++int sqlitepager_ckpt_rollback(Pager*);
++void sqlitepager_dont_rollback(void*);
++void sqlitepager_dont_write(Pager*, Pgno);
++int *sqlitepager_stats(Pager*);
++void sqlitepager_set_safety_level(Pager*,int);
++const char *sqlitepager_filename(Pager*);
++int sqlitepager_rename(Pager*, const char *zNewName);
++void sqlitepager_set_codec(Pager*,void(*)(void*,void*,Pgno,int),void*);
++
++#ifdef SQLITE_TEST
++void sqlitepager_refdump(Pager*);
++int pager_refinfo_enable;
++int journal_format;
++#endif
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/parse.c
+@@ -0,0 +1,3355 @@
++/* Driver template for the LEMON parser generator.
++** The author disclaims copyright to this source code.
++*/
++/* First off, code is included that follows the "include" declaration
++** in the input grammar file. */
++#include <stdio.h>
++#line 33 "ext/sqlite/libsqlite/src/parse.y"
++
++#include "sqliteInt.h"
++#include "parse.h"
++
++/*
++** An instance of this structure holds information about the
++** LIMIT clause of a SELECT statement.
++*/
++struct LimitVal {
++ int limit; /* The LIMIT value. -1 if there is no limit */
++ int offset; /* The OFFSET. 0 if there is none */
++};
++
++/*
++** An instance of the following structure describes the event of a
++** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
++** TK_DELETE, or TK_INSTEAD. If the event is of the form
++**
++** UPDATE ON (a,b,c)
++**
++** Then the "b" IdList records the list "a,b,c".
++*/
++struct TrigEvent { int a; IdList * b; };
++
++#line 33 "ext/sqlite/libsqlite/src/parse.c"
++/* Next is all token values, in a form suitable for use by makeheaders.
++** This section will be null unless lemon is run with the -m switch.
++*/
++/*
++** These constants (all generated automatically by the parser generator)
++** specify the various kinds of tokens (terminals) that the parser
++** understands.
++**
++** Each symbol here is a terminal symbol in the grammar.
++*/
++/* Make sure the INTERFACE macro is defined.
++*/
++#ifndef INTERFACE
++# define INTERFACE 1
++#endif
++/* The next thing included is series of defines which control
++** various aspects of the generated parser.
++** YYCODETYPE is the data type used for storing terminal
++** and nonterminal numbers. "unsigned char" is
++** used if there are fewer than 250 terminals
++** and nonterminals. "int" is used otherwise.
++** YYNOCODE is a number of type YYCODETYPE which corresponds
++** to no legal terminal or nonterminal number. This
++** number is used to fill in empty slots of the hash
++** table.
++** YYFALLBACK If defined, this indicates that one or more tokens
++** have fall-back values which should be used if the
++** original value of the token will not parse.
++** YYACTIONTYPE is the data type used for storing terminal
++** and nonterminal numbers. "unsigned char" is
++** used if there are fewer than 250 rules and
++** states combined. "int" is used otherwise.
++** sqliteParserTOKENTYPE is the data type used for minor tokens given
++** directly to the parser from the tokenizer.
++** YYMINORTYPE is the data type used for all minor tokens.
++** This is typically a union of many types, one of
++** which is sqliteParserTOKENTYPE. The entry in the union
++** for base tokens is called "yy0".
++** YYSTACKDEPTH is the maximum depth of the parser's stack. If
++** zero the stack is dynamically sized using realloc()
++** sqliteParserARG_SDECL A static variable declaration for the %extra_argument
++** sqliteParserARG_PDECL A parameter declaration for the %extra_argument
++** sqliteParserARG_STORE Code to store %extra_argument into yypParser
++** sqliteParserARG_FETCH Code to extract %extra_argument from yypParser
++** YYNSTATE the combined number of states.
++** YYNRULE the number of rules in the grammar
++** YYERRORSYMBOL is the code number of the error symbol. If not
++** defined, then do no error processing.
++*/
++#define YYCODETYPE unsigned char
++#define YYNOCODE 221
++#define YYACTIONTYPE unsigned short int
++#define sqliteParserTOKENTYPE Token
++typedef union {
++ int yyinit;
++ sqliteParserTOKENTYPE yy0;
++ TriggerStep * yy19;
++ struct LimitVal yy124;
++ Select* yy179;
++ Expr * yy182;
++ Expr* yy242;
++ struct TrigEvent yy290;
++ SrcList* yy307;
++ IdList* yy320;
++ ExprList* yy322;
++ int yy372;
++ struct {int value; int mask;} yy407;
++} YYMINORTYPE;
++#ifndef YYSTACKDEPTH
++#define YYSTACKDEPTH 100
++#endif
++#define sqliteParserARG_SDECL Parse *pParse;
++#define sqliteParserARG_PDECL ,Parse *pParse
++#define sqliteParserARG_FETCH Parse *pParse = yypParser->pParse
++#define sqliteParserARG_STORE yypParser->pParse = pParse
++#define YYNSTATE 563
++#define YYNRULE 293
++#define YYFALLBACK 1
++#define YY_NO_ACTION (YYNSTATE+YYNRULE+2)
++#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1)
++#define YY_ERROR_ACTION (YYNSTATE+YYNRULE)
++
++/* The yyzerominor constant is used to initialize instances of
++** YYMINORTYPE objects to zero. */
++static const YYMINORTYPE yyzerominor = { 0 };
++
++/* Define the yytestcase() macro to be a no-op if is not already defined
++** otherwise.
++**
++** Applications can choose to define yytestcase() in the %include section
++** to a macro that can assist in verifying code coverage. For production
++** code the yytestcase() macro should be turned off. But it is useful
++** for testing.
++*/
++#ifndef yytestcase
++# define yytestcase(X)
++#endif
++
++
++/* Next are the tables used to determine what action to take based on the
++** current state and lookahead token. These tables are used to implement
++** functions that take a state number and lookahead value and return an
++** action integer.
++**
++** Suppose the action integer is N. Then the action is determined as
++** follows
++**
++** 0 <= N < YYNSTATE Shift N. That is, push the lookahead
++** token onto the stack and goto state N.
++**
++** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE.
++**
++** N == YYNSTATE+YYNRULE A syntax error has occurred.
++**
++** N == YYNSTATE+YYNRULE+1 The parser accepts its input.
++**
++** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused
++** slots in the yy_action[] table.
++**
++** The action table is constructed as a single large table named yy_action[].
++** Given state S and lookahead X, the action is computed as
++**
++** yy_action[ yy_shift_ofst[S] + X ]
++**
++** If the index value yy_shift_ofst[S]+X is out of range or if the value
++** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S]
++** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table
++** and that yy_default[S] should be used instead.
++**
++** The formula above is for computing the action when the lookahead is
++** a terminal symbol. If the lookahead is a non-terminal (as occurs after
++** a reduce action) then the yy_reduce_ofst[] array is used in place of
++** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of
++** YY_SHIFT_USE_DFLT.
++**
++** The following are the tables generated in this section:
++**
++** yy_action[] A single table containing all actions.
++** yy_lookahead[] A table containing the lookahead for each entry in
++** yy_action. Used to detect hash collisions.
++** yy_shift_ofst[] For each state, the offset into yy_action for
++** shifting terminals.
++** yy_reduce_ofst[] For each state, the offset into yy_action for
++** shifting non-terminals after a reduce.
++** yy_default[] Default action for each state.
++*/
++#define YY_ACTTAB_COUNT (1090)
++static const YYACTIONTYPE yy_action[] = {
++ /* 0 */ 186, 561, 483, 69, 67, 70, 68, 64, 63, 62,
++ /* 10 */ 61, 58, 57, 56, 55, 54, 53, 181, 180, 179,
++ /* 20 */ 514, 421, 334, 420, 468, 515, 64, 63, 62, 61,
++ /* 30 */ 58, 57, 56, 55, 54, 53, 9, 423, 422, 71,
++ /* 40 */ 72, 129, 65, 66, 513, 510, 305, 52, 138, 69,
++ /* 50 */ 67, 70, 68, 64, 63, 62, 61, 58, 57, 56,
++ /* 60 */ 55, 54, 53, 448, 469, 175, 482, 514, 470, 344,
++ /* 70 */ 342, 36, 515, 58, 57, 56, 55, 54, 53, 8,
++ /* 80 */ 341, 281, 285, 307, 437, 178, 71, 72, 129, 65,
++ /* 90 */ 66, 513, 510, 305, 52, 138, 69, 67, 70, 68,
++ /* 100 */ 64, 63, 62, 61, 58, 57, 56, 55, 54, 53,
++ /* 110 */ 130, 362, 360, 508, 507, 267, 551, 436, 298, 297,
++ /* 120 */ 369, 368, 50, 128, 543, 29, 266, 449, 537, 447,
++ /* 130 */ 591, 528, 442, 441, 187, 132, 514, 536, 47, 48,
++ /* 140 */ 472, 515, 122, 427, 331, 409, 49, 371, 370, 518,
++ /* 150 */ 328, 363, 517, 520, 45, 71, 72, 129, 65, 66,
++ /* 160 */ 513, 510, 305, 52, 138, 69, 67, 70, 68, 64,
++ /* 170 */ 63, 62, 61, 58, 57, 56, 55, 54, 53, 185,
++ /* 180 */ 550, 549, 512, 175, 467, 516, 18, 344, 342, 36,
++ /* 190 */ 544, 175, 320, 230, 231, 344, 342, 36, 341, 56,
++ /* 200 */ 55, 54, 53, 212, 531, 514, 341, 551, 3, 213,
++ /* 210 */ 515, 2, 551, 73, 7, 551, 184, 132, 551, 172,
++ /* 220 */ 551, 309, 348, 42, 71, 72, 129, 65, 66, 513,
++ /* 230 */ 510, 305, 52, 138, 69, 67, 70, 68, 64, 63,
++ /* 240 */ 62, 61, 58, 57, 56, 55, 54, 53, 243, 197,
++ /* 250 */ 282, 358, 268, 373, 264, 372, 183, 241, 436, 169,
++ /* 260 */ 356, 171, 269, 240, 471, 426, 29, 446, 506, 514,
++ /* 270 */ 445, 550, 549, 494, 515, 354, 550, 549, 359, 550,
++ /* 280 */ 549, 144, 550, 549, 550, 549, 592, 309, 71, 72,
++ /* 290 */ 129, 65, 66, 513, 510, 305, 52, 138, 69, 67,
++ /* 300 */ 70, 68, 64, 63, 62, 61, 58, 57, 56, 55,
++ /* 310 */ 54, 53, 514, 857, 82, 377, 1, 515, 268, 373,
++ /* 320 */ 264, 372, 183, 241, 362, 12, 508, 507, 500, 240,
++ /* 330 */ 17, 71, 72, 129, 65, 66, 513, 510, 305, 52,
++ /* 340 */ 138, 69, 67, 70, 68, 64, 63, 62, 61, 58,
++ /* 350 */ 57, 56, 55, 54, 53, 362, 182, 508, 507, 514,
++ /* 360 */ 362, 527, 508, 507, 515, 563, 429, 463, 182, 444,
++ /* 370 */ 375, 338, 443, 430, 379, 378, 593, 156, 71, 72,
++ /* 380 */ 129, 65, 66, 513, 510, 305, 52, 138, 69, 67,
++ /* 390 */ 70, 68, 64, 63, 62, 61, 58, 57, 56, 55,
++ /* 400 */ 54, 53, 514, 526, 542, 450, 534, 515, 286, 493,
++ /* 410 */ 453, 17, 478, 240, 80, 11, 533, 153, 194, 155,
++ /* 420 */ 286, 71, 51, 129, 65, 66, 513, 510, 305, 52,
++ /* 430 */ 138, 69, 67, 70, 68, 64, 63, 62, 61, 58,
++ /* 440 */ 57, 56, 55, 54, 53, 514, 195, 466, 160, 17,
++ /* 450 */ 515, 454, 490, 80, 459, 440, 460, 176, 239, 238,
++ /* 460 */ 80, 80, 562, 1, 71, 40, 129, 65, 66, 513,
++ /* 470 */ 510, 305, 52, 138, 69, 67, 70, 68, 64, 63,
++ /* 480 */ 62, 61, 58, 57, 56, 55, 54, 53, 514, 365,
++ /* 490 */ 154, 19, 339, 515, 80, 232, 405, 80, 165, 404,
++ /* 500 */ 193, 32, 396, 13, 32, 86, 414, 108, 72, 129,
++ /* 510 */ 65, 66, 513, 510, 305, 52, 138, 69, 67, 70,
++ /* 520 */ 68, 64, 63, 62, 61, 58, 57, 56, 55, 54,
++ /* 530 */ 53, 514, 551, 365, 483, 192, 515, 488, 323, 207,
++ /* 540 */ 366, 249, 177, 186, 87, 483, 483, 46, 38, 44,
++ /* 550 */ 458, 108, 129, 65, 66, 513, 510, 305, 52, 138,
++ /* 560 */ 69, 67, 70, 68, 64, 63, 62, 61, 58, 57,
++ /* 570 */ 56, 55, 54, 53, 274, 457, 272, 271, 270, 23,
++ /* 580 */ 8, 551, 211, 412, 307, 257, 365, 385, 201, 31,
++ /* 590 */ 217, 388, 141, 205, 387, 219, 550, 549, 482, 511,
++ /* 600 */ 215, 376, 560, 134, 90, 477, 214, 514, 392, 482,
++ /* 610 */ 482, 152, 515, 360, 203, 212, 409, 531, 800, 284,
++ /* 620 */ 365, 145, 505, 50, 300, 365, 365, 173, 321, 212,
++ /* 630 */ 487, 137, 135, 8, 41, 136, 531, 307, 93, 47,
++ /* 640 */ 48, 346, 316, 106, 106, 550, 549, 49, 371, 370,
++ /* 650 */ 518, 509, 531, 517, 520, 504, 531, 531, 162, 495,
++ /* 660 */ 170, 317, 503, 319, 223, 231, 360, 551, 502, 283,
++ /* 670 */ 162, 207, 557, 486, 212, 191, 50, 10, 289, 304,
++ /* 680 */ 303, 556, 207, 531, 8, 531, 516, 18, 307, 498,
++ /* 690 */ 498, 189, 47, 48, 393, 531, 555, 28, 302, 554,
++ /* 700 */ 49, 371, 370, 518, 484, 480, 517, 520, 322, 299,
++ /* 710 */ 553, 418, 365, 323, 17, 365, 365, 360, 416, 207,
++ /* 720 */ 322, 417, 207, 418, 327, 212, 480, 50, 207, 326,
++ /* 730 */ 106, 550, 549, 106, 105, 247, 407, 475, 332, 516,
++ /* 740 */ 18, 326, 365, 47, 48, 207, 295, 365, 475, 294,
++ /* 750 */ 158, 49, 371, 370, 518, 293, 473, 517, 520, 485,
++ /* 760 */ 106, 391, 390, 202, 148, 93, 351, 480, 204, 301,
++ /* 770 */ 333, 190, 291, 541, 60, 531, 498, 252, 453, 498,
++ /* 780 */ 365, 365, 290, 365, 501, 475, 365, 79, 475, 531,
++ /* 790 */ 516, 18, 379, 378, 475, 365, 465, 245, 89, 112,
++ /* 800 */ 365, 109, 365, 131, 121, 288, 499, 365, 365, 439,
++ /* 810 */ 365, 475, 365, 120, 365, 365, 343, 365, 119, 365,
++ /* 820 */ 118, 365, 365, 365, 365, 117, 116, 365, 126, 365,
++ /* 830 */ 125, 365, 124, 123, 365, 115, 365, 114, 431, 140,
++ /* 840 */ 139, 255, 254, 365, 365, 253, 365, 280, 365, 107,
++ /* 850 */ 365, 365, 113, 365, 111, 26, 365, 365, 365, 365,
++ /* 860 */ 365, 279, 278, 365, 277, 365, 92, 365, 104, 103,
++ /* 870 */ 365, 91, 365, 365, 102, 101, 110, 100, 99, 347,
++ /* 880 */ 25, 98, 340, 30, 24, 97, 266, 174, 96, 85,
++ /* 890 */ 95, 94, 166, 292, 78, 165, 415, 14, 163, 60,
++ /* 900 */ 164, 22, 6, 408, 5, 77, 34, 33, 159, 16,
++ /* 910 */ 157, 151, 75, 149, 15, 146, 313, 312, 395, 384,
++ /* 920 */ 143, 20, 60, 206, 21, 273, 198, 559, 375, 548,
++ /* 930 */ 547, 546, 374, 4, 540, 539, 538, 308, 535, 532,
++ /* 940 */ 530, 212, 261, 38, 260, 352, 259, 39, 258, 367,
++ /* 950 */ 529, 196, 210, 256, 521, 522, 53, 53, 209, 43,
++ /* 960 */ 496, 188, 492, 208, 256, 81, 246, 37, 479, 349,
++ /* 970 */ 244, 37, 474, 464, 276, 27, 452, 451, 433, 432,
++ /* 980 */ 275, 235, 234, 335, 424, 35, 329, 413, 410, 127,
++ /* 990 */ 161, 84, 76, 403, 38, 400, 188, 399, 224, 398,
++ /* 1000 */ 38, 150, 318, 220, 83, 147, 315, 200, 381, 383,
++ /* 1010 */ 199, 142, 545, 265, 88, 262, 523, 361, 491, 476,
++ /* 1020 */ 463, 406, 397, 287, 389, 386, 310, 382, 552, 74,
++ /* 1030 */ 306, 525, 524, 364, 519, 357, 355, 353, 497, 489,
++ /* 1040 */ 481, 263, 242, 462, 461, 456, 455, 438, 296, 345,
++ /* 1050 */ 434, 237, 425, 337, 168, 167, 336, 236, 419, 330,
++ /* 1060 */ 233, 325, 324, 229, 228, 402, 401, 227, 226, 225,
++ /* 1070 */ 222, 221, 218, 314, 394, 311, 216, 380, 251, 250,
++ /* 1080 */ 133, 350, 248, 364, 558, 59, 435, 411, 428, 212,
++};
++static const YYCODETYPE yy_lookahead[] = {
++ /* 0 */ 21, 9, 23, 70, 71, 72, 73, 74, 75, 76,
++ /* 10 */ 77, 78, 79, 80, 81, 82, 83, 100, 101, 102,
++ /* 20 */ 41, 100, 101, 102, 20, 46, 74, 75, 76, 77,
++ /* 30 */ 78, 79, 80, 81, 82, 83, 19, 55, 56, 60,
++ /* 40 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
++ /* 50 */ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
++ /* 60 */ 81, 82, 83, 23, 108, 90, 87, 41, 112, 94,
++ /* 70 */ 95, 96, 46, 78, 79, 80, 81, 82, 83, 19,
++ /* 80 */ 105, 149, 143, 23, 152, 153, 60, 61, 62, 63,
++ /* 90 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
++ /* 100 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
++ /* 110 */ 31, 107, 52, 109, 110, 93, 23, 140, 78, 79,
++ /* 120 */ 78, 79, 62, 22, 147, 148, 104, 87, 34, 89,
++ /* 130 */ 113, 89, 92, 93, 183, 184, 41, 43, 78, 79,
++ /* 140 */ 80, 46, 165, 166, 205, 53, 86, 87, 88, 89,
++ /* 150 */ 211, 62, 92, 93, 128, 60, 61, 62, 63, 64,
++ /* 160 */ 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
++ /* 170 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 146,
++ /* 180 */ 87, 88, 93, 90, 20, 125, 126, 94, 95, 96,
++ /* 190 */ 20, 90, 100, 101, 102, 94, 95, 96, 105, 80,
++ /* 200 */ 81, 82, 83, 111, 171, 41, 105, 23, 19, 48,
++ /* 210 */ 46, 19, 23, 19, 19, 23, 183, 184, 23, 17,
++ /* 220 */ 23, 62, 189, 128, 60, 61, 62, 63, 64, 65,
++ /* 230 */ 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
++ /* 240 */ 76, 77, 78, 79, 80, 81, 82, 83, 20, 90,
++ /* 250 */ 91, 15, 93, 94, 95, 96, 97, 98, 140, 57,
++ /* 260 */ 24, 59, 144, 104, 80, 147, 148, 89, 20, 41,
++ /* 270 */ 92, 87, 88, 20, 46, 39, 87, 88, 42, 87,
++ /* 280 */ 88, 19, 87, 88, 87, 88, 113, 62, 60, 61,
++ /* 290 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
++ /* 300 */ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
++ /* 310 */ 82, 83, 41, 132, 133, 134, 135, 46, 93, 94,
++ /* 320 */ 95, 96, 97, 98, 107, 63, 109, 110, 20, 104,
++ /* 330 */ 22, 60, 61, 62, 63, 64, 65, 66, 67, 68,
++ /* 340 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
++ /* 350 */ 79, 80, 81, 82, 83, 107, 47, 109, 110, 41,
++ /* 360 */ 107, 89, 109, 110, 46, 0, 161, 162, 47, 89,
++ /* 370 */ 99, 62, 92, 168, 9, 10, 113, 17, 60, 61,
++ /* 380 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
++ /* 390 */ 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
++ /* 400 */ 82, 83, 41, 89, 155, 156, 26, 46, 99, 20,
++ /* 410 */ 161, 22, 20, 104, 22, 118, 36, 57, 22, 59,
++ /* 420 */ 99, 60, 61, 62, 63, 64, 65, 66, 67, 68,
++ /* 430 */ 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,
++ /* 440 */ 79, 80, 81, 82, 83, 41, 50, 20, 22, 22,
++ /* 450 */ 46, 20, 22, 22, 91, 20, 93, 22, 20, 20,
++ /* 460 */ 22, 22, 134, 135, 60, 61, 62, 63, 64, 65,
++ /* 470 */ 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
++ /* 480 */ 76, 77, 78, 79, 80, 81, 82, 83, 41, 140,
++ /* 490 */ 130, 22, 20, 46, 22, 20, 20, 22, 22, 20,
++ /* 500 */ 113, 22, 20, 19, 22, 21, 18, 158, 61, 62,
++ /* 510 */ 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
++ /* 520 */ 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
++ /* 530 */ 83, 41, 23, 140, 23, 113, 46, 22, 140, 140,
++ /* 540 */ 191, 192, 19, 21, 114, 23, 23, 127, 122, 129,
++ /* 550 */ 29, 158, 62, 63, 64, 65, 66, 67, 68, 69,
++ /* 560 */ 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
++ /* 570 */ 80, 81, 82, 83, 11, 54, 13, 14, 15, 16,
++ /* 580 */ 19, 23, 174, 95, 23, 192, 140, 78, 79, 181,
++ /* 590 */ 27, 89, 146, 195, 92, 32, 87, 88, 87, 93,
++ /* 600 */ 37, 136, 137, 88, 158, 206, 141, 41, 99, 87,
++ /* 610 */ 87, 146, 46, 52, 51, 111, 53, 171, 130, 19,
++ /* 620 */ 140, 58, 14, 62, 103, 140, 140, 146, 124, 111,
++ /* 630 */ 115, 146, 146, 19, 68, 69, 171, 23, 158, 78,
++ /* 640 */ 79, 80, 124, 158, 158, 87, 88, 86, 87, 88,
++ /* 650 */ 89, 108, 171, 92, 93, 20, 171, 171, 146, 93,
++ /* 660 */ 146, 196, 20, 100, 101, 102, 52, 23, 20, 106,
++ /* 670 */ 146, 140, 15, 115, 111, 22, 62, 118, 198, 194,
++ /* 680 */ 194, 24, 140, 171, 19, 171, 125, 126, 23, 204,
++ /* 690 */ 204, 22, 78, 79, 140, 171, 39, 19, 167, 42,
++ /* 700 */ 86, 87, 88, 89, 115, 152, 92, 93, 196, 167,
++ /* 710 */ 53, 140, 140, 140, 22, 140, 140, 52, 25, 140,
++ /* 720 */ 196, 28, 140, 140, 212, 111, 152, 62, 140, 217,
++ /* 730 */ 158, 87, 88, 158, 158, 182, 212, 206, 45, 125,
++ /* 740 */ 126, 217, 140, 78, 79, 140, 167, 140, 206, 167,
++ /* 750 */ 146, 86, 87, 88, 89, 167, 182, 92, 93, 115,
++ /* 760 */ 158, 207, 208, 209, 146, 158, 194, 152, 195, 194,
++ /* 770 */ 199, 22, 167, 156, 200, 171, 204, 201, 161, 204,
++ /* 780 */ 140, 140, 199, 140, 20, 206, 140, 20, 206, 171,
++ /* 790 */ 125, 126, 9, 10, 206, 140, 20, 182, 158, 158,
++ /* 800 */ 140, 158, 140, 113, 158, 198, 204, 140, 140, 20,
++ /* 810 */ 140, 206, 140, 158, 140, 140, 48, 140, 158, 140,
++ /* 820 */ 158, 140, 140, 140, 140, 158, 158, 140, 158, 140,
++ /* 830 */ 158, 140, 158, 158, 140, 158, 140, 158, 139, 158,
++ /* 840 */ 158, 158, 158, 140, 140, 158, 140, 158, 140, 158,
++ /* 850 */ 140, 140, 158, 140, 158, 19, 140, 140, 140, 140,
++ /* 860 */ 140, 158, 158, 140, 158, 140, 158, 140, 158, 158,
++ /* 870 */ 140, 158, 140, 140, 158, 158, 158, 158, 158, 140,
++ /* 880 */ 19, 158, 48, 158, 19, 158, 104, 97, 158, 21,
++ /* 890 */ 158, 158, 99, 38, 49, 22, 49, 158, 99, 200,
++ /* 900 */ 130, 19, 11, 14, 9, 103, 63, 63, 123, 19,
++ /* 910 */ 114, 114, 103, 123, 19, 114, 116, 35, 87, 20,
++ /* 920 */ 21, 150, 200, 160, 160, 138, 12, 139, 99, 138,
++ /* 930 */ 138, 138, 145, 22, 139, 139, 164, 44, 139, 139,
++ /* 940 */ 171, 111, 176, 122, 177, 119, 178, 120, 179, 117,
++ /* 950 */ 180, 121, 193, 98, 151, 23, 83, 83, 202, 127,
++ /* 960 */ 186, 113, 186, 193, 98, 186, 187, 99, 188, 116,
++ /* 970 */ 187, 99, 188, 139, 159, 19, 151, 164, 139, 139,
++ /* 980 */ 159, 186, 215, 40, 216, 127, 186, 139, 169, 60,
++ /* 990 */ 169, 197, 19, 176, 122, 186, 113, 186, 186, 176,
++ /* 1000 */ 122, 169, 186, 186, 197, 169, 186, 218, 33, 219,
++ /* 1010 */ 116, 218, 142, 157, 173, 175, 157, 203, 157, 157,
++ /* 1020 */ 162, 176, 176, 152, 210, 210, 152, 152, 140, 140,
++ /* 1030 */ 154, 154, 154, 140, 140, 140, 140, 140, 140, 185,
++ /* 1040 */ 140, 172, 140, 140, 163, 163, 163, 152, 154, 154,
++ /* 1050 */ 140, 140, 140, 140, 140, 213, 214, 140, 140, 140,
++ /* 1060 */ 140, 140, 140, 140, 140, 140, 140, 140, 140, 140,
++ /* 1070 */ 140, 140, 140, 140, 140, 140, 140, 140, 140, 140,
++ /* 1080 */ 140, 140, 140, 140, 170, 200, 166, 170, 166, 111,
++};
++#define YY_SHIFT_USE_DFLT (-84)
++#define YY_SHIFT_COUNT (376)
++#define YY_SHIFT_MIN (-83)
++#define YY_SHIFT_MAX (978)
++static const short yy_shift_ofst[] = {
++ /* 0 */ 783, 563, 614, 614, 93, 92, 92, 978, 614, 561,
++ /* 10 */ 665, 665, 509, 197, -21, 665, 665, 665, 665, 665,
++ /* 20 */ 159, 309, 197, 488, 197, 197, 197, 197, 197, 511,
++ /* 30 */ 271, 60, 665, 665, 665, 665, 665, 665, 665, 665,
++ /* 40 */ 665, 665, 665, 665, 665, 665, 665, 665, 665, 665,
++ /* 50 */ 665, 665, 665, 665, 665, 665, 665, 665, 665, 665,
++ /* 60 */ 665, 665, 665, 665, 665, 665, 665, 665, 665, 665,
++ /* 70 */ 665, 665, 665, 665, 225, 197, 197, 197, 197, 522,
++ /* 80 */ 197, 522, 365, 518, 504, 978, 978, -84, -84, 228,
++ /* 90 */ 164, 95, 26, 318, 318, 318, 318, 318, 318, 318,
++ /* 100 */ 318, 404, 318, 318, 318, 318, 318, 361, 318, 447,
++ /* 110 */ 490, 490, 490, -67, -67, -67, -67, -67, -48, -48,
++ /* 120 */ -48, -48, 101, -5, -5, -5, -5, 657, -25, 566,
++ /* 130 */ 657, 184, 195, 644, 558, 253, 192, 248, 189, 119,
++ /* 140 */ 119, 4, 197, 197, 197, 197, 197, 197, 217, 197,
++ /* 150 */ 197, 197, 217, 197, 197, 197, 197, 197, 217, 197,
++ /* 160 */ 197, 197, 217, 197, 197, 197, 197, -79, 693, 197,
++ /* 170 */ 217, 197, 197, 217, 197, 197, 42, 42, 523, 521,
++ /* 180 */ 521, 521, 197, 197, 515, 217, 197, 515, 197, 197,
++ /* 190 */ 197, 197, 197, 197, 42, 42, 42, 197, 197, 511,
++ /* 200 */ 511, 502, 502, 511, 426, 426, 321, 380, 380, 420,
++ /* 210 */ 380, 430, -44, 380, 484, 975, 894, 975, 883, 929,
++ /* 220 */ 973, 883, 883, 929, 878, 883, 883, 883, 872, 973,
++ /* 230 */ 929, 929, 829, 848, 858, 943, 848, 956, 829, 829,
++ /* 240 */ 893, 932, 956, 829, 853, 872, 853, 868, 848, 866,
++ /* 250 */ 848, 848, 832, 874, 874, 873, 932, 855, 830, 832,
++ /* 260 */ 827, 826, 821, 830, 829, 829, 893, 829, 829, 911,
++ /* 270 */ 914, 914, 914, 829, 914, -84, -84, -84, -84, -84,
++ /* 280 */ -84, -84, 40, 360, 236, 202, -83, 262, 482, 479,
++ /* 290 */ 476, 475, -18, 472, 439, 438, 435, 280, 178, 431,
++ /* 300 */ 363, 427, 392, 389, 308, 89, 396, 17, 94, 22,
++ /* 310 */ 899, 899, 831, 882, 800, 801, 895, 790, 809, 797,
++ /* 320 */ 796, 890, 785, 844, 843, 802, 895, 889, 891, 882,
++ /* 330 */ 799, 770, 847, 873, 845, 855, 793, 868, 782, 790,
++ /* 340 */ 865, 834, 861, 836, 768, 789, 776, 690, 767, 678,
++ /* 350 */ 589, 692, 559, 764, 669, 648, 749, 642, 653, 635,
++ /* 360 */ 600, 608, 543, 506, 422, 387, 469, 297, 314, 272,
++ /* 370 */ 263, 173, 194, 161, 170, 79, -8,
++};
++#define YY_REDUCE_USE_DFLT (-69)
++#define YY_REDUCE_COUNT (281)
++#define YY_REDUCE_MIN (-68)
++#define YY_REDUCE_MAX (943)
++static const short yy_reduce_ofst[] = {
++ /* 0 */ 181, 465, 486, 485, -23, 524, 512, 33, 446, 575,
++ /* 10 */ 572, 349, 554, 118, 574, 607, 480, 602, 576, 393,
++ /* 20 */ 249, 205, 605, -61, 588, 582, 579, 542, 531, -68,
++ /* 30 */ 699, 739, 733, 732, 730, 727, 725, 723, 720, 719,
++ /* 40 */ 718, 717, 716, 713, 711, 710, 708, 706, 704, 703,
++ /* 50 */ 696, 694, 691, 689, 687, 684, 683, 682, 681, 679,
++ /* 60 */ 677, 675, 674, 672, 670, 668, 667, 662, 660, 655,
++ /* 70 */ 646, 643, 641, 640, 617, 573, 583, 398, 571, 615,
++ /* 80 */ 399, 553, 328, 618, 604, 514, 481, -49, 408, 722,
++ /* 90 */ 722, 722, 722, 722, 722, 722, 722, 722, 722, 722,
++ /* 100 */ 722, 722, 722, 722, 722, 722, 722, 722, 722, 722,
++ /* 110 */ 722, 722, 722, 722, 722, 722, 722, 722, 722, 722,
++ /* 120 */ 722, 722, 922, 722, 722, 722, 722, 917, 920, 885,
++ /* 130 */ 914, 943, 942, 941, 940, 869, 939, 869, 938, 722,
++ /* 140 */ 722, 869, 937, 936, 935, 934, 933, 932, 869, 931,
++ /* 150 */ 930, 929, 869, 928, 927, 926, 925, 924, 869, 923,
++ /* 160 */ 922, 921, 869, 920, 919, 918, 917, 842, 842, 914,
++ /* 170 */ 869, 913, 912, 869, 911, 910, 895, 894, 895, 883,
++ /* 180 */ 882, 881, 903, 902, 854, 869, 900, 854, 898, 897,
++ /* 190 */ 896, 895, 894, 893, 878, 877, 876, 889, 888, 875,
++ /* 200 */ 874, 815, 814, 871, 846, 845, 858, 862, 861, 814,
++ /* 210 */ 859, 840, 841, 856, 870, 793, 790, 789, 820, 836,
++ /* 220 */ 807, 817, 816, 832, 823, 812, 811, 809, 817, 794,
++ /* 230 */ 821, 819, 848, 800, 768, 767, 795, 821, 840, 839,
++ /* 240 */ 813, 825, 815, 834, 784, 783, 780, 779, 779, 770,
++ /* 250 */ 776, 774, 756, 722, 722, 722, 803, 759, 770, 769,
++ /* 260 */ 768, 767, 766, 769, 800, 799, 772, 796, 795, 787,
++ /* 270 */ 793, 792, 791, 788, 787, 764, 763, 722, 722, 722,
++ /* 280 */ 722, 771,
++};
++static const YYACTIONTYPE yy_default[] = {
++ /* 0 */ 570, 856, 797, 797, 856, 839, 839, 685, 856, 797,
++ /* 10 */ 797, 856, 822, 856, 681, 856, 856, 797, 793, 856,
++ /* 20 */ 586, 649, 856, 581, 856, 856, 856, 856, 856, 594,
++ /* 30 */ 651, 856, 856, 856, 856, 856, 856, 856, 856, 856,
++ /* 40 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
++ /* 50 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
++ /* 60 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
++ /* 70 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 681,
++ /* 80 */ 856, 681, 570, 856, 856, 856, 856, 685, 675, 856,
++ /* 90 */ 856, 856, 856, 730, 729, 724, 723, 837, 697, 721,
++ /* 100 */ 714, 856, 789, 790, 788, 792, 796, 856, 705, 748,
++ /* 110 */ 780, 774, 747, 779, 760, 759, 754, 753, 752, 751,
++ /* 120 */ 750, 749, 640, 758, 757, 756, 755, 856, 856, 856,
++ /* 130 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 764,
++ /* 140 */ 763, 856, 856, 856, 856, 809, 856, 856, 726, 856,
++ /* 150 */ 856, 856, 663, 856, 856, 856, 856, 856, 842, 856,
++ /* 160 */ 856, 856, 844, 856, 856, 856, 856, 856, 828, 856,
++ /* 170 */ 661, 856, 856, 583, 856, 856, 856, 856, 595, 856,
++ /* 180 */ 856, 856, 856, 856, 689, 688, 856, 683, 856, 856,
++ /* 190 */ 856, 856, 856, 856, 856, 856, 856, 856, 573, 856,
++ /* 200 */ 856, 856, 856, 856, 720, 720, 621, 708, 708, 791,
++ /* 210 */ 708, 682, 673, 708, 856, 854, 852, 854, 690, 653,
++ /* 220 */ 731, 690, 690, 653, 720, 690, 690, 690, 720, 731,
++ /* 230 */ 653, 653, 651, 690, 836, 833, 690, 801, 651, 651,
++ /* 240 */ 636, 856, 801, 651, 700, 698, 700, 698, 690, 709,
++ /* 250 */ 690, 690, 856, 767, 766, 765, 856, 709, 715, 701,
++ /* 260 */ 713, 711, 720, 856, 651, 651, 636, 651, 651, 639,
++ /* 270 */ 572, 572, 572, 651, 572, 624, 624, 777, 776, 775,
++ /* 280 */ 768, 604, 856, 856, 856, 856, 856, 816, 856, 856,
++ /* 290 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
++ /* 300 */ 856, 856, 856, 856, 856, 856, 716, 737, 856, 856,
++ /* 310 */ 856, 856, 856, 856, 808, 856, 856, 856, 856, 856,
++ /* 320 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
++ /* 330 */ 856, 856, 856, 832, 831, 856, 856, 856, 856, 856,
++ /* 340 */ 856, 856, 856, 856, 856, 856, 856, 856, 856, 856,
++ /* 350 */ 856, 712, 856, 856, 856, 856, 856, 856, 856, 856,
++ /* 360 */ 856, 856, 666, 856, 739, 856, 702, 856, 856, 856,
++ /* 370 */ 738, 743, 856, 856, 856, 856, 856, 565, 569, 567,
++ /* 380 */ 855, 853, 851, 850, 815, 821, 818, 820, 819, 817,
++ /* 390 */ 814, 813, 812, 811, 810, 807, 725, 722, 719, 849,
++ /* 400 */ 806, 662, 660, 843, 841, 732, 840, 838, 823, 728,
++ /* 410 */ 727, 654, 799, 798, 580, 827, 826, 825, 734, 733,
++ /* 420 */ 830, 829, 835, 834, 824, 579, 585, 643, 642, 650,
++ /* 430 */ 648, 647, 646, 645, 644, 641, 587, 598, 599, 597,
++ /* 440 */ 596, 615, 612, 614, 611, 613, 610, 609, 608, 607,
++ /* 450 */ 606, 635, 623, 622, 802, 629, 628, 633, 632, 631,
++ /* 460 */ 630, 627, 626, 625, 620, 746, 745, 735, 778, 672,
++ /* 470 */ 671, 678, 677, 676, 687, 804, 805, 803, 699, 686,
++ /* 480 */ 680, 679, 590, 589, 696, 695, 694, 693, 692, 684,
++ /* 490 */ 674, 704, 786, 783, 784, 772, 785, 691, 795, 794,
++ /* 500 */ 781, 848, 847, 846, 845, 787, 782, 669, 668, 667,
++ /* 510 */ 771, 773, 770, 769, 762, 761, 744, 742, 741, 740,
++ /* 520 */ 736, 710, 588, 703, 718, 717, 602, 601, 600, 670,
++ /* 530 */ 665, 664, 619, 707, 706, 618, 638, 637, 634, 617,
++ /* 540 */ 616, 605, 603, 584, 582, 578, 577, 576, 575, 593,
++ /* 550 */ 592, 591, 574, 659, 658, 657, 656, 655, 652, 571,
++ /* 560 */ 568, 566, 564,
++};
++
++/* The next table maps tokens into fallback tokens. If a construct
++** like the following:
++**
++** %fallback ID X Y Z.
++**
++** appears in the grammar, then ID becomes a fallback token for X, Y,
++** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
++** but it does not parse, the type of the token is changed to ID and
++** the parse is retried before an error is thrown.
++*/
++#ifdef YYFALLBACK
++static const YYCODETYPE yyFallback[] = {
++ 0, /* $ => nothing */
++ 0, /* END_OF_FILE => nothing */
++ 0, /* ILLEGAL => nothing */
++ 0, /* SPACE => nothing */
++ 0, /* UNCLOSED_STRING => nothing */
++ 0, /* COMMENT => nothing */
++ 0, /* FUNCTION => nothing */
++ 0, /* COLUMN => nothing */
++ 0, /* AGG_FUNCTION => nothing */
++ 0, /* SEMI => nothing */
++ 23, /* EXPLAIN => ID */
++ 23, /* BEGIN => ID */
++ 0, /* TRANSACTION => nothing */
++ 0, /* COMMIT => nothing */
++ 23, /* END => ID */
++ 0, /* ROLLBACK => nothing */
++ 0, /* CREATE => nothing */
++ 0, /* TABLE => nothing */
++ 23, /* TEMP => ID */
++ 0, /* LP => nothing */
++ 0, /* RP => nothing */
++ 0, /* AS => nothing */
++ 0, /* COMMA => nothing */
++ 0, /* ID => nothing */
++ 23, /* ABORT => ID */
++ 23, /* AFTER => ID */
++ 23, /* ASC => ID */
++ 23, /* ATTACH => ID */
++ 23, /* BEFORE => ID */
++ 23, /* CASCADE => ID */
++ 23, /* CLUSTER => ID */
++ 23, /* CONFLICT => ID */
++ 23, /* COPY => ID */
++ 23, /* DATABASE => ID */
++ 23, /* DEFERRED => ID */
++ 23, /* DELIMITERS => ID */
++ 23, /* DESC => ID */
++ 23, /* DETACH => ID */
++ 23, /* EACH => ID */
++ 23, /* FAIL => ID */
++ 23, /* FOR => ID */
++ 23, /* GLOB => ID */
++ 23, /* IGNORE => ID */
++ 23, /* IMMEDIATE => ID */
++ 23, /* INITIALLY => ID */
++ 23, /* INSTEAD => ID */
++ 23, /* LIKE => ID */
++ 23, /* MATCH => ID */
++ 23, /* KEY => ID */
++ 23, /* OF => ID */
++ 23, /* OFFSET => ID */
++ 23, /* PRAGMA => ID */
++ 23, /* RAISE => ID */
++ 23, /* REPLACE => ID */
++ 23, /* RESTRICT => ID */
++ 23, /* ROW => ID */
++ 23, /* STATEMENT => ID */
++ 23, /* TRIGGER => ID */
++ 23, /* VACUUM => ID */
++ 23, /* VIEW => ID */
++};
++#endif /* YYFALLBACK */
++
++/* The following structure represents a single element of the
++** parser's stack. Information stored includes:
++**
++** + The state number for the parser at this level of the stack.
++**
++** + The value of the token stored at this level of the stack.
++** (In other words, the "major" token.)
++**
++** + The semantic value stored at this level of the stack. This is
++** the information used by the action routines in the grammar.
++** It is sometimes called the "minor" token.
++*/
++struct yyStackEntry {
++ YYACTIONTYPE stateno; /* The state-number */
++ YYCODETYPE major; /* The major token value. This is the code
++ ** number for the token at this stack level */
++ YYMINORTYPE minor; /* The user-supplied minor token value. This
++ ** is the value of the token */
++};
++typedef struct yyStackEntry yyStackEntry;
++
++/* The state of the parser is completely contained in an instance of
++** the following structure */
++struct yyParser {
++ int yyidx; /* Index of top element in stack */
++#ifdef YYTRACKMAXSTACKDEPTH
++ int yyidxMax; /* Maximum value of yyidx */
++#endif
++ int yyerrcnt; /* Shifts left before out of the error */
++ sqliteParserARG_SDECL /* A place to hold %extra_argument */
++#if YYSTACKDEPTH<=0
++ int yystksz; /* Current side of the stack */
++ yyStackEntry *yystack; /* The parser's stack */
++#else
++ yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */
++#endif
++};
++typedef struct yyParser yyParser;
++
++#ifndef NDEBUG
++#include <stdio.h>
++static FILE *yyTraceFILE = 0;
++static char *yyTracePrompt = 0;
++#endif /* NDEBUG */
++
++#ifndef NDEBUG
++/*
++** Turn parser tracing on by giving a stream to which to write the trace
++** and a prompt to preface each trace message. Tracing is turned off
++** by making either argument NULL
++**
++** Inputs:
++** <ul>
++** <li> A FILE* to which trace output should be written.
++** If NULL, then tracing is turned off.
++** <li> A prefix string written at the beginning of every
++** line of trace output. If NULL, then tracing is
++** turned off.
++** </ul>
++**
++** Outputs:
++** None.
++*/
++void sqliteParserTrace(FILE *TraceFILE, char *zTracePrompt){
++ yyTraceFILE = TraceFILE;
++ yyTracePrompt = zTracePrompt;
++ if( yyTraceFILE==0 ) yyTracePrompt = 0;
++ else if( yyTracePrompt==0 ) yyTraceFILE = 0;
++}
++#endif /* NDEBUG */
++
++#ifndef NDEBUG
++/* For tracing shifts, the names of all terminals and nonterminals
++** are required. The following table supplies these names */
++static const char *const yyTokenName[] = {
++ "$", "END_OF_FILE", "ILLEGAL", "SPACE",
++ "UNCLOSED_STRING", "COMMENT", "FUNCTION", "COLUMN",
++ "AGG_FUNCTION", "SEMI", "EXPLAIN", "BEGIN",
++ "TRANSACTION", "COMMIT", "END", "ROLLBACK",
++ "CREATE", "TABLE", "TEMP", "LP",
++ "RP", "AS", "COMMA", "ID",
++ "ABORT", "AFTER", "ASC", "ATTACH",
++ "BEFORE", "CASCADE", "CLUSTER", "CONFLICT",
++ "COPY", "DATABASE", "DEFERRED", "DELIMITERS",
++ "DESC", "DETACH", "EACH", "FAIL",
++ "FOR", "GLOB", "IGNORE", "IMMEDIATE",
++ "INITIALLY", "INSTEAD", "LIKE", "MATCH",
++ "KEY", "OF", "OFFSET", "PRAGMA",
++ "RAISE", "REPLACE", "RESTRICT", "ROW",
++ "STATEMENT", "TRIGGER", "VACUUM", "VIEW",
++ "OR", "AND", "NOT", "EQ",
++ "NE", "ISNULL", "NOTNULL", "IS",
++ "BETWEEN", "IN", "GT", "GE",
++ "LT", "LE", "BITAND", "BITOR",
++ "LSHIFT", "RSHIFT", "PLUS", "MINUS",
++ "STAR", "SLASH", "REM", "CONCAT",
++ "UMINUS", "UPLUS", "BITNOT", "STRING",
++ "JOIN_KW", "INTEGER", "CONSTRAINT", "DEFAULT",
++ "FLOAT", "NULL", "PRIMARY", "UNIQUE",
++ "CHECK", "REFERENCES", "COLLATE", "ON",
++ "DELETE", "UPDATE", "INSERT", "SET",
++ "DEFERRABLE", "FOREIGN", "DROP", "UNION",
++ "ALL", "INTERSECT", "EXCEPT", "SELECT",
++ "DISTINCT", "DOT", "FROM", "JOIN",
++ "USING", "ORDER", "BY", "GROUP",
++ "HAVING", "LIMIT", "WHERE", "INTO",
++ "VALUES", "VARIABLE", "CASE", "WHEN",
++ "THEN", "ELSE", "INDEX", "error",
++ "input", "cmdlist", "ecmd", "explain",
++ "cmdx", "cmd", "trans_opt", "onconf",
++ "nm", "create_table", "create_table_args", "temp",
++ "columnlist", "conslist_opt", "select", "column",
++ "columnid", "type", "carglist", "id",
++ "ids", "typename", "signed", "carg",
++ "ccons", "sortorder", "expr", "idxlist_opt",
++ "refargs", "defer_subclause", "refarg", "refact",
++ "init_deferred_pred_opt", "conslist", "tcons", "idxlist",
++ "defer_subclause_opt", "orconf", "resolvetype", "oneselect",
++ "multiselect_op", "distinct", "selcollist", "from",
++ "where_opt", "groupby_opt", "having_opt", "orderby_opt",
++ "limit_opt", "sclp", "as", "seltablist",
++ "stl_prefix", "joinop", "dbnm", "on_opt",
++ "using_opt", "seltablist_paren", "joinop2", "sortlist",
++ "sortitem", "collate", "exprlist", "setlist",
++ "insert_cmd", "inscollist_opt", "itemlist", "inscollist",
++ "likeop", "case_operand", "case_exprlist", "case_else",
++ "expritem", "uniqueflag", "idxitem", "plus_num",
++ "minus_num", "plus_opt", "number", "trigger_decl",
++ "trigger_cmd_list", "trigger_time", "trigger_event", "foreach_clause",
++ "when_clause", "trigger_cmd", "database_kw_opt", "key_opt",
++};
++#endif /* NDEBUG */
++
++#ifndef NDEBUG
++/* For tracing reduce actions, the names of all rules are required.
++*/
++static const char *const yyRuleName[] = {
++ /* 0 */ "input ::= cmdlist",
++ /* 1 */ "cmdlist ::= cmdlist ecmd",
++ /* 2 */ "cmdlist ::= ecmd",
++ /* 3 */ "ecmd ::= explain cmdx SEMI",
++ /* 4 */ "ecmd ::= SEMI",
++ /* 5 */ "cmdx ::= cmd",
++ /* 6 */ "explain ::= EXPLAIN",
++ /* 7 */ "explain ::=",
++ /* 8 */ "cmd ::= BEGIN trans_opt onconf",
++ /* 9 */ "trans_opt ::=",
++ /* 10 */ "trans_opt ::= TRANSACTION",
++ /* 11 */ "trans_opt ::= TRANSACTION nm",
++ /* 12 */ "cmd ::= COMMIT trans_opt",
++ /* 13 */ "cmd ::= END trans_opt",
++ /* 14 */ "cmd ::= ROLLBACK trans_opt",
++ /* 15 */ "cmd ::= create_table create_table_args",
++ /* 16 */ "create_table ::= CREATE temp TABLE nm",
++ /* 17 */ "temp ::= TEMP",
++ /* 18 */ "temp ::=",
++ /* 19 */ "create_table_args ::= LP columnlist conslist_opt RP",
++ /* 20 */ "create_table_args ::= AS select",
++ /* 21 */ "columnlist ::= columnlist COMMA column",
++ /* 22 */ "columnlist ::= column",
++ /* 23 */ "column ::= columnid type carglist",
++ /* 24 */ "columnid ::= nm",
++ /* 25 */ "id ::= ID",
++ /* 26 */ "ids ::= ID",
++ /* 27 */ "ids ::= STRING",
++ /* 28 */ "nm ::= ID",
++ /* 29 */ "nm ::= STRING",
++ /* 30 */ "nm ::= JOIN_KW",
++ /* 31 */ "type ::=",
++ /* 32 */ "type ::= typename",
++ /* 33 */ "type ::= typename LP signed RP",
++ /* 34 */ "type ::= typename LP signed COMMA signed RP",
++ /* 35 */ "typename ::= ids",
++ /* 36 */ "typename ::= typename ids",
++ /* 37 */ "signed ::= INTEGER",
++ /* 38 */ "signed ::= PLUS INTEGER",
++ /* 39 */ "signed ::= MINUS INTEGER",
++ /* 40 */ "carglist ::= carglist carg",
++ /* 41 */ "carglist ::=",
++ /* 42 */ "carg ::= CONSTRAINT nm ccons",
++ /* 43 */ "carg ::= ccons",
++ /* 44 */ "carg ::= DEFAULT STRING",
++ /* 45 */ "carg ::= DEFAULT ID",
++ /* 46 */ "carg ::= DEFAULT INTEGER",
++ /* 47 */ "carg ::= DEFAULT PLUS INTEGER",
++ /* 48 */ "carg ::= DEFAULT MINUS INTEGER",
++ /* 49 */ "carg ::= DEFAULT FLOAT",
++ /* 50 */ "carg ::= DEFAULT PLUS FLOAT",
++ /* 51 */ "carg ::= DEFAULT MINUS FLOAT",
++ /* 52 */ "carg ::= DEFAULT NULL",
++ /* 53 */ "ccons ::= NULL onconf",
++ /* 54 */ "ccons ::= NOT NULL onconf",
++ /* 55 */ "ccons ::= PRIMARY KEY sortorder onconf",
++ /* 56 */ "ccons ::= UNIQUE onconf",
++ /* 57 */ "ccons ::= CHECK LP expr RP onconf",
++ /* 58 */ "ccons ::= REFERENCES nm idxlist_opt refargs",
++ /* 59 */ "ccons ::= defer_subclause",
++ /* 60 */ "ccons ::= COLLATE id",
++ /* 61 */ "refargs ::=",
++ /* 62 */ "refargs ::= refargs refarg",
++ /* 63 */ "refarg ::= MATCH nm",
++ /* 64 */ "refarg ::= ON DELETE refact",
++ /* 65 */ "refarg ::= ON UPDATE refact",
++ /* 66 */ "refarg ::= ON INSERT refact",
++ /* 67 */ "refact ::= SET NULL",
++ /* 68 */ "refact ::= SET DEFAULT",
++ /* 69 */ "refact ::= CASCADE",
++ /* 70 */ "refact ::= RESTRICT",
++ /* 71 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt",
++ /* 72 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt",
++ /* 73 */ "init_deferred_pred_opt ::=",
++ /* 74 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED",
++ /* 75 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE",
++ /* 76 */ "conslist_opt ::=",
++ /* 77 */ "conslist_opt ::= COMMA conslist",
++ /* 78 */ "conslist ::= conslist COMMA tcons",
++ /* 79 */ "conslist ::= conslist tcons",
++ /* 80 */ "conslist ::= tcons",
++ /* 81 */ "tcons ::= CONSTRAINT nm",
++ /* 82 */ "tcons ::= PRIMARY KEY LP idxlist RP onconf",
++ /* 83 */ "tcons ::= UNIQUE LP idxlist RP onconf",
++ /* 84 */ "tcons ::= CHECK expr onconf",
++ /* 85 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt",
++ /* 86 */ "defer_subclause_opt ::=",
++ /* 87 */ "defer_subclause_opt ::= defer_subclause",
++ /* 88 */ "onconf ::=",
++ /* 89 */ "onconf ::= ON CONFLICT resolvetype",
++ /* 90 */ "orconf ::=",
++ /* 91 */ "orconf ::= OR resolvetype",
++ /* 92 */ "resolvetype ::= ROLLBACK",
++ /* 93 */ "resolvetype ::= ABORT",
++ /* 94 */ "resolvetype ::= FAIL",
++ /* 95 */ "resolvetype ::= IGNORE",
++ /* 96 */ "resolvetype ::= REPLACE",
++ /* 97 */ "cmd ::= DROP TABLE nm",
++ /* 98 */ "cmd ::= CREATE temp VIEW nm AS select",
++ /* 99 */ "cmd ::= DROP VIEW nm",
++ /* 100 */ "cmd ::= select",
++ /* 101 */ "select ::= oneselect",
++ /* 102 */ "select ::= select multiselect_op oneselect",
++ /* 103 */ "multiselect_op ::= UNION",
++ /* 104 */ "multiselect_op ::= UNION ALL",
++ /* 105 */ "multiselect_op ::= INTERSECT",
++ /* 106 */ "multiselect_op ::= EXCEPT",
++ /* 107 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt",
++ /* 108 */ "distinct ::= DISTINCT",
++ /* 109 */ "distinct ::= ALL",
++ /* 110 */ "distinct ::=",
++ /* 111 */ "sclp ::= selcollist COMMA",
++ /* 112 */ "sclp ::=",
++ /* 113 */ "selcollist ::= sclp expr as",
++ /* 114 */ "selcollist ::= sclp STAR",
++ /* 115 */ "selcollist ::= sclp nm DOT STAR",
++ /* 116 */ "as ::= AS nm",
++ /* 117 */ "as ::= ids",
++ /* 118 */ "as ::=",
++ /* 119 */ "from ::=",
++ /* 120 */ "from ::= FROM seltablist",
++ /* 121 */ "stl_prefix ::= seltablist joinop",
++ /* 122 */ "stl_prefix ::=",
++ /* 123 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt",
++ /* 124 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt",
++ /* 125 */ "seltablist_paren ::= select",
++ /* 126 */ "seltablist_paren ::= seltablist",
++ /* 127 */ "dbnm ::=",
++ /* 128 */ "dbnm ::= DOT nm",
++ /* 129 */ "joinop ::= COMMA",
++ /* 130 */ "joinop ::= JOIN",
++ /* 131 */ "joinop ::= JOIN_KW JOIN",
++ /* 132 */ "joinop ::= JOIN_KW nm JOIN",
++ /* 133 */ "joinop ::= JOIN_KW nm nm JOIN",
++ /* 134 */ "on_opt ::= ON expr",
++ /* 135 */ "on_opt ::=",
++ /* 136 */ "using_opt ::= USING LP idxlist RP",
++ /* 137 */ "using_opt ::=",
++ /* 138 */ "orderby_opt ::=",
++ /* 139 */ "orderby_opt ::= ORDER BY sortlist",
++ /* 140 */ "sortlist ::= sortlist COMMA sortitem collate sortorder",
++ /* 141 */ "sortlist ::= sortitem collate sortorder",
++ /* 142 */ "sortitem ::= expr",
++ /* 143 */ "sortorder ::= ASC",
++ /* 144 */ "sortorder ::= DESC",
++ /* 145 */ "sortorder ::=",
++ /* 146 */ "collate ::=",
++ /* 147 */ "collate ::= COLLATE id",
++ /* 148 */ "groupby_opt ::=",
++ /* 149 */ "groupby_opt ::= GROUP BY exprlist",
++ /* 150 */ "having_opt ::=",
++ /* 151 */ "having_opt ::= HAVING expr",
++ /* 152 */ "limit_opt ::=",
++ /* 153 */ "limit_opt ::= LIMIT signed",
++ /* 154 */ "limit_opt ::= LIMIT signed OFFSET signed",
++ /* 155 */ "limit_opt ::= LIMIT signed COMMA signed",
++ /* 156 */ "cmd ::= DELETE FROM nm dbnm where_opt",
++ /* 157 */ "where_opt ::=",
++ /* 158 */ "where_opt ::= WHERE expr",
++ /* 159 */ "cmd ::= UPDATE orconf nm dbnm SET setlist where_opt",
++ /* 160 */ "setlist ::= setlist COMMA nm EQ expr",
++ /* 161 */ "setlist ::= nm EQ expr",
++ /* 162 */ "cmd ::= insert_cmd INTO nm dbnm inscollist_opt VALUES LP itemlist RP",
++ /* 163 */ "cmd ::= insert_cmd INTO nm dbnm inscollist_opt select",
++ /* 164 */ "insert_cmd ::= INSERT orconf",
++ /* 165 */ "insert_cmd ::= REPLACE",
++ /* 166 */ "itemlist ::= itemlist COMMA expr",
++ /* 167 */ "itemlist ::= expr",
++ /* 168 */ "inscollist_opt ::=",
++ /* 169 */ "inscollist_opt ::= LP inscollist RP",
++ /* 170 */ "inscollist ::= inscollist COMMA nm",
++ /* 171 */ "inscollist ::= nm",
++ /* 172 */ "expr ::= LP expr RP",
++ /* 173 */ "expr ::= NULL",
++ /* 174 */ "expr ::= ID",
++ /* 175 */ "expr ::= JOIN_KW",
++ /* 176 */ "expr ::= nm DOT nm",
++ /* 177 */ "expr ::= nm DOT nm DOT nm",
++ /* 178 */ "expr ::= INTEGER",
++ /* 179 */ "expr ::= FLOAT",
++ /* 180 */ "expr ::= STRING",
++ /* 181 */ "expr ::= VARIABLE",
++ /* 182 */ "expr ::= ID LP exprlist RP",
++ /* 183 */ "expr ::= ID LP STAR RP",
++ /* 184 */ "expr ::= expr AND expr",
++ /* 185 */ "expr ::= expr OR expr",
++ /* 186 */ "expr ::= expr LT expr",
++ /* 187 */ "expr ::= expr GT expr",
++ /* 188 */ "expr ::= expr LE expr",
++ /* 189 */ "expr ::= expr GE expr",
++ /* 190 */ "expr ::= expr NE expr",
++ /* 191 */ "expr ::= expr EQ expr",
++ /* 192 */ "expr ::= expr BITAND expr",
++ /* 193 */ "expr ::= expr BITOR expr",
++ /* 194 */ "expr ::= expr LSHIFT expr",
++ /* 195 */ "expr ::= expr RSHIFT expr",
++ /* 196 */ "expr ::= expr likeop expr",
++ /* 197 */ "expr ::= expr NOT likeop expr",
++ /* 198 */ "likeop ::= LIKE",
++ /* 199 */ "likeop ::= GLOB",
++ /* 200 */ "expr ::= expr PLUS expr",
++ /* 201 */ "expr ::= expr MINUS expr",
++ /* 202 */ "expr ::= expr STAR expr",
++ /* 203 */ "expr ::= expr SLASH expr",
++ /* 204 */ "expr ::= expr REM expr",
++ /* 205 */ "expr ::= expr CONCAT expr",
++ /* 206 */ "expr ::= expr ISNULL",
++ /* 207 */ "expr ::= expr IS NULL",
++ /* 208 */ "expr ::= expr NOTNULL",
++ /* 209 */ "expr ::= expr NOT NULL",
++ /* 210 */ "expr ::= expr IS NOT NULL",
++ /* 211 */ "expr ::= NOT expr",
++ /* 212 */ "expr ::= BITNOT expr",
++ /* 213 */ "expr ::= MINUS expr",
++ /* 214 */ "expr ::= PLUS expr",
++ /* 215 */ "expr ::= LP select RP",
++ /* 216 */ "expr ::= expr BETWEEN expr AND expr",
++ /* 217 */ "expr ::= expr NOT BETWEEN expr AND expr",
++ /* 218 */ "expr ::= expr IN LP exprlist RP",
++ /* 219 */ "expr ::= expr IN LP select RP",
++ /* 220 */ "expr ::= expr NOT IN LP exprlist RP",
++ /* 221 */ "expr ::= expr NOT IN LP select RP",
++ /* 222 */ "expr ::= expr IN nm dbnm",
++ /* 223 */ "expr ::= expr NOT IN nm dbnm",
++ /* 224 */ "expr ::= CASE case_operand case_exprlist case_else END",
++ /* 225 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr",
++ /* 226 */ "case_exprlist ::= WHEN expr THEN expr",
++ /* 227 */ "case_else ::= ELSE expr",
++ /* 228 */ "case_else ::=",
++ /* 229 */ "case_operand ::= expr",
++ /* 230 */ "case_operand ::=",
++ /* 231 */ "exprlist ::= exprlist COMMA expritem",
++ /* 232 */ "exprlist ::= expritem",
++ /* 233 */ "expritem ::= expr",
++ /* 234 */ "expritem ::=",
++ /* 235 */ "cmd ::= CREATE uniqueflag INDEX nm ON nm dbnm LP idxlist RP onconf",
++ /* 236 */ "uniqueflag ::= UNIQUE",
++ /* 237 */ "uniqueflag ::=",
++ /* 238 */ "idxlist_opt ::=",
++ /* 239 */ "idxlist_opt ::= LP idxlist RP",
++ /* 240 */ "idxlist ::= idxlist COMMA idxitem",
++ /* 241 */ "idxlist ::= idxitem",
++ /* 242 */ "idxitem ::= nm sortorder",
++ /* 243 */ "cmd ::= DROP INDEX nm dbnm",
++ /* 244 */ "cmd ::= COPY orconf nm dbnm FROM nm USING DELIMITERS STRING",
++ /* 245 */ "cmd ::= COPY orconf nm dbnm FROM nm",
++ /* 246 */ "cmd ::= VACUUM",
++ /* 247 */ "cmd ::= VACUUM nm",
++ /* 248 */ "cmd ::= PRAGMA ids EQ nm",
++ /* 249 */ "cmd ::= PRAGMA ids EQ ON",
++ /* 250 */ "cmd ::= PRAGMA ids EQ plus_num",
++ /* 251 */ "cmd ::= PRAGMA ids EQ minus_num",
++ /* 252 */ "cmd ::= PRAGMA ids LP nm RP",
++ /* 253 */ "cmd ::= PRAGMA ids",
++ /* 254 */ "plus_num ::= plus_opt number",
++ /* 255 */ "minus_num ::= MINUS number",
++ /* 256 */ "number ::= INTEGER",
++ /* 257 */ "number ::= FLOAT",
++ /* 258 */ "plus_opt ::= PLUS",
++ /* 259 */ "plus_opt ::=",
++ /* 260 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END",
++ /* 261 */ "trigger_decl ::= temp TRIGGER nm trigger_time trigger_event ON nm dbnm foreach_clause when_clause",
++ /* 262 */ "trigger_time ::= BEFORE",
++ /* 263 */ "trigger_time ::= AFTER",
++ /* 264 */ "trigger_time ::= INSTEAD OF",
++ /* 265 */ "trigger_time ::=",
++ /* 266 */ "trigger_event ::= DELETE",
++ /* 267 */ "trigger_event ::= INSERT",
++ /* 268 */ "trigger_event ::= UPDATE",
++ /* 269 */ "trigger_event ::= UPDATE OF inscollist",
++ /* 270 */ "foreach_clause ::=",
++ /* 271 */ "foreach_clause ::= FOR EACH ROW",
++ /* 272 */ "foreach_clause ::= FOR EACH STATEMENT",
++ /* 273 */ "when_clause ::=",
++ /* 274 */ "when_clause ::= WHEN expr",
++ /* 275 */ "trigger_cmd_list ::= trigger_cmd SEMI trigger_cmd_list",
++ /* 276 */ "trigger_cmd_list ::=",
++ /* 277 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt",
++ /* 278 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP",
++ /* 279 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select",
++ /* 280 */ "trigger_cmd ::= DELETE FROM nm where_opt",
++ /* 281 */ "trigger_cmd ::= select",
++ /* 282 */ "expr ::= RAISE LP IGNORE RP",
++ /* 283 */ "expr ::= RAISE LP ROLLBACK COMMA nm RP",
++ /* 284 */ "expr ::= RAISE LP ABORT COMMA nm RP",
++ /* 285 */ "expr ::= RAISE LP FAIL COMMA nm RP",
++ /* 286 */ "cmd ::= DROP TRIGGER nm dbnm",
++ /* 287 */ "cmd ::= ATTACH database_kw_opt ids AS nm key_opt",
++ /* 288 */ "key_opt ::= USING ids",
++ /* 289 */ "key_opt ::=",
++ /* 290 */ "database_kw_opt ::= DATABASE",
++ /* 291 */ "database_kw_opt ::=",
++ /* 292 */ "cmd ::= DETACH database_kw_opt nm",
++};
++#endif /* NDEBUG */
++
++
++#if YYSTACKDEPTH<=0
++/*
++** Try to increase the size of the parser stack.
++*/
++static void yyGrowStack(yyParser *p){
++ int newSize;
++ yyStackEntry *pNew;
++
++ newSize = p->yystksz*2 + 100;
++ pNew = realloc(p->yystack, newSize*sizeof(pNew[0]));
++ if( pNew ){
++ p->yystack = pNew;
++ p->yystksz = newSize;
++#ifndef NDEBUG
++ if( yyTraceFILE ){
++ fprintf(yyTraceFILE,"%sStack grows to %d entries!\n",
++ yyTracePrompt, p->yystksz);
++ }
++#endif
++ }
++}
++#endif
++
++/*
++** This function allocates a new parser.
++** The only argument is a pointer to a function which works like
++** malloc.
++**
++** Inputs:
++** A pointer to the function used to allocate memory.
++**
++** Outputs:
++** A pointer to a parser. This pointer is used in subsequent calls
++** to sqliteParser and sqliteParserFree.
++*/
++void *sqliteParserAlloc(void *(*mallocProc)(size_t)){
++ yyParser *pParser;
++ pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) );
++ if( pParser ){
++ pParser->yyidx = -1;
++#ifdef YYTRACKMAXSTACKDEPTH
++ pParser->yyidxMax = 0;
++#endif
++#if YYSTACKDEPTH<=0
++ pParser->yystack = NULL;
++ pParser->yystksz = 0;
++ yyGrowStack(pParser);
++#endif
++ }
++ return pParser;
++}
++
++/* The following function deletes the value associated with a
++** symbol. The symbol can be either a terminal or nonterminal.
++** "yymajor" is the symbol code, and "yypminor" is a pointer to
++** the value.
++*/
++static void yy_destructor(
++ yyParser *yypParser, /* The parser */
++ YYCODETYPE yymajor, /* Type code for object to destroy */
++ YYMINORTYPE *yypminor /* The object to be destroyed */
++){
++ sqliteParserARG_FETCH;
++ switch( yymajor ){
++ /* Here is inserted the actions which take place when a
++ ** terminal or non-terminal is destroyed. This can happen
++ ** when the symbol is popped from the stack during a
++ ** reduce or during error processing or when a parser is
++ ** being destroyed before it is finished parsing.
++ **
++ ** Note: during a reduce, the only symbols destroyed are those
++ ** which appear on the RHS of the rule, but which are not used
++ ** inside the C code.
++ */
++ case 146: /* select */
++ case 171: /* oneselect */
++ case 189: /* seltablist_paren */
++{
++#line 286 "ext/sqlite/libsqlite/src/parse.y"
++sqliteSelectDelete((yypminor->yy179));
++#line 1131 "ext/sqlite/libsqlite/src/parse.c"
++}
++ break;
++ case 158: /* expr */
++ case 176: /* where_opt */
++ case 178: /* having_opt */
++ case 187: /* on_opt */
++ case 192: /* sortitem */
++ case 204: /* expritem */
++{
++#line 533 "ext/sqlite/libsqlite/src/parse.y"
++sqliteExprDelete((yypminor->yy242));
++#line 1143 "ext/sqlite/libsqlite/src/parse.c"
++}
++ break;
++ case 159: /* idxlist_opt */
++ case 167: /* idxlist */
++ case 188: /* using_opt */
++ case 197: /* inscollist_opt */
++ case 199: /* inscollist */
++{
++#line 746 "ext/sqlite/libsqlite/src/parse.y"
++sqliteIdListDelete((yypminor->yy320));
++#line 1154 "ext/sqlite/libsqlite/src/parse.c"
++}
++ break;
++ case 174: /* selcollist */
++ case 177: /* groupby_opt */
++ case 179: /* orderby_opt */
++ case 181: /* sclp */
++ case 191: /* sortlist */
++ case 194: /* exprlist */
++ case 195: /* setlist */
++ case 198: /* itemlist */
++ case 202: /* case_exprlist */
++{
++#line 322 "ext/sqlite/libsqlite/src/parse.y"
++sqliteExprListDelete((yypminor->yy322));
++#line 1169 "ext/sqlite/libsqlite/src/parse.c"
++}
++ break;
++ case 175: /* from */
++ case 183: /* seltablist */
++ case 184: /* stl_prefix */
++{
++#line 353 "ext/sqlite/libsqlite/src/parse.y"
++sqliteSrcListDelete((yypminor->yy307));
++#line 1178 "ext/sqlite/libsqlite/src/parse.c"
++}
++ break;
++ case 212: /* trigger_cmd_list */
++ case 217: /* trigger_cmd */
++{
++#line 828 "ext/sqlite/libsqlite/src/parse.y"
++sqliteDeleteTriggerStep((yypminor->yy19));
++#line 1186 "ext/sqlite/libsqlite/src/parse.c"
++}
++ break;
++ case 214: /* trigger_event */
++{
++#line 812 "ext/sqlite/libsqlite/src/parse.y"
++sqliteIdListDelete((yypminor->yy290).b);
++#line 1193 "ext/sqlite/libsqlite/src/parse.c"
++}
++ break;
++ default: break; /* If no destructor action specified: do nothing */
++ }
++}
++
++/*
++** Pop the parser's stack once.
++**
++** If there is a destructor routine associated with the token which
++** is popped from the stack, then call it.
++**
++** Return the major token number for the symbol popped.
++*/
++static int yy_pop_parser_stack(yyParser *pParser){
++ YYCODETYPE yymajor;
++ yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];
++
++ if( pParser->yyidx<0 ) return 0;
++#ifndef NDEBUG
++ if( yyTraceFILE && pParser->yyidx>=0 ){
++ fprintf(yyTraceFILE,"%sPopping %s\n",
++ yyTracePrompt,
++ yyTokenName[yytos->major]);
++ }
++#endif
++ yymajor = yytos->major;
++ yy_destructor(pParser, yymajor, &yytos->minor);
++ pParser->yyidx--;
++ return yymajor;
++}
++
++/*
++** Deallocate and destroy a parser. Destructors are all called for
++** all stack elements before shutting the parser down.
++**
++** Inputs:
++** <ul>
++** <li> A pointer to the parser. This should be a pointer
++** obtained from sqliteParserAlloc.
++** <li> A pointer to a function used to reclaim memory obtained
++** from malloc.
++** </ul>
++*/
++void sqliteParserFree(
++ void *p, /* The parser to be deleted */
++ void (*freeProc)(void*) /* Function used to reclaim memory */
++){
++ yyParser *pParser = (yyParser*)p;
++ if( pParser==0 ) return;
++ while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
++#if YYSTACKDEPTH<=0
++ free(pParser->yystack);
++#endif
++ (*freeProc)((void*)pParser);
++}
++
++/*
++** Return the peak depth of the stack for a parser.
++*/
++#ifdef YYTRACKMAXSTACKDEPTH
++int sqliteParserStackPeak(void *p){
++ yyParser *pParser = (yyParser*)p;
++ return pParser->yyidxMax;
++}
++#endif
++
++/*
++** Find the appropriate action for a parser given the terminal
++** look-ahead token iLookAhead.
++**
++** If the look-ahead token is YYNOCODE, then check to see if the action is
++** independent of the look-ahead. If it is, return the action, otherwise
++** return YY_NO_ACTION.
++*/
++static int yy_find_shift_action(
++ yyParser *pParser, /* The parser */
++ YYCODETYPE iLookAhead /* The look-ahead token */
++){
++ int i;
++ int stateno = pParser->yystack[pParser->yyidx].stateno;
++
++ if( stateno>YY_SHIFT_COUNT
++ || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){
++ return yy_default[stateno];
++ }
++ assert( iLookAhead!=YYNOCODE );
++ i += iLookAhead;
++ if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
++ if( iLookAhead>0 ){
++#ifdef YYFALLBACK
++ YYCODETYPE iFallback; /* Fallback token */
++ if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
++ && (iFallback = yyFallback[iLookAhead])!=0 ){
++#ifndef NDEBUG
++ if( yyTraceFILE ){
++ fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
++ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
++ }
++#endif
++ return yy_find_shift_action(pParser, iFallback);
++ }
++#endif
++#ifdef YYWILDCARD
++ {
++ int j = i - iLookAhead + YYWILDCARD;
++ if(
++#if YY_SHIFT_MIN+YYWILDCARD<0
++ j>=0 &&
++#endif
++#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
++ j<YY_ACTTAB_COUNT &&
++#endif
++ yy_lookahead[j]==YYWILDCARD
++ ){
++#ifndef NDEBUG
++ if( yyTraceFILE ){
++ fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
++ yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);
++ }
++#endif /* NDEBUG */
++ return yy_action[j];
++ }
++ }
++#endif /* YYWILDCARD */
++ }
++ return yy_default[stateno];
++ }else{
++ return yy_action[i];
++ }
++}
++
++/*
++** Find the appropriate action for a parser given the non-terminal
++** look-ahead token iLookAhead.
++**
++** If the look-ahead token is YYNOCODE, then check to see if the action is
++** independent of the look-ahead. If it is, return the action, otherwise
++** return YY_NO_ACTION.
++*/
++static int yy_find_reduce_action(
++ int stateno, /* Current state number */
++ YYCODETYPE iLookAhead /* The look-ahead token */
++){
++ int i;
++#ifdef YYERRORSYMBOL
++ if( stateno>YY_REDUCE_COUNT ){
++ return yy_default[stateno];
++ }
++#else
++ assert( stateno<=YY_REDUCE_COUNT );
++#endif
++ i = yy_reduce_ofst[stateno];
++ assert( i!=YY_REDUCE_USE_DFLT );
++ assert( iLookAhead!=YYNOCODE );
++ i += iLookAhead;
++#ifdef YYERRORSYMBOL
++ if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
++ return yy_default[stateno];
++ }
++#else
++ assert( i>=0 && i<YY_ACTTAB_COUNT );
++ assert( yy_lookahead[i]==iLookAhead );
++#endif
++ return yy_action[i];
++}
++
++/*
++** The following routine is called if the stack overflows.
++*/
++static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){
++ sqliteParserARG_FETCH;
++ yypParser->yyidx--;
++#ifndef NDEBUG
++ if( yyTraceFILE ){
++ fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
++ }
++#endif
++ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
++ /* Here code is inserted which will execute if the parser
++ ** stack every overflows */
++ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument var */
++}
++
++/*
++** Perform a shift action.
++*/
++static void yy_shift(
++ yyParser *yypParser, /* The parser to be shifted */
++ int yyNewState, /* The new state to shift in */
++ int yyMajor, /* The major token to shift in */
++ YYMINORTYPE *yypMinor /* Pointer to the minor token to shift in */
++){
++ yyStackEntry *yytos;
++ yypParser->yyidx++;
++#ifdef YYTRACKMAXSTACKDEPTH
++ if( yypParser->yyidx>yypParser->yyidxMax ){
++ yypParser->yyidxMax = yypParser->yyidx;
++ }
++#endif
++#if YYSTACKDEPTH>0
++ if( yypParser->yyidx>=YYSTACKDEPTH ){
++ yyStackOverflow(yypParser, yypMinor);
++ return;
++ }
++#else
++ if( yypParser->yyidx>=yypParser->yystksz ){
++ yyGrowStack(yypParser);
++ if( yypParser->yyidx>=yypParser->yystksz ){
++ yyStackOverflow(yypParser, yypMinor);
++ return;
++ }
++ }
++#endif
++ yytos = &yypParser->yystack[yypParser->yyidx];
++ yytos->stateno = (YYACTIONTYPE)yyNewState;
++ yytos->major = (YYCODETYPE)yyMajor;
++ yytos->minor = *yypMinor;
++#ifndef NDEBUG
++ if( yyTraceFILE && yypParser->yyidx>0 ){
++ int i;
++ fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
++ fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
++ for(i=1; i<=yypParser->yyidx; i++)
++ fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
++ fprintf(yyTraceFILE,"\n");
++ }
++#endif
++}
++
++/* The following table contains information about every rule that
++** is used during the reduce.
++*/
++static const struct {
++ YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */
++ unsigned char nrhs; /* Number of right-hand side symbols in the rule */
++} yyRuleInfo[] = {
++ { 132, 1 },
++ { 133, 2 },
++ { 133, 1 },
++ { 134, 3 },
++ { 134, 1 },
++ { 136, 1 },
++ { 135, 1 },
++ { 135, 0 },
++ { 137, 3 },
++ { 138, 0 },
++ { 138, 1 },
++ { 138, 2 },
++ { 137, 2 },
++ { 137, 2 },
++ { 137, 2 },
++ { 137, 2 },
++ { 141, 4 },
++ { 143, 1 },
++ { 143, 0 },
++ { 142, 4 },
++ { 142, 2 },
++ { 144, 3 },
++ { 144, 1 },
++ { 147, 3 },
++ { 148, 1 },
++ { 151, 1 },
++ { 152, 1 },
++ { 152, 1 },
++ { 140, 1 },
++ { 140, 1 },
++ { 140, 1 },
++ { 149, 0 },
++ { 149, 1 },
++ { 149, 4 },
++ { 149, 6 },
++ { 153, 1 },
++ { 153, 2 },
++ { 154, 1 },
++ { 154, 2 },
++ { 154, 2 },
++ { 150, 2 },
++ { 150, 0 },
++ { 155, 3 },
++ { 155, 1 },
++ { 155, 2 },
++ { 155, 2 },
++ { 155, 2 },
++ { 155, 3 },
++ { 155, 3 },
++ { 155, 2 },
++ { 155, 3 },
++ { 155, 3 },
++ { 155, 2 },
++ { 156, 2 },
++ { 156, 3 },
++ { 156, 4 },
++ { 156, 2 },
++ { 156, 5 },
++ { 156, 4 },
++ { 156, 1 },
++ { 156, 2 },
++ { 160, 0 },
++ { 160, 2 },
++ { 162, 2 },
++ { 162, 3 },
++ { 162, 3 },
++ { 162, 3 },
++ { 163, 2 },
++ { 163, 2 },
++ { 163, 1 },
++ { 163, 1 },
++ { 161, 3 },
++ { 161, 2 },
++ { 164, 0 },
++ { 164, 2 },
++ { 164, 2 },
++ { 145, 0 },
++ { 145, 2 },
++ { 165, 3 },
++ { 165, 2 },
++ { 165, 1 },
++ { 166, 2 },
++ { 166, 6 },
++ { 166, 5 },
++ { 166, 3 },
++ { 166, 10 },
++ { 168, 0 },
++ { 168, 1 },
++ { 139, 0 },
++ { 139, 3 },
++ { 169, 0 },
++ { 169, 2 },
++ { 170, 1 },
++ { 170, 1 },
++ { 170, 1 },
++ { 170, 1 },
++ { 170, 1 },
++ { 137, 3 },
++ { 137, 6 },
++ { 137, 3 },
++ { 137, 1 },
++ { 146, 1 },
++ { 146, 3 },
++ { 172, 1 },
++ { 172, 2 },
++ { 172, 1 },
++ { 172, 1 },
++ { 171, 9 },
++ { 173, 1 },
++ { 173, 1 },
++ { 173, 0 },
++ { 181, 2 },
++ { 181, 0 },
++ { 174, 3 },
++ { 174, 2 },
++ { 174, 4 },
++ { 182, 2 },
++ { 182, 1 },
++ { 182, 0 },
++ { 175, 0 },
++ { 175, 2 },
++ { 184, 2 },
++ { 184, 0 },
++ { 183, 6 },
++ { 183, 7 },
++ { 189, 1 },
++ { 189, 1 },
++ { 186, 0 },
++ { 186, 2 },
++ { 185, 1 },
++ { 185, 1 },
++ { 185, 2 },
++ { 185, 3 },
++ { 185, 4 },
++ { 187, 2 },
++ { 187, 0 },
++ { 188, 4 },
++ { 188, 0 },
++ { 179, 0 },
++ { 179, 3 },
++ { 191, 5 },
++ { 191, 3 },
++ { 192, 1 },
++ { 157, 1 },
++ { 157, 1 },
++ { 157, 0 },
++ { 193, 0 },
++ { 193, 2 },
++ { 177, 0 },
++ { 177, 3 },
++ { 178, 0 },
++ { 178, 2 },
++ { 180, 0 },
++ { 180, 2 },
++ { 180, 4 },
++ { 180, 4 },
++ { 137, 5 },
++ { 176, 0 },
++ { 176, 2 },
++ { 137, 7 },
++ { 195, 5 },
++ { 195, 3 },
++ { 137, 9 },
++ { 137, 6 },
++ { 196, 2 },
++ { 196, 1 },
++ { 198, 3 },
++ { 198, 1 },
++ { 197, 0 },
++ { 197, 3 },
++ { 199, 3 },
++ { 199, 1 },
++ { 158, 3 },
++ { 158, 1 },
++ { 158, 1 },
++ { 158, 1 },
++ { 158, 3 },
++ { 158, 5 },
++ { 158, 1 },
++ { 158, 1 },
++ { 158, 1 },
++ { 158, 1 },
++ { 158, 4 },
++ { 158, 4 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 4 },
++ { 200, 1 },
++ { 200, 1 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 3 },
++ { 158, 2 },
++ { 158, 3 },
++ { 158, 2 },
++ { 158, 3 },
++ { 158, 4 },
++ { 158, 2 },
++ { 158, 2 },
++ { 158, 2 },
++ { 158, 2 },
++ { 158, 3 },
++ { 158, 5 },
++ { 158, 6 },
++ { 158, 5 },
++ { 158, 5 },
++ { 158, 6 },
++ { 158, 6 },
++ { 158, 4 },
++ { 158, 5 },
++ { 158, 5 },
++ { 202, 5 },
++ { 202, 4 },
++ { 203, 2 },
++ { 203, 0 },
++ { 201, 1 },
++ { 201, 0 },
++ { 194, 3 },
++ { 194, 1 },
++ { 204, 1 },
++ { 204, 0 },
++ { 137, 11 },
++ { 205, 1 },
++ { 205, 0 },
++ { 159, 0 },
++ { 159, 3 },
++ { 167, 3 },
++ { 167, 1 },
++ { 206, 2 },
++ { 137, 4 },
++ { 137, 9 },
++ { 137, 6 },
++ { 137, 1 },
++ { 137, 2 },
++ { 137, 4 },
++ { 137, 4 },
++ { 137, 4 },
++ { 137, 4 },
++ { 137, 5 },
++ { 137, 2 },
++ { 207, 2 },
++ { 208, 2 },
++ { 210, 1 },
++ { 210, 1 },
++ { 209, 1 },
++ { 209, 0 },
++ { 137, 5 },
++ { 211, 10 },
++ { 213, 1 },
++ { 213, 1 },
++ { 213, 2 },
++ { 213, 0 },
++ { 214, 1 },
++ { 214, 1 },
++ { 214, 1 },
++ { 214, 3 },
++ { 215, 0 },
++ { 215, 3 },
++ { 215, 3 },
++ { 216, 0 },
++ { 216, 2 },
++ { 212, 3 },
++ { 212, 0 },
++ { 217, 6 },
++ { 217, 8 },
++ { 217, 5 },
++ { 217, 4 },
++ { 217, 1 },
++ { 158, 4 },
++ { 158, 6 },
++ { 158, 6 },
++ { 158, 6 },
++ { 137, 4 },
++ { 137, 6 },
++ { 219, 2 },
++ { 219, 0 },
++ { 218, 1 },
++ { 218, 0 },
++ { 137, 3 },
++};
++
++static void yy_accept(yyParser*); /* Forward Declaration */
++
++/*
++** Perform a reduce action and the shift that must immediately
++** follow the reduce.
++*/
++static void yy_reduce(
++ yyParser *yypParser, /* The parser */
++ int yyruleno /* Number of the rule by which to reduce */
++){
++ int yygoto; /* The next state */
++ int yyact; /* The next action */
++ YYMINORTYPE yygotominor; /* The LHS of the rule reduced */
++ yyStackEntry *yymsp; /* The top of the parser's stack */
++ int yysize; /* Amount to pop the stack */
++ sqliteParserARG_FETCH;
++ yymsp = &yypParser->yystack[yypParser->yyidx];
++#ifndef NDEBUG
++ if( yyTraceFILE && yyruleno>=0
++ && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
++ fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt,
++ yyRuleName[yyruleno]);
++ }
++#endif /* NDEBUG */
++
++ /* Silence complaints from purify about yygotominor being uninitialized
++ ** in some cases when it is copied into the stack after the following
++ ** switch. yygotominor is uninitialized when a rule reduces that does
++ ** not set the value of its left-hand side nonterminal. Leaving the
++ ** value of the nonterminal uninitialized is utterly harmless as long
++ ** as the value is never used. So really the only thing this code
++ ** accomplishes is to quieten purify.
++ **
++ ** 2007-01-16: The wireshark project (www.wireshark.org) reports that
++ ** without this code, their parser segfaults. I'm not sure what there
++ ** parser is doing to make this happen. This is the second bug report
++ ** from wireshark this week. Clearly they are stressing Lemon in ways
++ ** that it has not been previously stressed... (SQLite ticket #2172)
++ */
++ /*memset(&yygotominor, 0, sizeof(yygotominor));*/
++ yygotominor = yyzerominor;
++
++
++ switch( yyruleno ){
++ /* Beginning here are the reduction cases. A typical example
++ ** follows:
++ ** case 0:
++ ** #line <lineno> <grammarfile>
++ ** { ... } // User supplied code
++ ** #line <lineno> <thisfile>
++ ** break;
++ */
++ case 5: /* cmdx ::= cmd */
++#line 72 "ext/sqlite/libsqlite/src/parse.y"
++{ sqliteExec(pParse); }
++#line 1781 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 6: /* explain ::= EXPLAIN */
++#line 73 "ext/sqlite/libsqlite/src/parse.y"
++{ sqliteBeginParse(pParse, 1); }
++#line 1786 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 7: /* explain ::= */
++#line 74 "ext/sqlite/libsqlite/src/parse.y"
++{ sqliteBeginParse(pParse, 0); }
++#line 1791 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 8: /* cmd ::= BEGIN trans_opt onconf */
++#line 79 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteBeginTransaction(pParse,yymsp[0].minor.yy372);}
++#line 1796 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 12: /* cmd ::= COMMIT trans_opt */
++ case 13: /* cmd ::= END trans_opt */ yytestcase(yyruleno==13);
++#line 83 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteCommitTransaction(pParse);}
++#line 1802 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 14: /* cmd ::= ROLLBACK trans_opt */
++#line 85 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteRollbackTransaction(pParse);}
++#line 1807 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 16: /* create_table ::= CREATE temp TABLE nm */
++#line 90 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteStartTable(pParse,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0,yymsp[-2].minor.yy372,0);
++}
++#line 1814 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 17: /* temp ::= TEMP */
++ case 74: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ yytestcase(yyruleno==74);
++ case 108: /* distinct ::= DISTINCT */ yytestcase(yyruleno==108);
++#line 94 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = 1;}
++#line 1821 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 18: /* temp ::= */
++ case 73: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==73);
++ case 75: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ yytestcase(yyruleno==75);
++ case 86: /* defer_subclause_opt ::= */ yytestcase(yyruleno==86);
++ case 109: /* distinct ::= ALL */ yytestcase(yyruleno==109);
++ case 110: /* distinct ::= */ yytestcase(yyruleno==110);
++#line 95 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = 0;}
++#line 1831 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 19: /* create_table_args ::= LP columnlist conslist_opt RP */
++#line 96 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteEndTable(pParse,&yymsp[0].minor.yy0,0);
++}
++#line 1838 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 20: /* create_table_args ::= AS select */
++#line 99 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteEndTable(pParse,0,yymsp[0].minor.yy179);
++ sqliteSelectDelete(yymsp[0].minor.yy179);
++}
++#line 1846 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 24: /* columnid ::= nm */
++#line 111 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteAddColumn(pParse,&yymsp[0].minor.yy0);}
++#line 1851 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 25: /* id ::= ID */
++ case 26: /* ids ::= ID */ yytestcase(yyruleno==26);
++ case 27: /* ids ::= STRING */ yytestcase(yyruleno==27);
++ case 28: /* nm ::= ID */ yytestcase(yyruleno==28);
++ case 29: /* nm ::= STRING */ yytestcase(yyruleno==29);
++ case 30: /* nm ::= JOIN_KW */ yytestcase(yyruleno==30);
++ case 35: /* typename ::= ids */ yytestcase(yyruleno==35);
++ case 128: /* dbnm ::= DOT nm */ yytestcase(yyruleno==128);
++ case 254: /* plus_num ::= plus_opt number */ yytestcase(yyruleno==254);
++ case 255: /* minus_num ::= MINUS number */ yytestcase(yyruleno==255);
++ case 256: /* number ::= INTEGER */ yytestcase(yyruleno==256);
++ case 257: /* number ::= FLOAT */ yytestcase(yyruleno==257);
++#line 117 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy0 = yymsp[0].minor.yy0;}
++#line 1867 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 32: /* type ::= typename */
++#line 160 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteAddColumnType(pParse,&yymsp[0].minor.yy0,&yymsp[0].minor.yy0);}
++#line 1872 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 33: /* type ::= typename LP signed RP */
++#line 161 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteAddColumnType(pParse,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);}
++#line 1877 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 34: /* type ::= typename LP signed COMMA signed RP */
++#line 163 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteAddColumnType(pParse,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);}
++#line 1882 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 36: /* typename ::= typename ids */
++ case 242: /* idxitem ::= nm sortorder */ yytestcase(yyruleno==242);
++#line 166 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy0 = yymsp[-1].minor.yy0;}
++#line 1888 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 37: /* signed ::= INTEGER */
++ case 38: /* signed ::= PLUS INTEGER */ yytestcase(yyruleno==38);
++#line 168 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = atoi(yymsp[0].minor.yy0.z); }
++#line 1894 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 39: /* signed ::= MINUS INTEGER */
++#line 170 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = -atoi(yymsp[0].minor.yy0.z); }
++#line 1899 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 44: /* carg ::= DEFAULT STRING */
++ case 45: /* carg ::= DEFAULT ID */ yytestcase(yyruleno==45);
++ case 46: /* carg ::= DEFAULT INTEGER */ yytestcase(yyruleno==46);
++ case 47: /* carg ::= DEFAULT PLUS INTEGER */ yytestcase(yyruleno==47);
++ case 49: /* carg ::= DEFAULT FLOAT */ yytestcase(yyruleno==49);
++ case 50: /* carg ::= DEFAULT PLUS FLOAT */ yytestcase(yyruleno==50);
++#line 175 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,0);}
++#line 1909 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 48: /* carg ::= DEFAULT MINUS INTEGER */
++ case 51: /* carg ::= DEFAULT MINUS FLOAT */ yytestcase(yyruleno==51);
++#line 179 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteAddDefaultValue(pParse,&yymsp[0].minor.yy0,1);}
++#line 1915 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 54: /* ccons ::= NOT NULL onconf */
++#line 189 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteAddNotNull(pParse, yymsp[0].minor.yy372);}
++#line 1920 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 55: /* ccons ::= PRIMARY KEY sortorder onconf */
++#line 190 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteAddPrimaryKey(pParse,0,yymsp[0].minor.yy372);}
++#line 1925 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 56: /* ccons ::= UNIQUE onconf */
++#line 191 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteCreateIndex(pParse,0,0,0,yymsp[0].minor.yy372,0,0);}
++#line 1930 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 57: /* ccons ::= CHECK LP expr RP onconf */
++#line 192 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yy_destructor(yypParser,158,&yymsp[-2].minor);
++}
++#line 1937 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 58: /* ccons ::= REFERENCES nm idxlist_opt refargs */
++#line 194 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteCreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy320,yymsp[0].minor.yy372);}
++#line 1942 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 59: /* ccons ::= defer_subclause */
++#line 195 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteDeferForeignKey(pParse,yymsp[0].minor.yy372);}
++#line 1947 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 60: /* ccons ::= COLLATE id */
++#line 196 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteAddCollateType(pParse, sqliteCollateType(yymsp[0].minor.yy0.z, yymsp[0].minor.yy0.n));
++}
++#line 1954 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 61: /* refargs ::= */
++#line 206 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_Restrict * 0x010101; }
++#line 1959 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 62: /* refargs ::= refargs refarg */
++#line 207 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = (yymsp[-1].minor.yy372 & yymsp[0].minor.yy407.mask) | yymsp[0].minor.yy407.value; }
++#line 1964 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 63: /* refarg ::= MATCH nm */
++#line 209 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy407.value = 0; yygotominor.yy407.mask = 0x000000; }
++#line 1969 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 64: /* refarg ::= ON DELETE refact */
++#line 210 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy407.value = yymsp[0].minor.yy372; yygotominor.yy407.mask = 0x0000ff; }
++#line 1974 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 65: /* refarg ::= ON UPDATE refact */
++#line 211 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy407.value = yymsp[0].minor.yy372<<8; yygotominor.yy407.mask = 0x00ff00; }
++#line 1979 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 66: /* refarg ::= ON INSERT refact */
++#line 212 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy407.value = yymsp[0].minor.yy372<<16; yygotominor.yy407.mask = 0xff0000; }
++#line 1984 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 67: /* refact ::= SET NULL */
++#line 214 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_SetNull; }
++#line 1989 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 68: /* refact ::= SET DEFAULT */
++#line 215 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_SetDflt; }
++#line 1994 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 69: /* refact ::= CASCADE */
++#line 216 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_Cascade; }
++#line 1999 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 70: /* refact ::= RESTRICT */
++#line 217 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_Restrict; }
++#line 2004 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 71: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */
++ case 72: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ yytestcase(yyruleno==72);
++ case 87: /* defer_subclause_opt ::= defer_subclause */ yytestcase(yyruleno==87);
++ case 164: /* insert_cmd ::= INSERT orconf */ yytestcase(yyruleno==164);
++#line 219 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = yymsp[0].minor.yy372;}
++#line 2012 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 82: /* tcons ::= PRIMARY KEY LP idxlist RP onconf */
++#line 236 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteAddPrimaryKey(pParse,yymsp[-2].minor.yy320,yymsp[0].minor.yy372);}
++#line 2017 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 83: /* tcons ::= UNIQUE LP idxlist RP onconf */
++#line 238 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteCreateIndex(pParse,0,0,yymsp[-2].minor.yy320,yymsp[0].minor.yy372,0,0);}
++#line 2022 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 84: /* tcons ::= CHECK expr onconf */
++#line 239 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yy_destructor(yypParser,158,&yymsp[-1].minor);
++}
++#line 2029 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 85: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */
++#line 241 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteCreateForeignKey(pParse, yymsp[-6].minor.yy320, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy320, yymsp[-1].minor.yy372);
++ sqliteDeferForeignKey(pParse, yymsp[0].minor.yy372);
++}
++#line 2037 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 88: /* onconf ::= */
++ case 90: /* orconf ::= */ yytestcase(yyruleno==90);
++#line 255 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_Default; }
++#line 2043 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 89: /* onconf ::= ON CONFLICT resolvetype */
++ case 91: /* orconf ::= OR resolvetype */ yytestcase(yyruleno==91);
++#line 256 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = yymsp[0].minor.yy372; }
++#line 2049 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 92: /* resolvetype ::= ROLLBACK */
++#line 259 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_Rollback; }
++#line 2054 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 93: /* resolvetype ::= ABORT */
++ case 236: /* uniqueflag ::= UNIQUE */ yytestcase(yyruleno==236);
++#line 260 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_Abort; }
++#line 2060 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 94: /* resolvetype ::= FAIL */
++#line 261 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_Fail; }
++#line 2065 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 95: /* resolvetype ::= IGNORE */
++#line 262 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_Ignore; }
++#line 2070 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 96: /* resolvetype ::= REPLACE */
++#line 263 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_Replace; }
++#line 2075 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 97: /* cmd ::= DROP TABLE nm */
++#line 267 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteDropTable(pParse,&yymsp[0].minor.yy0,0);}
++#line 2080 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 98: /* cmd ::= CREATE temp VIEW nm AS select */
++#line 271 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteCreateView(pParse, &yymsp[-5].minor.yy0, &yymsp[-2].minor.yy0, yymsp[0].minor.yy179, yymsp[-4].minor.yy372);
++}
++#line 2087 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 99: /* cmd ::= DROP VIEW nm */
++#line 274 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteDropTable(pParse, &yymsp[0].minor.yy0, 1);
++}
++#line 2094 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 100: /* cmd ::= select */
++#line 280 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteSelect(pParse, yymsp[0].minor.yy179, SRT_Callback, 0, 0, 0, 0);
++ sqliteSelectDelete(yymsp[0].minor.yy179);
++}
++#line 2102 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 101: /* select ::= oneselect */
++ case 125: /* seltablist_paren ::= select */ yytestcase(yyruleno==125);
++#line 290 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy179 = yymsp[0].minor.yy179;}
++#line 2108 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 102: /* select ::= select multiselect_op oneselect */
++#line 291 "ext/sqlite/libsqlite/src/parse.y"
++{
++ if( yymsp[0].minor.yy179 ){
++ yymsp[0].minor.yy179->op = yymsp[-1].minor.yy372;
++ yymsp[0].minor.yy179->pPrior = yymsp[-2].minor.yy179;
++ }
++ yygotominor.yy179 = yymsp[0].minor.yy179;
++}
++#line 2119 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 103: /* multiselect_op ::= UNION */
++#line 299 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = TK_UNION;}
++#line 2124 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 104: /* multiselect_op ::= UNION ALL */
++#line 300 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = TK_ALL;}
++#line 2129 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 105: /* multiselect_op ::= INTERSECT */
++#line 301 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = TK_INTERSECT;}
++#line 2134 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 106: /* multiselect_op ::= EXCEPT */
++#line 302 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = TK_EXCEPT;}
++#line 2139 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 107: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
++#line 304 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy179 = sqliteSelectNew(yymsp[-6].minor.yy322,yymsp[-5].minor.yy307,yymsp[-4].minor.yy242,yymsp[-3].minor.yy322,yymsp[-2].minor.yy242,yymsp[-1].minor.yy322,yymsp[-7].minor.yy372,yymsp[0].minor.yy124.limit,yymsp[0].minor.yy124.offset);
++}
++#line 2146 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 111: /* sclp ::= selcollist COMMA */
++#line 325 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy322 = yymsp[-1].minor.yy322;}
++#line 2151 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 112: /* sclp ::= */
++ case 138: /* orderby_opt ::= */ yytestcase(yyruleno==138);
++ case 148: /* groupby_opt ::= */ yytestcase(yyruleno==148);
++#line 326 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy322 = 0;}
++#line 2158 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 113: /* selcollist ::= sclp expr as */
++#line 327 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy322 = sqliteExprListAppend(yymsp[-2].minor.yy322,yymsp[-1].minor.yy242,yymsp[0].minor.yy0.n?&yymsp[0].minor.yy0:0);
++}
++#line 2165 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 114: /* selcollist ::= sclp STAR */
++#line 330 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy322 = sqliteExprListAppend(yymsp[-1].minor.yy322, sqliteExpr(TK_ALL, 0, 0, 0), 0);
++}
++#line 2172 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 115: /* selcollist ::= sclp nm DOT STAR */
++#line 333 "ext/sqlite/libsqlite/src/parse.y"
++{
++ Expr *pRight = sqliteExpr(TK_ALL, 0, 0, 0);
++ Expr *pLeft = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy0);
++ yygotominor.yy322 = sqliteExprListAppend(yymsp[-3].minor.yy322, sqliteExpr(TK_DOT, pLeft, pRight, 0), 0);
++}
++#line 2181 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 116: /* as ::= AS nm */
++ case 117: /* as ::= ids */ yytestcase(yyruleno==117);
++ case 288: /* key_opt ::= USING ids */ yytestcase(yyruleno==288);
++#line 343 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy0 = yymsp[0].minor.yy0; }
++#line 2188 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 118: /* as ::= */
++#line 345 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy0.n = 0; }
++#line 2193 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 119: /* from ::= */
++#line 357 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy307 = sqliteMalloc(sizeof(*yygotominor.yy307));}
++#line 2198 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 120: /* from ::= FROM seltablist */
++#line 358 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy307 = yymsp[0].minor.yy307;}
++#line 2203 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 121: /* stl_prefix ::= seltablist joinop */
++#line 363 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy307 = yymsp[-1].minor.yy307;
++ if( yygotominor.yy307 && yygotominor.yy307->nSrc>0 ) yygotominor.yy307->a[yygotominor.yy307->nSrc-1].jointype = yymsp[0].minor.yy372;
++}
++#line 2211 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 122: /* stl_prefix ::= */
++#line 367 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy307 = 0;}
++#line 2216 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 123: /* seltablist ::= stl_prefix nm dbnm as on_opt using_opt */
++#line 368 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy307 = sqliteSrcListAppend(yymsp[-5].minor.yy307,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0);
++ if( yymsp[-2].minor.yy0.n ) sqliteSrcListAddAlias(yygotominor.yy307,&yymsp[-2].minor.yy0);
++ if( yymsp[-1].minor.yy242 ){
++ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pOn = yymsp[-1].minor.yy242; }
++ else { sqliteExprDelete(yymsp[-1].minor.yy242); }
++ }
++ if( yymsp[0].minor.yy320 ){
++ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pUsing = yymsp[0].minor.yy320; }
++ else { sqliteIdListDelete(yymsp[0].minor.yy320); }
++ }
++}
++#line 2232 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 124: /* seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt */
++#line 381 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy307 = sqliteSrcListAppend(yymsp[-6].minor.yy307,0,0);
++ yygotominor.yy307->a[yygotominor.yy307->nSrc-1].pSelect = yymsp[-4].minor.yy179;
++ if( yymsp[-2].minor.yy0.n ) sqliteSrcListAddAlias(yygotominor.yy307,&yymsp[-2].minor.yy0);
++ if( yymsp[-1].minor.yy242 ){
++ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pOn = yymsp[-1].minor.yy242; }
++ else { sqliteExprDelete(yymsp[-1].minor.yy242); }
++ }
++ if( yymsp[0].minor.yy320 ){
++ if( yygotominor.yy307 && yygotominor.yy307->nSrc>1 ){ yygotominor.yy307->a[yygotominor.yy307->nSrc-2].pUsing = yymsp[0].minor.yy320; }
++ else { sqliteIdListDelete(yymsp[0].minor.yy320); }
++ }
++}
++#line 2249 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 126: /* seltablist_paren ::= seltablist */
++#line 402 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy179 = sqliteSelectNew(0,yymsp[0].minor.yy307,0,0,0,0,0,-1,0);
++}
++#line 2256 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 127: /* dbnm ::= */
++#line 407 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy0.z=0; yygotominor.yy0.n=0;}
++#line 2261 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 129: /* joinop ::= COMMA */
++ case 130: /* joinop ::= JOIN */ yytestcase(yyruleno==130);
++#line 412 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = JT_INNER; }
++#line 2267 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 131: /* joinop ::= JOIN_KW JOIN */
++#line 414 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
++#line 2272 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 132: /* joinop ::= JOIN_KW nm JOIN */
++#line 415 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); }
++#line 2277 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 133: /* joinop ::= JOIN_KW nm nm JOIN */
++#line 417 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = sqliteJoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); }
++#line 2282 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 134: /* on_opt ::= ON expr */
++ case 142: /* sortitem ::= expr */ yytestcase(yyruleno==142);
++ case 151: /* having_opt ::= HAVING expr */ yytestcase(yyruleno==151);
++ case 158: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==158);
++ case 227: /* case_else ::= ELSE expr */ yytestcase(yyruleno==227);
++ case 229: /* case_operand ::= expr */ yytestcase(yyruleno==229);
++ case 233: /* expritem ::= expr */ yytestcase(yyruleno==233);
++#line 421 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = yymsp[0].minor.yy242;}
++#line 2293 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 135: /* on_opt ::= */
++ case 150: /* having_opt ::= */ yytestcase(yyruleno==150);
++ case 157: /* where_opt ::= */ yytestcase(yyruleno==157);
++ case 228: /* case_else ::= */ yytestcase(yyruleno==228);
++ case 230: /* case_operand ::= */ yytestcase(yyruleno==230);
++ case 234: /* expritem ::= */ yytestcase(yyruleno==234);
++#line 422 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = 0;}
++#line 2303 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 136: /* using_opt ::= USING LP idxlist RP */
++ case 169: /* inscollist_opt ::= LP inscollist RP */ yytestcase(yyruleno==169);
++ case 239: /* idxlist_opt ::= LP idxlist RP */ yytestcase(yyruleno==239);
++#line 426 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy320 = yymsp[-1].minor.yy320;}
++#line 2310 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 137: /* using_opt ::= */
++ case 168: /* inscollist_opt ::= */ yytestcase(yyruleno==168);
++ case 238: /* idxlist_opt ::= */ yytestcase(yyruleno==238);
++#line 427 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy320 = 0;}
++#line 2317 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 139: /* orderby_opt ::= ORDER BY sortlist */
++ case 149: /* groupby_opt ::= GROUP BY exprlist */ yytestcase(yyruleno==149);
++#line 438 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy322 = yymsp[0].minor.yy322;}
++#line 2323 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 140: /* sortlist ::= sortlist COMMA sortitem collate sortorder */
++#line 439 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322,yymsp[-2].minor.yy242,0);
++ if( yygotominor.yy322 ) yygotominor.yy322->a[yygotominor.yy322->nExpr-1].sortOrder = yymsp[-1].minor.yy372+yymsp[0].minor.yy372;
++}
++#line 2331 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 141: /* sortlist ::= sortitem collate sortorder */
++#line 443 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy322 = sqliteExprListAppend(0,yymsp[-2].minor.yy242,0);
++ if( yygotominor.yy322 ) yygotominor.yy322->a[0].sortOrder = yymsp[-1].minor.yy372+yymsp[0].minor.yy372;
++}
++#line 2339 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 143: /* sortorder ::= ASC */
++ case 145: /* sortorder ::= */ yytestcase(yyruleno==145);
++#line 452 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = SQLITE_SO_ASC;}
++#line 2345 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 144: /* sortorder ::= DESC */
++#line 453 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = SQLITE_SO_DESC;}
++#line 2350 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 146: /* collate ::= */
++#line 455 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = SQLITE_SO_UNK;}
++#line 2355 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 147: /* collate ::= COLLATE id */
++#line 456 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = sqliteCollateType(yymsp[0].minor.yy0.z, yymsp[0].minor.yy0.n);}
++#line 2360 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 152: /* limit_opt ::= */
++#line 469 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy124.limit = -1; yygotominor.yy124.offset = 0;}
++#line 2365 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 153: /* limit_opt ::= LIMIT signed */
++#line 470 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy124.limit = yymsp[0].minor.yy372; yygotominor.yy124.offset = 0;}
++#line 2370 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 154: /* limit_opt ::= LIMIT signed OFFSET signed */
++#line 472 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy124.limit = yymsp[-2].minor.yy372; yygotominor.yy124.offset = yymsp[0].minor.yy372;}
++#line 2375 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 155: /* limit_opt ::= LIMIT signed COMMA signed */
++#line 474 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy124.limit = yymsp[0].minor.yy372; yygotominor.yy124.offset = yymsp[-2].minor.yy372;}
++#line 2380 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 156: /* cmd ::= DELETE FROM nm dbnm where_opt */
++#line 478 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteDeleteFrom(pParse, sqliteSrcListAppend(0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0), yymsp[0].minor.yy242);
++}
++#line 2387 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 159: /* cmd ::= UPDATE orconf nm dbnm SET setlist where_opt */
++#line 494 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteUpdate(pParse,sqliteSrcListAppend(0,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0),yymsp[-1].minor.yy322,yymsp[0].minor.yy242,yymsp[-5].minor.yy372);}
++#line 2392 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 160: /* setlist ::= setlist COMMA nm EQ expr */
++#line 497 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322,yymsp[0].minor.yy242,&yymsp[-2].minor.yy0);}
++#line 2397 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 161: /* setlist ::= nm EQ expr */
++#line 498 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy322 = sqliteExprListAppend(0,yymsp[0].minor.yy242,&yymsp[-2].minor.yy0);}
++#line 2402 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 162: /* cmd ::= insert_cmd INTO nm dbnm inscollist_opt VALUES LP itemlist RP */
++#line 504 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteInsert(pParse, sqliteSrcListAppend(0,&yymsp[-6].minor.yy0,&yymsp[-5].minor.yy0), yymsp[-1].minor.yy322, 0, yymsp[-4].minor.yy320, yymsp[-8].minor.yy372);}
++#line 2407 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 163: /* cmd ::= insert_cmd INTO nm dbnm inscollist_opt select */
++#line 506 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteInsert(pParse, sqliteSrcListAppend(0,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0), 0, yymsp[0].minor.yy179, yymsp[-1].minor.yy320, yymsp[-5].minor.yy372);}
++#line 2412 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 165: /* insert_cmd ::= REPLACE */
++#line 510 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = OE_Replace;}
++#line 2417 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 166: /* itemlist ::= itemlist COMMA expr */
++ case 231: /* exprlist ::= exprlist COMMA expritem */ yytestcase(yyruleno==231);
++#line 516 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy322 = sqliteExprListAppend(yymsp[-2].minor.yy322,yymsp[0].minor.yy242,0);}
++#line 2423 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 167: /* itemlist ::= expr */
++ case 232: /* exprlist ::= expritem */ yytestcase(yyruleno==232);
++#line 517 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy322 = sqliteExprListAppend(0,yymsp[0].minor.yy242,0);}
++#line 2429 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 170: /* inscollist ::= inscollist COMMA nm */
++ case 240: /* idxlist ::= idxlist COMMA idxitem */ yytestcase(yyruleno==240);
++#line 526 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy320 = sqliteIdListAppend(yymsp[-2].minor.yy320,&yymsp[0].minor.yy0);}
++#line 2435 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 171: /* inscollist ::= nm */
++ case 241: /* idxlist ::= idxitem */ yytestcase(yyruleno==241);
++#line 527 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy320 = sqliteIdListAppend(0,&yymsp[0].minor.yy0);}
++#line 2441 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 172: /* expr ::= LP expr RP */
++#line 535 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = yymsp[-1].minor.yy242; sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); }
++#line 2446 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 173: /* expr ::= NULL */
++#line 536 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_NULL, 0, 0, &yymsp[0].minor.yy0);}
++#line 2451 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 174: /* expr ::= ID */
++ case 175: /* expr ::= JOIN_KW */ yytestcase(yyruleno==175);
++#line 537 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);}
++#line 2457 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 176: /* expr ::= nm DOT nm */
++#line 539 "ext/sqlite/libsqlite/src/parse.y"
++{
++ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy0);
++ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);
++ yygotominor.yy242 = sqliteExpr(TK_DOT, temp1, temp2, 0);
++}
++#line 2466 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 177: /* expr ::= nm DOT nm DOT nm */
++#line 544 "ext/sqlite/libsqlite/src/parse.y"
++{
++ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &yymsp[-4].minor.yy0);
++ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &yymsp[-2].minor.yy0);
++ Expr *temp3 = sqliteExpr(TK_ID, 0, 0, &yymsp[0].minor.yy0);
++ Expr *temp4 = sqliteExpr(TK_DOT, temp2, temp3, 0);
++ yygotominor.yy242 = sqliteExpr(TK_DOT, temp1, temp4, 0);
++}
++#line 2477 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 178: /* expr ::= INTEGER */
++#line 551 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_INTEGER, 0, 0, &yymsp[0].minor.yy0);}
++#line 2482 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 179: /* expr ::= FLOAT */
++#line 552 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_FLOAT, 0, 0, &yymsp[0].minor.yy0);}
++#line 2487 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 180: /* expr ::= STRING */
++#line 553 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_STRING, 0, 0, &yymsp[0].minor.yy0);}
++#line 2492 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 181: /* expr ::= VARIABLE */
++#line 554 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_VARIABLE, 0, 0, &yymsp[0].minor.yy0);
++ if( yygotominor.yy242 ) yygotominor.yy242->iTable = ++pParse->nVar;
++}
++#line 2500 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 182: /* expr ::= ID LP exprlist RP */
++#line 558 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExprFunction(yymsp[-1].minor.yy322, &yymsp[-3].minor.yy0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
++}
++#line 2508 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 183: /* expr ::= ID LP STAR RP */
++#line 562 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExprFunction(0, &yymsp[-3].minor.yy0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
++}
++#line 2516 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 184: /* expr ::= expr AND expr */
++#line 566 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_AND, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2521 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 185: /* expr ::= expr OR expr */
++#line 567 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_OR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2526 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 186: /* expr ::= expr LT expr */
++#line 568 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_LT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2531 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 187: /* expr ::= expr GT expr */
++#line 569 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_GT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2536 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 188: /* expr ::= expr LE expr */
++#line 570 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_LE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2541 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 189: /* expr ::= expr GE expr */
++#line 571 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_GE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2546 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 190: /* expr ::= expr NE expr */
++#line 572 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_NE, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2551 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 191: /* expr ::= expr EQ expr */
++#line 573 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_EQ, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2556 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 192: /* expr ::= expr BITAND expr */
++#line 574 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_BITAND, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2561 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 193: /* expr ::= expr BITOR expr */
++#line 575 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_BITOR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2566 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 194: /* expr ::= expr LSHIFT expr */
++#line 576 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_LSHIFT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2571 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 195: /* expr ::= expr RSHIFT expr */
++#line 577 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_RSHIFT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2576 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 196: /* expr ::= expr likeop expr */
++#line 578 "ext/sqlite/libsqlite/src/parse.y"
++{
++ ExprList *pList = sqliteExprListAppend(0, yymsp[0].minor.yy242, 0);
++ pList = sqliteExprListAppend(pList, yymsp[-2].minor.yy242, 0);
++ yygotominor.yy242 = sqliteExprFunction(pList, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->op = yymsp[-1].minor.yy372;
++ sqliteExprSpan(yygotominor.yy242, &yymsp[-2].minor.yy242->span, &yymsp[0].minor.yy242->span);
++}
++#line 2587 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 197: /* expr ::= expr NOT likeop expr */
++#line 585 "ext/sqlite/libsqlite/src/parse.y"
++{
++ ExprList *pList = sqliteExprListAppend(0, yymsp[0].minor.yy242, 0);
++ pList = sqliteExprListAppend(pList, yymsp[-3].minor.yy242, 0);
++ yygotominor.yy242 = sqliteExprFunction(pList, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->op = yymsp[-1].minor.yy372;
++ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,&yymsp[0].minor.yy242->span);
++}
++#line 2599 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 198: /* likeop ::= LIKE */
++#line 594 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = TK_LIKE;}
++#line 2604 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 199: /* likeop ::= GLOB */
++#line 595 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy372 = TK_GLOB;}
++#line 2609 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 200: /* expr ::= expr PLUS expr */
++#line 596 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_PLUS, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2614 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 201: /* expr ::= expr MINUS expr */
++#line 597 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_MINUS, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2619 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 202: /* expr ::= expr STAR expr */
++#line 598 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_STAR, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2624 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 203: /* expr ::= expr SLASH expr */
++#line 599 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_SLASH, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2629 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 204: /* expr ::= expr REM expr */
++#line 600 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_REM, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2634 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 205: /* expr ::= expr CONCAT expr */
++#line 601 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy242 = sqliteExpr(TK_CONCAT, yymsp[-2].minor.yy242, yymsp[0].minor.yy242, 0);}
++#line 2639 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 206: /* expr ::= expr ISNULL */
++#line 602 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_ISNULL, yymsp[-1].minor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy242->span,&yymsp[0].minor.yy0);
++}
++#line 2647 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 207: /* expr ::= expr IS NULL */
++#line 606 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_ISNULL, yymsp[-2].minor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy242->span,&yymsp[0].minor.yy0);
++}
++#line 2655 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 208: /* expr ::= expr NOTNULL */
++#line 610 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-1].minor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy242->span,&yymsp[0].minor.yy0);
++}
++#line 2663 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 209: /* expr ::= expr NOT NULL */
++#line 614 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-2].minor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy242->span,&yymsp[0].minor.yy0);
++}
++#line 2671 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 210: /* expr ::= expr IS NOT NULL */
++#line 618 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_NOTNULL, yymsp[-3].minor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,&yymsp[0].minor.yy0);
++}
++#line 2679 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 211: /* expr ::= NOT expr */
++#line 622 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_NOT, yymsp[0].minor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
++}
++#line 2687 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 212: /* expr ::= BITNOT expr */
++#line 626 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_BITNOT, yymsp[0].minor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
++}
++#line 2695 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 213: /* expr ::= MINUS expr */
++#line 630 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_UMINUS, yymsp[0].minor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
++}
++#line 2703 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 214: /* expr ::= PLUS expr */
++#line 634 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_UPLUS, yymsp[0].minor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy242->span);
++}
++#line 2711 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 215: /* expr ::= LP select RP */
++#line 638 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_SELECT, 0, 0, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
++}
++#line 2720 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 216: /* expr ::= expr BETWEEN expr AND expr */
++#line 643 "ext/sqlite/libsqlite/src/parse.y"
++{
++ ExprList *pList = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
++ pList = sqliteExprListAppend(pList, yymsp[0].minor.yy242, 0);
++ yygotominor.yy242 = sqliteExpr(TK_BETWEEN, yymsp[-4].minor.yy242, 0, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->pList = pList;
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy242->span);
++}
++#line 2731 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 217: /* expr ::= expr NOT BETWEEN expr AND expr */
++#line 650 "ext/sqlite/libsqlite/src/parse.y"
++{
++ ExprList *pList = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
++ pList = sqliteExprListAppend(pList, yymsp[0].minor.yy242, 0);
++ yygotominor.yy242 = sqliteExpr(TK_BETWEEN, yymsp[-5].minor.yy242, 0, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->pList = pList;
++ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy242->span);
++}
++#line 2743 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 218: /* expr ::= expr IN LP exprlist RP */
++#line 658 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-1].minor.yy322;
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy0);
++}
++#line 2752 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 219: /* expr ::= expr IN LP select RP */
++#line 663 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,&yymsp[0].minor.yy0);
++}
++#line 2761 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 220: /* expr ::= expr NOT IN LP exprlist RP */
++#line 668 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-5].minor.yy242, 0, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-1].minor.yy322;
++ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy0);
++}
++#line 2771 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 221: /* expr ::= expr NOT IN LP select RP */
++#line 674 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-5].minor.yy242, 0, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = yymsp[-1].minor.yy179;
++ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-5].minor.yy242->span,&yymsp[0].minor.yy0);
++}
++#line 2781 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 222: /* expr ::= expr IN nm dbnm */
++#line 680 "ext/sqlite/libsqlite/src/parse.y"
++{
++ SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);
++ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-3].minor.yy242, 0, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-3].minor.yy242->span,yymsp[0].minor.yy0.z?&yymsp[0].minor.yy0:&yymsp[-1].minor.yy0);
++}
++#line 2791 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 223: /* expr ::= expr NOT IN nm dbnm */
++#line 686 "ext/sqlite/libsqlite/src/parse.y"
++{
++ SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);
++ yygotominor.yy242 = sqliteExpr(TK_IN, yymsp[-4].minor.yy242, 0, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
++ yygotominor.yy242 = sqliteExpr(TK_NOT, yygotominor.yy242, 0, 0);
++ sqliteExprSpan(yygotominor.yy242,&yymsp[-4].minor.yy242->span,yymsp[0].minor.yy0.z?&yymsp[0].minor.yy0:&yymsp[-1].minor.yy0);
++}
++#line 2802 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 224: /* expr ::= CASE case_operand case_exprlist case_else END */
++#line 696 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_CASE, yymsp[-3].minor.yy242, yymsp[-1].minor.yy242, 0);
++ if( yygotominor.yy242 ) yygotominor.yy242->pList = yymsp[-2].minor.yy322;
++ sqliteExprSpan(yygotominor.yy242, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0);
++}
++#line 2811 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 225: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
++#line 703 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy322 = sqliteExprListAppend(yymsp[-4].minor.yy322, yymsp[-2].minor.yy242, 0);
++ yygotominor.yy322 = sqliteExprListAppend(yygotominor.yy322, yymsp[0].minor.yy242, 0);
++}
++#line 2819 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 226: /* case_exprlist ::= WHEN expr THEN expr */
++#line 707 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy322 = sqliteExprListAppend(0, yymsp[-2].minor.yy242, 0);
++ yygotominor.yy322 = sqliteExprListAppend(yygotominor.yy322, yymsp[0].minor.yy242, 0);
++}
++#line 2827 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 235: /* cmd ::= CREATE uniqueflag INDEX nm ON nm dbnm LP idxlist RP onconf */
++#line 732 "ext/sqlite/libsqlite/src/parse.y"
++{
++ SrcList *pSrc = sqliteSrcListAppend(0, &yymsp[-5].minor.yy0, &yymsp[-4].minor.yy0);
++ if( yymsp[-9].minor.yy372!=OE_None ) yymsp[-9].minor.yy372 = yymsp[0].minor.yy372;
++ if( yymsp[-9].minor.yy372==OE_Default) yymsp[-9].minor.yy372 = OE_Abort;
++ sqliteCreateIndex(pParse, &yymsp[-7].minor.yy0, pSrc, yymsp[-2].minor.yy320, yymsp[-9].minor.yy372, &yymsp[-10].minor.yy0, &yymsp[-1].minor.yy0);
++}
++#line 2837 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 237: /* uniqueflag ::= */
++#line 741 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = OE_None; }
++#line 2842 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 243: /* cmd ::= DROP INDEX nm dbnm */
++#line 758 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteDropIndex(pParse, sqliteSrcListAppend(0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0));
++}
++#line 2849 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 244: /* cmd ::= COPY orconf nm dbnm FROM nm USING DELIMITERS STRING */
++#line 766 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteCopy(pParse,sqliteSrcListAppend(0,&yymsp[-6].minor.yy0,&yymsp[-5].minor.yy0),&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0,yymsp[-7].minor.yy372);}
++#line 2854 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 245: /* cmd ::= COPY orconf nm dbnm FROM nm */
++#line 768 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteCopy(pParse,sqliteSrcListAppend(0,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0),&yymsp[0].minor.yy0,0,yymsp[-4].minor.yy372);}
++#line 2859 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 246: /* cmd ::= VACUUM */
++#line 772 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteVacuum(pParse,0);}
++#line 2864 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 247: /* cmd ::= VACUUM nm */
++#line 773 "ext/sqlite/libsqlite/src/parse.y"
++{sqliteVacuum(pParse,&yymsp[0].minor.yy0);}
++#line 2869 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 248: /* cmd ::= PRAGMA ids EQ nm */
++ case 249: /* cmd ::= PRAGMA ids EQ ON */ yytestcase(yyruleno==249);
++ case 250: /* cmd ::= PRAGMA ids EQ plus_num */ yytestcase(yyruleno==250);
++#line 777 "ext/sqlite/libsqlite/src/parse.y"
++{sqlitePragma(pParse,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,0);}
++#line 2876 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 251: /* cmd ::= PRAGMA ids EQ minus_num */
++#line 780 "ext/sqlite/libsqlite/src/parse.y"
++{sqlitePragma(pParse,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0,1);}
++#line 2881 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 252: /* cmd ::= PRAGMA ids LP nm RP */
++#line 781 "ext/sqlite/libsqlite/src/parse.y"
++{sqlitePragma(pParse,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,0);}
++#line 2886 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 253: /* cmd ::= PRAGMA ids */
++#line 782 "ext/sqlite/libsqlite/src/parse.y"
++{sqlitePragma(pParse,&yymsp[0].minor.yy0,&yymsp[0].minor.yy0,0);}
++#line 2891 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 260: /* cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END */
++#line 792 "ext/sqlite/libsqlite/src/parse.y"
++{
++ Token all;
++ all.z = yymsp[-4].minor.yy0.z;
++ all.n = (yymsp[0].minor.yy0.z - yymsp[-4].minor.yy0.z) + yymsp[0].minor.yy0.n;
++ sqliteFinishTrigger(pParse, yymsp[-1].minor.yy19, &all);
++}
++#line 2901 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 261: /* trigger_decl ::= temp TRIGGER nm trigger_time trigger_event ON nm dbnm foreach_clause when_clause */
++#line 800 "ext/sqlite/libsqlite/src/parse.y"
++{
++ SrcList *pTab = sqliteSrcListAppend(0, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0);
++ sqliteBeginTrigger(pParse, &yymsp[-7].minor.yy0, yymsp[-6].minor.yy372, yymsp[-5].minor.yy290.a, yymsp[-5].minor.yy290.b, pTab, yymsp[-1].minor.yy372, yymsp[0].minor.yy182, yymsp[-9].minor.yy372);
++}
++#line 2909 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 262: /* trigger_time ::= BEFORE */
++ case 265: /* trigger_time ::= */ yytestcase(yyruleno==265);
++#line 806 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = TK_BEFORE; }
++#line 2915 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 263: /* trigger_time ::= AFTER */
++#line 807 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = TK_AFTER; }
++#line 2920 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 264: /* trigger_time ::= INSTEAD OF */
++#line 808 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = TK_INSTEAD;}
++#line 2925 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 266: /* trigger_event ::= DELETE */
++#line 813 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy290.a = TK_DELETE; yygotominor.yy290.b = 0; }
++#line 2930 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 267: /* trigger_event ::= INSERT */
++#line 814 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy290.a = TK_INSERT; yygotominor.yy290.b = 0; }
++#line 2935 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 268: /* trigger_event ::= UPDATE */
++#line 815 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy290.a = TK_UPDATE; yygotominor.yy290.b = 0;}
++#line 2940 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 269: /* trigger_event ::= UPDATE OF inscollist */
++#line 816 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy290.a = TK_UPDATE; yygotominor.yy290.b = yymsp[0].minor.yy320; }
++#line 2945 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 270: /* foreach_clause ::= */
++ case 271: /* foreach_clause ::= FOR EACH ROW */ yytestcase(yyruleno==271);
++#line 819 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = TK_ROW; }
++#line 2951 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 272: /* foreach_clause ::= FOR EACH STATEMENT */
++#line 821 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy372 = TK_STATEMENT; }
++#line 2956 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 273: /* when_clause ::= */
++#line 824 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy182 = 0; }
++#line 2961 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 274: /* when_clause ::= WHEN expr */
++#line 825 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy182 = yymsp[0].minor.yy242; }
++#line 2966 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 275: /* trigger_cmd_list ::= trigger_cmd SEMI trigger_cmd_list */
++#line 829 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yymsp[-2].minor.yy19->pNext = yymsp[0].minor.yy19;
++ yygotominor.yy19 = yymsp[-2].minor.yy19;
++}
++#line 2974 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 276: /* trigger_cmd_list ::= */
++#line 833 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy19 = 0; }
++#line 2979 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 277: /* trigger_cmd ::= UPDATE orconf nm SET setlist where_opt */
++#line 839 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy19 = sqliteTriggerUpdateStep(&yymsp[-3].minor.yy0, yymsp[-1].minor.yy322, yymsp[0].minor.yy242, yymsp[-4].minor.yy372); }
++#line 2984 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 278: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP */
++#line 844 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy19 = sqliteTriggerInsertStep(&yymsp[-5].minor.yy0, yymsp[-4].minor.yy320, yymsp[-1].minor.yy322, 0, yymsp[-7].minor.yy372);}
++#line 2989 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 279: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt select */
++#line 847 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy19 = sqliteTriggerInsertStep(&yymsp[-2].minor.yy0, yymsp[-1].minor.yy320, 0, yymsp[0].minor.yy179, yymsp[-4].minor.yy372);}
++#line 2994 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 280: /* trigger_cmd ::= DELETE FROM nm where_opt */
++#line 851 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy19 = sqliteTriggerDeleteStep(&yymsp[-1].minor.yy0, yymsp[0].minor.yy242);}
++#line 2999 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 281: /* trigger_cmd ::= select */
++#line 854 "ext/sqlite/libsqlite/src/parse.y"
++{yygotominor.yy19 = sqliteTriggerSelectStep(yymsp[0].minor.yy179); }
++#line 3004 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 282: /* expr ::= RAISE LP IGNORE RP */
++#line 857 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, 0);
++ yygotominor.yy242->iColumn = OE_Ignore;
++ sqliteExprSpan(yygotominor.yy242, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0);
++}
++#line 3013 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 283: /* expr ::= RAISE LP ROLLBACK COMMA nm RP */
++#line 862 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy0);
++ yygotominor.yy242->iColumn = OE_Rollback;
++ sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
++}
++#line 3022 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 284: /* expr ::= RAISE LP ABORT COMMA nm RP */
++#line 867 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy0);
++ yygotominor.yy242->iColumn = OE_Abort;
++ sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
++}
++#line 3031 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 285: /* expr ::= RAISE LP FAIL COMMA nm RP */
++#line 872 "ext/sqlite/libsqlite/src/parse.y"
++{
++ yygotominor.yy242 = sqliteExpr(TK_RAISE, 0, 0, &yymsp[-1].minor.yy0);
++ yygotominor.yy242->iColumn = OE_Fail;
++ sqliteExprSpan(yygotominor.yy242, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0);
++}
++#line 3040 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 286: /* cmd ::= DROP TRIGGER nm dbnm */
++#line 879 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteDropTrigger(pParse,sqliteSrcListAppend(0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0));
++}
++#line 3047 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 287: /* cmd ::= ATTACH database_kw_opt ids AS nm key_opt */
++#line 884 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteAttach(pParse, &yymsp[-3].minor.yy0, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);
++}
++#line 3054 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 289: /* key_opt ::= */
++#line 889 "ext/sqlite/libsqlite/src/parse.y"
++{ yygotominor.yy0.z = 0; yygotominor.yy0.n = 0; }
++#line 3059 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ case 292: /* cmd ::= DETACH database_kw_opt nm */
++#line 895 "ext/sqlite/libsqlite/src/parse.y"
++{
++ sqliteDetach(pParse, &yymsp[0].minor.yy0);
++}
++#line 3066 "ext/sqlite/libsqlite/src/parse.c"
++ break;
++ default:
++ /* (0) input ::= cmdlist */ yytestcase(yyruleno==0);
++ /* (1) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==1);
++ /* (2) cmdlist ::= ecmd */ yytestcase(yyruleno==2);
++ /* (3) ecmd ::= explain cmdx SEMI */ yytestcase(yyruleno==3);
++ /* (4) ecmd ::= SEMI */ yytestcase(yyruleno==4);
++ /* (9) trans_opt ::= */ yytestcase(yyruleno==9);
++ /* (10) trans_opt ::= TRANSACTION */ yytestcase(yyruleno==10);
++ /* (11) trans_opt ::= TRANSACTION nm */ yytestcase(yyruleno==11);
++ /* (15) cmd ::= create_table create_table_args */ yytestcase(yyruleno==15);
++ /* (21) columnlist ::= columnlist COMMA column */ yytestcase(yyruleno==21);
++ /* (22) columnlist ::= column */ yytestcase(yyruleno==22);
++ /* (23) column ::= columnid type carglist */ yytestcase(yyruleno==23);
++ /* (31) type ::= */ yytestcase(yyruleno==31);
++ /* (40) carglist ::= carglist carg */ yytestcase(yyruleno==40);
++ /* (41) carglist ::= */ yytestcase(yyruleno==41);
++ /* (42) carg ::= CONSTRAINT nm ccons */ yytestcase(yyruleno==42);
++ /* (43) carg ::= ccons */ yytestcase(yyruleno==43);
++ /* (52) carg ::= DEFAULT NULL */ yytestcase(yyruleno==52);
++ /* (53) ccons ::= NULL onconf */ yytestcase(yyruleno==53);
++ /* (76) conslist_opt ::= */ yytestcase(yyruleno==76);
++ /* (77) conslist_opt ::= COMMA conslist */ yytestcase(yyruleno==77);
++ /* (78) conslist ::= conslist COMMA tcons */ yytestcase(yyruleno==78);
++ /* (79) conslist ::= conslist tcons */ yytestcase(yyruleno==79);
++ /* (80) conslist ::= tcons */ yytestcase(yyruleno==80);
++ /* (81) tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==81);
++ /* (258) plus_opt ::= PLUS */ yytestcase(yyruleno==258);
++ /* (259) plus_opt ::= */ yytestcase(yyruleno==259);
++ /* (290) database_kw_opt ::= DATABASE */ yytestcase(yyruleno==290);
++ /* (291) database_kw_opt ::= */ yytestcase(yyruleno==291);
++ break;
++ };
++ yygoto = yyRuleInfo[yyruleno].lhs;
++ yysize = yyRuleInfo[yyruleno].nrhs;
++ yypParser->yyidx -= yysize;
++ yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
++ if( yyact < YYNSTATE ){
++#ifdef NDEBUG
++ /* If we are not debugging and the reduce action popped at least
++ ** one element off the stack, then we can push the new element back
++ ** onto the stack here, and skip the stack overflow test in yy_shift().
++ ** That gives a significant speed improvement. */
++ if( yysize ){
++ yypParser->yyidx++;
++ yymsp -= yysize-1;
++ yymsp->stateno = (YYACTIONTYPE)yyact;
++ yymsp->major = (YYCODETYPE)yygoto;
++ yymsp->minor = yygotominor;
++ }else
++#endif
++ {
++ yy_shift(yypParser,yyact,yygoto,&yygotominor);
++ }
++ }else{
++ assert( yyact == YYNSTATE + YYNRULE + 1 );
++ yy_accept(yypParser);
++ }
++}
++
++/*
++** The following code executes when the parse fails
++*/
++#ifndef YYNOERRORRECOVERY
++static void yy_parse_failed(
++ yyParser *yypParser /* The parser */
++){
++ sqliteParserARG_FETCH;
++#ifndef NDEBUG
++ if( yyTraceFILE ){
++ fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
++ }
++#endif
++ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
++ /* Here code is inserted which will be executed whenever the
++ ** parser fails */
++ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
++}
++#endif /* YYNOERRORRECOVERY */
++
++/*
++** The following code executes when a syntax error first occurs.
++*/
++static void yy_syntax_error(
++ yyParser *yypParser, /* The parser */
++ int yymajor, /* The major type of the error token */
++ YYMINORTYPE yyminor /* The minor type of the error token */
++){
++ sqliteParserARG_FETCH;
++#define TOKEN (yyminor.yy0)
++#line 23 "ext/sqlite/libsqlite/src/parse.y"
++
++ if( pParse->zErrMsg==0 ){
++ if( TOKEN.z[0] ){
++ sqliteErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
++ }else{
++ sqliteErrorMsg(pParse, "incomplete SQL statement");
++ }
++ }
++#line 3166 "ext/sqlite/libsqlite/src/parse.c"
++ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
++}
++
++/*
++** The following is executed when the parser accepts
++*/
++static void yy_accept(
++ yyParser *yypParser /* The parser */
++){
++ sqliteParserARG_FETCH;
++#ifndef NDEBUG
++ if( yyTraceFILE ){
++ fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
++ }
++#endif
++ while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
++ /* Here code is inserted which will be executed whenever the
++ ** parser accepts */
++ sqliteParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
++}
++
++/* The main parser program.
++** The first argument is a pointer to a structure obtained from
++** "sqliteParserAlloc" which describes the current state of the parser.
++** The second argument is the major token number. The third is
++** the minor token. The fourth optional argument is whatever the
++** user wants (and specified in the grammar) and is available for
++** use by the action routines.
++**
++** Inputs:
++** <ul>
++** <li> A pointer to the parser (an opaque structure.)
++** <li> The major token number.
++** <li> The minor token number.
++** <li> An option argument of a grammar-specified type.
++** </ul>
++**
++** Outputs:
++** None.
++*/
++void sqliteParser(
++ void *yyp, /* The parser */
++ int yymajor, /* The major token code number */
++ sqliteParserTOKENTYPE yyminor /* The value for the token */
++ sqliteParserARG_PDECL /* Optional %extra_argument parameter */
++){
++ YYMINORTYPE yyminorunion;
++ int yyact; /* The parser action. */
++ int yyendofinput; /* True if we are at the end of input */
++#ifdef YYERRORSYMBOL
++ int yyerrorhit = 0; /* True if yymajor has invoked an error */
++#endif
++ yyParser *yypParser; /* The parser */
++
++ /* (re)initialize the parser, if necessary */
++ yypParser = (yyParser*)yyp;
++ if( yypParser->yyidx<0 ){
++#if YYSTACKDEPTH<=0
++ if( yypParser->yystksz <=0 ){
++ /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/
++ yyminorunion = yyzerominor;
++ yyStackOverflow(yypParser, &yyminorunion);
++ return;
++ }
++#endif
++ yypParser->yyidx = 0;
++ yypParser->yyerrcnt = -1;
++ yypParser->yystack[0].stateno = 0;
++ yypParser->yystack[0].major = 0;
++ }
++ yyminorunion.yy0 = yyminor;
++ yyendofinput = (yymajor==0);
++ sqliteParserARG_STORE;
++
++#ifndef NDEBUG
++ if( yyTraceFILE ){
++ fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
++ }
++#endif
++
++ do{
++ yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
++ if( yyact<YYNSTATE ){
++ assert( !yyendofinput ); /* Impossible to shift the $ token */
++ yy_shift(yypParser,yyact,yymajor,&yyminorunion);
++ yypParser->yyerrcnt--;
++ yymajor = YYNOCODE;
++ }else if( yyact < YYNSTATE + YYNRULE ){
++ yy_reduce(yypParser,yyact-YYNSTATE);
++ }else{
++ assert( yyact == YY_ERROR_ACTION );
++#ifdef YYERRORSYMBOL
++ int yymx;
++#endif
++#ifndef NDEBUG
++ if( yyTraceFILE ){
++ fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt);
++ }
++#endif
++#ifdef YYERRORSYMBOL
++ /* A syntax error has occurred.
++ ** The response to an error depends upon whether or not the
++ ** grammar defines an error token "ERROR".
++ **
++ ** This is what we do if the grammar does define ERROR:
++ **
++ ** * Call the %syntax_error function.
++ **
++ ** * Begin popping the stack until we enter a state where
++ ** it is legal to shift the error symbol, then shift
++ ** the error symbol.
++ **
++ ** * Set the error count to three.
++ **
++ ** * Begin accepting and shifting new tokens. No new error
++ ** processing will occur until three tokens have been
++ ** shifted successfully.
++ **
++ */
++ if( yypParser->yyerrcnt<0 ){
++ yy_syntax_error(yypParser,yymajor,yyminorunion);
++ }
++ yymx = yypParser->yystack[yypParser->yyidx].major;
++ if( yymx==YYERRORSYMBOL || yyerrorhit ){
++#ifndef NDEBUG
++ if( yyTraceFILE ){
++ fprintf(yyTraceFILE,"%sDiscard input token %s\n",
++ yyTracePrompt,yyTokenName[yymajor]);
++ }
++#endif
++ yy_destructor(yypParser, (YYCODETYPE)yymajor,&yyminorunion);
++ yymajor = YYNOCODE;
++ }else{
++ while(
++ yypParser->yyidx >= 0 &&
++ yymx != YYERRORSYMBOL &&
++ (yyact = yy_find_reduce_action(
++ yypParser->yystack[yypParser->yyidx].stateno,
++ YYERRORSYMBOL)) >= YYNSTATE
++ ){
++ yy_pop_parser_stack(yypParser);
++ }
++ if( yypParser->yyidx < 0 || yymajor==0 ){
++ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
++ yy_parse_failed(yypParser);
++ yymajor = YYNOCODE;
++ }else if( yymx!=YYERRORSYMBOL ){
++ YYMINORTYPE u2;
++ u2.YYERRSYMDT = 0;
++ yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2);
++ }
++ }
++ yypParser->yyerrcnt = 3;
++ yyerrorhit = 1;
++#elif defined(YYNOERRORRECOVERY)
++ /* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
++ ** do any kind of error recovery. Instead, simply invoke the syntax
++ ** error routine and continue going as if nothing had happened.
++ **
++ ** Applications can set this macro (for example inside %include) if
++ ** they intend to abandon the parse upon the first syntax error seen.
++ */
++ yy_syntax_error(yypParser,yymajor,yyminorunion);
++ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
++ yymajor = YYNOCODE;
++
++#else /* YYERRORSYMBOL is not defined */
++ /* This is what we do if the grammar does not define ERROR:
++ **
++ ** * Report an error message, and throw away the input token.
++ **
++ ** * If the input token is $, then fail the parse.
++ **
++ ** As before, subsequent error messages are suppressed until
++ ** three input tokens have been successfully shifted.
++ */
++ if( yypParser->yyerrcnt<=0 ){
++ yy_syntax_error(yypParser,yymajor,yyminorunion);
++ }
++ yypParser->yyerrcnt = 3;
++ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
++ if( yyendofinput ){
++ yy_parse_failed(yypParser);
++ }
++ yymajor = YYNOCODE;
++#endif
++ }
++ }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
++ return;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/parse.h
+@@ -0,0 +1,130 @@
++#define TK_END_OF_FILE 1
++#define TK_ILLEGAL 2
++#define TK_SPACE 3
++#define TK_UNCLOSED_STRING 4
++#define TK_COMMENT 5
++#define TK_FUNCTION 6
++#define TK_COLUMN 7
++#define TK_AGG_FUNCTION 8
++#define TK_SEMI 9
++#define TK_EXPLAIN 10
++#define TK_BEGIN 11
++#define TK_TRANSACTION 12
++#define TK_COMMIT 13
++#define TK_END 14
++#define TK_ROLLBACK 15
++#define TK_CREATE 16
++#define TK_TABLE 17
++#define TK_TEMP 18
++#define TK_LP 19
++#define TK_RP 20
++#define TK_AS 21
++#define TK_COMMA 22
++#define TK_ID 23
++#define TK_ABORT 24
++#define TK_AFTER 25
++#define TK_ASC 26
++#define TK_ATTACH 27
++#define TK_BEFORE 28
++#define TK_CASCADE 29
++#define TK_CLUSTER 30
++#define TK_CONFLICT 31
++#define TK_COPY 32
++#define TK_DATABASE 33
++#define TK_DEFERRED 34
++#define TK_DELIMITERS 35
++#define TK_DESC 36
++#define TK_DETACH 37
++#define TK_EACH 38
++#define TK_FAIL 39
++#define TK_FOR 40
++#define TK_GLOB 41
++#define TK_IGNORE 42
++#define TK_IMMEDIATE 43
++#define TK_INITIALLY 44
++#define TK_INSTEAD 45
++#define TK_LIKE 46
++#define TK_MATCH 47
++#define TK_KEY 48
++#define TK_OF 49
++#define TK_OFFSET 50
++#define TK_PRAGMA 51
++#define TK_RAISE 52
++#define TK_REPLACE 53
++#define TK_RESTRICT 54
++#define TK_ROW 55
++#define TK_STATEMENT 56
++#define TK_TRIGGER 57
++#define TK_VACUUM 58
++#define TK_VIEW 59
++#define TK_OR 60
++#define TK_AND 61
++#define TK_NOT 62
++#define TK_EQ 63
++#define TK_NE 64
++#define TK_ISNULL 65
++#define TK_NOTNULL 66
++#define TK_IS 67
++#define TK_BETWEEN 68
++#define TK_IN 69
++#define TK_GT 70
++#define TK_GE 71
++#define TK_LT 72
++#define TK_LE 73
++#define TK_BITAND 74
++#define TK_BITOR 75
++#define TK_LSHIFT 76
++#define TK_RSHIFT 77
++#define TK_PLUS 78
++#define TK_MINUS 79
++#define TK_STAR 80
++#define TK_SLASH 81
++#define TK_REM 82
++#define TK_CONCAT 83
++#define TK_UMINUS 84
++#define TK_UPLUS 85
++#define TK_BITNOT 86
++#define TK_STRING 87
++#define TK_JOIN_KW 88
++#define TK_INTEGER 89
++#define TK_CONSTRAINT 90
++#define TK_DEFAULT 91
++#define TK_FLOAT 92
++#define TK_NULL 93
++#define TK_PRIMARY 94
++#define TK_UNIQUE 95
++#define TK_CHECK 96
++#define TK_REFERENCES 97
++#define TK_COLLATE 98
++#define TK_ON 99
++#define TK_DELETE 100
++#define TK_UPDATE 101
++#define TK_INSERT 102
++#define TK_SET 103
++#define TK_DEFERRABLE 104
++#define TK_FOREIGN 105
++#define TK_DROP 106
++#define TK_UNION 107
++#define TK_ALL 108
++#define TK_INTERSECT 109
++#define TK_EXCEPT 110
++#define TK_SELECT 111
++#define TK_DISTINCT 112
++#define TK_DOT 113
++#define TK_FROM 114
++#define TK_JOIN 115
++#define TK_USING 116
++#define TK_ORDER 117
++#define TK_BY 118
++#define TK_GROUP 119
++#define TK_HAVING 120
++#define TK_LIMIT 121
++#define TK_WHERE 122
++#define TK_INTO 123
++#define TK_VALUES 124
++#define TK_VARIABLE 125
++#define TK_CASE 126
++#define TK_WHEN 127
++#define TK_THEN 128
++#define TK_ELSE 129
++#define TK_INDEX 130
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/parse.y
+@@ -0,0 +1,897 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains SQLite's grammar for SQL. Process this file
++** using the lemon parser generator to generate C code that runs
++** the parser. Lemon will also generate a header file containing
++** numeric codes for all of the tokens.
++**
++** @(#) $Id$
++*/
++%token_prefix TK_
++%token_type {Token}
++%default_type {Token}
++%extra_argument {Parse *pParse}
++%syntax_error {
++ if( pParse->zErrMsg==0 ){
++ if( TOKEN.z[0] ){
++ sqliteErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
++ }else{
++ sqliteErrorMsg(pParse, "incomplete SQL statement");
++ }
++ }
++}
++%name sqliteParser
++%include {
++#include "sqliteInt.h"
++#include "parse.h"
++
++/*
++** An instance of this structure holds information about the
++** LIMIT clause of a SELECT statement.
++*/
++struct LimitVal {
++ int limit; /* The LIMIT value. -1 if there is no limit */
++ int offset; /* The OFFSET. 0 if there is none */
++};
++
++/*
++** An instance of the following structure describes the event of a
++** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
++** TK_DELETE, or TK_INSTEAD. If the event is of the form
++**
++** UPDATE ON (a,b,c)
++**
++** Then the "b" IdList records the list "a,b,c".
++*/
++struct TrigEvent { int a; IdList * b; };
++
++} // end %include
++
++// These are extra tokens used by the lexer but never seen by the
++// parser. We put them in a rule so that the parser generator will
++// add them to the parse.h output file.
++//
++%nonassoc END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION
++ COLUMN AGG_FUNCTION.
++
++// Input is a single SQL command
++input ::= cmdlist.
++cmdlist ::= cmdlist ecmd.
++cmdlist ::= ecmd.
++ecmd ::= explain cmdx SEMI.
++ecmd ::= SEMI.
++cmdx ::= cmd. { sqliteExec(pParse); }
++explain ::= EXPLAIN. { sqliteBeginParse(pParse, 1); }
++explain ::= . { sqliteBeginParse(pParse, 0); }
++
++///////////////////// Begin and end transactions. ////////////////////////////
++//
++
++cmd ::= BEGIN trans_opt onconf(R). {sqliteBeginTransaction(pParse,R);}
++trans_opt ::= .
++trans_opt ::= TRANSACTION.
++trans_opt ::= TRANSACTION nm.
++cmd ::= COMMIT trans_opt. {sqliteCommitTransaction(pParse);}
++cmd ::= END trans_opt. {sqliteCommitTransaction(pParse);}
++cmd ::= ROLLBACK trans_opt. {sqliteRollbackTransaction(pParse);}
++
++///////////////////// The CREATE TABLE statement ////////////////////////////
++//
++cmd ::= create_table create_table_args.
++create_table ::= CREATE(X) temp(T) TABLE nm(Y). {
++ sqliteStartTable(pParse,&X,&Y,T,0);
++}
++%type temp {int}
++temp(A) ::= TEMP. {A = 1;}
++temp(A) ::= . {A = 0;}
++create_table_args ::= LP columnlist conslist_opt RP(X). {
++ sqliteEndTable(pParse,&X,0);
++}
++create_table_args ::= AS select(S). {
++ sqliteEndTable(pParse,0,S);
++ sqliteSelectDelete(S);
++}
++columnlist ::= columnlist COMMA column.
++columnlist ::= column.
++
++// About the only information used for a column is the name of the
++// column. The type is always just "text". But the code will accept
++// an elaborate typename. Perhaps someday we'll do something with it.
++//
++column ::= columnid type carglist.
++columnid ::= nm(X). {sqliteAddColumn(pParse,&X);}
++
++// An IDENTIFIER can be a generic identifier, or one of several
++// keywords. Any non-standard keyword can also be an identifier.
++//
++%type id {Token}
++id(A) ::= ID(X). {A = X;}
++
++// The following directive causes tokens ABORT, AFTER, ASC, etc. to
++// fallback to ID if they will not parse as their original value.
++// This obviates the need for the "id" nonterminal.
++//
++%fallback ID
++ ABORT AFTER ASC ATTACH BEFORE BEGIN CASCADE CLUSTER CONFLICT
++ COPY DATABASE DEFERRED DELIMITERS DESC DETACH EACH END EXPLAIN FAIL FOR
++ GLOB IGNORE IMMEDIATE INITIALLY INSTEAD LIKE MATCH KEY
++ OF OFFSET PRAGMA RAISE REPLACE RESTRICT ROW STATEMENT
++ TEMP TRIGGER VACUUM VIEW.
++
++// Define operator precedence early so that this is the first occurance
++// of the operator tokens in the grammer. Keeping the operators together
++// causes them to be assigned integer values that are close together,
++// which keeps parser tables smaller.
++//
++%left OR.
++%left AND.
++%right NOT.
++%left EQ NE ISNULL NOTNULL IS LIKE GLOB BETWEEN IN.
++%left GT GE LT LE.
++%left BITAND BITOR LSHIFT RSHIFT.
++%left PLUS MINUS.
++%left STAR SLASH REM.
++%left CONCAT.
++%right UMINUS UPLUS BITNOT.
++
++// And "ids" is an identifer-or-string.
++//
++%type ids {Token}
++ids(A) ::= ID(X). {A = X;}
++ids(A) ::= STRING(X). {A = X;}
++
++// The name of a column or table can be any of the following:
++//
++%type nm {Token}
++nm(A) ::= ID(X). {A = X;}
++nm(A) ::= STRING(X). {A = X;}
++nm(A) ::= JOIN_KW(X). {A = X;}
++
++type ::= .
++type ::= typename(X). {sqliteAddColumnType(pParse,&X,&X);}
++type ::= typename(X) LP signed RP(Y). {sqliteAddColumnType(pParse,&X,&Y);}
++type ::= typename(X) LP signed COMMA signed RP(Y).
++ {sqliteAddColumnType(pParse,&X,&Y);}
++%type typename {Token}
++typename(A) ::= ids(X). {A = X;}
++typename(A) ::= typename(X) ids. {A = X;}
++%type signed {int}
++signed(A) ::= INTEGER(X). { A = atoi(X.z); }
++signed(A) ::= PLUS INTEGER(X). { A = atoi(X.z); }
++signed(A) ::= MINUS INTEGER(X). { A = -atoi(X.z); }
++carglist ::= carglist carg.
++carglist ::= .
++carg ::= CONSTRAINT nm ccons.
++carg ::= ccons.
++carg ::= DEFAULT STRING(X). {sqliteAddDefaultValue(pParse,&X,0);}
++carg ::= DEFAULT ID(X). {sqliteAddDefaultValue(pParse,&X,0);}
++carg ::= DEFAULT INTEGER(X). {sqliteAddDefaultValue(pParse,&X,0);}
++carg ::= DEFAULT PLUS INTEGER(X). {sqliteAddDefaultValue(pParse,&X,0);}
++carg ::= DEFAULT MINUS INTEGER(X). {sqliteAddDefaultValue(pParse,&X,1);}
++carg ::= DEFAULT FLOAT(X). {sqliteAddDefaultValue(pParse,&X,0);}
++carg ::= DEFAULT PLUS FLOAT(X). {sqliteAddDefaultValue(pParse,&X,0);}
++carg ::= DEFAULT MINUS FLOAT(X). {sqliteAddDefaultValue(pParse,&X,1);}
++carg ::= DEFAULT NULL.
++
++// In addition to the type name, we also care about the primary key and
++// UNIQUE constraints.
++//
++ccons ::= NULL onconf.
++ccons ::= NOT NULL onconf(R). {sqliteAddNotNull(pParse, R);}
++ccons ::= PRIMARY KEY sortorder onconf(R). {sqliteAddPrimaryKey(pParse,0,R);}
++ccons ::= UNIQUE onconf(R). {sqliteCreateIndex(pParse,0,0,0,R,0,0);}
++ccons ::= CHECK LP expr RP onconf.
++ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
++ {sqliteCreateForeignKey(pParse,0,&T,TA,R);}
++ccons ::= defer_subclause(D). {sqliteDeferForeignKey(pParse,D);}
++ccons ::= COLLATE id(C). {
++ sqliteAddCollateType(pParse, sqliteCollateType(C.z, C.n));
++}
++
++// The next group of rules parses the arguments to a REFERENCES clause
++// that determine if the referential integrity checking is deferred or
++// or immediate and which determine what action to take if a ref-integ
++// check fails.
++//
++%type refargs {int}
++refargs(A) ::= . { A = OE_Restrict * 0x010101; }
++refargs(A) ::= refargs(X) refarg(Y). { A = (X & Y.mask) | Y.value; }
++%type refarg {struct {int value; int mask;}}
++refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; }
++refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; }
++refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; }
++refarg(A) ::= ON INSERT refact(X). { A.value = X<<16; A.mask = 0xff0000; }
++%type refact {int}
++refact(A) ::= SET NULL. { A = OE_SetNull; }
++refact(A) ::= SET DEFAULT. { A = OE_SetDflt; }
++refact(A) ::= CASCADE. { A = OE_Cascade; }
++refact(A) ::= RESTRICT. { A = OE_Restrict; }
++%type defer_subclause {int}
++defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt(X). {A = X;}
++defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;}
++%type init_deferred_pred_opt {int}
++init_deferred_pred_opt(A) ::= . {A = 0;}
++init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;}
++init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;}
++
++// For the time being, the only constraint we care about is the primary
++// key and UNIQUE. Both create indices.
++//
++conslist_opt ::= .
++conslist_opt ::= COMMA conslist.
++conslist ::= conslist COMMA tcons.
++conslist ::= conslist tcons.
++conslist ::= tcons.
++tcons ::= CONSTRAINT nm.
++tcons ::= PRIMARY KEY LP idxlist(X) RP onconf(R).
++ {sqliteAddPrimaryKey(pParse,X,R);}
++tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
++ {sqliteCreateIndex(pParse,0,0,X,R,0,0);}
++tcons ::= CHECK expr onconf.
++tcons ::= FOREIGN KEY LP idxlist(FA) RP
++ REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
++ sqliteCreateForeignKey(pParse, FA, &T, TA, R);
++ sqliteDeferForeignKey(pParse, D);
++}
++%type defer_subclause_opt {int}
++defer_subclause_opt(A) ::= . {A = 0;}
++defer_subclause_opt(A) ::= defer_subclause(X). {A = X;}
++
++// The following is a non-standard extension that allows us to declare the
++// default behavior when there is a constraint conflict.
++//
++%type onconf {int}
++%type orconf {int}
++%type resolvetype {int}
++onconf(A) ::= . { A = OE_Default; }
++onconf(A) ::= ON CONFLICT resolvetype(X). { A = X; }
++orconf(A) ::= . { A = OE_Default; }
++orconf(A) ::= OR resolvetype(X). { A = X; }
++resolvetype(A) ::= ROLLBACK. { A = OE_Rollback; }
++resolvetype(A) ::= ABORT. { A = OE_Abort; }
++resolvetype(A) ::= FAIL. { A = OE_Fail; }
++resolvetype(A) ::= IGNORE. { A = OE_Ignore; }
++resolvetype(A) ::= REPLACE. { A = OE_Replace; }
++
++////////////////////////// The DROP TABLE /////////////////////////////////////
++//
++cmd ::= DROP TABLE nm(X). {sqliteDropTable(pParse,&X,0);}
++
++///////////////////// The CREATE VIEW statement /////////////////////////////
++//
++cmd ::= CREATE(X) temp(T) VIEW nm(Y) AS select(S). {
++ sqliteCreateView(pParse, &X, &Y, S, T);
++}
++cmd ::= DROP VIEW nm(X). {
++ sqliteDropTable(pParse, &X, 1);
++}
++
++//////////////////////// The SELECT statement /////////////////////////////////
++//
++cmd ::= select(X). {
++ sqliteSelect(pParse, X, SRT_Callback, 0, 0, 0, 0);
++ sqliteSelectDelete(X);
++}
++
++%type select {Select*}
++%destructor select {sqliteSelectDelete($$);}
++%type oneselect {Select*}
++%destructor oneselect {sqliteSelectDelete($$);}
++
++select(A) ::= oneselect(X). {A = X;}
++select(A) ::= select(X) multiselect_op(Y) oneselect(Z). {
++ if( Z ){
++ Z->op = Y;
++ Z->pPrior = X;
++ }
++ A = Z;
++}
++%type multiselect_op {int}
++multiselect_op(A) ::= UNION. {A = TK_UNION;}
++multiselect_op(A) ::= UNION ALL. {A = TK_ALL;}
++multiselect_op(A) ::= INTERSECT. {A = TK_INTERSECT;}
++multiselect_op(A) ::= EXCEPT. {A = TK_EXCEPT;}
++oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
++ groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
++ A = sqliteSelectNew(W,X,Y,P,Q,Z,D,L.limit,L.offset);
++}
++
++// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
++// present and false (0) if it is not.
++//
++%type distinct {int}
++distinct(A) ::= DISTINCT. {A = 1;}
++distinct(A) ::= ALL. {A = 0;}
++distinct(A) ::= . {A = 0;}
++
++// selcollist is a list of expressions that are to become the return
++// values of the SELECT statement. The "*" in statements like
++// "SELECT * FROM ..." is encoded as a special expression with an
++// opcode of TK_ALL.
++//
++%type selcollist {ExprList*}
++%destructor selcollist {sqliteExprListDelete($$);}
++%type sclp {ExprList*}
++%destructor sclp {sqliteExprListDelete($$);}
++sclp(A) ::= selcollist(X) COMMA. {A = X;}
++sclp(A) ::= . {A = 0;}
++selcollist(A) ::= sclp(P) expr(X) as(Y). {
++ A = sqliteExprListAppend(P,X,Y.n?&Y:0);
++}
++selcollist(A) ::= sclp(P) STAR. {
++ A = sqliteExprListAppend(P, sqliteExpr(TK_ALL, 0, 0, 0), 0);
++}
++selcollist(A) ::= sclp(P) nm(X) DOT STAR. {
++ Expr *pRight = sqliteExpr(TK_ALL, 0, 0, 0);
++ Expr *pLeft = sqliteExpr(TK_ID, 0, 0, &X);
++ A = sqliteExprListAppend(P, sqliteExpr(TK_DOT, pLeft, pRight, 0), 0);
++}
++
++// An option "AS <id>" phrase that can follow one of the expressions that
++// define the result set, or one of the tables in the FROM clause.
++//
++%type as {Token}
++as(X) ::= AS nm(Y). { X = Y; }
++as(X) ::= ids(Y). { X = Y; }
++as(X) ::= . { X.n = 0; }
++
++
++%type seltablist {SrcList*}
++%destructor seltablist {sqliteSrcListDelete($$);}
++%type stl_prefix {SrcList*}
++%destructor stl_prefix {sqliteSrcListDelete($$);}
++%type from {SrcList*}
++%destructor from {sqliteSrcListDelete($$);}
++
++// A complete FROM clause.
++//
++from(A) ::= . {A = sqliteMalloc(sizeof(*A));}
++from(A) ::= FROM seltablist(X). {A = X;}
++
++// "seltablist" is a "Select Table List" - the content of the FROM clause
++// in a SELECT statement. "stl_prefix" is a prefix of this list.
++//
++stl_prefix(A) ::= seltablist(X) joinop(Y). {
++ A = X;
++ if( A && A->nSrc>0 ) A->a[A->nSrc-1].jointype = Y;
++}
++stl_prefix(A) ::= . {A = 0;}
++seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) on_opt(N) using_opt(U). {
++ A = sqliteSrcListAppend(X,&Y,&D);
++ if( Z.n ) sqliteSrcListAddAlias(A,&Z);
++ if( N ){
++ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pOn = N; }
++ else { sqliteExprDelete(N); }
++ }
++ if( U ){
++ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pUsing = U; }
++ else { sqliteIdListDelete(U); }
++ }
++}
++seltablist(A) ::= stl_prefix(X) LP seltablist_paren(S) RP
++ as(Z) on_opt(N) using_opt(U). {
++ A = sqliteSrcListAppend(X,0,0);
++ A->a[A->nSrc-1].pSelect = S;
++ if( Z.n ) sqliteSrcListAddAlias(A,&Z);
++ if( N ){
++ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pOn = N; }
++ else { sqliteExprDelete(N); }
++ }
++ if( U ){
++ if( A && A->nSrc>1 ){ A->a[A->nSrc-2].pUsing = U; }
++ else { sqliteIdListDelete(U); }
++ }
++}
++
++// A seltablist_paren nonterminal represents anything in a FROM that
++// is contained inside parentheses. This can be either a subquery or
++// a grouping of table and subqueries.
++//
++%type seltablist_paren {Select*}
++%destructor seltablist_paren {sqliteSelectDelete($$);}
++seltablist_paren(A) ::= select(S). {A = S;}
++seltablist_paren(A) ::= seltablist(F). {
++ A = sqliteSelectNew(0,F,0,0,0,0,0,-1,0);
++}
++
++%type dbnm {Token}
++dbnm(A) ::= . {A.z=0; A.n=0;}
++dbnm(A) ::= DOT nm(X). {A = X;}
++
++%type joinop {int}
++%type joinop2 {int}
++joinop(X) ::= COMMA. { X = JT_INNER; }
++joinop(X) ::= JOIN. { X = JT_INNER; }
++joinop(X) ::= JOIN_KW(A) JOIN. { X = sqliteJoinType(pParse,&A,0,0); }
++joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqliteJoinType(pParse,&A,&B,0); }
++joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
++ { X = sqliteJoinType(pParse,&A,&B,&C); }
++
++%type on_opt {Expr*}
++%destructor on_opt {sqliteExprDelete($$);}
++on_opt(N) ::= ON expr(E). {N = E;}
++on_opt(N) ::= . {N = 0;}
++
++%type using_opt {IdList*}
++%destructor using_opt {sqliteIdListDelete($$);}
++using_opt(U) ::= USING LP idxlist(L) RP. {U = L;}
++using_opt(U) ::= . {U = 0;}
++
++
++%type orderby_opt {ExprList*}
++%destructor orderby_opt {sqliteExprListDelete($$);}
++%type sortlist {ExprList*}
++%destructor sortlist {sqliteExprListDelete($$);}
++%type sortitem {Expr*}
++%destructor sortitem {sqliteExprDelete($$);}
++
++orderby_opt(A) ::= . {A = 0;}
++orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;}
++sortlist(A) ::= sortlist(X) COMMA sortitem(Y) collate(C) sortorder(Z). {
++ A = sqliteExprListAppend(X,Y,0);
++ if( A ) A->a[A->nExpr-1].sortOrder = C+Z;
++}
++sortlist(A) ::= sortitem(Y) collate(C) sortorder(Z). {
++ A = sqliteExprListAppend(0,Y,0);
++ if( A ) A->a[0].sortOrder = C+Z;
++}
++sortitem(A) ::= expr(X). {A = X;}
++
++%type sortorder {int}
++%type collate {int}
++
++sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;}
++sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;}
++sortorder(A) ::= . {A = SQLITE_SO_ASC;}
++collate(C) ::= . {C = SQLITE_SO_UNK;}
++collate(C) ::= COLLATE id(X). {C = sqliteCollateType(X.z, X.n);}
++
++%type groupby_opt {ExprList*}
++%destructor groupby_opt {sqliteExprListDelete($$);}
++groupby_opt(A) ::= . {A = 0;}
++groupby_opt(A) ::= GROUP BY exprlist(X). {A = X;}
++
++%type having_opt {Expr*}
++%destructor having_opt {sqliteExprDelete($$);}
++having_opt(A) ::= . {A = 0;}
++having_opt(A) ::= HAVING expr(X). {A = X;}
++
++%type limit_opt {struct LimitVal}
++limit_opt(A) ::= . {A.limit = -1; A.offset = 0;}
++limit_opt(A) ::= LIMIT signed(X). {A.limit = X; A.offset = 0;}
++limit_opt(A) ::= LIMIT signed(X) OFFSET signed(Y).
++ {A.limit = X; A.offset = Y;}
++limit_opt(A) ::= LIMIT signed(X) COMMA signed(Y).
++ {A.limit = Y; A.offset = X;}
++
++/////////////////////////// The DELETE statement /////////////////////////////
++//
++cmd ::= DELETE FROM nm(X) dbnm(D) where_opt(Y). {
++ sqliteDeleteFrom(pParse, sqliteSrcListAppend(0,&X,&D), Y);
++}
++
++%type where_opt {Expr*}
++%destructor where_opt {sqliteExprDelete($$);}
++
++where_opt(A) ::= . {A = 0;}
++where_opt(A) ::= WHERE expr(X). {A = X;}
++
++%type setlist {ExprList*}
++%destructor setlist {sqliteExprListDelete($$);}
++
++////////////////////////// The UPDATE command ////////////////////////////////
++//
++cmd ::= UPDATE orconf(R) nm(X) dbnm(D) SET setlist(Y) where_opt(Z).
++ {sqliteUpdate(pParse,sqliteSrcListAppend(0,&X,&D),Y,Z,R);}
++
++setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y).
++ {A = sqliteExprListAppend(Z,Y,&X);}
++setlist(A) ::= nm(X) EQ expr(Y). {A = sqliteExprListAppend(0,Y,&X);}
++
++////////////////////////// The INSERT command /////////////////////////////////
++//
++cmd ::= insert_cmd(R) INTO nm(X) dbnm(D) inscollist_opt(F)
++ VALUES LP itemlist(Y) RP.
++ {sqliteInsert(pParse, sqliteSrcListAppend(0,&X,&D), Y, 0, F, R);}
++cmd ::= insert_cmd(R) INTO nm(X) dbnm(D) inscollist_opt(F) select(S).
++ {sqliteInsert(pParse, sqliteSrcListAppend(0,&X,&D), 0, S, F, R);}
++
++%type insert_cmd {int}
++insert_cmd(A) ::= INSERT orconf(R). {A = R;}
++insert_cmd(A) ::= REPLACE. {A = OE_Replace;}
++
++
++%type itemlist {ExprList*}
++%destructor itemlist {sqliteExprListDelete($$);}
++
++itemlist(A) ::= itemlist(X) COMMA expr(Y). {A = sqliteExprListAppend(X,Y,0);}
++itemlist(A) ::= expr(X). {A = sqliteExprListAppend(0,X,0);}
++
++%type inscollist_opt {IdList*}
++%destructor inscollist_opt {sqliteIdListDelete($$);}
++%type inscollist {IdList*}
++%destructor inscollist {sqliteIdListDelete($$);}
++
++inscollist_opt(A) ::= . {A = 0;}
++inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;}
++inscollist(A) ::= inscollist(X) COMMA nm(Y). {A = sqliteIdListAppend(X,&Y);}
++inscollist(A) ::= nm(Y). {A = sqliteIdListAppend(0,&Y);}
++
++/////////////////////////// Expression Processing /////////////////////////////
++//
++
++%type expr {Expr*}
++%destructor expr {sqliteExprDelete($$);}
++
++expr(A) ::= LP(B) expr(X) RP(E). {A = X; sqliteExprSpan(A,&B,&E); }
++expr(A) ::= NULL(X). {A = sqliteExpr(TK_NULL, 0, 0, &X);}
++expr(A) ::= ID(X). {A = sqliteExpr(TK_ID, 0, 0, &X);}
++expr(A) ::= JOIN_KW(X). {A = sqliteExpr(TK_ID, 0, 0, &X);}
++expr(A) ::= nm(X) DOT nm(Y). {
++ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &X);
++ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &Y);
++ A = sqliteExpr(TK_DOT, temp1, temp2, 0);
++}
++expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
++ Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &X);
++ Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &Y);
++ Expr *temp3 = sqliteExpr(TK_ID, 0, 0, &Z);
++ Expr *temp4 = sqliteExpr(TK_DOT, temp2, temp3, 0);
++ A = sqliteExpr(TK_DOT, temp1, temp4, 0);
++}
++expr(A) ::= INTEGER(X). {A = sqliteExpr(TK_INTEGER, 0, 0, &X);}
++expr(A) ::= FLOAT(X). {A = sqliteExpr(TK_FLOAT, 0, 0, &X);}
++expr(A) ::= STRING(X). {A = sqliteExpr(TK_STRING, 0, 0, &X);}
++expr(A) ::= VARIABLE(X). {
++ A = sqliteExpr(TK_VARIABLE, 0, 0, &X);
++ if( A ) A->iTable = ++pParse->nVar;
++}
++expr(A) ::= ID(X) LP exprlist(Y) RP(E). {
++ A = sqliteExprFunction(Y, &X);
++ sqliteExprSpan(A,&X,&E);
++}
++expr(A) ::= ID(X) LP STAR RP(E). {
++ A = sqliteExprFunction(0, &X);
++ sqliteExprSpan(A,&X,&E);
++}
++expr(A) ::= expr(X) AND expr(Y). {A = sqliteExpr(TK_AND, X, Y, 0);}
++expr(A) ::= expr(X) OR expr(Y). {A = sqliteExpr(TK_OR, X, Y, 0);}
++expr(A) ::= expr(X) LT expr(Y). {A = sqliteExpr(TK_LT, X, Y, 0);}
++expr(A) ::= expr(X) GT expr(Y). {A = sqliteExpr(TK_GT, X, Y, 0);}
++expr(A) ::= expr(X) LE expr(Y). {A = sqliteExpr(TK_LE, X, Y, 0);}
++expr(A) ::= expr(X) GE expr(Y). {A = sqliteExpr(TK_GE, X, Y, 0);}
++expr(A) ::= expr(X) NE expr(Y). {A = sqliteExpr(TK_NE, X, Y, 0);}
++expr(A) ::= expr(X) EQ expr(Y). {A = sqliteExpr(TK_EQ, X, Y, 0);}
++expr(A) ::= expr(X) BITAND expr(Y). {A = sqliteExpr(TK_BITAND, X, Y, 0);}
++expr(A) ::= expr(X) BITOR expr(Y). {A = sqliteExpr(TK_BITOR, X, Y, 0);}
++expr(A) ::= expr(X) LSHIFT expr(Y). {A = sqliteExpr(TK_LSHIFT, X, Y, 0);}
++expr(A) ::= expr(X) RSHIFT expr(Y). {A = sqliteExpr(TK_RSHIFT, X, Y, 0);}
++expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE] {
++ ExprList *pList = sqliteExprListAppend(0, Y, 0);
++ pList = sqliteExprListAppend(pList, X, 0);
++ A = sqliteExprFunction(pList, 0);
++ if( A ) A->op = OP;
++ sqliteExprSpan(A, &X->span, &Y->span);
++}
++expr(A) ::= expr(X) NOT likeop(OP) expr(Y). [LIKE] {
++ ExprList *pList = sqliteExprListAppend(0, Y, 0);
++ pList = sqliteExprListAppend(pList, X, 0);
++ A = sqliteExprFunction(pList, 0);
++ if( A ) A->op = OP;
++ A = sqliteExpr(TK_NOT, A, 0, 0);
++ sqliteExprSpan(A,&X->span,&Y->span);
++}
++%type likeop {int}
++likeop(A) ::= LIKE. {A = TK_LIKE;}
++likeop(A) ::= GLOB. {A = TK_GLOB;}
++expr(A) ::= expr(X) PLUS expr(Y). {A = sqliteExpr(TK_PLUS, X, Y, 0);}
++expr(A) ::= expr(X) MINUS expr(Y). {A = sqliteExpr(TK_MINUS, X, Y, 0);}
++expr(A) ::= expr(X) STAR expr(Y). {A = sqliteExpr(TK_STAR, X, Y, 0);}
++expr(A) ::= expr(X) SLASH expr(Y). {A = sqliteExpr(TK_SLASH, X, Y, 0);}
++expr(A) ::= expr(X) REM expr(Y). {A = sqliteExpr(TK_REM, X, Y, 0);}
++expr(A) ::= expr(X) CONCAT expr(Y). {A = sqliteExpr(TK_CONCAT, X, Y, 0);}
++expr(A) ::= expr(X) ISNULL(E). {
++ A = sqliteExpr(TK_ISNULL, X, 0, 0);
++ sqliteExprSpan(A,&X->span,&E);
++}
++expr(A) ::= expr(X) IS NULL(E). {
++ A = sqliteExpr(TK_ISNULL, X, 0, 0);
++ sqliteExprSpan(A,&X->span,&E);
++}
++expr(A) ::= expr(X) NOTNULL(E). {
++ A = sqliteExpr(TK_NOTNULL, X, 0, 0);
++ sqliteExprSpan(A,&X->span,&E);
++}
++expr(A) ::= expr(X) NOT NULL(E). {
++ A = sqliteExpr(TK_NOTNULL, X, 0, 0);
++ sqliteExprSpan(A,&X->span,&E);
++}
++expr(A) ::= expr(X) IS NOT NULL(E). {
++ A = sqliteExpr(TK_NOTNULL, X, 0, 0);
++ sqliteExprSpan(A,&X->span,&E);
++}
++expr(A) ::= NOT(B) expr(X). {
++ A = sqliteExpr(TK_NOT, X, 0, 0);
++ sqliteExprSpan(A,&B,&X->span);
++}
++expr(A) ::= BITNOT(B) expr(X). {
++ A = sqliteExpr(TK_BITNOT, X, 0, 0);
++ sqliteExprSpan(A,&B,&X->span);
++}
++expr(A) ::= MINUS(B) expr(X). [UMINUS] {
++ A = sqliteExpr(TK_UMINUS, X, 0, 0);
++ sqliteExprSpan(A,&B,&X->span);
++}
++expr(A) ::= PLUS(B) expr(X). [UPLUS] {
++ A = sqliteExpr(TK_UPLUS, X, 0, 0);
++ sqliteExprSpan(A,&B,&X->span);
++}
++expr(A) ::= LP(B) select(X) RP(E). {
++ A = sqliteExpr(TK_SELECT, 0, 0, 0);
++ if( A ) A->pSelect = X;
++ sqliteExprSpan(A,&B,&E);
++}
++expr(A) ::= expr(W) BETWEEN expr(X) AND expr(Y). {
++ ExprList *pList = sqliteExprListAppend(0, X, 0);
++ pList = sqliteExprListAppend(pList, Y, 0);
++ A = sqliteExpr(TK_BETWEEN, W, 0, 0);
++ if( A ) A->pList = pList;
++ sqliteExprSpan(A,&W->span,&Y->span);
++}
++expr(A) ::= expr(W) NOT BETWEEN expr(X) AND expr(Y). {
++ ExprList *pList = sqliteExprListAppend(0, X, 0);
++ pList = sqliteExprListAppend(pList, Y, 0);
++ A = sqliteExpr(TK_BETWEEN, W, 0, 0);
++ if( A ) A->pList = pList;
++ A = sqliteExpr(TK_NOT, A, 0, 0);
++ sqliteExprSpan(A,&W->span,&Y->span);
++}
++expr(A) ::= expr(X) IN LP exprlist(Y) RP(E). {
++ A = sqliteExpr(TK_IN, X, 0, 0);
++ if( A ) A->pList = Y;
++ sqliteExprSpan(A,&X->span,&E);
++}
++expr(A) ::= expr(X) IN LP select(Y) RP(E). {
++ A = sqliteExpr(TK_IN, X, 0, 0);
++ if( A ) A->pSelect = Y;
++ sqliteExprSpan(A,&X->span,&E);
++}
++expr(A) ::= expr(X) NOT IN LP exprlist(Y) RP(E). {
++ A = sqliteExpr(TK_IN, X, 0, 0);
++ if( A ) A->pList = Y;
++ A = sqliteExpr(TK_NOT, A, 0, 0);
++ sqliteExprSpan(A,&X->span,&E);
++}
++expr(A) ::= expr(X) NOT IN LP select(Y) RP(E). {
++ A = sqliteExpr(TK_IN, X, 0, 0);
++ if( A ) A->pSelect = Y;
++ A = sqliteExpr(TK_NOT, A, 0, 0);
++ sqliteExprSpan(A,&X->span,&E);
++}
++expr(A) ::= expr(X) IN nm(Y) dbnm(D). {
++ SrcList *pSrc = sqliteSrcListAppend(0, &Y, &D);
++ A = sqliteExpr(TK_IN, X, 0, 0);
++ if( A ) A->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
++ sqliteExprSpan(A,&X->span,D.z?&D:&Y);
++}
++expr(A) ::= expr(X) NOT IN nm(Y) dbnm(D). {
++ SrcList *pSrc = sqliteSrcListAppend(0, &Y, &D);
++ A = sqliteExpr(TK_IN, X, 0, 0);
++ if( A ) A->pSelect = sqliteSelectNew(0,pSrc,0,0,0,0,0,-1,0);
++ A = sqliteExpr(TK_NOT, A, 0, 0);
++ sqliteExprSpan(A,&X->span,D.z?&D:&Y);
++}
++
++
++/* CASE expressions */
++expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
++ A = sqliteExpr(TK_CASE, X, Z, 0);
++ if( A ) A->pList = Y;
++ sqliteExprSpan(A, &C, &E);
++}
++%type case_exprlist {ExprList*}
++%destructor case_exprlist {sqliteExprListDelete($$);}
++case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
++ A = sqliteExprListAppend(X, Y, 0);
++ A = sqliteExprListAppend(A, Z, 0);
++}
++case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
++ A = sqliteExprListAppend(0, Y, 0);
++ A = sqliteExprListAppend(A, Z, 0);
++}
++%type case_else {Expr*}
++case_else(A) ::= ELSE expr(X). {A = X;}
++case_else(A) ::= . {A = 0;}
++%type case_operand {Expr*}
++case_operand(A) ::= expr(X). {A = X;}
++case_operand(A) ::= . {A = 0;}
++
++%type exprlist {ExprList*}
++%destructor exprlist {sqliteExprListDelete($$);}
++%type expritem {Expr*}
++%destructor expritem {sqliteExprDelete($$);}
++
++exprlist(A) ::= exprlist(X) COMMA expritem(Y).
++ {A = sqliteExprListAppend(X,Y,0);}
++exprlist(A) ::= expritem(X). {A = sqliteExprListAppend(0,X,0);}
++expritem(A) ::= expr(X). {A = X;}
++expritem(A) ::= . {A = 0;}
++
++///////////////////////////// The CREATE INDEX command ///////////////////////
++//
++cmd ::= CREATE(S) uniqueflag(U) INDEX nm(X)
++ ON nm(Y) dbnm(D) LP idxlist(Z) RP(E) onconf(R). {
++ SrcList *pSrc = sqliteSrcListAppend(0, &Y, &D);
++ if( U!=OE_None ) U = R;
++ if( U==OE_Default) U = OE_Abort;
++ sqliteCreateIndex(pParse, &X, pSrc, Z, U, &S, &E);
++}
++
++%type uniqueflag {int}
++uniqueflag(A) ::= UNIQUE. { A = OE_Abort; }
++uniqueflag(A) ::= . { A = OE_None; }
++
++%type idxlist {IdList*}
++%destructor idxlist {sqliteIdListDelete($$);}
++%type idxlist_opt {IdList*}
++%destructor idxlist_opt {sqliteIdListDelete($$);}
++%type idxitem {Token}
++
++idxlist_opt(A) ::= . {A = 0;}
++idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;}
++idxlist(A) ::= idxlist(X) COMMA idxitem(Y). {A = sqliteIdListAppend(X,&Y);}
++idxlist(A) ::= idxitem(Y). {A = sqliteIdListAppend(0,&Y);}
++idxitem(A) ::= nm(X) sortorder. {A = X;}
++
++///////////////////////////// The DROP INDEX command /////////////////////////
++//
++
++cmd ::= DROP INDEX nm(X) dbnm(Y). {
++ sqliteDropIndex(pParse, sqliteSrcListAppend(0,&X,&Y));
++}
++
++
++///////////////////////////// The COPY command ///////////////////////////////
++//
++cmd ::= COPY orconf(R) nm(X) dbnm(D) FROM nm(Y) USING DELIMITERS STRING(Z).
++ {sqliteCopy(pParse,sqliteSrcListAppend(0,&X,&D),&Y,&Z,R);}
++cmd ::= COPY orconf(R) nm(X) dbnm(D) FROM nm(Y).
++ {sqliteCopy(pParse,sqliteSrcListAppend(0,&X,&D),&Y,0,R);}
++
++///////////////////////////// The VACUUM command /////////////////////////////
++//
++cmd ::= VACUUM. {sqliteVacuum(pParse,0);}
++cmd ::= VACUUM nm(X). {sqliteVacuum(pParse,&X);}
++
++///////////////////////////// The PRAGMA command /////////////////////////////
++//
++cmd ::= PRAGMA ids(X) EQ nm(Y). {sqlitePragma(pParse,&X,&Y,0);}
++cmd ::= PRAGMA ids(X) EQ ON(Y). {sqlitePragma(pParse,&X,&Y,0);}
++cmd ::= PRAGMA ids(X) EQ plus_num(Y). {sqlitePragma(pParse,&X,&Y,0);}
++cmd ::= PRAGMA ids(X) EQ minus_num(Y). {sqlitePragma(pParse,&X,&Y,1);}
++cmd ::= PRAGMA ids(X) LP nm(Y) RP. {sqlitePragma(pParse,&X,&Y,0);}
++cmd ::= PRAGMA ids(X). {sqlitePragma(pParse,&X,&X,0);}
++plus_num(A) ::= plus_opt number(X). {A = X;}
++minus_num(A) ::= MINUS number(X). {A = X;}
++number(A) ::= INTEGER(X). {A = X;}
++number(A) ::= FLOAT(X). {A = X;}
++plus_opt ::= PLUS.
++plus_opt ::= .
++
++//////////////////////////// The CREATE TRIGGER command /////////////////////
++
++cmd ::= CREATE(A) trigger_decl BEGIN trigger_cmd_list(S) END(Z). {
++ Token all;
++ all.z = A.z;
++ all.n = (Z.z - A.z) + Z.n;
++ sqliteFinishTrigger(pParse, S, &all);
++}
++
++trigger_decl ::= temp(T) TRIGGER nm(B) trigger_time(C) trigger_event(D)
++ ON nm(E) dbnm(DB) foreach_clause(F) when_clause(G). {
++ SrcList *pTab = sqliteSrcListAppend(0, &E, &DB);
++ sqliteBeginTrigger(pParse, &B, C, D.a, D.b, pTab, F, G, T);
++}
++
++%type trigger_time {int}
++trigger_time(A) ::= BEFORE. { A = TK_BEFORE; }
++trigger_time(A) ::= AFTER. { A = TK_AFTER; }
++trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;}
++trigger_time(A) ::= . { A = TK_BEFORE; }
++
++%type trigger_event {struct TrigEvent}
++%destructor trigger_event {sqliteIdListDelete($$.b);}
++trigger_event(A) ::= DELETE. { A.a = TK_DELETE; A.b = 0; }
++trigger_event(A) ::= INSERT. { A.a = TK_INSERT; A.b = 0; }
++trigger_event(A) ::= UPDATE. { A.a = TK_UPDATE; A.b = 0;}
++trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X; }
++
++%type foreach_clause {int}
++foreach_clause(A) ::= . { A = TK_ROW; }
++foreach_clause(A) ::= FOR EACH ROW. { A = TK_ROW; }
++foreach_clause(A) ::= FOR EACH STATEMENT. { A = TK_STATEMENT; }
++
++%type when_clause {Expr *}
++when_clause(A) ::= . { A = 0; }
++when_clause(A) ::= WHEN expr(X). { A = X; }
++
++%type trigger_cmd_list {TriggerStep *}
++%destructor trigger_cmd_list {sqliteDeleteTriggerStep($$);}
++trigger_cmd_list(A) ::= trigger_cmd(X) SEMI trigger_cmd_list(Y). {
++ X->pNext = Y;
++ A = X;
++}
++trigger_cmd_list(A) ::= . { A = 0; }
++
++%type trigger_cmd {TriggerStep *}
++%destructor trigger_cmd {sqliteDeleteTriggerStep($$);}
++// UPDATE
++trigger_cmd(A) ::= UPDATE orconf(R) nm(X) SET setlist(Y) where_opt(Z).
++ { A = sqliteTriggerUpdateStep(&X, Y, Z, R); }
++
++// INSERT
++trigger_cmd(A) ::= insert_cmd(R) INTO nm(X) inscollist_opt(F)
++ VALUES LP itemlist(Y) RP.
++{A = sqliteTriggerInsertStep(&X, F, Y, 0, R);}
++
++trigger_cmd(A) ::= insert_cmd(R) INTO nm(X) inscollist_opt(F) select(S).
++ {A = sqliteTriggerInsertStep(&X, F, 0, S, R);}
++
++// DELETE
++trigger_cmd(A) ::= DELETE FROM nm(X) where_opt(Y).
++ {A = sqliteTriggerDeleteStep(&X, Y);}
++
++// SELECT
++trigger_cmd(A) ::= select(X). {A = sqliteTriggerSelectStep(X); }
++
++// The special RAISE expression that may occur in trigger programs
++expr(A) ::= RAISE(X) LP IGNORE RP(Y). {
++ A = sqliteExpr(TK_RAISE, 0, 0, 0);
++ A->iColumn = OE_Ignore;
++ sqliteExprSpan(A, &X, &Y);
++}
++expr(A) ::= RAISE(X) LP ROLLBACK COMMA nm(Z) RP(Y). {
++ A = sqliteExpr(TK_RAISE, 0, 0, &Z);
++ A->iColumn = OE_Rollback;
++ sqliteExprSpan(A, &X, &Y);
++}
++expr(A) ::= RAISE(X) LP ABORT COMMA nm(Z) RP(Y). {
++ A = sqliteExpr(TK_RAISE, 0, 0, &Z);
++ A->iColumn = OE_Abort;
++ sqliteExprSpan(A, &X, &Y);
++}
++expr(A) ::= RAISE(X) LP FAIL COMMA nm(Z) RP(Y). {
++ A = sqliteExpr(TK_RAISE, 0, 0, &Z);
++ A->iColumn = OE_Fail;
++ sqliteExprSpan(A, &X, &Y);
++}
++
++//////////////////////// DROP TRIGGER statement //////////////////////////////
++cmd ::= DROP TRIGGER nm(X) dbnm(D). {
++ sqliteDropTrigger(pParse,sqliteSrcListAppend(0,&X,&D));
++}
++
++//////////////////////// ATTACH DATABASE file AS name /////////////////////////
++cmd ::= ATTACH database_kw_opt ids(F) AS nm(D) key_opt(K). {
++ sqliteAttach(pParse, &F, &D, &K);
++}
++%type key_opt {Token}
++key_opt(A) ::= USING ids(X). { A = X; }
++key_opt(A) ::= . { A.z = 0; A.n = 0; }
++
++database_kw_opt ::= DATABASE.
++database_kw_opt ::= .
++
++//////////////////////// DETACH DATABASE name /////////////////////////////////
++cmd ::= DETACH database_kw_opt nm(D). {
++ sqliteDetach(pParse, &D);
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/pragma.c
+@@ -0,0 +1,712 @@
++/*
++** 2003 April 6
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains code used to implement the PRAGMA command.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++#include <ctype.h>
++
++/*
++** Interpret the given string as a boolean value.
++*/
++static int getBoolean(const char *z){
++ static char *azTrue[] = { "yes", "on", "true" };
++ int i;
++ if( z[0]==0 ) return 0;
++ if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
++ return atoi(z);
++ }
++ for(i=0; i<sizeof(azTrue)/sizeof(azTrue[0]); i++){
++ if( sqliteStrICmp(z,azTrue[i])==0 ) return 1;
++ }
++ return 0;
++}
++
++/*
++** Interpret the given string as a safety level. Return 0 for OFF,
++** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or
++** unrecognized string argument.
++**
++** Note that the values returned are one less that the values that
++** should be passed into sqliteBtreeSetSafetyLevel(). The is done
++** to support legacy SQL code. The safety level used to be boolean
++** and older scripts may have used numbers 0 for OFF and 1 for ON.
++*/
++static int getSafetyLevel(char *z){
++ static const struct {
++ const char *zWord;
++ int val;
++ } aKey[] = {
++ { "no", 0 },
++ { "off", 0 },
++ { "false", 0 },
++ { "yes", 1 },
++ { "on", 1 },
++ { "true", 1 },
++ { "full", 2 },
++ };
++ int i;
++ if( z[0]==0 ) return 1;
++ if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
++ return atoi(z);
++ }
++ for(i=0; i<sizeof(aKey)/sizeof(aKey[0]); i++){
++ if( sqliteStrICmp(z,aKey[i].zWord)==0 ) return aKey[i].val;
++ }
++ return 1;
++}
++
++/*
++** Interpret the given string as a temp db location. Return 1 for file
++** backed temporary databases, 2 for the Red-Black tree in memory database
++** and 0 to use the compile-time default.
++*/
++static int getTempStore(const char *z){
++ if( z[0]>='0' && z[0]<='2' ){
++ return z[0] - '0';
++ }else if( sqliteStrICmp(z, "file")==0 ){
++ return 1;
++ }else if( sqliteStrICmp(z, "memory")==0 ){
++ return 2;
++ }else{
++ return 0;
++ }
++}
++
++/*
++** If the TEMP database is open, close it and mark the database schema
++** as needing reloading. This must be done when using the TEMP_STORE
++** or DEFAULT_TEMP_STORE pragmas.
++*/
++static int changeTempStorage(Parse *pParse, const char *zStorageType){
++ int ts = getTempStore(zStorageType);
++ sqlite *db = pParse->db;
++ if( db->temp_store==ts ) return SQLITE_OK;
++ if( db->aDb[1].pBt!=0 ){
++ if( db->flags & SQLITE_InTrans ){
++ sqliteErrorMsg(pParse, "temporary storage cannot be changed "
++ "from within a transaction");
++ return SQLITE_ERROR;
++ }
++ sqliteBtreeClose(db->aDb[1].pBt);
++ db->aDb[1].pBt = 0;
++ sqliteResetInternalSchema(db, 0);
++ }
++ db->temp_store = ts;
++ return SQLITE_OK;
++}
++
++/*
++** Check to see if zRight and zLeft refer to a pragma that queries
++** or changes one of the flags in db->flags. Return 1 if so and 0 if not.
++** Also, implement the pragma.
++*/
++static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){
++ static const struct {
++ const char *zName; /* Name of the pragma */
++ int mask; /* Mask for the db->flags value */
++ } aPragma[] = {
++ { "vdbe_trace", SQLITE_VdbeTrace },
++ { "full_column_names", SQLITE_FullColNames },
++ { "short_column_names", SQLITE_ShortColNames },
++ { "show_datatypes", SQLITE_ReportTypes },
++ { "count_changes", SQLITE_CountRows },
++ { "empty_result_callbacks", SQLITE_NullCallback },
++ };
++ int i;
++ for(i=0; i<sizeof(aPragma)/sizeof(aPragma[0]); i++){
++ if( sqliteStrICmp(zLeft, aPragma[i].zName)==0 ){
++ sqlite *db = pParse->db;
++ Vdbe *v;
++ if( strcmp(zLeft,zRight)==0 && (v = sqliteGetVdbe(pParse))!=0 ){
++ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, aPragma[i].zName, P3_STATIC);
++ sqliteVdbeOp3(v, OP_ColumnName, 1, 0, "boolean", P3_STATIC);
++ sqliteVdbeCode(v, OP_Integer, (db->flags & aPragma[i].mask)!=0, 0,
++ OP_Callback, 1, 0,
++ 0);
++ }else if( getBoolean(zRight) ){
++ db->flags |= aPragma[i].mask;
++ }else{
++ db->flags &= ~aPragma[i].mask;
++ }
++ return 1;
++ }
++ }
++ return 0;
++}
++
++/*
++** Process a pragma statement.
++**
++** Pragmas are of this form:
++**
++** PRAGMA id = value
++**
++** The identifier might also be a string. The value is a string, and
++** identifier, or a number. If minusFlag is true, then the value is
++** a number that was preceded by a minus sign.
++*/
++void sqlitePragma(Parse *pParse, Token *pLeft, Token *pRight, int minusFlag){
++ char *zLeft = 0;
++ char *zRight = 0;
++ sqlite *db = pParse->db;
++ Vdbe *v = sqliteGetVdbe(pParse);
++ if( v==0 ) return;
++
++ zLeft = sqliteStrNDup(pLeft->z, pLeft->n);
++ sqliteDequote(zLeft);
++ if( minusFlag ){
++ zRight = 0;
++ sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0);
++ }else{
++ zRight = sqliteStrNDup(pRight->z, pRight->n);
++ sqliteDequote(zRight);
++ }
++ if( sqliteAuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, 0) ){
++ sqliteFree(zLeft);
++ sqliteFree(zRight);
++ return;
++ }
++
++ /*
++ ** PRAGMA default_cache_size
++ ** PRAGMA default_cache_size=N
++ **
++ ** The first form reports the current persistent setting for the
++ ** page cache size. The value returned is the maximum number of
++ ** pages in the page cache. The second form sets both the current
++ ** page cache size value and the persistent page cache size value
++ ** stored in the database file.
++ **
++ ** The default cache size is stored in meta-value 2 of page 1 of the
++ ** database file. The cache size is actually the absolute value of
++ ** this memory location. The sign of meta-value 2 determines the
++ ** synchronous setting. A negative value means synchronous is off
++ ** and a positive value means synchronous is on.
++ */
++ if( sqliteStrICmp(zLeft,"default_cache_size")==0 ){
++ static VdbeOpList getCacheSize[] = {
++ { OP_ReadCookie, 0, 2, 0},
++ { OP_AbsValue, 0, 0, 0},
++ { OP_Dup, 0, 0, 0},
++ { OP_Integer, 0, 0, 0},
++ { OP_Ne, 0, 6, 0},
++ { OP_Integer, 0, 0, 0}, /* 5 */
++ { OP_ColumnName, 0, 1, "cache_size"},
++ { OP_Callback, 1, 0, 0},
++ };
++ int addr;
++ if( pRight->z==pLeft->z ){
++ addr = sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
++ sqliteVdbeChangeP1(v, addr+5, MAX_PAGES);
++ }else{
++ int size = atoi(zRight);
++ if( size<0 ) size = -size;
++ sqliteBeginWriteOperation(pParse, 0, 0);
++ sqliteVdbeAddOp(v, OP_Integer, size, 0);
++ sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
++ addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
++ sqliteVdbeAddOp(v, OP_Ge, 0, addr+3);
++ sqliteVdbeAddOp(v, OP_Negative, 0, 0);
++ sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
++ sqliteEndWriteOperation(pParse);
++ db->cache_size = db->cache_size<0 ? -size : size;
++ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
++ }
++ }else
++
++ /*
++ ** PRAGMA cache_size
++ ** PRAGMA cache_size=N
++ **
++ ** The first form reports the current local setting for the
++ ** page cache size. The local setting can be different from
++ ** the persistent cache size value that is stored in the database
++ ** file itself. The value returned is the maximum number of
++ ** pages in the page cache. The second form sets the local
++ ** page cache size value. It does not change the persistent
++ ** cache size stored on the disk so the cache size will revert
++ ** to its default value when the database is closed and reopened.
++ ** N should be a positive integer.
++ */
++ if( sqliteStrICmp(zLeft,"cache_size")==0 ){
++ static VdbeOpList getCacheSize[] = {
++ { OP_ColumnName, 0, 1, "cache_size"},
++ { OP_Callback, 1, 0, 0},
++ };
++ if( pRight->z==pLeft->z ){
++ int size = db->cache_size;;
++ if( size<0 ) size = -size;
++ sqliteVdbeAddOp(v, OP_Integer, size, 0);
++ sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
++ }else{
++ int size = atoi(zRight);
++ if( size<0 ) size = -size;
++ if( db->cache_size<0 ) size = -size;
++ db->cache_size = size;
++ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
++ }
++ }else
++
++ /*
++ ** PRAGMA default_synchronous
++ ** PRAGMA default_synchronous=ON|OFF|NORMAL|FULL
++ **
++ ** The first form returns the persistent value of the "synchronous" setting
++ ** that is stored in the database. This is the synchronous setting that
++ ** is used whenever the database is opened unless overridden by a separate
++ ** "synchronous" pragma. The second form changes the persistent and the
++ ** local synchronous setting to the value given.
++ **
++ ** If synchronous is OFF, SQLite does not attempt any fsync() systems calls
++ ** to make sure data is committed to disk. Write operations are very fast,
++ ** but a power failure can leave the database in an inconsistent state.
++ ** If synchronous is ON or NORMAL, SQLite will do an fsync() system call to
++ ** make sure data is being written to disk. The risk of corruption due to
++ ** a power loss in this mode is negligible but non-zero. If synchronous
++ ** is FULL, extra fsync()s occur to reduce the risk of corruption to near
++ ** zero, but with a write performance penalty. The default mode is NORMAL.
++ */
++ if( sqliteStrICmp(zLeft,"default_synchronous")==0 ){
++ static VdbeOpList getSync[] = {
++ { OP_ColumnName, 0, 1, "synchronous"},
++ { OP_ReadCookie, 0, 3, 0},
++ { OP_Dup, 0, 0, 0},
++ { OP_If, 0, 0, 0}, /* 3 */
++ { OP_ReadCookie, 0, 2, 0},
++ { OP_Integer, 0, 0, 0},
++ { OP_Lt, 0, 5, 0},
++ { OP_AddImm, 1, 0, 0},
++ { OP_Callback, 1, 0, 0},
++ { OP_Halt, 0, 0, 0},
++ { OP_AddImm, -1, 0, 0}, /* 10 */
++ { OP_Callback, 1, 0, 0}
++ };
++ if( pRight->z==pLeft->z ){
++ int addr = sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
++ sqliteVdbeChangeP2(v, addr+3, addr+10);
++ }else{
++ int addr;
++ int size = db->cache_size;
++ if( size<0 ) size = -size;
++ sqliteBeginWriteOperation(pParse, 0, 0);
++ sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
++ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
++ addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
++ sqliteVdbeAddOp(v, OP_Ne, 0, addr+3);
++ sqliteVdbeAddOp(v, OP_AddImm, MAX_PAGES, 0);
++ sqliteVdbeAddOp(v, OP_AbsValue, 0, 0);
++ db->safety_level = getSafetyLevel(zRight)+1;
++ if( db->safety_level==1 ){
++ sqliteVdbeAddOp(v, OP_Negative, 0, 0);
++ size = -size;
++ }
++ sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
++ sqliteVdbeAddOp(v, OP_Integer, db->safety_level, 0);
++ sqliteVdbeAddOp(v, OP_SetCookie, 0, 3);
++ sqliteEndWriteOperation(pParse);
++ db->cache_size = size;
++ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
++ sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level);
++ }
++ }else
++
++ /*
++ ** PRAGMA synchronous
++ ** PRAGMA synchronous=OFF|ON|NORMAL|FULL
++ **
++ ** Return or set the local value of the synchronous flag. Changing
++ ** the local value does not make changes to the disk file and the
++ ** default value will be restored the next time the database is
++ ** opened.
++ */
++ if( sqliteStrICmp(zLeft,"synchronous")==0 ){
++ static VdbeOpList getSync[] = {
++ { OP_ColumnName, 0, 1, "synchronous"},
++ { OP_Callback, 1, 0, 0},
++ };
++ if( pRight->z==pLeft->z ){
++ sqliteVdbeAddOp(v, OP_Integer, db->safety_level-1, 0);
++ sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
++ }else{
++ int size = db->cache_size;
++ if( size<0 ) size = -size;
++ db->safety_level = getSafetyLevel(zRight)+1;
++ if( db->safety_level==1 ) size = -size;
++ db->cache_size = size;
++ sqliteBtreeSetCacheSize(db->aDb[0].pBt, db->cache_size);
++ sqliteBtreeSetSafetyLevel(db->aDb[0].pBt, db->safety_level);
++ }
++ }else
++
++#ifndef NDEBUG
++ if( sqliteStrICmp(zLeft, "trigger_overhead_test")==0 ){
++ if( getBoolean(zRight) ){
++ always_code_trigger_setup = 1;
++ }else{
++ always_code_trigger_setup = 0;
++ }
++ }else
++#endif
++
++ if( flagPragma(pParse, zLeft, zRight) ){
++ /* The flagPragma() call also generates any necessary code */
++ }else
++
++ if( sqliteStrICmp(zLeft, "table_info")==0 ){
++ Table *pTab;
++ pTab = sqliteFindTable(db, zRight, 0);
++ if( pTab ){
++ static VdbeOpList tableInfoPreface[] = {
++ { OP_ColumnName, 0, 0, "cid"},
++ { OP_ColumnName, 1, 0, "name"},
++ { OP_ColumnName, 2, 0, "type"},
++ { OP_ColumnName, 3, 0, "notnull"},
++ { OP_ColumnName, 4, 0, "dflt_value"},
++ { OP_ColumnName, 5, 1, "pk"},
++ };
++ int i;
++ sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
++ sqliteViewGetColumnNames(pParse, pTab);
++ for(i=0; i<pTab->nCol; i++){
++ sqliteVdbeAddOp(v, OP_Integer, i, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[i].zName, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0,
++ pTab->aCol[i].zType ? pTab->aCol[i].zType : "numeric", 0);
++ sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0,
++ pTab->aCol[i].zDflt, P3_STATIC);
++ sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].isPrimKey, 0);
++ sqliteVdbeAddOp(v, OP_Callback, 6, 0);
++ }
++ }
++ }else
++
++ if( sqliteStrICmp(zLeft, "index_info")==0 ){
++ Index *pIdx;
++ Table *pTab;
++ pIdx = sqliteFindIndex(db, zRight, 0);
++ if( pIdx ){
++ static VdbeOpList tableInfoPreface[] = {
++ { OP_ColumnName, 0, 0, "seqno"},
++ { OP_ColumnName, 1, 0, "cid"},
++ { OP_ColumnName, 2, 1, "name"},
++ };
++ int i;
++ pTab = pIdx->pTable;
++ sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
++ for(i=0; i<pIdx->nColumn; i++){
++ int cnum = pIdx->aiColumn[i];
++ sqliteVdbeAddOp(v, OP_Integer, i, 0);
++ sqliteVdbeAddOp(v, OP_Integer, cnum, 0);
++ assert( pTab->nCol>cnum );
++ sqliteVdbeOp3(v, OP_String, 0, 0, pTab->aCol[cnum].zName, 0);
++ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
++ }
++ }
++ }else
++
++ if( sqliteStrICmp(zLeft, "index_list")==0 ){
++ Index *pIdx;
++ Table *pTab;
++ pTab = sqliteFindTable(db, zRight, 0);
++ if( pTab ){
++ v = sqliteGetVdbe(pParse);
++ pIdx = pTab->pIndex;
++ }
++ if( pTab && pIdx ){
++ int i = 0;
++ static VdbeOpList indexListPreface[] = {
++ { OP_ColumnName, 0, 0, "seq"},
++ { OP_ColumnName, 1, 0, "name"},
++ { OP_ColumnName, 2, 1, "unique"},
++ };
++
++ sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
++ while(pIdx){
++ sqliteVdbeAddOp(v, OP_Integer, i, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0, pIdx->zName, 0);
++ sqliteVdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
++ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
++ ++i;
++ pIdx = pIdx->pNext;
++ }
++ }
++ }else
++
++ if( sqliteStrICmp(zLeft, "foreign_key_list")==0 ){
++ FKey *pFK;
++ Table *pTab;
++ pTab = sqliteFindTable(db, zRight, 0);
++ if( pTab ){
++ v = sqliteGetVdbe(pParse);
++ pFK = pTab->pFKey;
++ }
++ if( pTab && pFK ){
++ int i = 0;
++ static VdbeOpList indexListPreface[] = {
++ { OP_ColumnName, 0, 0, "id"},
++ { OP_ColumnName, 1, 0, "seq"},
++ { OP_ColumnName, 2, 0, "table"},
++ { OP_ColumnName, 3, 0, "from"},
++ { OP_ColumnName, 4, 1, "to"},
++ };
++
++ sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
++ while(pFK){
++ int j;
++ for(j=0; j<pFK->nCol; j++){
++ sqliteVdbeAddOp(v, OP_Integer, i, 0);
++ sqliteVdbeAddOp(v, OP_Integer, j, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0, pFK->zTo, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0,
++ pTab->aCol[pFK->aCol[j].iFrom].zName, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0, pFK->aCol[j].zCol, 0);
++ sqliteVdbeAddOp(v, OP_Callback, 5, 0);
++ }
++ ++i;
++ pFK = pFK->pNextFrom;
++ }
++ }
++ }else
++
++ if( sqliteStrICmp(zLeft, "database_list")==0 ){
++ int i;
++ static VdbeOpList indexListPreface[] = {
++ { OP_ColumnName, 0, 0, "seq"},
++ { OP_ColumnName, 1, 0, "name"},
++ { OP_ColumnName, 2, 1, "file"},
++ };
++
++ sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
++ for(i=0; i<db->nDb; i++){
++ if( db->aDb[i].pBt==0 ) continue;
++ assert( db->aDb[i].zName!=0 );
++ sqliteVdbeAddOp(v, OP_Integer, i, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0, db->aDb[i].zName, 0);
++ sqliteVdbeOp3(v, OP_String, 0, 0,
++ sqliteBtreeGetFilename(db->aDb[i].pBt), 0);
++ sqliteVdbeAddOp(v, OP_Callback, 3, 0);
++ }
++ }else
++
++
++ /*
++ ** PRAGMA temp_store
++ ** PRAGMA temp_store = "default"|"memory"|"file"
++ **
++ ** Return or set the local value of the temp_store flag. Changing
++ ** the local value does not make changes to the disk file and the default
++ ** value will be restored the next time the database is opened.
++ **
++ ** Note that it is possible for the library compile-time options to
++ ** override this setting
++ */
++ if( sqliteStrICmp(zLeft, "temp_store")==0 ){
++ static VdbeOpList getTmpDbLoc[] = {
++ { OP_ColumnName, 0, 1, "temp_store"},
++ { OP_Callback, 1, 0, 0},
++ };
++ if( pRight->z==pLeft->z ){
++ sqliteVdbeAddOp(v, OP_Integer, db->temp_store, 0);
++ sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc);
++ }else{
++ changeTempStorage(pParse, zRight);
++ }
++ }else
++
++ /*
++ ** PRAGMA default_temp_store
++ ** PRAGMA default_temp_store = "default"|"memory"|"file"
++ **
++ ** Return or set the value of the persistent temp_store flag. Any
++ ** change does not take effect until the next time the database is
++ ** opened.
++ **
++ ** Note that it is possible for the library compile-time options to
++ ** override this setting
++ */
++ if( sqliteStrICmp(zLeft, "default_temp_store")==0 ){
++ static VdbeOpList getTmpDbLoc[] = {
++ { OP_ColumnName, 0, 1, "temp_store"},
++ { OP_ReadCookie, 0, 5, 0},
++ { OP_Callback, 1, 0, 0}};
++ if( pRight->z==pLeft->z ){
++ sqliteVdbeAddOpList(v, ArraySize(getTmpDbLoc), getTmpDbLoc);
++ }else{
++ sqliteBeginWriteOperation(pParse, 0, 0);
++ sqliteVdbeAddOp(v, OP_Integer, getTempStore(zRight), 0);
++ sqliteVdbeAddOp(v, OP_SetCookie, 0, 5);
++ sqliteEndWriteOperation(pParse);
++ }
++ }else
++
++#ifndef NDEBUG
++ if( sqliteStrICmp(zLeft, "parser_trace")==0 ){
++ extern void sqliteParserTrace(FILE*, char *);
++ if( getBoolean(zRight) ){
++ sqliteParserTrace(stdout, "parser: ");
++ }else{
++ sqliteParserTrace(0, 0);
++ }
++ }else
++#endif
++
++ if( sqliteStrICmp(zLeft, "integrity_check")==0 ){
++ int i, j, addr;
++
++ /* Code that initializes the integrity check program. Set the
++ ** error count 0
++ */
++ static VdbeOpList initCode[] = {
++ { OP_Integer, 0, 0, 0},
++ { OP_MemStore, 0, 1, 0},
++ { OP_ColumnName, 0, 1, "integrity_check"},
++ };
++
++ /* Code to do an BTree integrity check on a single database file.
++ */
++ static VdbeOpList checkDb[] = {
++ { OP_SetInsert, 0, 0, "2"},
++ { OP_Integer, 0, 0, 0}, /* 1 */
++ { OP_OpenRead, 0, 2, 0},
++ { OP_Rewind, 0, 7, 0}, /* 3 */
++ { OP_Column, 0, 3, 0}, /* 4 */
++ { OP_SetInsert, 0, 0, 0},
++ { OP_Next, 0, 4, 0}, /* 6 */
++ { OP_IntegrityCk, 0, 0, 0}, /* 7 */
++ { OP_Dup, 0, 1, 0},
++ { OP_String, 0, 0, "ok"},
++ { OP_StrEq, 0, 12, 0}, /* 10 */
++ { OP_MemIncr, 0, 0, 0},
++ { OP_String, 0, 0, "*** in database "},
++ { OP_String, 0, 0, 0}, /* 13 */
++ { OP_String, 0, 0, " ***\n"},
++ { OP_Pull, 3, 0, 0},
++ { OP_Concat, 4, 1, 0},
++ { OP_Callback, 1, 0, 0},
++ };
++
++ /* Code that appears at the end of the integrity check. If no error
++ ** messages have been generated, output OK. Otherwise output the
++ ** error message
++ */
++ static VdbeOpList endCode[] = {
++ { OP_MemLoad, 0, 0, 0},
++ { OP_Integer, 0, 0, 0},
++ { OP_Ne, 0, 0, 0}, /* 2 */
++ { OP_String, 0, 0, "ok"},
++ { OP_Callback, 1, 0, 0},
++ };
++
++ /* Initialize the VDBE program */
++ sqliteVdbeAddOpList(v, ArraySize(initCode), initCode);
++
++ /* Do an integrity check on each database file */
++ for(i=0; i<db->nDb; i++){
++ HashElem *x;
++
++ /* Do an integrity check of the B-Tree
++ */
++ addr = sqliteVdbeAddOpList(v, ArraySize(checkDb), checkDb);
++ sqliteVdbeChangeP1(v, addr+1, i);
++ sqliteVdbeChangeP2(v, addr+3, addr+7);
++ sqliteVdbeChangeP2(v, addr+6, addr+4);
++ sqliteVdbeChangeP2(v, addr+7, i);
++ sqliteVdbeChangeP2(v, addr+10, addr+ArraySize(checkDb));
++ sqliteVdbeChangeP3(v, addr+13, db->aDb[i].zName, P3_STATIC);
++
++ /* Make sure all the indices are constructed correctly.
++ */
++ sqliteCodeVerifySchema(pParse, i);
++ for(x=sqliteHashFirst(&db->aDb[i].tblHash); x; x=sqliteHashNext(x)){
++ Table *pTab = sqliteHashData(x);
++ Index *pIdx;
++ int loopTop;
++
++ if( pTab->pIndex==0 ) continue;
++ sqliteVdbeAddOp(v, OP_Integer, i, 0);
++ sqliteVdbeOp3(v, OP_OpenRead, 1, pTab->tnum, pTab->zName, 0);
++ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
++ if( pIdx->tnum==0 ) continue;
++ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
++ sqliteVdbeOp3(v, OP_OpenRead, j+2, pIdx->tnum, pIdx->zName, 0);
++ }
++ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
++ sqliteVdbeAddOp(v, OP_MemStore, 1, 1);
++ loopTop = sqliteVdbeAddOp(v, OP_Rewind, 1, 0);
++ sqliteVdbeAddOp(v, OP_MemIncr, 1, 0);
++ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
++ int k, jmp2;
++ static VdbeOpList idxErr[] = {
++ { OP_MemIncr, 0, 0, 0},
++ { OP_String, 0, 0, "rowid "},
++ { OP_Recno, 1, 0, 0},
++ { OP_String, 0, 0, " missing from index "},
++ { OP_String, 0, 0, 0}, /* 4 */
++ { OP_Concat, 4, 0, 0},
++ { OP_Callback, 1, 0, 0},
++ };
++ sqliteVdbeAddOp(v, OP_Recno, 1, 0);
++ for(k=0; k<pIdx->nColumn; k++){
++ int idx = pIdx->aiColumn[k];
++ if( idx==pTab->iPKey ){
++ sqliteVdbeAddOp(v, OP_Recno, 1, 0);
++ }else{
++ sqliteVdbeAddOp(v, OP_Column, 1, idx);
++ }
++ }
++ sqliteVdbeAddOp(v, OP_MakeIdxKey, pIdx->nColumn, 0);
++ if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIdx);
++ jmp2 = sqliteVdbeAddOp(v, OP_Found, j+2, 0);
++ addr = sqliteVdbeAddOpList(v, ArraySize(idxErr), idxErr);
++ sqliteVdbeChangeP3(v, addr+4, pIdx->zName, P3_STATIC);
++ sqliteVdbeChangeP2(v, jmp2, sqliteVdbeCurrentAddr(v));
++ }
++ sqliteVdbeAddOp(v, OP_Next, 1, loopTop+1);
++ sqliteVdbeChangeP2(v, loopTop, sqliteVdbeCurrentAddr(v));
++ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
++ static VdbeOpList cntIdx[] = {
++ { OP_Integer, 0, 0, 0},
++ { OP_MemStore, 2, 1, 0},
++ { OP_Rewind, 0, 0, 0}, /* 2 */
++ { OP_MemIncr, 2, 0, 0},
++ { OP_Next, 0, 0, 0}, /* 4 */
++ { OP_MemLoad, 1, 0, 0},
++ { OP_MemLoad, 2, 0, 0},
++ { OP_Eq, 0, 0, 0}, /* 7 */
++ { OP_MemIncr, 0, 0, 0},
++ { OP_String, 0, 0, "wrong # of entries in index "},
++ { OP_String, 0, 0, 0}, /* 10 */
++ { OP_Concat, 2, 0, 0},
++ { OP_Callback, 1, 0, 0},
++ };
++ if( pIdx->tnum==0 ) continue;
++ addr = sqliteVdbeAddOpList(v, ArraySize(cntIdx), cntIdx);
++ sqliteVdbeChangeP1(v, addr+2, j+2);
++ sqliteVdbeChangeP2(v, addr+2, addr+5);
++ sqliteVdbeChangeP1(v, addr+4, j+2);
++ sqliteVdbeChangeP2(v, addr+4, addr+3);
++ sqliteVdbeChangeP2(v, addr+7, addr+ArraySize(cntIdx));
++ sqliteVdbeChangeP3(v, addr+10, pIdx->zName, P3_STATIC);
++ }
++ }
++ }
++ addr = sqliteVdbeAddOpList(v, ArraySize(endCode), endCode);
++ sqliteVdbeChangeP2(v, addr+2, addr+ArraySize(endCode));
++ }else
++
++ {}
++ sqliteFree(zLeft);
++ sqliteFree(zRight);
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/printf.c
+@@ -0,0 +1,858 @@
++/*
++** The "printf" code that follows dates from the 1980's. It is in
++** the public domain. The original comments are included here for
++** completeness. They are very out-of-date but might be useful as
++** an historical reference. Most of the "enhancements" have been backed
++** out so that the functionality is now the same as standard printf().
++**
++**************************************************************************
++**
++** The following modules is an enhanced replacement for the "printf" subroutines
++** found in the standard C library. The following enhancements are
++** supported:
++**
++** + Additional functions. The standard set of "printf" functions
++** includes printf, fprintf, sprintf, vprintf, vfprintf, and
++** vsprintf. This module adds the following:
++**
++** * snprintf -- Works like sprintf, but has an extra argument
++** which is the size of the buffer written to.
++**
++** * mprintf -- Similar to sprintf. Writes output to memory
++** obtained from malloc.
++**
++** * xprintf -- Calls a function to dispose of output.
++**
++** * nprintf -- No output, but returns the number of characters
++** that would have been output by printf.
++**
++** * A v- version (ex: vsnprintf) of every function is also
++** supplied.
++**
++** + A few extensions to the formatting notation are supported:
++**
++** * The "=" flag (similar to "-") causes the output to be
++** be centered in the appropriately sized field.
++**
++** * The %b field outputs an integer in binary notation.
++**
++** * The %c field now accepts a precision. The character output
++** is repeated by the number of times the precision specifies.
++**
++** * The %' field works like %c, but takes as its character the
++** next character of the format string, instead of the next
++** argument. For example, printf("%.78'-") prints 78 minus
++** signs, the same as printf("%.78c",'-').
++**
++** + When compiled using GCC on a SPARC, this version of printf is
++** faster than the library printf for SUN OS 4.1.
++**
++** + All functions are fully reentrant.
++**
++*/
++#include "sqliteInt.h"
++
++/*
++** Conversion types fall into various categories as defined by the
++** following enumeration.
++*/
++#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
++#define etFLOAT 2 /* Floating point. %f */
++#define etEXP 3 /* Exponentional notation. %e and %E */
++#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
++#define etSIZE 5 /* Return number of characters processed so far. %n */
++#define etSTRING 6 /* Strings. %s */
++#define etDYNSTRING 7 /* Dynamically allocated strings. %z */
++#define etPERCENT 8 /* Percent symbol. %% */
++#define etCHARX 9 /* Characters. %c */
++#define etERROR 10 /* Used to indicate no such conversion type */
++/* The rest are extensions, not normally found in printf() */
++#define etCHARLIT 11 /* Literal characters. %' */
++#define etSQLESCAPE 12 /* Strings with '\'' doubled. %q */
++#define etSQLESCAPE2 13 /* Strings with '\'' doubled and enclosed in '',
++ NULL pointers replaced by SQL NULL. %Q */
++#define etTOKEN 14 /* a pointer to a Token structure */
++#define etSRCLIST 15 /* a pointer to a SrcList */
++
++
++/*
++** An "etByte" is an 8-bit unsigned value.
++*/
++typedef unsigned char etByte;
++
++/*
++** Each builtin conversion character (ex: the 'd' in "%d") is described
++** by an instance of the following structure
++*/
++typedef struct et_info { /* Information about each format field */
++ char fmttype; /* The format field code letter */
++ etByte base; /* The base for radix conversion */
++ etByte flags; /* One or more of FLAG_ constants below */
++ etByte type; /* Conversion paradigm */
++ char *charset; /* The character set for conversion */
++ char *prefix; /* Prefix on non-zero values in alt format */
++} et_info;
++
++/*
++** Allowed values for et_info.flags
++*/
++#define FLAG_SIGNED 1 /* True if the value to convert is signed */
++#define FLAG_INTERN 2 /* True if for internal use only */
++
++
++/*
++** The following table is searched linearly, so it is good to put the
++** most frequently used conversion types first.
++*/
++static et_info fmtinfo[] = {
++ { 'd', 10, 1, etRADIX, "0123456789", 0 },
++ { 's', 0, 0, etSTRING, 0, 0 },
++ { 'z', 0, 2, etDYNSTRING, 0, 0 },
++ { 'q', 0, 0, etSQLESCAPE, 0, 0 },
++ { 'Q', 0, 0, etSQLESCAPE2, 0, 0 },
++ { 'c', 0, 0, etCHARX, 0, 0 },
++ { 'o', 8, 0, etRADIX, "01234567", "0" },
++ { 'u', 10, 0, etRADIX, "0123456789", 0 },
++ { 'x', 16, 0, etRADIX, "0123456789abcdef", "x0" },
++ { 'X', 16, 0, etRADIX, "0123456789ABCDEF", "X0" },
++ { 'f', 0, 1, etFLOAT, 0, 0 },
++ { 'e', 0, 1, etEXP, "e", 0 },
++ { 'E', 0, 1, etEXP, "E", 0 },
++ { 'g', 0, 1, etGENERIC, "e", 0 },
++ { 'G', 0, 1, etGENERIC, "E", 0 },
++ { 'i', 10, 1, etRADIX, "0123456789", 0 },
++ { 'n', 0, 0, etSIZE, 0, 0 },
++ { '%', 0, 0, etPERCENT, 0, 0 },
++ { 'p', 10, 0, etRADIX, "0123456789", 0 },
++ { 'T', 0, 2, etTOKEN, 0, 0 },
++ { 'S', 0, 2, etSRCLIST, 0, 0 },
++};
++#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
++
++/*
++** If NOFLOATINGPOINT is defined, then none of the floating point
++** conversions will work.
++*/
++#ifndef etNOFLOATINGPOINT
++/*
++** "*val" is a double such that 0.1 <= *val < 10.0
++** Return the ascii code for the leading digit of *val, then
++** multiply "*val" by 10.0 to renormalize.
++**
++** Example:
++** input: *val = 3.14159
++** output: *val = 1.4159 function return = '3'
++**
++** The counter *cnt is incremented each time. After counter exceeds
++** 16 (the number of significant digits in a 64-bit float) '0' is
++** always returned.
++*/
++static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
++ int digit;
++ LONGDOUBLE_TYPE d;
++ if( (*cnt)++ >= 16 ) return '0';
++ digit = (int)*val;
++ d = digit;
++ digit += '0';
++ *val = (*val - d)*10.0;
++ return digit;
++}
++#endif
++
++#define etBUFSIZE 1000 /* Size of the output buffer */
++
++/*
++** The root program. All variations call this core.
++**
++** INPUTS:
++** func This is a pointer to a function taking three arguments
++** 1. A pointer to anything. Same as the "arg" parameter.
++** 2. A pointer to the list of characters to be output
++** (Note, this list is NOT null terminated.)
++** 3. An integer number of characters to be output.
++** (Note: This number might be zero.)
++**
++** arg This is the pointer to anything which will be passed as the
++** first argument to "func". Use it for whatever you like.
++**
++** fmt This is the format string, as in the usual print.
++**
++** ap This is a pointer to a list of arguments. Same as in
++** vfprint.
++**
++** OUTPUTS:
++** The return value is the total number of characters sent to
++** the function "func". Returns -1 on a error.
++**
++** Note that the order in which automatic variables are declared below
++** seems to make a big difference in determining how fast this beast
++** will run.
++*/
++static int vxprintf(
++ void (*func)(void*,const char*,int), /* Consumer of text */
++ void *arg, /* First argument to the consumer */
++ int useExtended, /* Allow extended %-conversions */
++ const char *fmt, /* Format string */
++ va_list ap /* arguments */
++){
++ int c; /* Next character in the format string */
++ char *bufpt; /* Pointer to the conversion buffer */
++ int precision; /* Precision of the current field */
++ int length; /* Length of the field */
++ int idx; /* A general purpose loop counter */
++ int count; /* Total number of characters output */
++ int width; /* Width of the current field */
++ etByte flag_leftjustify; /* True if "-" flag is present */
++ etByte flag_plussign; /* True if "+" flag is present */
++ etByte flag_blanksign; /* True if " " flag is present */
++ etByte flag_alternateform; /* True if "#" flag is present */
++ etByte flag_zeropad; /* True if field width constant starts with zero */
++ etByte flag_long; /* True if "l" flag is present */
++ unsigned long longvalue; /* Value for integer types */
++ LONGDOUBLE_TYPE realvalue; /* Value for real types */
++ et_info *infop; /* Pointer to the appropriate info structure */
++ char buf[etBUFSIZE]; /* Conversion buffer */
++ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
++ etByte errorflag = 0; /* True if an error is encountered */
++ etByte xtype; /* Conversion paradigm */
++ char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
++ static char spaces[] = " ";
++#define etSPACESIZE (sizeof(spaces)-1)
++#ifndef etNOFLOATINGPOINT
++ int exp; /* exponent of real numbers */
++ double rounder; /* Used for rounding floating point values */
++ etByte flag_dp; /* True if decimal point should be shown */
++ etByte flag_rtz; /* True if trailing zeros should be removed */
++ etByte flag_exp; /* True to force display of the exponent */
++ int nsd; /* Number of significant digits returned */
++#endif
++
++ func(arg,"",0);
++ count = length = 0;
++ bufpt = 0;
++ for(; (c=(*fmt))!=0; ++fmt){
++ if( c!='%' ){
++ int amt;
++ bufpt = (char *)fmt;
++ amt = 1;
++ while( (c=(*++fmt))!='%' && c!=0 ) amt++;
++ (*func)(arg,bufpt,amt);
++ count += amt;
++ if( c==0 ) break;
++ }
++ if( (c=(*++fmt))==0 ){
++ errorflag = 1;
++ (*func)(arg,"%",1);
++ count++;
++ break;
++ }
++ /* Find out what flags are present */
++ flag_leftjustify = flag_plussign = flag_blanksign =
++ flag_alternateform = flag_zeropad = 0;
++ do{
++ switch( c ){
++ case '-': flag_leftjustify = 1; c = 0; break;
++ case '+': flag_plussign = 1; c = 0; break;
++ case ' ': flag_blanksign = 1; c = 0; break;
++ case '#': flag_alternateform = 1; c = 0; break;
++ case '0': flag_zeropad = 1; c = 0; break;
++ default: break;
++ }
++ }while( c==0 && (c=(*++fmt))!=0 );
++ /* Get the field width */
++ width = 0;
++ if( c=='*' ){
++ width = va_arg(ap,int);
++ if( width<0 ){
++ flag_leftjustify = 1;
++ width = -width;
++ }
++ c = *++fmt;
++ }else{
++ while( c>='0' && c<='9' ){
++ width = width*10 + c - '0';
++ c = *++fmt;
++ }
++ }
++ if( width > etBUFSIZE-10 ){
++ width = etBUFSIZE-10;
++ }
++ /* Get the precision */
++ if( c=='.' ){
++ precision = 0;
++ c = *++fmt;
++ if( c=='*' ){
++ precision = va_arg(ap,int);
++ if( precision<0 ) precision = -precision;
++ c = *++fmt;
++ }else{
++ while( c>='0' && c<='9' ){
++ precision = precision*10 + c - '0';
++ c = *++fmt;
++ }
++ }
++ /* Limit the precision to prevent overflowing buf[] during conversion */
++ if( precision>etBUFSIZE-40 ) precision = etBUFSIZE-40;
++ }else{
++ precision = -1;
++ }
++ /* Get the conversion type modifier */
++ if( c=='l' ){
++ flag_long = 1;
++ c = *++fmt;
++ }else{
++ flag_long = 0;
++ }
++ /* Fetch the info entry for the field */
++ infop = 0;
++ xtype = etERROR;
++ for(idx=0; idx<etNINFO; idx++){
++ if( c==fmtinfo[idx].fmttype ){
++ infop = &fmtinfo[idx];
++ if( useExtended || (infop->flags & FLAG_INTERN)==0 ){
++ xtype = infop->type;
++ }
++ break;
++ }
++ }
++ zExtra = 0;
++
++ /*
++ ** At this point, variables are initialized as follows:
++ **
++ ** flag_alternateform TRUE if a '#' is present.
++ ** flag_plussign TRUE if a '+' is present.
++ ** flag_leftjustify TRUE if a '-' is present or if the
++ ** field width was negative.
++ ** flag_zeropad TRUE if the width began with 0.
++ ** flag_long TRUE if the letter 'l' (ell) prefixed
++ ** the conversion character.
++ ** flag_blanksign TRUE if a ' ' is present.
++ ** width The specified field width. This is
++ ** always non-negative. Zero is the default.
++ ** precision The specified precision. The default
++ ** is -1.
++ ** xtype The class of the conversion.
++ ** infop Pointer to the appropriate info struct.
++ */
++ switch( xtype ){
++ case etRADIX:
++ if( flag_long ) longvalue = va_arg(ap,long);
++ else longvalue = va_arg(ap,int);
++#if 1
++ /* For the format %#x, the value zero is printed "0" not "0x0".
++ ** I think this is stupid. */
++ if( longvalue==0 ) flag_alternateform = 0;
++#else
++ /* More sensible: turn off the prefix for octal (to prevent "00"),
++ ** but leave the prefix for hex. */
++ if( longvalue==0 && infop->base==8 ) flag_alternateform = 0;
++#endif
++ if( infop->flags & FLAG_SIGNED ){
++ if( *(long*)&longvalue<0 ){
++ longvalue = -*(long*)&longvalue;
++ prefix = '-';
++ }else if( flag_plussign ) prefix = '+';
++ else if( flag_blanksign ) prefix = ' ';
++ else prefix = 0;
++ }else prefix = 0;
++ if( flag_zeropad && precision<width-(prefix!=0) ){
++ precision = width-(prefix!=0);
++ }
++ bufpt = &buf[etBUFSIZE-1];
++ {
++ register char *cset; /* Use registers for speed */
++ register int base;
++ cset = infop->charset;
++ base = infop->base;
++ do{ /* Convert to ascii */
++ *(--bufpt) = cset[longvalue%base];
++ longvalue = longvalue/base;
++ }while( longvalue>0 );
++ }
++ length = &buf[etBUFSIZE-1]-bufpt;
++ for(idx=precision-length; idx>0; idx--){
++ *(--bufpt) = '0'; /* Zero pad */
++ }
++ if( prefix ) *(--bufpt) = prefix; /* Add sign */
++ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
++ char *pre, x;
++ pre = infop->prefix;
++ if( *bufpt!=pre[0] ){
++ for(pre=infop->prefix; (x=(*pre))!=0; pre++) *(--bufpt) = x;
++ }
++ }
++ length = &buf[etBUFSIZE-1]-bufpt;
++ break;
++ case etFLOAT:
++ case etEXP:
++ case etGENERIC:
++ realvalue = va_arg(ap,double);
++#ifndef etNOFLOATINGPOINT
++ if( precision<0 ) precision = 6; /* Set default precision */
++ if( precision>etBUFSIZE-10 ) precision = etBUFSIZE-10;
++ if( realvalue<0.0 ){
++ realvalue = -realvalue;
++ prefix = '-';
++ }else{
++ if( flag_plussign ) prefix = '+';
++ else if( flag_blanksign ) prefix = ' ';
++ else prefix = 0;
++ }
++ if( infop->type==etGENERIC && precision>0 ) precision--;
++ rounder = 0.0;
++#if 0
++ /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
++ for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1);
++#else
++ /* It makes more sense to use 0.5 */
++ for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1);
++#endif
++ if( infop->type==etFLOAT ) realvalue += rounder;
++ /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
++ exp = 0;
++ if( realvalue>0.0 ){
++ while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
++ while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }
++ while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; }
++ while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; }
++ if( exp>350 || exp<-350 ){
++ bufpt = "NaN";
++ length = 3;
++ break;
++ }
++ }
++ bufpt = buf;
++ /*
++ ** If the field type is etGENERIC, then convert to either etEXP
++ ** or etFLOAT, as appropriate.
++ */
++ flag_exp = xtype==etEXP;
++ if( xtype!=etFLOAT ){
++ realvalue += rounder;
++ if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
++ }
++ if( xtype==etGENERIC ){
++ flag_rtz = !flag_alternateform;
++ if( exp<-4 || exp>precision ){
++ xtype = etEXP;
++ }else{
++ precision = precision - exp;
++ xtype = etFLOAT;
++ }
++ }else{
++ flag_rtz = 0;
++ }
++ /*
++ ** The "exp+precision" test causes output to be of type etEXP if
++ ** the precision is too large to fit in buf[].
++ */
++ nsd = 0;
++ if( xtype==etFLOAT && exp+precision<etBUFSIZE-30 ){
++ flag_dp = (precision>0 || flag_alternateform);
++ if( prefix ) *(bufpt++) = prefix; /* Sign */
++ if( exp<0 ) *(bufpt++) = '0'; /* Digits before "." */
++ else for(; exp>=0; exp--) *(bufpt++) = et_getdigit(&realvalue,&nsd);
++ if( flag_dp ) *(bufpt++) = '.'; /* The decimal point */
++ for(exp++; exp<0 && precision>0; precision--, exp++){
++ *(bufpt++) = '0';
++ }
++ while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd);
++ *(bufpt--) = 0; /* Null terminate */
++ if( flag_rtz && flag_dp ){ /* Remove trailing zeros and "." */
++ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
++ if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
++ }
++ bufpt++; /* point to next free slot */
++ }else{ /* etEXP or etGENERIC */
++ flag_dp = (precision>0 || flag_alternateform);
++ if( prefix ) *(bufpt++) = prefix; /* Sign */
++ *(bufpt++) = et_getdigit(&realvalue,&nsd); /* First digit */
++ if( flag_dp ) *(bufpt++) = '.'; /* Decimal point */
++ while( (precision--)>0 ) *(bufpt++) = et_getdigit(&realvalue,&nsd);
++ bufpt--; /* point to last digit */
++ if( flag_rtz && flag_dp ){ /* Remove tail zeros */
++ while( bufpt>=buf && *bufpt=='0' ) *(bufpt--) = 0;
++ if( bufpt>=buf && *bufpt=='.' ) *(bufpt--) = 0;
++ }
++ bufpt++; /* point to next free slot */
++ if( exp || flag_exp ){
++ *(bufpt++) = infop->charset[0];
++ if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; } /* sign of exp */
++ else { *(bufpt++) = '+'; }
++ if( exp>=100 ){
++ *(bufpt++) = (exp/100)+'0'; /* 100's digit */
++ exp %= 100;
++ }
++ *(bufpt++) = exp/10+'0'; /* 10's digit */
++ *(bufpt++) = exp%10+'0'; /* 1's digit */
++ }
++ }
++ /* The converted number is in buf[] and zero terminated. Output it.
++ ** Note that the number is in the usual order, not reversed as with
++ ** integer conversions. */
++ length = bufpt-buf;
++ bufpt = buf;
++
++ /* Special case: Add leading zeros if the flag_zeropad flag is
++ ** set and we are not left justified */
++ if( flag_zeropad && !flag_leftjustify && length < width){
++ int i;
++ int nPad = width - length;
++ for(i=width; i>=nPad; i--){
++ bufpt[i] = bufpt[i-nPad];
++ }
++ i = prefix!=0;
++ while( nPad-- ) bufpt[i++] = '0';
++ length = width;
++ }
++#endif
++ break;
++ case etSIZE:
++ *(va_arg(ap,int*)) = count;
++ length = width = 0;
++ break;
++ case etPERCENT:
++ buf[0] = '%';
++ bufpt = buf;
++ length = 1;
++ break;
++ case etCHARLIT:
++ case etCHARX:
++ c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt);
++ if( precision>=0 ){
++ for(idx=1; idx<precision; idx++) buf[idx] = c;
++ length = precision;
++ }else{
++ length =1;
++ }
++ bufpt = buf;
++ break;
++ case etSTRING:
++ case etDYNSTRING:
++ bufpt = va_arg(ap,char*);
++ if( bufpt==0 ){
++ bufpt = "";
++ }else if( xtype==etDYNSTRING ){
++ zExtra = bufpt;
++ }
++ length = strlen(bufpt);
++ if( precision>=0 && precision<length ) length = precision;
++ break;
++ case etSQLESCAPE:
++ case etSQLESCAPE2:
++ {
++ int i, j, n, c, isnull;
++ char *arg = va_arg(ap,char*);
++ isnull = arg==0;
++ if( isnull ) arg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
++ for(i=n=0; (c=arg[i])!=0; i++){
++ if( c=='\'' ) n++;
++ }
++ n += i + 1 + ((!isnull && xtype==etSQLESCAPE2) ? 2 : 0);
++ if( n>etBUFSIZE ){
++ bufpt = zExtra = sqliteMalloc( n );
++ if( bufpt==0 ) return -1;
++ }else{
++ bufpt = buf;
++ }
++ j = 0;
++ if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\'';
++ for(i=0; (c=arg[i])!=0; i++){
++ bufpt[j++] = c;
++ if( c=='\'' ) bufpt[j++] = c;
++ }
++ if( !isnull && xtype==etSQLESCAPE2 ) bufpt[j++] = '\'';
++ bufpt[j] = 0;
++ length = j;
++ if( precision>=0 && precision<length ) length = precision;
++ }
++ break;
++ case etTOKEN: {
++ Token *pToken = va_arg(ap, Token*);
++ (*func)(arg, pToken->z, pToken->n);
++ length = width = 0;
++ break;
++ }
++ case etSRCLIST: {
++ SrcList *pSrc = va_arg(ap, SrcList*);
++ int k = va_arg(ap, int);
++ struct SrcList_item *pItem = &pSrc->a[k];
++ assert( k>=0 && k<pSrc->nSrc );
++ if( pItem->zDatabase && pItem->zDatabase[0] ){
++ (*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase));
++ (*func)(arg, ".", 1);
++ }
++ (*func)(arg, pItem->zName, strlen(pItem->zName));
++ length = width = 0;
++ break;
++ }
++ case etERROR:
++ buf[0] = '%';
++ buf[1] = c;
++ errorflag = 0;
++ idx = 1+(c!=0);
++ (*func)(arg,"%",idx);
++ count += idx;
++ if( c==0 ) fmt--;
++ break;
++ }/* End switch over the format type */
++ /*
++ ** The text of the conversion is pointed to by "bufpt" and is
++ ** "length" characters long. The field width is "width". Do
++ ** the output.
++ */
++ if( !flag_leftjustify ){
++ register int nspace;
++ nspace = width-length;
++ if( nspace>0 ){
++ count += nspace;
++ while( nspace>=etSPACESIZE ){
++ (*func)(arg,spaces,etSPACESIZE);
++ nspace -= etSPACESIZE;
++ }
++ if( nspace>0 ) (*func)(arg,spaces,nspace);
++ }
++ }
++ if( length>0 ){
++ (*func)(arg,bufpt,length);
++ count += length;
++ }
++ if( flag_leftjustify ){
++ register int nspace;
++ nspace = width-length;
++ if( nspace>0 ){
++ count += nspace;
++ while( nspace>=etSPACESIZE ){
++ (*func)(arg,spaces,etSPACESIZE);
++ nspace -= etSPACESIZE;
++ }
++ if( nspace>0 ) (*func)(arg,spaces,nspace);
++ }
++ }
++ if( zExtra ){
++ sqliteFree(zExtra);
++ }
++ }/* End for loop over the format string */
++ return errorflag ? -1 : count;
++} /* End of function */
++
++
++/* This structure is used to store state information about the
++** write to memory that is currently in progress.
++*/
++struct sgMprintf {
++ char *zBase; /* A base allocation */
++ char *zText; /* The string collected so far */
++ int nChar; /* Length of the string so far */
++ int nTotal; /* Output size if unconstrained */
++ int nAlloc; /* Amount of space allocated in zText */
++ void *(*xRealloc)(void*,int); /* Function used to realloc memory */
++};
++
++/*
++** This function implements the callback from vxprintf.
++**
++** This routine add nNewChar characters of text in zNewText to
++** the sgMprintf structure pointed to by "arg".
++*/
++static void mout(void *arg, const char *zNewText, int nNewChar){
++ struct sgMprintf *pM = (struct sgMprintf*)arg;
++ pM->nTotal += nNewChar;
++ if( pM->nChar + nNewChar + 1 > pM->nAlloc ){
++ if( pM->xRealloc==0 ){
++ nNewChar = pM->nAlloc - pM->nChar - 1;
++ }else{
++ pM->nAlloc = pM->nChar + nNewChar*2 + 1;
++ if( pM->zText==pM->zBase ){
++ pM->zText = pM->xRealloc(0, pM->nAlloc);
++ if( pM->zText && pM->nChar ){
++ memcpy(pM->zText, pM->zBase, pM->nChar);
++ }
++ }else{
++ pM->zText = pM->xRealloc(pM->zText, pM->nAlloc);
++ }
++ }
++ }
++ if( pM->zText ){
++ if( nNewChar>0 ){
++ memcpy(&pM->zText[pM->nChar], zNewText, nNewChar);
++ pM->nChar += nNewChar;
++ }
++ pM->zText[pM->nChar] = 0;
++ }
++}
++
++/*
++** This routine is a wrapper around xprintf() that invokes mout() as
++** the consumer.
++*/
++static char *base_vprintf(
++ void *(*xRealloc)(void*,int), /* Routine to realloc memory. May be NULL */
++ int useInternal, /* Use internal %-conversions if true */
++ char *zInitBuf, /* Initially write here, before mallocing */
++ int nInitBuf, /* Size of zInitBuf[] */
++ const char *zFormat, /* format string */
++ va_list ap /* arguments */
++){
++ struct sgMprintf sM;
++ sM.zBase = sM.zText = zInitBuf;
++ sM.nChar = sM.nTotal = 0;
++ sM.nAlloc = nInitBuf;
++ sM.xRealloc = xRealloc;
++ vxprintf(mout, &sM, useInternal, zFormat, ap);
++ if( xRealloc ){
++ if( sM.zText==sM.zBase ){
++ sM.zText = xRealloc(0, sM.nChar+1);
++ memcpy(sM.zText, sM.zBase, sM.nChar+1);
++ }else if( sM.nAlloc>sM.nChar+10 ){
++ sM.zText = xRealloc(sM.zText, sM.nChar+1);
++ }
++ }
++ return sM.zText;
++}
++
++/*
++** Realloc that is a real function, not a macro.
++*/
++static void *printf_realloc(void *old, int size){
++ return sqliteRealloc(old,size);
++}
++
++/*
++** Print into memory obtained from sqliteMalloc(). Use the internal
++** %-conversion extensions.
++*/
++char *sqliteVMPrintf(const char *zFormat, va_list ap){
++ char zBase[1000];
++ return base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
++}
++
++/*
++** Print into memory obtained from sqliteMalloc(). Use the internal
++** %-conversion extensions.
++*/
++char *sqliteMPrintf(const char *zFormat, ...){
++ va_list ap;
++ char *z;
++ char zBase[1000];
++ va_start(ap, zFormat);
++ z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap);
++ va_end(ap);
++ return z;
++}
++
++/*
++** Print into memory obtained from malloc(). Do not use the internal
++** %-conversion extensions. This routine is for use by external users.
++*/
++char *sqlite_mprintf(const char *zFormat, ...){
++ va_list ap;
++ char *z;
++ char zBuf[200];
++
++ va_start(ap,zFormat);
++ z = base_vprintf((void*(*)(void*,int))realloc, 0,
++ zBuf, sizeof(zBuf), zFormat, ap);
++ va_end(ap);
++ return z;
++}
++
++/* This is the varargs version of sqlite_mprintf.
++*/
++char *sqlite_vmprintf(const char *zFormat, va_list ap){
++ char zBuf[200];
++ return base_vprintf((void*(*)(void*,int))realloc, 0,
++ zBuf, sizeof(zBuf), zFormat, ap);
++}
++
++/*
++** sqlite_snprintf() works like snprintf() except that it ignores the
++** current locale settings. This is important for SQLite because we
++** are not able to use a "," as the decimal point in place of "." as
++** specified by some locales.
++*/
++char *sqlite_snprintf(int n, char *zBuf, const char *zFormat, ...){
++ char *z;
++ va_list ap;
++
++ va_start(ap,zFormat);
++ z = base_vprintf(0, 0, zBuf, n, zFormat, ap);
++ va_end(ap);
++ return z;
++}
++
++/*
++** The following four routines implement the varargs versions of the
++** sqlite_exec() and sqlite_get_table() interfaces. See the sqlite.h
++** header files for a more detailed description of how these interfaces
++** work.
++**
++** These routines are all just simple wrappers.
++*/
++int sqlite_exec_printf(
++ sqlite *db, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ sqlite_callback xCallback, /* Callback function */
++ void *pArg, /* 1st argument to callback function */
++ char **errmsg, /* Error msg written here */
++ ... /* Arguments to the format string. */
++){
++ va_list ap;
++ int rc;
++
++ va_start(ap, errmsg);
++ rc = sqlite_exec_vprintf(db, sqlFormat, xCallback, pArg, errmsg, ap);
++ va_end(ap);
++ return rc;
++}
++int sqlite_exec_vprintf(
++ sqlite *db, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ sqlite_callback xCallback, /* Callback function */
++ void *pArg, /* 1st argument to callback function */
++ char **errmsg, /* Error msg written here */
++ va_list ap /* Arguments to the format string. */
++){
++ char *zSql;
++ int rc;
++
++ zSql = sqlite_vmprintf(sqlFormat, ap);
++ rc = sqlite_exec(db, zSql, xCallback, pArg, errmsg);
++ free(zSql);
++ return rc;
++}
++int sqlite_get_table_printf(
++ sqlite *db, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ char ***resultp, /* Result written to a char *[] that this points to */
++ int *nrow, /* Number of result rows written here */
++ int *ncol, /* Number of result columns written here */
++ char **errmsg, /* Error msg written here */
++ ... /* Arguments to the format string */
++){
++ va_list ap;
++ int rc;
++
++ va_start(ap, errmsg);
++ rc = sqlite_get_table_vprintf(db, sqlFormat, resultp, nrow, ncol, errmsg, ap);
++ va_end(ap);
++ return rc;
++}
++int sqlite_get_table_vprintf(
++ sqlite *db, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ char ***resultp, /* Result written to a char *[] that this points to */
++ int *nrow, /* Number of result rows written here */
++ int *ncolumn, /* Number of result columns written here */
++ char **errmsg, /* Error msg written here */
++ va_list ap /* Arguments to the format string */
++){
++ char *zSql;
++ int rc;
++
++ zSql = sqlite_vmprintf(sqlFormat, ap);
++ rc = sqlite_get_table(db, zSql, resultp, nrow, ncolumn, errmsg);
++ free(zSql);
++ return rc;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/random.c
+@@ -0,0 +1,97 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains code to implement a pseudo-random number
++** generator (PRNG) for SQLite.
++**
++** Random numbers are used by some of the database backends in order
++** to generate random integer keys for tables or random filenames.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++#include "os.h"
++
++
++/*
++** Get a single 8-bit random value from the RC4 PRNG. The Mutex
++** must be held while executing this routine.
++**
++** Why not just use a library random generator like lrand48() for this?
++** Because the OP_NewRecno opcode in the VDBE depends on having a very
++** good source of random numbers. The lrand48() library function may
++** well be good enough. But maybe not. Or maybe lrand48() has some
++** subtle problems on some systems that could cause problems. It is hard
++** to know. To minimize the risk of problems due to bad lrand48()
++** implementations, SQLite uses this random number generator based
++** on RC4, which we know works very well.
++*/
++static int randomByte(){
++ unsigned char t;
++
++ /* All threads share a single random number generator.
++ ** This structure is the current state of the generator.
++ */
++ static struct {
++ unsigned char isInit; /* True if initialized */
++ unsigned char i, j; /* State variables */
++ unsigned char s[256]; /* State variables */
++ } prng;
++
++ /* Initialize the state of the random number generator once,
++ ** the first time this routine is called. The seed value does
++ ** not need to contain a lot of randomness since we are not
++ ** trying to do secure encryption or anything like that...
++ **
++ ** Nothing in this file or anywhere else in SQLite does any kind of
++ ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random
++ ** number generator) not as an encryption device.
++ */
++ if( !prng.isInit ){
++ int i;
++ char k[256];
++ prng.j = 0;
++ prng.i = 0;
++ sqliteOsRandomSeed(k);
++ for(i=0; i<256; i++){
++ prng.s[i] = i;
++ }
++ for(i=0; i<256; i++){
++ prng.j += prng.s[i] + k[i];
++ t = prng.s[prng.j];
++ prng.s[prng.j] = prng.s[i];
++ prng.s[i] = t;
++ }
++ prng.isInit = 1;
++ }
++
++ /* Generate and return single random byte
++ */
++ prng.i++;
++ t = prng.s[prng.i];
++ prng.j += t;
++ prng.s[prng.i] = prng.s[prng.j];
++ prng.s[prng.j] = t;
++ t += prng.s[prng.i];
++ return prng.s[t];
++}
++
++/*
++** Return N random bytes.
++*/
++void sqliteRandomness(int N, void *pBuf){
++ unsigned char *zBuf = pBuf;
++ sqliteOsEnterMutex();
++ while( N-- ){
++ *(zBuf++) = randomByte();
++ }
++ sqliteOsLeaveMutex();
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/select.c
+@@ -0,0 +1,2434 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains C code routines that are called by the parser
++** to handle SELECT statements in SQLite.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++
++
++/*
++** Allocate a new Select structure and return a pointer to that
++** structure.
++*/
++Select *sqliteSelectNew(
++ ExprList *pEList, /* which columns to include in the result */
++ SrcList *pSrc, /* the FROM clause -- which tables to scan */
++ Expr *pWhere, /* the WHERE clause */
++ ExprList *pGroupBy, /* the GROUP BY clause */
++ Expr *pHaving, /* the HAVING clause */
++ ExprList *pOrderBy, /* the ORDER BY clause */
++ int isDistinct, /* true if the DISTINCT keyword is present */
++ int nLimit, /* LIMIT value. -1 means not used */
++ int nOffset /* OFFSET value. 0 means no offset */
++){
++ Select *pNew;
++ pNew = sqliteMalloc( sizeof(*pNew) );
++ if( pNew==0 ){
++ sqliteExprListDelete(pEList);
++ sqliteSrcListDelete(pSrc);
++ sqliteExprDelete(pWhere);
++ sqliteExprListDelete(pGroupBy);
++ sqliteExprDelete(pHaving);
++ sqliteExprListDelete(pOrderBy);
++ }else{
++ if( pEList==0 ){
++ pEList = sqliteExprListAppend(0, sqliteExpr(TK_ALL,0,0,0), 0);
++ }
++ pNew->pEList = pEList;
++ pNew->pSrc = pSrc;
++ pNew->pWhere = pWhere;
++ pNew->pGroupBy = pGroupBy;
++ pNew->pHaving = pHaving;
++ pNew->pOrderBy = pOrderBy;
++ pNew->isDistinct = isDistinct;
++ pNew->op = TK_SELECT;
++ pNew->nLimit = nLimit;
++ pNew->nOffset = nOffset;
++ pNew->iLimit = -1;
++ pNew->iOffset = -1;
++ }
++ return pNew;
++}
++
++/*
++** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
++** type of join. Return an integer constant that expresses that type
++** in terms of the following bit values:
++**
++** JT_INNER
++** JT_OUTER
++** JT_NATURAL
++** JT_LEFT
++** JT_RIGHT
++**
++** A full outer join is the combination of JT_LEFT and JT_RIGHT.
++**
++** If an illegal or unsupported join type is seen, then still return
++** a join type, but put an error in the pParse structure.
++*/
++int sqliteJoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
++ int jointype = 0;
++ Token *apAll[3];
++ Token *p;
++ static struct {
++ const char *zKeyword;
++ int nChar;
++ int code;
++ } keywords[] = {
++ { "natural", 7, JT_NATURAL },
++ { "left", 4, JT_LEFT|JT_OUTER },
++ { "right", 5, JT_RIGHT|JT_OUTER },
++ { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
++ { "outer", 5, JT_OUTER },
++ { "inner", 5, JT_INNER },
++ { "cross", 5, JT_INNER },
++ };
++ int i, j;
++ apAll[0] = pA;
++ apAll[1] = pB;
++ apAll[2] = pC;
++ for(i=0; i<3 && apAll[i]; i++){
++ p = apAll[i];
++ for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
++ if( p->n==keywords[j].nChar
++ && sqliteStrNICmp(p->z, keywords[j].zKeyword, p->n)==0 ){
++ jointype |= keywords[j].code;
++ break;
++ }
++ }
++ if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
++ jointype |= JT_ERROR;
++ break;
++ }
++ }
++ if(
++ (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
++ (jointype & JT_ERROR)!=0
++ ){
++ static Token dummy = { 0, 0 };
++ char *zSp1 = " ", *zSp2 = " ";
++ if( pB==0 ){ pB = &dummy; zSp1 = 0; }
++ if( pC==0 ){ pC = &dummy; zSp2 = 0; }
++ sqliteSetNString(&pParse->zErrMsg, "unknown or unsupported join type: ", 0,
++ pA->z, pA->n, zSp1, 1, pB->z, pB->n, zSp2, 1, pC->z, pC->n, 0);
++ pParse->nErr++;
++ jointype = JT_INNER;
++ }else if( jointype & JT_RIGHT ){
++ sqliteErrorMsg(pParse,
++ "RIGHT and FULL OUTER JOINs are not currently supported");
++ jointype = JT_INNER;
++ }
++ return jointype;
++}
++
++/*
++** Return the index of a column in a table. Return -1 if the column
++** is not contained in the table.
++*/
++static int columnIndex(Table *pTab, const char *zCol){
++ int i;
++ for(i=0; i<pTab->nCol; i++){
++ if( sqliteStrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
++ }
++ return -1;
++}
++
++/*
++** Add a term to the WHERE expression in *ppExpr that requires the
++** zCol column to be equal in the two tables pTab1 and pTab2.
++*/
++static void addWhereTerm(
++ const char *zCol, /* Name of the column */
++ const Table *pTab1, /* First table */
++ const Table *pTab2, /* Second table */
++ Expr **ppExpr /* Add the equality term to this expression */
++){
++ Token dummy;
++ Expr *pE1a, *pE1b, *pE1c;
++ Expr *pE2a, *pE2b, *pE2c;
++ Expr *pE;
++
++ dummy.z = zCol;
++ dummy.n = strlen(zCol);
++ dummy.dyn = 0;
++ pE1a = sqliteExpr(TK_ID, 0, 0, &dummy);
++ pE2a = sqliteExpr(TK_ID, 0, 0, &dummy);
++ dummy.z = pTab1->zName;
++ dummy.n = strlen(dummy.z);
++ pE1b = sqliteExpr(TK_ID, 0, 0, &dummy);
++ dummy.z = pTab2->zName;
++ dummy.n = strlen(dummy.z);
++ pE2b = sqliteExpr(TK_ID, 0, 0, &dummy);
++ pE1c = sqliteExpr(TK_DOT, pE1b, pE1a, 0);
++ pE2c = sqliteExpr(TK_DOT, pE2b, pE2a, 0);
++ pE = sqliteExpr(TK_EQ, pE1c, pE2c, 0);
++ ExprSetProperty(pE, EP_FromJoin);
++ if( *ppExpr ){
++ *ppExpr = sqliteExpr(TK_AND, *ppExpr, pE, 0);
++ }else{
++ *ppExpr = pE;
++ }
++}
++
++/*
++** Set the EP_FromJoin property on all terms of the given expression.
++**
++** The EP_FromJoin property is used on terms of an expression to tell
++** the LEFT OUTER JOIN processing logic that this term is part of the
++** join restriction specified in the ON or USING clause and not a part
++** of the more general WHERE clause. These terms are moved over to the
++** WHERE clause during join processing but we need to remember that they
++** originated in the ON or USING clause.
++*/
++static void setJoinExpr(Expr *p){
++ while( p ){
++ ExprSetProperty(p, EP_FromJoin);
++ setJoinExpr(p->pLeft);
++ p = p->pRight;
++ }
++}
++
++/*
++** This routine processes the join information for a SELECT statement.
++** ON and USING clauses are converted into extra terms of the WHERE clause.
++** NATURAL joins also create extra WHERE clause terms.
++**
++** This routine returns the number of errors encountered.
++*/
++static int sqliteProcessJoin(Parse *pParse, Select *p){
++ SrcList *pSrc;
++ int i, j;
++ pSrc = p->pSrc;
++ for(i=0; i<pSrc->nSrc-1; i++){
++ struct SrcList_item *pTerm = &pSrc->a[i];
++ struct SrcList_item *pOther = &pSrc->a[i+1];
++
++ if( pTerm->pTab==0 || pOther->pTab==0 ) continue;
++
++ /* When the NATURAL keyword is present, add WHERE clause terms for
++ ** every column that the two tables have in common.
++ */
++ if( pTerm->jointype & JT_NATURAL ){
++ Table *pTab;
++ if( pTerm->pOn || pTerm->pUsing ){
++ sqliteErrorMsg(pParse, "a NATURAL join may not have "
++ "an ON or USING clause", 0);
++ return 1;
++ }
++ pTab = pTerm->pTab;
++ for(j=0; j<pTab->nCol; j++){
++ if( columnIndex(pOther->pTab, pTab->aCol[j].zName)>=0 ){
++ addWhereTerm(pTab->aCol[j].zName, pTab, pOther->pTab, &p->pWhere);
++ }
++ }
++ }
++
++ /* Disallow both ON and USING clauses in the same join
++ */
++ if( pTerm->pOn && pTerm->pUsing ){
++ sqliteErrorMsg(pParse, "cannot have both ON and USING "
++ "clauses in the same join");
++ return 1;
++ }
++
++ /* Add the ON clause to the end of the WHERE clause, connected by
++ ** and AND operator.
++ */
++ if( pTerm->pOn ){
++ setJoinExpr(pTerm->pOn);
++ if( p->pWhere==0 ){
++ p->pWhere = pTerm->pOn;
++ }else{
++ p->pWhere = sqliteExpr(TK_AND, p->pWhere, pTerm->pOn, 0);
++ }
++ pTerm->pOn = 0;
++ }
++
++ /* Create extra terms on the WHERE clause for each column named
++ ** in the USING clause. Example: If the two tables to be joined are
++ ** A and B and the USING clause names X, Y, and Z, then add this
++ ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
++ ** Report an error if any column mentioned in the USING clause is
++ ** not contained in both tables to be joined.
++ */
++ if( pTerm->pUsing ){
++ IdList *pList;
++ int j;
++ assert( i<pSrc->nSrc-1 );
++ pList = pTerm->pUsing;
++ for(j=0; j<pList->nId; j++){
++ if( columnIndex(pTerm->pTab, pList->a[j].zName)<0 ||
++ columnIndex(pOther->pTab, pList->a[j].zName)<0 ){
++ sqliteErrorMsg(pParse, "cannot join using column %s - column "
++ "not present in both tables", pList->a[j].zName);
++ return 1;
++ }
++ addWhereTerm(pList->a[j].zName, pTerm->pTab, pOther->pTab, &p->pWhere);
++ }
++ }
++ }
++ return 0;
++}
++
++/*
++** Delete the given Select structure and all of its substructures.
++*/
++void sqliteSelectDelete(Select *p){
++ if( p==0 ) return;
++ sqliteExprListDelete(p->pEList);
++ sqliteSrcListDelete(p->pSrc);
++ sqliteExprDelete(p->pWhere);
++ sqliteExprListDelete(p->pGroupBy);
++ sqliteExprDelete(p->pHaving);
++ sqliteExprListDelete(p->pOrderBy);
++ sqliteSelectDelete(p->pPrior);
++ sqliteFree(p->zSelect);
++ sqliteFree(p);
++}
++
++/*
++** Delete the aggregate information from the parse structure.
++*/
++static void sqliteAggregateInfoReset(Parse *pParse){
++ sqliteFree(pParse->aAgg);
++ pParse->aAgg = 0;
++ pParse->nAgg = 0;
++ pParse->useAgg = 0;
++}
++
++/*
++** Insert code into "v" that will push the record on the top of the
++** stack into the sorter.
++*/
++static void pushOntoSorter(Parse *pParse, Vdbe *v, ExprList *pOrderBy){
++ char *zSortOrder;
++ int i;
++ zSortOrder = sqliteMalloc( pOrderBy->nExpr + 1 );
++ if( zSortOrder==0 ) return;
++ for(i=0; i<pOrderBy->nExpr; i++){
++ int order = pOrderBy->a[i].sortOrder;
++ int type;
++ int c;
++ if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
++ type = SQLITE_SO_TEXT;
++ }else if( (order & SQLITE_SO_TYPEMASK)==SQLITE_SO_NUM ){
++ type = SQLITE_SO_NUM;
++ }else if( pParse->db->file_format>=4 ){
++ type = sqliteExprType(pOrderBy->a[i].pExpr);
++ }else{
++ type = SQLITE_SO_NUM;
++ }
++ if( (order & SQLITE_SO_DIRMASK)==SQLITE_SO_ASC ){
++ c = type==SQLITE_SO_TEXT ? 'A' : '+';
++ }else{
++ c = type==SQLITE_SO_TEXT ? 'D' : '-';
++ }
++ zSortOrder[i] = c;
++ sqliteExprCode(pParse, pOrderBy->a[i].pExpr);
++ }
++ zSortOrder[pOrderBy->nExpr] = 0;
++ sqliteVdbeOp3(v, OP_SortMakeKey, pOrderBy->nExpr, 0, zSortOrder, P3_DYNAMIC);
++ sqliteVdbeAddOp(v, OP_SortPut, 0, 0);
++}
++
++/*
++** This routine adds a P3 argument to the last VDBE opcode that was
++** inserted. The P3 argument added is a string suitable for the
++** OP_MakeKey or OP_MakeIdxKey opcodes. The string consists of
++** characters 't' or 'n' depending on whether or not the various
++** fields of the key to be generated should be treated as numeric
++** or as text. See the OP_MakeKey and OP_MakeIdxKey opcode
++** documentation for additional information about the P3 string.
++** See also the sqliteAddIdxKeyType() routine.
++*/
++void sqliteAddKeyType(Vdbe *v, ExprList *pEList){
++ int nColumn = pEList->nExpr;
++ char *zType = sqliteMalloc( nColumn+1 );
++ int i;
++ if( zType==0 ) return;
++ for(i=0; i<nColumn; i++){
++ zType[i] = sqliteExprType(pEList->a[i].pExpr)==SQLITE_SO_NUM ? 'n' : 't';
++ }
++ zType[i] = 0;
++ sqliteVdbeChangeP3(v, -1, zType, P3_DYNAMIC);
++}
++
++/*
++** Add code to implement the OFFSET and LIMIT
++*/
++static void codeLimiter(
++ Vdbe *v, /* Generate code into this VM */
++ Select *p, /* The SELECT statement being coded */
++ int iContinue, /* Jump here to skip the current record */
++ int iBreak, /* Jump here to end the loop */
++ int nPop /* Number of times to pop stack when jumping */
++){
++ if( p->iOffset>=0 ){
++ int addr = sqliteVdbeCurrentAddr(v) + 2;
++ if( nPop>0 ) addr++;
++ sqliteVdbeAddOp(v, OP_MemIncr, p->iOffset, addr);
++ if( nPop>0 ){
++ sqliteVdbeAddOp(v, OP_Pop, nPop, 0);
++ }
++ sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
++ }
++ if( p->iLimit>=0 ){
++ sqliteVdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
++ }
++}
++
++/*
++** This routine generates the code for the inside of the inner loop
++** of a SELECT.
++**
++** If srcTab and nColumn are both zero, then the pEList expressions
++** are evaluated in order to get the data for this row. If nColumn>0
++** then data is pulled from srcTab and pEList is used only to get the
++** datatypes for each column.
++*/
++static int selectInnerLoop(
++ Parse *pParse, /* The parser context */
++ Select *p, /* The complete select statement being coded */
++ ExprList *pEList, /* List of values being extracted */
++ int srcTab, /* Pull data from this table */
++ int nColumn, /* Number of columns in the source table */
++ ExprList *pOrderBy, /* If not NULL, sort results using this key */
++ int distinct, /* If >=0, make sure results are distinct */
++ int eDest, /* How to dispose of the results */
++ int iParm, /* An argument to the disposal method */
++ int iContinue, /* Jump here to continue with next row */
++ int iBreak /* Jump here to break out of the inner loop */
++){
++ Vdbe *v = pParse->pVdbe;
++ int i;
++ int hasDistinct; /* True if the DISTINCT keyword is present */
++
++ if( v==0 ) return 0;
++ assert( pEList!=0 );
++
++ /* If there was a LIMIT clause on the SELECT statement, then do the check
++ ** to see if this row should be output.
++ */
++ hasDistinct = distinct>=0 && pEList && pEList->nExpr>0;
++ if( pOrderBy==0 && !hasDistinct ){
++ codeLimiter(v, p, iContinue, iBreak, 0);
++ }
++
++ /* Pull the requested columns.
++ */
++ if( nColumn>0 ){
++ for(i=0; i<nColumn; i++){
++ sqliteVdbeAddOp(v, OP_Column, srcTab, i);
++ }
++ }else{
++ nColumn = pEList->nExpr;
++ for(i=0; i<pEList->nExpr; i++){
++ sqliteExprCode(pParse, pEList->a[i].pExpr);
++ }
++ }
++
++ /* If the DISTINCT keyword was present on the SELECT statement
++ ** and this row has been seen before, then do not make this row
++ ** part of the result.
++ */
++ if( hasDistinct ){
++#if NULL_ALWAYS_DISTINCT
++ sqliteVdbeAddOp(v, OP_IsNull, -pEList->nExpr, sqliteVdbeCurrentAddr(v)+7);
++#endif
++ sqliteVdbeAddOp(v, OP_MakeKey, pEList->nExpr, 1);
++ if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pEList);
++ sqliteVdbeAddOp(v, OP_Distinct, distinct, sqliteVdbeCurrentAddr(v)+3);
++ sqliteVdbeAddOp(v, OP_Pop, pEList->nExpr+1, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, iContinue);
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ sqliteVdbeAddOp(v, OP_PutStrKey, distinct, 0);
++ if( pOrderBy==0 ){
++ codeLimiter(v, p, iContinue, iBreak, nColumn);
++ }
++ }
++
++ switch( eDest ){
++ /* In this mode, write each query result to the key of the temporary
++ ** table iParm.
++ */
++ case SRT_Union: {
++ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
++ break;
++ }
++
++ /* Store the result as data using a unique key.
++ */
++ case SRT_Table:
++ case SRT_TempTable: {
++ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
++ if( pOrderBy ){
++ pushOntoSorter(pParse, v, pOrderBy);
++ }else{
++ sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
++ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
++ }
++ break;
++ }
++
++ /* Construct a record from the query result, but instead of
++ ** saving that record, use it as a key to delete elements from
++ ** the temporary table iParm.
++ */
++ case SRT_Except: {
++ int addr;
++ addr = sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
++ sqliteVdbeAddOp(v, OP_NotFound, iParm, addr+3);
++ sqliteVdbeAddOp(v, OP_Delete, iParm, 0);
++ break;
++ }
++
++ /* If we are creating a set for an "expr IN (SELECT ...)" construct,
++ ** then there should be a single item on the stack. Write this
++ ** item into the set table with bogus data.
++ */
++ case SRT_Set: {
++ int addr1 = sqliteVdbeCurrentAddr(v);
++ int addr2;
++ assert( nColumn==1 );
++ sqliteVdbeAddOp(v, OP_NotNull, -1, addr1+3);
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ addr2 = sqliteVdbeAddOp(v, OP_Goto, 0, 0);
++ if( pOrderBy ){
++ pushOntoSorter(pParse, v, pOrderBy);
++ }else{
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
++ }
++ sqliteVdbeChangeP2(v, addr2, sqliteVdbeCurrentAddr(v));
++ break;
++ }
++
++ /* If this is a scalar select that is part of an expression, then
++ ** store the results in the appropriate memory cell and break out
++ ** of the scan loop.
++ */
++ case SRT_Mem: {
++ assert( nColumn==1 );
++ if( pOrderBy ){
++ pushOntoSorter(pParse, v, pOrderBy);
++ }else{
++ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
++ sqliteVdbeAddOp(v, OP_Goto, 0, iBreak);
++ }
++ break;
++ }
++
++ /* Send the data to the callback function.
++ */
++ case SRT_Callback:
++ case SRT_Sorter: {
++ if( pOrderBy ){
++ sqliteVdbeAddOp(v, OP_SortMakeRec, nColumn, 0);
++ pushOntoSorter(pParse, v, pOrderBy);
++ }else{
++ assert( eDest==SRT_Callback );
++ sqliteVdbeAddOp(v, OP_Callback, nColumn, 0);
++ }
++ break;
++ }
++
++ /* Invoke a subroutine to handle the results. The subroutine itself
++ ** is responsible for popping the results off of the stack.
++ */
++ case SRT_Subroutine: {
++ if( pOrderBy ){
++ sqliteVdbeAddOp(v, OP_MakeRecord, nColumn, 0);
++ pushOntoSorter(pParse, v, pOrderBy);
++ }else{
++ sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
++ }
++ break;
++ }
++
++ /* Discard the results. This is used for SELECT statements inside
++ ** the body of a TRIGGER. The purpose of such selects is to call
++ ** user-defined functions that have side effects. We do not care
++ ** about the actual results of the select.
++ */
++ default: {
++ assert( eDest==SRT_Discard );
++ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
++ break;
++ }
++ }
++ return 0;
++}
++
++/*
++** If the inner loop was generated using a non-null pOrderBy argument,
++** then the results were placed in a sorter. After the loop is terminated
++** we need to run the sorter and output the results. The following
++** routine generates the code needed to do that.
++*/
++static void generateSortTail(
++ Select *p, /* The SELECT statement */
++ Vdbe *v, /* Generate code into this VDBE */
++ int nColumn, /* Number of columns of data */
++ int eDest, /* Write the sorted results here */
++ int iParm /* Optional parameter associated with eDest */
++){
++ int end1 = sqliteVdbeMakeLabel(v);
++ int end2 = sqliteVdbeMakeLabel(v);
++ int addr;
++ if( eDest==SRT_Sorter ) return;
++ sqliteVdbeAddOp(v, OP_Sort, 0, 0);
++ addr = sqliteVdbeAddOp(v, OP_SortNext, 0, end1);
++ codeLimiter(v, p, addr, end2, 1);
++ switch( eDest ){
++ case SRT_Callback: {
++ sqliteVdbeAddOp(v, OP_SortCallback, nColumn, 0);
++ break;
++ }
++ case SRT_Table:
++ case SRT_TempTable: {
++ sqliteVdbeAddOp(v, OP_NewRecno, iParm, 0);
++ sqliteVdbeAddOp(v, OP_Pull, 1, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, iParm, 0);
++ break;
++ }
++ case SRT_Set: {
++ assert( nColumn==1 );
++ sqliteVdbeAddOp(v, OP_NotNull, -1, sqliteVdbeCurrentAddr(v)+3);
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, sqliteVdbeCurrentAddr(v)+3);
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ sqliteVdbeAddOp(v, OP_PutStrKey, iParm, 0);
++ break;
++ }
++ case SRT_Mem: {
++ assert( nColumn==1 );
++ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
++ sqliteVdbeAddOp(v, OP_Goto, 0, end1);
++ break;
++ }
++ case SRT_Subroutine: {
++ int i;
++ for(i=0; i<nColumn; i++){
++ sqliteVdbeAddOp(v, OP_Column, -1-i, i);
++ }
++ sqliteVdbeAddOp(v, OP_Gosub, 0, iParm);
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ break;
++ }
++ default: {
++ /* Do nothing */
++ break;
++ }
++ }
++ sqliteVdbeAddOp(v, OP_Goto, 0, addr);
++ sqliteVdbeResolveLabel(v, end2);
++ sqliteVdbeAddOp(v, OP_Pop, 1, 0);
++ sqliteVdbeResolveLabel(v, end1);
++ sqliteVdbeAddOp(v, OP_SortReset, 0, 0);
++}
++
++/*
++** Generate code that will tell the VDBE the datatypes of
++** columns in the result set.
++**
++** This routine only generates code if the "PRAGMA show_datatypes=on"
++** has been executed. The datatypes are reported out in the azCol
++** parameter to the callback function. The first N azCol[] entries
++** are the names of the columns, and the second N entries are the
++** datatypes for the columns.
++**
++** The "datatype" for a result that is a column of a type is the
++** datatype definition extracted from the CREATE TABLE statement.
++** The datatype for an expression is either TEXT or NUMERIC. The
++** datatype for a ROWID field is INTEGER.
++*/
++static void generateColumnTypes(
++ Parse *pParse, /* Parser context */
++ SrcList *pTabList, /* List of tables */
++ ExprList *pEList /* Expressions defining the result set */
++){
++ Vdbe *v = pParse->pVdbe;
++ int i, j;
++ for(i=0; i<pEList->nExpr; i++){
++ Expr *p = pEList->a[i].pExpr;
++ char *zType = 0;
++ if( p==0 ) continue;
++ if( p->op==TK_COLUMN && pTabList ){
++ Table *pTab;
++ int iCol = p->iColumn;
++ for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
++ assert( j<pTabList->nSrc );
++ pTab = pTabList->a[j].pTab;
++ if( iCol<0 ) iCol = pTab->iPKey;
++ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
++ if( iCol<0 ){
++ zType = "INTEGER";
++ }else{
++ zType = pTab->aCol[iCol].zType;
++ }
++ }else{
++ if( sqliteExprType(p)==SQLITE_SO_TEXT ){
++ zType = "TEXT";
++ }else{
++ zType = "NUMERIC";
++ }
++ }
++ sqliteVdbeOp3(v, OP_ColumnName, i + pEList->nExpr, 0, zType, 0);
++ }
++}
++
++/*
++** Generate code that will tell the VDBE the names of columns
++** in the result set. This information is used to provide the
++** azCol[] values in the callback.
++*/
++static void generateColumnNames(
++ Parse *pParse, /* Parser context */
++ SrcList *pTabList, /* List of tables */
++ ExprList *pEList /* Expressions defining the result set */
++){
++ Vdbe *v = pParse->pVdbe;
++ int i, j;
++ sqlite *db = pParse->db;
++ int fullNames, shortNames;
++
++ assert( v!=0 );
++ if( pParse->colNamesSet || v==0 || sqlite_malloc_failed ) return;
++ pParse->colNamesSet = 1;
++ fullNames = (db->flags & SQLITE_FullColNames)!=0;
++ shortNames = (db->flags & SQLITE_ShortColNames)!=0;
++ for(i=0; i<pEList->nExpr; i++){
++ Expr *p;
++ int p2 = i==pEList->nExpr-1;
++ p = pEList->a[i].pExpr;
++ if( p==0 ) continue;
++ if( pEList->a[i].zName ){
++ char *zName = pEList->a[i].zName;
++ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
++ continue;
++ }
++ if( p->op==TK_COLUMN && pTabList ){
++ Table *pTab;
++ char *zCol;
++ int iCol = p->iColumn;
++ for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
++ assert( j<pTabList->nSrc );
++ pTab = pTabList->a[j].pTab;
++ if( iCol<0 ) iCol = pTab->iPKey;
++ assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
++ if( iCol<0 ){
++ zCol = "_ROWID_";
++ }else{
++ zCol = pTab->aCol[iCol].zName;
++ }
++ if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
++ int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
++ sqliteVdbeCompressSpace(v, addr);
++ }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
++ char *zName = 0;
++ char *zTab;
++
++ zTab = pTabList->a[j].zAlias;
++ if( fullNames || zTab==0 ) zTab = pTab->zName;
++ sqliteSetString(&zName, zTab, ".", zCol, 0);
++ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, P3_DYNAMIC);
++ }else{
++ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zCol, 0);
++ }
++ }else if( p->span.z && p->span.z[0] ){
++ int addr = sqliteVdbeOp3(v,OP_ColumnName, i, p2, p->span.z, p->span.n);
++ sqliteVdbeCompressSpace(v, addr);
++ }else{
++ char zName[30];
++ assert( p->op!=TK_COLUMN || pTabList==0 );
++ sprintf(zName, "column%d", i+1);
++ sqliteVdbeOp3(v, OP_ColumnName, i, p2, zName, 0);
++ }
++ }
++}
++
++/*
++** Name of the connection operator, used for error messages.
++*/
++static const char *selectOpName(int id){
++ char *z;
++ switch( id ){
++ case TK_ALL: z = "UNION ALL"; break;
++ case TK_INTERSECT: z = "INTERSECT"; break;
++ case TK_EXCEPT: z = "EXCEPT"; break;
++ default: z = "UNION"; break;
++ }
++ return z;
++}
++
++/*
++** Forward declaration
++*/
++static int fillInColumnList(Parse*, Select*);
++
++/*
++** Given a SELECT statement, generate a Table structure that describes
++** the result set of that SELECT.
++*/
++Table *sqliteResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
++ Table *pTab;
++ int i, j;
++ ExprList *pEList;
++ Column *aCol;
++
++ if( fillInColumnList(pParse, pSelect) ){
++ return 0;
++ }
++ pTab = sqliteMalloc( sizeof(Table) );
++ if( pTab==0 ){
++ return 0;
++ }
++ pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
++ pEList = pSelect->pEList;
++ pTab->nCol = pEList->nExpr;
++ assert( pTab->nCol>0 );
++ pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
++ for(i=0; i<pTab->nCol; i++){
++ Expr *p, *pR;
++ if( pEList->a[i].zName ){
++ aCol[i].zName = sqliteStrDup(pEList->a[i].zName);
++ }else if( (p=pEList->a[i].pExpr)->op==TK_DOT
++ && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
++ int cnt;
++ sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, 0);
++ for(j=cnt=0; j<i; j++){
++ if( sqliteStrICmp(aCol[j].zName, aCol[i].zName)==0 ){
++ int n;
++ char zBuf[30];
++ sprintf(zBuf,"_%d",++cnt);
++ n = strlen(zBuf);
++ sqliteSetNString(&aCol[i].zName, pR->token.z, pR->token.n, zBuf, n,0);
++ j = -1;
++ }
++ }
++ }else if( p->span.z && p->span.z[0] ){
++ sqliteSetNString(&pTab->aCol[i].zName, p->span.z, p->span.n, 0);
++ }else{
++ char zBuf[30];
++ sprintf(zBuf, "column%d", i+1);
++ aCol[i].zName = sqliteStrDup(zBuf);
++ }
++ sqliteDequote(aCol[i].zName);
++ }
++ pTab->iPKey = -1;
++ return pTab;
++}
++
++/*
++** For the given SELECT statement, do three things.
++**
++** (1) Fill in the pTabList->a[].pTab fields in the SrcList that
++** defines the set of tables that should be scanned. For views,
++** fill pTabList->a[].pSelect with a copy of the SELECT statement
++** that implements the view. A copy is made of the view's SELECT
++** statement so that we can freely modify or delete that statement
++** without worrying about messing up the presistent representation
++** of the view.
++**
++** (2) Add terms to the WHERE clause to accomodate the NATURAL keyword
++** on joins and the ON and USING clause of joins.
++**
++** (3) Scan the list of columns in the result set (pEList) looking
++** for instances of the "*" operator or the TABLE.* operator.
++** If found, expand each "*" to be every column in every table
++** and TABLE.* to be every column in TABLE.
++**
++** Return 0 on success. If there are problems, leave an error message
++** in pParse and return non-zero.
++*/
++static int fillInColumnList(Parse *pParse, Select *p){
++ int i, j, k, rc;
++ SrcList *pTabList;
++ ExprList *pEList;
++ Table *pTab;
++
++ if( p==0 || p->pSrc==0 ) return 1;
++ pTabList = p->pSrc;
++ pEList = p->pEList;
++
++ /* Look up every table in the table list.
++ */
++ for(i=0; i<pTabList->nSrc; i++){
++ if( pTabList->a[i].pTab ){
++ /* This routine has run before! No need to continue */
++ return 0;
++ }
++ if( pTabList->a[i].zName==0 ){
++ /* A sub-query in the FROM clause of a SELECT */
++ assert( pTabList->a[i].pSelect!=0 );
++ if( pTabList->a[i].zAlias==0 ){
++ char zFakeName[60];
++ sprintf(zFakeName, "sqlite_subquery_%p_",
++ (void*)pTabList->a[i].pSelect);
++ sqliteSetString(&pTabList->a[i].zAlias, zFakeName, 0);
++ }
++ pTabList->a[i].pTab = pTab =
++ sqliteResultSetOfSelect(pParse, pTabList->a[i].zAlias,
++ pTabList->a[i].pSelect);
++ if( pTab==0 ){
++ return 1;
++ }
++ /* The isTransient flag indicates that the Table structure has been
++ ** dynamically allocated and may be freed at any time. In other words,
++ ** pTab is not pointing to a persistent table structure that defines
++ ** part of the schema. */
++ pTab->isTransient = 1;
++ }else{
++ /* An ordinary table or view name in the FROM clause */
++ pTabList->a[i].pTab = pTab =
++ sqliteLocateTable(pParse,pTabList->a[i].zName,pTabList->a[i].zDatabase);
++ if( pTab==0 ){
++ return 1;
++ }
++ if( pTab->pSelect ){
++ /* We reach here if the named table is a really a view */
++ if( sqliteViewGetColumnNames(pParse, pTab) ){
++ return 1;
++ }
++ /* If pTabList->a[i].pSelect!=0 it means we are dealing with a
++ ** view within a view. The SELECT structure has already been
++ ** copied by the outer view so we can skip the copy step here
++ ** in the inner view.
++ */
++ if( pTabList->a[i].pSelect==0 ){
++ pTabList->a[i].pSelect = sqliteSelectDup(pTab->pSelect);
++ }
++ }
++ }
++ }
++
++ /* Process NATURAL keywords, and ON and USING clauses of joins.
++ */
++ if( sqliteProcessJoin(pParse, p) ) return 1;
++
++ /* For every "*" that occurs in the column list, insert the names of
++ ** all columns in all tables. And for every TABLE.* insert the names
++ ** of all columns in TABLE. The parser inserted a special expression
++ ** with the TK_ALL operator for each "*" that it found in the column list.
++ ** The following code just has to locate the TK_ALL expressions and expand
++ ** each one to the list of all columns in all tables.
++ **
++ ** The first loop just checks to see if there are any "*" operators
++ ** that need expanding.
++ */
++ for(k=0; k<pEList->nExpr; k++){
++ Expr *pE = pEList->a[k].pExpr;
++ if( pE->op==TK_ALL ) break;
++ if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
++ && pE->pLeft && pE->pLeft->op==TK_ID ) break;
++ }
++ rc = 0;
++ if( k<pEList->nExpr ){
++ /*
++ ** If we get here it means the result set contains one or more "*"
++ ** operators that need to be expanded. Loop through each expression
++ ** in the result set and expand them one by one.
++ */
++ struct ExprList_item *a = pEList->a;
++ ExprList *pNew = 0;
++ for(k=0; k<pEList->nExpr; k++){
++ Expr *pE = a[k].pExpr;
++ if( pE->op!=TK_ALL &&
++ (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
++ /* This particular expression does not need to be expanded.
++ */
++ pNew = sqliteExprListAppend(pNew, a[k].pExpr, 0);
++ pNew->a[pNew->nExpr-1].zName = a[k].zName;
++ a[k].pExpr = 0;
++ a[k].zName = 0;
++ }else{
++ /* This expression is a "*" or a "TABLE.*" and needs to be
++ ** expanded. */
++ int tableSeen = 0; /* Set to 1 when TABLE matches */
++ char *zTName; /* text of name of TABLE */
++ if( pE->op==TK_DOT && pE->pLeft ){
++ zTName = sqliteTableNameFromToken(&pE->pLeft->token);
++ }else{
++ zTName = 0;
++ }
++ for(i=0; i<pTabList->nSrc; i++){
++ Table *pTab = pTabList->a[i].pTab;
++ char *zTabName = pTabList->a[i].zAlias;
++ if( zTabName==0 || zTabName[0]==0 ){
++ zTabName = pTab->zName;
++ }
++ if( zTName && (zTabName==0 || zTabName[0]==0 ||
++ sqliteStrICmp(zTName, zTabName)!=0) ){
++ continue;
++ }
++ tableSeen = 1;
++ for(j=0; j<pTab->nCol; j++){
++ Expr *pExpr, *pLeft, *pRight;
++ char *zName = pTab->aCol[j].zName;
++
++ if( i>0 && (pTabList->a[i-1].jointype & JT_NATURAL)!=0 &&
++ columnIndex(pTabList->a[i-1].pTab, zName)>=0 ){
++ /* In a NATURAL join, omit the join columns from the
++ ** table on the right */
++ continue;
++ }
++ if( i>0 && sqliteIdListIndex(pTabList->a[i-1].pUsing, zName)>=0 ){
++ /* In a join with a USING clause, omit columns in the
++ ** using clause from the table on the right. */
++ continue;
++ }
++ pRight = sqliteExpr(TK_ID, 0, 0, 0);
++ if( pRight==0 ) break;
++ pRight->token.z = zName;
++ pRight->token.n = strlen(zName);
++ pRight->token.dyn = 0;
++ if( zTabName && pTabList->nSrc>1 ){
++ pLeft = sqliteExpr(TK_ID, 0, 0, 0);
++ pExpr = sqliteExpr(TK_DOT, pLeft, pRight, 0);
++ if( pExpr==0 ) break;
++ pLeft->token.z = zTabName;
++ pLeft->token.n = strlen(zTabName);
++ pLeft->token.dyn = 0;
++ sqliteSetString((char**)&pExpr->span.z, zTabName, ".", zName, 0);
++ pExpr->span.n = strlen(pExpr->span.z);
++ pExpr->span.dyn = 1;
++ pExpr->token.z = 0;
++ pExpr->token.n = 0;
++ pExpr->token.dyn = 0;
++ }else{
++ pExpr = pRight;
++ pExpr->span = pExpr->token;
++ }
++ pNew = sqliteExprListAppend(pNew, pExpr, 0);
++ }
++ }
++ if( !tableSeen ){
++ if( zTName ){
++ sqliteErrorMsg(pParse, "no such table: %s", zTName);
++ }else{
++ sqliteErrorMsg(pParse, "no tables specified");
++ }
++ rc = 1;
++ }
++ sqliteFree(zTName);
++ }
++ }
++ sqliteExprListDelete(pEList);
++ p->pEList = pNew;
++ }
++ return rc;
++}
++
++/*
++** This routine recursively unlinks the Select.pSrc.a[].pTab pointers
++** in a select structure. It just sets the pointers to NULL. This
++** routine is recursive in the sense that if the Select.pSrc.a[].pSelect
++** pointer is not NULL, this routine is called recursively on that pointer.
++**
++** This routine is called on the Select structure that defines a
++** VIEW in order to undo any bindings to tables. This is necessary
++** because those tables might be DROPed by a subsequent SQL command.
++** If the bindings are not removed, then the Select.pSrc->a[].pTab field
++** will be left pointing to a deallocated Table structure after the
++** DROP and a coredump will occur the next time the VIEW is used.
++*/
++void sqliteSelectUnbind(Select *p){
++ int i;
++ SrcList *pSrc = p->pSrc;
++ Table *pTab;
++ if( p==0 ) return;
++ for(i=0; i<pSrc->nSrc; i++){
++ if( (pTab = pSrc->a[i].pTab)!=0 ){
++ if( pTab->isTransient ){
++ sqliteDeleteTable(0, pTab);
++ }
++ pSrc->a[i].pTab = 0;
++ if( pSrc->a[i].pSelect ){
++ sqliteSelectUnbind(pSrc->a[i].pSelect);
++ }
++ }
++ }
++}
++
++/*
++** This routine associates entries in an ORDER BY expression list with
++** columns in a result. For each ORDER BY expression, the opcode of
++** the top-level node is changed to TK_COLUMN and the iColumn value of
++** the top-level node is filled in with column number and the iTable
++** value of the top-level node is filled with iTable parameter.
++**
++** If there are prior SELECT clauses, they are processed first. A match
++** in an earlier SELECT takes precedence over a later SELECT.
++**
++** Any entry that does not match is flagged as an error. The number
++** of errors is returned.
++**
++** This routine does NOT correctly initialize the Expr.dataType field
++** of the ORDER BY expressions. The multiSelectSortOrder() routine
++** must be called to do that after the individual select statements
++** have all been analyzed. This routine is unable to compute Expr.dataType
++** because it must be called before the individual select statements
++** have been analyzed.
++*/
++static int matchOrderbyToColumn(
++ Parse *pParse, /* A place to leave error messages */
++ Select *pSelect, /* Match to result columns of this SELECT */
++ ExprList *pOrderBy, /* The ORDER BY values to match against columns */
++ int iTable, /* Insert this value in iTable */
++ int mustComplete /* If TRUE all ORDER BYs must match */
++){
++ int nErr = 0;
++ int i, j;
++ ExprList *pEList;
++
++ if( pSelect==0 || pOrderBy==0 ) return 1;
++ if( mustComplete ){
++ for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
++ }
++ if( fillInColumnList(pParse, pSelect) ){
++ return 1;
++ }
++ if( pSelect->pPrior ){
++ if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
++ return 1;
++ }
++ }
++ pEList = pSelect->pEList;
++ for(i=0; i<pOrderBy->nExpr; i++){
++ Expr *pE = pOrderBy->a[i].pExpr;
++ int iCol = -1;
++ if( pOrderBy->a[i].done ) continue;
++ if( sqliteExprIsInteger(pE, &iCol) ){
++ if( iCol<=0 || iCol>pEList->nExpr ){
++ sqliteErrorMsg(pParse,
++ "ORDER BY position %d should be between 1 and %d",
++ iCol, pEList->nExpr);
++ nErr++;
++ break;
++ }
++ if( !mustComplete ) continue;
++ iCol--;
++ }
++ for(j=0; iCol<0 && j<pEList->nExpr; j++){
++ if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
++ char *zName, *zLabel;
++ zName = pEList->a[j].zName;
++ assert( pE->token.z );
++ zLabel = sqliteStrNDup(pE->token.z, pE->token.n);
++ sqliteDequote(zLabel);
++ if( sqliteStrICmp(zName, zLabel)==0 ){
++ iCol = j;
++ }
++ sqliteFree(zLabel);
++ }
++ if( iCol<0 && sqliteExprCompare(pE, pEList->a[j].pExpr) ){
++ iCol = j;
++ }
++ }
++ if( iCol>=0 ){
++ pE->op = TK_COLUMN;
++ pE->iColumn = iCol;
++ pE->iTable = iTable;
++ pOrderBy->a[i].done = 1;
++ }
++ if( iCol<0 && mustComplete ){
++ sqliteErrorMsg(pParse,
++ "ORDER BY term number %d does not match any result column", i+1);
++ nErr++;
++ break;
++ }
++ }
++ return nErr;
++}
++
++/*
++** Get a VDBE for the given parser context. Create a new one if necessary.
++** If an error occurs, return NULL and leave a message in pParse.
++*/
++Vdbe *sqliteGetVdbe(Parse *pParse){
++ Vdbe *v = pParse->pVdbe;
++ if( v==0 ){
++ v = pParse->pVdbe = sqliteVdbeCreate(pParse->db);
++ }
++ return v;
++}
++
++/*
++** This routine sets the Expr.dataType field on all elements of
++** the pOrderBy expression list. The pOrderBy list will have been
++** set up by matchOrderbyToColumn(). Hence each expression has
++** a TK_COLUMN as its root node. The Expr.iColumn refers to a
++** column in the result set. The datatype is set to SQLITE_SO_TEXT
++** if the corresponding column in p and every SELECT to the left of
++** p has a datatype of SQLITE_SO_TEXT. If the cooressponding column
++** in p or any of the left SELECTs is SQLITE_SO_NUM, then the datatype
++** of the order-by expression is set to SQLITE_SO_NUM.
++**
++** Examples:
++**
++** CREATE TABLE one(a INTEGER, b TEXT);
++** CREATE TABLE two(c VARCHAR(5), d FLOAT);
++**
++** SELECT b, b FROM one UNION SELECT d, c FROM two ORDER BY 1, 2;
++**
++** The primary sort key will use SQLITE_SO_NUM because the "d" in
++** the second SELECT is numeric. The 1st column of the first SELECT
++** is text but that does not matter because a numeric always overrides
++** a text.
++**
++** The secondary key will use the SQLITE_SO_TEXT sort order because
++** both the (second) "b" in the first SELECT and the "c" in the second
++** SELECT have a datatype of text.
++*/
++static void multiSelectSortOrder(Select *p, ExprList *pOrderBy){
++ int i;
++ ExprList *pEList;
++ if( pOrderBy==0 ) return;
++ if( p==0 ){
++ for(i=0; i<pOrderBy->nExpr; i++){
++ pOrderBy->a[i].pExpr->dataType = SQLITE_SO_TEXT;
++ }
++ return;
++ }
++ multiSelectSortOrder(p->pPrior, pOrderBy);
++ pEList = p->pEList;
++ for(i=0; i<pOrderBy->nExpr; i++){
++ Expr *pE = pOrderBy->a[i].pExpr;
++ if( pE->dataType==SQLITE_SO_NUM ) continue;
++ assert( pE->iColumn>=0 );
++ if( pEList->nExpr>pE->iColumn ){
++ pE->dataType = sqliteExprType(pEList->a[pE->iColumn].pExpr);
++ }
++ }
++}
++
++/*
++** Compute the iLimit and iOffset fields of the SELECT based on the
++** nLimit and nOffset fields. nLimit and nOffset hold the integers
++** that appear in the original SQL statement after the LIMIT and OFFSET
++** keywords. Or that hold -1 and 0 if those keywords are omitted.
++** iLimit and iOffset are the integer memory register numbers for
++** counters used to compute the limit and offset. If there is no
++** limit and/or offset, then iLimit and iOffset are negative.
++**
++** This routine changes the values if iLimit and iOffset only if
++** a limit or offset is defined by nLimit and nOffset. iLimit and
++** iOffset should have been preset to appropriate default values
++** (usually but not always -1) prior to calling this routine.
++** Only if nLimit>=0 or nOffset>0 do the limit registers get
++** redefined. The UNION ALL operator uses this property to force
++** the reuse of the same limit and offset registers across multiple
++** SELECT statements.
++*/
++static void computeLimitRegisters(Parse *pParse, Select *p){
++ /*
++ ** If the comparison is p->nLimit>0 then "LIMIT 0" shows
++ ** all rows. It is the same as no limit. If the comparision is
++ ** p->nLimit>=0 then "LIMIT 0" show no rows at all.
++ ** "LIMIT -1" always shows all rows. There is some
++ ** contraversy about what the correct behavior should be.
++ ** The current implementation interprets "LIMIT 0" to mean
++ ** no rows.
++ */
++ if( p->nLimit>=0 ){
++ int iMem = pParse->nMem++;
++ Vdbe *v = sqliteGetVdbe(pParse);
++ if( v==0 ) return;
++ sqliteVdbeAddOp(v, OP_Integer, -p->nLimit, 0);
++ sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
++ p->iLimit = iMem;
++ }
++ if( p->nOffset>0 ){
++ int iMem = pParse->nMem++;
++ Vdbe *v = sqliteGetVdbe(pParse);
++ if( v==0 ) return;
++ sqliteVdbeAddOp(v, OP_Integer, -p->nOffset, 0);
++ sqliteVdbeAddOp(v, OP_MemStore, iMem, 1);
++ p->iOffset = iMem;
++ }
++}
++
++/*
++** This routine is called to process a query that is really the union
++** or intersection of two or more separate queries.
++**
++** "p" points to the right-most of the two queries. the query on the
++** left is p->pPrior. The left query could also be a compound query
++** in which case this routine will be called recursively.
++**
++** The results of the total query are to be written into a destination
++** of type eDest with parameter iParm.
++**
++** Example 1: Consider a three-way compound SQL statement.
++**
++** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
++**
++** This statement is parsed up as follows:
++**
++** SELECT c FROM t3
++** |
++** `-----> SELECT b FROM t2
++** |
++** `------> SELECT a FROM t1
++**
++** The arrows in the diagram above represent the Select.pPrior pointer.
++** So if this routine is called with p equal to the t3 query, then
++** pPrior will be the t2 query. p->op will be TK_UNION in this case.
++**
++** Notice that because of the way SQLite parses compound SELECTs, the
++** individual selects always group from left to right.
++*/
++static int multiSelect(Parse *pParse, Select *p, int eDest, int iParm){
++ int rc; /* Success code from a subroutine */
++ Select *pPrior; /* Another SELECT immediately to our left */
++ Vdbe *v; /* Generate code to this VDBE */
++
++ /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
++ ** the last SELECT in the series may have an ORDER BY or LIMIT.
++ */
++ if( p==0 || p->pPrior==0 ) return 1;
++ pPrior = p->pPrior;
++ if( pPrior->pOrderBy ){
++ sqliteErrorMsg(pParse,"ORDER BY clause should come after %s not before",
++ selectOpName(p->op));
++ return 1;
++ }
++ if( pPrior->nLimit>=0 || pPrior->nOffset>0 ){
++ sqliteErrorMsg(pParse,"LIMIT clause should come after %s not before",
++ selectOpName(p->op));
++ return 1;
++ }
++
++ /* Make sure we have a valid query engine. If not, create a new one.
++ */
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ) return 1;
++
++ /* Create the destination temporary table if necessary
++ */
++ if( eDest==SRT_TempTable ){
++ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
++ eDest = SRT_Table;
++ }
++
++ /* Generate code for the left and right SELECT statements.
++ */
++ switch( p->op ){
++ case TK_ALL: {
++ if( p->pOrderBy==0 ){
++ pPrior->nLimit = p->nLimit;
++ pPrior->nOffset = p->nOffset;
++ rc = sqliteSelect(pParse, pPrior, eDest, iParm, 0, 0, 0);
++ if( rc ) return rc;
++ p->pPrior = 0;
++ p->iLimit = pPrior->iLimit;
++ p->iOffset = pPrior->iOffset;
++ p->nLimit = -1;
++ p->nOffset = 0;
++ rc = sqliteSelect(pParse, p, eDest, iParm, 0, 0, 0);
++ p->pPrior = pPrior;
++ if( rc ) return rc;
++ break;
++ }
++ /* For UNION ALL ... ORDER BY fall through to the next case */
++ }
++ case TK_EXCEPT:
++ case TK_UNION: {
++ int unionTab; /* Cursor number of the temporary table holding result */
++ int op; /* One of the SRT_ operations to apply to self */
++ int priorOp; /* The SRT_ operation to apply to prior selects */
++ int nLimit, nOffset; /* Saved values of p->nLimit and p->nOffset */
++ ExprList *pOrderBy; /* The ORDER BY clause for the right SELECT */
++
++ priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
++ if( eDest==priorOp && p->pOrderBy==0 && p->nLimit<0 && p->nOffset==0 ){
++ /* We can reuse a temporary table generated by a SELECT to our
++ ** right.
++ */
++ unionTab = iParm;
++ }else{
++ /* We will need to create our own temporary table to hold the
++ ** intermediate results.
++ */
++ unionTab = pParse->nTab++;
++ if( p->pOrderBy
++ && matchOrderbyToColumn(pParse, p, p->pOrderBy, unionTab, 1) ){
++ return 1;
++ }
++ if( p->op!=TK_ALL ){
++ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 1);
++ sqliteVdbeAddOp(v, OP_KeyAsData, unionTab, 1);
++ }else{
++ sqliteVdbeAddOp(v, OP_OpenTemp, unionTab, 0);
++ }
++ }
++
++ /* Code the SELECT statements to our left
++ */
++ rc = sqliteSelect(pParse, pPrior, priorOp, unionTab, 0, 0, 0);
++ if( rc ) return rc;
++
++ /* Code the current SELECT statement
++ */
++ switch( p->op ){
++ case TK_EXCEPT: op = SRT_Except; break;
++ case TK_UNION: op = SRT_Union; break;
++ case TK_ALL: op = SRT_Table; break;
++ }
++ p->pPrior = 0;
++ pOrderBy = p->pOrderBy;
++ p->pOrderBy = 0;
++ nLimit = p->nLimit;
++ p->nLimit = -1;
++ nOffset = p->nOffset;
++ p->nOffset = 0;
++ rc = sqliteSelect(pParse, p, op, unionTab, 0, 0, 0);
++ p->pPrior = pPrior;
++ p->pOrderBy = pOrderBy;
++ p->nLimit = nLimit;
++ p->nOffset = nOffset;
++ if( rc ) return rc;
++
++ /* Convert the data in the temporary table into whatever form
++ ** it is that we currently need.
++ */
++ if( eDest!=priorOp || unionTab!=iParm ){
++ int iCont, iBreak, iStart;
++ assert( p->pEList );
++ if( eDest==SRT_Callback ){
++ generateColumnNames(pParse, 0, p->pEList);
++ generateColumnTypes(pParse, p->pSrc, p->pEList);
++ }
++ iBreak = sqliteVdbeMakeLabel(v);
++ iCont = sqliteVdbeMakeLabel(v);
++ sqliteVdbeAddOp(v, OP_Rewind, unionTab, iBreak);
++ computeLimitRegisters(pParse, p);
++ iStart = sqliteVdbeCurrentAddr(v);
++ multiSelectSortOrder(p, p->pOrderBy);
++ rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
++ p->pOrderBy, -1, eDest, iParm,
++ iCont, iBreak);
++ if( rc ) return 1;
++ sqliteVdbeResolveLabel(v, iCont);
++ sqliteVdbeAddOp(v, OP_Next, unionTab, iStart);
++ sqliteVdbeResolveLabel(v, iBreak);
++ sqliteVdbeAddOp(v, OP_Close, unionTab, 0);
++ if( p->pOrderBy ){
++ generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
++ }
++ }
++ break;
++ }
++ case TK_INTERSECT: {
++ int tab1, tab2;
++ int iCont, iBreak, iStart;
++ int nLimit, nOffset;
++
++ /* INTERSECT is different from the others since it requires
++ ** two temporary tables. Hence it has its own case. Begin
++ ** by allocating the tables we will need.
++ */
++ tab1 = pParse->nTab++;
++ tab2 = pParse->nTab++;
++ if( p->pOrderBy && matchOrderbyToColumn(pParse,p,p->pOrderBy,tab1,1) ){
++ return 1;
++ }
++ sqliteVdbeAddOp(v, OP_OpenTemp, tab1, 1);
++ sqliteVdbeAddOp(v, OP_KeyAsData, tab1, 1);
++
++ /* Code the SELECTs to our left into temporary table "tab1".
++ */
++ rc = sqliteSelect(pParse, pPrior, SRT_Union, tab1, 0, 0, 0);
++ if( rc ) return rc;
++
++ /* Code the current SELECT into temporary table "tab2"
++ */
++ sqliteVdbeAddOp(v, OP_OpenTemp, tab2, 1);
++ sqliteVdbeAddOp(v, OP_KeyAsData, tab2, 1);
++ p->pPrior = 0;
++ nLimit = p->nLimit;
++ p->nLimit = -1;
++ nOffset = p->nOffset;
++ p->nOffset = 0;
++ rc = sqliteSelect(pParse, p, SRT_Union, tab2, 0, 0, 0);
++ p->pPrior = pPrior;
++ p->nLimit = nLimit;
++ p->nOffset = nOffset;
++ if( rc ) return rc;
++
++ /* Generate code to take the intersection of the two temporary
++ ** tables.
++ */
++ assert( p->pEList );
++ if( eDest==SRT_Callback ){
++ generateColumnNames(pParse, 0, p->pEList);
++ generateColumnTypes(pParse, p->pSrc, p->pEList);
++ }
++ iBreak = sqliteVdbeMakeLabel(v);
++ iCont = sqliteVdbeMakeLabel(v);
++ sqliteVdbeAddOp(v, OP_Rewind, tab1, iBreak);
++ computeLimitRegisters(pParse, p);
++ iStart = sqliteVdbeAddOp(v, OP_FullKey, tab1, 0);
++ sqliteVdbeAddOp(v, OP_NotFound, tab2, iCont);
++ multiSelectSortOrder(p, p->pOrderBy);
++ rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
++ p->pOrderBy, -1, eDest, iParm,
++ iCont, iBreak);
++ if( rc ) return 1;
++ sqliteVdbeResolveLabel(v, iCont);
++ sqliteVdbeAddOp(v, OP_Next, tab1, iStart);
++ sqliteVdbeResolveLabel(v, iBreak);
++ sqliteVdbeAddOp(v, OP_Close, tab2, 0);
++ sqliteVdbeAddOp(v, OP_Close, tab1, 0);
++ if( p->pOrderBy ){
++ generateSortTail(p, v, p->pEList->nExpr, eDest, iParm);
++ }
++ break;
++ }
++ }
++ assert( p->pEList && pPrior->pEList );
++ if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
++ sqliteErrorMsg(pParse, "SELECTs to the left and right of %s"
++ " do not have the same number of result columns", selectOpName(p->op));
++ return 1;
++ }
++ return 0;
++}
++
++/*
++** Scan through the expression pExpr. Replace every reference to
++** a column in table number iTable with a copy of the iColumn-th
++** entry in pEList. (But leave references to the ROWID column
++** unchanged.)
++**
++** This routine is part of the flattening procedure. A subquery
++** whose result set is defined by pEList appears as entry in the
++** FROM clause of a SELECT such that the VDBE cursor assigned to that
++** FORM clause entry is iTable. This routine make the necessary
++** changes to pExpr so that it refers directly to the source table
++** of the subquery rather the result set of the subquery.
++*/
++static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */
++static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
++ if( pExpr==0 ) return;
++ if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
++ if( pExpr->iColumn<0 ){
++ pExpr->op = TK_NULL;
++ }else{
++ Expr *pNew;
++ assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
++ assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
++ pNew = pEList->a[pExpr->iColumn].pExpr;
++ assert( pNew!=0 );
++ pExpr->op = pNew->op;
++ pExpr->dataType = pNew->dataType;
++ assert( pExpr->pLeft==0 );
++ pExpr->pLeft = sqliteExprDup(pNew->pLeft);
++ assert( pExpr->pRight==0 );
++ pExpr->pRight = sqliteExprDup(pNew->pRight);
++ assert( pExpr->pList==0 );
++ pExpr->pList = sqliteExprListDup(pNew->pList);
++ pExpr->iTable = pNew->iTable;
++ pExpr->iColumn = pNew->iColumn;
++ pExpr->iAgg = pNew->iAgg;
++ sqliteTokenCopy(&pExpr->token, &pNew->token);
++ sqliteTokenCopy(&pExpr->span, &pNew->span);
++ }
++ }else{
++ substExpr(pExpr->pLeft, iTable, pEList);
++ substExpr(pExpr->pRight, iTable, pEList);
++ substExprList(pExpr->pList, iTable, pEList);
++ }
++}
++static void
++substExprList(ExprList *pList, int iTable, ExprList *pEList){
++ int i;
++ if( pList==0 ) return;
++ for(i=0; i<pList->nExpr; i++){
++ substExpr(pList->a[i].pExpr, iTable, pEList);
++ }
++}
++
++/*
++** This routine attempts to flatten subqueries in order to speed
++** execution. It returns 1 if it makes changes and 0 if no flattening
++** occurs.
++**
++** To understand the concept of flattening, consider the following
++** query:
++**
++** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
++**
++** The default way of implementing this query is to execute the
++** subquery first and store the results in a temporary table, then
++** run the outer query on that temporary table. This requires two
++** passes over the data. Furthermore, because the temporary table
++** has no indices, the WHERE clause on the outer query cannot be
++** optimized.
++**
++** This routine attempts to rewrite queries such as the above into
++** a single flat select, like this:
++**
++** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
++**
++** The code generated for this simpification gives the same result
++** but only has to scan the data once. And because indices might
++** exist on the table t1, a complete scan of the data might be
++** avoided.
++**
++** Flattening is only attempted if all of the following are true:
++**
++** (1) The subquery and the outer query do not both use aggregates.
++**
++** (2) The subquery is not an aggregate or the outer query is not a join.
++**
++** (3) The subquery is not the right operand of a left outer join, or
++** the subquery is not itself a join. (Ticket #306)
++**
++** (4) The subquery is not DISTINCT or the outer query is not a join.
++**
++** (5) The subquery is not DISTINCT or the outer query does not use
++** aggregates.
++**
++** (6) The subquery does not use aggregates or the outer query is not
++** DISTINCT.
++**
++** (7) The subquery has a FROM clause.
++**
++** (8) The subquery does not use LIMIT or the outer query is not a join.
++**
++** (9) The subquery does not use LIMIT or the outer query does not use
++** aggregates.
++**
++** (10) The subquery does not use aggregates or the outer query does not
++** use LIMIT.
++**
++** (11) The subquery and the outer query do not both have ORDER BY clauses.
++**
++** (12) The subquery is not the right term of a LEFT OUTER JOIN or the
++** subquery has no WHERE clause. (added by ticket #350)
++**
++** In this routine, the "p" parameter is a pointer to the outer query.
++** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
++** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
++**
++** If flattening is not attempted, this routine is a no-op and returns 0.
++** If flattening is attempted this routine returns 1.
++**
++** All of the expression analysis must occur on both the outer query and
++** the subquery before this routine runs.
++*/
++static int flattenSubquery(
++ Parse *pParse, /* The parsing context */
++ Select *p, /* The parent or outer SELECT statement */
++ int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
++ int isAgg, /* True if outer SELECT uses aggregate functions */
++ int subqueryIsAgg /* True if the subquery uses aggregate functions */
++){
++ Select *pSub; /* The inner query or "subquery" */
++ SrcList *pSrc; /* The FROM clause of the outer query */
++ SrcList *pSubSrc; /* The FROM clause of the subquery */
++ ExprList *pList; /* The result set of the outer query */
++ int iParent; /* VDBE cursor number of the pSub result set temp table */
++ int i;
++ Expr *pWhere;
++
++ /* Check to see if flattening is permitted. Return 0 if not.
++ */
++ if( p==0 ) return 0;
++ pSrc = p->pSrc;
++ assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
++ pSub = pSrc->a[iFrom].pSelect;
++ assert( pSub!=0 );
++ if( isAgg && subqueryIsAgg ) return 0;
++ if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;
++ pSubSrc = pSub->pSrc;
++ assert( pSubSrc );
++ if( pSubSrc->nSrc==0 ) return 0;
++ if( (pSub->isDistinct || pSub->nLimit>=0) && (pSrc->nSrc>1 || isAgg) ){
++ return 0;
++ }
++ if( (p->isDistinct || p->nLimit>=0) && subqueryIsAgg ) return 0;
++ if( p->pOrderBy && pSub->pOrderBy ) return 0;
++
++ /* Restriction 3: If the subquery is a join, make sure the subquery is
++ ** not used as the right operand of an outer join. Examples of why this
++ ** is not allowed:
++ **
++ ** t1 LEFT OUTER JOIN (t2 JOIN t3)
++ **
++ ** If we flatten the above, we would get
++ **
++ ** (t1 LEFT OUTER JOIN t2) JOIN t3
++ **
++ ** which is not at all the same thing.
++ */
++ if( pSubSrc->nSrc>1 && iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0 ){
++ return 0;
++ }
++
++ /* Restriction 12: If the subquery is the right operand of a left outer
++ ** join, make sure the subquery has no WHERE clause.
++ ** An examples of why this is not allowed:
++ **
++ ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
++ **
++ ** If we flatten the above, we would get
++ **
++ ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
++ **
++ ** But the t2.x>0 test will always fail on a NULL row of t2, which
++ ** effectively converts the OUTER JOIN into an INNER JOIN.
++ */
++ if( iFrom>0 && (pSrc->a[iFrom-1].jointype & JT_OUTER)!=0
++ && pSub->pWhere!=0 ){
++ return 0;
++ }
++
++ /* If we reach this point, it means flattening is permitted for the
++ ** iFrom-th entry of the FROM clause in the outer query.
++ */
++
++ /* Move all of the FROM elements of the subquery into the
++ ** the FROM clause of the outer query. Before doing this, remember
++ ** the cursor number for the original outer query FROM element in
++ ** iParent. The iParent cursor will never be used. Subsequent code
++ ** will scan expressions looking for iParent references and replace
++ ** those references with expressions that resolve to the subquery FROM
++ ** elements we are now copying in.
++ */
++ iParent = pSrc->a[iFrom].iCursor;
++ {
++ int nSubSrc = pSubSrc->nSrc;
++ int jointype = pSrc->a[iFrom].jointype;
++
++ if( pSrc->a[iFrom].pTab && pSrc->a[iFrom].pTab->isTransient ){
++ sqliteDeleteTable(0, pSrc->a[iFrom].pTab);
++ }
++ sqliteFree(pSrc->a[iFrom].zDatabase);
++ sqliteFree(pSrc->a[iFrom].zName);
++ sqliteFree(pSrc->a[iFrom].zAlias);
++ if( nSubSrc>1 ){
++ int extra = nSubSrc - 1;
++ for(i=1; i<nSubSrc; i++){
++ pSrc = sqliteSrcListAppend(pSrc, 0, 0);
++ }
++ p->pSrc = pSrc;
++ for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
++ pSrc->a[i] = pSrc->a[i-extra];
++ }
++ }
++ for(i=0; i<nSubSrc; i++){
++ pSrc->a[i+iFrom] = pSubSrc->a[i];
++ memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
++ }
++ pSrc->a[iFrom+nSubSrc-1].jointype = jointype;
++ }
++
++ /* Now begin substituting subquery result set expressions for
++ ** references to the iParent in the outer query.
++ **
++ ** Example:
++ **
++ ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
++ ** \ \_____________ subquery __________/ /
++ ** \_____________________ outer query ______________________________/
++ **
++ ** We look at every expression in the outer query and every place we see
++ ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
++ */
++ substExprList(p->pEList, iParent, pSub->pEList);
++ pList = p->pEList;
++ for(i=0; i<pList->nExpr; i++){
++ Expr *pExpr;
++ if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
++ pList->a[i].zName = sqliteStrNDup(pExpr->span.z, pExpr->span.n);
++ }
++ }
++ if( isAgg ){
++ substExprList(p->pGroupBy, iParent, pSub->pEList);
++ substExpr(p->pHaving, iParent, pSub->pEList);
++ }
++ if( pSub->pOrderBy ){
++ assert( p->pOrderBy==0 );
++ p->pOrderBy = pSub->pOrderBy;
++ pSub->pOrderBy = 0;
++ }else if( p->pOrderBy ){
++ substExprList(p->pOrderBy, iParent, pSub->pEList);
++ }
++ if( pSub->pWhere ){
++ pWhere = sqliteExprDup(pSub->pWhere);
++ }else{
++ pWhere = 0;
++ }
++ if( subqueryIsAgg ){
++ assert( p->pHaving==0 );
++ p->pHaving = p->pWhere;
++ p->pWhere = pWhere;
++ substExpr(p->pHaving, iParent, pSub->pEList);
++ if( pSub->pHaving ){
++ Expr *pHaving = sqliteExprDup(pSub->pHaving);
++ if( p->pHaving ){
++ p->pHaving = sqliteExpr(TK_AND, p->pHaving, pHaving, 0);
++ }else{
++ p->pHaving = pHaving;
++ }
++ }
++ assert( p->pGroupBy==0 );
++ p->pGroupBy = sqliteExprListDup(pSub->pGroupBy);
++ }else if( p->pWhere==0 ){
++ p->pWhere = pWhere;
++ }else{
++ substExpr(p->pWhere, iParent, pSub->pEList);
++ if( pWhere ){
++ p->pWhere = sqliteExpr(TK_AND, p->pWhere, pWhere, 0);
++ }
++ }
++
++ /* The flattened query is distinct if either the inner or the
++ ** outer query is distinct.
++ */
++ p->isDistinct = p->isDistinct || pSub->isDistinct;
++
++ /* Transfer the limit expression from the subquery to the outer
++ ** query.
++ */
++ if( pSub->nLimit>=0 ){
++ if( p->nLimit<0 ){
++ p->nLimit = pSub->nLimit;
++ }else if( p->nLimit+p->nOffset > pSub->nLimit+pSub->nOffset ){
++ p->nLimit = pSub->nLimit + pSub->nOffset - p->nOffset;
++ }
++ }
++ p->nOffset += pSub->nOffset;
++
++ /* Finially, delete what is left of the subquery and return
++ ** success.
++ */
++ sqliteSelectDelete(pSub);
++ return 1;
++}
++
++/*
++** Analyze the SELECT statement passed in as an argument to see if it
++** is a simple min() or max() query. If it is and this query can be
++** satisfied using a single seek to the beginning or end of an index,
++** then generate the code for this SELECT and return 1. If this is not a
++** simple min() or max() query, then return 0;
++**
++** A simply min() or max() query looks like this:
++**
++** SELECT min(a) FROM table;
++** SELECT max(a) FROM table;
++**
++** The query may have only a single table in its FROM argument. There
++** can be no GROUP BY or HAVING or WHERE clauses. The result set must
++** be the min() or max() of a single column of the table. The column
++** in the min() or max() function must be indexed.
++**
++** The parameters to this routine are the same as for sqliteSelect().
++** See the header comment on that routine for additional information.
++*/
++static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
++ Expr *pExpr;
++ int iCol;
++ Table *pTab;
++ Index *pIdx;
++ int base;
++ Vdbe *v;
++ int seekOp;
++ int cont;
++ ExprList *pEList, *pList, eList;
++ struct ExprList_item eListItem;
++ SrcList *pSrc;
++
++
++ /* Check to see if this query is a simple min() or max() query. Return
++ ** zero if it is not.
++ */
++ if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
++ pSrc = p->pSrc;
++ if( pSrc->nSrc!=1 ) return 0;
++ pEList = p->pEList;
++ if( pEList->nExpr!=1 ) return 0;
++ pExpr = pEList->a[0].pExpr;
++ if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
++ pList = pExpr->pList;
++ if( pList==0 || pList->nExpr!=1 ) return 0;
++ if( pExpr->token.n!=3 ) return 0;
++ if( sqliteStrNICmp(pExpr->token.z,"min",3)==0 ){
++ seekOp = OP_Rewind;
++ }else if( sqliteStrNICmp(pExpr->token.z,"max",3)==0 ){
++ seekOp = OP_Last;
++ }else{
++ return 0;
++ }
++ pExpr = pList->a[0].pExpr;
++ if( pExpr->op!=TK_COLUMN ) return 0;
++ iCol = pExpr->iColumn;
++ pTab = pSrc->a[0].pTab;
++
++ /* If we get to here, it means the query is of the correct form.
++ ** Check to make sure we have an index and make pIdx point to the
++ ** appropriate index. If the min() or max() is on an INTEGER PRIMARY
++ ** key column, no index is necessary so set pIdx to NULL. If no
++ ** usable index is found, return 0.
++ */
++ if( iCol<0 ){
++ pIdx = 0;
++ }else{
++ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
++ assert( pIdx->nColumn>=1 );
++ if( pIdx->aiColumn[0]==iCol ) break;
++ }
++ if( pIdx==0 ) return 0;
++ }
++
++ /* Identify column types if we will be using the callback. This
++ ** step is skipped if the output is going to a table or a memory cell.
++ ** The column names have already been generated in the calling function.
++ */
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ) return 0;
++ if( eDest==SRT_Callback ){
++ generateColumnTypes(pParse, p->pSrc, p->pEList);
++ }
++
++ /* If the output is destined for a temporary table, open that table.
++ */
++ if( eDest==SRT_TempTable ){
++ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
++ }
++
++ /* Generating code to find the min or the max. Basically all we have
++ ** to do is find the first or the last entry in the chosen index. If
++ ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
++ ** or last entry in the main table.
++ */
++ sqliteCodeVerifySchema(pParse, pTab->iDb);
++ base = pSrc->a[0].iCursor;
++ computeLimitRegisters(pParse, p);
++ if( pSrc->a[0].pSelect==0 ){
++ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
++ sqliteVdbeOp3(v, OP_OpenRead, base, pTab->tnum, pTab->zName, 0);
++ }
++ cont = sqliteVdbeMakeLabel(v);
++ if( pIdx==0 ){
++ sqliteVdbeAddOp(v, seekOp, base, 0);
++ }else{
++ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
++ sqliteVdbeOp3(v, OP_OpenRead, base+1, pIdx->tnum, pIdx->zName, P3_STATIC);
++ if( seekOp==OP_Rewind ){
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ sqliteVdbeAddOp(v, OP_MakeKey, 1, 0);
++ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
++ seekOp = OP_MoveTo;
++ }
++ sqliteVdbeAddOp(v, seekOp, base+1, 0);
++ sqliteVdbeAddOp(v, OP_IdxRecno, base+1, 0);
++ sqliteVdbeAddOp(v, OP_Close, base+1, 0);
++ sqliteVdbeAddOp(v, OP_MoveTo, base, 0);
++ }
++ eList.nExpr = 1;
++ memset(&eListItem, 0, sizeof(eListItem));
++ eList.a = &eListItem;
++ eList.a[0].pExpr = pExpr;
++ selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, cont, cont);
++ sqliteVdbeResolveLabel(v, cont);
++ sqliteVdbeAddOp(v, OP_Close, base, 0);
++
++ return 1;
++}
++
++/*
++** Generate code for the given SELECT statement.
++**
++** The results are distributed in various ways depending on the
++** value of eDest and iParm.
++**
++** eDest Value Result
++** ------------ -------------------------------------------
++** SRT_Callback Invoke the callback for each row of the result.
++**
++** SRT_Mem Store first result in memory cell iParm
++**
++** SRT_Set Store results as keys of a table with cursor iParm
++**
++** SRT_Union Store results as a key in a temporary table iParm
++**
++** SRT_Except Remove results from the temporary table iParm.
++**
++** SRT_Table Store results in temporary table iParm
++**
++** The table above is incomplete. Additional eDist value have be added
++** since this comment was written. See the selectInnerLoop() function for
++** a complete listing of the allowed values of eDest and their meanings.
++**
++** This routine returns the number of errors. If any errors are
++** encountered, then an appropriate error message is left in
++** pParse->zErrMsg.
++**
++** This routine does NOT free the Select structure passed in. The
++** calling function needs to do that.
++**
++** The pParent, parentTab, and *pParentAgg fields are filled in if this
++** SELECT is a subquery. This routine may try to combine this SELECT
++** with its parent to form a single flat query. In so doing, it might
++** change the parent query from a non-aggregate to an aggregate query.
++** For that reason, the pParentAgg flag is passed as a pointer, so it
++** can be changed.
++**
++** Example 1: The meaning of the pParent parameter.
++**
++** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
++** \ \_______ subquery _______/ /
++** \ /
++** \____________________ outer query ___________________/
++**
++** This routine is called for the outer query first. For that call,
++** pParent will be NULL. During the processing of the outer query, this
++** routine is called recursively to handle the subquery. For the recursive
++** call, pParent will point to the outer query. Because the subquery is
++** the second element in a three-way join, the parentTab parameter will
++** be 1 (the 2nd value of a 0-indexed array.)
++*/
++int sqliteSelect(
++ Parse *pParse, /* The parser context */
++ Select *p, /* The SELECT statement being coded. */
++ int eDest, /* How to dispose of the results */
++ int iParm, /* A parameter used by the eDest disposal method */
++ Select *pParent, /* Another SELECT for which this is a sub-query */
++ int parentTab, /* Index in pParent->pSrc of this query */
++ int *pParentAgg /* True if pParent uses aggregate functions */
++){
++ int i;
++ WhereInfo *pWInfo;
++ Vdbe *v;
++ int isAgg = 0; /* True for select lists like "count(*)" */
++ ExprList *pEList; /* List of columns to extract. */
++ SrcList *pTabList; /* List of tables to select from */
++ Expr *pWhere; /* The WHERE clause. May be NULL */
++ ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
++ ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
++ Expr *pHaving; /* The HAVING clause. May be NULL */
++ int isDistinct; /* True if the DISTINCT keyword is present */
++ int distinct; /* Table to use for the distinct set */
++ int rc = 1; /* Value to return from this function */
++
++ if( sqlite_malloc_failed || pParse->nErr || p==0 ) return 1;
++ if( sqliteAuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
++
++ /* If there is are a sequence of queries, do the earlier ones first.
++ */
++ if( p->pPrior ){
++ return multiSelect(pParse, p, eDest, iParm);
++ }
++
++ /* Make local copies of the parameters for this query.
++ */
++ pTabList = p->pSrc;
++ pWhere = p->pWhere;
++ pOrderBy = p->pOrderBy;
++ pGroupBy = p->pGroupBy;
++ pHaving = p->pHaving;
++ isDistinct = p->isDistinct;
++
++ /* Allocate VDBE cursors for each table in the FROM clause
++ */
++ sqliteSrcListAssignCursors(pParse, pTabList);
++
++ /*
++ ** Do not even attempt to generate any code if we have already seen
++ ** errors before this routine starts.
++ */
++ if( pParse->nErr>0 ) goto select_end;
++
++ /* Expand any "*" terms in the result set. (For example the "*" in
++ ** "SELECT * FROM t1") The fillInColumnlist() routine also does some
++ ** other housekeeping - see the header comment for details.
++ */
++ if( fillInColumnList(pParse, p) ){
++ goto select_end;
++ }
++ pWhere = p->pWhere;
++ pEList = p->pEList;
++ if( pEList==0 ) goto select_end;
++
++ /* If writing to memory or generating a set
++ ** only a single column may be output.
++ */
++ if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
++ sqliteErrorMsg(pParse, "only a single result allowed for "
++ "a SELECT that is part of an expression");
++ goto select_end;
++ }
++
++ /* ORDER BY is ignored for some destinations.
++ */
++ switch( eDest ){
++ case SRT_Union:
++ case SRT_Except:
++ case SRT_Discard:
++ pOrderBy = 0;
++ break;
++ default:
++ break;
++ }
++
++ /* At this point, we should have allocated all the cursors that we
++ ** need to handle subquerys and temporary tables.
++ **
++ ** Resolve the column names and do a semantics check on all the expressions.
++ */
++ for(i=0; i<pEList->nExpr; i++){
++ if( sqliteExprResolveIds(pParse, pTabList, 0, pEList->a[i].pExpr) ){
++ goto select_end;
++ }
++ if( sqliteExprCheck(pParse, pEList->a[i].pExpr, 1, &isAgg) ){
++ goto select_end;
++ }
++ }
++ if( pWhere ){
++ if( sqliteExprResolveIds(pParse, pTabList, pEList, pWhere) ){
++ goto select_end;
++ }
++ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
++ goto select_end;
++ }
++ }
++ if( pHaving ){
++ if( pGroupBy==0 ){
++ sqliteErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
++ goto select_end;
++ }
++ if( sqliteExprResolveIds(pParse, pTabList, pEList, pHaving) ){
++ goto select_end;
++ }
++ if( sqliteExprCheck(pParse, pHaving, 1, &isAgg) ){
++ goto select_end;
++ }
++ }
++ if( pOrderBy ){
++ for(i=0; i<pOrderBy->nExpr; i++){
++ int iCol;
++ Expr *pE = pOrderBy->a[i].pExpr;
++ if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
++ sqliteExprDelete(pE);
++ pE = pOrderBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
++ }
++ if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
++ goto select_end;
++ }
++ if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
++ goto select_end;
++ }
++ if( sqliteExprIsConstant(pE) ){
++ if( sqliteExprIsInteger(pE, &iCol)==0 ){
++ sqliteErrorMsg(pParse,
++ "ORDER BY terms must not be non-integer constants");
++ goto select_end;
++ }else if( iCol<=0 || iCol>pEList->nExpr ){
++ sqliteErrorMsg(pParse,
++ "ORDER BY column number %d out of range - should be "
++ "between 1 and %d", iCol, pEList->nExpr);
++ goto select_end;
++ }
++ }
++ }
++ }
++ if( pGroupBy ){
++ for(i=0; i<pGroupBy->nExpr; i++){
++ int iCol;
++ Expr *pE = pGroupBy->a[i].pExpr;
++ if( sqliteExprIsInteger(pE, &iCol) && iCol>0 && iCol<=pEList->nExpr ){
++ sqliteExprDelete(pE);
++ pE = pGroupBy->a[i].pExpr = sqliteExprDup(pEList->a[iCol-1].pExpr);
++ }
++ if( sqliteExprResolveIds(pParse, pTabList, pEList, pE) ){
++ goto select_end;
++ }
++ if( sqliteExprCheck(pParse, pE, isAgg, 0) ){
++ goto select_end;
++ }
++ if( sqliteExprIsConstant(pE) ){
++ if( sqliteExprIsInteger(pE, &iCol)==0 ){
++ sqliteErrorMsg(pParse,
++ "GROUP BY terms must not be non-integer constants");
++ goto select_end;
++ }else if( iCol<=0 || iCol>pEList->nExpr ){
++ sqliteErrorMsg(pParse,
++ "GROUP BY column number %d out of range - should be "
++ "between 1 and %d", iCol, pEList->nExpr);
++ goto select_end;
++ }
++ }
++ }
++ }
++
++ /* Begin generating code.
++ */
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ) goto select_end;
++
++ /* Identify column names if we will be using them in a callback. This
++ ** step is skipped if the output is going to some other destination.
++ */
++ if( eDest==SRT_Callback ){
++ generateColumnNames(pParse, pTabList, pEList);
++ }
++
++ /* Generate code for all sub-queries in the FROM clause
++ */
++ for(i=0; i<pTabList->nSrc; i++){
++ const char *zSavedAuthContext;
++ int needRestoreContext;
++
++ if( pTabList->a[i].pSelect==0 ) continue;
++ if( pTabList->a[i].zName!=0 ){
++ zSavedAuthContext = pParse->zAuthContext;
++ pParse->zAuthContext = pTabList->a[i].zName;
++ needRestoreContext = 1;
++ }else{
++ needRestoreContext = 0;
++ }
++ sqliteSelect(pParse, pTabList->a[i].pSelect, SRT_TempTable,
++ pTabList->a[i].iCursor, p, i, &isAgg);
++ if( needRestoreContext ){
++ pParse->zAuthContext = zSavedAuthContext;
++ }
++ pTabList = p->pSrc;
++ pWhere = p->pWhere;
++ if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){
++ pOrderBy = p->pOrderBy;
++ }
++ pGroupBy = p->pGroupBy;
++ pHaving = p->pHaving;
++ isDistinct = p->isDistinct;
++ }
++
++ /* Check for the special case of a min() or max() function by itself
++ ** in the result set.
++ */
++ if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
++ rc = 0;
++ goto select_end;
++ }
++
++ /* Check to see if this is a subquery that can be "flattened" into its parent.
++ ** If flattening is a possiblity, do so and return immediately.
++ */
++ if( pParent && pParentAgg &&
++ flattenSubquery(pParse, pParent, parentTab, *pParentAgg, isAgg) ){
++ if( isAgg ) *pParentAgg = 1;
++ return rc;
++ }
++
++ /* Set the limiter.
++ */
++ computeLimitRegisters(pParse, p);
++
++ /* Identify column types if we will be using a callback. This
++ ** step is skipped if the output is going to a destination other
++ ** than a callback.
++ **
++ ** We have to do this separately from the creation of column names
++ ** above because if the pTabList contains views then they will not
++ ** have been resolved and we will not know the column types until
++ ** now.
++ */
++ if( eDest==SRT_Callback ){
++ generateColumnTypes(pParse, pTabList, pEList);
++ }
++
++ /* If the output is destined for a temporary table, open that table.
++ */
++ if( eDest==SRT_TempTable ){
++ sqliteVdbeAddOp(v, OP_OpenTemp, iParm, 0);
++ }
++
++ /* Do an analysis of aggregate expressions.
++ */
++ sqliteAggregateInfoReset(pParse);
++ if( isAgg || pGroupBy ){
++ assert( pParse->nAgg==0 );
++ isAgg = 1;
++ for(i=0; i<pEList->nExpr; i++){
++ if( sqliteExprAnalyzeAggregates(pParse, pEList->a[i].pExpr) ){
++ goto select_end;
++ }
++ }
++ if( pGroupBy ){
++ for(i=0; i<pGroupBy->nExpr; i++){
++ if( sqliteExprAnalyzeAggregates(pParse, pGroupBy->a[i].pExpr) ){
++ goto select_end;
++ }
++ }
++ }
++ if( pHaving && sqliteExprAnalyzeAggregates(pParse, pHaving) ){
++ goto select_end;
++ }
++ if( pOrderBy ){
++ for(i=0; i<pOrderBy->nExpr; i++){
++ if( sqliteExprAnalyzeAggregates(pParse, pOrderBy->a[i].pExpr) ){
++ goto select_end;
++ }
++ }
++ }
++ }
++
++ /* Reset the aggregator
++ */
++ if( isAgg ){
++ sqliteVdbeAddOp(v, OP_AggReset, 0, pParse->nAgg);
++ for(i=0; i<pParse->nAgg; i++){
++ FuncDef *pFunc;
++ if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
++ sqliteVdbeOp3(v, OP_AggInit, 0, i, (char*)pFunc, P3_POINTER);
++ }
++ }
++ if( pGroupBy==0 ){
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ sqliteVdbeAddOp(v, OP_AggFocus, 0, 0);
++ }
++ }
++
++ /* Initialize the memory cell to NULL
++ */
++ if( eDest==SRT_Mem ){
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ sqliteVdbeAddOp(v, OP_MemStore, iParm, 1);
++ }
++
++ /* Open a temporary table to use for the distinct set.
++ */
++ if( isDistinct ){
++ distinct = pParse->nTab++;
++ sqliteVdbeAddOp(v, OP_OpenTemp, distinct, 1);
++ }else{
++ distinct = -1;
++ }
++
++ /* Begin the database scan
++ */
++ pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 0,
++ pGroupBy ? 0 : &pOrderBy);
++ if( pWInfo==0 ) goto select_end;
++
++ /* Use the standard inner loop if we are not dealing with
++ ** aggregates
++ */
++ if( !isAgg ){
++ if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
++ iParm, pWInfo->iContinue, pWInfo->iBreak) ){
++ goto select_end;
++ }
++ }
++
++ /* If we are dealing with aggregates, then do the special aggregate
++ ** processing.
++ */
++ else{
++ AggExpr *pAgg;
++ if( pGroupBy ){
++ int lbl1;
++ for(i=0; i<pGroupBy->nExpr; i++){
++ sqliteExprCode(pParse, pGroupBy->a[i].pExpr);
++ }
++ sqliteVdbeAddOp(v, OP_MakeKey, pGroupBy->nExpr, 0);
++ if( pParse->db->file_format>=4 ) sqliteAddKeyType(v, pGroupBy);
++ lbl1 = sqliteVdbeMakeLabel(v);
++ sqliteVdbeAddOp(v, OP_AggFocus, 0, lbl1);
++ for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
++ if( pAgg->isAgg ) continue;
++ sqliteExprCode(pParse, pAgg->pExpr);
++ sqliteVdbeAddOp(v, OP_AggSet, 0, i);
++ }
++ sqliteVdbeResolveLabel(v, lbl1);
++ }
++ for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
++ Expr *pE;
++ int nExpr;
++ FuncDef *pDef;
++ if( !pAgg->isAgg ) continue;
++ assert( pAgg->pFunc!=0 );
++ assert( pAgg->pFunc->xStep!=0 );
++ pDef = pAgg->pFunc;
++ pE = pAgg->pExpr;
++ assert( pE!=0 );
++ assert( pE->op==TK_AGG_FUNCTION );
++ nExpr = sqliteExprCodeExprList(pParse, pE->pList, pDef->includeTypes);
++ sqliteVdbeAddOp(v, OP_Integer, i, 0);
++ sqliteVdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_POINTER);
++ }
++ }
++
++ /* End the database scan loop.
++ */
++ sqliteWhereEnd(pWInfo);
++
++ /* If we are processing aggregates, we need to set up a second loop
++ ** over all of the aggregate values and process them.
++ */
++ if( isAgg ){
++ int endagg = sqliteVdbeMakeLabel(v);
++ int startagg;
++ startagg = sqliteVdbeAddOp(v, OP_AggNext, 0, endagg);
++ pParse->useAgg = 1;
++ if( pHaving ){
++ sqliteExprIfFalse(pParse, pHaving, startagg, 1);
++ }
++ if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
++ iParm, startagg, endagg) ){
++ goto select_end;
++ }
++ sqliteVdbeAddOp(v, OP_Goto, 0, startagg);
++ sqliteVdbeResolveLabel(v, endagg);
++ sqliteVdbeAddOp(v, OP_Noop, 0, 0);
++ pParse->useAgg = 0;
++ }
++
++ /* If there is an ORDER BY clause, then we need to sort the results
++ ** and send them to the callback one by one.
++ */
++ if( pOrderBy ){
++ generateSortTail(p, v, pEList->nExpr, eDest, iParm);
++ }
++
++ /* If this was a subquery, we have now converted the subquery into a
++ ** temporary table. So delete the subquery structure from the parent
++ ** to prevent this subquery from being evaluated again and to force the
++ ** the use of the temporary table.
++ */
++ if( pParent ){
++ assert( pParent->pSrc->nSrc>parentTab );
++ assert( pParent->pSrc->a[parentTab].pSelect==p );
++ sqliteSelectDelete(p);
++ pParent->pSrc->a[parentTab].pSelect = 0;
++ }
++
++ /* The SELECT was successfully coded. Set the return code to 0
++ ** to indicate no errors.
++ */
++ rc = 0;
++
++ /* Control jumps to here if an error is encountered above, or upon
++ ** successful coding of the SELECT.
++ */
++select_end:
++ sqliteAggregateInfoReset(pParse);
++ return rc;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/sqlite_config.w32.h
+@@ -0,0 +1,8 @@
++#include "config.w32.h"
++#if ZTS
++# define THREADSAFE 1
++#endif
++#if !ZEND_DEBUG && !defined(NDEBUG)
++# define NDEBUG
++#endif
++#define SQLITE_PTR_SZ 4
+\ No newline at end of file
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/sqlite.h.in
+@@ -0,0 +1,886 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This header file defines the interface that the SQLite library
++** presents to client programs.
++**
++** @(#) $Id$
++*/
++#ifndef _SQLITE_H_
++#define _SQLITE_H_
++#include <stdarg.h> /* Needed for the definition of va_list */
++
++/*
++** Make sure we can call this stuff from C++.
++*/
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++/*
++** The version of the SQLite library.
++*/
++#ifdef SQLITE_VERSION
++# undef SQLITE_VERSION
++#else
++# define SQLITE_VERSION "--VERS--"
++#endif
++
++/*
++** The version string is also compiled into the library so that a program
++** can check to make sure that the lib*.a file and the *.h file are from
++** the same version.
++*/
++extern const char sqlite_version[];
++
++/*
++** The SQLITE_UTF8 macro is defined if the library expects to see
++** UTF-8 encoded data. The SQLITE_ISO8859 macro is defined if the
++** iso8859 encoded should be used.
++*/
++#define SQLITE_--ENCODING-- 1
++
++/*
++** The following constant holds one of two strings, "UTF-8" or "iso8859",
++** depending on which character encoding the SQLite library expects to
++** see. The character encoding makes a difference for the LIKE and GLOB
++** operators and for the LENGTH() and SUBSTR() functions.
++*/
++extern const char sqlite_encoding[];
++
++/*
++** Each open sqlite database is represented by an instance of the
++** following opaque structure.
++*/
++typedef struct sqlite sqlite;
++
++/*
++** A function to open a new sqlite database.
++**
++** If the database does not exist and mode indicates write
++** permission, then a new database is created. If the database
++** does not exist and mode does not indicate write permission,
++** then the open fails, an error message generated (if errmsg!=0)
++** and the function returns 0.
++**
++** If mode does not indicates user write permission, then the
++** database is opened read-only.
++**
++** The Truth: As currently implemented, all databases are opened
++** for writing all the time. Maybe someday we will provide the
++** ability to open a database readonly. The mode parameters is
++** provided in anticipation of that enhancement.
++*/
++sqlite *sqlite_open(const char *filename, int mode, char **errmsg);
++
++/*
++** A function to close the database.
++**
++** Call this function with a pointer to a structure that was previously
++** returned from sqlite_open() and the corresponding database will by closed.
++*/
++void sqlite_close(sqlite *);
++
++/*
++** The type for a callback function.
++*/
++typedef int (*sqlite_callback)(void*,int,char**, char**);
++
++/*
++** A function to executes one or more statements of SQL.
++**
++** If one or more of the SQL statements are queries, then
++** the callback function specified by the 3rd parameter is
++** invoked once for each row of the query result. This callback
++** should normally return 0. If the callback returns a non-zero
++** value then the query is aborted, all subsequent SQL statements
++** are skipped and the sqlite_exec() function returns the SQLITE_ABORT.
++**
++** The 4th parameter is an arbitrary pointer that is passed
++** to the callback function as its first parameter.
++**
++** The 2nd parameter to the callback function is the number of
++** columns in the query result. The 3rd parameter to the callback
++** is an array of strings holding the values for each column.
++** The 4th parameter to the callback is an array of strings holding
++** the names of each column.
++**
++** The callback function may be NULL, even for queries. A NULL
++** callback is not an error. It just means that no callback
++** will be invoked.
++**
++** If an error occurs while parsing or evaluating the SQL (but
++** not while executing the callback) then an appropriate error
++** message is written into memory obtained from malloc() and
++** *errmsg is made to point to that message. The calling function
++** is responsible for freeing the memory that holds the error
++** message. Use sqlite_freemem() for this. If errmsg==NULL,
++** then no error message is ever written.
++**
++** The return value is is SQLITE_OK if there are no errors and
++** some other return code if there is an error. The particular
++** return value depends on the type of error.
++**
++** If the query could not be executed because a database file is
++** locked or busy, then this function returns SQLITE_BUSY. (This
++** behavior can be modified somewhat using the sqlite_busy_handler()
++** and sqlite_busy_timeout() functions below.)
++*/
++int sqlite_exec(
++ sqlite*, /* An open database */
++ const char *sql, /* SQL to be executed */
++ sqlite_callback, /* Callback function */
++ void *, /* 1st argument to callback function */
++ char **errmsg /* Error msg written here */
++);
++
++/*
++** Return values for sqlite_exec() and sqlite_step()
++*/
++#define SQLITE_OK 0 /* Successful result */
++#define SQLITE_ERROR 1 /* SQL error or missing database */
++#define SQLITE_INTERNAL 2 /* An internal logic error in SQLite */
++#define SQLITE_PERM 3 /* Access permission denied */
++#define SQLITE_ABORT 4 /* Callback routine requested an abort */
++#define SQLITE_BUSY 5 /* The database file is locked */
++#define SQLITE_LOCKED 6 /* A table in the database is locked */
++#define SQLITE_NOMEM 7 /* A malloc() failed */
++#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
++#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite_interrupt() */
++#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
++#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
++#define SQLITE_NOTFOUND 12 /* (Internal Only) Table or record not found */
++#define SQLITE_FULL 13 /* Insertion failed because database is full */
++#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
++#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
++#define SQLITE_EMPTY 16 /* (Internal Only) Database table is empty */
++#define SQLITE_SCHEMA 17 /* The database schema changed */
++#define SQLITE_TOOBIG 18 /* Too much data for one row of a table */
++#define SQLITE_CONSTRAINT 19 /* Abort due to contraint violation */
++#define SQLITE_MISMATCH 20 /* Data type mismatch */
++#define SQLITE_MISUSE 21 /* Library used incorrectly */
++#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
++#define SQLITE_AUTH 23 /* Authorization denied */
++#define SQLITE_FORMAT 24 /* Auxiliary database format error */
++#define SQLITE_RANGE 25 /* 2nd parameter to sqlite_bind out of range */
++#define SQLITE_NOTADB 26 /* File opened that is not a database file */
++#define SQLITE_ROW 100 /* sqlite_step() has another row ready */
++#define SQLITE_DONE 101 /* sqlite_step() has finished executing */
++
++/*
++** Each entry in an SQLite table has a unique integer key. (The key is
++** the value of the INTEGER PRIMARY KEY column if there is such a column,
++** otherwise the key is generated at random. The unique key is always
++** available as the ROWID, OID, or _ROWID_ column.) The following routine
++** returns the integer key of the most recent insert in the database.
++**
++** This function is similar to the mysql_insert_id() function from MySQL.
++*/
++int sqlite_last_insert_rowid(sqlite*);
++
++/*
++** This function returns the number of database rows that were changed
++** (or inserted or deleted) by the most recent called sqlite_exec().
++**
++** All changes are counted, even if they were later undone by a
++** ROLLBACK or ABORT. Except, changes associated with creating and
++** dropping tables are not counted.
++**
++** If a callback invokes sqlite_exec() recursively, then the changes
++** in the inner, recursive call are counted together with the changes
++** in the outer call.
++**
++** SQLite implements the command "DELETE FROM table" without a WHERE clause
++** by dropping and recreating the table. (This is much faster than going
++** through and deleting individual elements form the table.) Because of
++** this optimization, the change count for "DELETE FROM table" will be
++** zero regardless of the number of elements that were originally in the
++** table. To get an accurate count of the number of rows deleted, use
++** "DELETE FROM table WHERE 1" instead.
++*/
++int sqlite_changes(sqlite*);
++
++/*
++** This function returns the number of database rows that were changed
++** by the last INSERT, UPDATE, or DELETE statment executed by sqlite_exec(),
++** or by the last VM to run to completion. The change count is not updated
++** by SQL statements other than INSERT, UPDATE or DELETE.
++**
++** Changes are counted, even if they are later undone by a ROLLBACK or
++** ABORT. Changes associated with trigger programs that execute as a
++** result of the INSERT, UPDATE, or DELETE statement are not counted.
++**
++** If a callback invokes sqlite_exec() recursively, then the changes
++** in the inner, recursive call are counted together with the changes
++** in the outer call.
++**
++** SQLite implements the command "DELETE FROM table" without a WHERE clause
++** by dropping and recreating the table. (This is much faster than going
++** through and deleting individual elements form the table.) Because of
++** this optimization, the change count for "DELETE FROM table" will be
++** zero regardless of the number of elements that were originally in the
++** table. To get an accurate count of the number of rows deleted, use
++** "DELETE FROM table WHERE 1" instead.
++**
++******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
++*/
++int sqlite_last_statement_changes(sqlite*);
++
++/* If the parameter to this routine is one of the return value constants
++** defined above, then this routine returns a constant text string which
++** descripts (in English) the meaning of the return value.
++*/
++const char *sqlite_error_string(int);
++#define sqliteErrStr sqlite_error_string /* Legacy. Do not use in new code. */
++
++/* This function causes any pending database operation to abort and
++** return at its earliest opportunity. This routine is typically
++** called in response to a user action such as pressing "Cancel"
++** or Ctrl-C where the user wants a long query operation to halt
++** immediately.
++*/
++void sqlite_interrupt(sqlite*);
++
++
++/* This function returns true if the given input string comprises
++** one or more complete SQL statements.
++**
++** The algorithm is simple. If the last token other than spaces
++** and comments is a semicolon, then return true. otherwise return
++** false.
++*/
++int sqlite_complete(const char *sql);
++
++/*
++** This routine identifies a callback function that is invoked
++** whenever an attempt is made to open a database table that is
++** currently locked by another process or thread. If the busy callback
++** is NULL, then sqlite_exec() returns SQLITE_BUSY immediately if
++** it finds a locked table. If the busy callback is not NULL, then
++** sqlite_exec() invokes the callback with three arguments. The
++** second argument is the name of the locked table and the third
++** argument is the number of times the table has been busy. If the
++** busy callback returns 0, then sqlite_exec() immediately returns
++** SQLITE_BUSY. If the callback returns non-zero, then sqlite_exec()
++** tries to open the table again and the cycle repeats.
++**
++** The default busy callback is NULL.
++**
++** Sqlite is re-entrant, so the busy handler may start a new query.
++** (It is not clear why anyone would every want to do this, but it
++** is allowed, in theory.) But the busy handler may not close the
++** database. Closing the database from a busy handler will delete
++** data structures out from under the executing query and will
++** probably result in a coredump.
++*/
++void sqlite_busy_handler(sqlite*, int(*)(void*,const char*,int), void*);
++
++/*
++** This routine sets a busy handler that sleeps for a while when a
++** table is locked. The handler will sleep multiple times until
++** at least "ms" milleseconds of sleeping have been done. After
++** "ms" milleseconds of sleeping, the handler returns 0 which
++** causes sqlite_exec() to return SQLITE_BUSY.
++**
++** Calling this routine with an argument less than or equal to zero
++** turns off all busy handlers.
++*/
++void sqlite_busy_timeout(sqlite*, int ms);
++
++/*
++** This next routine is really just a wrapper around sqlite_exec().
++** Instead of invoking a user-supplied callback for each row of the
++** result, this routine remembers each row of the result in memory
++** obtained from malloc(), then returns all of the result after the
++** query has finished.
++**
++** As an example, suppose the query result where this table:
++**
++** Name | Age
++** -----------------------
++** Alice | 43
++** Bob | 28
++** Cindy | 21
++**
++** If the 3rd argument were &azResult then after the function returns
++** azResult will contain the following data:
++**
++** azResult[0] = "Name";
++** azResult[1] = "Age";
++** azResult[2] = "Alice";
++** azResult[3] = "43";
++** azResult[4] = "Bob";
++** azResult[5] = "28";
++** azResult[6] = "Cindy";
++** azResult[7] = "21";
++**
++** Notice that there is an extra row of data containing the column
++** headers. But the *nrow return value is still 3. *ncolumn is
++** set to 2. In general, the number of values inserted into azResult
++** will be ((*nrow) + 1)*(*ncolumn).
++**
++** After the calling function has finished using the result, it should
++** pass the result data pointer to sqlite_free_table() in order to
++** release the memory that was malloc-ed. Because of the way the
++** malloc() happens, the calling function must not try to call
++** malloc() directly. Only sqlite_free_table() is able to release
++** the memory properly and safely.
++**
++** The return value of this routine is the same as from sqlite_exec().
++*/
++int sqlite_get_table(
++ sqlite*, /* An open database */
++ const char *sql, /* SQL to be executed */
++ char ***resultp, /* Result written to a char *[] that this points to */
++ int *nrow, /* Number of result rows written here */
++ int *ncolumn, /* Number of result columns written here */
++ char **errmsg /* Error msg written here */
++);
++
++/*
++** Call this routine to free the memory that sqlite_get_table() allocated.
++*/
++void sqlite_free_table(char **result);
++
++/*
++** The following routines are wrappers around sqlite_exec() and
++** sqlite_get_table(). The only difference between the routines that
++** follow and the originals is that the second argument to the
++** routines that follow is really a printf()-style format
++** string describing the SQL to be executed. Arguments to the format
++** string appear at the end of the argument list.
++**
++** All of the usual printf formatting options apply. In addition, there
++** is a "%q" option. %q works like %s in that it substitutes a null-terminated
++** string from the argument list. But %q also doubles every '\'' character.
++** %q is designed for use inside a string literal. By doubling each '\''
++** character it escapes that character and allows it to be inserted into
++** the string.
++**
++** For example, so some string variable contains text as follows:
++**
++** char *zText = "It's a happy day!";
++**
++** We can use this text in an SQL statement as follows:
++**
++** sqlite_exec_printf(db, "INSERT INTO table VALUES('%q')",
++** callback1, 0, 0, zText);
++**
++** Because the %q format string is used, the '\'' character in zText
++** is escaped and the SQL generated is as follows:
++**
++** INSERT INTO table1 VALUES('It''s a happy day!')
++**
++** This is correct. Had we used %s instead of %q, the generated SQL
++** would have looked like this:
++**
++** INSERT INTO table1 VALUES('It's a happy day!');
++**
++** This second example is an SQL syntax error. As a general rule you
++** should always use %q instead of %s when inserting text into a string
++** literal.
++*/
++int sqlite_exec_printf(
++ sqlite*, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ sqlite_callback, /* Callback function */
++ void *, /* 1st argument to callback function */
++ char **errmsg, /* Error msg written here */
++ ... /* Arguments to the format string. */
++);
++int sqlite_exec_vprintf(
++ sqlite*, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ sqlite_callback, /* Callback function */
++ void *, /* 1st argument to callback function */
++ char **errmsg, /* Error msg written here */
++ va_list ap /* Arguments to the format string. */
++);
++int sqlite_get_table_printf(
++ sqlite*, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ char ***resultp, /* Result written to a char *[] that this points to */
++ int *nrow, /* Number of result rows written here */
++ int *ncolumn, /* Number of result columns written here */
++ char **errmsg, /* Error msg written here */
++ ... /* Arguments to the format string */
++);
++int sqlite_get_table_vprintf(
++ sqlite*, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ char ***resultp, /* Result written to a char *[] that this points to */
++ int *nrow, /* Number of result rows written here */
++ int *ncolumn, /* Number of result columns written here */
++ char **errmsg, /* Error msg written here */
++ va_list ap /* Arguments to the format string */
++);
++char *sqlite_mprintf(const char*,...);
++char *sqlite_vmprintf(const char*, va_list);
++
++/*
++** Windows systems should call this routine to free memory that
++** is returned in the in the errmsg parameter of sqlite_open() when
++** SQLite is a DLL. For some reason, it does not work to call free()
++** directly.
++*/
++void sqlite_freemem(void *p);
++
++/*
++** Windows systems need functions to call to return the sqlite_version
++** and sqlite_encoding strings.
++*/
++const char *sqlite_libversion(void);
++const char *sqlite_libencoding(void);
++
++/*
++** A pointer to the following structure is used to communicate with
++** the implementations of user-defined functions.
++*/
++typedef struct sqlite_func sqlite_func;
++
++/*
++** Use the following routines to create new user-defined functions. See
++** the documentation for details.
++*/
++int sqlite_create_function(
++ sqlite*, /* Database where the new function is registered */
++ const char *zName, /* Name of the new function */
++ int nArg, /* Number of arguments. -1 means any number */
++ void (*xFunc)(sqlite_func*,int,const char**), /* C code to implement */
++ void *pUserData /* Available via the sqlite_user_data() call */
++);
++int sqlite_create_aggregate(
++ sqlite*, /* Database where the new function is registered */
++ const char *zName, /* Name of the function */
++ int nArg, /* Number of arguments */
++ void (*xStep)(sqlite_func*,int,const char**), /* Called for each row */
++ void (*xFinalize)(sqlite_func*), /* Called once to get final result */
++ void *pUserData /* Available via the sqlite_user_data() call */
++);
++
++/*
++** Use the following routine to define the datatype returned by a
++** user-defined function. The second argument can be one of the
++** constants SQLITE_NUMERIC, SQLITE_TEXT, or SQLITE_ARGS or it
++** can be an integer greater than or equal to zero. When the datatype
++** parameter is non-negative, the type of the result will be the
++** same as the datatype-th argument. If datatype==SQLITE_NUMERIC
++** then the result is always numeric. If datatype==SQLITE_TEXT then
++** the result is always text. If datatype==SQLITE_ARGS then the result
++** is numeric if any argument is numeric and is text otherwise.
++*/
++int sqlite_function_type(
++ sqlite *db, /* The database there the function is registered */
++ const char *zName, /* Name of the function */
++ int datatype /* The datatype for this function */
++);
++#define SQLITE_NUMERIC (-1)
++/* #define SQLITE_TEXT (-2) // See below */
++#define SQLITE_ARGS (-3)
++
++/*
++** SQLite version 3 defines SQLITE_TEXT differently. To allow both
++** version 2 and version 3 to be included, undefine them both if a
++** conflict is seen. Define SQLITE2_TEXT to be the version 2 value.
++*/
++#ifdef SQLITE_TEXT
++# undef SQLITE_TEXT
++#else
++# define SQLITE_TEXT (-2)
++#endif
++#define SQLITE2_TEXT (-2)
++
++
++
++/*
++** The user function implementations call one of the following four routines
++** in order to return their results. The first parameter to each of these
++** routines is a copy of the first argument to xFunc() or xFinialize().
++** The second parameter to these routines is the result to be returned.
++** A NULL can be passed as the second parameter to sqlite_set_result_string()
++** in order to return a NULL result.
++**
++** The 3rd argument to _string and _error is the number of characters to
++** take from the string. If this argument is negative, then all characters
++** up to and including the first '\000' are used.
++**
++** The sqlite_set_result_string() function allocates a buffer to hold the
++** result and returns a pointer to this buffer. The calling routine
++** (that is, the implmentation of a user function) can alter the content
++** of this buffer if desired.
++*/
++char *sqlite_set_result_string(sqlite_func*,const char*,int);
++void sqlite_set_result_int(sqlite_func*,int);
++void sqlite_set_result_double(sqlite_func*,double);
++void sqlite_set_result_error(sqlite_func*,const char*,int);
++
++/*
++** The pUserData parameter to the sqlite_create_function() and
++** sqlite_create_aggregate() routines used to register user functions
++** is available to the implementation of the function using this
++** call.
++*/
++void *sqlite_user_data(sqlite_func*);
++
++/*
++** Aggregate functions use the following routine to allocate
++** a structure for storing their state. The first time this routine
++** is called for a particular aggregate, a new structure of size nBytes
++** is allocated, zeroed, and returned. On subsequent calls (for the
++** same aggregate instance) the same buffer is returned. The implementation
++** of the aggregate can use the returned buffer to accumulate data.
++**
++** The buffer allocated is freed automatically be SQLite.
++*/
++void *sqlite_aggregate_context(sqlite_func*, int nBytes);
++
++/*
++** The next routine returns the number of calls to xStep for a particular
++** aggregate function instance. The current call to xStep counts so this
++** routine always returns at least 1.
++*/
++int sqlite_aggregate_count(sqlite_func*);
++
++/*
++** This routine registers a callback with the SQLite library. The
++** callback is invoked (at compile-time, not at run-time) for each
++** attempt to access a column of a table in the database. The callback
++** returns SQLITE_OK if access is allowed, SQLITE_DENY if the entire
++** SQL statement should be aborted with an error and SQLITE_IGNORE
++** if the column should be treated as a NULL value.
++*/
++int sqlite_set_authorizer(
++ sqlite*,
++ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
++ void *pUserData
++);
++
++/*
++** The second parameter to the access authorization function above will
++** be one of the values below. These values signify what kind of operation
++** is to be authorized. The 3rd and 4th parameters to the authorization
++** function will be parameters or NULL depending on which of the following
++** codes is used as the second parameter. The 5th parameter is the name
++** of the database ("main", "temp", etc.) if applicable. The 6th parameter
++** is the name of the inner-most trigger or view that is responsible for
++** the access attempt or NULL if this access attempt is directly from
++** input SQL code.
++**
++** Arg-3 Arg-4
++*/
++#define SQLITE_COPY 0 /* Table Name File Name */
++#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
++#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
++#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
++#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
++#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
++#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
++#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
++#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
++#define SQLITE_DELETE 9 /* Table Name NULL */
++#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
++#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
++#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
++#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
++#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
++#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
++#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
++#define SQLITE_DROP_VIEW 17 /* View Name NULL */
++#define SQLITE_INSERT 18 /* Table Name NULL */
++#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
++#define SQLITE_READ 20 /* Table Name Column Name */
++#define SQLITE_SELECT 21 /* NULL NULL */
++#define SQLITE_TRANSACTION 22 /* NULL NULL */
++#define SQLITE_UPDATE 23 /* Table Name Column Name */
++#define SQLITE_ATTACH 24 /* Filename NULL */
++#define SQLITE_DETACH 25 /* Database Name NULL */
++
++
++/*
++** The return value of the authorization function should be one of the
++** following constants:
++*/
++/* #define SQLITE_OK 0 // Allow access (This is actually defined above) */
++#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
++#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
++
++/*
++** Register a function that is called at every invocation of sqlite_exec()
++** or sqlite_compile(). This function can be used (for example) to generate
++** a log file of all SQL executed against a database.
++*/
++void *sqlite_trace(sqlite*, void(*xTrace)(void*,const char*), void*);
++
++/*** The Callback-Free API
++**
++** The following routines implement a new way to access SQLite that does not
++** involve the use of callbacks.
++**
++** An sqlite_vm is an opaque object that represents a single SQL statement
++** that is ready to be executed.
++*/
++typedef struct sqlite_vm sqlite_vm;
++
++/*
++** To execute an SQLite query without the use of callbacks, you first have
++** to compile the SQL using this routine. The 1st parameter "db" is a pointer
++** to an sqlite object obtained from sqlite_open(). The 2nd parameter
++** "zSql" is the text of the SQL to be compiled. The remaining parameters
++** are all outputs.
++**
++** *pzTail is made to point to the first character past the end of the first
++** SQL statement in zSql. This routine only compiles the first statement
++** in zSql, so *pzTail is left pointing to what remains uncompiled.
++**
++** *ppVm is left pointing to a "virtual machine" that can be used to execute
++** the compiled statement. Or if there is an error, *ppVm may be set to NULL.
++** If the input text contained no SQL (if the input is and empty string or
++** a comment) then *ppVm is set to NULL.
++**
++** If any errors are detected during compilation, an error message is written
++** into space obtained from malloc() and *pzErrMsg is made to point to that
++** error message. The calling routine is responsible for freeing the text
++** of this message when it has finished with it. Use sqlite_freemem() to
++** free the message. pzErrMsg may be NULL in which case no error message
++** will be generated.
++**
++** On success, SQLITE_OK is returned. Otherwise and error code is returned.
++*/
++int sqlite_compile(
++ sqlite *db, /* The open database */
++ const char *zSql, /* SQL statement to be compiled */
++ const char **pzTail, /* OUT: uncompiled tail of zSql */
++ sqlite_vm **ppVm, /* OUT: the virtual machine to execute zSql */
++ char **pzErrmsg /* OUT: Error message. */
++);
++
++/*
++** After an SQL statement has been compiled, it is handed to this routine
++** to be executed. This routine executes the statement as far as it can
++** go then returns. The return value will be one of SQLITE_DONE,
++** SQLITE_ERROR, SQLITE_BUSY, SQLITE_ROW, or SQLITE_MISUSE.
++**
++** SQLITE_DONE means that the execute of the SQL statement is complete
++** an no errors have occurred. sqlite_step() should not be called again
++** for the same virtual machine. *pN is set to the number of columns in
++** the result set and *pazColName is set to an array of strings that
++** describe the column names and datatypes. The name of the i-th column
++** is (*pazColName)[i] and the datatype of the i-th column is
++** (*pazColName)[i+*pN]. *pazValue is set to NULL.
++**
++** SQLITE_ERROR means that the virtual machine encountered a run-time
++** error. sqlite_step() should not be called again for the same
++** virtual machine. *pN is set to 0 and *pazColName and *pazValue are set
++** to NULL. Use sqlite_finalize() to obtain the specific error code
++** and the error message text for the error.
++**
++** SQLITE_BUSY means that an attempt to open the database failed because
++** another thread or process is holding a lock. The calling routine
++** can try again to open the database by calling sqlite_step() again.
++** The return code will only be SQLITE_BUSY if no busy handler is registered
++** using the sqlite_busy_handler() or sqlite_busy_timeout() routines. If
++** a busy handler callback has been registered but returns 0, then this
++** routine will return SQLITE_ERROR and sqltie_finalize() will return
++** SQLITE_BUSY when it is called.
++**
++** SQLITE_ROW means that a single row of the result is now available.
++** The data is contained in *pazValue. The value of the i-th column is
++** (*azValue)[i]. *pN and *pazColName are set as described in SQLITE_DONE.
++** Invoke sqlite_step() again to advance to the next row.
++**
++** SQLITE_MISUSE is returned if sqlite_step() is called incorrectly.
++** For example, if you call sqlite_step() after the virtual machine
++** has halted (after a prior call to sqlite_step() has returned SQLITE_DONE)
++** or if you call sqlite_step() with an incorrectly initialized virtual
++** machine or a virtual machine that has been deleted or that is associated
++** with an sqlite structure that has been closed.
++*/
++int sqlite_step(
++ sqlite_vm *pVm, /* The virtual machine to execute */
++ int *pN, /* OUT: Number of columns in result */
++ const char ***pazValue, /* OUT: Column data */
++ const char ***pazColName /* OUT: Column names and datatypes */
++);
++
++/*
++** This routine is called to delete a virtual machine after it has finished
++** executing. The return value is the result code. SQLITE_OK is returned
++** if the statement executed successfully and some other value is returned if
++** there was any kind of error. If an error occurred and pzErrMsg is not
++** NULL, then an error message is written into memory obtained from malloc()
++** and *pzErrMsg is made to point to that error message. The calling routine
++** should use sqlite_freemem() to delete this message when it has finished
++** with it.
++**
++** This routine can be called at any point during the execution of the
++** virtual machine. If the virtual machine has not completed execution
++** when this routine is called, that is like encountering an error or
++** an interrupt. (See sqlite_interrupt().) Incomplete updates may be
++** rolled back and transactions cancelled, depending on the circumstances,
++** and the result code returned will be SQLITE_ABORT.
++*/
++int sqlite_finalize(sqlite_vm*, char **pzErrMsg);
++
++/*
++** This routine deletes the virtual machine, writes any error message to
++** *pzErrMsg and returns an SQLite return code in the same way as the
++** sqlite_finalize() function.
++**
++** Additionally, if ppVm is not NULL, *ppVm is left pointing to a new virtual
++** machine loaded with the compiled version of the original query ready for
++** execution.
++**
++** If sqlite_reset() returns SQLITE_SCHEMA, then *ppVm is set to NULL.
++**
++******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
++*/
++int sqlite_reset(sqlite_vm*, char **pzErrMsg);
++
++/*
++** If the SQL that was handed to sqlite_compile contains variables that
++** are represeted in the SQL text by a question mark ('?'). This routine
++** is used to assign values to those variables.
++**
++** The first parameter is a virtual machine obtained from sqlite_compile().
++** The 2nd "idx" parameter determines which variable in the SQL statement
++** to bind the value to. The left most '?' is 1. The 3rd parameter is
++** the value to assign to that variable. The 4th parameter is the number
++** of bytes in the value, including the terminating \000 for strings.
++** Finally, the 5th "copy" parameter is TRUE if SQLite should make its
++** own private copy of this value, or false if the space that the 3rd
++** parameter points to will be unchanging and can be used directly by
++** SQLite.
++**
++** Unbound variables are treated as having a value of NULL. To explicitly
++** set a variable to NULL, call this routine with the 3rd parameter as a
++** NULL pointer.
++**
++** If the 4th "len" parameter is -1, then strlen() is used to find the
++** length.
++**
++** This routine can only be called immediately after sqlite_compile()
++** or sqlite_reset() and before any calls to sqlite_step().
++**
++******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
++*/
++int sqlite_bind(sqlite_vm*, int idx, const char *value, int len, int copy);
++
++/*
++** This routine configures a callback function - the progress callback - that
++** is invoked periodically during long running calls to sqlite_exec(),
++** sqlite_step() and sqlite_get_table(). An example use for this API is to keep
++** a GUI updated during a large query.
++**
++** The progress callback is invoked once for every N virtual machine opcodes,
++** where N is the second argument to this function. The progress callback
++** itself is identified by the third argument to this function. The fourth
++** argument to this function is a void pointer passed to the progress callback
++** function each time it is invoked.
++**
++** If a call to sqlite_exec(), sqlite_step() or sqlite_get_table() results
++** in less than N opcodes being executed, then the progress callback is not
++** invoked.
++**
++** Calling this routine overwrites any previously installed progress callback.
++** To remove the progress callback altogether, pass NULL as the third
++** argument to this function.
++**
++** If the progress callback returns a result other than 0, then the current
++** query is immediately terminated and any database changes rolled back. If the
++** query was part of a larger transaction, then the transaction is not rolled
++** back and remains active. The sqlite_exec() call returns SQLITE_ABORT.
++**
++******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
++*/
++void sqlite_progress_handler(sqlite*, int, int(*)(void*), void*);
++
++/*
++** Register a callback function to be invoked whenever a new transaction
++** is committed. The pArg argument is passed through to the callback.
++** callback. If the callback function returns non-zero, then the commit
++** is converted into a rollback.
++**
++** If another function was previously registered, its pArg value is returned.
++** Otherwise NULL is returned.
++**
++** Registering a NULL function disables the callback.
++**
++******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
++*/
++void *sqlite_commit_hook(sqlite*, int(*)(void*), void*);
++
++/*
++** Open an encrypted SQLite database. If pKey==0 or nKey==0, this routine
++** is the same as sqlite_open().
++**
++** The code to implement this API is not available in the public release
++** of SQLite.
++*/
++sqlite *sqlite_open_encrypted(
++ const char *zFilename, /* Name of the encrypted database */
++ const void *pKey, /* Pointer to the key */
++ int nKey, /* Number of bytes in the key */
++ int *pErrcode, /* Write error code here */
++ char **pzErrmsg /* Write error message here */
++);
++
++/*
++** Change the key on an open database. If the current database is not
++** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
++** database is decrypted.
++**
++** The code to implement this API is not available in the public release
++** of SQLite.
++*/
++int sqlite_rekey(
++ sqlite *db, /* Database to be rekeyed */
++ const void *pKey, int nKey /* The new key */
++);
++
++/*
++** Encode a binary buffer "in" of size n bytes so that it contains
++** no instances of characters '\'' or '\000'. The output is
++** null-terminated and can be used as a string value in an INSERT
++** or UPDATE statement. Use sqlite_decode_binary() to convert the
++** string back into its original binary.
++**
++** The result is written into a preallocated output buffer "out".
++** "out" must be able to hold at least 2 +(257*n)/254 bytes.
++** In other words, the output will be expanded by as much as 3
++** bytes for every 254 bytes of input plus 2 bytes of fixed overhead.
++** (This is approximately 2 + 1.0118*n or about a 1.2% size increase.)
++**
++** The return value is the number of characters in the encoded
++** string, excluding the "\000" terminator.
++**
++** If out==NULL then no output is generated but the routine still returns
++** the number of characters that would have been generated if out had
++** not been NULL.
++*/
++int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out);
++
++/*
++** Decode the string "in" into binary data and write it into "out".
++** This routine reverses the encoding created by sqlite_encode_binary().
++** The output will always be a few bytes less than the input. The number
++** of bytes of output is returned. If the input is not a well-formed
++** encoding, -1 is returned.
++**
++** The "in" and "out" parameters may point to the same buffer in order
++** to decode a string in place.
++*/
++int sqlite_decode_binary(const unsigned char *in, unsigned char *out);
++
++#ifdef __cplusplus
++} /* End of the 'extern "C"' block */
++#endif
++
++#endif /* _SQLITE_H_ */
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/sqliteInt.h
+@@ -0,0 +1,1270 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** Internal interface definitions for SQLite.
++**
++** @(#) $Id$
++*/
++#include "config.h"
++#include "sqlite.h"
++#include "hash.h"
++#include "parse.h"
++#include "btree.h"
++#include <stdio.h>
++#include <stdlib.h>
++#include <string.h>
++#include <assert.h>
++
++/*
++** The maximum number of in-memory pages to use for the main database
++** table and for temporary tables.
++*/
++#define MAX_PAGES 2000
++#define TEMP_PAGES 500
++
++/*
++** If the following macro is set to 1, then NULL values are considered
++** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT
++** compound queries. No other SQL database engine (among those tested)
++** works this way except for OCELOT. But the SQL92 spec implies that
++** this is how things should work.
++**
++** If the following macro is set to 0, then NULLs are indistinct for
++** SELECT DISTINCT and for UNION.
++*/
++#define NULL_ALWAYS_DISTINCT 0
++
++/*
++** If the following macro is set to 1, then NULL values are considered
++** distinct when determining whether or not two entries are the same
++** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL,
++** OCELOT, and Firebird all work. The SQL92 spec explicitly says this
++** is the way things are suppose to work.
++**
++** If the following macro is set to 0, the NULLs are indistinct for
++** a UNIQUE index. In this mode, you can only have a single NULL entry
++** for a column declared UNIQUE. This is the way Informix and SQL Server
++** work.
++*/
++#define NULL_DISTINCT_FOR_UNIQUE 1
++
++/*
++** The maximum number of attached databases. This must be at least 2
++** in order to support the main database file (0) and the file used to
++** hold temporary tables (1). And it must be less than 256 because
++** an unsigned character is used to stored the database index.
++*/
++#define MAX_ATTACHED 10
++
++/*
++** The next macro is used to determine where TEMP tables and indices
++** are stored. Possible values:
++**
++** 0 Always use a temporary files
++** 1 Use a file unless overridden by "PRAGMA temp_store"
++** 2 Use memory unless overridden by "PRAGMA temp_store"
++** 3 Always use memory
++*/
++#ifndef TEMP_STORE
++# define TEMP_STORE 1
++#endif
++
++/*
++** When building SQLite for embedded systems where memory is scarce,
++** you can define one or more of the following macros to omit extra
++** features of the library and thus keep the size of the library to
++** a minimum.
++*/
++/* #define SQLITE_OMIT_AUTHORIZATION 1 */
++/* #define SQLITE_OMIT_INMEMORYDB 1 */
++/* #define SQLITE_OMIT_VACUUM 1 */
++/* #define SQLITE_OMIT_DATETIME_FUNCS 1 */
++/* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */
++
++/*
++** Integers of known sizes. These typedefs might change for architectures
++** where the sizes very. Preprocessor macros are available so that the
++** types can be conveniently redefined at compile-type. Like this:
++**
++** cc '-DUINTPTR_TYPE=long long int' ...
++*/
++#ifndef UINT32_TYPE
++# define UINT32_TYPE unsigned int
++#endif
++#ifndef UINT16_TYPE
++# define UINT16_TYPE unsigned short int
++#endif
++#ifndef INT16_TYPE
++# define INT16_TYPE short int
++#endif
++#ifndef UINT8_TYPE
++# define UINT8_TYPE unsigned char
++#endif
++#ifndef INT8_TYPE
++# define INT8_TYPE signed char
++#endif
++#ifndef INTPTR_TYPE
++# if SQLITE_PTR_SZ==4
++# define INTPTR_TYPE int
++# else
++# define INTPTR_TYPE long long
++# endif
++#endif
++typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
++typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
++typedef INT16_TYPE i16; /* 2-byte signed integer */
++typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
++typedef UINT8_TYPE i8; /* 1-byte signed integer */
++typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */
++typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */
++
++/*
++** Defer sourcing vdbe.h until after the "u8" typedef is defined.
++*/
++#include "vdbe.h"
++
++/*
++** Most C compilers these days recognize "long double", don't they?
++** Just in case we encounter one that does not, we will create a macro
++** for long double so that it can be easily changed to just "double".
++*/
++#ifndef LONGDOUBLE_TYPE
++# define LONGDOUBLE_TYPE long double
++#endif
++
++/*
++** This macro casts a pointer to an integer. Useful for doing
++** pointer arithmetic.
++*/
++#define Addr(X) ((uptr)X)
++
++/*
++** The maximum number of bytes of data that can be put into a single
++** row of a single table. The upper bound on this limit is 16777215
++** bytes (or 16MB-1). We have arbitrarily set the limit to just 1MB
++** here because the overflow page chain is inefficient for really big
++** records and we want to discourage people from thinking that
++** multi-megabyte records are OK. If your needs are different, you can
++** change this define and recompile to increase or decrease the record
++** size.
++**
++** The 16777198 is computed as follows: 238 bytes of payload on the
++** original pages plus 16448 overflow pages each holding 1020 bytes of
++** data.
++*/
++#define MAX_BYTES_PER_ROW 1048576
++/* #define MAX_BYTES_PER_ROW 16777198 */
++
++/*
++** If memory allocation problems are found, recompile with
++**
++** -DMEMORY_DEBUG=1
++**
++** to enable some sanity checking on malloc() and free(). To
++** check for memory leaks, recompile with
++**
++** -DMEMORY_DEBUG=2
++**
++** and a line of text will be written to standard error for
++** each malloc() and free(). This output can be analyzed
++** by an AWK script to determine if there are any leaks.
++*/
++#ifdef MEMORY_DEBUG
++# define sqliteMalloc(X) sqliteMalloc_(X,1,__FILE__,__LINE__)
++# define sqliteMallocRaw(X) sqliteMalloc_(X,0,__FILE__,__LINE__)
++# define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__)
++# define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__)
++# define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__)
++# define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__)
++ void sqliteStrRealloc(char**);
++#else
++# define sqliteRealloc_(X,Y) sqliteRealloc(X,Y)
++# define sqliteStrRealloc(X)
++#endif
++
++/*
++** This variable gets set if malloc() ever fails. After it gets set,
++** the SQLite library shuts down permanently.
++*/
++extern int sqlite_malloc_failed;
++
++/*
++** The following global variables are used for testing and debugging
++** only. They only work if MEMORY_DEBUG is defined.
++*/
++#ifdef MEMORY_DEBUG
++extern int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
++extern int sqlite_nFree; /* Number of sqliteFree() calls */
++extern int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
++#endif
++
++/*
++** Name of the master database table. The master database table
++** is a special table that holds the names and attributes of all
++** user tables and indices.
++*/
++#define MASTER_NAME "sqlite_master"
++#define TEMP_MASTER_NAME "sqlite_temp_master"
++
++/*
++** The name of the schema table.
++*/
++#define SCHEMA_TABLE(x) (x?TEMP_MASTER_NAME:MASTER_NAME)
++
++/*
++** A convenience macro that returns the number of elements in
++** an array.
++*/
++#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
++
++/*
++** Forward references to structures
++*/
++typedef struct Column Column;
++typedef struct Table Table;
++typedef struct Index Index;
++typedef struct Instruction Instruction;
++typedef struct Expr Expr;
++typedef struct ExprList ExprList;
++typedef struct Parse Parse;
++typedef struct Token Token;
++typedef struct IdList IdList;
++typedef struct SrcList SrcList;
++typedef struct WhereInfo WhereInfo;
++typedef struct WhereLevel WhereLevel;
++typedef struct Select Select;
++typedef struct AggExpr AggExpr;
++typedef struct FuncDef FuncDef;
++typedef struct Trigger Trigger;
++typedef struct TriggerStep TriggerStep;
++typedef struct TriggerStack TriggerStack;
++typedef struct FKey FKey;
++typedef struct Db Db;
++typedef struct AuthContext AuthContext;
++
++/*
++** Each database file to be accessed by the system is an instance
++** of the following structure. There are normally two of these structures
++** in the sqlite.aDb[] array. aDb[0] is the main database file and
++** aDb[1] is the database file used to hold temporary tables. Additional
++** databases may be attached.
++*/
++struct Db {
++ char *zName; /* Name of this database */
++ Btree *pBt; /* The B*Tree structure for this database file */
++ int schema_cookie; /* Database schema version number for this file */
++ Hash tblHash; /* All tables indexed by name */
++ Hash idxHash; /* All (named) indices indexed by name */
++ Hash trigHash; /* All triggers indexed by name */
++ Hash aFKey; /* Foreign keys indexed by to-table */
++ u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */
++ u16 flags; /* Flags associated with this database */
++ void *pAux; /* Auxiliary data. Usually NULL */
++ void (*xFreeAux)(void*); /* Routine to free pAux */
++};
++
++/*
++** These macros can be used to test, set, or clear bits in the
++** Db.flags field.
++*/
++#define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P))
++#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0)
++#define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P)
++#define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P)
++
++/*
++** Allowed values for the DB.flags field.
++**
++** The DB_Locked flag is set when the first OP_Transaction or OP_Checkpoint
++** opcode is emitted for a database. This prevents multiple occurances
++** of those opcodes for the same database in the same program. Similarly,
++** the DB_Cookie flag is set when the OP_VerifyCookie opcode is emitted,
++** and prevents duplicate OP_VerifyCookies from taking up space and slowing
++** down execution.
++**
++** The DB_SchemaLoaded flag is set after the database schema has been
++** read into internal hash tables.
++**
++** DB_UnresetViews means that one or more views have column names that
++** have been filled out. If the schema changes, these column names might
++** changes and so the view will need to be reset.
++*/
++#define DB_Locked 0x0001 /* OP_Transaction opcode has been emitted */
++#define DB_Cookie 0x0002 /* OP_VerifyCookie opcode has been emiited */
++#define DB_SchemaLoaded 0x0004 /* The schema has been loaded */
++#define DB_UnresetViews 0x0008 /* Some views have defined column names */
++
++
++/*
++** Each database is an instance of the following structure.
++**
++** The sqlite.file_format is initialized by the database file
++** and helps determines how the data in the database file is
++** represented. This field allows newer versions of the library
++** to read and write older databases. The various file formats
++** are as follows:
++**
++** file_format==1 Version 2.1.0.
++** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY.
++** file_format==3 Version 2.6.0. Fix empty-string index bug.
++** file_format==4 Version 2.7.0. Add support for separate numeric and
++** text datatypes.
++**
++** The sqlite.temp_store determines where temporary database files
++** are stored. If 1, then a file is created to hold those tables. If
++** 2, then they are held in memory. 0 means use the default value in
++** the TEMP_STORE macro.
++**
++** The sqlite.lastRowid records the last insert rowid generated by an
++** insert statement. Inserts on views do not affect its value. Each
++** trigger has its own context, so that lastRowid can be updated inside
++** triggers as usual. The previous value will be restored once the trigger
++** exits. Upon entering a before or instead of trigger, lastRowid is no
++** longer (since after version 2.8.12) reset to -1.
++**
++** The sqlite.nChange does not count changes within triggers and keeps no
++** context. It is reset at start of sqlite_exec.
++** The sqlite.lsChange represents the number of changes made by the last
++** insert, update, or delete statement. It remains constant throughout the
++** length of a statement and is then updated by OP_SetCounts. It keeps a
++** context stack just like lastRowid so that the count of changes
++** within a trigger is not seen outside the trigger. Changes to views do not
++** affect the value of lsChange.
++** The sqlite.csChange keeps track of the number of current changes (since
++** the last statement) and is used to update sqlite_lsChange.
++*/
++struct sqlite {
++ int nDb; /* Number of backends currently in use */
++ Db *aDb; /* All backends */
++ Db aDbStatic[2]; /* Static space for the 2 default backends */
++ int flags; /* Miscellanous flags. See below */
++ u8 file_format; /* What file format version is this database? */
++ u8 safety_level; /* How aggressive at synching data to disk */
++ u8 want_to_close; /* Close after all VDBEs are deallocated */
++ u8 temp_store; /* 1=file, 2=memory, 0=compile-time default */
++ u8 onError; /* Default conflict algorithm */
++ int next_cookie; /* Next value of aDb[0].schema_cookie */
++ int cache_size; /* Number of pages to use in the cache */
++ int nTable; /* Number of tables in the database */
++ void *pBusyArg; /* 1st Argument to the busy callback */
++ int (*xBusyCallback)(void *,const char*,int); /* The busy callback */
++ void *pCommitArg; /* Argument to xCommitCallback() */
++ int (*xCommitCallback)(void*);/* Invoked at every commit. */
++ Hash aFunc; /* All functions that can be in SQL exprs */
++ int lastRowid; /* ROWID of most recent insert (see above) */
++ int priorNewRowid; /* Last randomly generated ROWID */
++ int magic; /* Magic number for detect library misuse */
++ int nChange; /* Number of rows changed (see above) */
++ int lsChange; /* Last statement change count (see above) */
++ int csChange; /* Current statement change count (see above) */
++ struct sqliteInitInfo { /* Information used during initialization */
++ int iDb; /* When back is being initialized */
++ int newTnum; /* Rootpage of table being initialized */
++ u8 busy; /* TRUE if currently initializing */
++ } init;
++ struct Vdbe *pVdbe; /* List of active virtual machines */
++ void (*xTrace)(void*,const char*); /* Trace function */
++ void *pTraceArg; /* Argument to the trace function */
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
++ /* Access authorization function */
++ void *pAuthArg; /* 1st argument to the access auth function */
++#endif
++#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
++ int (*xProgress)(void *); /* The progress callback */
++ void *pProgressArg; /* Argument to the progress callback */
++ int nProgressOps; /* Number of opcodes for progress callback */
++#endif
++};
++
++/*
++** Possible values for the sqlite.flags and or Db.flags fields.
++**
++** On sqlite.flags, the SQLITE_InTrans value means that we have
++** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement
++** transaction is active on that particular database file.
++*/
++#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
++#define SQLITE_Initialized 0x00000002 /* True after initialization */
++#define SQLITE_Interrupt 0x00000004 /* Cancel current operation */
++#define SQLITE_InTrans 0x00000008 /* True if in a transaction */
++#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
++#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
++#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
++#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */
++ /* DELETE, or UPDATE and return */
++ /* the count using a callback. */
++#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
++ /* result set is empty */
++#define SQLITE_ReportTypes 0x00000200 /* Include information on datatypes */
++ /* in 4th argument of callback */
++
++/*
++** Possible values for the sqlite.magic field.
++** The numbers are obtained at random and have no special meaning, other
++** than being distinct from one another.
++*/
++#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
++#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
++#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
++#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
++
++/*
++** Each SQL function is defined by an instance of the following
++** structure. A pointer to this structure is stored in the sqlite.aFunc
++** hash table. When multiple functions have the same name, the hash table
++** points to a linked list of these structures.
++*/
++struct FuncDef {
++ void (*xFunc)(sqlite_func*,int,const char**); /* Regular function */
++ void (*xStep)(sqlite_func*,int,const char**); /* Aggregate function step */
++ void (*xFinalize)(sqlite_func*); /* Aggregate function finializer */
++ signed char nArg; /* Number of arguments. -1 means unlimited */
++ signed char dataType; /* Arg that determines datatype. -1=NUMERIC, */
++ /* -2=TEXT. -3=SQLITE_ARGS */
++ u8 includeTypes; /* Add datatypes to args of xFunc and xStep */
++ void *pUserData; /* User data parameter */
++ FuncDef *pNext; /* Next function with same name */
++};
++
++/*
++** information about each column of an SQL table is held in an instance
++** of this structure.
++*/
++struct Column {
++ char *zName; /* Name of this column */
++ char *zDflt; /* Default value of this column */
++ char *zType; /* Data type for this column */
++ u8 notNull; /* True if there is a NOT NULL constraint */
++ u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */
++ u8 sortOrder; /* Some combination of SQLITE_SO_... values */
++ u8 dottedName; /* True if zName contains a "." character */
++};
++
++/*
++** The allowed sort orders.
++**
++** The TEXT and NUM values use bits that do not overlap with DESC and ASC.
++** That way the two can be combined into a single number.
++*/
++#define SQLITE_SO_UNK 0 /* Use the default collating type. (SCT_NUM) */
++#define SQLITE_SO_TEXT 2 /* Sort using memcmp() */
++#define SQLITE_SO_NUM 4 /* Sort using sqliteCompare() */
++#define SQLITE_SO_TYPEMASK 6 /* Mask to extract the collating sequence */
++#define SQLITE_SO_ASC 0 /* Sort in ascending order */
++#define SQLITE_SO_DESC 1 /* Sort in descending order */
++#define SQLITE_SO_DIRMASK 1 /* Mask to extract the sort direction */
++
++/*
++** Each SQL table is represented in memory by an instance of the
++** following structure.
++**
++** Table.zName is the name of the table. The case of the original
++** CREATE TABLE statement is stored, but case is not significant for
++** comparisons.
++**
++** Table.nCol is the number of columns in this table. Table.aCol is a
++** pointer to an array of Column structures, one for each column.
++**
++** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
++** the column that is that key. Otherwise Table.iPKey is negative. Note
++** that the datatype of the PRIMARY KEY must be INTEGER for this field to
++** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
++** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
++** is generated for each row of the table. Table.hasPrimKey is true if
++** the table has any PRIMARY KEY, INTEGER or otherwise.
++**
++** Table.tnum is the page number for the root BTree page of the table in the
++** database file. If Table.iDb is the index of the database table backend
++** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
++** holds temporary tables and indices. If Table.isTransient
++** is true, then the table is stored in a file that is automatically deleted
++** when the VDBE cursor to the table is closed. In this case Table.tnum
++** refers VDBE cursor number that holds the table open, not to the root
++** page number. Transient tables are used to hold the results of a
++** sub-query that appears instead of a real table name in the FROM clause
++** of a SELECT statement.
++*/
++struct Table {
++ char *zName; /* Name of the table */
++ int nCol; /* Number of columns in this table */
++ Column *aCol; /* Information about each column */
++ int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
++ Index *pIndex; /* List of SQL indexes on this table. */
++ int tnum; /* Root BTree node for this table (see note above) */
++ Select *pSelect; /* NULL for tables. Points to definition if a view. */
++ u8 readOnly; /* True if this table should not be written by the user */
++ u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */
++ u8 isTransient; /* True if automatically deleted when VDBE finishes */
++ u8 hasPrimKey; /* True if there exists a primary key */
++ u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
++ Trigger *pTrigger; /* List of SQL triggers on this table */
++ FKey *pFKey; /* Linked list of all foreign keys in this table */
++};
++
++/*
++** Each foreign key constraint is an instance of the following structure.
++**
++** A foreign key is associated with two tables. The "from" table is
++** the table that contains the REFERENCES clause that creates the foreign
++** key. The "to" table is the table that is named in the REFERENCES clause.
++** Consider this example:
++**
++** CREATE TABLE ex1(
++** a INTEGER PRIMARY KEY,
++** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
++** );
++**
++** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
++**
++** Each REFERENCES clause generates an instance of the following structure
++** which is attached to the from-table. The to-table need not exist when
++** the from-table is created. The existance of the to-table is not checked
++** until an attempt is made to insert data into the from-table.
++**
++** The sqlite.aFKey hash table stores pointers to this structure
++** given the name of a to-table. For each to-table, all foreign keys
++** associated with that table are on a linked list using the FKey.pNextTo
++** field.
++*/
++struct FKey {
++ Table *pFrom; /* The table that constains the REFERENCES clause */
++ FKey *pNextFrom; /* Next foreign key in pFrom */
++ char *zTo; /* Name of table that the key points to */
++ FKey *pNextTo; /* Next foreign key that points to zTo */
++ int nCol; /* Number of columns in this key */
++ struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
++ int iFrom; /* Index of column in pFrom */
++ char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */
++ } *aCol; /* One entry for each of nCol column s */
++ u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
++ u8 updateConf; /* How to resolve conflicts that occur on UPDATE */
++ u8 deleteConf; /* How to resolve conflicts that occur on DELETE */
++ u8 insertConf; /* How to resolve conflicts that occur on INSERT */
++};
++
++/*
++** SQLite supports many different ways to resolve a contraint
++** error. ROLLBACK processing means that a constraint violation
++** causes the operation in process to fail and for the current transaction
++** to be rolled back. ABORT processing means the operation in process
++** fails and any prior changes from that one operation are backed out,
++** but the transaction is not rolled back. FAIL processing means that
++** the operation in progress stops and returns an error code. But prior
++** changes due to the same operation are not backed out and no rollback
++** occurs. IGNORE means that the particular row that caused the constraint
++** error is not inserted or updated. Processing continues and no error
++** is returned. REPLACE means that preexisting database rows that caused
++** a UNIQUE constraint violation are removed so that the new insert or
++** update can proceed. Processing continues and no error is reported.
++**
++** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
++** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
++** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
++** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
++** referenced table row is propagated into the row that holds the
++** foreign key.
++**
++** The following symbolic values are used to record which type
++** of action to take.
++*/
++#define OE_None 0 /* There is no constraint to check */
++#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
++#define OE_Abort 2 /* Back out changes but do no rollback transaction */
++#define OE_Fail 3 /* Stop the operation but leave all prior changes */
++#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
++#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
++
++#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
++#define OE_SetNull 7 /* Set the foreign key value to NULL */
++#define OE_SetDflt 8 /* Set the foreign key value to its default */
++#define OE_Cascade 9 /* Cascade the changes */
++
++#define OE_Default 99 /* Do whatever the default action is */
++
++/*
++** Each SQL index is represented in memory by an
++** instance of the following structure.
++**
++** The columns of the table that are to be indexed are described
++** by the aiColumn[] field of this structure. For example, suppose
++** we have the following table and index:
++**
++** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
++** CREATE INDEX Ex2 ON Ex1(c3,c1);
++**
++** In the Table structure describing Ex1, nCol==3 because there are
++** three columns in the table. In the Index structure describing
++** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
++** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
++** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
++** The second column to be indexed (c1) has an index of 0 in
++** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
++**
++** The Index.onError field determines whether or not the indexed columns
++** must be unique and what to do if they are not. When Index.onError=OE_None,
++** it means this is not a unique index. Otherwise it is a unique index
++** and the value of Index.onError indicate the which conflict resolution
++** algorithm to employ whenever an attempt is made to insert a non-unique
++** element.
++*/
++struct Index {
++ char *zName; /* Name of this index */
++ int nColumn; /* Number of columns in the table used by this index */
++ int *aiColumn; /* Which columns are used by this index. 1st is 0 */
++ Table *pTable; /* The SQL table being indexed */
++ int tnum; /* Page containing root of this index in database file */
++ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
++ u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */
++ u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */
++ Index *pNext; /* The next index associated with the same table */
++};
++
++/*
++** Each token coming out of the lexer is an instance of
++** this structure. Tokens are also used as part of an expression.
++**
++** Note if Token.z==0 then Token.dyn and Token.n are undefined and
++** may contain random values. Do not make any assuptions about Token.dyn
++** and Token.n when Token.z==0.
++*/
++struct Token {
++ const char *z; /* Text of the token. Not NULL-terminated! */
++ unsigned dyn : 1; /* True for malloced memory, false for static */
++ unsigned n : 31; /* Number of characters in this token */
++};
++
++/*
++** Each node of an expression in the parse tree is an instance
++** of this structure.
++**
++** Expr.op is the opcode. The integer parser token codes are reused
++** as opcodes here. For example, the parser defines TK_GE to be an integer
++** code representing the ">=" operator. This same integer code is reused
++** to represent the greater-than-or-equal-to operator in the expression
++** tree.
++**
++** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
++** of argument if the expression is a function.
++**
++** Expr.token is the operator token for this node. For some expressions
++** that have subexpressions, Expr.token can be the complete text that gave
++** rise to the Expr. In the latter case, the token is marked as being
++** a compound token.
++**
++** An expression of the form ID or ID.ID refers to a column in a table.
++** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
++** the integer cursor number of a VDBE cursor pointing to that table and
++** Expr.iColumn is the column number for the specific column. If the
++** expression is used as a result in an aggregate SELECT, then the
++** value is also stored in the Expr.iAgg column in the aggregate so that
++** it can be accessed after all aggregates are computed.
++**
++** If the expression is a function, the Expr.iTable is an integer code
++** representing which function. If the expression is an unbound variable
++** marker (a question mark character '?' in the original SQL) then the
++** Expr.iTable holds the index number for that variable.
++**
++** The Expr.pSelect field points to a SELECT statement. The SELECT might
++** be the right operand of an IN operator. Or, if a scalar SELECT appears
++** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
++** operand.
++*/
++struct Expr {
++ u8 op; /* Operation performed by this node */
++ u8 dataType; /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */
++ u8 iDb; /* Database referenced by this expression */
++ u8 flags; /* Various flags. See below */
++ Expr *pLeft, *pRight; /* Left and right subnodes */
++ ExprList *pList; /* A list of expressions used as function arguments
++ ** or in "<expr> IN (<expr-list)" */
++ Token token; /* An operand token */
++ Token span; /* Complete text of the expression */
++ int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
++ ** iColumn-th field of the iTable-th table. */
++ int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull
++ ** result from the iAgg-th element of the aggregator */
++ Select *pSelect; /* When the expression is a sub-select. Also the
++ ** right side of "<expr> IN (<select>)" */
++};
++
++/*
++** The following are the meanings of bits in the Expr.flags field.
++*/
++#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */
++
++/*
++** These macros can be used to test, set, or clear bits in the
++** Expr.flags field.
++*/
++#define ExprHasProperty(E,P) (((E)->flags&(P))==(P))
++#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0)
++#define ExprSetProperty(E,P) (E)->flags|=(P)
++#define ExprClearProperty(E,P) (E)->flags&=~(P)
++
++/*
++** A list of expressions. Each expression may optionally have a
++** name. An expr/name combination can be used in several ways, such
++** as the list of "expr AS ID" fields following a "SELECT" or in the
++** list of "ID = expr" items in an UPDATE. A list of expressions can
++** also be used as the argument to a function, in which case the a.zName
++** field is not used.
++*/
++struct ExprList {
++ int nExpr; /* Number of expressions on the list */
++ int nAlloc; /* Number of entries allocated below */
++ struct ExprList_item {
++ Expr *pExpr; /* The list of expressions */
++ char *zName; /* Token associated with this expression */
++ u8 sortOrder; /* 1 for DESC or 0 for ASC */
++ u8 isAgg; /* True if this is an aggregate like count(*) */
++ u8 done; /* A flag to indicate when processing is finished */
++ } *a; /* One entry for each expression */
++};
++
++/*
++** An instance of this structure can hold a simple list of identifiers,
++** such as the list "a,b,c" in the following statements:
++**
++** INSERT INTO t(a,b,c) VALUES ...;
++** CREATE INDEX idx ON t(a,b,c);
++** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
++**
++** The IdList.a.idx field is used when the IdList represents the list of
++** column names after a table name in an INSERT statement. In the statement
++**
++** INSERT INTO t(a,b,c) ...
++**
++** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
++*/
++struct IdList {
++ int nId; /* Number of identifiers on the list */
++ int nAlloc; /* Number of entries allocated for a[] below */
++ struct IdList_item {
++ char *zName; /* Name of the identifier */
++ int idx; /* Index in some Table.aCol[] of a column named zName */
++ } *a;
++};
++
++/*
++** The following structure describes the FROM clause of a SELECT statement.
++** Each table or subquery in the FROM clause is a separate element of
++** the SrcList.a[] array.
++**
++** With the addition of multiple database support, the following structure
++** can also be used to describe a particular table such as the table that
++** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
++** such a table must be a simple name: ID. But in SQLite, the table can
++** now be identified by a database name, a dot, then the table name: ID.ID.
++*/
++struct SrcList {
++ i16 nSrc; /* Number of tables or subqueries in the FROM clause */
++ i16 nAlloc; /* Number of entries allocated in a[] below */
++ struct SrcList_item {
++ char *zDatabase; /* Name of database holding this table */
++ char *zName; /* Name of the table */
++ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
++ Table *pTab; /* An SQL table corresponding to zName */
++ Select *pSelect; /* A SELECT statement used in place of a table name */
++ int jointype; /* Type of join between this table and the next */
++ int iCursor; /* The VDBE cursor number used to access this table */
++ Expr *pOn; /* The ON clause of a join */
++ IdList *pUsing; /* The USING clause of a join */
++ } a[1]; /* One entry for each identifier on the list */
++};
++
++/*
++** Permitted values of the SrcList.a.jointype field
++*/
++#define JT_INNER 0x0001 /* Any kind of inner or cross join */
++#define JT_NATURAL 0x0002 /* True for a "natural" join */
++#define JT_LEFT 0x0004 /* Left outer join */
++#define JT_RIGHT 0x0008 /* Right outer join */
++#define JT_OUTER 0x0010 /* The "OUTER" keyword is present */
++#define JT_ERROR 0x0020 /* unknown or unsupported join type */
++
++/*
++** For each nested loop in a WHERE clause implementation, the WhereInfo
++** structure contains a single instance of this structure. This structure
++** is intended to be private the the where.c module and should not be
++** access or modified by other modules.
++*/
++struct WhereLevel {
++ int iMem; /* Memory cell used by this level */
++ Index *pIdx; /* Index used */
++ int iCur; /* Cursor number used for this index */
++ int score; /* How well this indexed scored */
++ int brk; /* Jump here to break out of the loop */
++ int cont; /* Jump here to continue with the next loop cycle */
++ int op, p1, p2; /* Opcode used to terminate the loop */
++ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */
++ int top; /* First instruction of interior of the loop */
++ int inOp, inP1, inP2;/* Opcode used to implement an IN operator */
++ int bRev; /* Do the scan in the reverse direction */
++};
++
++/*
++** The WHERE clause processing routine has two halves. The
++** first part does the start of the WHERE loop and the second
++** half does the tail of the WHERE loop. An instance of
++** this structure is returned by the first half and passed
++** into the second half to give some continuity.
++*/
++struct WhereInfo {
++ Parse *pParse;
++ SrcList *pTabList; /* List of tables in the join */
++ int iContinue; /* Jump here to continue with next record */
++ int iBreak; /* Jump here to break out of the loop */
++ int nLevel; /* Number of nested loop */
++ int savedNTab; /* Value of pParse->nTab before WhereBegin() */
++ int peakNTab; /* Value of pParse->nTab after WhereBegin() */
++ WhereLevel a[1]; /* Information about each nest loop in the WHERE */
++};
++
++/*
++** An instance of the following structure contains all information
++** needed to generate code for a single SELECT statement.
++**
++** The zSelect field is used when the Select structure must be persistent.
++** Normally, the expression tree points to tokens in the original input
++** string that encodes the select. But if the Select structure must live
++** longer than its input string (for example when it is used to describe
++** a VIEW) we have to make a copy of the input string so that the nodes
++** of the expression tree will have something to point to. zSelect is used
++** to hold that copy.
++**
++** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
++** If there is a LIMIT clause, the parser sets nLimit to the value of the
++** limit and nOffset to the value of the offset (or 0 if there is not
++** offset). But later on, nLimit and nOffset become the memory locations
++** in the VDBE that record the limit and offset counters.
++*/
++struct Select {
++ ExprList *pEList; /* The fields of the result */
++ u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
++ u8 isDistinct; /* True if the DISTINCT keyword is present */
++ SrcList *pSrc; /* The FROM clause */
++ Expr *pWhere; /* The WHERE clause */
++ ExprList *pGroupBy; /* The GROUP BY clause */
++ Expr *pHaving; /* The HAVING clause */
++ ExprList *pOrderBy; /* The ORDER BY clause */
++ Select *pPrior; /* Prior select in a compound select statement */
++ int nLimit, nOffset; /* LIMIT and OFFSET values. -1 means not used */
++ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
++ char *zSelect; /* Complete text of the SELECT command */
++};
++
++/*
++** The results of a select can be distributed in several ways.
++*/
++#define SRT_Callback 1 /* Invoke a callback with each row of result */
++#define SRT_Mem 2 /* Store result in a memory cell */
++#define SRT_Set 3 /* Store result as unique keys in a table */
++#define SRT_Union 5 /* Store result as keys in a table */
++#define SRT_Except 6 /* Remove result from a UNION table */
++#define SRT_Table 7 /* Store result as data with a unique key */
++#define SRT_TempTable 8 /* Store result in a trasient table */
++#define SRT_Discard 9 /* Do not save the results anywhere */
++#define SRT_Sorter 10 /* Store results in the sorter */
++#define SRT_Subroutine 11 /* Call a subroutine to handle results */
++
++/*
++** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)")
++** we have to do some additional analysis of expressions. An instance
++** of the following structure holds information about a single subexpression
++** somewhere in the SELECT statement. An array of these structures holds
++** all the information we need to generate code for aggregate
++** expressions.
++**
++** Note that when analyzing a SELECT containing aggregates, both
++** non-aggregate field variables and aggregate functions are stored
++** in the AggExpr array of the Parser structure.
++**
++** The pExpr field points to an expression that is part of either the
++** field list, the GROUP BY clause, the HAVING clause or the ORDER BY
++** clause. The expression will be freed when those clauses are cleaned
++** up. Do not try to delete the expression attached to AggExpr.pExpr.
++**
++** If AggExpr.pExpr==0, that means the expression is "count(*)".
++*/
++struct AggExpr {
++ int isAgg; /* if TRUE contains an aggregate function */
++ Expr *pExpr; /* The expression */
++ FuncDef *pFunc; /* Information about the aggregate function */
++};
++
++/*
++** An SQL parser context. A copy of this structure is passed through
++** the parser and down into all the parser action routine in order to
++** carry around information that is global to the entire parse.
++*/
++struct Parse {
++ sqlite *db; /* The main database structure */
++ int rc; /* Return code from execution */
++ char *zErrMsg; /* An error message */
++ Token sErrToken; /* The token at which the error occurred */
++ Token sFirstToken; /* The first token parsed */
++ Token sLastToken; /* The last token parsed */
++ const char *zTail; /* All SQL text past the last semicolon parsed */
++ Table *pNewTable; /* A table being constructed by CREATE TABLE */
++ Vdbe *pVdbe; /* An engine for executing database bytecode */
++ u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
++ u8 explain; /* True if the EXPLAIN flag is found on the query */
++ u8 nameClash; /* A permanent table name clashes with temp table name */
++ u8 useAgg; /* If true, extract field values from the aggregator
++ ** while generating expressions. Normally false */
++ int nErr; /* Number of errors seen */
++ int nTab; /* Number of previously allocated VDBE cursors */
++ int nMem; /* Number of memory cells used so far */
++ int nSet; /* Number of sets used so far */
++ int nAgg; /* Number of aggregate expressions */
++ int nVar; /* Number of '?' variables seen in the SQL so far */
++ AggExpr *aAgg; /* An array of aggregate expressions */
++ const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
++ Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
++ TriggerStack *trigStack; /* Trigger actions being coded */
++};
++
++/*
++** An instance of the following structure can be declared on a stack and used
++** to save the Parse.zAuthContext value so that it can be restored later.
++*/
++struct AuthContext {
++ const char *zAuthContext; /* Put saved Parse.zAuthContext here */
++ Parse *pParse; /* The Parse structure */
++};
++
++/*
++** Bitfield flags for P2 value in OP_PutIntKey and OP_Delete
++*/
++#define OPFLAG_NCHANGE 1 /* Set to update db->nChange */
++#define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */
++#define OPFLAG_CSCHANGE 4 /* Set to update db->csChange */
++
++/*
++ * Each trigger present in the database schema is stored as an instance of
++ * struct Trigger.
++ *
++ * Pointers to instances of struct Trigger are stored in two ways.
++ * 1. In the "trigHash" hash table (part of the sqlite* that represents the
++ * database). This allows Trigger structures to be retrieved by name.
++ * 2. All triggers associated with a single table form a linked list, using the
++ * pNext member of struct Trigger. A pointer to the first element of the
++ * linked list is stored as the "pTrigger" member of the associated
++ * struct Table.
++ *
++ * The "step_list" member points to the first element of a linked list
++ * containing the SQL statements specified as the trigger program.
++ */
++struct Trigger {
++ char *name; /* The name of the trigger */
++ char *table; /* The table or view to which the trigger applies */
++ u8 iDb; /* Database containing this trigger */
++ u8 iTabDb; /* Database containing Trigger.table */
++ u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
++ u8 tr_tm; /* One of TK_BEFORE, TK_AFTER */
++ Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */
++ IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
++ the <column-list> is stored here */
++ int foreach; /* One of TK_ROW or TK_STATEMENT */
++ Token nameToken; /* Token containing zName. Use during parsing only */
++
++ TriggerStep *step_list; /* Link list of trigger program steps */
++ Trigger *pNext; /* Next trigger associated with the table */
++};
++
++/*
++ * An instance of struct TriggerStep is used to store a single SQL statement
++ * that is a part of a trigger-program.
++ *
++ * Instances of struct TriggerStep are stored in a singly linked list (linked
++ * using the "pNext" member) referenced by the "step_list" member of the
++ * associated struct Trigger instance. The first element of the linked list is
++ * the first step of the trigger-program.
++ *
++ * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
++ * "SELECT" statement. The meanings of the other members is determined by the
++ * value of "op" as follows:
++ *
++ * (op == TK_INSERT)
++ * orconf -> stores the ON CONFLICT algorithm
++ * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
++ * this stores a pointer to the SELECT statement. Otherwise NULL.
++ * target -> A token holding the name of the table to insert into.
++ * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
++ * this stores values to be inserted. Otherwise NULL.
++ * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
++ * statement, then this stores the column-names to be
++ * inserted into.
++ *
++ * (op == TK_DELETE)
++ * target -> A token holding the name of the table to delete from.
++ * pWhere -> The WHERE clause of the DELETE statement if one is specified.
++ * Otherwise NULL.
++ *
++ * (op == TK_UPDATE)
++ * target -> A token holding the name of the table to update rows of.
++ * pWhere -> The WHERE clause of the UPDATE statement if one is specified.
++ * Otherwise NULL.
++ * pExprList -> A list of the columns to update and the expressions to update
++ * them to. See sqliteUpdate() documentation of "pChanges"
++ * argument.
++ *
++ */
++struct TriggerStep {
++ int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
++ int orconf; /* OE_Rollback etc. */
++ Trigger *pTrig; /* The trigger that this step is a part of */
++
++ Select *pSelect; /* Valid for SELECT and sometimes
++ INSERT steps (when pExprList == 0) */
++ Token target; /* Valid for DELETE, UPDATE, INSERT steps */
++ Expr *pWhere; /* Valid for DELETE, UPDATE steps */
++ ExprList *pExprList; /* Valid for UPDATE statements and sometimes
++ INSERT steps (when pSelect == 0) */
++ IdList *pIdList; /* Valid for INSERT statements only */
++
++ TriggerStep * pNext; /* Next in the link-list */
++};
++
++/*
++ * An instance of struct TriggerStack stores information required during code
++ * generation of a single trigger program. While the trigger program is being
++ * coded, its associated TriggerStack instance is pointed to by the
++ * "pTriggerStack" member of the Parse structure.
++ *
++ * The pTab member points to the table that triggers are being coded on. The
++ * newIdx member contains the index of the vdbe cursor that points at the temp
++ * table that stores the new.* references. If new.* references are not valid
++ * for the trigger being coded (for example an ON DELETE trigger), then newIdx
++ * is set to -1. The oldIdx member is analogous to newIdx, for old.* references.
++ *
++ * The ON CONFLICT policy to be used for the trigger program steps is stored
++ * as the orconf member. If this is OE_Default, then the ON CONFLICT clause
++ * specified for individual triggers steps is used.
++ *
++ * struct TriggerStack has a "pNext" member, to allow linked lists to be
++ * constructed. When coding nested triggers (triggers fired by other triggers)
++ * each nested trigger stores its parent trigger's TriggerStack as the "pNext"
++ * pointer. Once the nested trigger has been coded, the pNext value is restored
++ * to the pTriggerStack member of the Parse stucture and coding of the parent
++ * trigger continues.
++ *
++ * Before a nested trigger is coded, the linked list pointed to by the
++ * pTriggerStack is scanned to ensure that the trigger is not about to be coded
++ * recursively. If this condition is detected, the nested trigger is not coded.
++ */
++struct TriggerStack {
++ Table *pTab; /* Table that triggers are currently being coded on */
++ int newIdx; /* Index of vdbe cursor to "new" temp table */
++ int oldIdx; /* Index of vdbe cursor to "old" temp table */
++ int orconf; /* Current orconf policy */
++ int ignoreJump; /* where to jump to for a RAISE(IGNORE) */
++ Trigger *pTrigger; /* The trigger currently being coded */
++ TriggerStack *pNext; /* Next trigger down on the trigger stack */
++};
++
++/*
++** The following structure contains information used by the sqliteFix...
++** routines as they walk the parse tree to make database references
++** explicit.
++*/
++typedef struct DbFixer DbFixer;
++struct DbFixer {
++ Parse *pParse; /* The parsing context. Error messages written here */
++ const char *zDb; /* Make sure all objects are contained in this database */
++ const char *zType; /* Type of the container - used for error messages */
++ const Token *pName; /* Name of the container - used for error messages */
++};
++
++/*
++ * This global flag is set for performance testing of triggers. When it is set
++ * SQLite will perform the overhead of building new and old trigger references
++ * even when no triggers exist
++ */
++extern int always_code_trigger_setup;
++
++/*
++** Internal function prototypes
++*/
++int sqliteStrICmp(const char *, const char *);
++int sqliteStrNICmp(const char *, const char *, int);
++int sqliteHashNoCase(const char *, int);
++int sqliteIsNumber(const char*);
++int sqliteCompare(const char *, const char *);
++int sqliteSortCompare(const char *, const char *);
++void sqliteRealToSortable(double r, char *);
++#ifdef MEMORY_DEBUG
++ void *sqliteMalloc_(int,int,char*,int);
++ void sqliteFree_(void*,char*,int);
++ void *sqliteRealloc_(void*,int,char*,int);
++ char *sqliteStrDup_(const char*,char*,int);
++ char *sqliteStrNDup_(const char*, int,char*,int);
++ void sqliteCheckMemory(void*,int);
++#else
++ void *sqliteMalloc(int);
++ void *sqliteMallocRaw(int);
++ void sqliteFree(void*);
++ void *sqliteRealloc(void*,int);
++ char *sqliteStrDup(const char*);
++ char *sqliteStrNDup(const char*, int);
++# define sqliteCheckMemory(a,b)
++#endif
++char *sqliteMPrintf(const char*, ...);
++char *sqliteVMPrintf(const char*, va_list);
++void sqliteSetString(char **, ...);
++void sqliteSetNString(char **, ...);
++void sqliteErrorMsg(Parse*, const char*, ...);
++void sqliteDequote(char*);
++int sqliteKeywordCode(const char*, int);
++int sqliteRunParser(Parse*, const char*, char **);
++void sqliteExec(Parse*);
++Expr *sqliteExpr(int, Expr*, Expr*, Token*);
++void sqliteExprSpan(Expr*,Token*,Token*);
++Expr *sqliteExprFunction(ExprList*, Token*);
++void sqliteExprDelete(Expr*);
++ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*);
++void sqliteExprListDelete(ExprList*);
++int sqliteInit(sqlite*, char**);
++void sqlitePragma(Parse*,Token*,Token*,int);
++void sqliteResetInternalSchema(sqlite*, int);
++void sqliteBeginParse(Parse*,int);
++void sqliteRollbackInternalChanges(sqlite*);
++void sqliteCommitInternalChanges(sqlite*);
++Table *sqliteResultSetOfSelect(Parse*,char*,Select*);
++void sqliteOpenMasterTable(Vdbe *v, int);
++void sqliteStartTable(Parse*,Token*,Token*,int,int);
++void sqliteAddColumn(Parse*,Token*);
++void sqliteAddNotNull(Parse*, int);
++void sqliteAddPrimaryKey(Parse*, IdList*, int);
++void sqliteAddColumnType(Parse*,Token*,Token*);
++void sqliteAddDefaultValue(Parse*,Token*,int);
++int sqliteCollateType(const char*, int);
++void sqliteAddCollateType(Parse*, int);
++void sqliteEndTable(Parse*,Token*,Select*);
++void sqliteCreateView(Parse*,Token*,Token*,Select*,int);
++int sqliteViewGetColumnNames(Parse*,Table*);
++void sqliteDropTable(Parse*, Token*, int);
++void sqliteDeleteTable(sqlite*, Table*);
++void sqliteInsert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
++IdList *sqliteIdListAppend(IdList*, Token*);
++int sqliteIdListIndex(IdList*,const char*);
++SrcList *sqliteSrcListAppend(SrcList*, Token*, Token*);
++void sqliteSrcListAddAlias(SrcList*, Token*);
++void sqliteSrcListAssignCursors(Parse*, SrcList*);
++void sqliteIdListDelete(IdList*);
++void sqliteSrcListDelete(SrcList*);
++void sqliteCreateIndex(Parse*,Token*,SrcList*,IdList*,int,Token*,Token*);
++void sqliteDropIndex(Parse*, SrcList*);
++void sqliteAddKeyType(Vdbe*, ExprList*);
++void sqliteAddIdxKeyType(Vdbe*, Index*);
++int sqliteSelect(Parse*, Select*, int, int, Select*, int, int*);
++Select *sqliteSelectNew(ExprList*,SrcList*,Expr*,ExprList*,Expr*,ExprList*,
++ int,int,int);
++void sqliteSelectDelete(Select*);
++void sqliteSelectUnbind(Select*);
++Table *sqliteSrcListLookup(Parse*, SrcList*);
++int sqliteIsReadOnly(Parse*, Table*, int);
++void sqliteDeleteFrom(Parse*, SrcList*, Expr*);
++void sqliteUpdate(Parse*, SrcList*, ExprList*, Expr*, int);
++WhereInfo *sqliteWhereBegin(Parse*, SrcList*, Expr*, int, ExprList**);
++void sqliteWhereEnd(WhereInfo*);
++void sqliteExprCode(Parse*, Expr*);
++int sqliteExprCodeExprList(Parse*, ExprList*, int);
++void sqliteExprIfTrue(Parse*, Expr*, int, int);
++void sqliteExprIfFalse(Parse*, Expr*, int, int);
++Table *sqliteFindTable(sqlite*,const char*, const char*);
++Table *sqliteLocateTable(Parse*,const char*, const char*);
++Index *sqliteFindIndex(sqlite*,const char*, const char*);
++void sqliteUnlinkAndDeleteIndex(sqlite*,Index*);
++void sqliteCopy(Parse*, SrcList*, Token*, Token*, int);
++void sqliteVacuum(Parse*, Token*);
++int sqliteRunVacuum(char**, sqlite*);
++int sqliteGlobCompare(const unsigned char*,const unsigned char*);
++int sqliteLikeCompare(const unsigned char*,const unsigned char*);
++char *sqliteTableNameFromToken(Token*);
++int sqliteExprCheck(Parse*, Expr*, int, int*);
++int sqliteExprType(Expr*);
++int sqliteExprCompare(Expr*, Expr*);
++int sqliteFuncId(Token*);
++int sqliteExprResolveIds(Parse*, SrcList*, ExprList*, Expr*);
++int sqliteExprAnalyzeAggregates(Parse*, Expr*);
++Vdbe *sqliteGetVdbe(Parse*);
++void sqliteRandomness(int, void*);
++void sqliteRollbackAll(sqlite*);
++void sqliteCodeVerifySchema(Parse*, int);
++void sqliteBeginTransaction(Parse*, int);
++void sqliteCommitTransaction(Parse*);
++void sqliteRollbackTransaction(Parse*);
++int sqliteExprIsConstant(Expr*);
++int sqliteExprIsInteger(Expr*, int*);
++int sqliteIsRowid(const char*);
++void sqliteGenerateRowDelete(sqlite*, Vdbe*, Table*, int, int);
++void sqliteGenerateRowIndexDelete(sqlite*, Vdbe*, Table*, int, char*);
++void sqliteGenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int);
++void sqliteCompleteInsertion(Parse*, Table*, int, char*, int, int, int);
++int sqliteOpenTableAndIndices(Parse*, Table*, int);
++void sqliteBeginWriteOperation(Parse*, int, int);
++void sqliteEndWriteOperation(Parse*);
++Expr *sqliteExprDup(Expr*);
++void sqliteTokenCopy(Token*, Token*);
++ExprList *sqliteExprListDup(ExprList*);
++SrcList *sqliteSrcListDup(SrcList*);
++IdList *sqliteIdListDup(IdList*);
++Select *sqliteSelectDup(Select*);
++FuncDef *sqliteFindFunction(sqlite*,const char*,int,int,int);
++void sqliteRegisterBuiltinFunctions(sqlite*);
++void sqliteRegisterDateTimeFunctions(sqlite*);
++int sqliteSafetyOn(sqlite*);
++int sqliteSafetyOff(sqlite*);
++int sqliteSafetyCheck(sqlite*);
++void sqliteChangeCookie(sqlite*, Vdbe*);
++void sqliteBeginTrigger(Parse*, Token*,int,int,IdList*,SrcList*,int,Expr*,int);
++void sqliteFinishTrigger(Parse*, TriggerStep*, Token*);
++void sqliteDropTrigger(Parse*, SrcList*);
++void sqliteDropTriggerPtr(Parse*, Trigger*, int);
++int sqliteTriggersExist(Parse* , Trigger* , int , int , int, ExprList*);
++int sqliteCodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int,
++ int, int);
++void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
++void sqliteDeleteTriggerStep(TriggerStep*);
++TriggerStep *sqliteTriggerSelectStep(Select*);
++TriggerStep *sqliteTriggerInsertStep(Token*, IdList*, ExprList*, Select*, int);
++TriggerStep *sqliteTriggerUpdateStep(Token*, ExprList*, Expr*, int);
++TriggerStep *sqliteTriggerDeleteStep(Token*, Expr*);
++void sqliteDeleteTrigger(Trigger*);
++int sqliteJoinType(Parse*, Token*, Token*, Token*);
++void sqliteCreateForeignKey(Parse*, IdList*, Token*, IdList*, int);
++void sqliteDeferForeignKey(Parse*, int);
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ void sqliteAuthRead(Parse*,Expr*,SrcList*);
++ int sqliteAuthCheck(Parse*,int, const char*, const char*, const char*);
++ void sqliteAuthContextPush(Parse*, AuthContext*, const char*);
++ void sqliteAuthContextPop(AuthContext*);
++#else
++# define sqliteAuthRead(a,b,c)
++# define sqliteAuthCheck(a,b,c,d,e) SQLITE_OK
++# define sqliteAuthContextPush(a,b,c)
++# define sqliteAuthContextPop(a) ((void)(a))
++#endif
++void sqliteAttach(Parse*, Token*, Token*, Token*);
++void sqliteDetach(Parse*, Token*);
++int sqliteBtreeFactory(const sqlite *db, const char *zFilename,
++ int mode, int nPg, Btree **ppBtree);
++int sqliteFixInit(DbFixer*, Parse*, int, const char*, const Token*);
++int sqliteFixSrcList(DbFixer*, SrcList*);
++int sqliteFixSelect(DbFixer*, Select*);
++int sqliteFixExpr(DbFixer*, Expr*);
++int sqliteFixExprList(DbFixer*, ExprList*);
++int sqliteFixTriggerStep(DbFixer*, TriggerStep*);
++double sqliteAtoF(const char *z, const char **);
++char *sqlite_snprintf(int,char*,const char*,...);
++int sqliteFitsIn32Bits(const char *);
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/sqlite.w32.h
+@@ -0,0 +1,764 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This header file defines the interface that the SQLite library
++** presents to client programs.
++**
++** @(#) $Id$
++*/
++#ifndef _SQLITE_H_
++#define _SQLITE_H_
++#include <stdarg.h> /* Needed for the definition of va_list */
++
++/*
++** Make sure we can call this stuff from C++.
++*/
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++/*
++** The version of the SQLite library.
++*/
++#define SQLITE_VERSION "2.8.17"
++
++/*
++** The version string is also compiled into the library so that a program
++** can check to make sure that the lib*.a file and the *.h file are from
++** the same version.
++*/
++extern const char sqlite_version[];
++
++/*
++** The SQLITE_UTF8 macro is defined if the library expects to see
++** UTF-8 encoded data. The SQLITE_ISO8859 macro is defined if the
++** iso8859 encoded should be used.
++*/
++#define SQLITE_ISO8859 1
++
++/*
++** The following constant holds one of two strings, "UTF-8" or "iso8859",
++** depending on which character encoding the SQLite library expects to
++** see. The character encoding makes a difference for the LIKE and GLOB
++** operators and for the LENGTH() and SUBSTR() functions.
++*/
++extern const char sqlite_encoding[];
++
++/*
++** Each open sqlite database is represented by an instance of the
++** following opaque structure.
++*/
++typedef struct sqlite sqlite;
++
++/*
++** A function to open a new sqlite database.
++**
++** If the database does not exist and mode indicates write
++** permission, then a new database is created. If the database
++** does not exist and mode does not indicate write permission,
++** then the open fails, an error message generated (if errmsg!=0)
++** and the function returns 0.
++**
++** If mode does not indicates user write permission, then the
++** database is opened read-only.
++**
++** The Truth: As currently implemented, all databases are opened
++** for writing all the time. Maybe someday we will provide the
++** ability to open a database readonly. The mode parameters is
++** provided in anticipation of that enhancement.
++*/
++sqlite *sqlite_open(const char *filename, int mode, char **errmsg);
++
++/*
++** A function to close the database.
++**
++** Call this function with a pointer to a structure that was previously
++** returned from sqlite_open() and the corresponding database will by closed.
++*/
++void sqlite_close(sqlite *);
++
++/*
++** The type for a callback function.
++*/
++typedef int (*sqlite_callback)(void*,int,char**, char**);
++
++/*
++** A function to executes one or more statements of SQL.
++**
++** If one or more of the SQL statements are queries, then
++** the callback function specified by the 3rd parameter is
++** invoked once for each row of the query result. This callback
++** should normally return 0. If the callback returns a non-zero
++** value then the query is aborted, all subsequent SQL statements
++** are skipped and the sqlite_exec() function returns the SQLITE_ABORT.
++**
++** The 4th parameter is an arbitrary pointer that is passed
++** to the callback function as its first parameter.
++**
++** The 2nd parameter to the callback function is the number of
++** columns in the query result. The 3rd parameter to the callback
++** is an array of strings holding the values for each column.
++** The 4th parameter to the callback is an array of strings holding
++** the names of each column.
++**
++** The callback function may be NULL, even for queries. A NULL
++** callback is not an error. It just means that no callback
++** will be invoked.
++**
++** If an error occurs while parsing or evaluating the SQL (but
++** not while executing the callback) then an appropriate error
++** message is written into memory obtained from malloc() and
++** *errmsg is made to point to that message. The calling function
++** is responsible for freeing the memory that holds the error
++** message. Use sqlite_freemem() for this. If errmsg==NULL,
++** then no error message is ever written.
++**
++** The return value is is SQLITE_OK if there are no errors and
++** some other return code if there is an error. The particular
++** return value depends on the type of error.
++**
++** If the query could not be executed because a database file is
++** locked or busy, then this function returns SQLITE_BUSY. (This
++** behavior can be modified somewhat using the sqlite_busy_handler()
++** and sqlite_busy_timeout() functions below.)
++*/
++int sqlite_exec(
++ sqlite*, /* An open database */
++ const char *sql, /* SQL to be executed */
++ sqlite_callback, /* Callback function */
++ void *, /* 1st argument to callback function */
++ char **errmsg /* Error msg written here */
++);
++
++/*
++** Return values for sqlite_exec() and sqlite_step()
++*/
++#define SQLITE_OK 0 /* Successful result */
++#define SQLITE_ERROR 1 /* SQL error or missing database */
++#define SQLITE_INTERNAL 2 /* An internal logic error in SQLite */
++#define SQLITE_PERM 3 /* Access permission denied */
++#define SQLITE_ABORT 4 /* Callback routine requested an abort */
++#define SQLITE_BUSY 5 /* The database file is locked */
++#define SQLITE_LOCKED 6 /* A table in the database is locked */
++#define SQLITE_NOMEM 7 /* A malloc() failed */
++#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
++#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite_interrupt() */
++#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
++#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
++#define SQLITE_NOTFOUND 12 /* (Internal Only) Table or record not found */
++#define SQLITE_FULL 13 /* Insertion failed because database is full */
++#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
++#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
++#define SQLITE_EMPTY 16 /* (Internal Only) Database table is empty */
++#define SQLITE_SCHEMA 17 /* The database schema changed */
++#define SQLITE_TOOBIG 18 /* Too much data for one row of a table */
++#define SQLITE_CONSTRAINT 19 /* Abort due to contraint violation */
++#define SQLITE_MISMATCH 20 /* Data type mismatch */
++#define SQLITE_MISUSE 21 /* Library used incorrectly */
++#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
++#define SQLITE_AUTH 23 /* Authorization denied */
++#define SQLITE_FORMAT 24 /* Auxiliary database format error */
++#define SQLITE_RANGE 25 /* 2nd parameter to sqlite_bind out of range */
++#define SQLITE_NOTADB 26 /* File opened that is not a database file */
++#define SQLITE_ROW 100 /* sqlite_step() has another row ready */
++#define SQLITE_DONE 101 /* sqlite_step() has finished executing */
++
++/*
++** Each entry in an SQLite table has a unique integer key. (The key is
++** the value of the INTEGER PRIMARY KEY column if there is such a column,
++** otherwise the key is generated at random. The unique key is always
++** available as the ROWID, OID, or _ROWID_ column.) The following routine
++** returns the integer key of the most recent insert in the database.
++**
++** This function is similar to the mysql_insert_id() function from MySQL.
++*/
++int sqlite_last_insert_rowid(sqlite*);
++
++/*
++** This function returns the number of database rows that were changed
++** (or inserted or deleted) by the most recent called sqlite_exec().
++**
++** All changes are counted, even if they were later undone by a
++** ROLLBACK or ABORT. Except, changes associated with creating and
++** dropping tables are not counted.
++**
++** If a callback invokes sqlite_exec() recursively, then the changes
++** in the inner, recursive call are counted together with the changes
++** in the outer call.
++**
++** SQLite implements the command "DELETE FROM table" without a WHERE clause
++** by dropping and recreating the table. (This is much faster than going
++** through and deleting individual elements form the table.) Because of
++** this optimization, the change count for "DELETE FROM table" will be
++** zero regardless of the number of elements that were originally in the
++** table. To get an accurate count of the number of rows deleted, use
++** "DELETE FROM table WHERE 1" instead.
++*/
++int sqlite_changes(sqlite*);
++
++/* If the parameter to this routine is one of the return value constants
++** defined above, then this routine returns a constant text string which
++** descripts (in English) the meaning of the return value.
++*/
++const char *sqlite_error_string(int);
++#define sqliteErrStr sqlite_error_string /* Legacy. Do not use in new code. */
++
++/* This function causes any pending database operation to abort and
++** return at its earliest opportunity. This routine is typically
++** called in response to a user action such as pressing "Cancel"
++** or Ctrl-C where the user wants a long query operation to halt
++** immediately.
++*/
++void sqlite_interrupt(sqlite*);
++
++
++/* This function returns true if the given input string comprises
++** one or more complete SQL statements.
++**
++** The algorithm is simple. If the last token other than spaces
++** and comments is a semicolon, then return true. otherwise return
++** false.
++*/
++int sqlite_complete(const char *sql);
++
++/*
++** This routine identifies a callback function that is invoked
++** whenever an attempt is made to open a database table that is
++** currently locked by another process or thread. If the busy callback
++** is NULL, then sqlite_exec() returns SQLITE_BUSY immediately if
++** it finds a locked table. If the busy callback is not NULL, then
++** sqlite_exec() invokes the callback with three arguments. The
++** second argument is the name of the locked table and the third
++** argument is the number of times the table has been busy. If the
++** busy callback returns 0, then sqlite_exec() immediately returns
++** SQLITE_BUSY. If the callback returns non-zero, then sqlite_exec()
++** tries to open the table again and the cycle repeats.
++**
++** The default busy callback is NULL.
++**
++** Sqlite is re-entrant, so the busy handler may start a new query.
++** (It is not clear why anyone would every want to do this, but it
++** is allowed, in theory.) But the busy handler may not close the
++** database. Closing the database from a busy handler will delete
++** data structures out from under the executing query and will
++** probably result in a coredump.
++*/
++void sqlite_busy_handler(sqlite*, int(*)(void*,const char*,int), void*);
++
++/*
++** This routine sets a busy handler that sleeps for a while when a
++** table is locked. The handler will sleep multiple times until
++** at least "ms" milleseconds of sleeping have been done. After
++** "ms" milleseconds of sleeping, the handler returns 0 which
++** causes sqlite_exec() to return SQLITE_BUSY.
++**
++** Calling this routine with an argument less than or equal to zero
++** turns off all busy handlers.
++*/
++void sqlite_busy_timeout(sqlite*, int ms);
++
++/*
++** This next routine is really just a wrapper around sqlite_exec().
++** Instead of invoking a user-supplied callback for each row of the
++** result, this routine remembers each row of the result in memory
++** obtained from malloc(), then returns all of the result after the
++** query has finished.
++**
++** As an example, suppose the query result where this table:
++**
++** Name | Age
++** -----------------------
++** Alice | 43
++** Bob | 28
++** Cindy | 21
++**
++** If the 3rd argument were &azResult then after the function returns
++** azResult will contain the following data:
++**
++** azResult[0] = "Name";
++** azResult[1] = "Age";
++** azResult[2] = "Alice";
++** azResult[3] = "43";
++** azResult[4] = "Bob";
++** azResult[5] = "28";
++** azResult[6] = "Cindy";
++** azResult[7] = "21";
++**
++** Notice that there is an extra row of data containing the column
++** headers. But the *nrow return value is still 3. *ncolumn is
++** set to 2. In general, the number of values inserted into azResult
++** will be ((*nrow) + 1)*(*ncolumn).
++**
++** After the calling function has finished using the result, it should
++** pass the result data pointer to sqlite_free_table() in order to
++** release the memory that was malloc-ed. Because of the way the
++** malloc() happens, the calling function must not try to call
++** malloc() directly. Only sqlite_free_table() is able to release
++** the memory properly and safely.
++**
++** The return value of this routine is the same as from sqlite_exec().
++*/
++int sqlite_get_table(
++ sqlite*, /* An open database */
++ const char *sql, /* SQL to be executed */
++ char ***resultp, /* Result written to a char *[] that this points to */
++ int *nrow, /* Number of result rows written here */
++ int *ncolumn, /* Number of result columns written here */
++ char **errmsg /* Error msg written here */
++);
++
++/*
++** Call this routine to free the memory that sqlite_get_table() allocated.
++*/
++void sqlite_free_table(char **result);
++
++/*
++** The following routines are wrappers around sqlite_exec() and
++** sqlite_get_table(). The only difference between the routines that
++** follow and the originals is that the second argument to the
++** routines that follow is really a printf()-style format
++** string describing the SQL to be executed. Arguments to the format
++** string appear at the end of the argument list.
++**
++** All of the usual printf formatting options apply. In addition, there
++** is a "%q" option. %q works like %s in that it substitutes a null-terminated
++** string from the argument list. But %q also doubles every '\'' character.
++** %q is designed for use inside a string literal. By doubling each '\''
++** character it escapes that character and allows it to be inserted into
++** the string.
++**
++** For example, so some string variable contains text as follows:
++**
++** char *zText = "It's a happy day!";
++**
++** We can use this text in an SQL statement as follows:
++**
++** sqlite_exec_printf(db, "INSERT INTO table VALUES('%q')",
++** callback1, 0, 0, zText);
++**
++** Because the %q format string is used, the '\'' character in zText
++** is escaped and the SQL generated is as follows:
++**
++** INSERT INTO table1 VALUES('It''s a happy day!')
++**
++** This is correct. Had we used %s instead of %q, the generated SQL
++** would have looked like this:
++**
++** INSERT INTO table1 VALUES('It's a happy day!');
++**
++** This second example is an SQL syntax error. As a general rule you
++** should always use %q instead of %s when inserting text into a string
++** literal.
++*/
++int sqlite_exec_printf(
++ sqlite*, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ sqlite_callback, /* Callback function */
++ void *, /* 1st argument to callback function */
++ char **errmsg, /* Error msg written here */
++ ... /* Arguments to the format string. */
++);
++int sqlite_exec_vprintf(
++ sqlite*, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ sqlite_callback, /* Callback function */
++ void *, /* 1st argument to callback function */
++ char **errmsg, /* Error msg written here */
++ va_list ap /* Arguments to the format string. */
++);
++int sqlite_get_table_printf(
++ sqlite*, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ char ***resultp, /* Result written to a char *[] that this points to */
++ int *nrow, /* Number of result rows written here */
++ int *ncolumn, /* Number of result columns written here */
++ char **errmsg, /* Error msg written here */
++ ... /* Arguments to the format string */
++);
++int sqlite_get_table_vprintf(
++ sqlite*, /* An open database */
++ const char *sqlFormat, /* printf-style format string for the SQL */
++ char ***resultp, /* Result written to a char *[] that this points to */
++ int *nrow, /* Number of result rows written here */
++ int *ncolumn, /* Number of result columns written here */
++ char **errmsg, /* Error msg written here */
++ va_list ap /* Arguments to the format string */
++);
++char *sqlite_mprintf(const char*,...);
++char *sqlite_vmprintf(const char*, va_list);
++
++/*
++** Windows systems should call this routine to free memory that
++** is returned in the in the errmsg parameter of sqlite_open() when
++** SQLite is a DLL. For some reason, it does not work to call free()
++** directly.
++*/
++void sqlite_freemem(void *p);
++
++/*
++** Windows systems need functions to call to return the sqlite_version
++** and sqlite_encoding strings.
++*/
++const char *sqlite_libversion(void);
++const char *sqlite_libencoding(void);
++
++/*
++** A pointer to the following structure is used to communicate with
++** the implementations of user-defined functions.
++*/
++typedef struct sqlite_func sqlite_func;
++
++/*
++** Use the following routines to create new user-defined functions. See
++** the documentation for details.
++*/
++int sqlite_create_function(
++ sqlite*, /* Database where the new function is registered */
++ const char *zName, /* Name of the new function */
++ int nArg, /* Number of arguments. -1 means any number */
++ void (*xFunc)(sqlite_func*,int,const char**), /* C code to implement */
++ void *pUserData /* Available via the sqlite_user_data() call */
++);
++int sqlite_create_aggregate(
++ sqlite*, /* Database where the new function is registered */
++ const char *zName, /* Name of the function */
++ int nArg, /* Number of arguments */
++ void (*xStep)(sqlite_func*,int,const char**), /* Called for each row */
++ void (*xFinalize)(sqlite_func*), /* Called once to get final result */
++ void *pUserData /* Available via the sqlite_user_data() call */
++);
++
++/*
++** Use the following routine to define the datatype returned by a
++** user-defined function. The second argument can be one of the
++** constants SQLITE_NUMERIC, SQLITE_TEXT, or SQLITE_ARGS or it
++** can be an integer greater than or equal to zero. The datatype
++** will be numeric or text (the only two types supported) if the
++** argument is SQLITE_NUMERIC or SQLITE_TEXT. If the argument is
++** SQLITE_ARGS, then the datatype is numeric if any argument to the
++** function is numeric and is text otherwise. If the second argument
++** is an integer, then the datatype of the result is the same as the
++** parameter to the function that corresponds to that integer.
++*/
++int sqlite_function_type(
++ sqlite *db, /* The database there the function is registered */
++ const char *zName, /* Name of the function */
++ int datatype /* The datatype for this function */
++);
++#define SQLITE_NUMERIC (-1)
++#define SQLITE_TEXT (-2)
++#define SQLITE_ARGS (-3)
++
++/*
++** The user function implementations call one of the following four routines
++** in order to return their results. The first parameter to each of these
++** routines is a copy of the first argument to xFunc() or xFinialize().
++** The second parameter to these routines is the result to be returned.
++** A NULL can be passed as the second parameter to sqlite_set_result_string()
++** in order to return a NULL result.
++**
++** The 3rd argument to _string and _error is the number of characters to
++** take from the string. If this argument is negative, then all characters
++** up to and including the first '\000' are used.
++**
++** The sqlite_set_result_string() function allocates a buffer to hold the
++** result and returns a pointer to this buffer. The calling routine
++** (that is, the implmentation of a user function) can alter the content
++** of this buffer if desired.
++*/
++char *sqlite_set_result_string(sqlite_func*,const char*,int);
++void sqlite_set_result_int(sqlite_func*,int);
++void sqlite_set_result_double(sqlite_func*,double);
++void sqlite_set_result_error(sqlite_func*,const char*,int);
++
++/*
++** The pUserData parameter to the sqlite_create_function() and
++** sqlite_create_aggregate() routines used to register user functions
++** is available to the implementation of the function using this
++** call.
++*/
++void *sqlite_user_data(sqlite_func*);
++
++/*
++** Aggregate functions use the following routine to allocate
++** a structure for storing their state. The first time this routine
++** is called for a particular aggregate, a new structure of size nBytes
++** is allocated, zeroed, and returned. On subsequent calls (for the
++** same aggregate instance) the same buffer is returned. The implementation
++** of the aggregate can use the returned buffer to accumulate data.
++**
++** The buffer allocated is freed automatically be SQLite.
++*/
++void *sqlite_aggregate_context(sqlite_func*, int nBytes);
++
++/*
++** The next routine returns the number of calls to xStep for a particular
++** aggregate function instance. The current call to xStep counts so this
++** routine always returns at least 1.
++*/
++int sqlite_aggregate_count(sqlite_func*);
++
++/*
++** This routine registers a callback with the SQLite library. The
++** callback is invoked (at compile-time, not at run-time) for each
++** attempt to access a column of a table in the database. The callback
++** returns SQLITE_OK if access is allowed, SQLITE_DENY if the entire
++** SQL statement should be aborted with an error and SQLITE_IGNORE
++** if the column should be treated as a NULL value.
++*/
++int sqlite_set_authorizer(
++ sqlite*,
++ int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
++ void *pUserData
++);
++
++/*
++** The second parameter to the access authorization function above will
++** be one of the values below. These values signify what kind of operation
++** is to be authorized. The 3rd and 4th parameters to the authorization
++** function will be parameters or NULL depending on which of the following
++** codes is used as the second parameter. The 5th parameter is the name
++** of the database ("main", "temp", etc.) if applicable. The 6th parameter
++** is the name of the inner-most trigger or view that is responsible for
++** the access attempt or NULL if this access attempt is directly from
++** input SQL code.
++**
++** Arg-3 Arg-4
++*/
++#define SQLITE_COPY 0 /* Table Name File Name */
++#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
++#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
++#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
++#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
++#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
++#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
++#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
++#define SQLITE_CREATE_VIEW 8 /* View Name NULL */
++#define SQLITE_DELETE 9 /* Table Name NULL */
++#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
++#define SQLITE_DROP_TABLE 11 /* Table Name NULL */
++#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
++#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
++#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
++#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
++#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
++#define SQLITE_DROP_VIEW 17 /* View Name NULL */
++#define SQLITE_INSERT 18 /* Table Name NULL */
++#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
++#define SQLITE_READ 20 /* Table Name Column Name */
++#define SQLITE_SELECT 21 /* NULL NULL */
++#define SQLITE_TRANSACTION 22 /* NULL NULL */
++#define SQLITE_UPDATE 23 /* Table Name Column Name */
++#define SQLITE_ATTACH 24 /* Filename NULL */
++#define SQLITE_DETACH 25 /* Database Name NULL */
++
++
++/*
++** The return value of the authorization function should be one of the
++** following constants:
++*/
++/* #define SQLITE_OK 0 // Allow access (This is actually defined above) */
++#define SQLITE_DENY 1 /* Abort the SQL statement with an error */
++#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
++
++/*
++** Register a function that is called at every invocation of sqlite_exec()
++** or sqlite_compile(). This function can be used (for example) to generate
++** a log file of all SQL executed against a database.
++*/
++void *sqlite_trace(sqlite*, void(*xTrace)(void*,const char*), void*);
++
++/*** The Callback-Free API
++**
++** The following routines implement a new way to access SQLite that does not
++** involve the use of callbacks.
++**
++** An sqlite_vm is an opaque object that represents a single SQL statement
++** that is ready to be executed.
++*/
++typedef struct sqlite_vm sqlite_vm;
++
++/*
++** To execute an SQLite query without the use of callbacks, you first have
++** to compile the SQL using this routine. The 1st parameter "db" is a pointer
++** to an sqlite object obtained from sqlite_open(). The 2nd parameter
++** "zSql" is the text of the SQL to be compiled. The remaining parameters
++** are all outputs.
++**
++** *pzTail is made to point to the first character past the end of the first
++** SQL statement in zSql. This routine only compiles the first statement
++** in zSql, so *pzTail is left pointing to what remains uncompiled.
++**
++** *ppVm is left pointing to a "virtual machine" that can be used to execute
++** the compiled statement. Or if there is an error, *ppVm may be set to NULL.
++** If the input text contained no SQL (if the input is and empty string or
++** a comment) then *ppVm is set to NULL.
++**
++** If any errors are detected during compilation, an error message is written
++** into space obtained from malloc() and *pzErrMsg is made to point to that
++** error message. The calling routine is responsible for freeing the text
++** of this message when it has finished with it. Use sqlite_freemem() to
++** free the message. pzErrMsg may be NULL in which case no error message
++** will be generated.
++**
++** On success, SQLITE_OK is returned. Otherwise and error code is returned.
++*/
++int sqlite_compile(
++ sqlite *db, /* The open database */
++ const char *zSql, /* SQL statement to be compiled */
++ const char **pzTail, /* OUT: uncompiled tail of zSql */
++ sqlite_vm **ppVm, /* OUT: the virtual machine to execute zSql */
++ char **pzErrmsg /* OUT: Error message. */
++);
++
++/*
++** After an SQL statement has been compiled, it is handed to this routine
++** to be executed. This routine executes the statement as far as it can
++** go then returns. The return value will be one of SQLITE_DONE,
++** SQLITE_ERROR, SQLITE_BUSY, SQLITE_ROW, or SQLITE_MISUSE.
++**
++** SQLITE_DONE means that the execute of the SQL statement is complete
++** an no errors have occurred. sqlite_step() should not be called again
++** for the same virtual machine. *pN is set to the number of columns in
++** the result set and *pazColName is set to an array of strings that
++** describe the column names and datatypes. The name of the i-th column
++** is (*pazColName)[i] and the datatype of the i-th column is
++** (*pazColName)[i+*pN]. *pazValue is set to NULL.
++**
++** SQLITE_ERROR means that the virtual machine encountered a run-time
++** error. sqlite_step() should not be called again for the same
++** virtual machine. *pN is set to 0 and *pazColName and *pazValue are set
++** to NULL. Use sqlite_finalize() to obtain the specific error code
++** and the error message text for the error.
++**
++** SQLITE_BUSY means that an attempt to open the database failed because
++** another thread or process is holding a lock. The calling routine
++** can try again to open the database by calling sqlite_step() again.
++** The return code will only be SQLITE_BUSY if no busy handler is registered
++** using the sqlite_busy_handler() or sqlite_busy_timeout() routines. If
++** a busy handler callback has been registered but returns 0, then this
++** routine will return SQLITE_ERROR and sqltie_finalize() will return
++** SQLITE_BUSY when it is called.
++**
++** SQLITE_ROW means that a single row of the result is now available.
++** The data is contained in *pazValue. The value of the i-th column is
++** (*azValue)[i]. *pN and *pazColName are set as described in SQLITE_DONE.
++** Invoke sqlite_step() again to advance to the next row.
++**
++** SQLITE_MISUSE is returned if sqlite_step() is called incorrectly.
++** For example, if you call sqlite_step() after the virtual machine
++** has halted (after a prior call to sqlite_step() has returned SQLITE_DONE)
++** or if you call sqlite_step() with an incorrectly initialized virtual
++** machine or a virtual machine that has been deleted or that is associated
++** with an sqlite structure that has been closed.
++*/
++int sqlite_step(
++ sqlite_vm *pVm, /* The virtual machine to execute */
++ int *pN, /* OUT: Number of columns in result */
++ const char ***pazValue, /* OUT: Column data */
++ const char ***pazColName /* OUT: Column names and datatypes */
++);
++
++/*
++** This routine is called to delete a virtual machine after it has finished
++** executing. The return value is the result code. SQLITE_OK is returned
++** if the statement executed successfully and some other value is returned if
++** there was any kind of error. If an error occurred and pzErrMsg is not
++** NULL, then an error message is written into memory obtained from malloc()
++** and *pzErrMsg is made to point to that error message. The calling routine
++** should use sqlite_freemem() to delete this message when it has finished
++** with it.
++**
++** This routine can be called at any point during the execution of the
++** virtual machine. If the virtual machine has not completed execution
++** when this routine is called, that is like encountering an error or
++** an interrupt. (See sqlite_interrupt().) Incomplete updates may be
++** rolled back and transactions cancelled, depending on the circumstances,
++** and the result code returned will be SQLITE_ABORT.
++*/
++int sqlite_finalize(sqlite_vm*, char **pzErrMsg);
++
++/*
++** This routine deletes the virtual machine, writes any error message to
++** *pzErrMsg and returns an SQLite return code in the same way as the
++** sqlite_finalize() function.
++**
++** Additionally, if ppVm is not NULL, *ppVm is left pointing to a new virtual
++** machine loaded with the compiled version of the original query ready for
++** execution.
++**
++** If sqlite_reset() returns SQLITE_SCHEMA, then *ppVm is set to NULL.
++**
++******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
++*/
++int sqlite_reset(sqlite_vm*, char **pzErrMsg);
++
++/*
++** If the SQL that was handed to sqlite_compile contains variables that
++** are represeted in the SQL text by a question mark ('?'). This routine
++** is used to assign values to those variables.
++**
++** The first parameter is a virtual machine obtained from sqlite_compile().
++** The 2nd "idx" parameter determines which variable in the SQL statement
++** to bind the value to. The left most '?' is 1. The 3rd parameter is
++** the value to assign to that variable. The 4th parameter is the number
++** of bytes in the value, including the terminating \000 for strings.
++** Finally, the 5th "copy" parameter is TRUE if SQLite should make its
++** own private copy of this value, or false if the space that the 3rd
++** parameter points to will be unchanging and can be used directly by
++** SQLite.
++**
++** Unbound variables are treated as having a value of NULL. To explicitly
++** set a variable to NULL, call this routine with the 3rd parameter as a
++** NULL pointer.
++**
++** If the 4th "len" parameter is -1, then strlen() is used to find the
++** length.
++**
++** This routine can only be called immediately after sqlite_compile()
++** or sqlite_reset() and before any calls to sqlite_step().
++**
++******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ******
++*/
++int sqlite_bind(sqlite_vm*, int idx, const char *value, int len, int copy);
++
++/*
++** This routine configures a callback function - the progress callback - that
++** is invoked periodically during long running calls to sqlite_exec(),
++** sqlite_step() and sqlite_get_table(). An example use for this API is to keep
++** a GUI updated during a large query.
++**
++** The progress callback is invoked once for every N virtual machine opcodes,
++** where N is the second argument to this function. The progress callback
++** itself is identified by the third argument to this function. The fourth
++** argument to this function is a void pointer passed to the progress callback
++** function each time it is invoked.
++**
++** If a call to sqlite_exec(), sqlite_step() or sqlite_get_table() results
++** in less than N opcodes being executed, then the progress callback is not
++** invoked.
++**
++** Calling this routine overwrites any previously installed progress callback.
++** To remove the progress callback altogether, pass NULL as the third
++** argument to this function.
++**
++** If the progress callback returns a result other than 0, then the current
++** query is immediately terminated and any database changes rolled back. If the
++** query was part of a larger transaction, then the transaction is not rolled
++** back and remains active. The sqlite_exec() call returns SQLITE_ABORT.
++*/
++void sqlite_progress_handler(sqlite*, int, int(*)(void*), void*);
++
++#ifdef __cplusplus
++} /* End of the 'extern "C"' block */
++#endif
++
++#endif /* _SQLITE_H_ */
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/table.c
+@@ -0,0 +1,203 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains the sqlite_get_table() and sqlite_free_table()
++** interface routines. These are just wrappers around the main
++** interface routine of sqlite_exec().
++**
++** These routines are in a separate files so that they will not be linked
++** if they are not used.
++*/
++#include <stdlib.h>
++#include <string.h>
++#include "sqliteInt.h"
++
++/*
++** This structure is used to pass data from sqlite_get_table() through
++** to the callback function is uses to build the result.
++*/
++typedef struct TabResult {
++ char **azResult;
++ char *zErrMsg;
++ int nResult;
++ int nAlloc;
++ int nRow;
++ int nColumn;
++ long nData;
++ int rc;
++} TabResult;
++
++/*
++** This routine is called once for each row in the result table. Its job
++** is to fill in the TabResult structure appropriately, allocating new
++** memory as necessary.
++*/
++static int sqlite_get_table_cb(void *pArg, int nCol, char **argv, char **colv){
++ TabResult *p = (TabResult*)pArg;
++ int need;
++ int i;
++ char *z;
++
++ /* Make sure there is enough space in p->azResult to hold everything
++ ** we need to remember from this invocation of the callback.
++ */
++ if( p->nRow==0 && argv!=0 ){
++ need = nCol*2;
++ }else{
++ need = nCol;
++ }
++ if( p->nData + need >= p->nAlloc ){
++ char **azNew;
++ p->nAlloc = p->nAlloc*2 + need + 1;
++ azNew = realloc( p->azResult, sizeof(char*)*p->nAlloc );
++ if( azNew==0 ){
++ p->rc = SQLITE_NOMEM;
++ return 1;
++ }
++ p->azResult = azNew;
++ }
++
++ /* If this is the first row, then generate an extra row containing
++ ** the names of all columns.
++ */
++ if( p->nRow==0 ){
++ p->nColumn = nCol;
++ for(i=0; i<nCol; i++){
++ if( colv[i]==0 ){
++ z = 0;
++ }else{
++ z = malloc( strlen(colv[i])+1 );
++ if( z==0 ){
++ p->rc = SQLITE_NOMEM;
++ return 1;
++ }
++ strcpy(z, colv[i]);
++ }
++ p->azResult[p->nData++] = z;
++ }
++ }else if( p->nColumn!=nCol ){
++ sqliteSetString(&p->zErrMsg,
++ "sqlite_get_table() called with two or more incompatible queries",
++ (char*)0);
++ p->rc = SQLITE_ERROR;
++ return 1;
++ }
++
++ /* Copy over the row data
++ */
++ if( argv!=0 ){
++ for(i=0; i<nCol; i++){
++ if( argv[i]==0 ){
++ z = 0;
++ }else{
++ z = malloc( strlen(argv[i])+1 );
++ if( z==0 ){
++ p->rc = SQLITE_NOMEM;
++ return 1;
++ }
++ strcpy(z, argv[i]);
++ }
++ p->azResult[p->nData++] = z;
++ }
++ p->nRow++;
++ }
++ return 0;
++}
++
++/*
++** Query the database. But instead of invoking a callback for each row,
++** malloc() for space to hold the result and return the entire results
++** at the conclusion of the call.
++**
++** The result that is written to ***pazResult is held in memory obtained
++** from malloc(). But the caller cannot free this memory directly.
++** Instead, the entire table should be passed to sqlite_free_table() when
++** the calling procedure is finished using it.
++*/
++int sqlite_get_table(
++ sqlite *db, /* The database on which the SQL executes */
++ const char *zSql, /* The SQL to be executed */
++ char ***pazResult, /* Write the result table here */
++ int *pnRow, /* Write the number of rows in the result here */
++ int *pnColumn, /* Write the number of columns of result here */
++ char **pzErrMsg /* Write error messages here */
++){
++ int rc;
++ TabResult res;
++ if( pazResult==0 ){ return SQLITE_ERROR; }
++ *pazResult = 0;
++ if( pnColumn ) *pnColumn = 0;
++ if( pnRow ) *pnRow = 0;
++ res.zErrMsg = 0;
++ res.nResult = 0;
++ res.nRow = 0;
++ res.nColumn = 0;
++ res.nData = 1;
++ res.nAlloc = 20;
++ res.rc = SQLITE_OK;
++ res.azResult = malloc( sizeof(char*)*res.nAlloc );
++ if( res.azResult==0 ){
++ return SQLITE_NOMEM;
++ }
++ res.azResult[0] = 0;
++ rc = sqlite_exec(db, zSql, sqlite_get_table_cb, &res, pzErrMsg);
++ if( res.azResult ){
++ res.azResult[0] = (char*)res.nData;
++ }
++ if( rc==SQLITE_ABORT ){
++ sqlite_free_table(&res.azResult[1]);
++ if( res.zErrMsg ){
++ if( pzErrMsg ){
++ free(*pzErrMsg);
++ *pzErrMsg = res.zErrMsg;
++ sqliteStrRealloc(pzErrMsg);
++ }else{
++ sqliteFree(res.zErrMsg);
++ }
++ }
++ return res.rc;
++ }
++ sqliteFree(res.zErrMsg);
++ if( rc!=SQLITE_OK ){
++ sqlite_free_table(&res.azResult[1]);
++ return rc;
++ }
++ if( res.nAlloc>res.nData ){
++ char **azNew;
++ azNew = realloc( res.azResult, sizeof(char*)*(res.nData+1) );
++ if( azNew==0 ){
++ sqlite_free_table(&res.azResult[1]);
++ return SQLITE_NOMEM;
++ }
++ res.nAlloc = res.nData+1;
++ res.azResult = azNew;
++ }
++ *pazResult = &res.azResult[1];
++ if( pnColumn ) *pnColumn = res.nColumn;
++ if( pnRow ) *pnRow = res.nRow;
++ return rc;
++}
++
++/*
++** This routine frees the space the sqlite_get_table() malloced.
++*/
++void sqlite_free_table(
++ char **azResult /* Result returned from from sqlite_get_table() */
++){
++ if( azResult ){
++ int i, n;
++ azResult--;
++ if( azResult==0 ) return;
++ n = (int)(long)azResult[0];
++ for(i=1; i<n; i++){ if( azResult[i] ) free(azResult[i]); }
++ free(azResult);
++ }
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/tokenize.c
+@@ -0,0 +1,679 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** An tokenizer for SQL
++**
++** This file contains C code that splits an SQL input string up into
++** individual tokens and sends those tokens one-by-one over to the
++** parser for analysis.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++#include "os.h"
++#include <ctype.h>
++#include <stdlib.h>
++
++/*
++** All the keywords of the SQL language are stored as in a hash
++** table composed of instances of the following structure.
++*/
++typedef struct Keyword Keyword;
++struct Keyword {
++ char *zName; /* The keyword name */
++ u8 tokenType; /* Token value for this keyword */
++ u8 len; /* Length of this keyword */
++ u8 iNext; /* Index in aKeywordTable[] of next with same hash */
++};
++
++/*
++** These are the keywords
++*/
++static Keyword aKeywordTable[] = {
++ { "ABORT", TK_ABORT, },
++ { "AFTER", TK_AFTER, },
++ { "ALL", TK_ALL, },
++ { "AND", TK_AND, },
++ { "AS", TK_AS, },
++ { "ASC", TK_ASC, },
++ { "ATTACH", TK_ATTACH, },
++ { "BEFORE", TK_BEFORE, },
++ { "BEGIN", TK_BEGIN, },
++ { "BETWEEN", TK_BETWEEN, },
++ { "BY", TK_BY, },
++ { "CASCADE", TK_CASCADE, },
++ { "CASE", TK_CASE, },
++ { "CHECK", TK_CHECK, },
++ { "CLUSTER", TK_CLUSTER, },
++ { "COLLATE", TK_COLLATE, },
++ { "COMMIT", TK_COMMIT, },
++ { "CONFLICT", TK_CONFLICT, },
++ { "CONSTRAINT", TK_CONSTRAINT, },
++ { "COPY", TK_COPY, },
++ { "CREATE", TK_CREATE, },
++ { "CROSS", TK_JOIN_KW, },
++ { "DATABASE", TK_DATABASE, },
++ { "DEFAULT", TK_DEFAULT, },
++ { "DEFERRED", TK_DEFERRED, },
++ { "DEFERRABLE", TK_DEFERRABLE, },
++ { "DELETE", TK_DELETE, },
++ { "DELIMITERS", TK_DELIMITERS, },
++ { "DESC", TK_DESC, },
++ { "DETACH", TK_DETACH, },
++ { "DISTINCT", TK_DISTINCT, },
++ { "DROP", TK_DROP, },
++ { "END", TK_END, },
++ { "EACH", TK_EACH, },
++ { "ELSE", TK_ELSE, },
++ { "EXCEPT", TK_EXCEPT, },
++ { "EXPLAIN", TK_EXPLAIN, },
++ { "FAIL", TK_FAIL, },
++ { "FOR", TK_FOR, },
++ { "FOREIGN", TK_FOREIGN, },
++ { "FROM", TK_FROM, },
++ { "FULL", TK_JOIN_KW, },
++ { "GLOB", TK_GLOB, },
++ { "GROUP", TK_GROUP, },
++ { "HAVING", TK_HAVING, },
++ { "IGNORE", TK_IGNORE, },
++ { "IMMEDIATE", TK_IMMEDIATE, },
++ { "IN", TK_IN, },
++ { "INDEX", TK_INDEX, },
++ { "INITIALLY", TK_INITIALLY, },
++ { "INNER", TK_JOIN_KW, },
++ { "INSERT", TK_INSERT, },
++ { "INSTEAD", TK_INSTEAD, },
++ { "INTERSECT", TK_INTERSECT, },
++ { "INTO", TK_INTO, },
++ { "IS", TK_IS, },
++ { "ISNULL", TK_ISNULL, },
++ { "JOIN", TK_JOIN, },
++ { "KEY", TK_KEY, },
++ { "LEFT", TK_JOIN_KW, },
++ { "LIKE", TK_LIKE, },
++ { "LIMIT", TK_LIMIT, },
++ { "MATCH", TK_MATCH, },
++ { "NATURAL", TK_JOIN_KW, },
++ { "NOT", TK_NOT, },
++ { "NOTNULL", TK_NOTNULL, },
++ { "NULL", TK_NULL, },
++ { "OF", TK_OF, },
++ { "OFFSET", TK_OFFSET, },
++ { "ON", TK_ON, },
++ { "OR", TK_OR, },
++ { "ORDER", TK_ORDER, },
++ { "OUTER", TK_JOIN_KW, },
++ { "PRAGMA", TK_PRAGMA, },
++ { "PRIMARY", TK_PRIMARY, },
++ { "RAISE", TK_RAISE, },
++ { "REFERENCES", TK_REFERENCES, },
++ { "REPLACE", TK_REPLACE, },
++ { "RESTRICT", TK_RESTRICT, },
++ { "RIGHT", TK_JOIN_KW, },
++ { "ROLLBACK", TK_ROLLBACK, },
++ { "ROW", TK_ROW, },
++ { "SELECT", TK_SELECT, },
++ { "SET", TK_SET, },
++ { "STATEMENT", TK_STATEMENT, },
++ { "TABLE", TK_TABLE, },
++ { "TEMP", TK_TEMP, },
++ { "TEMPORARY", TK_TEMP, },
++ { "THEN", TK_THEN, },
++ { "TRANSACTION", TK_TRANSACTION, },
++ { "TRIGGER", TK_TRIGGER, },
++ { "UNION", TK_UNION, },
++ { "UNIQUE", TK_UNIQUE, },
++ { "UPDATE", TK_UPDATE, },
++ { "USING", TK_USING, },
++ { "VACUUM", TK_VACUUM, },
++ { "VALUES", TK_VALUES, },
++ { "VIEW", TK_VIEW, },
++ { "WHEN", TK_WHEN, },
++ { "WHERE", TK_WHERE, },
++};
++
++/*
++** This is the hash table
++*/
++#define KEY_HASH_SIZE 101
++static u8 aiHashTable[KEY_HASH_SIZE];
++
++
++/*
++** This function looks up an identifier to determine if it is a
++** keyword. If it is a keyword, the token code of that keyword is
++** returned. If the input is not a keyword, TK_ID is returned.
++*/
++int sqliteKeywordCode(const char *z, int n){
++ int h, i;
++ Keyword *p;
++ static char needInit = 1;
++ if( needInit ){
++ /* Initialize the keyword hash table */
++ sqliteOsEnterMutex();
++ if( needInit ){
++ int nk;
++ nk = sizeof(aKeywordTable)/sizeof(aKeywordTable[0]);
++ for(i=0; i<nk; i++){
++ aKeywordTable[i].len = strlen(aKeywordTable[i].zName);
++ h = sqliteHashNoCase(aKeywordTable[i].zName, aKeywordTable[i].len);
++ h %= KEY_HASH_SIZE;
++ aKeywordTable[i].iNext = aiHashTable[h];
++ aiHashTable[h] = i+1;
++ }
++ needInit = 0;
++ }
++ sqliteOsLeaveMutex();
++ }
++ h = sqliteHashNoCase(z, n) % KEY_HASH_SIZE;
++ for(i=aiHashTable[h]; i; i=p->iNext){
++ p = &aKeywordTable[i-1];
++ if( p->len==n && sqliteStrNICmp(p->zName, z, n)==0 ){
++ return p->tokenType;
++ }
++ }
++ return TK_ID;
++}
++
++
++/*
++** If X is a character that can be used in an identifier and
++** X&0x80==0 then isIdChar[X] will be 1. If X&0x80==0x80 then
++** X is always an identifier character. (Hence all UTF-8
++** characters can be part of an identifier). isIdChar[X] will
++** be 0 for every character in the lower 128 ASCII characters
++** that cannot be used as part of an identifier.
++**
++** In this implementation, an identifier can be a string of
++** alphabetic characters, digits, and "_" plus any character
++** with the high-order bit set. The latter rule means that
++** any sequence of UTF-8 characters or characters taken from
++** an extended ISO8859 character set can form an identifier.
++*/
++static const char isIdChar[] = {
++/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */
++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */
++ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
++ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
++ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
++ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
++ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
++ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
++};
++
++
++/*
++** Return the length of the token that begins at z[0].
++** Store the token type in *tokenType before returning.
++*/
++static int sqliteGetToken(const unsigned char *z, int *tokenType){
++ int i;
++ switch( *z ){
++ case ' ': case '\t': case '\n': case '\f': case '\r': {
++ for(i=1; isspace(z[i]); i++){}
++ *tokenType = TK_SPACE;
++ return i;
++ }
++ case '-': {
++ if( z[1]=='-' ){
++ for(i=2; z[i] && z[i]!='\n'; i++){}
++ *tokenType = TK_COMMENT;
++ return i;
++ }
++ *tokenType = TK_MINUS;
++ return 1;
++ }
++ case '(': {
++ *tokenType = TK_LP;
++ return 1;
++ }
++ case ')': {
++ *tokenType = TK_RP;
++ return 1;
++ }
++ case ';': {
++ *tokenType = TK_SEMI;
++ return 1;
++ }
++ case '+': {
++ *tokenType = TK_PLUS;
++ return 1;
++ }
++ case '*': {
++ *tokenType = TK_STAR;
++ return 1;
++ }
++ case '/': {
++ if( z[1]!='*' || z[2]==0 ){
++ *tokenType = TK_SLASH;
++ return 1;
++ }
++ for(i=3; z[i] && (z[i]!='/' || z[i-1]!='*'); i++){}
++ if( z[i] ) i++;
++ *tokenType = TK_COMMENT;
++ return i;
++ }
++ case '%': {
++ *tokenType = TK_REM;
++ return 1;
++ }
++ case '=': {
++ *tokenType = TK_EQ;
++ return 1 + (z[1]=='=');
++ }
++ case '<': {
++ if( z[1]=='=' ){
++ *tokenType = TK_LE;
++ return 2;
++ }else if( z[1]=='>' ){
++ *tokenType = TK_NE;
++ return 2;
++ }else if( z[1]=='<' ){
++ *tokenType = TK_LSHIFT;
++ return 2;
++ }else{
++ *tokenType = TK_LT;
++ return 1;
++ }
++ }
++ case '>': {
++ if( z[1]=='=' ){
++ *tokenType = TK_GE;
++ return 2;
++ }else if( z[1]=='>' ){
++ *tokenType = TK_RSHIFT;
++ return 2;
++ }else{
++ *tokenType = TK_GT;
++ return 1;
++ }
++ }
++ case '!': {
++ if( z[1]!='=' ){
++ *tokenType = TK_ILLEGAL;
++ return 2;
++ }else{
++ *tokenType = TK_NE;
++ return 2;
++ }
++ }
++ case '|': {
++ if( z[1]!='|' ){
++ *tokenType = TK_BITOR;
++ return 1;
++ }else{
++ *tokenType = TK_CONCAT;
++ return 2;
++ }
++ }
++ case ',': {
++ *tokenType = TK_COMMA;
++ return 1;
++ }
++ case '&': {
++ *tokenType = TK_BITAND;
++ return 1;
++ }
++ case '~': {
++ *tokenType = TK_BITNOT;
++ return 1;
++ }
++ case '\'': case '"': {
++ int delim = z[0];
++ for(i=1; z[i]; i++){
++ if( z[i]==delim ){
++ if( z[i+1]==delim ){
++ i++;
++ }else{
++ break;
++ }
++ }
++ }
++ if( z[i] ) i++;
++ *tokenType = TK_STRING;
++ return i;
++ }
++ case '.': {
++ *tokenType = TK_DOT;
++ return 1;
++ }
++ case '0': case '1': case '2': case '3': case '4':
++ case '5': case '6': case '7': case '8': case '9': {
++ *tokenType = TK_INTEGER;
++ for(i=1; isdigit(z[i]); i++){}
++ if( z[i]=='.' && isdigit(z[i+1]) ){
++ i += 2;
++ while( isdigit(z[i]) ){ i++; }
++ *tokenType = TK_FLOAT;
++ }
++ if( (z[i]=='e' || z[i]=='E') &&
++ ( isdigit(z[i+1])
++ || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2]))
++ )
++ ){
++ i += 2;
++ while( isdigit(z[i]) ){ i++; }
++ *tokenType = TK_FLOAT;
++ }
++ return i;
++ }
++ case '[': {
++ for(i=1; z[i] && z[i-1]!=']'; i++){}
++ *tokenType = TK_ID;
++ return i;
++ }
++ case '?': {
++ *tokenType = TK_VARIABLE;
++ return 1;
++ }
++ default: {
++ if( (*z&0x80)==0 && !isIdChar[*z] ){
++ break;
++ }
++ for(i=1; (z[i]&0x80)!=0 || isIdChar[z[i]]; i++){}
++ *tokenType = sqliteKeywordCode((char*)z, i);
++ return i;
++ }
++ }
++ *tokenType = TK_ILLEGAL;
++ return 1;
++}
++
++/*
++** Run the parser on the given SQL string. The parser structure is
++** passed in. An SQLITE_ status code is returned. If an error occurs
++** and pzErrMsg!=NULL then an error message might be written into
++** memory obtained from malloc() and *pzErrMsg made to point to that
++** error message. Or maybe not.
++*/
++int sqliteRunParser(Parse *pParse, const char *zSql, char **pzErrMsg){
++ int nErr = 0;
++ int i;
++ void *pEngine;
++ int tokenType;
++ int lastTokenParsed = -1;
++ sqlite *db = pParse->db;
++ extern void *sqliteParserAlloc(void*(*)(int));
++ extern void sqliteParserFree(void*, void(*)(void*));
++ extern int sqliteParser(void*, int, Token, Parse*);
++
++ db->flags &= ~SQLITE_Interrupt;
++ pParse->rc = SQLITE_OK;
++ i = 0;
++ pEngine = sqliteParserAlloc((void*(*)(int))malloc);
++ if( pEngine==0 ){
++ sqliteSetString(pzErrMsg, "out of memory", (char*)0);
++ return 1;
++ }
++ pParse->sLastToken.dyn = 0;
++ pParse->zTail = zSql;
++ while( sqlite_malloc_failed==0 && zSql[i]!=0 ){
++ assert( i>=0 );
++ pParse->sLastToken.z = &zSql[i];
++ assert( pParse->sLastToken.dyn==0 );
++ pParse->sLastToken.n = sqliteGetToken((unsigned char*)&zSql[i], &tokenType);
++ i += pParse->sLastToken.n;
++ switch( tokenType ){
++ case TK_SPACE:
++ case TK_COMMENT: {
++ if( (db->flags & SQLITE_Interrupt)!=0 ){
++ pParse->rc = SQLITE_INTERRUPT;
++ sqliteSetString(pzErrMsg, "interrupt", (char*)0);
++ goto abort_parse;
++ }
++ break;
++ }
++ case TK_ILLEGAL: {
++ sqliteSetNString(pzErrMsg, "unrecognized token: \"", -1,
++ pParse->sLastToken.z, pParse->sLastToken.n, "\"", 1, 0);
++ nErr++;
++ goto abort_parse;
++ }
++ case TK_SEMI: {
++ pParse->zTail = &zSql[i];
++ /* Fall thru into the default case */
++ }
++ default: {
++ sqliteParser(pEngine, tokenType, pParse->sLastToken, pParse);
++ lastTokenParsed = tokenType;
++ if( pParse->rc!=SQLITE_OK ){
++ goto abort_parse;
++ }
++ break;
++ }
++ }
++ }
++abort_parse:
++ if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){
++ if( lastTokenParsed!=TK_SEMI ){
++ sqliteParser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
++ pParse->zTail = &zSql[i];
++ }
++ sqliteParser(pEngine, 0, pParse->sLastToken, pParse);
++ }
++ sqliteParserFree(pEngine, free);
++ if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
++ sqliteSetString(&pParse->zErrMsg, sqlite_error_string(pParse->rc),
++ (char*)0);
++ }
++ if( pParse->zErrMsg ){
++ if( pzErrMsg && *pzErrMsg==0 ){
++ *pzErrMsg = pParse->zErrMsg;
++ }else{
++ sqliteFree(pParse->zErrMsg);
++ }
++ pParse->zErrMsg = 0;
++ if( !nErr ) nErr++;
++ }
++ if( pParse->pVdbe && pParse->nErr>0 ){
++ sqliteVdbeDelete(pParse->pVdbe);
++ pParse->pVdbe = 0;
++ }
++ if( pParse->pNewTable ){
++ sqliteDeleteTable(pParse->db, pParse->pNewTable);
++ pParse->pNewTable = 0;
++ }
++ if( pParse->pNewTrigger ){
++ sqliteDeleteTrigger(pParse->pNewTrigger);
++ pParse->pNewTrigger = 0;
++ }
++ if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){
++ pParse->rc = SQLITE_ERROR;
++ }
++ return nErr;
++}
++
++/*
++** Token types used by the sqlite_complete() routine. See the header
++** comments on that procedure for additional information.
++*/
++#define tkEXPLAIN 0
++#define tkCREATE 1
++#define tkTEMP 2
++#define tkTRIGGER 3
++#define tkEND 4
++#define tkSEMI 5
++#define tkWS 6
++#define tkOTHER 7
++
++/*
++** Return TRUE if the given SQL string ends in a semicolon.
++**
++** Special handling is require for CREATE TRIGGER statements.
++** Whenever the CREATE TRIGGER keywords are seen, the statement
++** must end with ";END;".
++**
++** This implementation uses a state machine with 7 states:
++**
++** (0) START At the beginning or end of an SQL statement. This routine
++** returns 1 if it ends in the START state and 0 if it ends
++** in any other state.
++**
++** (1) EXPLAIN The keyword EXPLAIN has been seen at the beginning of
++** a statement.
++**
++** (2) CREATE The keyword CREATE has been seen at the beginning of a
++** statement, possibly preceeded by EXPLAIN and/or followed by
++** TEMP or TEMPORARY
++**
++** (3) NORMAL We are in the middle of statement which ends with a single
++** semicolon.
++**
++** (4) TRIGGER We are in the middle of a trigger definition that must be
++** ended by a semicolon, the keyword END, and another semicolon.
++**
++** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at
++** the end of a trigger definition.
++**
++** (6) END We've seen the ";END" of the ";END;" that occurs at the end
++** of a trigger difinition.
++**
++** Transitions between states above are determined by tokens extracted
++** from the input. The following tokens are significant:
++**
++** (0) tkEXPLAIN The "explain" keyword.
++** (1) tkCREATE The "create" keyword.
++** (2) tkTEMP The "temp" or "temporary" keyword.
++** (3) tkTRIGGER The "trigger" keyword.
++** (4) tkEND The "end" keyword.
++** (5) tkSEMI A semicolon.
++** (6) tkWS Whitespace
++** (7) tkOTHER Any other SQL token.
++**
++** Whitespace never causes a state transition and is always ignored.
++*/
++int sqlite_complete(const char *zSql){
++ u8 state = 0; /* Current state, using numbers defined in header comment */
++ u8 token; /* Value of the next token */
++
++ /* The following matrix defines the transition from one state to another
++ ** according to what token is seen. trans[state][token] returns the
++ ** next state.
++ */
++ static const u8 trans[7][8] = {
++ /* Token: */
++ /* State: ** EXPLAIN CREATE TEMP TRIGGER END SEMI WS OTHER */
++ /* 0 START: */ { 1, 2, 3, 3, 3, 0, 0, 3, },
++ /* 1 EXPLAIN: */ { 3, 2, 3, 3, 3, 0, 1, 3, },
++ /* 2 CREATE: */ { 3, 3, 2, 4, 3, 0, 2, 3, },
++ /* 3 NORMAL: */ { 3, 3, 3, 3, 3, 0, 3, 3, },
++ /* 4 TRIGGER: */ { 4, 4, 4, 4, 4, 5, 4, 4, },
++ /* 5 SEMI: */ { 4, 4, 4, 4, 6, 5, 5, 4, },
++ /* 6 END: */ { 4, 4, 4, 4, 4, 0, 6, 4, },
++ };
++
++ while( *zSql ){
++ switch( *zSql ){
++ case ';': { /* A semicolon */
++ token = tkSEMI;
++ break;
++ }
++ case ' ':
++ case '\r':
++ case '\t':
++ case '\n':
++ case '\f': { /* White space is ignored */
++ token = tkWS;
++ break;
++ }
++ case '/': { /* C-style comments */
++ if( zSql[1]!='*' ){
++ token = tkOTHER;
++ break;
++ }
++ zSql += 2;
++ while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; }
++ if( zSql[0]==0 ) return 0;
++ zSql++;
++ token = tkWS;
++ break;
++ }
++ case '-': { /* SQL-style comments from "--" to end of line */
++ if( zSql[1]!='-' ){
++ token = tkOTHER;
++ break;
++ }
++ while( *zSql && *zSql!='\n' ){ zSql++; }
++ if( *zSql==0 ) return state==0;
++ token = tkWS;
++ break;
++ }
++ case '[': { /* Microsoft-style identifiers in [...] */
++ zSql++;
++ while( *zSql && *zSql!=']' ){ zSql++; }
++ if( *zSql==0 ) return 0;
++ token = tkOTHER;
++ break;
++ }
++ case '"': /* single- and double-quoted strings */
++ case '\'': {
++ int c = *zSql;
++ zSql++;
++ while( *zSql && *zSql!=c ){ zSql++; }
++ if( *zSql==0 ) return 0;
++ token = tkOTHER;
++ break;
++ }
++ default: {
++ if( isIdChar[(u8)*zSql] ){
++ /* Keywords and unquoted identifiers */
++ int nId;
++ for(nId=1; isIdChar[(u8)zSql[nId]]; nId++){}
++ switch( *zSql ){
++ case 'c': case 'C': {
++ if( nId==6 && sqliteStrNICmp(zSql, "create", 6)==0 ){
++ token = tkCREATE;
++ }else{
++ token = tkOTHER;
++ }
++ break;
++ }
++ case 't': case 'T': {
++ if( nId==7 && sqliteStrNICmp(zSql, "trigger", 7)==0 ){
++ token = tkTRIGGER;
++ }else if( nId==4 && sqliteStrNICmp(zSql, "temp", 4)==0 ){
++ token = tkTEMP;
++ }else if( nId==9 && sqliteStrNICmp(zSql, "temporary", 9)==0 ){
++ token = tkTEMP;
++ }else{
++ token = tkOTHER;
++ }
++ break;
++ }
++ case 'e': case 'E': {
++ if( nId==3 && sqliteStrNICmp(zSql, "end", 3)==0 ){
++ token = tkEND;
++ }else if( nId==7 && sqliteStrNICmp(zSql, "explain", 7)==0 ){
++ token = tkEXPLAIN;
++ }else{
++ token = tkOTHER;
++ }
++ break;
++ }
++ default: {
++ token = tkOTHER;
++ break;
++ }
++ }
++ zSql += nId-1;
++ }else{
++ /* Operators and special symbols */
++ token = tkOTHER;
++ }
++ break;
++ }
++ }
++ state = trans[state][token];
++ zSql++;
++ }
++ return state==0;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/trigger.c
+@@ -0,0 +1,764 @@
++/*
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++*
++*/
++#include "sqliteInt.h"
++
++/*
++** Delete a linked list of TriggerStep structures.
++*/
++void sqliteDeleteTriggerStep(TriggerStep *pTriggerStep){
++ while( pTriggerStep ){
++ TriggerStep * pTmp = pTriggerStep;
++ pTriggerStep = pTriggerStep->pNext;
++
++ if( pTmp->target.dyn ) sqliteFree((char*)pTmp->target.z);
++ sqliteExprDelete(pTmp->pWhere);
++ sqliteExprListDelete(pTmp->pExprList);
++ sqliteSelectDelete(pTmp->pSelect);
++ sqliteIdListDelete(pTmp->pIdList);
++
++ sqliteFree(pTmp);
++ }
++}
++
++/*
++** This is called by the parser when it sees a CREATE TRIGGER statement
++** up to the point of the BEGIN before the trigger actions. A Trigger
++** structure is generated based on the information available and stored
++** in pParse->pNewTrigger. After the trigger actions have been parsed, the
++** sqliteFinishTrigger() function is called to complete the trigger
++** construction process.
++*/
++void sqliteBeginTrigger(
++ Parse *pParse, /* The parse context of the CREATE TRIGGER statement */
++ Token *pName, /* The name of the trigger */
++ int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */
++ int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */
++ IdList *pColumns, /* column list if this is an UPDATE OF trigger */
++ SrcList *pTableName,/* The name of the table/view the trigger applies to */
++ int foreach, /* One of TK_ROW or TK_STATEMENT */
++ Expr *pWhen, /* WHEN clause */
++ int isTemp /* True if the TEMPORARY keyword is present */
++){
++ Trigger *nt;
++ Table *tab;
++ char *zName = 0; /* Name of the trigger */
++ sqlite *db = pParse->db;
++ int iDb; /* When database to store the trigger in */
++ DbFixer sFix;
++
++ /* Check that:
++ ** 1. the trigger name does not already exist.
++ ** 2. the table (or view) does exist in the same database as the trigger.
++ ** 3. that we are not trying to create a trigger on the sqlite_master table
++ ** 4. That we are not trying to create an INSTEAD OF trigger on a table.
++ ** 5. That we are not trying to create a BEFORE or AFTER trigger on a view.
++ */
++ if( sqlite_malloc_failed ) goto trigger_cleanup;
++ assert( pTableName->nSrc==1 );
++ if( db->init.busy
++ && sqliteFixInit(&sFix, pParse, db->init.iDb, "trigger", pName)
++ && sqliteFixSrcList(&sFix, pTableName)
++ ){
++ goto trigger_cleanup;
++ }
++ tab = sqliteSrcListLookup(pParse, pTableName);
++ if( !tab ){
++ goto trigger_cleanup;
++ }
++ iDb = isTemp ? 1 : tab->iDb;
++ if( iDb>=2 && !db->init.busy ){
++ sqliteErrorMsg(pParse, "triggers may not be added to auxiliary "
++ "database %s", db->aDb[tab->iDb].zName);
++ goto trigger_cleanup;
++ }
++
++ zName = sqliteStrNDup(pName->z, pName->n);
++ sqliteDequote(zName);
++ if( sqliteHashFind(&(db->aDb[iDb].trigHash), zName,pName->n+1) ){
++ sqliteErrorMsg(pParse, "trigger %T already exists", pName);
++ goto trigger_cleanup;
++ }
++ if( sqliteStrNICmp(tab->zName, "sqlite_", 7)==0 ){
++ sqliteErrorMsg(pParse, "cannot create trigger on system table");
++ pParse->nErr++;
++ goto trigger_cleanup;
++ }
++ if( tab->pSelect && tr_tm != TK_INSTEAD ){
++ sqliteErrorMsg(pParse, "cannot create %s trigger on view: %S",
++ (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0);
++ goto trigger_cleanup;
++ }
++ if( !tab->pSelect && tr_tm == TK_INSTEAD ){
++ sqliteErrorMsg(pParse, "cannot create INSTEAD OF"
++ " trigger on table: %S", pTableName, 0);
++ goto trigger_cleanup;
++ }
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ {
++ int code = SQLITE_CREATE_TRIGGER;
++ const char *zDb = db->aDb[tab->iDb].zName;
++ const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb;
++ if( tab->iDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER;
++ if( sqliteAuthCheck(pParse, code, zName, tab->zName, zDbTrig) ){
++ goto trigger_cleanup;
++ }
++ if( sqliteAuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(tab->iDb), 0, zDb)){
++ goto trigger_cleanup;
++ }
++ }
++#endif
++
++ /* INSTEAD OF triggers can only appear on views and BEGIN triggers
++ ** cannot appear on views. So we might as well translate every
++ ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code
++ ** elsewhere.
++ */
++ if (tr_tm == TK_INSTEAD){
++ tr_tm = TK_BEFORE;
++ }
++
++ /* Build the Trigger object */
++ nt = (Trigger*)sqliteMalloc(sizeof(Trigger));
++ if( nt==0 ) goto trigger_cleanup;
++ nt->name = zName;
++ zName = 0;
++ nt->table = sqliteStrDup(pTableName->a[0].zName);
++ if( sqlite_malloc_failed ) goto trigger_cleanup;
++ nt->iDb = iDb;
++ nt->iTabDb = tab->iDb;
++ nt->op = op;
++ nt->tr_tm = tr_tm;
++ nt->pWhen = sqliteExprDup(pWhen);
++ nt->pColumns = sqliteIdListDup(pColumns);
++ nt->foreach = foreach;
++ sqliteTokenCopy(&nt->nameToken,pName);
++ assert( pParse->pNewTrigger==0 );
++ pParse->pNewTrigger = nt;
++
++trigger_cleanup:
++ sqliteFree(zName);
++ sqliteSrcListDelete(pTableName);
++ sqliteIdListDelete(pColumns);
++ sqliteExprDelete(pWhen);
++}
++
++/*
++** This routine is called after all of the trigger actions have been parsed
++** in order to complete the process of building the trigger.
++*/
++void sqliteFinishTrigger(
++ Parse *pParse, /* Parser context */
++ TriggerStep *pStepList, /* The triggered program */
++ Token *pAll /* Token that describes the complete CREATE TRIGGER */
++){
++ Trigger *nt = 0; /* The trigger whose construction is finishing up */
++ sqlite *db = pParse->db; /* The database */
++ DbFixer sFix;
++
++ if( pParse->nErr || pParse->pNewTrigger==0 ) goto triggerfinish_cleanup;
++ nt = pParse->pNewTrigger;
++ pParse->pNewTrigger = 0;
++ nt->step_list = pStepList;
++ while( pStepList ){
++ pStepList->pTrig = nt;
++ pStepList = pStepList->pNext;
++ }
++ if( sqliteFixInit(&sFix, pParse, nt->iDb, "trigger", &nt->nameToken)
++ && sqliteFixTriggerStep(&sFix, nt->step_list) ){
++ goto triggerfinish_cleanup;
++ }
++
++ /* if we are not initializing, and this trigger is not on a TEMP table,
++ ** build the sqlite_master entry
++ */
++ if( !db->init.busy ){
++ static VdbeOpList insertTrig[] = {
++ { OP_NewRecno, 0, 0, 0 },
++ { OP_String, 0, 0, "trigger" },
++ { OP_String, 0, 0, 0 }, /* 2: trigger name */
++ { OP_String, 0, 0, 0 }, /* 3: table name */
++ { OP_Integer, 0, 0, 0 },
++ { OP_String, 0, 0, 0 }, /* 5: SQL */
++ { OP_MakeRecord, 5, 0, 0 },
++ { OP_PutIntKey, 0, 0, 0 },
++ };
++ int addr;
++ Vdbe *v;
++
++ /* Make an entry in the sqlite_master table */
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ) goto triggerfinish_cleanup;
++ sqliteBeginWriteOperation(pParse, 0, 0);
++ sqliteOpenMasterTable(v, nt->iDb);
++ addr = sqliteVdbeAddOpList(v, ArraySize(insertTrig), insertTrig);
++ sqliteVdbeChangeP3(v, addr+2, nt->name, 0);
++ sqliteVdbeChangeP3(v, addr+3, nt->table, 0);
++ sqliteVdbeChangeP3(v, addr+5, pAll->z, pAll->n);
++ if( nt->iDb==0 ){
++ sqliteChangeCookie(db, v);
++ }
++ sqliteVdbeAddOp(v, OP_Close, 0, 0);
++ sqliteEndWriteOperation(pParse);
++ }
++
++ if( !pParse->explain ){
++ Table *pTab;
++ sqliteHashInsert(&db->aDb[nt->iDb].trigHash,
++ nt->name, strlen(nt->name)+1, nt);
++ pTab = sqliteLocateTable(pParse, nt->table, db->aDb[nt->iTabDb].zName);
++ assert( pTab!=0 );
++ nt->pNext = pTab->pTrigger;
++ pTab->pTrigger = nt;
++ nt = 0;
++ }
++
++triggerfinish_cleanup:
++ sqliteDeleteTrigger(nt);
++ sqliteDeleteTrigger(pParse->pNewTrigger);
++ pParse->pNewTrigger = 0;
++ sqliteDeleteTriggerStep(pStepList);
++}
++
++/*
++** Make a copy of all components of the given trigger step. This has
++** the effect of copying all Expr.token.z values into memory obtained
++** from sqliteMalloc(). As initially created, the Expr.token.z values
++** all point to the input string that was fed to the parser. But that
++** string is ephemeral - it will go away as soon as the sqlite_exec()
++** call that started the parser exits. This routine makes a persistent
++** copy of all the Expr.token.z strings so that the TriggerStep structure
++** will be valid even after the sqlite_exec() call returns.
++*/
++static void sqlitePersistTriggerStep(TriggerStep *p){
++ if( p->target.z ){
++ p->target.z = sqliteStrNDup(p->target.z, p->target.n);
++ p->target.dyn = 1;
++ }
++ if( p->pSelect ){
++ Select *pNew = sqliteSelectDup(p->pSelect);
++ sqliteSelectDelete(p->pSelect);
++ p->pSelect = pNew;
++ }
++ if( p->pWhere ){
++ Expr *pNew = sqliteExprDup(p->pWhere);
++ sqliteExprDelete(p->pWhere);
++ p->pWhere = pNew;
++ }
++ if( p->pExprList ){
++ ExprList *pNew = sqliteExprListDup(p->pExprList);
++ sqliteExprListDelete(p->pExprList);
++ p->pExprList = pNew;
++ }
++ if( p->pIdList ){
++ IdList *pNew = sqliteIdListDup(p->pIdList);
++ sqliteIdListDelete(p->pIdList);
++ p->pIdList = pNew;
++ }
++}
++
++/*
++** Turn a SELECT statement (that the pSelect parameter points to) into
++** a trigger step. Return a pointer to a TriggerStep structure.
++**
++** The parser calls this routine when it finds a SELECT statement in
++** body of a TRIGGER.
++*/
++TriggerStep *sqliteTriggerSelectStep(Select *pSelect){
++ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
++ if( pTriggerStep==0 ) return 0;
++
++ pTriggerStep->op = TK_SELECT;
++ pTriggerStep->pSelect = pSelect;
++ pTriggerStep->orconf = OE_Default;
++ sqlitePersistTriggerStep(pTriggerStep);
++
++ return pTriggerStep;
++}
++
++/*
++** Build a trigger step out of an INSERT statement. Return a pointer
++** to the new trigger step.
++**
++** The parser calls this routine when it sees an INSERT inside the
++** body of a trigger.
++*/
++TriggerStep *sqliteTriggerInsertStep(
++ Token *pTableName, /* Name of the table into which we insert */
++ IdList *pColumn, /* List of columns in pTableName to insert into */
++ ExprList *pEList, /* The VALUE clause: a list of values to be inserted */
++ Select *pSelect, /* A SELECT statement that supplies values */
++ int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */
++){
++ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
++ if( pTriggerStep==0 ) return 0;
++
++ assert(pEList == 0 || pSelect == 0);
++ assert(pEList != 0 || pSelect != 0);
++
++ pTriggerStep->op = TK_INSERT;
++ pTriggerStep->pSelect = pSelect;
++ pTriggerStep->target = *pTableName;
++ pTriggerStep->pIdList = pColumn;
++ pTriggerStep->pExprList = pEList;
++ pTriggerStep->orconf = orconf;
++ sqlitePersistTriggerStep(pTriggerStep);
++
++ return pTriggerStep;
++}
++
++/*
++** Construct a trigger step that implements an UPDATE statement and return
++** a pointer to that trigger step. The parser calls this routine when it
++** sees an UPDATE statement inside the body of a CREATE TRIGGER.
++*/
++TriggerStep *sqliteTriggerUpdateStep(
++ Token *pTableName, /* Name of the table to be updated */
++ ExprList *pEList, /* The SET clause: list of column and new values */
++ Expr *pWhere, /* The WHERE clause */
++ int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */
++){
++ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
++ if( pTriggerStep==0 ) return 0;
++
++ pTriggerStep->op = TK_UPDATE;
++ pTriggerStep->target = *pTableName;
++ pTriggerStep->pExprList = pEList;
++ pTriggerStep->pWhere = pWhere;
++ pTriggerStep->orconf = orconf;
++ sqlitePersistTriggerStep(pTriggerStep);
++
++ return pTriggerStep;
++}
++
++/*
++** Construct a trigger step that implements a DELETE statement and return
++** a pointer to that trigger step. The parser calls this routine when it
++** sees a DELETE statement inside the body of a CREATE TRIGGER.
++*/
++TriggerStep *sqliteTriggerDeleteStep(Token *pTableName, Expr *pWhere){
++ TriggerStep *pTriggerStep = sqliteMalloc(sizeof(TriggerStep));
++ if( pTriggerStep==0 ) return 0;
++
++ pTriggerStep->op = TK_DELETE;
++ pTriggerStep->target = *pTableName;
++ pTriggerStep->pWhere = pWhere;
++ pTriggerStep->orconf = OE_Default;
++ sqlitePersistTriggerStep(pTriggerStep);
++
++ return pTriggerStep;
++}
++
++/*
++** Recursively delete a Trigger structure
++*/
++void sqliteDeleteTrigger(Trigger *pTrigger){
++ if( pTrigger==0 ) return;
++ sqliteDeleteTriggerStep(pTrigger->step_list);
++ sqliteFree(pTrigger->name);
++ sqliteFree(pTrigger->table);
++ sqliteExprDelete(pTrigger->pWhen);
++ sqliteIdListDelete(pTrigger->pColumns);
++ if( pTrigger->nameToken.dyn ) sqliteFree((char*)pTrigger->nameToken.z);
++ sqliteFree(pTrigger);
++}
++
++/*
++ * This function is called to drop a trigger from the database schema.
++ *
++ * This may be called directly from the parser and therefore identifies
++ * the trigger by name. The sqliteDropTriggerPtr() routine does the
++ * same job as this routine except it take a spointer to the trigger
++ * instead of the trigger name.
++ *
++ * Note that this function does not delete the trigger entirely. Instead it
++ * removes it from the internal schema and places it in the trigDrop hash
++ * table. This is so that the trigger can be restored into the database schema
++ * if the transaction is rolled back.
++ */
++void sqliteDropTrigger(Parse *pParse, SrcList *pName){
++ Trigger *pTrigger;
++ int i;
++ const char *zDb;
++ const char *zName;
++ int nName;
++ sqlite *db = pParse->db;
++
++ if( sqlite_malloc_failed ) goto drop_trigger_cleanup;
++ assert( pName->nSrc==1 );
++ zDb = pName->a[0].zDatabase;
++ zName = pName->a[0].zName;
++ nName = strlen(zName);
++ for(i=0; i<db->nDb; i++){
++ int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
++ if( zDb && sqliteStrICmp(db->aDb[j].zName, zDb) ) continue;
++ pTrigger = sqliteHashFind(&(db->aDb[j].trigHash), zName, nName+1);
++ if( pTrigger ) break;
++ }
++ if( !pTrigger ){
++ sqliteErrorMsg(pParse, "no such trigger: %S", pName, 0);
++ goto drop_trigger_cleanup;
++ }
++ sqliteDropTriggerPtr(pParse, pTrigger, 0);
++
++drop_trigger_cleanup:
++ sqliteSrcListDelete(pName);
++}
++
++/*
++** Drop a trigger given a pointer to that trigger. If nested is false,
++** then also generate code to remove the trigger from the SQLITE_MASTER
++** table.
++*/
++void sqliteDropTriggerPtr(Parse *pParse, Trigger *pTrigger, int nested){
++ Table *pTable;
++ Vdbe *v;
++ sqlite *db = pParse->db;
++
++ assert( pTrigger->iDb<db->nDb );
++ if( pTrigger->iDb>=2 ){
++ sqliteErrorMsg(pParse, "triggers may not be removed from "
++ "auxiliary database %s", db->aDb[pTrigger->iDb].zName);
++ return;
++ }
++ pTable = sqliteFindTable(db, pTrigger->table,db->aDb[pTrigger->iTabDb].zName);
++ assert(pTable);
++ assert( pTable->iDb==pTrigger->iDb || pTrigger->iDb==1 );
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ {
++ int code = SQLITE_DROP_TRIGGER;
++ const char *zDb = db->aDb[pTrigger->iDb].zName;
++ const char *zTab = SCHEMA_TABLE(pTrigger->iDb);
++ if( pTrigger->iDb ) code = SQLITE_DROP_TEMP_TRIGGER;
++ if( sqliteAuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) ||
++ sqliteAuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
++ return;
++ }
++ }
++#endif
++
++ /* Generate code to destroy the database record of the trigger.
++ */
++ if( pTable!=0 && !nested && (v = sqliteGetVdbe(pParse))!=0 ){
++ int base;
++ static VdbeOpList dropTrigger[] = {
++ { OP_Rewind, 0, ADDR(9), 0},
++ { OP_String, 0, 0, 0}, /* 1 */
++ { OP_Column, 0, 1, 0},
++ { OP_Ne, 0, ADDR(8), 0},
++ { OP_String, 0, 0, "trigger"},
++ { OP_Column, 0, 0, 0},
++ { OP_Ne, 0, ADDR(8), 0},
++ { OP_Delete, 0, 0, 0},
++ { OP_Next, 0, ADDR(1), 0}, /* 8 */
++ };
++
++ sqliteBeginWriteOperation(pParse, 0, 0);
++ sqliteOpenMasterTable(v, pTrigger->iDb);
++ base = sqliteVdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger);
++ sqliteVdbeChangeP3(v, base+1, pTrigger->name, 0);
++ if( pTrigger->iDb==0 ){
++ sqliteChangeCookie(db, v);
++ }
++ sqliteVdbeAddOp(v, OP_Close, 0, 0);
++ sqliteEndWriteOperation(pParse);
++ }
++
++ /*
++ * If this is not an "explain", then delete the trigger structure.
++ */
++ if( !pParse->explain ){
++ const char *zName = pTrigger->name;
++ int nName = strlen(zName);
++ if( pTable->pTrigger == pTrigger ){
++ pTable->pTrigger = pTrigger->pNext;
++ }else{
++ Trigger *cc = pTable->pTrigger;
++ while( cc ){
++ if( cc->pNext == pTrigger ){
++ cc->pNext = cc->pNext->pNext;
++ break;
++ }
++ cc = cc->pNext;
++ }
++ assert(cc);
++ }
++ sqliteHashInsert(&(db->aDb[pTrigger->iDb].trigHash), zName, nName+1, 0);
++ sqliteDeleteTrigger(pTrigger);
++ }
++}
++
++/*
++** pEList is the SET clause of an UPDATE statement. Each entry
++** in pEList is of the format <id>=<expr>. If any of the entries
++** in pEList have an <id> which matches an identifier in pIdList,
++** then return TRUE. If pIdList==NULL, then it is considered a
++** wildcard that matches anything. Likewise if pEList==NULL then
++** it matches anything so always return true. Return false only
++** if there is no match.
++*/
++static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){
++ int e;
++ if( !pIdList || !pEList ) return 1;
++ for(e=0; e<pEList->nExpr; e++){
++ if( sqliteIdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1;
++ }
++ return 0;
++}
++
++/* A global variable that is TRUE if we should always set up temp tables for
++ * for triggers, even if there are no triggers to code. This is used to test
++ * how much overhead the triggers algorithm is causing.
++ *
++ * This flag can be set or cleared using the "trigger_overhead_test" pragma.
++ * The pragma is not documented since it is not really part of the interface
++ * to SQLite, just the test procedure.
++*/
++int always_code_trigger_setup = 0;
++
++/*
++ * Returns true if a trigger matching op, tr_tm and foreach that is NOT already
++ * on the Parse objects trigger-stack (to prevent recursive trigger firing) is
++ * found in the list specified as pTrigger.
++ */
++int sqliteTriggersExist(
++ Parse *pParse, /* Used to check for recursive triggers */
++ Trigger *pTrigger, /* A list of triggers associated with a table */
++ int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */
++ int tr_tm, /* one of TK_BEFORE, TK_AFTER */
++ int foreach, /* one of TK_ROW or TK_STATEMENT */
++ ExprList *pChanges /* Columns that change in an UPDATE statement */
++){
++ Trigger * pTriggerCursor;
++
++ if( always_code_trigger_setup ){
++ return 1;
++ }
++
++ pTriggerCursor = pTrigger;
++ while( pTriggerCursor ){
++ if( pTriggerCursor->op == op &&
++ pTriggerCursor->tr_tm == tr_tm &&
++ pTriggerCursor->foreach == foreach &&
++ checkColumnOverLap(pTriggerCursor->pColumns, pChanges) ){
++ TriggerStack * ss;
++ ss = pParse->trigStack;
++ while( ss && ss->pTrigger != pTrigger ){
++ ss = ss->pNext;
++ }
++ if( !ss )return 1;
++ }
++ pTriggerCursor = pTriggerCursor->pNext;
++ }
++
++ return 0;
++}
++
++/*
++** Convert the pStep->target token into a SrcList and return a pointer
++** to that SrcList.
++**
++** This routine adds a specific database name, if needed, to the target when
++** forming the SrcList. This prevents a trigger in one database from
++** referring to a target in another database. An exception is when the
++** trigger is in TEMP in which case it can refer to any other database it
++** wants.
++*/
++static SrcList *targetSrcList(
++ Parse *pParse, /* The parsing context */
++ TriggerStep *pStep /* The trigger containing the target token */
++){
++ Token sDb; /* Dummy database name token */
++ int iDb; /* Index of the database to use */
++ SrcList *pSrc; /* SrcList to be returned */
++
++ iDb = pStep->pTrig->iDb;
++ if( iDb==0 || iDb>=2 ){
++ assert( iDb<pParse->db->nDb );
++ sDb.z = pParse->db->aDb[iDb].zName;
++ sDb.n = strlen(sDb.z);
++ pSrc = sqliteSrcListAppend(0, &sDb, &pStep->target);
++ } else {
++ pSrc = sqliteSrcListAppend(0, &pStep->target, 0);
++ }
++ return pSrc;
++}
++
++/*
++** Generate VDBE code for zero or more statements inside the body of a
++** trigger.
++*/
++static int codeTriggerProgram(
++ Parse *pParse, /* The parser context */
++ TriggerStep *pStepList, /* List of statements inside the trigger body */
++ int orconfin /* Conflict algorithm. (OE_Abort, etc) */
++){
++ TriggerStep * pTriggerStep = pStepList;
++ int orconf;
++
++ while( pTriggerStep ){
++ int saveNTab = pParse->nTab;
++
++ orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin;
++ pParse->trigStack->orconf = orconf;
++ switch( pTriggerStep->op ){
++ case TK_SELECT: {
++ Select * ss = sqliteSelectDup(pTriggerStep->pSelect);
++ assert(ss);
++ assert(ss->pSrc);
++ sqliteSelect(pParse, ss, SRT_Discard, 0, 0, 0, 0);
++ sqliteSelectDelete(ss);
++ break;
++ }
++ case TK_UPDATE: {
++ SrcList *pSrc;
++ pSrc = targetSrcList(pParse, pTriggerStep);
++ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPush, 0, 0);
++ sqliteUpdate(pParse, pSrc,
++ sqliteExprListDup(pTriggerStep->pExprList),
++ sqliteExprDup(pTriggerStep->pWhere), orconf);
++ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPop, 0, 0);
++ break;
++ }
++ case TK_INSERT: {
++ SrcList *pSrc;
++ pSrc = targetSrcList(pParse, pTriggerStep);
++ sqliteInsert(pParse, pSrc,
++ sqliteExprListDup(pTriggerStep->pExprList),
++ sqliteSelectDup(pTriggerStep->pSelect),
++ sqliteIdListDup(pTriggerStep->pIdList), orconf);
++ break;
++ }
++ case TK_DELETE: {
++ SrcList *pSrc;
++ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPush, 0, 0);
++ pSrc = targetSrcList(pParse, pTriggerStep);
++ sqliteDeleteFrom(pParse, pSrc, sqliteExprDup(pTriggerStep->pWhere));
++ sqliteVdbeAddOp(pParse->pVdbe, OP_ListPop, 0, 0);
++ break;
++ }
++ default:
++ assert(0);
++ }
++ pParse->nTab = saveNTab;
++ pTriggerStep = pTriggerStep->pNext;
++ }
++
++ return 0;
++}
++
++/*
++** This is called to code FOR EACH ROW triggers.
++**
++** When the code that this function generates is executed, the following
++** must be true:
++**
++** 1. No cursors may be open in the main database. (But newIdx and oldIdx
++** can be indices of cursors in temporary tables. See below.)
++**
++** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then
++** a temporary vdbe cursor (index newIdx) must be open and pointing at
++** a row containing values to be substituted for new.* expressions in the
++** trigger program(s).
++**
++** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then
++** a temporary vdbe cursor (index oldIdx) must be open and pointing at
++** a row containing values to be substituted for old.* expressions in the
++** trigger program(s).
++**
++*/
++int sqliteCodeRowTrigger(
++ Parse *pParse, /* Parse context */
++ int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */
++ ExprList *pChanges, /* Changes list for any UPDATE OF triggers */
++ int tr_tm, /* One of TK_BEFORE, TK_AFTER */
++ Table *pTab, /* The table to code triggers from */
++ int newIdx, /* The indice of the "new" row to access */
++ int oldIdx, /* The indice of the "old" row to access */
++ int orconf, /* ON CONFLICT policy */
++ int ignoreJump /* Instruction to jump to for RAISE(IGNORE) */
++){
++ Trigger * pTrigger;
++ TriggerStack * pTriggerStack;
++
++ assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE);
++ assert(tr_tm == TK_BEFORE || tr_tm == TK_AFTER );
++
++ assert(newIdx != -1 || oldIdx != -1);
++
++ pTrigger = pTab->pTrigger;
++ while( pTrigger ){
++ int fire_this = 0;
++
++ /* determine whether we should code this trigger */
++ if( pTrigger->op == op && pTrigger->tr_tm == tr_tm &&
++ pTrigger->foreach == TK_ROW ){
++ fire_this = 1;
++ pTriggerStack = pParse->trigStack;
++ while( pTriggerStack ){
++ if( pTriggerStack->pTrigger == pTrigger ){
++ fire_this = 0;
++ }
++ pTriggerStack = pTriggerStack->pNext;
++ }
++ if( op == TK_UPDATE && pTrigger->pColumns &&
++ !checkColumnOverLap(pTrigger->pColumns, pChanges) ){
++ fire_this = 0;
++ }
++ }
++
++ if( fire_this && (pTriggerStack = sqliteMalloc(sizeof(TriggerStack)))!=0 ){
++ int endTrigger;
++ SrcList dummyTablist;
++ Expr * whenExpr;
++ AuthContext sContext;
++
++ dummyTablist.nSrc = 0;
++
++ /* Push an entry on to the trigger stack */
++ pTriggerStack->pTrigger = pTrigger;
++ pTriggerStack->newIdx = newIdx;
++ pTriggerStack->oldIdx = oldIdx;
++ pTriggerStack->pTab = pTab;
++ pTriggerStack->pNext = pParse->trigStack;
++ pTriggerStack->ignoreJump = ignoreJump;
++ pParse->trigStack = pTriggerStack;
++ sqliteAuthContextPush(pParse, &sContext, pTrigger->name);
++
++ /* code the WHEN clause */
++ endTrigger = sqliteVdbeMakeLabel(pParse->pVdbe);
++ whenExpr = sqliteExprDup(pTrigger->pWhen);
++ if( sqliteExprResolveIds(pParse, &dummyTablist, 0, whenExpr) ){
++ pParse->trigStack = pParse->trigStack->pNext;
++ sqliteFree(pTriggerStack);
++ sqliteExprDelete(whenExpr);
++ return 1;
++ }
++ sqliteExprIfFalse(pParse, whenExpr, endTrigger, 1);
++ sqliteExprDelete(whenExpr);
++
++ sqliteVdbeAddOp(pParse->pVdbe, OP_ContextPush, 0, 0);
++ codeTriggerProgram(pParse, pTrigger->step_list, orconf);
++ sqliteVdbeAddOp(pParse->pVdbe, OP_ContextPop, 0, 0);
++
++ /* Pop the entry off the trigger stack */
++ pParse->trigStack = pParse->trigStack->pNext;
++ sqliteAuthContextPop(&sContext);
++ sqliteFree(pTriggerStack);
++
++ sqliteVdbeResolveLabel(pParse->pVdbe, endTrigger);
++ }
++ pTrigger = pTrigger->pNext;
++ }
++
++ return 0;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/update.c
+@@ -0,0 +1,459 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains C code routines that are called by the parser
++** to handle UPDATE statements.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++
++/*
++** Process an UPDATE statement.
++**
++** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
++** \_______/ \________/ \______/ \________________/
++* onError pTabList pChanges pWhere
++*/
++void sqliteUpdate(
++ Parse *pParse, /* The parser context */
++ SrcList *pTabList, /* The table in which we should change things */
++ ExprList *pChanges, /* Things to be changed */
++ Expr *pWhere, /* The WHERE clause. May be null */
++ int onError /* How to handle constraint errors */
++){
++ int i, j; /* Loop counters */
++ Table *pTab; /* The table to be updated */
++ int loopStart; /* VDBE instruction address of the start of the loop */
++ int jumpInst; /* Addr of VDBE instruction to jump out of loop */
++ WhereInfo *pWInfo; /* Information about the WHERE clause */
++ Vdbe *v; /* The virtual database engine */
++ Index *pIdx; /* For looping over indices */
++ int nIdx; /* Number of indices that need updating */
++ int nIdxTotal; /* Total number of indices */
++ int iCur; /* VDBE Cursor number of pTab */
++ sqlite *db; /* The database structure */
++ Index **apIdx = 0; /* An array of indices that need updating too */
++ char *aIdxUsed = 0; /* aIdxUsed[i]==1 if the i-th index is used */
++ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the
++ ** an expression for the i-th column of the table.
++ ** aXRef[i]==-1 if the i-th column is not changed. */
++ int chngRecno; /* True if the record number is being changed */
++ Expr *pRecnoExpr; /* Expression defining the new record number */
++ int openAll; /* True if all indices need to be opened */
++ int isView; /* Trying to update a view */
++ int iStackDepth; /* Index of memory cell holding stack depth */
++ AuthContext sContext; /* The authorization context */
++
++ int before_triggers; /* True if there are any BEFORE triggers */
++ int after_triggers; /* True if there are any AFTER triggers */
++ int row_triggers_exist = 0; /* True if any row triggers exist */
++
++ int newIdx = -1; /* index of trigger "new" temp table */
++ int oldIdx = -1; /* index of trigger "old" temp table */
++
++ sContext.pParse = 0;
++ if( pParse->nErr || sqlite_malloc_failed ) goto update_cleanup;
++ db = pParse->db;
++ assert( pTabList->nSrc==1 );
++ iStackDepth = pParse->nMem++;
++
++ /* Locate the table which we want to update.
++ */
++ pTab = sqliteSrcListLookup(pParse, pTabList);
++ if( pTab==0 ) goto update_cleanup;
++ before_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
++ TK_UPDATE, TK_BEFORE, TK_ROW, pChanges);
++ after_triggers = sqliteTriggersExist(pParse, pTab->pTrigger,
++ TK_UPDATE, TK_AFTER, TK_ROW, pChanges);
++ row_triggers_exist = before_triggers || after_triggers;
++ isView = pTab->pSelect!=0;
++ if( sqliteIsReadOnly(pParse, pTab, before_triggers) ){
++ goto update_cleanup;
++ }
++ if( isView ){
++ if( sqliteViewGetColumnNames(pParse, pTab) ){
++ goto update_cleanup;
++ }
++ }
++ aXRef = sqliteMalloc( sizeof(int) * pTab->nCol );
++ if( aXRef==0 ) goto update_cleanup;
++ for(i=0; i<pTab->nCol; i++) aXRef[i] = -1;
++
++ /* If there are FOR EACH ROW triggers, allocate cursors for the
++ ** special OLD and NEW tables
++ */
++ if( row_triggers_exist ){
++ newIdx = pParse->nTab++;
++ oldIdx = pParse->nTab++;
++ }
++
++ /* Allocate a cursors for the main database table and for all indices.
++ ** The index cursors might not be used, but if they are used they
++ ** need to occur right after the database cursor. So go ahead and
++ ** allocate enough space, just in case.
++ */
++ pTabList->a[0].iCursor = iCur = pParse->nTab++;
++ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
++ pParse->nTab++;
++ }
++
++ /* Resolve the column names in all the expressions of the
++ ** of the UPDATE statement. Also find the column index
++ ** for each column to be updated in the pChanges array. For each
++ ** column to be updated, make sure we have authorization to change
++ ** that column.
++ */
++ chngRecno = 0;
++ for(i=0; i<pChanges->nExpr; i++){
++ if( sqliteExprResolveIds(pParse, pTabList, 0, pChanges->a[i].pExpr) ){
++ goto update_cleanup;
++ }
++ if( sqliteExprCheck(pParse, pChanges->a[i].pExpr, 0, 0) ){
++ goto update_cleanup;
++ }
++ for(j=0; j<pTab->nCol; j++){
++ if( sqliteStrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){
++ if( j==pTab->iPKey ){
++ chngRecno = 1;
++ pRecnoExpr = pChanges->a[i].pExpr;
++ }
++ aXRef[j] = i;
++ break;
++ }
++ }
++ if( j>=pTab->nCol ){
++ if( sqliteIsRowid(pChanges->a[i].zName) ){
++ chngRecno = 1;
++ pRecnoExpr = pChanges->a[i].pExpr;
++ }else{
++ sqliteErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName);
++ goto update_cleanup;
++ }
++ }
++#ifndef SQLITE_OMIT_AUTHORIZATION
++ {
++ int rc;
++ rc = sqliteAuthCheck(pParse, SQLITE_UPDATE, pTab->zName,
++ pTab->aCol[j].zName, db->aDb[pTab->iDb].zName);
++ if( rc==SQLITE_DENY ){
++ goto update_cleanup;
++ }else if( rc==SQLITE_IGNORE ){
++ aXRef[j] = -1;
++ }
++ }
++#endif
++ }
++
++ /* Allocate memory for the array apIdx[] and fill it with pointers to every
++ ** index that needs to be updated. Indices only need updating if their
++ ** key includes one of the columns named in pChanges or if the record
++ ** number of the original table entry is changing.
++ */
++ for(nIdx=nIdxTotal=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdxTotal++){
++ if( chngRecno ){
++ i = 0;
++ }else {
++ for(i=0; i<pIdx->nColumn; i++){
++ if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
++ }
++ }
++ if( i<pIdx->nColumn ) nIdx++;
++ }
++ if( nIdxTotal>0 ){
++ apIdx = sqliteMalloc( sizeof(Index*) * nIdx + nIdxTotal );
++ if( apIdx==0 ) goto update_cleanup;
++ aIdxUsed = (char*)&apIdx[nIdx];
++ }
++ for(nIdx=j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
++ if( chngRecno ){
++ i = 0;
++ }else{
++ for(i=0; i<pIdx->nColumn; i++){
++ if( aXRef[pIdx->aiColumn[i]]>=0 ) break;
++ }
++ }
++ if( i<pIdx->nColumn ){
++ apIdx[nIdx++] = pIdx;
++ aIdxUsed[j] = 1;
++ }else{
++ aIdxUsed[j] = 0;
++ }
++ }
++
++ /* Resolve the column names in all the expressions in the
++ ** WHERE clause.
++ */
++ if( pWhere ){
++ if( sqliteExprResolveIds(pParse, pTabList, 0, pWhere) ){
++ goto update_cleanup;
++ }
++ if( sqliteExprCheck(pParse, pWhere, 0, 0) ){
++ goto update_cleanup;
++ }
++ }
++
++ /* Start the view context
++ */
++ if( isView ){
++ sqliteAuthContextPush(pParse, &sContext, pTab->zName);
++ }
++
++ /* Begin generating code.
++ */
++ v = sqliteGetVdbe(pParse);
++ if( v==0 ) goto update_cleanup;
++ sqliteBeginWriteOperation(pParse, 1, pTab->iDb);
++
++ /* If we are trying to update a view, construct that view into
++ ** a temporary table.
++ */
++ if( isView ){
++ Select *pView;
++ pView = sqliteSelectDup(pTab->pSelect);
++ sqliteSelect(pParse, pView, SRT_TempTable, iCur, 0, 0, 0);
++ sqliteSelectDelete(pView);
++ }
++
++ /* Begin the database scan
++ */
++ pWInfo = sqliteWhereBegin(pParse, pTabList, pWhere, 1, 0);
++ if( pWInfo==0 ) goto update_cleanup;
++
++ /* Remember the index of every item to be updated.
++ */
++ sqliteVdbeAddOp(v, OP_ListWrite, 0, 0);
++
++ /* End the database scan loop.
++ */
++ sqliteWhereEnd(pWInfo);
++
++ /* Initialize the count of updated rows
++ */
++ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
++ sqliteVdbeAddOp(v, OP_Integer, 0, 0);
++ }
++
++ if( row_triggers_exist ){
++ /* Create pseudo-tables for NEW and OLD
++ */
++ sqliteVdbeAddOp(v, OP_OpenPseudo, oldIdx, 0);
++ sqliteVdbeAddOp(v, OP_OpenPseudo, newIdx, 0);
++
++ /* The top of the update loop for when there are triggers.
++ */
++ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
++ sqliteVdbeAddOp(v, OP_StackDepth, 0, 0);
++ sqliteVdbeAddOp(v, OP_MemStore, iStackDepth, 1);
++ loopStart = sqliteVdbeAddOp(v, OP_MemLoad, iStackDepth, 0);
++ sqliteVdbeAddOp(v, OP_StackReset, 0, 0);
++ jumpInst = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
++ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
++
++ /* Open a cursor and make it point to the record that is
++ ** being updated.
++ */
++ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
++ if( !isView ){
++ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
++ sqliteVdbeAddOp(v, OP_OpenRead, iCur, pTab->tnum);
++ }
++ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
++
++ /* Generate the OLD table
++ */
++ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
++ sqliteVdbeAddOp(v, OP_RowData, iCur, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, oldIdx, 0);
++
++ /* Generate the NEW table
++ */
++ if( chngRecno ){
++ sqliteExprCode(pParse, pRecnoExpr);
++ }else{
++ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
++ }
++ for(i=0; i<pTab->nCol; i++){
++ if( i==pTab->iPKey ){
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ continue;
++ }
++ j = aXRef[i];
++ if( j<0 ){
++ sqliteVdbeAddOp(v, OP_Column, iCur, i);
++ }else{
++ sqliteExprCode(pParse, pChanges->a[j].pExpr);
++ }
++ }
++ sqliteVdbeAddOp(v, OP_MakeRecord, pTab->nCol, 0);
++ sqliteVdbeAddOp(v, OP_PutIntKey, newIdx, 0);
++ if( !isView ){
++ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
++ }
++
++ /* Fire the BEFORE and INSTEAD OF triggers
++ */
++ if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_BEFORE, pTab,
++ newIdx, oldIdx, onError, loopStart) ){
++ goto update_cleanup;
++ }
++ }
++
++ if( !isView ){
++ /*
++ ** Open every index that needs updating. Note that if any
++ ** index could potentially invoke a REPLACE conflict resolution
++ ** action, then we need to open all indices because we might need
++ ** to be deleting some records.
++ */
++ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
++ sqliteVdbeAddOp(v, OP_OpenWrite, iCur, pTab->tnum);
++ if( onError==OE_Replace ){
++ openAll = 1;
++ }else{
++ openAll = 0;
++ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
++ if( pIdx->onError==OE_Replace ){
++ openAll = 1;
++ break;
++ }
++ }
++ }
++ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
++ if( openAll || aIdxUsed[i] ){
++ sqliteVdbeAddOp(v, OP_Integer, pIdx->iDb, 0);
++ sqliteVdbeAddOp(v, OP_OpenWrite, iCur+i+1, pIdx->tnum);
++ assert( pParse->nTab>iCur+i+1 );
++ }
++ }
++
++ /* Loop over every record that needs updating. We have to load
++ ** the old data for each record to be updated because some columns
++ ** might not change and we will need to copy the old value.
++ ** Also, the old data is needed to delete the old index entires.
++ ** So make the cursor point at the old record.
++ */
++ if( !row_triggers_exist ){
++ sqliteVdbeAddOp(v, OP_ListRewind, 0, 0);
++ jumpInst = loopStart = sqliteVdbeAddOp(v, OP_ListRead, 0, 0);
++ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
++ }
++ sqliteVdbeAddOp(v, OP_NotExists, iCur, loopStart);
++
++ /* If the record number will change, push the record number as it
++ ** will be after the update. (The old record number is currently
++ ** on top of the stack.)
++ */
++ if( chngRecno ){
++ sqliteExprCode(pParse, pRecnoExpr);
++ sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
++ }
++
++ /* Compute new data for this record.
++ */
++ for(i=0; i<pTab->nCol; i++){
++ if( i==pTab->iPKey ){
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ continue;
++ }
++ j = aXRef[i];
++ if( j<0 ){
++ sqliteVdbeAddOp(v, OP_Column, iCur, i);
++ }else{
++ sqliteExprCode(pParse, pChanges->a[j].pExpr);
++ }
++ }
++
++ /* Do constraint checks
++ */
++ sqliteGenerateConstraintChecks(pParse, pTab, iCur, aIdxUsed, chngRecno, 1,
++ onError, loopStart);
++
++ /* Delete the old indices for the current record.
++ */
++ sqliteGenerateRowIndexDelete(db, v, pTab, iCur, aIdxUsed);
++
++ /* If changing the record number, delete the old record.
++ */
++ if( chngRecno ){
++ sqliteVdbeAddOp(v, OP_Delete, iCur, 0);
++ }
++
++ /* Create the new index entries and the new record.
++ */
++ sqliteCompleteInsertion(pParse, pTab, iCur, aIdxUsed, chngRecno, 1, -1);
++ }
++
++ /* Increment the row counter
++ */
++ if( db->flags & SQLITE_CountRows && !pParse->trigStack){
++ sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
++ }
++
++ /* If there are triggers, close all the cursors after each iteration
++ ** through the loop. The fire the after triggers.
++ */
++ if( row_triggers_exist ){
++ if( !isView ){
++ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
++ if( openAll || aIdxUsed[i] )
++ sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0);
++ }
++ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
++ pParse->nTab = iCur;
++ }
++ if( sqliteCodeRowTrigger(pParse, TK_UPDATE, pChanges, TK_AFTER, pTab,
++ newIdx, oldIdx, onError, loopStart) ){
++ goto update_cleanup;
++ }
++ }
++
++ /* Repeat the above with the next record to be updated, until
++ ** all record selected by the WHERE clause have been updated.
++ */
++ sqliteVdbeAddOp(v, OP_Goto, 0, loopStart);
++ sqliteVdbeChangeP2(v, jumpInst, sqliteVdbeCurrentAddr(v));
++ sqliteVdbeAddOp(v, OP_ListReset, 0, 0);
++
++ /* Close all tables if there were no FOR EACH ROW triggers */
++ if( !row_triggers_exist ){
++ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
++ if( openAll || aIdxUsed[i] ){
++ sqliteVdbeAddOp(v, OP_Close, iCur+i+1, 0);
++ }
++ }
++ sqliteVdbeAddOp(v, OP_Close, iCur, 0);
++ pParse->nTab = iCur;
++ }else{
++ sqliteVdbeAddOp(v, OP_Close, newIdx, 0);
++ sqliteVdbeAddOp(v, OP_Close, oldIdx, 0);
++ }
++
++ sqliteVdbeAddOp(v, OP_SetCounts, 0, 0);
++ sqliteEndWriteOperation(pParse);
++
++ /*
++ ** Return the number of rows that were changed.
++ */
++ if( db->flags & SQLITE_CountRows && !pParse->trigStack ){
++ sqliteVdbeOp3(v, OP_ColumnName, 0, 1, "rows updated", P3_STATIC);
++ sqliteVdbeAddOp(v, OP_Callback, 1, 0);
++ }
++
++update_cleanup:
++ sqliteAuthContextPop(&sContext);
++ sqliteFree(apIdx);
++ sqliteFree(aXRef);
++ sqliteSrcListDelete(pTabList);
++ sqliteExprListDelete(pChanges);
++ sqliteExprDelete(pWhere);
++ return;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/util.c
+@@ -0,0 +1,1134 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** Utility functions used throughout sqlite.
++**
++** This file contains functions for allocating memory, comparing
++** strings, and stuff like that.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++#include <stdarg.h>
++#include <ctype.h>
++
++/*
++** If malloc() ever fails, this global variable gets set to 1.
++** This causes the library to abort and never again function.
++*/
++int sqlite_malloc_failed = 0;
++
++/*
++** If MEMORY_DEBUG is defined, then use versions of malloc() and
++** free() that track memory usage and check for buffer overruns.
++*/
++#ifdef MEMORY_DEBUG
++
++/*
++** For keeping track of the number of mallocs and frees. This
++** is used to check for memory leaks.
++*/
++int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
++int sqlite_nFree; /* Number of sqliteFree() calls */
++int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
++#if MEMORY_DEBUG>1
++static int memcnt = 0;
++#endif
++
++/*
++** Number of 32-bit guard words
++*/
++#define N_GUARD 1
++
++/*
++** Allocate new memory and set it to zero. Return NULL if
++** no memory is available.
++*/
++void *sqliteMalloc_(int n, int bZero, char *zFile, int line){
++ void *p;
++ int *pi;
++ int i, k;
++ if( sqlite_iMallocFail>=0 ){
++ sqlite_iMallocFail--;
++ if( sqlite_iMallocFail==0 ){
++ sqlite_malloc_failed++;
++#if MEMORY_DEBUG>1
++ fprintf(stderr,"**** failed to allocate %d bytes at %s:%d\n",
++ n, zFile,line);
++#endif
++ sqlite_iMallocFail--;
++ return 0;
++ }
++ }
++ if( n==0 ) return 0;
++ k = (n+sizeof(int)-1)/sizeof(int);
++ pi = malloc( (N_GUARD*2+1+k)*sizeof(int));
++ if( pi==0 ){
++ sqlite_malloc_failed++;
++ return 0;
++ }
++ sqlite_nMalloc++;
++ for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122;
++ pi[N_GUARD] = n;
++ for(i=0; i<N_GUARD; i++) pi[k+1+N_GUARD+i] = 0xdead3344;
++ p = &pi[N_GUARD+1];
++ memset(p, bZero==0, n);
++#if MEMORY_DEBUG>1
++ fprintf(stderr,"%06d malloc %d bytes at 0x%x from %s:%d\n",
++ ++memcnt, n, (int)p, zFile,line);
++#endif
++ return p;
++}
++
++/*
++** Check to see if the given pointer was obtained from sqliteMalloc()
++** and is able to hold at least N bytes. Raise an exception if this
++** is not the case.
++**
++** This routine is used for testing purposes only.
++*/
++void sqliteCheckMemory(void *p, int N){
++ int *pi = p;
++ int n, i, k;
++ pi -= N_GUARD+1;
++ for(i=0; i<N_GUARD; i++){
++ assert( pi[i]==0xdead1122 );
++ }
++ n = pi[N_GUARD];
++ assert( N>=0 && N<n );
++ k = (n+sizeof(int)-1)/sizeof(int);
++ for(i=0; i<N_GUARD; i++){
++ assert( pi[k+N_GUARD+1+i]==0xdead3344 );
++ }
++}
++
++/*
++** Free memory previously obtained from sqliteMalloc()
++*/
++void sqliteFree_(void *p, char *zFile, int line){
++ if( p ){
++ int *pi, i, k, n;
++ pi = p;
++ pi -= N_GUARD+1;
++ sqlite_nFree++;
++ for(i=0; i<N_GUARD; i++){
++ if( pi[i]!=0xdead1122 ){
++ fprintf(stderr,"Low-end memory corruption at 0x%x\n", (int)p);
++ return;
++ }
++ }
++ n = pi[N_GUARD];
++ k = (n+sizeof(int)-1)/sizeof(int);
++ for(i=0; i<N_GUARD; i++){
++ if( pi[k+N_GUARD+1+i]!=0xdead3344 ){
++ fprintf(stderr,"High-end memory corruption at 0x%x\n", (int)p);
++ return;
++ }
++ }
++ memset(pi, 0xff, (k+N_GUARD*2+1)*sizeof(int));
++#if MEMORY_DEBUG>1
++ fprintf(stderr,"%06d free %d bytes at 0x%x from %s:%d\n",
++ ++memcnt, n, (int)p, zFile,line);
++#endif
++ free(pi);
++ }
++}
++
++/*
++** Resize a prior allocation. If p==0, then this routine
++** works just like sqliteMalloc(). If n==0, then this routine
++** works just like sqliteFree().
++*/
++void *sqliteRealloc_(void *oldP, int n, char *zFile, int line){
++ int *oldPi, *pi, i, k, oldN, oldK;
++ void *p;
++ if( oldP==0 ){
++ return sqliteMalloc_(n,1,zFile,line);
++ }
++ if( n==0 ){
++ sqliteFree_(oldP,zFile,line);
++ return 0;
++ }
++ oldPi = oldP;
++ oldPi -= N_GUARD+1;
++ if( oldPi[0]!=0xdead1122 ){
++ fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)oldP);
++ return 0;
++ }
++ oldN = oldPi[N_GUARD];
++ oldK = (oldN+sizeof(int)-1)/sizeof(int);
++ for(i=0; i<N_GUARD; i++){
++ if( oldPi[oldK+N_GUARD+1+i]!=0xdead3344 ){
++ fprintf(stderr,"High-end memory corruption in realloc at 0x%x\n",
++ (int)oldP);
++ return 0;
++ }
++ }
++ k = (n + sizeof(int) - 1)/sizeof(int);
++ pi = malloc( (k+N_GUARD*2+1)*sizeof(int) );
++ if( pi==0 ){
++ sqlite_malloc_failed++;
++ return 0;
++ }
++ for(i=0; i<N_GUARD; i++) pi[i] = 0xdead1122;
++ pi[N_GUARD] = n;
++ for(i=0; i<N_GUARD; i++) pi[k+N_GUARD+1+i] = 0xdead3344;
++ p = &pi[N_GUARD+1];
++ memcpy(p, oldP, n>oldN ? oldN : n);
++ if( n>oldN ){
++ memset(&((char*)p)[oldN], 0, n-oldN);
++ }
++ memset(oldPi, 0xab, (oldK+N_GUARD+2)*sizeof(int));
++ free(oldPi);
++#if MEMORY_DEBUG>1
++ fprintf(stderr,"%06d realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n",
++ ++memcnt, oldN, n, (int)oldP, (int)p, zFile, line);
++#endif
++ return p;
++}
++
++/*
++** Make a duplicate of a string into memory obtained from malloc()
++** Free the original string using sqliteFree().
++**
++** This routine is called on all strings that are passed outside of
++** the SQLite library. That way clients can free the string using free()
++** rather than having to call sqliteFree().
++*/
++void sqliteStrRealloc(char **pz){
++ char *zNew;
++ if( pz==0 || *pz==0 ) return;
++ zNew = malloc( strlen(*pz) + 1 );
++ if( zNew==0 ){
++ sqlite_malloc_failed++;
++ sqliteFree(*pz);
++ *pz = 0;
++ }
++ strcpy(zNew, *pz);
++ sqliteFree(*pz);
++ *pz = zNew;
++}
++
++/*
++** Make a copy of a string in memory obtained from sqliteMalloc()
++*/
++char *sqliteStrDup_(const char *z, char *zFile, int line){
++ char *zNew;
++ if( z==0 ) return 0;
++ zNew = sqliteMalloc_(strlen(z)+1, 0, zFile, line);
++ if( zNew ) strcpy(zNew, z);
++ return zNew;
++}
++char *sqliteStrNDup_(const char *z, int n, char *zFile, int line){
++ char *zNew;
++ if( z==0 ) return 0;
++ zNew = sqliteMalloc_(n+1, 0, zFile, line);
++ if( zNew ){
++ memcpy(zNew, z, n);
++ zNew[n] = 0;
++ }
++ return zNew;
++}
++#endif /* MEMORY_DEBUG */
++
++/*
++** The following versions of malloc() and free() are for use in a
++** normal build.
++*/
++#if !defined(MEMORY_DEBUG)
++
++/*
++** Allocate new memory and set it to zero. Return NULL if
++** no memory is available. See also sqliteMallocRaw().
++*/
++void *sqliteMalloc(int n){
++ void *p;
++ if( (p = malloc(n))==0 ){
++ if( n>0 ) sqlite_malloc_failed++;
++ }else{
++ memset(p, 0, n);
++ }
++ return p;
++}
++
++/*
++** Allocate new memory but do not set it to zero. Return NULL if
++** no memory is available. See also sqliteMalloc().
++*/
++void *sqliteMallocRaw(int n){
++ void *p;
++ if( (p = malloc(n))==0 ){
++ if( n>0 ) sqlite_malloc_failed++;
++ }
++ return p;
++}
++
++/*
++** Free memory previously obtained from sqliteMalloc()
++*/
++void sqliteFree(void *p){
++ if( p ){
++ free(p);
++ }
++}
++
++/*
++** Resize a prior allocation. If p==0, then this routine
++** works just like sqliteMalloc(). If n==0, then this routine
++** works just like sqliteFree().
++*/
++void *sqliteRealloc(void *p, int n){
++ void *p2;
++ if( p==0 ){
++ return sqliteMalloc(n);
++ }
++ if( n==0 ){
++ sqliteFree(p);
++ return 0;
++ }
++ p2 = realloc(p, n);
++ if( p2==0 ){
++ sqlite_malloc_failed++;
++ }
++ return p2;
++}
++
++/*
++** Make a copy of a string in memory obtained from sqliteMalloc()
++*/
++char *sqliteStrDup(const char *z){
++ char *zNew;
++ if( z==0 ) return 0;
++ zNew = sqliteMallocRaw(strlen(z)+1);
++ if( zNew ) strcpy(zNew, z);
++ return zNew;
++}
++char *sqliteStrNDup(const char *z, int n){
++ char *zNew;
++ if( z==0 ) return 0;
++ zNew = sqliteMallocRaw(n+1);
++ if( zNew ){
++ memcpy(zNew, z, n);
++ zNew[n] = 0;
++ }
++ return zNew;
++}
++#endif /* !defined(MEMORY_DEBUG) */
++
++/*
++** Create a string from the 2nd and subsequent arguments (up to the
++** first NULL argument), store the string in memory obtained from
++** sqliteMalloc() and make the pointer indicated by the 1st argument
++** point to that string. The 1st argument must either be NULL or
++** point to memory obtained from sqliteMalloc().
++*/
++void sqliteSetString(char **pz, ...){
++ va_list ap;
++ int nByte;
++ const char *z;
++ char *zResult;
++
++ if( pz==0 ) return;
++ nByte = 1;
++ va_start(ap, pz);
++ while( (z = va_arg(ap, const char*))!=0 ){
++ nByte += strlen(z);
++ }
++ va_end(ap);
++ sqliteFree(*pz);
++ *pz = zResult = sqliteMallocRaw( nByte );
++ if( zResult==0 ){
++ return;
++ }
++ *zResult = 0;
++ va_start(ap, pz);
++ while( (z = va_arg(ap, const char*))!=0 ){
++ strcpy(zResult, z);
++ zResult += strlen(zResult);
++ }
++ va_end(ap);
++#ifdef MEMORY_DEBUG
++#if MEMORY_DEBUG>1
++ fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
++#endif
++#endif
++}
++
++/*
++** Works like sqliteSetString, but each string is now followed by
++** a length integer which specifies how much of the source string
++** to copy (in bytes). -1 means use the whole string. The 1st
++** argument must either be NULL or point to memory obtained from
++** sqliteMalloc().
++*/
++void sqliteSetNString(char **pz, ...){
++ va_list ap;
++ int nByte;
++ const char *z;
++ char *zResult;
++ int n;
++
++ if( pz==0 ) return;
++ nByte = 0;
++ va_start(ap, pz);
++ while( (z = va_arg(ap, const char*))!=0 ){
++ n = va_arg(ap, int);
++ if( n<=0 ) n = strlen(z);
++ nByte += n;
++ }
++ va_end(ap);
++ sqliteFree(*pz);
++ *pz = zResult = sqliteMallocRaw( nByte + 1 );
++ if( zResult==0 ) return;
++ va_start(ap, pz);
++ while( (z = va_arg(ap, const char*))!=0 ){
++ n = va_arg(ap, int);
++ if( n<=0 ) n = strlen(z);
++ strncpy(zResult, z, n);
++ zResult += n;
++ }
++ *zResult = 0;
++#ifdef MEMORY_DEBUG
++#if MEMORY_DEBUG>1
++ fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz);
++#endif
++#endif
++ va_end(ap);
++}
++
++/*
++** Add an error message to pParse->zErrMsg and increment pParse->nErr.
++** The following formatting characters are allowed:
++**
++** %s Insert a string
++** %z A string that should be freed after use
++** %d Insert an integer
++** %T Insert a token
++** %S Insert the first element of a SrcList
++*/
++void sqliteErrorMsg(Parse *pParse, const char *zFormat, ...){
++ va_list ap;
++ pParse->nErr++;
++ sqliteFree(pParse->zErrMsg);
++ va_start(ap, zFormat);
++ pParse->zErrMsg = sqliteVMPrintf(zFormat, ap);
++ va_end(ap);
++}
++
++/*
++** Convert an SQL-style quoted string into a normal string by removing
++** the quote characters. The conversion is done in-place. If the
++** input does not begin with a quote character, then this routine
++** is a no-op.
++**
++** 2002-Feb-14: This routine is extended to remove MS-Access style
++** brackets from around identifers. For example: "[a-b-c]" becomes
++** "a-b-c".
++*/
++void sqliteDequote(char *z){
++ int quote;
++ int i, j;
++ if( z==0 ) return;
++ quote = z[0];
++ switch( quote ){
++ case '\'': break;
++ case '"': break;
++ case '[': quote = ']'; break;
++ default: return;
++ }
++ for(i=1, j=0; z[i]; i++){
++ if( z[i]==quote ){
++ if( z[i+1]==quote ){
++ z[j++] = quote;
++ i++;
++ }else{
++ z[j++] = 0;
++ break;
++ }
++ }else{
++ z[j++] = z[i];
++ }
++ }
++}
++
++/* An array to map all upper-case characters into their corresponding
++** lower-case character.
++*/
++static unsigned char UpperToLower[] = {
++ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
++ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
++ 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
++ 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103,
++ 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,
++ 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107,
++ 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,
++ 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
++ 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,
++ 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,
++ 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,
++ 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,
++ 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,
++ 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,
++ 252,253,254,255
++};
++
++/*
++** This function computes a hash on the name of a keyword.
++** Case is not significant.
++*/
++int sqliteHashNoCase(const char *z, int n){
++ int h = 0;
++ if( n<=0 ) n = strlen(z);
++ while( n > 0 ){
++ h = (h<<3) ^ h ^ UpperToLower[(unsigned char)*z++];
++ n--;
++ }
++ return h & 0x7fffffff;
++}
++
++/*
++** Some systems have stricmp(). Others have strcasecmp(). Because
++** there is no consistency, we will define our own.
++*/
++int sqliteStrICmp(const char *zLeft, const char *zRight){
++ register unsigned char *a, *b;
++ a = (unsigned char *)zLeft;
++ b = (unsigned char *)zRight;
++ while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
++ return UpperToLower[*a] - UpperToLower[*b];
++}
++int sqliteStrNICmp(const char *zLeft, const char *zRight, int N){
++ register unsigned char *a, *b;
++ a = (unsigned char *)zLeft;
++ b = (unsigned char *)zRight;
++ while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
++ return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
++}
++
++/*
++** Return TRUE if z is a pure numeric string. Return FALSE if the
++** string contains any character which is not part of a number.
++**
++** Am empty string is considered non-numeric.
++*/
++int sqliteIsNumber(const char *z){
++ if( *z=='-' || *z=='+' ) z++;
++ if( !isdigit(*z) ){
++ return 0;
++ }
++ z++;
++ while( isdigit(*z) ){ z++; }
++ if( *z=='.' ){
++ z++;
++ if( !isdigit(*z) ) return 0;
++ while( isdigit(*z) ){ z++; }
++ }
++ if( *z=='e' || *z=='E' ){
++ z++;
++ if( *z=='+' || *z=='-' ) z++;
++ if( !isdigit(*z) ) return 0;
++ while( isdigit(*z) ){ z++; }
++ }
++ return *z==0;
++}
++
++/*
++** The string z[] is an ascii representation of a real number.
++** Convert this string to a double.
++**
++** This routine assumes that z[] really is a valid number. If it
++** is not, the result is undefined.
++**
++** This routine is used instead of the library atof() function because
++** the library atof() might want to use "," as the decimal point instead
++** of "." depending on how locale is set. But that would cause problems
++** for SQL. So this routine always uses "." regardless of locale.
++*/
++double sqliteAtoF(const char *z, const char **pzEnd){
++ int sign = 1;
++ LONGDOUBLE_TYPE v1 = 0.0;
++ if( *z=='-' ){
++ sign = -1;
++ z++;
++ }else if( *z=='+' ){
++ z++;
++ }
++ while( isdigit(*z) ){
++ v1 = v1*10.0 + (*z - '0');
++ z++;
++ }
++ if( *z=='.' ){
++ LONGDOUBLE_TYPE divisor = 1.0;
++ z++;
++ while( isdigit(*z) ){
++ v1 = v1*10.0 + (*z - '0');
++ divisor *= 10.0;
++ z++;
++ }
++ v1 /= divisor;
++ }
++ if( *z=='e' || *z=='E' ){
++ int esign = 1;
++ int eval = 0;
++ LONGDOUBLE_TYPE scale = 1.0;
++ z++;
++ if( *z=='-' ){
++ esign = -1;
++ z++;
++ }else if( *z=='+' ){
++ z++;
++ }
++ while( isdigit(*z) ){
++ eval = eval*10 + *z - '0';
++ z++;
++ }
++ while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; }
++ while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; }
++ while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; }
++ while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; }
++ if( esign<0 ){
++ v1 /= scale;
++ }else{
++ v1 *= scale;
++ }
++ }
++ if( pzEnd ) *pzEnd = z;
++ return sign<0 ? -v1 : v1;
++}
++
++/*
++** The string zNum represents an integer. There might be some other
++** information following the integer too, but that part is ignored.
++** If the integer that the prefix of zNum represents will fit in a
++** 32-bit signed integer, return TRUE. Otherwise return FALSE.
++**
++** This routine returns FALSE for the string -2147483648 even that
++** that number will, in theory fit in a 32-bit integer. But positive
++** 2147483648 will not fit in 32 bits. So it seems safer to return
++** false.
++*/
++int sqliteFitsIn32Bits(const char *zNum){
++ int i, c;
++ if( *zNum=='-' || *zNum=='+' ) zNum++;
++ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){}
++ return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0);
++}
++
++/* This comparison routine is what we use for comparison operations
++** between numeric values in an SQL expression. "Numeric" is a little
++** bit misleading here. What we mean is that the strings have a
++** type of "numeric" from the point of view of SQL. The strings
++** do not necessarily contain numbers. They could contain text.
++**
++** If the input strings both look like actual numbers then they
++** compare in numerical order. Numerical strings are always less
++** than non-numeric strings so if one input string looks like a
++** number and the other does not, then the one that looks like
++** a number is the smaller. Non-numeric strings compare in
++** lexigraphical order (the same order as strcmp()).
++*/
++int sqliteCompare(const char *atext, const char *btext){
++ int result;
++ int isNumA, isNumB;
++ if( atext==0 ){
++ return -1;
++ }else if( btext==0 ){
++ return 1;
++ }
++ isNumA = sqliteIsNumber(atext);
++ isNumB = sqliteIsNumber(btext);
++ if( isNumA ){
++ if( !isNumB ){
++ result = -1;
++ }else{
++ double rA, rB;
++ rA = sqliteAtoF(atext, 0);
++ rB = sqliteAtoF(btext, 0);
++ if( rA<rB ){
++ result = -1;
++ }else if( rA>rB ){
++ result = +1;
++ }else{
++ result = 0;
++ }
++ }
++ }else if( isNumB ){
++ result = +1;
++ }else {
++ result = strcmp(atext, btext);
++ }
++ return result;
++}
++
++/*
++** This routine is used for sorting. Each key is a list of one or more
++** null-terminated elements. The list is terminated by two nulls in
++** a row. For example, the following text is a key with three elements
++**
++** Aone\000Dtwo\000Athree\000\000
++**
++** All elements begin with one of the characters "+-AD" and end with "\000"
++** with zero or more text elements in between. Except, NULL elements
++** consist of the special two-character sequence "N\000".
++**
++** Both arguments will have the same number of elements. This routine
++** returns negative, zero, or positive if the first argument is less
++** than, equal to, or greater than the first. (Result is a-b).
++**
++** Each element begins with one of the characters "+", "-", "A", "D".
++** This character determines the sort order and collating sequence:
++**
++** + Sort numerically in ascending order
++** - Sort numerically in descending order
++** A Sort as strings in ascending order
++** D Sort as strings in descending order.
++**
++** For the "+" and "-" sorting, pure numeric strings (strings for which the
++** isNum() function above returns TRUE) always compare less than strings
++** that are not pure numerics. Non-numeric strings compare in memcmp()
++** order. This is the same sort order as the sqliteCompare() function
++** above generates.
++**
++** The last point is a change from version 2.6.3 to version 2.7.0. In
++** version 2.6.3 and earlier, substrings of digits compare in numerical
++** and case was used only to break a tie.
++**
++** Elements that begin with 'A' or 'D' compare in memcmp() order regardless
++** of whether or not they look like a number.
++**
++** Note that the sort order imposed by the rules above is the same
++** from the ordering defined by the "<", "<=", ">", and ">=" operators
++** of expressions and for indices. This was not the case for version
++** 2.6.3 and earlier.
++*/
++int sqliteSortCompare(const char *a, const char *b){
++ int res = 0;
++ int isNumA, isNumB;
++ int dir = 0;
++
++ while( res==0 && *a && *b ){
++ if( a[0]=='N' || b[0]=='N' ){
++ if( a[0]==b[0] ){
++ a += 2;
++ b += 2;
++ continue;
++ }
++ if( a[0]=='N' ){
++ dir = b[0];
++ res = -1;
++ }else{
++ dir = a[0];
++ res = +1;
++ }
++ break;
++ }
++ assert( a[0]==b[0] );
++ if( (dir=a[0])=='A' || a[0]=='D' ){
++ res = strcmp(&a[1],&b[1]);
++ if( res ) break;
++ }else{
++ isNumA = sqliteIsNumber(&a[1]);
++ isNumB = sqliteIsNumber(&b[1]);
++ if( isNumA ){
++ double rA, rB;
++ if( !isNumB ){
++ res = -1;
++ break;
++ }
++ rA = sqliteAtoF(&a[1], 0);
++ rB = sqliteAtoF(&b[1], 0);
++ if( rA<rB ){
++ res = -1;
++ break;
++ }
++ if( rA>rB ){
++ res = +1;
++ break;
++ }
++ }else if( isNumB ){
++ res = +1;
++ break;
++ }else{
++ res = strcmp(&a[1],&b[1]);
++ if( res ) break;
++ }
++ }
++ a += strlen(&a[1]) + 2;
++ b += strlen(&b[1]) + 2;
++ }
++ if( dir=='-' || dir=='D' ) res = -res;
++ return res;
++}
++
++/*
++** Some powers of 64. These constants are needed in the
++** sqliteRealToSortable() routine below.
++*/
++#define _64e3 (64.0 * 64.0 * 64.0)
++#define _64e4 (64.0 * 64.0 * 64.0 * 64.0)
++#define _64e15 (_64e3 * _64e4 * _64e4 * _64e4)
++#define _64e16 (_64e4 * _64e4 * _64e4 * _64e4)
++#define _64e63 (_64e15 * _64e16 * _64e16 * _64e16)
++#define _64e64 (_64e16 * _64e16 * _64e16 * _64e16)
++
++/*
++** The following procedure converts a double-precision floating point
++** number into a string. The resulting string has the property that
++** two such strings comparied using strcmp() or memcmp() will give the
++** same results as a numeric comparison of the original floating point
++** numbers.
++**
++** This routine is used to generate database keys from floating point
++** numbers such that the keys sort in the same order as the original
++** floating point numbers even though the keys are compared using
++** memcmp().
++**
++** The calling function should have allocated at least 14 characters
++** of space for the buffer z[].
++*/
++void sqliteRealToSortable(double r, char *z){
++ int neg;
++ int exp;
++ int cnt = 0;
++
++ /* This array maps integers between 0 and 63 into base-64 digits.
++ ** The digits must be chosen such at their ASCII codes are increasing.
++ ** This means we can not use the traditional base-64 digit set. */
++ static const char zDigit[] =
++ "0123456789"
++ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
++ "abcdefghijklmnopqrstuvwxyz"
++ "|~";
++ if( r<0.0 ){
++ neg = 1;
++ r = -r;
++ *z++ = '-';
++ } else {
++ neg = 0;
++ *z++ = '0';
++ }
++ exp = 0;
++
++ if( r==0.0 ){
++ exp = -1024;
++ }else if( r<(0.5/64.0) ){
++ while( r < 0.5/_64e64 && exp > -961 ){ r *= _64e64; exp -= 64; }
++ while( r < 0.5/_64e16 && exp > -1009 ){ r *= _64e16; exp -= 16; }
++ while( r < 0.5/_64e4 && exp > -1021 ){ r *= _64e4; exp -= 4; }
++ while( r < 0.5/64.0 && exp > -1024 ){ r *= 64.0; exp -= 1; }
++ }else if( r>=0.5 ){
++ while( r >= 0.5*_64e63 && exp < 960 ){ r *= 1.0/_64e64; exp += 64; }
++ while( r >= 0.5*_64e15 && exp < 1008 ){ r *= 1.0/_64e16; exp += 16; }
++ while( r >= 0.5*_64e3 && exp < 1020 ){ r *= 1.0/_64e4; exp += 4; }
++ while( r >= 0.5 && exp < 1023 ){ r *= 1.0/64.0; exp += 1; }
++ }
++ if( neg ){
++ exp = -exp;
++ r = -r;
++ }
++ exp += 1024;
++ r += 0.5;
++ if( exp<0 ) return;
++ if( exp>=2048 || r>=1.0 ){
++ strcpy(z, "~~~~~~~~~~~~");
++ return;
++ }
++ *z++ = zDigit[(exp>>6)&0x3f];
++ *z++ = zDigit[exp & 0x3f];
++ while( r>0.0 && cnt<10 ){
++ int digit;
++ r *= 64.0;
++ digit = (int)r;
++ assert( digit>=0 && digit<64 );
++ *z++ = zDigit[digit & 0x3f];
++ r -= digit;
++ cnt++;
++ }
++ *z = 0;
++}
++
++#ifdef SQLITE_UTF8
++/*
++** X is a pointer to the first byte of a UTF-8 character. Increment
++** X so that it points to the next character. This only works right
++** if X points to a well-formed UTF-8 string.
++*/
++#define sqliteNextChar(X) while( (0xc0&*++(X))==0x80 ){}
++#define sqliteCharVal(X) sqlite_utf8_to_int(X)
++
++#else /* !defined(SQLITE_UTF8) */
++/*
++** For iso8859 encoding, the next character is just the next byte.
++*/
++#define sqliteNextChar(X) (++(X));
++#define sqliteCharVal(X) ((int)*(X))
++
++#endif /* defined(SQLITE_UTF8) */
++
++
++#ifdef SQLITE_UTF8
++/*
++** Convert the UTF-8 character to which z points into a 31-bit
++** UCS character. This only works right if z points to a well-formed
++** UTF-8 string.
++*/
++static int sqlite_utf8_to_int(const unsigned char *z){
++ int c;
++ static const int initVal[] = {
++ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
++ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
++ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
++ 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
++ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
++ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
++ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
++ 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119,
++ 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
++ 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
++ 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
++ 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
++ 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 0, 1, 2,
++ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
++ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0,
++ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
++ 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 254,
++ 255,
++ };
++ c = initVal[*(z++)];
++ while( (0xc0&*z)==0x80 ){
++ c = (c<<6) | (0x3f&*(z++));
++ }
++ return c;
++}
++#endif
++
++/*
++** Compare two UTF-8 strings for equality where the first string can
++** potentially be a "glob" expression. Return true (1) if they
++** are the same and false (0) if they are different.
++**
++** Globbing rules:
++**
++** '*' Matches any sequence of zero or more characters.
++**
++** '?' Matches exactly one character.
++**
++** [...] Matches one character from the enclosed list of
++** characters.
++**
++** [^...] Matches one character not in the enclosed list.
++**
++** With the [...] and [^...] matching, a ']' character can be included
++** in the list by making it the first character after '[' or '^'. A
++** range of characters can be specified using '-'. Example:
++** "[a-z]" matches any single lower-case letter. To match a '-', make
++** it the last character in the list.
++**
++** This routine is usually quick, but can be N**2 in the worst case.
++**
++** Hints: to match '*' or '?', put them in "[]". Like this:
++**
++** abc[*]xyz Matches "abc*xyz" only
++*/
++int
++sqliteGlobCompare(const unsigned char *zPattern, const unsigned char *zString){
++ register int c;
++ int invert;
++ int seen;
++ int c2;
++
++ while( (c = *zPattern)!=0 ){
++ switch( c ){
++ case '*':
++ while( (c=zPattern[1]) == '*' || c == '?' ){
++ if( c=='?' ){
++ if( *zString==0 ) return 0;
++ sqliteNextChar(zString);
++ }
++ zPattern++;
++ }
++ if( c==0 ) return 1;
++ if( c=='[' ){
++ while( *zString && sqliteGlobCompare(&zPattern[1],zString)==0 ){
++ sqliteNextChar(zString);
++ }
++ return *zString!=0;
++ }else{
++ while( (c2 = *zString)!=0 ){
++ while( c2 != 0 && c2 != c ){ c2 = *++zString; }
++ if( c2==0 ) return 0;
++ if( sqliteGlobCompare(&zPattern[1],zString) ) return 1;
++ sqliteNextChar(zString);
++ }
++ return 0;
++ }
++ case '?': {
++ if( *zString==0 ) return 0;
++ sqliteNextChar(zString);
++ zPattern++;
++ break;
++ }
++ case '[': {
++ int prior_c = 0;
++ seen = 0;
++ invert = 0;
++ c = sqliteCharVal(zString);
++ if( c==0 ) return 0;
++ c2 = *++zPattern;
++ if( c2=='^' ){ invert = 1; c2 = *++zPattern; }
++ if( c2==']' ){
++ if( c==']' ) seen = 1;
++ c2 = *++zPattern;
++ }
++ while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){
++ if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){
++ zPattern++;
++ c2 = sqliteCharVal(zPattern);
++ if( c>=prior_c && c<=c2 ) seen = 1;
++ prior_c = 0;
++ }else if( c==c2 ){
++ seen = 1;
++ prior_c = c2;
++ }else{
++ prior_c = c2;
++ }
++ sqliteNextChar(zPattern);
++ }
++ if( c2==0 || (seen ^ invert)==0 ) return 0;
++ sqliteNextChar(zString);
++ zPattern++;
++ break;
++ }
++ default: {
++ if( c != *zString ) return 0;
++ zPattern++;
++ zString++;
++ break;
++ }
++ }
++ }
++ return *zString==0;
++}
++
++/*
++** Compare two UTF-8 strings for equality using the "LIKE" operator of
++** SQL. The '%' character matches any sequence of 0 or more
++** characters and '_' matches any single character. Case is
++** not significant.
++**
++** This routine is just an adaptation of the sqliteGlobCompare()
++** routine above.
++*/
++int
++sqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString){
++ register int c;
++ int c2;
++
++ while( (c = UpperToLower[*zPattern])!=0 ){
++ switch( c ){
++ case '%': {
++ while( (c=zPattern[1]) == '%' || c == '_' ){
++ if( c=='_' ){
++ if( *zString==0 ) return 0;
++ sqliteNextChar(zString);
++ }
++ zPattern++;
++ }
++ if( c==0 ) return 1;
++ c = UpperToLower[c];
++ while( (c2=UpperToLower[*zString])!=0 ){
++ while( c2 != 0 && c2 != c ){ c2 = UpperToLower[*++zString]; }
++ if( c2==0 ) return 0;
++ if( sqliteLikeCompare(&zPattern[1],zString) ) return 1;
++ sqliteNextChar(zString);
++ }
++ return 0;
++ }
++ case '_': {
++ if( *zString==0 ) return 0;
++ sqliteNextChar(zString);
++ zPattern++;
++ break;
++ }
++ default: {
++ if( c != UpperToLower[*zString] ) return 0;
++ zPattern++;
++ zString++;
++ break;
++ }
++ }
++ }
++ return *zString==0;
++}
++
++/*
++** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY.
++** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN
++** when this routine is called.
++**
++** This routine is a attempt to detect if two threads use the
++** same sqlite* pointer at the same time. There is a race
++** condition so it is possible that the error is not detected.
++** But usually the problem will be seen. The result will be an
++** error which can be used to debug the application that is
++** using SQLite incorrectly.
++**
++** Ticket #202: If db->magic is not a valid open value, take care not
++** to modify the db structure at all. It could be that db is a stale
++** pointer. In other words, it could be that there has been a prior
++** call to sqlite_close(db) and db has been deallocated. And we do
++** not want to write into deallocated memory.
++*/
++int sqliteSafetyOn(sqlite *db){
++ if( db->magic==SQLITE_MAGIC_OPEN ){
++ db->magic = SQLITE_MAGIC_BUSY;
++ return 0;
++ }else if( db->magic==SQLITE_MAGIC_BUSY || db->magic==SQLITE_MAGIC_ERROR
++ || db->want_to_close ){
++ db->magic = SQLITE_MAGIC_ERROR;
++ db->flags |= SQLITE_Interrupt;
++ }
++ return 1;
++}
++
++/*
++** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN.
++** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY
++** when this routine is called.
++*/
++int sqliteSafetyOff(sqlite *db){
++ if( db->magic==SQLITE_MAGIC_BUSY ){
++ db->magic = SQLITE_MAGIC_OPEN;
++ return 0;
++ }else if( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ERROR
++ || db->want_to_close ){
++ db->magic = SQLITE_MAGIC_ERROR;
++ db->flags |= SQLITE_Interrupt;
++ }
++ return 1;
++}
++
++/*
++** Check to make sure we are not currently executing an sqlite_exec().
++** If we are currently in an sqlite_exec(), return true and set
++** sqlite.magic to SQLITE_MAGIC_ERROR. This will cause a complete
++** shutdown of the database.
++**
++** This routine is used to try to detect when API routines are called
++** at the wrong time or in the wrong sequence.
++*/
++int sqliteSafetyCheck(sqlite *db){
++ if( db->pVdbe!=0 ){
++ db->magic = SQLITE_MAGIC_ERROR;
++ return 1;
++ }
++ return 0;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/vacuum.c
+@@ -0,0 +1,305 @@
++/*
++** 2003 April 6
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains code used to implement the VACUUM command.
++**
++** Most of the code in this file may be omitted by defining the
++** SQLITE_OMIT_VACUUM macro.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++#include "os.h"
++
++/*
++** A structure for holding a dynamic string - a string that can grow
++** without bound.
++*/
++typedef struct dynStr dynStr;
++struct dynStr {
++ char *z; /* Text of the string in space obtained from sqliteMalloc() */
++ int nAlloc; /* Amount of space allocated to z[] */
++ int nUsed; /* Next unused slot in z[] */
++};
++
++/*
++** A structure that holds the vacuum context
++*/
++typedef struct vacuumStruct vacuumStruct;
++struct vacuumStruct {
++ sqlite *dbOld; /* Original database */
++ sqlite *dbNew; /* New database */
++ char **pzErrMsg; /* Write errors here */
++ int rc; /* Set to non-zero on an error */
++ const char *zTable; /* Name of a table being copied */
++ const char *zPragma; /* Pragma to execute with results */
++ dynStr s1, s2; /* Two dynamic strings */
++};
++
++#if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM
++/*
++** Append text to a dynamic string
++*/
++static void appendText(dynStr *p, const char *zText, int nText){
++ if( nText<0 ) nText = strlen(zText);
++ if( p->z==0 || p->nUsed + nText + 1 >= p->nAlloc ){
++ char *zNew;
++ p->nAlloc = p->nUsed + nText + 1000;
++ zNew = sqliteRealloc(p->z, p->nAlloc);
++ if( zNew==0 ){
++ sqliteFree(p->z);
++ memset(p, 0, sizeof(*p));
++ return;
++ }
++ p->z = zNew;
++ }
++ memcpy(&p->z[p->nUsed], zText, nText+1);
++ p->nUsed += nText;
++}
++
++/*
++** Append text to a dynamic string, having first put the text in quotes.
++*/
++static void appendQuoted(dynStr *p, const char *zText){
++ int i, j;
++ appendText(p, "'", 1);
++ for(i=j=0; zText[i]; i++){
++ if( zText[i]=='\'' ){
++ appendText(p, &zText[j], i-j+1);
++ j = i + 1;
++ appendText(p, "'", 1);
++ }
++ }
++ if( j<i ){
++ appendText(p, &zText[j], i-j);
++ }
++ appendText(p, "'", 1);
++}
++
++/*
++** Execute statements of SQL. If an error occurs, write the error
++** message into *pzErrMsg and return non-zero.
++*/
++static int execsql(char **pzErrMsg, sqlite *db, const char *zSql){
++ char *zErrMsg = 0;
++ int rc;
++
++ /* printf("***** executing *****\n%s\n", zSql); */
++ rc = sqlite_exec(db, zSql, 0, 0, &zErrMsg);
++ if( zErrMsg ){
++ sqliteSetString(pzErrMsg, zErrMsg, (char*)0);
++ sqlite_freemem(zErrMsg);
++ }
++ return rc;
++}
++
++/*
++** This is the second stage callback. Each invocation contains all the
++** data for a single row of a single table in the original database. This
++** routine must write that information into the new database.
++*/
++static int vacuumCallback2(void *pArg, int argc, char **argv, char **NotUsed){
++ vacuumStruct *p = (vacuumStruct*)pArg;
++ const char *zSep = "(";
++ int i;
++
++ if( argv==0 ) return 0;
++ p->s2.nUsed = 0;
++ appendText(&p->s2, "INSERT INTO ", -1);
++ appendQuoted(&p->s2, p->zTable);
++ appendText(&p->s2, " VALUES", -1);
++ for(i=0; i<argc; i++){
++ appendText(&p->s2, zSep, 1);
++ zSep = ",";
++ if( argv[i]==0 ){
++ appendText(&p->s2, "NULL", 4);
++ }else{
++ appendQuoted(&p->s2, argv[i]);
++ }
++ }
++ appendText(&p->s2,")", 1);
++ p->rc = execsql(p->pzErrMsg, p->dbNew, p->s2.z);
++ return p->rc;
++}
++
++/*
++** This is the first stage callback. Each invocation contains three
++** arguments where are taken from the SQLITE_MASTER table of the original
++** database: (1) the entry type, (2) the entry name, and (3) the SQL for
++** the entry. In all cases, execute the SQL of the third argument.
++** For tables, run a query to select all entries in that table and
++** transfer them to the second-stage callback.
++*/
++static int vacuumCallback1(void *pArg, int argc, char **argv, char **NotUsed){
++ vacuumStruct *p = (vacuumStruct*)pArg;
++ int rc = 0;
++ assert( argc==3 );
++ if( argv==0 ) return 0;
++ assert( argv[0]!=0 );
++ assert( argv[1]!=0 );
++ assert( argv[2]!=0 );
++ rc = execsql(p->pzErrMsg, p->dbNew, argv[2]);
++ if( rc==SQLITE_OK && strcmp(argv[0],"table")==0 ){
++ char *zErrMsg = 0;
++ p->s1.nUsed = 0;
++ appendText(&p->s1, "SELECT * FROM ", -1);
++ appendQuoted(&p->s1, argv[1]);
++ p->zTable = argv[1];
++ rc = sqlite_exec(p->dbOld, p->s1.z, vacuumCallback2, p, &zErrMsg);
++ if( zErrMsg ){
++ sqliteSetString(p->pzErrMsg, zErrMsg, (char*)0);
++ sqlite_freemem(zErrMsg);
++ }
++ }
++ if( rc!=SQLITE_ABORT ) p->rc = rc;
++ return rc;
++}
++
++/*
++** Generate a random name of 20 character in length.
++*/
++static void randomName(unsigned char *zBuf){
++ static const unsigned char zChars[] =
++ "abcdefghijklmnopqrstuvwxyz"
++ "0123456789";
++ int i;
++ sqliteRandomness(20, zBuf);
++ for(i=0; i<20; i++){
++ zBuf[i] = zChars[ zBuf[i]%(sizeof(zChars)-1) ];
++ }
++}
++#endif
++
++/*
++** The non-standard VACUUM command is used to clean up the database,
++** collapse free space, etc. It is modelled after the VACUUM command
++** in PostgreSQL.
++**
++** In version 1.0.x of SQLite, the VACUUM command would call
++** gdbm_reorganize() on all the database tables. But beginning
++** with 2.0.0, SQLite no longer uses GDBM so this command has
++** become a no-op.
++*/
++void sqliteVacuum(Parse *pParse, Token *pTableName){
++ Vdbe *v = sqliteGetVdbe(pParse);
++ sqliteVdbeAddOp(v, OP_Vacuum, 0, 0);
++ return;
++}
++
++/*
++** This routine implements the OP_Vacuum opcode of the VDBE.
++*/
++int sqliteRunVacuum(char **pzErrMsg, sqlite *db){
++#if !defined(SQLITE_OMIT_VACUUM) || SQLITE_OMIT_VACUUM
++ const char *zFilename; /* full pathname of the database file */
++ int nFilename; /* number of characters in zFilename[] */
++ char *zTemp = 0; /* a temporary file in same directory as zFilename */
++ sqlite *dbNew = 0; /* The new vacuumed database */
++ int rc = SQLITE_OK; /* Return code from service routines */
++ int i; /* Loop counter */
++ char *zErrMsg; /* Error message */
++ vacuumStruct sVac; /* Information passed to callbacks */
++
++ if( db->flags & SQLITE_InTrans ){
++ sqliteSetString(pzErrMsg, "cannot VACUUM from within a transaction",
++ (char*)0);
++ return SQLITE_ERROR;
++ }
++ if( db->flags & SQLITE_Interrupt ){
++ return SQLITE_INTERRUPT;
++ }
++ memset(&sVac, 0, sizeof(sVac));
++
++ /* Get the full pathname of the database file and create two
++ ** temporary filenames in the same directory as the original file.
++ */
++ zFilename = sqliteBtreeGetFilename(db->aDb[0].pBt);
++ if( zFilename==0 ){
++ /* This only happens with the in-memory database. VACUUM is a no-op
++ ** there, so just return */
++ return SQLITE_OK;
++ }
++ nFilename = strlen(zFilename);
++ zTemp = sqliteMalloc( nFilename+100 );
++ if( zTemp==0 ) return SQLITE_NOMEM;
++ strcpy(zTemp, zFilename);
++ for(i=0; i<10; i++){
++ zTemp[nFilename] = '-';
++ randomName((unsigned char*)&zTemp[nFilename+1]);
++ if( !sqliteOsFileExists(zTemp) ) break;
++ }
++ if( i>=10 ){
++ sqliteSetString(pzErrMsg, "unable to create a temporary database file "
++ "in the same directory as the original database", (char*)0);
++ goto end_of_vacuum;
++ }
++
++
++ dbNew = sqlite_open(zTemp, 0, &zErrMsg);
++ if( dbNew==0 ){
++ sqliteSetString(pzErrMsg, "unable to open a temporary database at ",
++ zTemp, " - ", zErrMsg, (char*)0);
++ goto end_of_vacuum;
++ }
++ if( (rc = execsql(pzErrMsg, db, "BEGIN"))!=0 ) goto end_of_vacuum;
++ if( (rc = execsql(pzErrMsg, dbNew, "PRAGMA synchronous=off; BEGIN"))!=0 ){
++ goto end_of_vacuum;
++ }
++
++ sVac.dbOld = db;
++ sVac.dbNew = dbNew;
++ sVac.pzErrMsg = pzErrMsg;
++ if( rc==SQLITE_OK ){
++ rc = sqlite_exec(db,
++ "SELECT type, name, sql FROM sqlite_master "
++ "WHERE sql NOT NULL AND type!='view' "
++ "UNION ALL "
++ "SELECT type, name, sql FROM sqlite_master "
++ "WHERE sql NOT NULL AND type=='view'",
++ vacuumCallback1, &sVac, &zErrMsg);
++ }
++ if( rc==SQLITE_OK ){
++ int meta1[SQLITE_N_BTREE_META];
++ int meta2[SQLITE_N_BTREE_META];
++ sqliteBtreeGetMeta(db->aDb[0].pBt, meta1);
++ sqliteBtreeGetMeta(dbNew->aDb[0].pBt, meta2);
++ meta2[1] = meta1[1]+1;
++ meta2[3] = meta1[3];
++ meta2[4] = meta1[4];
++ meta2[6] = meta1[6];
++ rc = sqliteBtreeUpdateMeta(dbNew->aDb[0].pBt, meta2);
++ }
++ if( rc==SQLITE_OK ){
++ rc = sqliteBtreeCopyFile(db->aDb[0].pBt, dbNew->aDb[0].pBt);
++ sqlite_exec(db, "COMMIT", 0, 0, 0);
++ sqliteResetInternalSchema(db, 0);
++ }
++
++end_of_vacuum:
++ if( rc && zErrMsg!=0 ){
++ sqliteSetString(pzErrMsg, "unable to vacuum database - ",
++ zErrMsg, (char*)0);
++ }
++ sqlite_exec(db, "ROLLBACK", 0, 0, 0);
++ if( (dbNew && (dbNew->flags & SQLITE_Interrupt))
++ || (db->flags & SQLITE_Interrupt) ){
++ rc = SQLITE_INTERRUPT;
++ }
++ if( dbNew ) sqlite_close(dbNew);
++ sqliteOsDelete(zTemp);
++ sqliteFree(zTemp);
++ sqliteFree(sVac.s1.z);
++ sqliteFree(sVac.s2.z);
++ if( zErrMsg ) sqlite_freemem(zErrMsg);
++ if( rc==SQLITE_ABORT && sVac.rc!=SQLITE_INTERRUPT ) sVac.rc = SQLITE_ERROR;
++ return sVac.rc;
++#endif
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/vdbeaux.c
+@@ -0,0 +1,1061 @@
++/*
++** 2003 September 6
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This file contains code used for creating, destroying, and populating
++** a VDBE (or an "sqlite_vm" as it is known to the outside world.) Prior
++** to version 2.8.7, all this code was combined into the vdbe.c source file.
++** But that file was getting too big so this subroutines were split out.
++*/
++#include "sqliteInt.h"
++#include "os.h"
++#include <ctype.h>
++#include "vdbeInt.h"
++
++
++/*
++** When debugging the code generator in a symbolic debugger, one can
++** set the sqlite_vdbe_addop_trace to 1 and all opcodes will be printed
++** as they are added to the instruction stream.
++*/
++#ifndef NDEBUG
++int sqlite_vdbe_addop_trace = 0;
++#endif
++
++
++/*
++** Create a new virtual database engine.
++*/
++Vdbe *sqliteVdbeCreate(sqlite *db){
++ Vdbe *p;
++ p = sqliteMalloc( sizeof(Vdbe) );
++ if( p==0 ) return 0;
++ p->db = db;
++ if( db->pVdbe ){
++ db->pVdbe->pPrev = p;
++ }
++ p->pNext = db->pVdbe;
++ p->pPrev = 0;
++ db->pVdbe = p;
++ p->magic = VDBE_MAGIC_INIT;
++ return p;
++}
++
++/*
++** Turn tracing on or off
++*/
++void sqliteVdbeTrace(Vdbe *p, FILE *trace){
++ p->trace = trace;
++}
++
++/*
++** Add a new instruction to the list of instructions current in the
++** VDBE. Return the address of the new instruction.
++**
++** Parameters:
++**
++** p Pointer to the VDBE
++**
++** op The opcode for this instruction
++**
++** p1, p2 First two of the three possible operands.
++**
++** Use the sqliteVdbeResolveLabel() function to fix an address and
++** the sqliteVdbeChangeP3() function to change the value of the P3
++** operand.
++*/
++int sqliteVdbeAddOp(Vdbe *p, int op, int p1, int p2){
++ int i;
++ VdbeOp *pOp;
++
++ i = p->nOp;
++ p->nOp++;
++ assert( p->magic==VDBE_MAGIC_INIT );
++ if( i>=p->nOpAlloc ){
++ int oldSize = p->nOpAlloc;
++ Op *aNew;
++ p->nOpAlloc = p->nOpAlloc*2 + 100;
++ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
++ if( aNew==0 ){
++ p->nOpAlloc = oldSize;
++ return 0;
++ }
++ p->aOp = aNew;
++ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
++ }
++ pOp = &p->aOp[i];
++ pOp->opcode = op;
++ pOp->p1 = p1;
++ if( p2<0 && (-1-p2)<p->nLabel && p->aLabel[-1-p2]>=0 ){
++ p2 = p->aLabel[-1-p2];
++ }
++ pOp->p2 = p2;
++ pOp->p3 = 0;
++ pOp->p3type = P3_NOTUSED;
++#ifndef NDEBUG
++ if( sqlite_vdbe_addop_trace ) sqliteVdbePrintOp(0, i, &p->aOp[i]);
++#endif
++ return i;
++}
++
++/*
++** Add an opcode that includes the p3 value.
++*/
++int sqliteVdbeOp3(Vdbe *p, int op, int p1, int p2, const char *zP3, int p3type){
++ int addr = sqliteVdbeAddOp(p, op, p1, p2);
++ sqliteVdbeChangeP3(p, addr, zP3, p3type);
++ return addr;
++}
++
++/*
++** Add multiple opcodes. The list is terminated by an opcode of 0.
++*/
++int sqliteVdbeCode(Vdbe *p, ...){
++ int addr;
++ va_list ap;
++ int opcode, p1, p2;
++ va_start(ap, p);
++ addr = p->nOp;
++ while( (opcode = va_arg(ap,int))!=0 ){
++ p1 = va_arg(ap,int);
++ p2 = va_arg(ap,int);
++ sqliteVdbeAddOp(p, opcode, p1, p2);
++ }
++ va_end(ap);
++ return addr;
++}
++
++
++
++/*
++** Create a new symbolic label for an instruction that has yet to be
++** coded. The symbolic label is really just a negative number. The
++** label can be used as the P2 value of an operation. Later, when
++** the label is resolved to a specific address, the VDBE will scan
++** through its operation list and change all values of P2 which match
++** the label into the resolved address.
++**
++** The VDBE knows that a P2 value is a label because labels are
++** always negative and P2 values are suppose to be non-negative.
++** Hence, a negative P2 value is a label that has yet to be resolved.
++*/
++int sqliteVdbeMakeLabel(Vdbe *p){
++ int i;
++ i = p->nLabel++;
++ assert( p->magic==VDBE_MAGIC_INIT );
++ if( i>=p->nLabelAlloc ){
++ int *aNew;
++ p->nLabelAlloc = p->nLabelAlloc*2 + 10;
++ aNew = sqliteRealloc( p->aLabel, p->nLabelAlloc*sizeof(p->aLabel[0]));
++ if( aNew==0 ){
++ sqliteFree(p->aLabel);
++ }
++ p->aLabel = aNew;
++ }
++ if( p->aLabel==0 ){
++ p->nLabel = 0;
++ p->nLabelAlloc = 0;
++ return 0;
++ }
++ p->aLabel[i] = -1;
++ return -1-i;
++}
++
++/*
++** Resolve label "x" to be the address of the next instruction to
++** be inserted. The parameter "x" must have been obtained from
++** a prior call to sqliteVdbeMakeLabel().
++*/
++void sqliteVdbeResolveLabel(Vdbe *p, int x){
++ int j;
++ assert( p->magic==VDBE_MAGIC_INIT );
++ if( x<0 && (-x)<=p->nLabel && p->aOp ){
++ if( p->aLabel[-1-x]==p->nOp ) return;
++ assert( p->aLabel[-1-x]<0 );
++ p->aLabel[-1-x] = p->nOp;
++ for(j=0; j<p->nOp; j++){
++ if( p->aOp[j].p2==x ) p->aOp[j].p2 = p->nOp;
++ }
++ }
++}
++
++/*
++** Return the address of the next instruction to be inserted.
++*/
++int sqliteVdbeCurrentAddr(Vdbe *p){
++ assert( p->magic==VDBE_MAGIC_INIT );
++ return p->nOp;
++}
++
++/*
++** Add a whole list of operations to the operation stack. Return the
++** address of the first operation added.
++*/
++int sqliteVdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
++ int addr;
++ assert( p->magic==VDBE_MAGIC_INIT );
++ if( p->nOp + nOp >= p->nOpAlloc ){
++ int oldSize = p->nOpAlloc;
++ Op *aNew;
++ p->nOpAlloc = p->nOpAlloc*2 + nOp + 10;
++ aNew = sqliteRealloc(p->aOp, p->nOpAlloc*sizeof(Op));
++ if( aNew==0 ){
++ p->nOpAlloc = oldSize;
++ return 0;
++ }
++ p->aOp = aNew;
++ memset(&p->aOp[oldSize], 0, (p->nOpAlloc-oldSize)*sizeof(Op));
++ }
++ addr = p->nOp;
++ if( nOp>0 ){
++ int i;
++ VdbeOpList const *pIn = aOp;
++ for(i=0; i<nOp; i++, pIn++){
++ int p2 = pIn->p2;
++ VdbeOp *pOut = &p->aOp[i+addr];
++ pOut->opcode = pIn->opcode;
++ pOut->p1 = pIn->p1;
++ pOut->p2 = p2<0 ? addr + ADDR(p2) : p2;
++ pOut->p3 = pIn->p3;
++ pOut->p3type = pIn->p3 ? P3_STATIC : P3_NOTUSED;
++#ifndef NDEBUG
++ if( sqlite_vdbe_addop_trace ){
++ sqliteVdbePrintOp(0, i+addr, &p->aOp[i+addr]);
++ }
++#endif
++ }
++ p->nOp += nOp;
++ }
++ return addr;
++}
++
++/*
++** Change the value of the P1 operand for a specific instruction.
++** This routine is useful when a large program is loaded from a
++** static array using sqliteVdbeAddOpList but we want to make a
++** few minor changes to the program.
++*/
++void sqliteVdbeChangeP1(Vdbe *p, int addr, int val){
++ assert( p->magic==VDBE_MAGIC_INIT );
++ if( p && addr>=0 && p->nOp>addr && p->aOp ){
++ p->aOp[addr].p1 = val;
++ }
++}
++
++/*
++** Change the value of the P2 operand for a specific instruction.
++** This routine is useful for setting a jump destination.
++*/
++void sqliteVdbeChangeP2(Vdbe *p, int addr, int val){
++ assert( val>=0 );
++ assert( p->magic==VDBE_MAGIC_INIT );
++ if( p && addr>=0 && p->nOp>addr && p->aOp ){
++ p->aOp[addr].p2 = val;
++ }
++}
++
++/*
++** Change the value of the P3 operand for a specific instruction.
++** This routine is useful when a large program is loaded from a
++** static array using sqliteVdbeAddOpList but we want to make a
++** few minor changes to the program.
++**
++** If n>=0 then the P3 operand is dynamic, meaning that a copy of
++** the string is made into memory obtained from sqliteMalloc().
++** A value of n==0 means copy bytes of zP3 up to and including the
++** first null byte. If n>0 then copy n+1 bytes of zP3.
++**
++** If n==P3_STATIC it means that zP3 is a pointer to a constant static
++** string and we can just copy the pointer. n==P3_POINTER means zP3 is
++** a pointer to some object other than a string.
++**
++** If addr<0 then change P3 on the most recently inserted instruction.
++*/
++void sqliteVdbeChangeP3(Vdbe *p, int addr, const char *zP3, int n){
++ Op *pOp;
++ assert( p->magic==VDBE_MAGIC_INIT );
++ if( p==0 || p->aOp==0 ) return;
++ if( addr<0 || addr>=p->nOp ){
++ addr = p->nOp - 1;
++ if( addr<0 ) return;
++ }
++ pOp = &p->aOp[addr];
++ if( pOp->p3 && pOp->p3type==P3_DYNAMIC ){
++ sqliteFree(pOp->p3);
++ pOp->p3 = 0;
++ }
++ if( zP3==0 ){
++ pOp->p3 = 0;
++ pOp->p3type = P3_NOTUSED;
++ }else if( n<0 ){
++ pOp->p3 = (char*)zP3;
++ pOp->p3type = n;
++ }else{
++ sqliteSetNString(&pOp->p3, zP3, n, 0);
++ pOp->p3type = P3_DYNAMIC;
++ }
++}
++
++/*
++** If the P3 operand to the specified instruction appears
++** to be a quoted string token, then this procedure removes
++** the quotes.
++**
++** The quoting operator can be either a grave ascent (ASCII 0x27)
++** or a double quote character (ASCII 0x22). Two quotes in a row
++** resolve to be a single actual quote character within the string.
++*/
++void sqliteVdbeDequoteP3(Vdbe *p, int addr){
++ Op *pOp;
++ assert( p->magic==VDBE_MAGIC_INIT );
++ if( p->aOp==0 ) return;
++ if( addr<0 || addr>=p->nOp ){
++ addr = p->nOp - 1;
++ if( addr<0 ) return;
++ }
++ pOp = &p->aOp[addr];
++ if( pOp->p3==0 || pOp->p3[0]==0 ) return;
++ if( pOp->p3type==P3_POINTER ) return;
++ if( pOp->p3type!=P3_DYNAMIC ){
++ pOp->p3 = sqliteStrDup(pOp->p3);
++ pOp->p3type = P3_DYNAMIC;
++ }
++ sqliteDequote(pOp->p3);
++}
++
++/*
++** On the P3 argument of the given instruction, change all
++** strings of whitespace characters into a single space and
++** delete leading and trailing whitespace.
++*/
++void sqliteVdbeCompressSpace(Vdbe *p, int addr){
++ unsigned char *z;
++ int i, j;
++ Op *pOp;
++ assert( p->magic==VDBE_MAGIC_INIT );
++ if( p->aOp==0 || addr<0 || addr>=p->nOp ) return;
++ pOp = &p->aOp[addr];
++ if( pOp->p3type==P3_POINTER ){
++ return;
++ }
++ if( pOp->p3type!=P3_DYNAMIC ){
++ pOp->p3 = sqliteStrDup(pOp->p3);
++ pOp->p3type = P3_DYNAMIC;
++ }
++ z = (unsigned char*)pOp->p3;
++ if( z==0 ) return;
++ i = j = 0;
++ while( isspace(z[i]) ){ i++; }
++ while( z[i] ){
++ if( isspace(z[i]) ){
++ z[j++] = ' ';
++ while( isspace(z[++i]) ){}
++ }else{
++ z[j++] = z[i++];
++ }
++ }
++ while( j>0 && isspace(z[j-1]) ){ j--; }
++ z[j] = 0;
++}
++
++/*
++** Search for the current program for the given opcode and P2
++** value. Return the address plus 1 if found and 0 if not found.
++*/
++int sqliteVdbeFindOp(Vdbe *p, int op, int p2){
++ int i;
++ assert( p->magic==VDBE_MAGIC_INIT );
++ for(i=0; i<p->nOp; i++){
++ if( p->aOp[i].opcode==op && p->aOp[i].p2==p2 ) return i+1;
++ }
++ return 0;
++}
++
++/*
++** Return the opcode for a given address.
++*/
++VdbeOp *sqliteVdbeGetOp(Vdbe *p, int addr){
++ assert( p->magic==VDBE_MAGIC_INIT );
++ assert( addr>=0 && addr<p->nOp );
++ return &p->aOp[addr];
++}
++
++/*
++** The following group or routines are employed by installable functions
++** to return their results.
++**
++** The sqlite_set_result_string() routine can be used to return a string
++** value or to return a NULL. To return a NULL, pass in NULL for zResult.
++** A copy is made of the string before this routine returns so it is safe
++** to pass in an ephemeral string.
++**
++** sqlite_set_result_error() works like sqlite_set_result_string() except
++** that it signals a fatal error. The string argument, if any, is the
++** error message. If the argument is NULL a generic substitute error message
++** is used.
++**
++** The sqlite_set_result_int() and sqlite_set_result_double() set the return
++** value of the user function to an integer or a double.
++**
++** These routines are defined here in vdbe.c because they depend on knowing
++** the internals of the sqlite_func structure which is only defined in
++** this source file.
++*/
++char *sqlite_set_result_string(sqlite_func *p, const char *zResult, int n){
++ assert( !p->isStep );
++ if( p->s.flags & MEM_Dyn ){
++ sqliteFree(p->s.z);
++ }
++ if( zResult==0 ){
++ p->s.flags = MEM_Null;
++ n = 0;
++ p->s.z = 0;
++ p->s.n = 0;
++ }else{
++ if( n<0 ) n = strlen(zResult);
++ if( n<NBFS-1 ){
++ memcpy(p->s.zShort, zResult, n);
++ p->s.zShort[n] = 0;
++ p->s.flags = MEM_Str | MEM_Short;
++ p->s.z = p->s.zShort;
++ }else{
++ p->s.z = sqliteMallocRaw( n+1 );
++ if( p->s.z ){
++ memcpy(p->s.z, zResult, n);
++ p->s.z[n] = 0;
++ }
++ p->s.flags = MEM_Str | MEM_Dyn;
++ }
++ p->s.n = n+1;
++ }
++ return p->s.z;
++}
++void sqlite_set_result_int(sqlite_func *p, int iResult){
++ assert( !p->isStep );
++ if( p->s.flags & MEM_Dyn ){
++ sqliteFree(p->s.z);
++ }
++ p->s.i = iResult;
++ p->s.flags = MEM_Int;
++}
++void sqlite_set_result_double(sqlite_func *p, double rResult){
++ assert( !p->isStep );
++ if( p->s.flags & MEM_Dyn ){
++ sqliteFree(p->s.z);
++ }
++ p->s.r = rResult;
++ p->s.flags = MEM_Real;
++}
++void sqlite_set_result_error(sqlite_func *p, const char *zMsg, int n){
++ assert( !p->isStep );
++ sqlite_set_result_string(p, zMsg, n);
++ p->isError = 1;
++}
++
++/*
++** Extract the user data from a sqlite_func structure and return a
++** pointer to it.
++*/
++void *sqlite_user_data(sqlite_func *p){
++ assert( p && p->pFunc );
++ return p->pFunc->pUserData;
++}
++
++/*
++** Allocate or return the aggregate context for a user function. A new
++** context is allocated on the first call. Subsequent calls return the
++** same context that was returned on prior calls.
++**
++** This routine is defined here in vdbe.c because it depends on knowing
++** the internals of the sqlite_func structure which is only defined in
++** this source file.
++*/
++void *sqlite_aggregate_context(sqlite_func *p, int nByte){
++ assert( p && p->pFunc && p->pFunc->xStep );
++ if( p->pAgg==0 ){
++ if( nByte<=NBFS ){
++ p->pAgg = (void*)p->s.z;
++ memset(p->pAgg, 0, nByte);
++ }else{
++ p->pAgg = sqliteMalloc( nByte );
++ }
++ }
++ return p->pAgg;
++}
++
++/*
++** Return the number of times the Step function of a aggregate has been
++** called.
++**
++** This routine is defined here in vdbe.c because it depends on knowing
++** the internals of the sqlite_func structure which is only defined in
++** this source file.
++*/
++int sqlite_aggregate_count(sqlite_func *p){
++ assert( p && p->pFunc && p->pFunc->xStep );
++ return p->cnt;
++}
++
++#if !defined(NDEBUG) || defined(VDBE_PROFILE)
++/*
++** Print a single opcode. This routine is used for debugging only.
++*/
++void sqliteVdbePrintOp(FILE *pOut, int pc, Op *pOp){
++ char *zP3;
++ char zPtr[40];
++ if( pOp->p3type==P3_POINTER ){
++ sprintf(zPtr, "ptr(%#lx)", (long)pOp->p3);
++ zP3 = zPtr;
++ }else{
++ zP3 = pOp->p3;
++ }
++ if( pOut==0 ) pOut = stdout;
++ fprintf(pOut,"%4d %-12s %4d %4d %s\n",
++ pc, sqliteOpcodeNames[pOp->opcode], pOp->p1, pOp->p2, zP3 ? zP3 : "");
++ fflush(pOut);
++}
++#endif
++
++/*
++** Give a listing of the program in the virtual machine.
++**
++** The interface is the same as sqliteVdbeExec(). But instead of
++** running the code, it invokes the callback once for each instruction.
++** This feature is used to implement "EXPLAIN".
++*/
++int sqliteVdbeList(
++ Vdbe *p /* The VDBE */
++){
++ sqlite *db = p->db;
++ int i;
++ int rc = SQLITE_OK;
++ static char *azColumnNames[] = {
++ "addr", "opcode", "p1", "p2", "p3",
++ "int", "text", "int", "int", "text",
++ 0
++ };
++
++ assert( p->popStack==0 );
++ assert( p->explain );
++ p->azColName = azColumnNames;
++ p->azResColumn = p->zArgv;
++ for(i=0; i<5; i++) p->zArgv[i] = p->aStack[i].zShort;
++ i = p->pc;
++ if( i>=p->nOp ){
++ p->rc = SQLITE_OK;
++ rc = SQLITE_DONE;
++ }else if( db->flags & SQLITE_Interrupt ){
++ db->flags &= ~SQLITE_Interrupt;
++ if( db->magic!=SQLITE_MAGIC_BUSY ){
++ p->rc = SQLITE_MISUSE;
++ }else{
++ p->rc = SQLITE_INTERRUPT;
++ }
++ rc = SQLITE_ERROR;
++ sqliteSetString(&p->zErrMsg, sqlite_error_string(p->rc), (char*)0);
++ }else{
++ sprintf(p->zArgv[0],"%d",i);
++ sprintf(p->zArgv[2],"%d", p->aOp[i].p1);
++ sprintf(p->zArgv[3],"%d", p->aOp[i].p2);
++ if( p->aOp[i].p3type==P3_POINTER ){
++ sprintf(p->aStack[4].zShort, "ptr(%#lx)", (long)p->aOp[i].p3);
++ p->zArgv[4] = p->aStack[4].zShort;
++ }else{
++ p->zArgv[4] = p->aOp[i].p3;
++ }
++ p->zArgv[1] = sqliteOpcodeNames[p->aOp[i].opcode];
++ p->pc = i+1;
++ p->azResColumn = p->zArgv;
++ p->nResColumn = 5;
++ p->rc = SQLITE_OK;
++ rc = SQLITE_ROW;
++ }
++ return rc;
++}
++
++/*
++** Prepare a virtual machine for execution. This involves things such
++** as allocating stack space and initializing the program counter.
++** After the VDBE has be prepped, it can be executed by one or more
++** calls to sqliteVdbeExec().
++*/
++void sqliteVdbeMakeReady(
++ Vdbe *p, /* The VDBE */
++ int nVar, /* Number of '?' see in the SQL statement */
++ int isExplain /* True if the EXPLAIN keywords is present */
++){
++ int n;
++
++ assert( p!=0 );
++ assert( p->magic==VDBE_MAGIC_INIT );
++
++ /* Add a HALT instruction to the very end of the program.
++ */
++ if( p->nOp==0 || (p->aOp && p->aOp[p->nOp-1].opcode!=OP_Halt) ){
++ sqliteVdbeAddOp(p, OP_Halt, 0, 0);
++ }
++
++ /* No instruction ever pushes more than a single element onto the
++ ** stack. And the stack never grows on successive executions of the
++ ** same loop. So the total number of instructions is an upper bound
++ ** on the maximum stack depth required.
++ **
++ ** Allocation all the stack space we will ever need.
++ */
++ if( p->aStack==0 ){
++ p->nVar = nVar;
++ assert( nVar>=0 );
++ n = isExplain ? 10 : p->nOp;
++ p->aStack = sqliteMalloc(
++ n*(sizeof(p->aStack[0]) + 2*sizeof(char*)) /* aStack and zArgv */
++ + p->nVar*(sizeof(char*)+sizeof(int)+1) /* azVar, anVar, abVar */
++ );
++ p->zArgv = (char**)&p->aStack[n];
++ p->azColName = (char**)&p->zArgv[n];
++ p->azVar = (char**)&p->azColName[n];
++ p->anVar = (int*)&p->azVar[p->nVar];
++ p->abVar = (u8*)&p->anVar[p->nVar];
++ }
++
++ sqliteHashInit(&p->agg.hash, SQLITE_HASH_BINARY, 0);
++ p->agg.pSearch = 0;
++#ifdef MEMORY_DEBUG
++ if( sqliteOsFileExists("vdbe_trace") ){
++ p->trace = stdout;
++ }
++#endif
++ p->pTos = &p->aStack[-1];
++ p->pc = 0;
++ p->rc = SQLITE_OK;
++ p->uniqueCnt = 0;
++ p->returnDepth = 0;
++ p->errorAction = OE_Abort;
++ p->undoTransOnError = 0;
++ p->popStack = 0;
++ p->explain |= isExplain;
++ p->magic = VDBE_MAGIC_RUN;
++#ifdef VDBE_PROFILE
++ {
++ int i;
++ for(i=0; i<p->nOp; i++){
++ p->aOp[i].cnt = 0;
++ p->aOp[i].cycles = 0;
++ }
++ }
++#endif
++}
++
++
++/*
++** Remove any elements that remain on the sorter for the VDBE given.
++*/
++void sqliteVdbeSorterReset(Vdbe *p){
++ while( p->pSort ){
++ Sorter *pSorter = p->pSort;
++ p->pSort = pSorter->pNext;
++ sqliteFree(pSorter->zKey);
++ sqliteFree(pSorter->pData);
++ sqliteFree(pSorter);
++ }
++}
++
++/*
++** Reset an Agg structure. Delete all its contents.
++**
++** For installable aggregate functions, if the step function has been
++** called, make sure the finalizer function has also been called. The
++** finalizer might need to free memory that was allocated as part of its
++** private context. If the finalizer has not been called yet, call it
++** now.
++*/
++void sqliteVdbeAggReset(Agg *pAgg){
++ int i;
++ HashElem *p;
++ for(p = sqliteHashFirst(&pAgg->hash); p; p = sqliteHashNext(p)){
++ AggElem *pElem = sqliteHashData(p);
++ assert( pAgg->apFunc!=0 );
++ for(i=0; i<pAgg->nMem; i++){
++ Mem *pMem = &pElem->aMem[i];
++ if( pAgg->apFunc[i] && (pMem->flags & MEM_AggCtx)!=0 ){
++ sqlite_func ctx;
++ ctx.pFunc = pAgg->apFunc[i];
++ ctx.s.flags = MEM_Null;
++ ctx.pAgg = pMem->z;
++ ctx.cnt = pMem->i;
++ ctx.isStep = 0;
++ ctx.isError = 0;
++ (*pAgg->apFunc[i]->xFinalize)(&ctx);
++ if( pMem->z!=0 && pMem->z!=pMem->zShort ){
++ sqliteFree(pMem->z);
++ }
++ if( ctx.s.flags & MEM_Dyn ){
++ sqliteFree(ctx.s.z);
++ }
++ }else if( pMem->flags & MEM_Dyn ){
++ sqliteFree(pMem->z);
++ }
++ }
++ sqliteFree(pElem);
++ }
++ sqliteHashClear(&pAgg->hash);
++ sqliteFree(pAgg->apFunc);
++ pAgg->apFunc = 0;
++ pAgg->pCurrent = 0;
++ pAgg->pSearch = 0;
++ pAgg->nMem = 0;
++}
++
++/*
++** Delete a keylist
++*/
++void sqliteVdbeKeylistFree(Keylist *p){
++ while( p ){
++ Keylist *pNext = p->pNext;
++ sqliteFree(p);
++ p = pNext;
++ }
++}
++
++/*
++** Close a cursor and release all the resources that cursor happens
++** to hold.
++*/
++void sqliteVdbeCleanupCursor(Cursor *pCx){
++ if( pCx->pCursor ){
++ sqliteBtreeCloseCursor(pCx->pCursor);
++ }
++ if( pCx->pBt ){
++ sqliteBtreeClose(pCx->pBt);
++ }
++ sqliteFree(pCx->pData);
++ memset(pCx, 0, sizeof(Cursor));
++}
++
++/*
++** Close all cursors
++*/
++static void closeAllCursors(Vdbe *p){
++ int i;
++ for(i=0; i<p->nCursor; i++){
++ sqliteVdbeCleanupCursor(&p->aCsr[i]);
++ }
++ sqliteFree(p->aCsr);
++ p->aCsr = 0;
++ p->nCursor = 0;
++}
++
++/*
++** Clean up the VM after execution.
++**
++** This routine will automatically close any cursors, lists, and/or
++** sorters that were left open. It also deletes the values of
++** variables in the azVariable[] array.
++*/
++static void Cleanup(Vdbe *p){
++ int i;
++ if( p->aStack ){
++ Mem *pTos = p->pTos;
++ while( pTos>=p->aStack ){
++ if( pTos->flags & MEM_Dyn ){
++ sqliteFree(pTos->z);
++ }
++ pTos--;
++ }
++ p->pTos = pTos;
++ }
++ closeAllCursors(p);
++ if( p->aMem ){
++ for(i=0; i<p->nMem; i++){
++ if( p->aMem[i].flags & MEM_Dyn ){
++ sqliteFree(p->aMem[i].z);
++ }
++ }
++ }
++ sqliteFree(p->aMem);
++ p->aMem = 0;
++ p->nMem = 0;
++ if( p->pList ){
++ sqliteVdbeKeylistFree(p->pList);
++ p->pList = 0;
++ }
++ sqliteVdbeSorterReset(p);
++ if( p->pFile ){
++ if( p->pFile!=stdin ) fclose(p->pFile);
++ p->pFile = 0;
++ }
++ if( p->azField ){
++ sqliteFree(p->azField);
++ p->azField = 0;
++ }
++ p->nField = 0;
++ if( p->zLine ){
++ sqliteFree(p->zLine);
++ p->zLine = 0;
++ }
++ p->nLineAlloc = 0;
++ sqliteVdbeAggReset(&p->agg);
++ if( p->aSet ){
++ for(i=0; i<p->nSet; i++){
++ sqliteHashClear(&p->aSet[i].hash);
++ }
++ }
++ sqliteFree(p->aSet);
++ p->aSet = 0;
++ p->nSet = 0;
++ if( p->keylistStack ){
++ int ii;
++ for(ii = 0; ii < p->keylistStackDepth; ii++){
++ sqliteVdbeKeylistFree(p->keylistStack[ii]);
++ }
++ sqliteFree(p->keylistStack);
++ p->keylistStackDepth = 0;
++ p->keylistStack = 0;
++ }
++ sqliteFree(p->contextStack);
++ p->contextStack = 0;
++ sqliteFree(p->zErrMsg);
++ p->zErrMsg = 0;
++}
++
++/*
++** Clean up a VDBE after execution but do not delete the VDBE just yet.
++** Write any error messages into *pzErrMsg. Return the result code.
++**
++** After this routine is run, the VDBE should be ready to be executed
++** again.
++*/
++int sqliteVdbeReset(Vdbe *p, char **pzErrMsg){
++ sqlite *db = p->db;
++ int i;
++
++ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
++ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
++ return SQLITE_MISUSE;
++ }
++ if( p->zErrMsg ){
++ if( pzErrMsg && *pzErrMsg==0 ){
++ *pzErrMsg = p->zErrMsg;
++ }else{
++ sqliteFree(p->zErrMsg);
++ }
++ p->zErrMsg = 0;
++ }else if( p->rc ){
++ sqliteSetString(pzErrMsg, sqlite_error_string(p->rc), (char*)0);
++ }
++ Cleanup(p);
++ if( p->rc!=SQLITE_OK ){
++ switch( p->errorAction ){
++ case OE_Abort: {
++ if( !p->undoTransOnError ){
++ for(i=0; i<db->nDb; i++){
++ if( db->aDb[i].pBt ){
++ sqliteBtreeRollbackCkpt(db->aDb[i].pBt);
++ }
++ }
++ break;
++ }
++ /* Fall through to ROLLBACK */
++ }
++ case OE_Rollback: {
++ sqliteRollbackAll(db);
++ db->flags &= ~SQLITE_InTrans;
++ db->onError = OE_Default;
++ break;
++ }
++ default: {
++ if( p->undoTransOnError ){
++ sqliteRollbackAll(db);
++ db->flags &= ~SQLITE_InTrans;
++ db->onError = OE_Default;
++ }
++ break;
++ }
++ }
++ sqliteRollbackInternalChanges(db);
++ }
++ for(i=0; i<db->nDb; i++){
++ if( db->aDb[i].pBt && db->aDb[i].inTrans==2 ){
++ sqliteBtreeCommitCkpt(db->aDb[i].pBt);
++ db->aDb[i].inTrans = 1;
++ }
++ }
++ assert( p->pTos<&p->aStack[p->pc] || sqlite_malloc_failed==1 );
++#ifdef VDBE_PROFILE
++ {
++ FILE *out = fopen("vdbe_profile.out", "a");
++ if( out ){
++ int i;
++ fprintf(out, "---- ");
++ for(i=0; i<p->nOp; i++){
++ fprintf(out, "%02x", p->aOp[i].opcode);
++ }
++ fprintf(out, "\n");
++ for(i=0; i<p->nOp; i++){
++ fprintf(out, "%6d %10lld %8lld ",
++ p->aOp[i].cnt,
++ p->aOp[i].cycles,
++ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
++ );
++ sqliteVdbePrintOp(out, i, &p->aOp[i]);
++ }
++ fclose(out);
++ }
++ }
++#endif
++ p->magic = VDBE_MAGIC_INIT;
++ return p->rc;
++}
++
++/*
++** Clean up and delete a VDBE after execution. Return an integer which is
++** the result code. Write any error message text into *pzErrMsg.
++*/
++int sqliteVdbeFinalize(Vdbe *p, char **pzErrMsg){
++ int rc;
++ sqlite *db;
++
++ if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
++ sqliteSetString(pzErrMsg, sqlite_error_string(SQLITE_MISUSE), (char*)0);
++ return SQLITE_MISUSE;
++ }
++ db = p->db;
++ rc = sqliteVdbeReset(p, pzErrMsg);
++ sqliteVdbeDelete(p);
++ if( db->want_to_close && db->pVdbe==0 ){
++ sqlite_close(db);
++ }
++ if( rc==SQLITE_SCHEMA ){
++ sqliteResetInternalSchema(db, 0);
++ }
++ return rc;
++}
++
++/*
++** Set the values of all variables. Variable $1 in the original SQL will
++** be the string azValue[0]. $2 will have the value azValue[1]. And
++** so forth. If a value is out of range (for example $3 when nValue==2)
++** then its value will be NULL.
++**
++** This routine overrides any prior call.
++*/
++int sqlite_bind(sqlite_vm *pVm, int i, const char *zVal, int len, int copy){
++ Vdbe *p = (Vdbe*)pVm;
++ if( p->magic!=VDBE_MAGIC_RUN || p->pc!=0 ){
++ return SQLITE_MISUSE;
++ }
++ if( i<1 || i>p->nVar ){
++ return SQLITE_RANGE;
++ }
++ i--;
++ if( p->abVar[i] ){
++ sqliteFree(p->azVar[i]);
++ }
++ if( zVal==0 ){
++ copy = 0;
++ len = 0;
++ }
++ if( len<0 ){
++ len = strlen(zVal)+1;
++ }
++ if( copy ){
++ p->azVar[i] = sqliteMalloc( len );
++ if( p->azVar[i] ) memcpy(p->azVar[i], zVal, len);
++ }else{
++ p->azVar[i] = (char*)zVal;
++ }
++ p->abVar[i] = copy;
++ p->anVar[i] = len;
++ return SQLITE_OK;
++}
++
++
++/*
++** Delete an entire VDBE.
++*/
++void sqliteVdbeDelete(Vdbe *p){
++ int i;
++ if( p==0 ) return;
++ Cleanup(p);
++ if( p->pPrev ){
++ p->pPrev->pNext = p->pNext;
++ }else{
++ assert( p->db->pVdbe==p );
++ p->db->pVdbe = p->pNext;
++ }
++ if( p->pNext ){
++ p->pNext->pPrev = p->pPrev;
++ }
++ p->pPrev = p->pNext = 0;
++ if( p->nOpAlloc==0 ){
++ p->aOp = 0;
++ p->nOp = 0;
++ }
++ for(i=0; i<p->nOp; i++){
++ if( p->aOp[i].p3type==P3_DYNAMIC ){
++ sqliteFree(p->aOp[i].p3);
++ }
++ }
++ for(i=0; i<p->nVar; i++){
++ if( p->abVar[i] ) sqliteFree(p->azVar[i]);
++ }
++ sqliteFree(p->aOp);
++ sqliteFree(p->aLabel);
++ sqliteFree(p->aStack);
++ p->magic = VDBE_MAGIC_DEAD;
++ sqliteFree(p);
++}
++
++/*
++** Convert an integer in between the native integer format and
++** the bigEndian format used as the record number for tables.
++**
++** The bigEndian format (most significant byte first) is used for
++** record numbers so that records will sort into the correct order
++** even though memcmp() is used to compare the keys. On machines
++** whose native integer format is little endian (ex: i486) the
++** order of bytes is reversed. On native big-endian machines
++** (ex: Alpha, Sparc, Motorola) the byte order is the same.
++**
++** This function is its own inverse. In other words
++**
++** X == byteSwap(byteSwap(X))
++*/
++int sqliteVdbeByteSwap(int x){
++ union {
++ char zBuf[sizeof(int)];
++ int i;
++ } ux;
++ ux.zBuf[3] = x&0xff;
++ ux.zBuf[2] = (x>>8)&0xff;
++ ux.zBuf[1] = (x>>16)&0xff;
++ ux.zBuf[0] = (x>>24)&0xff;
++ return ux.i;
++}
++
++/*
++** If a MoveTo operation is pending on the given cursor, then do that
++** MoveTo now. Return an error code. If no MoveTo is pending, this
++** routine does nothing and returns SQLITE_OK.
++*/
++int sqliteVdbeCursorMoveto(Cursor *p){
++ if( p->deferredMoveto ){
++ int res;
++ extern int sqlite_search_count;
++ sqliteBtreeMoveto(p->pCursor, (char*)&p->movetoTarget, sizeof(int), &res);
++ p->lastRecno = keyToInt(p->movetoTarget);
++ p->recnoIsValid = res==0;
++ if( res<0 ){
++ sqliteBtreeNext(p->pCursor, &res);
++ }
++ sqlite_search_count++;
++ p->deferredMoveto = 0;
++ }
++ return SQLITE_OK;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/vdbe.c
+@@ -0,0 +1,4921 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** The code in this file implements execution method of the
++** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
++** handles housekeeping details such as creating and deleting
++** VDBE instances. This file is solely interested in executing
++** the VDBE program.
++**
++** In the external interface, an "sqlite_vm*" is an opaque pointer
++** to a VDBE.
++**
++** The SQL parser generates a program which is then executed by
++** the VDBE to do the work of the SQL statement. VDBE programs are
++** similar in form to assembly language. The program consists of
++** a linear sequence of operations. Each operation has an opcode
++** and 3 operands. Operands P1 and P2 are integers. Operand P3
++** is a null-terminated string. The P2 operand must be non-negative.
++** Opcodes will typically ignore one or more operands. Many opcodes
++** ignore all three operands.
++**
++** Computation results are stored on a stack. Each entry on the
++** stack is either an integer, a null-terminated string, a floating point
++** number, or the SQL "NULL" value. An inplicit conversion from one
++** type to the other occurs as necessary.
++**
++** Most of the code in this file is taken up by the sqliteVdbeExec()
++** function which does the work of interpreting a VDBE program.
++** But other routines are also provided to help in building up
++** a program instruction by instruction.
++**
++** Various scripts scan this source file in order to generate HTML
++** documentation, headers files, or other derived files. The formatting
++** of the code in this file is, therefore, important. See other comments
++** in this file for details. If in doubt, do not deviate from existing
++** commenting and indentation practices when changing or adding code.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++#include "os.h"
++#include <ctype.h>
++#include "vdbeInt.h"
++
++/*
++** The following global variable is incremented every time a cursor
++** moves, either by the OP_MoveTo or the OP_Next opcode. The test
++** procedures use this information to make sure that indices are
++** working correctly. This variable has no function other than to
++** help verify the correct operation of the library.
++*/
++int sqlite_search_count = 0;
++
++/*
++** When this global variable is positive, it gets decremented once before
++** each instruction in the VDBE. When reaches zero, the SQLITE_Interrupt
++** of the db.flags field is set in order to simulate an interrupt.
++**
++** This facility is used for testing purposes only. It does not function
++** in an ordinary build.
++*/
++int sqlite_interrupt_count = 0;
++
++/*
++** Advance the virtual machine to the next output row.
++**
++** The return vale will be either SQLITE_BUSY, SQLITE_DONE,
++** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
++**
++** SQLITE_BUSY means that the virtual machine attempted to open
++** a locked database and there is no busy callback registered.
++** Call sqlite_step() again to retry the open. *pN is set to 0
++** and *pazColName and *pazValue are both set to NULL.
++**
++** SQLITE_DONE means that the virtual machine has finished
++** executing. sqlite_step() should not be called again on this
++** virtual machine. *pN and *pazColName are set appropriately
++** but *pazValue is set to NULL.
++**
++** SQLITE_ROW means that the virtual machine has generated another
++** row of the result set. *pN is set to the number of columns in
++** the row. *pazColName is set to the names of the columns followed
++** by the column datatypes. *pazValue is set to the values of each
++** column in the row. The value of the i-th column is (*pazValue)[i].
++** The name of the i-th column is (*pazColName)[i] and the datatype
++** of the i-th column is (*pazColName)[i+*pN].
++**
++** SQLITE_ERROR means that a run-time error (such as a constraint
++** violation) has occurred. The details of the error will be returned
++** by the next call to sqlite_finalize(). sqlite_step() should not
++** be called again on the VM.
++**
++** SQLITE_MISUSE means that the this routine was called inappropriately.
++** Perhaps it was called on a virtual machine that had already been
++** finalized or on one that had previously returned SQLITE_ERROR or
++** SQLITE_DONE. Or it could be the case the the same database connection
++** is being used simulataneously by two or more threads.
++*/
++int sqlite_step(
++ sqlite_vm *pVm, /* The virtual machine to execute */
++ int *pN, /* OUT: Number of columns in result */
++ const char ***pazValue, /* OUT: Column data */
++ const char ***pazColName /* OUT: Column names and datatypes */
++){
++ Vdbe *p = (Vdbe*)pVm;
++ sqlite *db;
++ int rc;
++
++ if( !p || p->magic!=VDBE_MAGIC_RUN ){
++ return SQLITE_MISUSE;
++ }
++ db = p->db;
++ if( sqliteSafetyOn(db) ){
++ p->rc = SQLITE_MISUSE;
++ return SQLITE_MISUSE;
++ }
++ if( p->explain ){
++ rc = sqliteVdbeList(p);
++ }else{
++ rc = sqliteVdbeExec(p);
++ }
++ if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
++ if( pazColName ) *pazColName = (const char**)p->azColName;
++ if( pN ) *pN = p->nResColumn;
++ }else{
++ if( pazColName) *pazColName = 0;
++ if( pN ) *pN = 0;
++ }
++ if( pazValue ){
++ if( rc==SQLITE_ROW ){
++ *pazValue = (const char**)p->azResColumn;
++ }else{
++ *pazValue = 0;
++ }
++ }
++ if( sqliteSafetyOff(db) ){
++ return SQLITE_MISUSE;
++ }
++ return rc;
++}
++
++/*
++** Insert a new aggregate element and make it the element that
++** has focus.
++**
++** Return 0 on success and 1 if memory is exhausted.
++*/
++static int AggInsert(Agg *p, char *zKey, int nKey){
++ AggElem *pElem, *pOld;
++ int i;
++ Mem *pMem;
++ pElem = sqliteMalloc( sizeof(AggElem) + nKey +
++ (p->nMem-1)*sizeof(pElem->aMem[0]) );
++ if( pElem==0 ) return 1;
++ pElem->zKey = (char*)&pElem->aMem[p->nMem];
++ memcpy(pElem->zKey, zKey, nKey);
++ pElem->nKey = nKey;
++ pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
++ if( pOld!=0 ){
++ assert( pOld==pElem ); /* Malloc failed on insert */
++ sqliteFree(pOld);
++ return 0;
++ }
++ for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
++ pMem->flags = MEM_Null;
++ }
++ p->pCurrent = pElem;
++ return 0;
++}
++
++/*
++** Get the AggElem currently in focus
++*/
++#define AggInFocus(P) ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
++static AggElem *_AggInFocus(Agg *p){
++ HashElem *pElem = sqliteHashFirst(&p->hash);
++ if( pElem==0 ){
++ AggInsert(p,"",1);
++ pElem = sqliteHashFirst(&p->hash);
++ }
++ return pElem ? sqliteHashData(pElem) : 0;
++}
++
++/*
++** Convert the given stack entity into a string if it isn't one
++** already.
++*/
++#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
++static int hardStringify(Mem *pStack){
++ int fg = pStack->flags;
++ if( fg & MEM_Real ){
++ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
++ }else if( fg & MEM_Int ){
++ sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
++ }else{
++ pStack->zShort[0] = 0;
++ }
++ pStack->z = pStack->zShort;
++ pStack->n = strlen(pStack->zShort)+1;
++ pStack->flags = MEM_Str | MEM_Short;
++ return 0;
++}
++
++/*
++** Convert the given stack entity into a string that has been obtained
++** from sqliteMalloc(). This is different from Stringify() above in that
++** Stringify() will use the NBFS bytes of static string space if the string
++** will fit but this routine always mallocs for space.
++** Return non-zero if we run out of memory.
++*/
++#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
++static int hardDynamicify(Mem *pStack){
++ int fg = pStack->flags;
++ char *z;
++ if( (fg & MEM_Str)==0 ){
++ hardStringify(pStack);
++ }
++ assert( (fg & MEM_Dyn)==0 );
++ z = sqliteMallocRaw( pStack->n );
++ if( z==0 ) return 1;
++ memcpy(z, pStack->z, pStack->n);
++ pStack->z = z;
++ pStack->flags |= MEM_Dyn;
++ return 0;
++}
++
++/*
++** An ephemeral string value (signified by the MEM_Ephem flag) contains
++** a pointer to a dynamically allocated string where some other entity
++** is responsible for deallocating that string. Because the stack entry
++** does not control the string, it might be deleted without the stack
++** entry knowing it.
++**
++** This routine converts an ephemeral string into a dynamically allocated
++** string that the stack entry itself controls. In other words, it
++** converts an MEM_Ephem string into an MEM_Dyn string.
++*/
++#define Deephemeralize(P) \
++ if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
++static int hardDeephem(Mem *pStack){
++ char *z;
++ assert( (pStack->flags & MEM_Ephem)!=0 );
++ z = sqliteMallocRaw( pStack->n );
++ if( z==0 ) return 1;
++ memcpy(z, pStack->z, pStack->n);
++ pStack->z = z;
++ pStack->flags &= ~MEM_Ephem;
++ pStack->flags |= MEM_Dyn;
++ return 0;
++}
++
++/*
++** Release the memory associated with the given stack level. This
++** leaves the Mem.flags field in an inconsistent state.
++*/
++#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }
++
++/*
++** Pop the stack N times.
++*/
++static void popStack(Mem **ppTos, int N){
++ Mem *pTos = *ppTos;
++ while( N>0 ){
++ N--;
++ Release(pTos);
++ pTos--;
++ }
++ *ppTos = pTos;
++}
++
++/*
++** Return TRUE if zNum is a 32-bit signed integer and write
++** the value of the integer into *pNum. If zNum is not an integer
++** or is an integer that is too large to be expressed with just 32
++** bits, then return false.
++**
++** Under Linux (RedHat 7.2) this routine is much faster than atoi()
++** for converting strings into integers.
++*/
++static int toInt(const char *zNum, int *pNum){
++ int v = 0;
++ int neg;
++ int i, c;
++ if( *zNum=='-' ){
++ neg = 1;
++ zNum++;
++ }else if( *zNum=='+' ){
++ neg = 0;
++ zNum++;
++ }else{
++ neg = 0;
++ }
++ for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
++ v = v*10 + c - '0';
++ }
++ *pNum = neg ? -v : v;
++ return c==0 && i>0 && (i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0));
++}
++
++/*
++** Convert the given stack entity into a integer if it isn't one
++** already.
++**
++** Any prior string or real representation is invalidated.
++** NULLs are converted into 0.
++*/
++#define Integerify(P) if(((P)->flags&MEM_Int)==0){ hardIntegerify(P); }
++static void hardIntegerify(Mem *pStack){
++ if( pStack->flags & MEM_Real ){
++ pStack->i = (int)pStack->r;
++ Release(pStack);
++ }else if( pStack->flags & MEM_Str ){
++ toInt(pStack->z, &pStack->i);
++ Release(pStack);
++ }else{
++ pStack->i = 0;
++ }
++ pStack->flags = MEM_Int;
++}
++
++/*
++** Get a valid Real representation for the given stack element.
++**
++** Any prior string or integer representation is retained.
++** NULLs are converted into 0.0.
++*/
++#define Realify(P) if(((P)->flags&MEM_Real)==0){ hardRealify(P); }
++static void hardRealify(Mem *pStack){
++ if( pStack->flags & MEM_Str ){
++ pStack->r = sqliteAtoF(pStack->z, 0);
++ }else if( pStack->flags & MEM_Int ){
++ pStack->r = pStack->i;
++ }else{
++ pStack->r = 0.0;
++ }
++ pStack->flags |= MEM_Real;
++}
++
++/*
++** The parameters are pointers to the head of two sorted lists
++** of Sorter structures. Merge these two lists together and return
++** a single sorted list. This routine forms the core of the merge-sort
++** algorithm.
++**
++** In the case of a tie, left sorts in front of right.
++*/
++static Sorter *Merge(Sorter *pLeft, Sorter *pRight){
++ Sorter sHead;
++ Sorter *pTail;
++ pTail = &sHead;
++ pTail->pNext = 0;
++ while( pLeft && pRight ){
++ int c = sqliteSortCompare(pLeft->zKey, pRight->zKey);
++ if( c<=0 ){
++ pTail->pNext = pLeft;
++ pLeft = pLeft->pNext;
++ }else{
++ pTail->pNext = pRight;
++ pRight = pRight->pNext;
++ }
++ pTail = pTail->pNext;
++ }
++ if( pLeft ){
++ pTail->pNext = pLeft;
++ }else if( pRight ){
++ pTail->pNext = pRight;
++ }
++ return sHead.pNext;
++}
++
++/*
++** The following routine works like a replacement for the standard
++** library routine fgets(). The difference is in how end-of-line (EOL)
++** is handled. Standard fgets() uses LF for EOL under unix, CRLF
++** under windows, and CR under mac. This routine accepts any of these
++** character sequences as an EOL mark. The EOL mark is replaced by
++** a single LF character in zBuf.
++*/
++static char *vdbe_fgets(char *zBuf, int nBuf, FILE *in){
++ int i, c;
++ for(i=0; i<nBuf-1 && (c=getc(in))!=EOF; i++){
++ zBuf[i] = c;
++ if( c=='\r' || c=='\n' ){
++ if( c=='\r' ){
++ zBuf[i] = '\n';
++ c = getc(in);
++ if( c!=EOF && c!='\n' ) ungetc(c, in);
++ }
++ i++;
++ break;
++ }
++ }
++ zBuf[i] = 0;
++ return i>0 ? zBuf : 0;
++}
++
++/*
++** Make sure there is space in the Vdbe structure to hold at least
++** mxCursor cursors. If there is not currently enough space, then
++** allocate more.
++**
++** If a memory allocation error occurs, return 1. Return 0 if
++** everything works.
++*/
++static int expandCursorArraySize(Vdbe *p, int mxCursor){
++ if( mxCursor>=p->nCursor ){
++ Cursor *aCsr = sqliteRealloc( p->aCsr, (mxCursor+1)*sizeof(Cursor) );
++ if( aCsr==0 ) return 1;
++ p->aCsr = aCsr;
++ memset(&p->aCsr[p->nCursor], 0, sizeof(Cursor)*(mxCursor+1-p->nCursor));
++ p->nCursor = mxCursor+1;
++ }
++ return 0;
++}
++
++#ifdef VDBE_PROFILE
++/*
++** The following routine only works on pentium-class processors.
++** It uses the RDTSC opcode to read cycle count value out of the
++** processor and returns that value. This can be used for high-res
++** profiling.
++*/
++__inline__ unsigned long long int hwtime(void){
++ unsigned long long int x;
++ __asm__("rdtsc\n\t"
++ "mov %%edx, %%ecx\n\t"
++ :"=A" (x));
++ return x;
++}
++#endif
++
++/*
++** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
++** sqlite_interrupt() routine has been called. If it has been, then
++** processing of the VDBE program is interrupted.
++**
++** This macro added to every instruction that does a jump in order to
++** implement a loop. This test used to be on every single instruction,
++** but that meant we more testing that we needed. By only testing the
++** flag on jump instructions, we get a (small) speed improvement.
++*/
++#define CHECK_FOR_INTERRUPT \
++ if( db->flags & SQLITE_Interrupt ) goto abort_due_to_interrupt;
++
++
++/*
++** Execute as much of a VDBE program as we can then return.
++**
++** sqliteVdbeMakeReady() must be called before this routine in order to
++** close the program with a final OP_Halt and to set up the callbacks
++** and the error message pointer.
++**
++** Whenever a row or result data is available, this routine will either
++** invoke the result callback (if there is one) or return with
++** SQLITE_ROW.
++**
++** If an attempt is made to open a locked database, then this routine
++** will either invoke the busy callback (if there is one) or it will
++** return SQLITE_BUSY.
++**
++** If an error occurs, an error message is written to memory obtained
++** from sqliteMalloc() and p->zErrMsg is made to point to that memory.
++** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
++**
++** If the callback ever returns non-zero, then the program exits
++** immediately. There will be no error message but the p->rc field is
++** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
++**
++** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
++** routine to return SQLITE_ERROR.
++**
++** Other fatal errors return SQLITE_ERROR.
++**
++** After this routine has finished, sqliteVdbeFinalize() should be
++** used to clean up the mess that was left behind.
++*/
++int sqliteVdbeExec(
++ Vdbe *p /* The VDBE */
++){
++ int pc; /* The program counter */
++ Op *pOp; /* Current operation */
++ int rc = SQLITE_OK; /* Value to return */
++ sqlite *db = p->db; /* The database */
++ Mem *pTos; /* Top entry in the operand stack */
++ char zBuf[100]; /* Space to sprintf() an integer */
++#ifdef VDBE_PROFILE
++ unsigned long long start; /* CPU clock count at start of opcode */
++ int origPc; /* Program counter at start of opcode */
++#endif
++#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
++ int nProgressOps = 0; /* Opcodes executed since progress callback. */
++#endif
++
++ if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
++ assert( db->magic==SQLITE_MAGIC_BUSY );
++ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
++ p->rc = SQLITE_OK;
++ assert( p->explain==0 );
++ if( sqlite_malloc_failed ) goto no_mem;
++ pTos = p->pTos;
++ if( p->popStack ){
++ popStack(&pTos, p->popStack);
++ p->popStack = 0;
++ }
++ CHECK_FOR_INTERRUPT;
++ for(pc=p->pc; rc==SQLITE_OK; pc++){
++ assert( pc>=0 && pc<p->nOp );
++ assert( pTos<=&p->aStack[pc] );
++#ifdef VDBE_PROFILE
++ origPc = pc;
++ start = hwtime();
++#endif
++ pOp = &p->aOp[pc];
++
++ /* Only allow tracing if NDEBUG is not defined.
++ */
++#ifndef NDEBUG
++ if( p->trace ){
++ sqliteVdbePrintOp(p->trace, pc, pOp);
++ }
++#endif
++
++ /* Check to see if we need to simulate an interrupt. This only happens
++ ** if we have a special test build.
++ */
++#ifdef SQLITE_TEST
++ if( sqlite_interrupt_count>0 ){
++ sqlite_interrupt_count--;
++ if( sqlite_interrupt_count==0 ){
++ sqlite_interrupt(db);
++ }
++ }
++#endif
++
++#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
++ /* Call the progress callback if it is configured and the required number
++ ** of VDBE ops have been executed (either since this invocation of
++ ** sqliteVdbeExec() or since last time the progress callback was called).
++ ** If the progress callback returns non-zero, exit the virtual machine with
++ ** a return code SQLITE_ABORT.
++ */
++ if( db->xProgress ){
++ if( db->nProgressOps==nProgressOps ){
++ if( db->xProgress(db->pProgressArg)!=0 ){
++ rc = SQLITE_ABORT;
++ continue; /* skip to the next iteration of the for loop */
++ }
++ nProgressOps = 0;
++ }
++ nProgressOps++;
++ }
++#endif
++
++ switch( pOp->opcode ){
++
++/*****************************************************************************
++** What follows is a massive switch statement where each case implements a
++** separate instruction in the virtual machine. If we follow the usual
++** indentation conventions, each case should be indented by 6 spaces. But
++** that is a lot of wasted space on the left margin. So the code within
++** the switch statement will break with convention and be flush-left. Another
++** big comment (similar to this one) will mark the point in the code where
++** we transition back to normal indentation.
++**
++** The formatting of each case is important. The makefile for SQLite
++** generates two C files "opcodes.h" and "opcodes.c" by scanning this
++** file looking for lines that begin with "case OP_". The opcodes.h files
++** will be filled with #defines that give unique integer values to each
++** opcode and the opcodes.c file is filled with an array of strings where
++** each string is the symbolic name for the corresponding opcode.
++**
++** Documentation about VDBE opcodes is generated by scanning this file
++** for lines of that contain "Opcode:". That line and all subsequent
++** comment lines are used in the generation of the opcode.html documentation
++** file.
++**
++** SUMMARY:
++**
++** Formatting is important to scripts that scan this file.
++** Do not deviate from the formatting style currently in use.
++**
++*****************************************************************************/
++
++/* Opcode: Goto * P2 *
++**
++** An unconditional jump to address P2.
++** The next instruction executed will be
++** the one at index P2 from the beginning of
++** the program.
++*/
++case OP_Goto: {
++ CHECK_FOR_INTERRUPT;
++ pc = pOp->p2 - 1;
++ break;
++}
++
++/* Opcode: Gosub * P2 *
++**
++** Push the current address plus 1 onto the return address stack
++** and then jump to address P2.
++**
++** The return address stack is of limited depth. If too many
++** OP_Gosub operations occur without intervening OP_Returns, then
++** the return address stack will fill up and processing will abort
++** with a fatal error.
++*/
++case OP_Gosub: {
++ if( p->returnDepth>=sizeof(p->returnStack)/sizeof(p->returnStack[0]) ){
++ sqliteSetString(&p->zErrMsg, "return address stack overflow", (char*)0);
++ p->rc = SQLITE_INTERNAL;
++ return SQLITE_ERROR;
++ }
++ p->returnStack[p->returnDepth++] = pc+1;
++ pc = pOp->p2 - 1;
++ break;
++}
++
++/* Opcode: Return * * *
++**
++** Jump immediately to the next instruction after the last unreturned
++** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then
++** processing aborts with a fatal error.
++*/
++case OP_Return: {
++ if( p->returnDepth<=0 ){
++ sqliteSetString(&p->zErrMsg, "return address stack underflow", (char*)0);
++ p->rc = SQLITE_INTERNAL;
++ return SQLITE_ERROR;
++ }
++ p->returnDepth--;
++ pc = p->returnStack[p->returnDepth] - 1;
++ break;
++}
++
++/* Opcode: Halt P1 P2 *
++**
++** Exit immediately. All open cursors, Lists, Sorts, etc are closed
++** automatically.
++**
++** P1 is the result code returned by sqlite_exec(). For a normal
++** halt, this should be SQLITE_OK (0). For errors, it can be some
++** other value. If P1!=0 then P2 will determine whether or not to
++** rollback the current transaction. Do not rollback if P2==OE_Fail.
++** Do the rollback if P2==OE_Rollback. If P2==OE_Abort, then back
++** out all changes that have occurred during this execution of the
++** VDBE, but do not rollback the transaction.
++**
++** There is an implied "Halt 0 0 0" instruction inserted at the very end of
++** every program. So a jump past the last instruction of the program
++** is the same as executing Halt.
++*/
++case OP_Halt: {
++ p->magic = VDBE_MAGIC_HALT;
++ p->pTos = pTos;
++ if( pOp->p1!=SQLITE_OK ){
++ p->rc = pOp->p1;
++ p->errorAction = pOp->p2;
++ if( pOp->p3 ){
++ sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
++ }
++ return SQLITE_ERROR;
++ }else{
++ p->rc = SQLITE_OK;
++ return SQLITE_DONE;
++ }
++}
++
++/* Opcode: Integer P1 * P3
++**
++** The integer value P1 is pushed onto the stack. If P3 is not zero
++** then it is assumed to be a string representation of the same integer.
++*/
++case OP_Integer: {
++ pTos++;
++ pTos->i = pOp->p1;
++ pTos->flags = MEM_Int;
++ if( pOp->p3 ){
++ pTos->z = pOp->p3;
++ pTos->flags |= MEM_Str | MEM_Static;
++ pTos->n = strlen(pOp->p3)+1;
++ }
++ break;
++}
++
++/* Opcode: String * * P3
++**
++** The string value P3 is pushed onto the stack. If P3==0 then a
++** NULL is pushed onto the stack.
++*/
++case OP_String: {
++ char *z = pOp->p3;
++ pTos++;
++ if( z==0 ){
++ pTos->flags = MEM_Null;
++ }else{
++ pTos->z = z;
++ pTos->n = strlen(z) + 1;
++ pTos->flags = MEM_Str | MEM_Static;
++ }
++ break;
++}
++
++/* Opcode: Variable P1 * *
++**
++** Push the value of variable P1 onto the stack. A variable is
++** an unknown in the original SQL string as handed to sqlite_compile().
++** Any occurance of the '?' character in the original SQL is considered
++** a variable. Variables in the SQL string are number from left to
++** right beginning with 1. The values of variables are set using the
++** sqlite_bind() API.
++*/
++case OP_Variable: {
++ int j = pOp->p1 - 1;
++ pTos++;
++ if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
++ pTos->z = p->azVar[j];
++ pTos->n = p->anVar[j];
++ pTos->flags = MEM_Str | MEM_Static;
++ }else{
++ pTos->flags = MEM_Null;
++ }
++ break;
++}
++
++/* Opcode: Pop P1 * *
++**
++** P1 elements are popped off of the top of stack and discarded.
++*/
++case OP_Pop: {
++ assert( pOp->p1>=0 );
++ popStack(&pTos, pOp->p1);
++ assert( pTos>=&p->aStack[-1] );
++ break;
++}
++
++/* Opcode: Dup P1 P2 *
++**
++** A copy of the P1-th element of the stack
++** is made and pushed onto the top of the stack.
++** The top of the stack is element 0. So the
++** instruction "Dup 0 0 0" will make a copy of the
++** top of the stack.
++**
++** If the content of the P1-th element is a dynamically
++** allocated string, then a new copy of that string
++** is made if P2==0. If P2!=0, then just a pointer
++** to the string is copied.
++**
++** Also see the Pull instruction.
++*/
++case OP_Dup: {
++ Mem *pFrom = &pTos[-pOp->p1];
++ assert( pFrom<=pTos && pFrom>=p->aStack );
++ pTos++;
++ memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
++ if( pTos->flags & MEM_Str ){
++ if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
++ pTos->flags &= ~MEM_Dyn;
++ pTos->flags |= MEM_Ephem;
++ }else if( pTos->flags & MEM_Short ){
++ memcpy(pTos->zShort, pFrom->zShort, pTos->n);
++ pTos->z = pTos->zShort;
++ }else if( (pTos->flags & MEM_Static)==0 ){
++ pTos->z = sqliteMallocRaw(pFrom->n);
++ if( sqlite_malloc_failed ) goto no_mem;
++ memcpy(pTos->z, pFrom->z, pFrom->n);
++ pTos->flags &= ~(MEM_Static|MEM_Ephem|MEM_Short);
++ pTos->flags |= MEM_Dyn;
++ }
++ }
++ break;
++}
++
++/* Opcode: Pull P1 * *
++**
++** The P1-th element is removed from its current location on
++** the stack and pushed back on top of the stack. The
++** top of the stack is element 0, so "Pull 0 0 0" is
++** a no-op. "Pull 1 0 0" swaps the top two elements of
++** the stack.
++**
++** See also the Dup instruction.
++*/
++case OP_Pull: {
++ Mem *pFrom = &pTos[-pOp->p1];
++ int i;
++ Mem ts;
++
++ ts = *pFrom;
++ Deephemeralize(pTos);
++ for(i=0; i<pOp->p1; i++, pFrom++){
++ Deephemeralize(&pFrom[1]);
++ *pFrom = pFrom[1];
++ assert( (pFrom->flags & MEM_Ephem)==0 );
++ if( pFrom->flags & MEM_Short ){
++ assert( pFrom->flags & MEM_Str );
++ assert( pFrom->z==pFrom[1].zShort );
++ pFrom->z = pFrom->zShort;
++ }
++ }
++ *pTos = ts;
++ if( pTos->flags & MEM_Short ){
++ assert( pTos->flags & MEM_Str );
++ assert( pTos->z==pTos[-pOp->p1].zShort );
++ pTos->z = pTos->zShort;
++ }
++ break;
++}
++
++/* Opcode: Push P1 * *
++**
++** Overwrite the value of the P1-th element down on the
++** stack (P1==0 is the top of the stack) with the value
++** of the top of the stack. Then pop the top of the stack.
++*/
++case OP_Push: {
++ Mem *pTo = &pTos[-pOp->p1];
++
++ assert( pTo>=p->aStack );
++ Deephemeralize(pTos);
++ Release(pTo);
++ *pTo = *pTos;
++ if( pTo->flags & MEM_Short ){
++ assert( pTo->z==pTos->zShort );
++ pTo->z = pTo->zShort;
++ }
++ pTos--;
++ break;
++}
++
++
++/* Opcode: ColumnName P1 P2 P3
++**
++** P3 becomes the P1-th column name (first is 0). An array of pointers
++** to all column names is passed as the 4th parameter to the callback.
++** If P2==1 then this is the last column in the result set and thus the
++** number of columns in the result set will be P1. There must be at least
++** one OP_ColumnName with a P2==1 before invoking OP_Callback and the
++** number of columns specified in OP_Callback must one more than the P1
++** value of the OP_ColumnName that has P2==1.
++*/
++case OP_ColumnName: {
++ assert( pOp->p1>=0 && pOp->p1<p->nOp );
++ p->azColName[pOp->p1] = pOp->p3;
++ p->nCallback = 0;
++ if( pOp->p2 ) p->nResColumn = pOp->p1+1;
++ break;
++}
++
++/* Opcode: Callback P1 * *
++**
++** Pop P1 values off the stack and form them into an array. Then
++** invoke the callback function using the newly formed array as the
++** 3rd parameter.
++*/
++case OP_Callback: {
++ int i;
++ char **azArgv = p->zArgv;
++ Mem *pCol;
++
++ pCol = &pTos[1-pOp->p1];
++ assert( pCol>=p->aStack );
++ for(i=0; i<pOp->p1; i++, pCol++){
++ if( pCol->flags & MEM_Null ){
++ azArgv[i] = 0;
++ }else{
++ Stringify(pCol);
++ azArgv[i] = pCol->z;
++ }
++ }
++ azArgv[i] = 0;
++ p->nCallback++;
++ p->azResColumn = azArgv;
++ assert( p->nResColumn==pOp->p1 );
++ p->popStack = pOp->p1;
++ p->pc = pc + 1;
++ p->pTos = pTos;
++ return SQLITE_ROW;
++}
++
++/* Opcode: Concat P1 P2 P3
++**
++** Look at the first P1 elements of the stack. Append them all
++** together with the lowest element first. Use P3 as a separator.
++** Put the result on the top of the stack. The original P1 elements
++** are popped from the stack if P2==0 and retained if P2==1. If
++** any element of the stack is NULL, then the result is NULL.
++**
++** If P3 is NULL, then use no separator. When P1==1, this routine
++** makes a copy of the top stack element into memory obtained
++** from sqliteMalloc().
++*/
++case OP_Concat: {
++ char *zNew;
++ int nByte;
++ int nField;
++ int i, j;
++ char *zSep;
++ int nSep;
++ Mem *pTerm;
++
++ nField = pOp->p1;
++ zSep = pOp->p3;
++ if( zSep==0 ) zSep = "";
++ nSep = strlen(zSep);
++ assert( &pTos[1-nField] >= p->aStack );
++ nByte = 1 - nSep;
++ pTerm = &pTos[1-nField];
++ for(i=0; i<nField; i++, pTerm++){
++ if( pTerm->flags & MEM_Null ){
++ nByte = -1;
++ break;
++ }else{
++ Stringify(pTerm);
++ nByte += pTerm->n - 1 + nSep;
++ }
++ }
++ if( nByte<0 ){
++ if( pOp->p2==0 ){
++ popStack(&pTos, nField);
++ }
++ pTos++;
++ pTos->flags = MEM_Null;
++ break;
++ }
++ zNew = sqliteMallocRaw( nByte );
++ if( zNew==0 ) goto no_mem;
++ j = 0;
++ pTerm = &pTos[1-nField];
++ for(i=j=0; i<nField; i++, pTerm++){
++ assert( pTerm->flags & MEM_Str );
++ memcpy(&zNew[j], pTerm->z, pTerm->n-1);
++ j += pTerm->n-1;
++ if( nSep>0 && i<nField-1 ){
++ memcpy(&zNew[j], zSep, nSep);
++ j += nSep;
++ }
++ }
++ zNew[j] = 0;
++ if( pOp->p2==0 ){
++ popStack(&pTos, nField);
++ }
++ pTos++;
++ pTos->n = nByte;
++ pTos->flags = MEM_Str|MEM_Dyn;
++ pTos->z = zNew;
++ break;
++}
++
++/* Opcode: Add * * *
++**
++** Pop the top two elements from the stack, add them together,
++** and push the result back onto the stack. If either element
++** is a string then it is converted to a double using the atof()
++** function before the addition.
++** If either operand is NULL, the result is NULL.
++*/
++/* Opcode: Multiply * * *
++**
++** Pop the top two elements from the stack, multiply them together,
++** and push the result back onto the stack. If either element
++** is a string then it is converted to a double using the atof()
++** function before the multiplication.
++** If either operand is NULL, the result is NULL.
++*/
++/* Opcode: Subtract * * *
++**
++** Pop the top two elements from the stack, subtract the
++** first (what was on top of the stack) from the second (the
++** next on stack)
++** and push the result back onto the stack. If either element
++** is a string then it is converted to a double using the atof()
++** function before the subtraction.
++** If either operand is NULL, the result is NULL.
++*/
++/* Opcode: Divide * * *
++**
++** Pop the top two elements from the stack, divide the
++** first (what was on top of the stack) from the second (the
++** next on stack)
++** and push the result back onto the stack. If either element
++** is a string then it is converted to a double using the atof()
++** function before the division. Division by zero returns NULL.
++** If either operand is NULL, the result is NULL.
++*/
++/* Opcode: Remainder * * *
++**
++** Pop the top two elements from the stack, divide the
++** first (what was on top of the stack) from the second (the
++** next on stack)
++** and push the remainder after division onto the stack. If either element
++** is a string then it is converted to a double using the atof()
++** function before the division. Division by zero returns NULL.
++** If either operand is NULL, the result is NULL.
++*/
++case OP_Add:
++case OP_Subtract:
++case OP_Multiply:
++case OP_Divide:
++case OP_Remainder: {
++ Mem *pNos = &pTos[-1];
++ assert( pNos>=p->aStack );
++ if( ((pTos->flags | pNos->flags) & MEM_Null)!=0 ){
++ Release(pTos);
++ pTos--;
++ Release(pTos);
++ pTos->flags = MEM_Null;
++ }else if( (pTos->flags & pNos->flags & MEM_Int)==MEM_Int ){
++ int a, b;
++ a = pTos->i;
++ b = pNos->i;
++ switch( pOp->opcode ){
++ case OP_Add: b += a; break;
++ case OP_Subtract: b -= a; break;
++ case OP_Multiply: b *= a; break;
++ case OP_Divide: {
++ if( a==0 ) goto divide_by_zero;
++ b /= a;
++ break;
++ }
++ default: {
++ if( a==0 ) goto divide_by_zero;
++ b %= a;
++ break;
++ }
++ }
++ Release(pTos);
++ pTos--;
++ Release(pTos);
++ pTos->i = b;
++ pTos->flags = MEM_Int;
++ }else{
++ double a, b;
++ Realify(pTos);
++ Realify(pNos);
++ a = pTos->r;
++ b = pNos->r;
++ switch( pOp->opcode ){
++ case OP_Add: b += a; break;
++ case OP_Subtract: b -= a; break;
++ case OP_Multiply: b *= a; break;
++ case OP_Divide: {
++ if( a==0.0 ) goto divide_by_zero;
++ b /= a;
++ break;
++ }
++ default: {
++ int ia = (int)a;
++ int ib = (int)b;
++ if( ia==0.0 ) goto divide_by_zero;
++ b = ib % ia;
++ break;
++ }
++ }
++ Release(pTos);
++ pTos--;
++ Release(pTos);
++ pTos->r = b;
++ pTos->flags = MEM_Real;
++ }
++ break;
++
++divide_by_zero:
++ Release(pTos);
++ pTos--;
++ Release(pTos);
++ pTos->flags = MEM_Null;
++ break;
++}
++
++/* Opcode: Function P1 * P3
++**
++** Invoke a user function (P3 is a pointer to a Function structure that
++** defines the function) with P1 string arguments taken from the stack.
++** Pop all arguments from the stack and push back the result.
++**
++** See also: AggFunc
++*/
++case OP_Function: {
++ int n, i;
++ Mem *pArg;
++ char **azArgv;
++ sqlite_func ctx;
++
++ n = pOp->p1;
++ pArg = &pTos[1-n];
++ azArgv = p->zArgv;
++ for(i=0; i<n; i++, pArg++){
++ if( pArg->flags & MEM_Null ){
++ azArgv[i] = 0;
++ }else{
++ Stringify(pArg);
++ azArgv[i] = pArg->z;
++ }
++ }
++ ctx.pFunc = (FuncDef*)pOp->p3;
++ ctx.s.flags = MEM_Null;
++ ctx.s.z = 0;
++ ctx.isError = 0;
++ ctx.isStep = 0;
++ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
++ (*ctx.pFunc->xFunc)(&ctx, n, (const char**)azArgv);
++ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
++ popStack(&pTos, n);
++ pTos++;
++ *pTos = ctx.s;
++ if( pTos->flags & MEM_Short ){
++ pTos->z = pTos->zShort;
++ }
++ if( ctx.isError ){
++ sqliteSetString(&p->zErrMsg,
++ (pTos->flags & MEM_Str)!=0 ? pTos->z : "user function error", (char*)0);
++ rc = SQLITE_ERROR;
++ }
++ break;
++}
++
++/* Opcode: BitAnd * * *
++**
++** Pop the top two elements from the stack. Convert both elements
++** to integers. Push back onto the stack the bit-wise AND of the
++** two elements.
++** If either operand is NULL, the result is NULL.
++*/
++/* Opcode: BitOr * * *
++**
++** Pop the top two elements from the stack. Convert both elements
++** to integers. Push back onto the stack the bit-wise OR of the
++** two elements.
++** If either operand is NULL, the result is NULL.
++*/
++/* Opcode: ShiftLeft * * *
++**
++** Pop the top two elements from the stack. Convert both elements
++** to integers. Push back onto the stack the top element shifted
++** left by N bits where N is the second element on the stack.
++** If either operand is NULL, the result is NULL.
++*/
++/* Opcode: ShiftRight * * *
++**
++** Pop the top two elements from the stack. Convert both elements
++** to integers. Push back onto the stack the top element shifted
++** right by N bits where N is the second element on the stack.
++** If either operand is NULL, the result is NULL.
++*/
++case OP_BitAnd:
++case OP_BitOr:
++case OP_ShiftLeft:
++case OP_ShiftRight: {
++ Mem *pNos = &pTos[-1];
++ int a, b;
++
++ assert( pNos>=p->aStack );
++ if( (pTos->flags | pNos->flags) & MEM_Null ){
++ popStack(&pTos, 2);
++ pTos++;
++ pTos->flags = MEM_Null;
++ break;
++ }
++ Integerify(pTos);
++ Integerify(pNos);
++ a = pTos->i;
++ b = pNos->i;
++ switch( pOp->opcode ){
++ case OP_BitAnd: a &= b; break;
++ case OP_BitOr: a |= b; break;
++ case OP_ShiftLeft: a <<= b; break;
++ case OP_ShiftRight: a >>= b; break;
++ default: /* CANT HAPPEN */ break;
++ }
++ assert( (pTos->flags & MEM_Dyn)==0 );
++ assert( (pNos->flags & MEM_Dyn)==0 );
++ pTos--;
++ Release(pTos);
++ pTos->i = a;
++ pTos->flags = MEM_Int;
++ break;
++}
++
++/* Opcode: AddImm P1 * *
++**
++** Add the value P1 to whatever is on top of the stack. The result
++** is always an integer.
++**
++** To force the top of the stack to be an integer, just add 0.
++*/
++case OP_AddImm: {
++ assert( pTos>=p->aStack );
++ Integerify(pTos);
++ pTos->i += pOp->p1;
++ break;
++}
++
++/* Opcode: ForceInt P1 P2 *
++**
++** Convert the top of the stack into an integer. If the current top of
++** the stack is not numeric (meaning that is is a NULL or a string that
++** does not look like an integer or floating point number) then pop the
++** stack and jump to P2. If the top of the stack is numeric then
++** convert it into the least integer that is greater than or equal to its
++** current value if P1==0, or to the least integer that is strictly
++** greater than its current value if P1==1.
++*/
++case OP_ForceInt: {
++ int v;
++ assert( pTos>=p->aStack );
++ if( (pTos->flags & (MEM_Int|MEM_Real))==0
++ && ((pTos->flags & MEM_Str)==0 || sqliteIsNumber(pTos->z)==0) ){
++ Release(pTos);
++ pTos--;
++ pc = pOp->p2 - 1;
++ break;
++ }
++ if( pTos->flags & MEM_Int ){
++ v = pTos->i + (pOp->p1!=0);
++ }else{
++ Realify(pTos);
++ v = (int)pTos->r;
++ if( pTos->r>(double)v ) v++;
++ if( pOp->p1 && pTos->r==(double)v ) v++;
++ }
++ Release(pTos);
++ pTos->i = v;
++ pTos->flags = MEM_Int;
++ break;
++}
++
++/* Opcode: MustBeInt P1 P2 *
++**
++** Force the top of the stack to be an integer. If the top of the
++** stack is not an integer and cannot be converted into an integer
++** with out data loss, then jump immediately to P2, or if P2==0
++** raise an SQLITE_MISMATCH exception.
++**
++** If the top of the stack is not an integer and P2 is not zero and
++** P1 is 1, then the stack is popped. In all other cases, the depth
++** of the stack is unchanged.
++*/
++case OP_MustBeInt: {
++ assert( pTos>=p->aStack );
++ if( pTos->flags & MEM_Int ){
++ /* Do nothing */
++ }else if( pTos->flags & MEM_Real ){
++ int i = (int)pTos->r;
++ double r = (double)i;
++ if( r!=pTos->r ){
++ goto mismatch;
++ }
++ pTos->i = i;
++ }else if( pTos->flags & MEM_Str ){
++ int v;
++ if( !toInt(pTos->z, &v) ){
++ double r;
++ if( !sqliteIsNumber(pTos->z) ){
++ goto mismatch;
++ }
++ Realify(pTos);
++ v = (int)pTos->r;
++ r = (double)v;
++ if( r!=pTos->r ){
++ goto mismatch;
++ }
++ }
++ pTos->i = v;
++ }else{
++ goto mismatch;
++ }
++ Release(pTos);
++ pTos->flags = MEM_Int;
++ break;
++
++mismatch:
++ if( pOp->p2==0 ){
++ rc = SQLITE_MISMATCH;
++ goto abort_due_to_error;
++ }else{
++ if( pOp->p1 ) popStack(&pTos, 1);
++ pc = pOp->p2 - 1;
++ }
++ break;
++}
++
++/* Opcode: Eq P1 P2 *
++**
++** Pop the top two elements from the stack. If they are equal, then
++** jump to instruction P2. Otherwise, continue to the next instruction.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** If both values are numeric, they are converted to doubles using atof()
++** and compared for equality that way. Otherwise the strcmp() library
++** routine is used for the comparison. For a pure text comparison
++** use OP_StrEq.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++/* Opcode: Ne P1 P2 *
++**
++** Pop the top two elements from the stack. If they are not equal, then
++** jump to instruction P2. Otherwise, continue to the next instruction.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** If both values are numeric, they are converted to doubles using atof()
++** and compared in that format. Otherwise the strcmp() library
++** routine is used for the comparison. For a pure text comparison
++** use OP_StrNe.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++/* Opcode: Lt P1 P2 *
++**
++** Pop the top two elements from the stack. If second element (the
++** next on stack) is less than the first (the top of stack), then
++** jump to instruction P2. Otherwise, continue to the next instruction.
++** In other words, jump if NOS<TOS.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** If both values are numeric, they are converted to doubles using atof()
++** and compared in that format. Numeric values are always less than
++** non-numeric values. If both operands are non-numeric, the strcmp() library
++** routine is used for the comparison. For a pure text comparison
++** use OP_StrLt.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++/* Opcode: Le P1 P2 *
++**
++** Pop the top two elements from the stack. If second element (the
++** next on stack) is less than or equal to the first (the top of stack),
++** then jump to instruction P2. In other words, jump if NOS<=TOS.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** If both values are numeric, they are converted to doubles using atof()
++** and compared in that format. Numeric values are always less than
++** non-numeric values. If both operands are non-numeric, the strcmp() library
++** routine is used for the comparison. For a pure text comparison
++** use OP_StrLe.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++/* Opcode: Gt P1 P2 *
++**
++** Pop the top two elements from the stack. If second element (the
++** next on stack) is greater than the first (the top of stack),
++** then jump to instruction P2. In other words, jump if NOS>TOS.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** If both values are numeric, they are converted to doubles using atof()
++** and compared in that format. Numeric values are always less than
++** non-numeric values. If both operands are non-numeric, the strcmp() library
++** routine is used for the comparison. For a pure text comparison
++** use OP_StrGt.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++/* Opcode: Ge P1 P2 *
++**
++** Pop the top two elements from the stack. If second element (the next
++** on stack) is greater than or equal to the first (the top of stack),
++** then jump to instruction P2. In other words, jump if NOS>=TOS.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** If both values are numeric, they are converted to doubles using atof()
++** and compared in that format. Numeric values are always less than
++** non-numeric values. If both operands are non-numeric, the strcmp() library
++** routine is used for the comparison. For a pure text comparison
++** use OP_StrGe.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++case OP_Eq:
++case OP_Ne:
++case OP_Lt:
++case OP_Le:
++case OP_Gt:
++case OP_Ge: {
++ Mem *pNos = &pTos[-1];
++ int c, v;
++ int ft, fn;
++ assert( pNos>=p->aStack );
++ ft = pTos->flags;
++ fn = pNos->flags;
++ if( (ft | fn) & MEM_Null ){
++ popStack(&pTos, 2);
++ if( pOp->p2 ){
++ if( pOp->p1 ) pc = pOp->p2-1;
++ }else{
++ pTos++;
++ pTos->flags = MEM_Null;
++ }
++ break;
++ }else if( (ft & fn & MEM_Int)==MEM_Int ){
++ c = pNos->i - pTos->i;
++ }else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(pNos->z,&v) ){
++ c = v - pTos->i;
++ }else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(pTos->z,&v) ){
++ c = pNos->i - v;
++ }else{
++ Stringify(pTos);
++ Stringify(pNos);
++ c = sqliteCompare(pNos->z, pTos->z);
++ }
++ switch( pOp->opcode ){
++ case OP_Eq: c = c==0; break;
++ case OP_Ne: c = c!=0; break;
++ case OP_Lt: c = c<0; break;
++ case OP_Le: c = c<=0; break;
++ case OP_Gt: c = c>0; break;
++ default: c = c>=0; break;
++ }
++ popStack(&pTos, 2);
++ if( pOp->p2 ){
++ if( c ) pc = pOp->p2-1;
++ }else{
++ pTos++;
++ pTos->i = c;
++ pTos->flags = MEM_Int;
++ }
++ break;
++}
++/* INSERT NO CODE HERE!
++**
++** The opcode numbers are extracted from this source file by doing
++**
++** grep '^case OP_' vdbe.c | ... >opcodes.h
++**
++** The opcodes are numbered in the order that they appear in this file.
++** But in order for the expression generating code to work right, the
++** string comparison operators that follow must be numbered exactly 6
++** greater than the numeric comparison opcodes above. So no other
++** cases can appear between the two.
++*/
++/* Opcode: StrEq P1 P2 *
++**
++** Pop the top two elements from the stack. If they are equal, then
++** jump to instruction P2. Otherwise, continue to the next instruction.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** The strcmp() library routine is used for the comparison. For a
++** numeric comparison, use OP_Eq.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++/* Opcode: StrNe P1 P2 *
++**
++** Pop the top two elements from the stack. If they are not equal, then
++** jump to instruction P2. Otherwise, continue to the next instruction.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** The strcmp() library routine is used for the comparison. For a
++** numeric comparison, use OP_Ne.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++/* Opcode: StrLt P1 P2 *
++**
++** Pop the top two elements from the stack. If second element (the
++** next on stack) is less than the first (the top of stack), then
++** jump to instruction P2. Otherwise, continue to the next instruction.
++** In other words, jump if NOS<TOS.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** The strcmp() library routine is used for the comparison. For a
++** numeric comparison, use OP_Lt.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++/* Opcode: StrLe P1 P2 *
++**
++** Pop the top two elements from the stack. If second element (the
++** next on stack) is less than or equal to the first (the top of stack),
++** then jump to instruction P2. In other words, jump if NOS<=TOS.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** The strcmp() library routine is used for the comparison. For a
++** numeric comparison, use OP_Le.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++/* Opcode: StrGt P1 P2 *
++**
++** Pop the top two elements from the stack. If second element (the
++** next on stack) is greater than the first (the top of stack),
++** then jump to instruction P2. In other words, jump if NOS>TOS.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** The strcmp() library routine is used for the comparison. For a
++** numeric comparison, use OP_Gt.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++/* Opcode: StrGe P1 P2 *
++**
++** Pop the top two elements from the stack. If second element (the next
++** on stack) is greater than or equal to the first (the top of stack),
++** then jump to instruction P2. In other words, jump if NOS>=TOS.
++**
++** If either operand is NULL (and thus if the result is unknown) then
++** take the jump if P1 is true.
++**
++** The strcmp() library routine is used for the comparison. For a
++** numeric comparison, use OP_Ge.
++**
++** If P2 is zero, do not jump. Instead, push an integer 1 onto the
++** stack if the jump would have been taken, or a 0 if not. Push a
++** NULL if either operand was NULL.
++*/
++case OP_StrEq:
++case OP_StrNe:
++case OP_StrLt:
++case OP_StrLe:
++case OP_StrGt:
++case OP_StrGe: {
++ Mem *pNos = &pTos[-1];
++ int c;
++ assert( pNos>=p->aStack );
++ if( (pNos->flags | pTos->flags) & MEM_Null ){
++ popStack(&pTos, 2);
++ if( pOp->p2 ){
++ if( pOp->p1 ) pc = pOp->p2-1;
++ }else{
++ pTos++;
++ pTos->flags = MEM_Null;
++ }
++ break;
++ }else{
++ Stringify(pTos);
++ Stringify(pNos);
++ c = strcmp(pNos->z, pTos->z);
++ }
++ /* The asserts on each case of the following switch are there to verify
++ ** that string comparison opcodes are always exactly 6 greater than the
++ ** corresponding numeric comparison opcodes. The code generator depends
++ ** on this fact.
++ */
++ switch( pOp->opcode ){
++ case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break;
++ case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break;
++ case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break;
++ case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break;
++ case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break;
++ default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break;
++ }
++ popStack(&pTos, 2);
++ if( pOp->p2 ){
++ if( c ) pc = pOp->p2-1;
++ }else{
++ pTos++;
++ pTos->flags = MEM_Int;
++ pTos->i = c;
++ }
++ break;
++}
++
++/* Opcode: And * * *
++**
++** Pop two values off the stack. Take the logical AND of the
++** two values and push the resulting boolean value back onto the
++** stack.
++*/
++/* Opcode: Or * * *
++**
++** Pop two values off the stack. Take the logical OR of the
++** two values and push the resulting boolean value back onto the
++** stack.
++*/
++case OP_And:
++case OP_Or: {
++ Mem *pNos = &pTos[-1];
++ int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
++
++ assert( pNos>=p->aStack );
++ if( pTos->flags & MEM_Null ){
++ v1 = 2;
++ }else{
++ Integerify(pTos);
++ v1 = pTos->i==0;
++ }
++ if( pNos->flags & MEM_Null ){
++ v2 = 2;
++ }else{
++ Integerify(pNos);
++ v2 = pNos->i==0;
++ }
++ if( pOp->opcode==OP_And ){
++ static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
++ v1 = and_logic[v1*3+v2];
++ }else{
++ static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
++ v1 = or_logic[v1*3+v2];
++ }
++ popStack(&pTos, 2);
++ pTos++;
++ if( v1==2 ){
++ pTos->flags = MEM_Null;
++ }else{
++ pTos->i = v1==0;
++ pTos->flags = MEM_Int;
++ }
++ break;
++}
++
++/* Opcode: Negative * * *
++**
++** Treat the top of the stack as a numeric quantity. Replace it
++** with its additive inverse. If the top of the stack is NULL
++** its value is unchanged.
++*/
++/* Opcode: AbsValue * * *
++**
++** Treat the top of the stack as a numeric quantity. Replace it
++** with its absolute value. If the top of the stack is NULL
++** its value is unchanged.
++*/
++case OP_Negative:
++case OP_AbsValue: {
++ assert( pTos>=p->aStack );
++ if( pTos->flags & MEM_Real ){
++ Release(pTos);
++ if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
++ pTos->r = -pTos->r;
++ }
++ pTos->flags = MEM_Real;
++ }else if( pTos->flags & MEM_Int ){
++ Release(pTos);
++ if( pOp->opcode==OP_Negative || pTos->i<0 ){
++ pTos->i = -pTos->i;
++ }
++ pTos->flags = MEM_Int;
++ }else if( pTos->flags & MEM_Null ){
++ /* Do nothing */
++ }else{
++ Realify(pTos);
++ Release(pTos);
++ if( pOp->opcode==OP_Negative || pTos->r<0.0 ){
++ pTos->r = -pTos->r;
++ }
++ pTos->flags = MEM_Real;
++ }
++ break;
++}
++
++/* Opcode: Not * * *
++**
++** Interpret the top of the stack as a boolean value. Replace it
++** with its complement. If the top of the stack is NULL its value
++** is unchanged.
++*/
++case OP_Not: {
++ assert( pTos>=p->aStack );
++ if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
++ Integerify(pTos);
++ Release(pTos);
++ pTos->i = !pTos->i;
++ pTos->flags = MEM_Int;
++ break;
++}
++
++/* Opcode: BitNot * * *
++**
++** Interpret the top of the stack as an value. Replace it
++** with its ones-complement. If the top of the stack is NULL its
++** value is unchanged.
++*/
++case OP_BitNot: {
++ assert( pTos>=p->aStack );
++ if( pTos->flags & MEM_Null ) break; /* Do nothing to NULLs */
++ Integerify(pTos);
++ Release(pTos);
++ pTos->i = ~pTos->i;
++ pTos->flags = MEM_Int;
++ break;
++}
++
++/* Opcode: Noop * * *
++**
++** Do nothing. This instruction is often useful as a jump
++** destination.
++*/
++case OP_Noop: {
++ break;
++}
++
++/* Opcode: If P1 P2 *
++**
++** Pop a single boolean from the stack. If the boolean popped is
++** true, then jump to p2. Otherwise continue to the next instruction.
++** An integer is false if zero and true otherwise. A string is
++** false if it has zero length and true otherwise.
++**
++** If the value popped of the stack is NULL, then take the jump if P1
++** is true and fall through if P1 is false.
++*/
++/* Opcode: IfNot P1 P2 *
++**
++** Pop a single boolean from the stack. If the boolean popped is
++** false, then jump to p2. Otherwise continue to the next instruction.
++** An integer is false if zero and true otherwise. A string is
++** false if it has zero length and true otherwise.
++**
++** If the value popped of the stack is NULL, then take the jump if P1
++** is true and fall through if P1 is false.
++*/
++case OP_If:
++case OP_IfNot: {
++ int c;
++ assert( pTos>=p->aStack );
++ if( pTos->flags & MEM_Null ){
++ c = pOp->p1;
++ }else{
++ Integerify(pTos);
++ c = pTos->i;
++ if( pOp->opcode==OP_IfNot ) c = !c;
++ }
++ assert( (pTos->flags & MEM_Dyn)==0 );
++ pTos--;
++ if( c ) pc = pOp->p2-1;
++ break;
++}
++
++/* Opcode: IsNull P1 P2 *
++**
++** If any of the top abs(P1) values on the stack are NULL, then jump
++** to P2. Pop the stack P1 times if P1>0. If P1<0 leave the stack
++** unchanged.
++*/
++case OP_IsNull: {
++ int i, cnt;
++ Mem *pTerm;
++ cnt = pOp->p1;
++ if( cnt<0 ) cnt = -cnt;
++ pTerm = &pTos[1-cnt];
++ assert( pTerm>=p->aStack );
++ for(i=0; i<cnt; i++, pTerm++){
++ if( pTerm->flags & MEM_Null ){
++ pc = pOp->p2-1;
++ break;
++ }
++ }
++ if( pOp->p1>0 ) popStack(&pTos, cnt);
++ break;
++}
++
++/* Opcode: NotNull P1 P2 *
++**
++** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
++** stack if P1 times if P1 is greater than zero. If P1 is less than
++** zero then leave the stack unchanged.
++*/
++case OP_NotNull: {
++ int i, cnt;
++ cnt = pOp->p1;
++ if( cnt<0 ) cnt = -cnt;
++ assert( &pTos[1-cnt] >= p->aStack );
++ for(i=0; i<cnt && (pTos[1+i-cnt].flags & MEM_Null)==0; i++){}
++ if( i>=cnt ) pc = pOp->p2-1;
++ if( pOp->p1>0 ) popStack(&pTos, cnt);
++ break;
++}
++
++/* Opcode: MakeRecord P1 P2 *
++**
++** Convert the top P1 entries of the stack into a single entry
++** suitable for use as a data record in a database table. The
++** details of the format are irrelavant as long as the OP_Column
++** opcode can decode the record later. Refer to source code
++** comments for the details of the record format.
++**
++** If P2 is true (non-zero) and one or more of the P1 entries
++** that go into building the record is NULL, then add some extra
++** bytes to the record to make it distinct for other entries created
++** during the same run of the VDBE. The extra bytes added are a
++** counter that is reset with each run of the VDBE, so records
++** created this way will not necessarily be distinct across runs.
++** But they should be distinct for transient tables (created using
++** OP_OpenTemp) which is what they are intended for.
++**
++** (Later:) The P2==1 option was intended to make NULLs distinct
++** for the UNION operator. But I have since discovered that NULLs
++** are indistinct for UNION. So this option is never used.
++*/
++case OP_MakeRecord: {
++ char *zNewRecord;
++ int nByte;
++ int nField;
++ int i, j;
++ int idxWidth;
++ u32 addr;
++ Mem *pRec;
++ int addUnique = 0; /* True to cause bytes to be added to make the
++ ** generated record distinct */
++ char zTemp[NBFS]; /* Temp space for small records */
++
++ /* Assuming the record contains N fields, the record format looks
++ ** like this:
++ **
++ ** -------------------------------------------------------------------
++ ** | idx0 | idx1 | ... | idx(N-1) | idx(N) | data0 | ... | data(N-1) |
++ ** -------------------------------------------------------------------
++ **
++ ** All data fields are converted to strings before being stored and
++ ** are stored with their null terminators. NULL entries omit the
++ ** null terminator. Thus an empty string uses 1 byte and a NULL uses
++ ** zero bytes. Data(0) is taken from the lowest element of the stack
++ ** and data(N-1) is the top of the stack.
++ **
++ ** Each of the idx() entries is either 1, 2, or 3 bytes depending on
++ ** how big the total record is. Idx(0) contains the offset to the start
++ ** of data(0). Idx(k) contains the offset to the start of data(k).
++ ** Idx(N) contains the total number of bytes in the record.
++ */
++ nField = pOp->p1;
++ pRec = &pTos[1-nField];
++ assert( pRec>=p->aStack );
++ nByte = 0;
++ for(i=0; i<nField; i++, pRec++){
++ if( pRec->flags & MEM_Null ){
++ addUnique = pOp->p2;
++ }else{
++ Stringify(pRec);
++ nByte += pRec->n;
++ }
++ }
++ if( addUnique ) nByte += sizeof(p->uniqueCnt);
++ if( nByte + nField + 1 < 256 ){
++ idxWidth = 1;
++ }else if( nByte + 2*nField + 2 < 65536 ){
++ idxWidth = 2;
++ }else{
++ idxWidth = 3;
++ }
++ nByte += idxWidth*(nField + 1);
++ if( nByte>MAX_BYTES_PER_ROW ){
++ rc = SQLITE_TOOBIG;
++ goto abort_due_to_error;
++ }
++ if( nByte<=NBFS ){
++ zNewRecord = zTemp;
++ }else{
++ zNewRecord = sqliteMallocRaw( nByte );
++ if( zNewRecord==0 ) goto no_mem;
++ }
++ j = 0;
++ addr = idxWidth*(nField+1) + addUnique*sizeof(p->uniqueCnt);
++ for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
++ zNewRecord[j++] = addr & 0xff;
++ if( idxWidth>1 ){
++ zNewRecord[j++] = (addr>>8)&0xff;
++ if( idxWidth>2 ){
++ zNewRecord[j++] = (addr>>16)&0xff;
++ }
++ }
++ if( (pRec->flags & MEM_Null)==0 ){
++ addr += pRec->n;
++ }
++ }
++ zNewRecord[j++] = addr & 0xff;
++ if( idxWidth>1 ){
++ zNewRecord[j++] = (addr>>8)&0xff;
++ if( idxWidth>2 ){
++ zNewRecord[j++] = (addr>>16)&0xff;
++ }
++ }
++ if( addUnique ){
++ memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
++ p->uniqueCnt++;
++ j += sizeof(p->uniqueCnt);
++ }
++ for(i=0, pRec=&pTos[1-nField]; i<nField; i++, pRec++){
++ if( (pRec->flags & MEM_Null)==0 ){
++ memcpy(&zNewRecord[j], pRec->z, pRec->n);
++ j += pRec->n;
++ }
++ }
++ popStack(&pTos, nField);
++ pTos++;
++ pTos->n = nByte;
++ if( nByte<=NBFS ){
++ assert( zNewRecord==zTemp );
++ memcpy(pTos->zShort, zTemp, nByte);
++ pTos->z = pTos->zShort;
++ pTos->flags = MEM_Str | MEM_Short;
++ }else{
++ assert( zNewRecord!=zTemp );
++ pTos->z = zNewRecord;
++ pTos->flags = MEM_Str | MEM_Dyn;
++ }
++ break;
++}
++
++/* Opcode: MakeKey P1 P2 P3
++**
++** Convert the top P1 entries of the stack into a single entry suitable
++** for use as the key in an index. The top P1 records are
++** converted to strings and merged. The null-terminators
++** are retained and used as separators.
++** The lowest entry in the stack is the first field and the top of the
++** stack becomes the last.
++**
++** If P2 is not zero, then the original entries remain on the stack
++** and the new key is pushed on top. If P2 is zero, the original
++** data is popped off the stack first then the new key is pushed
++** back in its place.
++**
++** P3 is a string that is P1 characters long. Each character is either
++** an 'n' or a 't' to indicates if the argument should be intepreted as
++** numeric or text type. The first character of P3 corresponds to the
++** lowest element on the stack. If P3 is NULL then all arguments are
++** assumed to be of the numeric type.
++**
++** The type makes a difference in that text-type fields may not be
++** introduced by 'b' (as described in the next paragraph). The
++** first character of a text-type field must be either 'a' (if it is NULL)
++** or 'c'. Numeric fields will be introduced by 'b' if their content
++** looks like a well-formed number. Otherwise the 'a' or 'c' will be
++** used.
++**
++** The key is a concatenation of fields. Each field is terminated by
++** a single 0x00 character. A NULL field is introduced by an 'a' and
++** is followed immediately by its 0x00 terminator. A numeric field is
++** introduced by a single character 'b' and is followed by a sequence
++** of characters that represent the number such that a comparison of
++** the character string using memcpy() sorts the numbers in numerical
++** order. The character strings for numbers are generated using the
++** sqliteRealToSortable() function. A text field is introduced by a
++** 'c' character and is followed by the exact text of the field. The
++** use of an 'a', 'b', or 'c' character at the beginning of each field
++** guarantees that NULLs sort before numbers and that numbers sort
++** before text. 0x00 characters do not occur except as separators
++** between fields.
++**
++** See also: MakeIdxKey, SortMakeKey
++*/
++/* Opcode: MakeIdxKey P1 P2 P3
++**
++** Convert the top P1 entries of the stack into a single entry suitable
++** for use as the key in an index. In addition, take one additional integer
++** off of the stack, treat that integer as a four-byte record number, and
++** append the four bytes to the key. Thus a total of P1+1 entries are
++** popped from the stack for this instruction and a single entry is pushed
++** back. The first P1 entries that are popped are strings and the last
++** entry (the lowest on the stack) is an integer record number.
++**
++** The converstion of the first P1 string entries occurs just like in
++** MakeKey. Each entry is separated from the others by a null.
++** The entire concatenation is null-terminated. The lowest entry
++** in the stack is the first field and the top of the stack becomes the
++** last.
++**
++** If P2 is not zero and one or more of the P1 entries that go into the
++** generated key is NULL, then jump to P2 after the new key has been
++** pushed on the stack. In other words, jump to P2 if the key is
++** guaranteed to be unique. This jump can be used to skip a subsequent
++** uniqueness test.
++**
++** P3 is a string that is P1 characters long. Each character is either
++** an 'n' or a 't' to indicates if the argument should be numeric or
++** text. The first character corresponds to the lowest element on the
++** stack. If P3 is null then all arguments are assumed to be numeric.
++**
++** See also: MakeKey, SortMakeKey
++*/
++case OP_MakeIdxKey:
++case OP_MakeKey: {
++ char *zNewKey;
++ int nByte;
++ int nField;
++ int addRowid;
++ int i, j;
++ int containsNull = 0;
++ Mem *pRec;
++ char zTemp[NBFS];
++
++ addRowid = pOp->opcode==OP_MakeIdxKey;
++ nField = pOp->p1;
++ pRec = &pTos[1-nField];
++ assert( pRec>=p->aStack );
++ nByte = 0;
++ for(j=0, i=0; i<nField; i++, j++, pRec++){
++ int flags = pRec->flags;
++ int len;
++ char *z;
++ if( flags & MEM_Null ){
++ nByte += 2;
++ containsNull = 1;
++ }else if( pOp->p3 && pOp->p3[j]=='t' ){
++ Stringify(pRec);
++ pRec->flags &= ~(MEM_Int|MEM_Real);
++ nByte += pRec->n+1;
++ }else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(pRec->z) ){
++ if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
++ pRec->r = pRec->i;
++ }else if( (flags & (MEM_Real|MEM_Int))==0 ){
++ pRec->r = sqliteAtoF(pRec->z, 0);
++ }
++ Release(pRec);
++ z = pRec->zShort;
++ sqliteRealToSortable(pRec->r, z);
++ len = strlen(z);
++ pRec->z = 0;
++ pRec->flags = MEM_Real;
++ pRec->n = len+1;
++ nByte += pRec->n+1;
++ }else{
++ nByte += pRec->n+1;
++ }
++ }
++ if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
++ rc = SQLITE_TOOBIG;
++ goto abort_due_to_error;
++ }
++ if( addRowid ) nByte += sizeof(u32);
++ if( nByte<=NBFS ){
++ zNewKey = zTemp;
++ }else{
++ zNewKey = sqliteMallocRaw( nByte );
++ if( zNewKey==0 ) goto no_mem;
++ }
++ j = 0;
++ pRec = &pTos[1-nField];
++ for(i=0; i<nField; i++, pRec++){
++ if( pRec->flags & MEM_Null ){
++ zNewKey[j++] = 'a';
++ zNewKey[j++] = 0;
++ }else if( pRec->flags==MEM_Real ){
++ zNewKey[j++] = 'b';
++ memcpy(&zNewKey[j], pRec->zShort, pRec->n);
++ j += pRec->n;
++ }else{
++ assert( pRec->flags & MEM_Str );
++ zNewKey[j++] = 'c';
++ memcpy(&zNewKey[j], pRec->z, pRec->n);
++ j += pRec->n;
++ }
++ }
++ if( addRowid ){
++ u32 iKey;
++ pRec = &pTos[-nField];
++ assert( pRec>=p->aStack );
++ Integerify(pRec);
++ iKey = intToKey(pRec->i);
++ memcpy(&zNewKey[j], &iKey, sizeof(u32));
++ popStack(&pTos, nField+1);
++ if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
++ }else{
++ if( pOp->p2==0 ) popStack(&pTos, nField);
++ }
++ pTos++;
++ pTos->n = nByte;
++ if( nByte<=NBFS ){
++ assert( zNewKey==zTemp );
++ pTos->z = pTos->zShort;
++ memcpy(pTos->zShort, zTemp, nByte);
++ pTos->flags = MEM_Str | MEM_Short;
++ }else{
++ pTos->z = zNewKey;
++ pTos->flags = MEM_Str | MEM_Dyn;
++ }
++ break;
++}
++
++/* Opcode: IncrKey * * *
++**
++** The top of the stack should contain an index key generated by
++** The MakeKey opcode. This routine increases the least significant
++** byte of that key by one. This is used so that the MoveTo opcode
++** will move to the first entry greater than the key rather than to
++** the key itself.
++*/
++case OP_IncrKey: {
++ assert( pTos>=p->aStack );
++ /* The IncrKey opcode is only applied to keys generated by
++ ** MakeKey or MakeIdxKey and the results of those operands
++ ** are always dynamic strings or zShort[] strings. So we
++ ** are always free to modify the string in place.
++ */
++ assert( pTos->flags & (MEM_Dyn|MEM_Short) );
++ pTos->z[pTos->n-1]++;
++ break;
++}
++
++/* Opcode: Checkpoint P1 * *
++**
++** Begin a checkpoint. A checkpoint is the beginning of a operation that
++** is part of a larger transaction but which might need to be rolled back
++** itself without effecting the containing transaction. A checkpoint will
++** be automatically committed or rollback when the VDBE halts.
++**
++** The checkpoint is begun on the database file with index P1. The main
++** database file has an index of 0 and the file used for temporary tables
++** has an index of 1.
++*/
++case OP_Checkpoint: {
++ int i = pOp->p1;
++ if( i>=0 && i<db->nDb && db->aDb[i].pBt && db->aDb[i].inTrans==1 ){
++ rc = sqliteBtreeBeginCkpt(db->aDb[i].pBt);
++ if( rc==SQLITE_OK ) db->aDb[i].inTrans = 2;
++ }
++ break;
++}
++
++/* Opcode: Transaction P1 * *
++**
++** Begin a transaction. The transaction ends when a Commit or Rollback
++** opcode is encountered. Depending on the ON CONFLICT setting, the
++** transaction might also be rolled back if an error is encountered.
++**
++** P1 is the index of the database file on which the transaction is
++** started. Index 0 is the main database file and index 1 is the
++** file used for temporary tables.
++**
++** A write lock is obtained on the database file when a transaction is
++** started. No other process can read or write the file while the
++** transaction is underway. Starting a transaction also creates a
++** rollback journal. A transaction must be started before any changes
++** can be made to the database.
++*/
++case OP_Transaction: {
++ int busy = 1;
++ int i = pOp->p1;
++ assert( i>=0 && i<db->nDb );
++ if( db->aDb[i].inTrans ) break;
++ while( db->aDb[i].pBt!=0 && busy ){
++ rc = sqliteBtreeBeginTrans(db->aDb[i].pBt);
++ switch( rc ){
++ case SQLITE_BUSY: {
++ if( db->xBusyCallback==0 ){
++ p->pc = pc;
++ p->undoTransOnError = 1;
++ p->rc = SQLITE_BUSY;
++ p->pTos = pTos;
++ return SQLITE_BUSY;
++ }else if( (*db->xBusyCallback)(db->pBusyArg, "", busy++)==0 ){
++ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
++ busy = 0;
++ }
++ break;
++ }
++ case SQLITE_READONLY: {
++ rc = SQLITE_OK;
++ /* Fall thru into the next case */
++ }
++ case SQLITE_OK: {
++ p->inTempTrans = 0;
++ busy = 0;
++ break;
++ }
++ default: {
++ goto abort_due_to_error;
++ }
++ }
++ }
++ db->aDb[i].inTrans = 1;
++ p->undoTransOnError = 1;
++ break;
++}
++
++/* Opcode: Commit * * *
++**
++** Cause all modifications to the database that have been made since the
++** last Transaction to actually take effect. No additional modifications
++** are allowed until another transaction is started. The Commit instruction
++** deletes the journal file and releases the write lock on the database.
++** A read lock continues to be held if there are still cursors open.
++*/
++case OP_Commit: {
++ int i;
++ if( db->xCommitCallback!=0 ){
++ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
++ if( db->xCommitCallback(db->pCommitArg)!=0 ){
++ rc = SQLITE_CONSTRAINT;
++ }
++ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
++ }
++ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
++ if( db->aDb[i].inTrans ){
++ rc = sqliteBtreeCommit(db->aDb[i].pBt);
++ db->aDb[i].inTrans = 0;
++ }
++ }
++ if( rc==SQLITE_OK ){
++ sqliteCommitInternalChanges(db);
++ }else{
++ sqliteRollbackAll(db);
++ }
++ break;
++}
++
++/* Opcode: Rollback P1 * *
++**
++** Cause all modifications to the database that have been made since the
++** last Transaction to be undone. The database is restored to its state
++** before the Transaction opcode was executed. No additional modifications
++** are allowed until another transaction is started.
++**
++** P1 is the index of the database file that is committed. An index of 0
++** is used for the main database and an index of 1 is used for the file used
++** to hold temporary tables.
++**
++** This instruction automatically closes all cursors and releases both
++** the read and write locks on the indicated database.
++*/
++case OP_Rollback: {
++ sqliteRollbackAll(db);
++ break;
++}
++
++/* Opcode: ReadCookie P1 P2 *
++**
++** Read cookie number P2 from database P1 and push it onto the stack.
++** P2==0 is the schema version. P2==1 is the database format.
++** P2==2 is the recommended pager cache size, and so forth. P1==0 is
++** the main database file and P1==1 is the database file used to store
++** temporary tables.
++**
++** There must be a read-lock on the database (either a transaction
++** must be started or there must be an open cursor) before
++** executing this instruction.
++*/
++case OP_ReadCookie: {
++ int aMeta[SQLITE_N_BTREE_META];
++ assert( pOp->p2<SQLITE_N_BTREE_META );
++ assert( pOp->p1>=0 && pOp->p1<db->nDb );
++ assert( db->aDb[pOp->p1].pBt!=0 );
++ rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
++ pTos++;
++ pTos->i = aMeta[1+pOp->p2];
++ pTos->flags = MEM_Int;
++ break;
++}
++
++/* Opcode: SetCookie P1 P2 *
++**
++** Write the top of the stack into cookie number P2 of database P1.
++** P2==0 is the schema version. P2==1 is the database format.
++** P2==2 is the recommended pager cache size, and so forth. P1==0 is
++** the main database file and P1==1 is the database file used to store
++** temporary tables.
++**
++** A transaction must be started before executing this opcode.
++*/
++case OP_SetCookie: {
++ int aMeta[SQLITE_N_BTREE_META];
++ assert( pOp->p2<SQLITE_N_BTREE_META );
++ assert( pOp->p1>=0 && pOp->p1<db->nDb );
++ assert( db->aDb[pOp->p1].pBt!=0 );
++ assert( pTos>=p->aStack );
++ Integerify(pTos)
++ rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
++ if( rc==SQLITE_OK ){
++ aMeta[1+pOp->p2] = pTos->i;
++ rc = sqliteBtreeUpdateMeta(db->aDb[pOp->p1].pBt, aMeta);
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: VerifyCookie P1 P2 *
++**
++** Check the value of global database parameter number 0 (the
++** schema version) and make sure it is equal to P2.
++** P1 is the database number which is 0 for the main database file
++** and 1 for the file holding temporary tables and some higher number
++** for auxiliary databases.
++**
++** The cookie changes its value whenever the database schema changes.
++** This operation is used to detect when that the cookie has changed
++** and that the current process needs to reread the schema.
++**
++** Either a transaction needs to have been started or an OP_Open needs
++** to be executed (to establish a read lock) before this opcode is
++** invoked.
++*/
++case OP_VerifyCookie: {
++ int aMeta[SQLITE_N_BTREE_META];
++ assert( pOp->p1>=0 && pOp->p1<db->nDb );
++ rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
++ if( rc==SQLITE_OK && aMeta[1]!=pOp->p2 ){
++ sqliteSetString(&p->zErrMsg, "database schema has changed", (char*)0);
++ rc = SQLITE_SCHEMA;
++ }
++ break;
++}
++
++/* Opcode: OpenRead P1 P2 P3
++**
++** Open a read-only cursor for the database table whose root page is
++** P2 in a database file. The database file is determined by an
++** integer from the top of the stack. 0 means the main database and
++** 1 means the database used for temporary tables. Give the new
++** cursor an identifier of P1. The P1 values need not be contiguous
++** but all P1 values should be small integers. It is an error for
++** P1 to be negative.
++**
++** If P2==0 then take the root page number from the next of the stack.
++**
++** There will be a read lock on the database whenever there is an
++** open cursor. If the database was unlocked prior to this instruction
++** then a read lock is acquired as part of this instruction. A read
++** lock allows other processes to read the database but prohibits
++** any other process from modifying the database. The read lock is
++** released when all cursors are closed. If this instruction attempts
++** to get a read lock but fails, the script terminates with an
++** SQLITE_BUSY error code.
++**
++** The P3 value is the name of the table or index being opened.
++** The P3 value is not actually used by this opcode and may be
++** omitted. But the code generator usually inserts the index or
++** table name into P3 to make the code easier to read.
++**
++** See also OpenWrite.
++*/
++/* Opcode: OpenWrite P1 P2 P3
++**
++** Open a read/write cursor named P1 on the table or index whose root
++** page is P2. If P2==0 then take the root page number from the stack.
++**
++** The P3 value is the name of the table or index being opened.
++** The P3 value is not actually used by this opcode and may be
++** omitted. But the code generator usually inserts the index or
++** table name into P3 to make the code easier to read.
++**
++** This instruction works just like OpenRead except that it opens the cursor
++** in read/write mode. For a given table, there can be one or more read-only
++** cursors or a single read/write cursor but not both.
++**
++** See also OpenRead.
++*/
++case OP_OpenRead:
++case OP_OpenWrite: {
++ int busy = 0;
++ int i = pOp->p1;
++ int p2 = pOp->p2;
++ int wrFlag;
++ Btree *pX;
++ int iDb;
++
++ assert( pTos>=p->aStack );
++ Integerify(pTos);
++ iDb = pTos->i;
++ pTos--;
++ assert( iDb>=0 && iDb<db->nDb );
++ pX = db->aDb[iDb].pBt;
++ assert( pX!=0 );
++ wrFlag = pOp->opcode==OP_OpenWrite;
++ if( p2<=0 ){
++ assert( pTos>=p->aStack );
++ Integerify(pTos);
++ p2 = pTos->i;
++ pTos--;
++ if( p2<2 ){
++ sqliteSetString(&p->zErrMsg, "root page number less than 2", (char*)0);
++ rc = SQLITE_INTERNAL;
++ break;
++ }
++ }
++ assert( i>=0 );
++ if( expandCursorArraySize(p, i) ) goto no_mem;
++ sqliteVdbeCleanupCursor(&p->aCsr[i]);
++ memset(&p->aCsr[i], 0, sizeof(Cursor));
++ p->aCsr[i].nullRow = 1;
++ if( pX==0 ) break;
++ do{
++ rc = sqliteBtreeCursor(pX, p2, wrFlag, &p->aCsr[i].pCursor);
++ switch( rc ){
++ case SQLITE_BUSY: {
++ if( db->xBusyCallback==0 ){
++ p->pc = pc;
++ p->rc = SQLITE_BUSY;
++ p->pTos = &pTos[1 + (pOp->p2<=0)]; /* Operands must remain on stack */
++ return SQLITE_BUSY;
++ }else if( (*db->xBusyCallback)(db->pBusyArg, pOp->p3, ++busy)==0 ){
++ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
++ busy = 0;
++ }
++ break;
++ }
++ case SQLITE_OK: {
++ busy = 0;
++ break;
++ }
++ default: {
++ goto abort_due_to_error;
++ }
++ }
++ }while( busy );
++ break;
++}
++
++/* Opcode: OpenTemp P1 P2 *
++**
++** Open a new cursor to a transient table.
++** The transient cursor is always opened read/write even if
++** the main database is read-only. The transient table is deleted
++** automatically when the cursor is closed.
++**
++** The cursor points to a BTree table if P2==0 and to a BTree index
++** if P2==1. A BTree table must have an integer key and can have arbitrary
++** data. A BTree index has no data but can have an arbitrary key.
++**
++** This opcode is used for tables that exist for the duration of a single
++** SQL statement only. Tables created using CREATE TEMPORARY TABLE
++** are opened using OP_OpenRead or OP_OpenWrite. "Temporary" in the
++** context of this opcode means for the duration of a single SQL statement
++** whereas "Temporary" in the context of CREATE TABLE means for the duration
++** of the connection to the database. Same word; different meanings.
++*/
++case OP_OpenTemp: {
++ int i = pOp->p1;
++ Cursor *pCx;
++ assert( i>=0 );
++ if( expandCursorArraySize(p, i) ) goto no_mem;
++ pCx = &p->aCsr[i];
++ sqliteVdbeCleanupCursor(pCx);
++ memset(pCx, 0, sizeof(*pCx));
++ pCx->nullRow = 1;
++ rc = sqliteBtreeFactory(db, 0, 1, TEMP_PAGES, &pCx->pBt);
++
++ if( rc==SQLITE_OK ){
++ rc = sqliteBtreeBeginTrans(pCx->pBt);
++ }
++ if( rc==SQLITE_OK ){
++ if( pOp->p2 ){
++ int pgno;
++ rc = sqliteBtreeCreateIndex(pCx->pBt, &pgno);
++ if( rc==SQLITE_OK ){
++ rc = sqliteBtreeCursor(pCx->pBt, pgno, 1, &pCx->pCursor);
++ }
++ }else{
++ rc = sqliteBtreeCursor(pCx->pBt, 2, 1, &pCx->pCursor);
++ }
++ }
++ break;
++}
++
++/* Opcode: OpenPseudo P1 * *
++**
++** Open a new cursor that points to a fake table that contains a single
++** row of data. Any attempt to write a second row of data causes the
++** first row to be deleted. All data is deleted when the cursor is
++** closed.
++**
++** A pseudo-table created by this opcode is useful for holding the
++** NEW or OLD tables in a trigger.
++*/
++case OP_OpenPseudo: {
++ int i = pOp->p1;
++ Cursor *pCx;
++ assert( i>=0 );
++ if( expandCursorArraySize(p, i) ) goto no_mem;
++ pCx = &p->aCsr[i];
++ sqliteVdbeCleanupCursor(pCx);
++ memset(pCx, 0, sizeof(*pCx));
++ pCx->nullRow = 1;
++ pCx->pseudoTable = 1;
++ break;
++}
++
++/* Opcode: Close P1 * *
++**
++** Close a cursor previously opened as P1. If P1 is not
++** currently open, this instruction is a no-op.
++*/
++case OP_Close: {
++ int i = pOp->p1;
++ if( i>=0 && i<p->nCursor ){
++ sqliteVdbeCleanupCursor(&p->aCsr[i]);
++ }
++ break;
++}
++
++/* Opcode: MoveTo P1 P2 *
++**
++** Pop the top of the stack and use its value as a key. Reposition
++** cursor P1 so that it points to an entry with a matching key. If
++** the table contains no record with a matching key, then the cursor
++** is left pointing at the first record that is greater than the key.
++** If there are no records greater than the key and P2 is not zero,
++** then an immediate jump to P2 is made.
++**
++** See also: Found, NotFound, Distinct, MoveLt
++*/
++/* Opcode: MoveLt P1 P2 *
++**
++** Pop the top of the stack and use its value as a key. Reposition
++** cursor P1 so that it points to the entry with the largest key that is
++** less than the key popped from the stack.
++** If there are no records less than than the key and P2
++** is not zero then an immediate jump to P2 is made.
++**
++** See also: MoveTo
++*/
++case OP_MoveLt:
++case OP_MoveTo: {
++ int i = pOp->p1;
++ Cursor *pC;
++
++ assert( pTos>=p->aStack );
++ assert( i>=0 && i<p->nCursor );
++ pC = &p->aCsr[i];
++ if( pC->pCursor!=0 ){
++ int res, oc;
++ pC->nullRow = 0;
++ if( pTos->flags & MEM_Int ){
++ int iKey = intToKey(pTos->i);
++ if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
++ pC->movetoTarget = iKey;
++ pC->deferredMoveto = 1;
++ Release(pTos);
++ pTos--;
++ break;
++ }
++ sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
++ pC->lastRecno = pTos->i;
++ pC->recnoIsValid = res==0;
++ }else{
++ Stringify(pTos);
++ sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
++ pC->recnoIsValid = 0;
++ }
++ pC->deferredMoveto = 0;
++ sqlite_search_count++;
++ oc = pOp->opcode;
++ if( oc==OP_MoveTo && res<0 ){
++ sqliteBtreeNext(pC->pCursor, &res);
++ pC->recnoIsValid = 0;
++ if( res && pOp->p2>0 ){
++ pc = pOp->p2 - 1;
++ }
++ }else if( oc==OP_MoveLt ){
++ if( res>=0 ){
++ sqliteBtreePrevious(pC->pCursor, &res);
++ pC->recnoIsValid = 0;
++ }else{
++ /* res might be negative because the table is empty. Check to
++ ** see if this is the case.
++ */
++ int keysize;
++ res = sqliteBtreeKeySize(pC->pCursor,&keysize)!=0 || keysize==0;
++ }
++ if( res && pOp->p2>0 ){
++ pc = pOp->p2 - 1;
++ }
++ }
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: Distinct P1 P2 *
++**
++** Use the top of the stack as a string key. If a record with that key does
++** not exist in the table of cursor P1, then jump to P2. If the record
++** does already exist, then fall thru. The cursor is left pointing
++** at the record if it exists. The key is not popped from the stack.
++**
++** This operation is similar to NotFound except that this operation
++** does not pop the key from the stack.
++**
++** See also: Found, NotFound, MoveTo, IsUnique, NotExists
++*/
++/* Opcode: Found P1 P2 *
++**
++** Use the top of the stack as a string key. If a record with that key
++** does exist in table of P1, then jump to P2. If the record
++** does not exist, then fall thru. The cursor is left pointing
++** to the record if it exists. The key is popped from the stack.
++**
++** See also: Distinct, NotFound, MoveTo, IsUnique, NotExists
++*/
++/* Opcode: NotFound P1 P2 *
++**
++** Use the top of the stack as a string key. If a record with that key
++** does not exist in table of P1, then jump to P2. If the record
++** does exist, then fall thru. The cursor is left pointing to the
++** record if it exists. The key is popped from the stack.
++**
++** The difference between this operation and Distinct is that
++** Distinct does not pop the key from the stack.
++**
++** See also: Distinct, Found, MoveTo, NotExists, IsUnique
++*/
++case OP_Distinct:
++case OP_NotFound:
++case OP_Found: {
++ int i = pOp->p1;
++ int alreadyExists = 0;
++ Cursor *pC;
++ assert( pTos>=p->aStack );
++ assert( i>=0 && i<p->nCursor );
++ if( (pC = &p->aCsr[i])->pCursor!=0 ){
++ int res, rx;
++ Stringify(pTos);
++ rx = sqliteBtreeMoveto(pC->pCursor, pTos->z, pTos->n, &res);
++ alreadyExists = rx==SQLITE_OK && res==0;
++ pC->deferredMoveto = 0;
++ }
++ if( pOp->opcode==OP_Found ){
++ if( alreadyExists ) pc = pOp->p2 - 1;
++ }else{
++ if( !alreadyExists ) pc = pOp->p2 - 1;
++ }
++ if( pOp->opcode!=OP_Distinct ){
++ Release(pTos);
++ pTos--;
++ }
++ break;
++}
++
++/* Opcode: IsUnique P1 P2 *
++**
++** The top of the stack is an integer record number. Call this
++** record number R. The next on the stack is an index key created
++** using MakeIdxKey. Call it K. This instruction pops R from the
++** stack but it leaves K unchanged.
++**
++** P1 is an index. So all but the last four bytes of K are an
++** index string. The last four bytes of K are a record number.
++**
++** This instruction asks if there is an entry in P1 where the
++** index string matches K but the record number is different
++** from R. If there is no such entry, then there is an immediate
++** jump to P2. If any entry does exist where the index string
++** matches K but the record number is not R, then the record
++** number for that entry is pushed onto the stack and control
++** falls through to the next instruction.
++**
++** See also: Distinct, NotFound, NotExists, Found
++*/
++case OP_IsUnique: {
++ int i = pOp->p1;
++ Mem *pNos = &pTos[-1];
++ BtCursor *pCrsr;
++ int R;
++
++ /* Pop the value R off the top of the stack
++ */
++ assert( pNos>=p->aStack );
++ Integerify(pTos);
++ R = pTos->i;
++ pTos--;
++ assert( i>=0 && i<=p->nCursor );
++ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
++ int res, rc;
++ int v; /* The record number on the P1 entry that matches K */
++ char *zKey; /* The value of K */
++ int nKey; /* Number of bytes in K */
++
++ /* Make sure K is a string and make zKey point to K
++ */
++ Stringify(pNos);
++ zKey = pNos->z;
++ nKey = pNos->n;
++ assert( nKey >= 4 );
++
++ /* Search for an entry in P1 where all but the last four bytes match K.
++ ** If there is no such entry, jump immediately to P2.
++ */
++ assert( p->aCsr[i].deferredMoveto==0 );
++ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
++ if( rc!=SQLITE_OK ) goto abort_due_to_error;
++ if( res<0 ){
++ rc = sqliteBtreeNext(pCrsr, &res);
++ if( res ){
++ pc = pOp->p2 - 1;
++ break;
++ }
++ }
++ rc = sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &res);
++ if( rc!=SQLITE_OK ) goto abort_due_to_error;
++ if( res>0 ){
++ pc = pOp->p2 - 1;
++ break;
++ }
++
++ /* At this point, pCrsr is pointing to an entry in P1 where all but
++ ** the last for bytes of the key match K. Check to see if the last
++ ** four bytes of the key are different from R. If the last four
++ ** bytes equal R then jump immediately to P2.
++ */
++ sqliteBtreeKey(pCrsr, nKey - 4, 4, (char*)&v);
++ v = keyToInt(v);
++ if( v==R ){
++ pc = pOp->p2 - 1;
++ break;
++ }
++
++ /* The last four bytes of the key are different from R. Convert the
++ ** last four bytes of the key into an integer and push it onto the
++ ** stack. (These bytes are the record number of an entry that
++ ** violates a UNIQUE constraint.)
++ */
++ pTos++;
++ pTos->i = v;
++ pTos->flags = MEM_Int;
++ }
++ break;
++}
++
++/* Opcode: NotExists P1 P2 *
++**
++** Use the top of the stack as a integer key. If a record with that key
++** does not exist in table of P1, then jump to P2. If the record
++** does exist, then fall thru. The cursor is left pointing to the
++** record if it exists. The integer key is popped from the stack.
++**
++** The difference between this operation and NotFound is that this
++** operation assumes the key is an integer and NotFound assumes it
++** is a string.
++**
++** See also: Distinct, Found, MoveTo, NotFound, IsUnique
++*/
++case OP_NotExists: {
++ int i = pOp->p1;
++ BtCursor *pCrsr;
++ assert( pTos>=p->aStack );
++ assert( i>=0 && i<p->nCursor );
++ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
++ int res, rx, iKey;
++ assert( pTos->flags & MEM_Int );
++ iKey = intToKey(pTos->i);
++ rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
++ p->aCsr[i].lastRecno = pTos->i;
++ p->aCsr[i].recnoIsValid = res==0;
++ p->aCsr[i].nullRow = 0;
++ if( rx!=SQLITE_OK || res!=0 ){
++ pc = pOp->p2 - 1;
++ p->aCsr[i].recnoIsValid = 0;
++ }
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: NewRecno P1 * *
++**
++** Get a new integer record number used as the key to a table.
++** The record number is not previously used as a key in the database
++** table that cursor P1 points to. The new record number is pushed
++** onto the stack.
++*/
++case OP_NewRecno: {
++ int i = pOp->p1;
++ int v = 0;
++ Cursor *pC;
++ assert( i>=0 && i<p->nCursor );
++ if( (pC = &p->aCsr[i])->pCursor==0 ){
++ v = 0;
++ }else{
++ /* The next rowid or record number (different terms for the same
++ ** thing) is obtained in a two-step algorithm.
++ **
++ ** First we attempt to find the largest existing rowid and add one
++ ** to that. But if the largest existing rowid is already the maximum
++ ** positive integer, we have to fall through to the second
++ ** probabilistic algorithm
++ **
++ ** The second algorithm is to select a rowid at random and see if
++ ** it already exists in the table. If it does not exist, we have
++ ** succeeded. If the random rowid does exist, we select a new one
++ ** and try again, up to 1000 times.
++ **
++ ** For a table with less than 2 billion entries, the probability
++ ** of not finding a unused rowid is about 1.0e-300. This is a
++ ** non-zero probability, but it is still vanishingly small and should
++ ** never cause a problem. You are much, much more likely to have a
++ ** hardware failure than for this algorithm to fail.
++ **
++ ** The analysis in the previous paragraph assumes that you have a good
++ ** source of random numbers. Is a library function like lrand48()
++ ** good enough? Maybe. Maybe not. It's hard to know whether there
++ ** might be subtle bugs is some implementations of lrand48() that
++ ** could cause problems. To avoid uncertainty, SQLite uses its own
++ ** random number generator based on the RC4 algorithm.
++ **
++ ** To promote locality of reference for repetitive inserts, the
++ ** first few attempts at chosing a random rowid pick values just a little
++ ** larger than the previous rowid. This has been shown experimentally
++ ** to double the speed of the COPY operation.
++ */
++ int res, rx, cnt, x;
++ cnt = 0;
++ if( !pC->useRandomRowid ){
++ if( pC->nextRowidValid ){
++ v = pC->nextRowid;
++ }else{
++ rx = sqliteBtreeLast(pC->pCursor, &res);
++ if( res ){
++ v = 1;
++ }else{
++ sqliteBtreeKey(pC->pCursor, 0, sizeof(v), (void*)&v);
++ v = keyToInt(v);
++ if( v==0x7fffffff ){
++ pC->useRandomRowid = 1;
++ }else{
++ v++;
++ }
++ }
++ }
++ if( v<0x7fffffff ){
++ pC->nextRowidValid = 1;
++ pC->nextRowid = v+1;
++ }else{
++ pC->nextRowidValid = 0;
++ }
++ }
++ if( pC->useRandomRowid ){
++ v = db->priorNewRowid;
++ cnt = 0;
++ do{
++ if( v==0 || cnt>2 ){
++ sqliteRandomness(sizeof(v), &v);
++ if( cnt<5 ) v &= 0xffffff;
++ }else{
++ unsigned char r;
++ sqliteRandomness(1, &r);
++ v += r + 1;
++ }
++ if( v==0 ) continue;
++ x = intToKey(v);
++ rx = sqliteBtreeMoveto(pC->pCursor, &x, sizeof(int), &res);
++ cnt++;
++ }while( cnt<1000 && rx==SQLITE_OK && res==0 );
++ db->priorNewRowid = v;
++ if( rx==SQLITE_OK && res==0 ){
++ rc = SQLITE_FULL;
++ goto abort_due_to_error;
++ }
++ }
++ pC->recnoIsValid = 0;
++ pC->deferredMoveto = 0;
++ }
++ pTos++;
++ pTos->i = v;
++ pTos->flags = MEM_Int;
++ break;
++}
++
++/* Opcode: PutIntKey P1 P2 *
++**
++** Write an entry into the table of cursor P1. A new entry is
++** created if it doesn't already exist or the data for an existing
++** entry is overwritten. The data is the value on the top of the
++** stack. The key is the next value down on the stack. The key must
++** be an integer. The stack is popped twice by this instruction.
++**
++** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
++** incremented (otherwise not). If the OPFLAG_CSCHANGE flag is set,
++** then the current statement change count is incremented (otherwise not).
++** If the OPFLAG_LASTROWID flag of P2 is set, then rowid is
++** stored for subsequent return by the sqlite_last_insert_rowid() function
++** (otherwise it's unmodified).
++*/
++/* Opcode: PutStrKey P1 * *
++**
++** Write an entry into the table of cursor P1. A new entry is
++** created if it doesn't already exist or the data for an existing
++** entry is overwritten. The data is the value on the top of the
++** stack. The key is the next value down on the stack. The key must
++** be a string. The stack is popped twice by this instruction.
++**
++** P1 may not be a pseudo-table opened using the OpenPseudo opcode.
++*/
++case OP_PutIntKey:
++case OP_PutStrKey: {
++ Mem *pNos = &pTos[-1];
++ int i = pOp->p1;
++ Cursor *pC;
++ assert( pNos>=p->aStack );
++ assert( i>=0 && i<p->nCursor );
++ if( ((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
++ char *zKey;
++ int nKey, iKey;
++ if( pOp->opcode==OP_PutStrKey ){
++ Stringify(pNos);
++ nKey = pNos->n;
++ zKey = pNos->z;
++ }else{
++ assert( pNos->flags & MEM_Int );
++ nKey = sizeof(int);
++ iKey = intToKey(pNos->i);
++ zKey = (char*)&iKey;
++ if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
++ if( pOp->p2 & OPFLAG_LASTROWID ) db->lastRowid = pNos->i;
++ if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
++ if( pC->nextRowidValid && pTos->i>=pC->nextRowid ){
++ pC->nextRowidValid = 0;
++ }
++ }
++ if( pTos->flags & MEM_Null ){
++ pTos->z = 0;
++ pTos->n = 0;
++ }else{
++ assert( pTos->flags & MEM_Str );
++ }
++ if( pC->pseudoTable ){
++ /* PutStrKey does not work for pseudo-tables.
++ ** The following assert makes sure we are not trying to use
++ ** PutStrKey on a pseudo-table
++ */
++ assert( pOp->opcode==OP_PutIntKey );
++ sqliteFree(pC->pData);
++ pC->iKey = iKey;
++ pC->nData = pTos->n;
++ if( pTos->flags & MEM_Dyn ){
++ pC->pData = pTos->z;
++ pTos->flags = MEM_Null;
++ }else{
++ pC->pData = sqliteMallocRaw( pC->nData );
++ if( pC->pData ){
++ memcpy(pC->pData, pTos->z, pC->nData);
++ }
++ }
++ pC->nullRow = 0;
++ }else{
++ rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey, pTos->z, pTos->n);
++ }
++ pC->recnoIsValid = 0;
++ pC->deferredMoveto = 0;
++ }
++ popStack(&pTos, 2);
++ break;
++}
++
++/* Opcode: Delete P1 P2 *
++**
++** Delete the record at which the P1 cursor is currently pointing.
++**
++** The cursor will be left pointing at either the next or the previous
++** record in the table. If it is left pointing at the next record, then
++** the next Next instruction will be a no-op. Hence it is OK to delete
++** a record from within an Next loop.
++**
++** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
++** incremented (otherwise not). If OPFLAG_CSCHANGE flag is set,
++** then the current statement change count is incremented (otherwise not).
++**
++** If P1 is a pseudo-table, then this instruction is a no-op.
++*/
++case OP_Delete: {
++ int i = pOp->p1;
++ Cursor *pC;
++ assert( i>=0 && i<p->nCursor );
++ pC = &p->aCsr[i];
++ if( pC->pCursor!=0 ){
++ sqliteVdbeCursorMoveto(pC);
++ rc = sqliteBtreeDelete(pC->pCursor);
++ pC->nextRowidValid = 0;
++ }
++ if( pOp->p2 & OPFLAG_NCHANGE ) db->nChange++;
++ if( pOp->p2 & OPFLAG_CSCHANGE ) db->csChange++;
++ break;
++}
++
++/* Opcode: SetCounts * * *
++**
++** Called at end of statement. Updates lsChange (last statement change count)
++** and resets csChange (current statement change count) to 0.
++*/
++case OP_SetCounts: {
++ db->lsChange=db->csChange;
++ db->csChange=0;
++ break;
++}
++
++/* Opcode: KeyAsData P1 P2 *
++**
++** Turn the key-as-data mode for cursor P1 either on (if P2==1) or
++** off (if P2==0). In key-as-data mode, the OP_Column opcode pulls
++** data off of the key rather than the data. This is used for
++** processing compound selects.
++*/
++case OP_KeyAsData: {
++ int i = pOp->p1;
++ assert( i>=0 && i<p->nCursor );
++ p->aCsr[i].keyAsData = pOp->p2;
++ break;
++}
++
++/* Opcode: RowData P1 * *
++**
++** Push onto the stack the complete row data for cursor P1.
++** There is no interpretation of the data. It is just copied
++** onto the stack exactly as it is found in the database file.
++**
++** If the cursor is not pointing to a valid row, a NULL is pushed
++** onto the stack.
++*/
++/* Opcode: RowKey P1 * *
++**
++** Push onto the stack the complete row key for cursor P1.
++** There is no interpretation of the key. It is just copied
++** onto the stack exactly as it is found in the database file.
++**
++** If the cursor is not pointing to a valid row, a NULL is pushed
++** onto the stack.
++*/
++case OP_RowKey:
++case OP_RowData: {
++ int i = pOp->p1;
++ Cursor *pC;
++ int n;
++
++ pTos++;
++ assert( i>=0 && i<p->nCursor );
++ pC = &p->aCsr[i];
++ if( pC->nullRow ){
++ pTos->flags = MEM_Null;
++ }else if( pC->pCursor!=0 ){
++ BtCursor *pCrsr = pC->pCursor;
++ sqliteVdbeCursorMoveto(pC);
++ if( pC->nullRow ){
++ pTos->flags = MEM_Null;
++ break;
++ }else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
++ sqliteBtreeKeySize(pCrsr, &n);
++ }else{
++ sqliteBtreeDataSize(pCrsr, &n);
++ }
++ pTos->n = n;
++ if( n<=NBFS ){
++ pTos->flags = MEM_Str | MEM_Short;
++ pTos->z = pTos->zShort;
++ }else{
++ char *z = sqliteMallocRaw( n );
++ if( z==0 ) goto no_mem;
++ pTos->flags = MEM_Str | MEM_Dyn;
++ pTos->z = z;
++ }
++ if( pC->keyAsData || pOp->opcode==OP_RowKey ){
++ sqliteBtreeKey(pCrsr, 0, n, pTos->z);
++ }else{
++ sqliteBtreeData(pCrsr, 0, n, pTos->z);
++ }
++ }else if( pC->pseudoTable ){
++ pTos->n = pC->nData;
++ pTos->z = pC->pData;
++ pTos->flags = MEM_Str|MEM_Ephem;
++ }else{
++ pTos->flags = MEM_Null;
++ }
++ break;
++}
++
++/* Opcode: Column P1 P2 *
++**
++** Interpret the data that cursor P1 points to as
++** a structure built using the MakeRecord instruction.
++** (See the MakeRecord opcode for additional information about
++** the format of the data.)
++** Push onto the stack the value of the P2-th column contained
++** in the data.
++**
++** If the KeyAsData opcode has previously executed on this cursor,
++** then the field might be extracted from the key rather than the
++** data.
++**
++** If P1 is negative, then the record is stored on the stack rather
++** than in a table. For P1==-1, the top of the stack is used.
++** For P1==-2, the next on the stack is used. And so forth. The
++** value pushed is always just a pointer into the record which is
++** stored further down on the stack. The column value is not copied.
++*/
++case OP_Column: {
++ int amt, offset, end, payloadSize;
++ int i = pOp->p1;
++ int p2 = pOp->p2;
++ Cursor *pC;
++ char *zRec;
++ BtCursor *pCrsr;
++ int idxWidth;
++ unsigned char aHdr[10];
++
++ assert( i<p->nCursor );
++ pTos++;
++ if( i<0 ){
++ assert( &pTos[i]>=p->aStack );
++ assert( pTos[i].flags & MEM_Str );
++ zRec = pTos[i].z;
++ payloadSize = pTos[i].n;
++ }else if( (pC = &p->aCsr[i])->pCursor!=0 ){
++ sqliteVdbeCursorMoveto(pC);
++ zRec = 0;
++ pCrsr = pC->pCursor;
++ if( pC->nullRow ){
++ payloadSize = 0;
++ }else if( pC->keyAsData ){
++ sqliteBtreeKeySize(pCrsr, &payloadSize);
++ }else{
++ sqliteBtreeDataSize(pCrsr, &payloadSize);
++ }
++ }else if( pC->pseudoTable ){
++ payloadSize = pC->nData;
++ zRec = pC->pData;
++ assert( payloadSize==0 || zRec!=0 );
++ }else{
++ payloadSize = 0;
++ }
++
++ /* Figure out how many bytes in the column data and where the column
++ ** data begins.
++ */
++ if( payloadSize==0 ){
++ pTos->flags = MEM_Null;
++ break;
++ }else if( payloadSize<256 ){
++ idxWidth = 1;
++ }else if( payloadSize<65536 ){
++ idxWidth = 2;
++ }else{
++ idxWidth = 3;
++ }
++
++ /* Figure out where the requested column is stored and how big it is.
++ */
++ if( payloadSize < idxWidth*(p2+1) ){
++ rc = SQLITE_CORRUPT;
++ goto abort_due_to_error;
++ }
++ if( zRec ){
++ memcpy(aHdr, &zRec[idxWidth*p2], idxWidth*2);
++ }else if( pC->keyAsData ){
++ sqliteBtreeKey(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
++ }else{
++ sqliteBtreeData(pCrsr, idxWidth*p2, idxWidth*2, (char*)aHdr);
++ }
++ offset = aHdr[0];
++ end = aHdr[idxWidth];
++ if( idxWidth>1 ){
++ offset |= aHdr[1]<<8;
++ end |= aHdr[idxWidth+1]<<8;
++ if( idxWidth>2 ){
++ offset |= aHdr[2]<<16;
++ end |= aHdr[idxWidth+2]<<16;
++ }
++ }
++ amt = end - offset;
++ if( amt<0 || offset<0 || end>payloadSize ){
++ rc = SQLITE_CORRUPT;
++ goto abort_due_to_error;
++ }
++
++ /* amt and offset now hold the offset to the start of data and the
++ ** amount of data. Go get the data and put it on the stack.
++ */
++ pTos->n = amt;
++ if( amt==0 ){
++ pTos->flags = MEM_Null;
++ }else if( zRec ){
++ pTos->flags = MEM_Str | MEM_Ephem;
++ pTos->z = &zRec[offset];
++ }else{
++ if( amt<=NBFS ){
++ pTos->flags = MEM_Str | MEM_Short;
++ pTos->z = pTos->zShort;
++ }else{
++ char *z = sqliteMallocRaw( amt );
++ if( z==0 ) goto no_mem;
++ pTos->flags = MEM_Str | MEM_Dyn;
++ pTos->z = z;
++ }
++ if( pC->keyAsData ){
++ sqliteBtreeKey(pCrsr, offset, amt, pTos->z);
++ }else{
++ sqliteBtreeData(pCrsr, offset, amt, pTos->z);
++ }
++ }
++ break;
++}
++
++/* Opcode: Recno P1 * *
++**
++** Push onto the stack an integer which is the first 4 bytes of the
++** the key to the current entry in a sequential scan of the database
++** file P1. The sequential scan should have been started using the
++** Next opcode.
++*/
++case OP_Recno: {
++ int i = pOp->p1;
++ Cursor *pC;
++ int v;
++
++ assert( i>=0 && i<p->nCursor );
++ pC = &p->aCsr[i];
++ sqliteVdbeCursorMoveto(pC);
++ pTos++;
++ if( pC->recnoIsValid ){
++ v = pC->lastRecno;
++ }else if( pC->pseudoTable ){
++ v = keyToInt(pC->iKey);
++ }else if( pC->nullRow || pC->pCursor==0 ){
++ pTos->flags = MEM_Null;
++ break;
++ }else{
++ assert( pC->pCursor!=0 );
++ sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
++ v = keyToInt(v);
++ }
++ pTos->i = v;
++ pTos->flags = MEM_Int;
++ break;
++}
++
++/* Opcode: FullKey P1 * *
++**
++** Extract the complete key from the record that cursor P1 is currently
++** pointing to and push the key onto the stack as a string.
++**
++** Compare this opcode to Recno. The Recno opcode extracts the first
++** 4 bytes of the key and pushes those bytes onto the stack as an
++** integer. This instruction pushes the entire key as a string.
++**
++** This opcode may not be used on a pseudo-table.
++*/
++case OP_FullKey: {
++ int i = pOp->p1;
++ BtCursor *pCrsr;
++
++ assert( p->aCsr[i].keyAsData );
++ assert( !p->aCsr[i].pseudoTable );
++ assert( i>=0 && i<p->nCursor );
++ pTos++;
++ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
++ int amt;
++ char *z;
++
++ sqliteVdbeCursorMoveto(&p->aCsr[i]);
++ sqliteBtreeKeySize(pCrsr, &amt);
++ if( amt<=0 ){
++ rc = SQLITE_CORRUPT;
++ goto abort_due_to_error;
++ }
++ if( amt>NBFS ){
++ z = sqliteMallocRaw( amt );
++ if( z==0 ) goto no_mem;
++ pTos->flags = MEM_Str | MEM_Dyn;
++ }else{
++ z = pTos->zShort;
++ pTos->flags = MEM_Str | MEM_Short;
++ }
++ sqliteBtreeKey(pCrsr, 0, amt, z);
++ pTos->z = z;
++ pTos->n = amt;
++ }
++ break;
++}
++
++/* Opcode: NullRow P1 * *
++**
++** Move the cursor P1 to a null row. Any OP_Column operations
++** that occur while the cursor is on the null row will always push
++** a NULL onto the stack.
++*/
++case OP_NullRow: {
++ int i = pOp->p1;
++
++ assert( i>=0 && i<p->nCursor );
++ p->aCsr[i].nullRow = 1;
++ p->aCsr[i].recnoIsValid = 0;
++ break;
++}
++
++/* Opcode: Last P1 P2 *
++**
++** The next use of the Recno or Column or Next instruction for P1
++** will refer to the last entry in the database table or index.
++** If the table or index is empty and P2>0, then jump immediately to P2.
++** If P2 is 0 or if the table or index is not empty, fall through
++** to the following instruction.
++*/
++case OP_Last: {
++ int i = pOp->p1;
++ Cursor *pC;
++ BtCursor *pCrsr;
++
++ assert( i>=0 && i<p->nCursor );
++ pC = &p->aCsr[i];
++ if( (pCrsr = pC->pCursor)!=0 ){
++ int res;
++ rc = sqliteBtreeLast(pCrsr, &res);
++ pC->nullRow = res;
++ pC->deferredMoveto = 0;
++ if( res && pOp->p2>0 ){
++ pc = pOp->p2 - 1;
++ }
++ }else{
++ pC->nullRow = 0;
++ }
++ break;
++}
++
++/* Opcode: Rewind P1 P2 *
++**
++** The next use of the Recno or Column or Next instruction for P1
++** will refer to the first entry in the database table or index.
++** If the table or index is empty and P2>0, then jump immediately to P2.
++** If P2 is 0 or if the table or index is not empty, fall through
++** to the following instruction.
++*/
++case OP_Rewind: {
++ int i = pOp->p1;
++ Cursor *pC;
++ BtCursor *pCrsr;
++
++ assert( i>=0 && i<p->nCursor );
++ pC = &p->aCsr[i];
++ if( (pCrsr = pC->pCursor)!=0 ){
++ int res;
++ rc = sqliteBtreeFirst(pCrsr, &res);
++ pC->atFirst = res==0;
++ pC->nullRow = res;
++ pC->deferredMoveto = 0;
++ if( res && pOp->p2>0 ){
++ pc = pOp->p2 - 1;
++ }
++ }else{
++ pC->nullRow = 0;
++ }
++ break;
++}
++
++/* Opcode: Next P1 P2 *
++**
++** Advance cursor P1 so that it points to the next key/data pair in its
++** table or index. If there are no more key/value pairs then fall through
++** to the following instruction. But if the cursor advance was successful,
++** jump immediately to P2.
++**
++** See also: Prev
++*/
++/* Opcode: Prev P1 P2 *
++**
++** Back up cursor P1 so that it points to the previous key/data pair in its
++** table or index. If there is no previous key/value pairs then fall through
++** to the following instruction. But if the cursor backup was successful,
++** jump immediately to P2.
++*/
++case OP_Prev:
++case OP_Next: {
++ Cursor *pC;
++ BtCursor *pCrsr;
++
++ CHECK_FOR_INTERRUPT;
++ assert( pOp->p1>=0 && pOp->p1<p->nCursor );
++ pC = &p->aCsr[pOp->p1];
++ if( (pCrsr = pC->pCursor)!=0 ){
++ int res;
++ if( pC->nullRow ){
++ res = 1;
++ }else{
++ assert( pC->deferredMoveto==0 );
++ rc = pOp->opcode==OP_Next ? sqliteBtreeNext(pCrsr, &res) :
++ sqliteBtreePrevious(pCrsr, &res);
++ pC->nullRow = res;
++ }
++ if( res==0 ){
++ pc = pOp->p2 - 1;
++ sqlite_search_count++;
++ }
++ }else{
++ pC->nullRow = 1;
++ }
++ pC->recnoIsValid = 0;
++ break;
++}
++
++/* Opcode: IdxPut P1 P2 P3
++**
++** The top of the stack holds a SQL index key made using the
++** MakeIdxKey instruction. This opcode writes that key into the
++** index P1. Data for the entry is nil.
++**
++** If P2==1, then the key must be unique. If the key is not unique,
++** the program aborts with a SQLITE_CONSTRAINT error and the database
++** is rolled back. If P3 is not null, then it becomes part of the
++** error message returned with the SQLITE_CONSTRAINT.
++*/
++case OP_IdxPut: {
++ int i = pOp->p1;
++ BtCursor *pCrsr;
++ assert( pTos>=p->aStack );
++ assert( i>=0 && i<p->nCursor );
++ assert( pTos->flags & MEM_Str );
++ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
++ int nKey = pTos->n;
++ const char *zKey = pTos->z;
++ if( pOp->p2 ){
++ int res, n;
++ assert( nKey >= 4 );
++ rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
++ if( rc!=SQLITE_OK ) goto abort_due_to_error;
++ while( res!=0 ){
++ int c;
++ sqliteBtreeKeySize(pCrsr, &n);
++ if( n==nKey
++ && sqliteBtreeKeyCompare(pCrsr, zKey, nKey-4, 4, &c)==SQLITE_OK
++ && c==0
++ ){
++ rc = SQLITE_CONSTRAINT;
++ if( pOp->p3 && pOp->p3[0] ){
++ sqliteSetString(&p->zErrMsg, pOp->p3, (char*)0);
++ }
++ goto abort_due_to_error;
++ }
++ if( res<0 ){
++ sqliteBtreeNext(pCrsr, &res);
++ res = +1;
++ }else{
++ break;
++ }
++ }
++ }
++ rc = sqliteBtreeInsert(pCrsr, zKey, nKey, "", 0);
++ assert( p->aCsr[i].deferredMoveto==0 );
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: IdxDelete P1 * *
++**
++** The top of the stack is an index key built using the MakeIdxKey opcode.
++** This opcode removes that entry from the index.
++*/
++case OP_IdxDelete: {
++ int i = pOp->p1;
++ BtCursor *pCrsr;
++ assert( pTos>=p->aStack );
++ assert( pTos->flags & MEM_Str );
++ assert( i>=0 && i<p->nCursor );
++ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
++ int rx, res;
++ rx = sqliteBtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
++ if( rx==SQLITE_OK && res==0 ){
++ rc = sqliteBtreeDelete(pCrsr);
++ }
++ assert( p->aCsr[i].deferredMoveto==0 );
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: IdxRecno P1 * *
++**
++** Push onto the stack an integer which is the last 4 bytes of the
++** the key to the current entry in index P1. These 4 bytes should
++** be the record number of the table entry to which this index entry
++** points.
++**
++** See also: Recno, MakeIdxKey.
++*/
++case OP_IdxRecno: {
++ int i = pOp->p1;
++ BtCursor *pCrsr;
++
++ assert( i>=0 && i<p->nCursor );
++ pTos++;
++ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
++ int v;
++ int sz;
++ assert( p->aCsr[i].deferredMoveto==0 );
++ sqliteBtreeKeySize(pCrsr, &sz);
++ if( sz<sizeof(u32) ){
++ pTos->flags = MEM_Null;
++ }else{
++ sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
++ v = keyToInt(v);
++ pTos->i = v;
++ pTos->flags = MEM_Int;
++ }
++ }else{
++ pTos->flags = MEM_Null;
++ }
++ break;
++}
++
++/* Opcode: IdxGT P1 P2 *
++**
++** Compare the top of the stack against the key on the index entry that
++** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
++** index entry. If the index entry is greater than the top of the stack
++** then jump to P2. Otherwise fall through to the next instruction.
++** In either case, the stack is popped once.
++*/
++/* Opcode: IdxGE P1 P2 *
++**
++** Compare the top of the stack against the key on the index entry that
++** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
++** index entry. If the index entry is greater than or equal to
++** the top of the stack
++** then jump to P2. Otherwise fall through to the next instruction.
++** In either case, the stack is popped once.
++*/
++/* Opcode: IdxLT P1 P2 *
++**
++** Compare the top of the stack against the key on the index entry that
++** cursor P1 is currently pointing to. Ignore the last 4 bytes of the
++** index entry. If the index entry is less than the top of the stack
++** then jump to P2. Otherwise fall through to the next instruction.
++** In either case, the stack is popped once.
++*/
++case OP_IdxLT:
++case OP_IdxGT:
++case OP_IdxGE: {
++ int i= pOp->p1;
++ BtCursor *pCrsr;
++
++ assert( i>=0 && i<p->nCursor );
++ assert( pTos>=p->aStack );
++ if( (pCrsr = p->aCsr[i].pCursor)!=0 ){
++ int res, rc;
++
++ Stringify(pTos);
++ assert( p->aCsr[i].deferredMoveto==0 );
++ rc = sqliteBtreeKeyCompare(pCrsr, pTos->z, pTos->n, 4, &res);
++ if( rc!=SQLITE_OK ){
++ break;
++ }
++ if( pOp->opcode==OP_IdxLT ){
++ res = -res;
++ }else if( pOp->opcode==OP_IdxGE ){
++ res++;
++ }
++ if( res>0 ){
++ pc = pOp->p2 - 1 ;
++ }
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: IdxIsNull P1 P2 *
++**
++** The top of the stack contains an index entry such as might be generated
++** by the MakeIdxKey opcode. This routine looks at the first P1 fields of
++** that key. If any of the first P1 fields are NULL, then a jump is made
++** to address P2. Otherwise we fall straight through.
++**
++** The index entry is always popped from the stack.
++*/
++case OP_IdxIsNull: {
++ int i = pOp->p1;
++ int k, n;
++ const char *z;
++
++ assert( pTos>=p->aStack );
++ assert( pTos->flags & MEM_Str );
++ z = pTos->z;
++ n = pTos->n;
++ for(k=0; k<n && i>0; i--){
++ if( z[k]=='a' ){
++ pc = pOp->p2-1;
++ break;
++ }
++ while( k<n && z[k] ){ k++; }
++ k++;
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: Destroy P1 P2 *
++**
++** Delete an entire database table or index whose root page in the database
++** file is given by P1.
++**
++** The table being destroyed is in the main database file if P2==0. If
++** P2==1 then the table to be clear is in the auxiliary database file
++** that is used to store tables create using CREATE TEMPORARY TABLE.
++**
++** See also: Clear
++*/
++case OP_Destroy: {
++ rc = sqliteBtreeDropTable(db->aDb[pOp->p2].pBt, pOp->p1);
++ break;
++}
++
++/* Opcode: Clear P1 P2 *
++**
++** Delete all contents of the database table or index whose root page
++** in the database file is given by P1. But, unlike Destroy, do not
++** remove the table or index from the database file.
++**
++** The table being clear is in the main database file if P2==0. If
++** P2==1 then the table to be clear is in the auxiliary database file
++** that is used to store tables create using CREATE TEMPORARY TABLE.
++**
++** See also: Destroy
++*/
++case OP_Clear: {
++ rc = sqliteBtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
++ break;
++}
++
++/* Opcode: CreateTable * P2 P3
++**
++** Allocate a new table in the main database file if P2==0 or in the
++** auxiliary database file if P2==1. Push the page number
++** for the root page of the new table onto the stack.
++**
++** The root page number is also written to a memory location that P3
++** points to. This is the mechanism is used to write the root page
++** number into the parser's internal data structures that describe the
++** new table.
++**
++** The difference between a table and an index is this: A table must
++** have a 4-byte integer key and can have arbitrary data. An index
++** has an arbitrary key but no data.
++**
++** See also: CreateIndex
++*/
++/* Opcode: CreateIndex * P2 P3
++**
++** Allocate a new index in the main database file if P2==0 or in the
++** auxiliary database file if P2==1. Push the page number of the
++** root page of the new index onto the stack.
++**
++** See documentation on OP_CreateTable for additional information.
++*/
++case OP_CreateIndex:
++case OP_CreateTable: {
++ int pgno;
++ assert( pOp->p3!=0 && pOp->p3type==P3_POINTER );
++ assert( pOp->p2>=0 && pOp->p2<db->nDb );
++ assert( db->aDb[pOp->p2].pBt!=0 );
++ if( pOp->opcode==OP_CreateTable ){
++ rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
++ }else{
++ rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
++ }
++ pTos++;
++ if( rc==SQLITE_OK ){
++ pTos->i = pgno;
++ pTos->flags = MEM_Int;
++ *(u32*)pOp->p3 = pgno;
++ pOp->p3 = 0;
++ }else{
++ pTos->flags = MEM_Null;
++ }
++ break;
++}
++
++/* Opcode: IntegrityCk P1 P2 *
++**
++** Do an analysis of the currently open database. Push onto the
++** stack the text of an error message describing any problems.
++** If there are no errors, push a "ok" onto the stack.
++**
++** P1 is the index of a set that contains the root page numbers
++** for all tables and indices in the main database file. The set
++** is cleared by this opcode. In other words, after this opcode
++** has executed, the set will be empty.
++**
++** If P2 is not zero, the check is done on the auxiliary database
++** file, not the main database file.
++**
++** This opcode is used for testing purposes only.
++*/
++case OP_IntegrityCk: {
++ int nRoot;
++ int *aRoot;
++ int iSet = pOp->p1;
++ Set *pSet;
++ int j;
++ HashElem *i;
++ char *z;
++
++ assert( iSet>=0 && iSet<p->nSet );
++ pTos++;
++ pSet = &p->aSet[iSet];
++ nRoot = sqliteHashCount(&pSet->hash);
++ aRoot = sqliteMallocRaw( sizeof(int)*(nRoot+1) );
++ if( aRoot==0 ) goto no_mem;
++ for(j=0, i=sqliteHashFirst(&pSet->hash); i; i=sqliteHashNext(i), j++){
++ toInt((char*)sqliteHashKey(i), &aRoot[j]);
++ }
++ aRoot[j] = 0;
++ sqliteHashClear(&pSet->hash);
++ pSet->prev = 0;
++ z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
++ if( z==0 || z[0]==0 ){
++ if( z ) sqliteFree(z);
++ pTos->z = "ok";
++ pTos->n = 3;
++ pTos->flags = MEM_Str | MEM_Static;
++ }else{
++ pTos->z = z;
++ pTos->n = strlen(z) + 1;
++ pTos->flags = MEM_Str | MEM_Dyn;
++ }
++ sqliteFree(aRoot);
++ break;
++}
++
++/* Opcode: ListWrite * * *
++**
++** Write the integer on the top of the stack
++** into the temporary storage list.
++*/
++case OP_ListWrite: {
++ Keylist *pKeylist;
++ assert( pTos>=p->aStack );
++ pKeylist = p->pList;
++ if( pKeylist==0 || pKeylist->nUsed>=pKeylist->nKey ){
++ pKeylist = sqliteMallocRaw( sizeof(Keylist)+999*sizeof(pKeylist->aKey[0]) );
++ if( pKeylist==0 ) goto no_mem;
++ pKeylist->nKey = 1000;
++ pKeylist->nRead = 0;
++ pKeylist->nUsed = 0;
++ pKeylist->pNext = p->pList;
++ p->pList = pKeylist;
++ }
++ Integerify(pTos);
++ pKeylist->aKey[pKeylist->nUsed++] = pTos->i;
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: ListRewind * * *
++**
++** Rewind the temporary buffer back to the beginning.
++*/
++case OP_ListRewind: {
++ /* What this opcode codes, really, is reverse the order of the
++ ** linked list of Keylist structures so that they are read out
++ ** in the same order that they were read in. */
++ Keylist *pRev, *pTop;
++ pRev = 0;
++ while( p->pList ){
++ pTop = p->pList;
++ p->pList = pTop->pNext;
++ pTop->pNext = pRev;
++ pRev = pTop;
++ }
++ p->pList = pRev;
++ break;
++}
++
++/* Opcode: ListRead * P2 *
++**
++** Attempt to read an integer from the temporary storage buffer
++** and push it onto the stack. If the storage buffer is empty,
++** push nothing but instead jump to P2.
++*/
++case OP_ListRead: {
++ Keylist *pKeylist;
++ CHECK_FOR_INTERRUPT;
++ pKeylist = p->pList;
++ if( pKeylist!=0 ){
++ assert( pKeylist->nRead>=0 );
++ assert( pKeylist->nRead<pKeylist->nUsed );
++ assert( pKeylist->nRead<pKeylist->nKey );
++ pTos++;
++ pTos->i = pKeylist->aKey[pKeylist->nRead++];
++ pTos->flags = MEM_Int;
++ if( pKeylist->nRead>=pKeylist->nUsed ){
++ p->pList = pKeylist->pNext;
++ sqliteFree(pKeylist);
++ }
++ }else{
++ pc = pOp->p2 - 1;
++ }
++ break;
++}
++
++/* Opcode: ListReset * * *
++**
++** Reset the temporary storage buffer so that it holds nothing.
++*/
++case OP_ListReset: {
++ if( p->pList ){
++ sqliteVdbeKeylistFree(p->pList);
++ p->pList = 0;
++ }
++ break;
++}
++
++/* Opcode: ListPush * * *
++**
++** Save the current Vdbe list such that it can be restored by a ListPop
++** opcode. The list is empty after this is executed.
++*/
++case OP_ListPush: {
++ p->keylistStackDepth++;
++ assert(p->keylistStackDepth > 0);
++ p->keylistStack = sqliteRealloc(p->keylistStack,
++ sizeof(Keylist *) * p->keylistStackDepth);
++ if( p->keylistStack==0 ) goto no_mem;
++ p->keylistStack[p->keylistStackDepth - 1] = p->pList;
++ p->pList = 0;
++ break;
++}
++
++/* Opcode: ListPop * * *
++**
++** Restore the Vdbe list to the state it was in when ListPush was last
++** executed.
++*/
++case OP_ListPop: {
++ assert(p->keylistStackDepth > 0);
++ p->keylistStackDepth--;
++ sqliteVdbeKeylistFree(p->pList);
++ p->pList = p->keylistStack[p->keylistStackDepth];
++ p->keylistStack[p->keylistStackDepth] = 0;
++ if( p->keylistStackDepth == 0 ){
++ sqliteFree(p->keylistStack);
++ p->keylistStack = 0;
++ }
++ break;
++}
++
++/* Opcode: ContextPush * * *
++**
++** Save the current Vdbe context such that it can be restored by a ContextPop
++** opcode. The context stores the last insert row id, the last statement change
++** count, and the current statement change count.
++*/
++case OP_ContextPush: {
++ p->contextStackDepth++;
++ assert(p->contextStackDepth > 0);
++ p->contextStack = sqliteRealloc(p->contextStack,
++ sizeof(Context) * p->contextStackDepth);
++ if( p->contextStack==0 ) goto no_mem;
++ p->contextStack[p->contextStackDepth - 1].lastRowid = p->db->lastRowid;
++ p->contextStack[p->contextStackDepth - 1].lsChange = p->db->lsChange;
++ p->contextStack[p->contextStackDepth - 1].csChange = p->db->csChange;
++ break;
++}
++
++/* Opcode: ContextPop * * *
++**
++** Restore the Vdbe context to the state it was in when contextPush was last
++** executed. The context stores the last insert row id, the last statement
++** change count, and the current statement change count.
++*/
++case OP_ContextPop: {
++ assert(p->contextStackDepth > 0);
++ p->contextStackDepth--;
++ p->db->lastRowid = p->contextStack[p->contextStackDepth].lastRowid;
++ p->db->lsChange = p->contextStack[p->contextStackDepth].lsChange;
++ p->db->csChange = p->contextStack[p->contextStackDepth].csChange;
++ if( p->contextStackDepth == 0 ){
++ sqliteFree(p->contextStack);
++ p->contextStack = 0;
++ }
++ break;
++}
++
++/* Opcode: SortPut * * *
++**
++** The TOS is the key and the NOS is the data. Pop both from the stack
++** and put them on the sorter. The key and data should have been
++** made using SortMakeKey and SortMakeRec, respectively.
++*/
++case OP_SortPut: {
++ Mem *pNos = &pTos[-1];
++ Sorter *pSorter;
++ assert( pNos>=p->aStack );
++ if( Dynamicify(pTos) || Dynamicify(pNos) ) goto no_mem;
++ pSorter = sqliteMallocRaw( sizeof(Sorter) );
++ if( pSorter==0 ) goto no_mem;
++ pSorter->pNext = p->pSort;
++ p->pSort = pSorter;
++ assert( pTos->flags & MEM_Dyn );
++ pSorter->nKey = pTos->n;
++ pSorter->zKey = pTos->z;
++ assert( pNos->flags & MEM_Dyn );
++ pSorter->nData = pNos->n;
++ pSorter->pData = pNos->z;
++ pTos -= 2;
++ break;
++}
++
++/* Opcode: SortMakeRec P1 * *
++**
++** The top P1 elements are the arguments to a callback. Form these
++** elements into a single data entry that can be stored on a sorter
++** using SortPut and later fed to a callback using SortCallback.
++*/
++case OP_SortMakeRec: {
++ char *z;
++ char **azArg;
++ int nByte;
++ int nField;
++ int i;
++ Mem *pRec;
++
++ nField = pOp->p1;
++ pRec = &pTos[1-nField];
++ assert( pRec>=p->aStack );
++ nByte = 0;
++ for(i=0; i<nField; i++, pRec++){
++ if( (pRec->flags & MEM_Null)==0 ){
++ Stringify(pRec);
++ nByte += pRec->n;
++ }
++ }
++ nByte += sizeof(char*)*(nField+1);
++ azArg = sqliteMallocRaw( nByte );
++ if( azArg==0 ) goto no_mem;
++ z = (char*)&azArg[nField+1];
++ for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
++ if( pRec->flags & MEM_Null ){
++ azArg[i] = 0;
++ }else{
++ azArg[i] = z;
++ memcpy(z, pRec->z, pRec->n);
++ z += pRec->n;
++ }
++ }
++ popStack(&pTos, nField);
++ pTos++;
++ pTos->n = nByte;
++ pTos->z = (char*)azArg;
++ pTos->flags = MEM_Str | MEM_Dyn;
++ break;
++}
++
++/* Opcode: SortMakeKey * * P3
++**
++** Convert the top few entries of the stack into a sort key. The
++** number of stack entries consumed is the number of characters in
++** the string P3. One character from P3 is prepended to each entry.
++** The first character of P3 is prepended to the element lowest in
++** the stack and the last character of P3 is prepended to the top of
++** the stack. All stack entries are separated by a \000 character
++** in the result. The whole key is terminated by two \000 characters
++** in a row.
++**
++** "N" is substituted in place of the P3 character for NULL values.
++**
++** See also the MakeKey and MakeIdxKey opcodes.
++*/
++case OP_SortMakeKey: {
++ char *zNewKey;
++ int nByte;
++ int nField;
++ int i, j, k;
++ Mem *pRec;
++
++ nField = strlen(pOp->p3);
++ pRec = &pTos[1-nField];
++ nByte = 1;
++ for(i=0; i<nField; i++, pRec++){
++ if( pRec->flags & MEM_Null ){
++ nByte += 2;
++ }else{
++ Stringify(pRec);
++ nByte += pRec->n+2;
++ }
++ }
++ zNewKey = sqliteMallocRaw( nByte );
++ if( zNewKey==0 ) goto no_mem;
++ j = 0;
++ k = 0;
++ for(pRec=&pTos[1-nField], i=0; i<nField; i++, pRec++){
++ if( pRec->flags & MEM_Null ){
++ zNewKey[j++] = 'N';
++ zNewKey[j++] = 0;
++ k++;
++ }else{
++ zNewKey[j++] = pOp->p3[k++];
++ memcpy(&zNewKey[j], pRec->z, pRec->n-1);
++ j += pRec->n-1;
++ zNewKey[j++] = 0;
++ }
++ }
++ zNewKey[j] = 0;
++ assert( j<nByte );
++ popStack(&pTos, nField);
++ pTos++;
++ pTos->n = nByte;
++ pTos->flags = MEM_Str|MEM_Dyn;
++ pTos->z = zNewKey;
++ break;
++}
++
++/* Opcode: Sort * * *
++**
++** Sort all elements on the sorter. The algorithm is a
++** mergesort.
++*/
++case OP_Sort: {
++ int i;
++ Sorter *pElem;
++ Sorter *apSorter[NSORT];
++ for(i=0; i<NSORT; i++){
++ apSorter[i] = 0;
++ }
++ while( p->pSort ){
++ pElem = p->pSort;
++ p->pSort = pElem->pNext;
++ pElem->pNext = 0;
++ for(i=0; i<NSORT-1; i++){
++ if( apSorter[i]==0 ){
++ apSorter[i] = pElem;
++ break;
++ }else{
++ pElem = Merge(apSorter[i], pElem);
++ apSorter[i] = 0;
++ }
++ }
++ if( i>=NSORT-1 ){
++ apSorter[NSORT-1] = Merge(apSorter[NSORT-1],pElem);
++ }
++ }
++ pElem = 0;
++ for(i=0; i<NSORT; i++){
++ pElem = Merge(apSorter[i], pElem);
++ }
++ p->pSort = pElem;
++ break;
++}
++
++/* Opcode: SortNext * P2 *
++**
++** Push the data for the topmost element in the sorter onto the
++** stack, then remove the element from the sorter. If the sorter
++** is empty, push nothing on the stack and instead jump immediately
++** to instruction P2.
++*/
++case OP_SortNext: {
++ Sorter *pSorter = p->pSort;
++ CHECK_FOR_INTERRUPT;
++ if( pSorter!=0 ){
++ p->pSort = pSorter->pNext;
++ pTos++;
++ pTos->z = pSorter->pData;
++ pTos->n = pSorter->nData;
++ pTos->flags = MEM_Str|MEM_Dyn;
++ sqliteFree(pSorter->zKey);
++ sqliteFree(pSorter);
++ }else{
++ pc = pOp->p2 - 1;
++ }
++ break;
++}
++
++/* Opcode: SortCallback P1 * *
++**
++** The top of the stack contains a callback record built using
++** the SortMakeRec operation with the same P1 value as this
++** instruction. Pop this record from the stack and invoke the
++** callback on it.
++*/
++case OP_SortCallback: {
++ assert( pTos>=p->aStack );
++ assert( pTos->flags & MEM_Str );
++ p->nCallback++;
++ p->pc = pc+1;
++ p->azResColumn = (char**)pTos->z;
++ assert( p->nResColumn==pOp->p1 );
++ p->popStack = 1;
++ p->pTos = pTos;
++ return SQLITE_ROW;
++}
++
++/* Opcode: SortReset * * *
++**
++** Remove any elements that remain on the sorter.
++*/
++case OP_SortReset: {
++ sqliteVdbeSorterReset(p);
++ break;
++}
++
++/* Opcode: FileOpen * * P3
++**
++** Open the file named by P3 for reading using the FileRead opcode.
++** If P3 is "stdin" then open standard input for reading.
++*/
++case OP_FileOpen: {
++ assert( pOp->p3!=0 );
++ if( p->pFile ){
++ if( p->pFile!=stdin ) fclose(p->pFile);
++ p->pFile = 0;
++ }
++ if( sqliteStrICmp(pOp->p3,"stdin")==0 ){
++ p->pFile = stdin;
++ }else{
++ p->pFile = fopen(pOp->p3, "r");
++ }
++ if( p->pFile==0 ){
++ sqliteSetString(&p->zErrMsg,"unable to open file: ", pOp->p3, (char*)0);
++ rc = SQLITE_ERROR;
++ }
++ break;
++}
++
++/* Opcode: FileRead P1 P2 P3
++**
++** Read a single line of input from the open file (the file opened using
++** FileOpen). If we reach end-of-file, jump immediately to P2. If
++** we are able to get another line, split the line apart using P3 as
++** a delimiter. There should be P1 fields. If the input line contains
++** more than P1 fields, ignore the excess. If the input line contains
++** fewer than P1 fields, assume the remaining fields contain NULLs.
++**
++** Input ends if a line consists of just "\.". A field containing only
++** "\N" is a null field. The backslash \ character can be used be used
++** to escape newlines or the delimiter.
++*/
++case OP_FileRead: {
++ int n, eol, nField, i, c, nDelim;
++ char *zDelim, *z;
++ CHECK_FOR_INTERRUPT;
++ if( p->pFile==0 ) goto fileread_jump;
++ nField = pOp->p1;
++ if( nField<=0 ) goto fileread_jump;
++ if( nField!=p->nField || p->azField==0 ){
++ char **azField = sqliteRealloc(p->azField, sizeof(char*)*nField+1);
++ if( azField==0 ){ goto no_mem; }
++ p->azField = azField;
++ p->nField = nField;
++ }
++ n = 0;
++ eol = 0;
++ while( eol==0 ){
++ if( p->zLine==0 || n+200>p->nLineAlloc ){
++ char *zLine;
++ p->nLineAlloc = p->nLineAlloc*2 + 300;
++ zLine = sqliteRealloc(p->zLine, p->nLineAlloc);
++ if( zLine==0 ){
++ p->nLineAlloc = 0;
++ sqliteFree(p->zLine);
++ p->zLine = 0;
++ goto no_mem;
++ }
++ p->zLine = zLine;
++ }
++ if( vdbe_fgets(&p->zLine[n], p->nLineAlloc-n, p->pFile)==0 ){
++ eol = 1;
++ p->zLine[n] = 0;
++ }else{
++ int c;
++ while( (c = p->zLine[n])!=0 ){
++ if( c=='\\' ){
++ if( p->zLine[n+1]==0 ) break;
++ n += 2;
++ }else if( c=='\n' ){
++ p->zLine[n] = 0;
++ eol = 1;
++ break;
++ }else{
++ n++;
++ }
++ }
++ }
++ }
++ if( n==0 ) goto fileread_jump;
++ z = p->zLine;
++ if( z[0]=='\\' && z[1]=='.' && z[2]==0 ){
++ goto fileread_jump;
++ }
++ zDelim = pOp->p3;
++ if( zDelim==0 ) zDelim = "\t";
++ c = zDelim[0];
++ nDelim = strlen(zDelim);
++ p->azField[0] = z;
++ for(i=1; *z!=0 && i<=nField; i++){
++ int from, to;
++ from = to = 0;
++ if( z[0]=='\\' && z[1]=='N'
++ && (z[2]==0 || strncmp(&z[2],zDelim,nDelim)==0) ){
++ if( i<=nField ) p->azField[i-1] = 0;
++ z += 2 + nDelim;
++ if( i<nField ) p->azField[i] = z;
++ continue;
++ }
++ while( z[from] ){
++ if( z[from]=='\\' && z[from+1]!=0 ){
++ int tx = z[from+1];
++ switch( tx ){
++ case 'b': tx = '\b'; break;
++ case 'f': tx = '\f'; break;
++ case 'n': tx = '\n'; break;
++ case 'r': tx = '\r'; break;
++ case 't': tx = '\t'; break;
++ case 'v': tx = '\v'; break;
++ default: break;
++ }
++ z[to++] = tx;
++ from += 2;
++ continue;
++ }
++ if( z[from]==c && strncmp(&z[from],zDelim,nDelim)==0 ) break;
++ z[to++] = z[from++];
++ }
++ if( z[from] ){
++ z[to] = 0;
++ z += from + nDelim;
++ if( i<nField ) p->azField[i] = z;
++ }else{
++ z[to] = 0;
++ z = "";
++ }
++ }
++ while( i<nField ){
++ p->azField[i++] = 0;
++ }
++ break;
++
++ /* If we reach end-of-file, or if anything goes wrong, jump here.
++ ** This code will cause a jump to P2 */
++fileread_jump:
++ pc = pOp->p2 - 1;
++ break;
++}
++
++/* Opcode: FileColumn P1 * *
++**
++** Push onto the stack the P1-th column of the most recently read line
++** from the input file.
++*/
++case OP_FileColumn: {
++ int i = pOp->p1;
++ char *z;
++ assert( i>=0 && i<p->nField );
++ if( p->azField ){
++ z = p->azField[i];
++ }else{
++ z = 0;
++ }
++ pTos++;
++ if( z ){
++ pTos->n = strlen(z) + 1;
++ pTos->z = z;
++ pTos->flags = MEM_Str | MEM_Ephem;
++ }else{
++ pTos->flags = MEM_Null;
++ }
++ break;
++}
++
++/* Opcode: MemStore P1 P2 *
++**
++** Write the top of the stack into memory location P1.
++** P1 should be a small integer since space is allocated
++** for all memory locations between 0 and P1 inclusive.
++**
++** After the data is stored in the memory location, the
++** stack is popped once if P2 is 1. If P2 is zero, then
++** the original data remains on the stack.
++*/
++case OP_MemStore: {
++ int i = pOp->p1;
++ Mem *pMem;
++ assert( pTos>=p->aStack );
++ if( i>=p->nMem ){
++ int nOld = p->nMem;
++ Mem *aMem;
++ p->nMem = i + 5;
++ aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
++ if( aMem==0 ) goto no_mem;
++ if( aMem!=p->aMem ){
++ int j;
++ for(j=0; j<nOld; j++){
++ if( aMem[j].flags & MEM_Short ){
++ aMem[j].z = aMem[j].zShort;
++ }
++ }
++ }
++ p->aMem = aMem;
++ if( nOld<p->nMem ){
++ memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
++ }
++ }
++ Deephemeralize(pTos);
++ pMem = &p->aMem[i];
++ Release(pMem);
++ *pMem = *pTos;
++ if( pMem->flags & MEM_Dyn ){
++ if( pOp->p2 ){
++ pTos->flags = MEM_Null;
++ }else{
++ pMem->z = sqliteMallocRaw( pMem->n );
++ if( pMem->z==0 ) goto no_mem;
++ memcpy(pMem->z, pTos->z, pMem->n);
++ }
++ }else if( pMem->flags & MEM_Short ){
++ pMem->z = pMem->zShort;
++ }
++ if( pOp->p2 ){
++ Release(pTos);
++ pTos--;
++ }
++ break;
++}
++
++/* Opcode: MemLoad P1 * *
++**
++** Push a copy of the value in memory location P1 onto the stack.
++**
++** If the value is a string, then the value pushed is a pointer to
++** the string that is stored in the memory location. If the memory
++** location is subsequently changed (using OP_MemStore) then the
++** value pushed onto the stack will change too.
++*/
++case OP_MemLoad: {
++ int i = pOp->p1;
++ assert( i>=0 && i<p->nMem );
++ pTos++;
++ memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
++ if( pTos->flags & MEM_Str ){
++ pTos->flags |= MEM_Ephem;
++ pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
++ }
++ break;
++}
++
++/* Opcode: MemIncr P1 P2 *
++**
++** Increment the integer valued memory cell P1 by 1. If P2 is not zero
++** and the result after the increment is greater than zero, then jump
++** to P2.
++**
++** This instruction throws an error if the memory cell is not initially
++** an integer.
++*/
++case OP_MemIncr: {
++ int i = pOp->p1;
++ Mem *pMem;
++ assert( i>=0 && i<p->nMem );
++ pMem = &p->aMem[i];
++ assert( pMem->flags==MEM_Int );
++ pMem->i++;
++ if( pOp->p2>0 && pMem->i>0 ){
++ pc = pOp->p2 - 1;
++ }
++ break;
++}
++
++/* Opcode: AggReset * P2 *
++**
++** Reset the aggregator so that it no longer contains any data.
++** Future aggregator elements will contain P2 values each.
++*/
++case OP_AggReset: {
++ sqliteVdbeAggReset(&p->agg);
++ p->agg.nMem = pOp->p2;
++ p->agg.apFunc = sqliteMalloc( p->agg.nMem*sizeof(p->agg.apFunc[0]) );
++ if( p->agg.apFunc==0 ) goto no_mem;
++ break;
++}
++
++/* Opcode: AggInit * P2 P3
++**
++** Initialize the function parameters for an aggregate function.
++** The aggregate will operate out of aggregate column P2.
++** P3 is a pointer to the FuncDef structure for the function.
++*/
++case OP_AggInit: {
++ int i = pOp->p2;
++ assert( i>=0 && i<p->agg.nMem );
++ p->agg.apFunc[i] = (FuncDef*)pOp->p3;
++ break;
++}
++
++/* Opcode: AggFunc * P2 P3
++**
++** Execute the step function for an aggregate. The
++** function has P2 arguments. P3 is a pointer to the FuncDef
++** structure that specifies the function.
++**
++** The top of the stack must be an integer which is the index of
++** the aggregate column that corresponds to this aggregate function.
++** Ideally, this index would be another parameter, but there are
++** no free parameters left. The integer is popped from the stack.
++*/
++case OP_AggFunc: {
++ int n = pOp->p2;
++ int i;
++ Mem *pMem, *pRec;
++ char **azArgv = p->zArgv;
++ sqlite_func ctx;
++
++ assert( n>=0 );
++ assert( pTos->flags==MEM_Int );
++ pRec = &pTos[-n];
++ assert( pRec>=p->aStack );
++ for(i=0; i<n; i++, pRec++){
++ if( pRec->flags & MEM_Null ){
++ azArgv[i] = 0;
++ }else{
++ Stringify(pRec);
++ azArgv[i] = pRec->z;
++ }
++ }
++ i = pTos->i;
++ assert( i>=0 && i<p->agg.nMem );
++ ctx.pFunc = (FuncDef*)pOp->p3;
++ pMem = &p->agg.pCurrent->aMem[i];
++ ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */
++ ctx.pAgg = pMem->z;
++ ctx.cnt = ++pMem->i;
++ ctx.isError = 0;
++ ctx.isStep = 1;
++ (ctx.pFunc->xStep)(&ctx, n, (const char**)azArgv);
++ pMem->z = ctx.pAgg;
++ pMem->flags = MEM_AggCtx;
++ popStack(&pTos, n+1);
++ if( ctx.isError ){
++ rc = SQLITE_ERROR;
++ }
++ break;
++}
++
++/* Opcode: AggFocus * P2 *
++**
++** Pop the top of the stack and use that as an aggregator key. If
++** an aggregator with that same key already exists, then make the
++** aggregator the current aggregator and jump to P2. If no aggregator
++** with the given key exists, create one and make it current but
++** do not jump.
++**
++** The order of aggregator opcodes is important. The order is:
++** AggReset AggFocus AggNext. In other words, you must execute
++** AggReset first, then zero or more AggFocus operations, then
++** zero or more AggNext operations. You must not execute an AggFocus
++** in between an AggNext and an AggReset.
++*/
++case OP_AggFocus: {
++ AggElem *pElem;
++ char *zKey;
++ int nKey;
++
++ assert( pTos>=p->aStack );
++ Stringify(pTos);
++ zKey = pTos->z;
++ nKey = pTos->n;
++ pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
++ if( pElem ){
++ p->agg.pCurrent = pElem;
++ pc = pOp->p2 - 1;
++ }else{
++ AggInsert(&p->agg, zKey, nKey);
++ if( sqlite_malloc_failed ) goto no_mem;
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: AggSet * P2 *
++**
++** Move the top of the stack into the P2-th field of the current
++** aggregate. String values are duplicated into new memory.
++*/
++case OP_AggSet: {
++ AggElem *pFocus = AggInFocus(p->agg);
++ Mem *pMem;
++ int i = pOp->p2;
++ assert( pTos>=p->aStack );
++ if( pFocus==0 ) goto no_mem;
++ assert( i>=0 && i<p->agg.nMem );
++ Deephemeralize(pTos);
++ pMem = &pFocus->aMem[i];
++ Release(pMem);
++ *pMem = *pTos;
++ if( pMem->flags & MEM_Dyn ){
++ pTos->flags = MEM_Null;
++ }else if( pMem->flags & MEM_Short ){
++ pMem->z = pMem->zShort;
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: AggGet * P2 *
++**
++** Push a new entry onto the stack which is a copy of the P2-th field
++** of the current aggregate. Strings are not duplicated so
++** string values will be ephemeral.
++*/
++case OP_AggGet: {
++ AggElem *pFocus = AggInFocus(p->agg);
++ Mem *pMem;
++ int i = pOp->p2;
++ if( pFocus==0 ) goto no_mem;
++ assert( i>=0 && i<p->agg.nMem );
++ pTos++;
++ pMem = &pFocus->aMem[i];
++ *pTos = *pMem;
++ if( pTos->flags & MEM_Str ){
++ pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
++ pTos->flags |= MEM_Ephem;
++ }
++ if( pTos->flags & MEM_AggCtx ){
++ Release(pTos);
++ pTos->flags = MEM_Null;
++ }
++ break;
++}
++
++/* Opcode: AggNext * P2 *
++**
++** Make the next aggregate value the current aggregate. The prior
++** aggregate is deleted. If all aggregate values have been consumed,
++** jump to P2.
++**
++** The order of aggregator opcodes is important. The order is:
++** AggReset AggFocus AggNext. In other words, you must execute
++** AggReset first, then zero or more AggFocus operations, then
++** zero or more AggNext operations. You must not execute an AggFocus
++** in between an AggNext and an AggReset.
++*/
++case OP_AggNext: {
++ CHECK_FOR_INTERRUPT;
++ if( p->agg.pSearch==0 ){
++ p->agg.pSearch = sqliteHashFirst(&p->agg.hash);
++ }else{
++ p->agg.pSearch = sqliteHashNext(p->agg.pSearch);
++ }
++ if( p->agg.pSearch==0 ){
++ pc = pOp->p2 - 1;
++ } else {
++ int i;
++ sqlite_func ctx;
++ Mem *aMem;
++ p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
++ aMem = p->agg.pCurrent->aMem;
++ for(i=0; i<p->agg.nMem; i++){
++ int freeCtx;
++ if( p->agg.apFunc[i]==0 ) continue;
++ if( p->agg.apFunc[i]->xFinalize==0 ) continue;
++ ctx.s.flags = MEM_Null;
++ ctx.s.z = aMem[i].zShort;
++ ctx.pAgg = (void*)aMem[i].z;
++ freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
++ ctx.cnt = aMem[i].i;
++ ctx.isStep = 0;
++ ctx.pFunc = p->agg.apFunc[i];
++ (*p->agg.apFunc[i]->xFinalize)(&ctx);
++ if( freeCtx ){
++ sqliteFree( aMem[i].z );
++ }
++ aMem[i] = ctx.s;
++ if( aMem[i].flags & MEM_Short ){
++ aMem[i].z = aMem[i].zShort;
++ }
++ }
++ }
++ break;
++}
++
++/* Opcode: SetInsert P1 * P3
++**
++** If Set P1 does not exist then create it. Then insert value
++** P3 into that set. If P3 is NULL, then insert the top of the
++** stack into the set.
++*/
++case OP_SetInsert: {
++ int i = pOp->p1;
++ if( p->nSet<=i ){
++ int k;
++ Set *aSet = sqliteRealloc(p->aSet, (i+1)*sizeof(p->aSet[0]) );
++ if( aSet==0 ) goto no_mem;
++ p->aSet = aSet;
++ for(k=p->nSet; k<=i; k++){
++ sqliteHashInit(&p->aSet[k].hash, SQLITE_HASH_BINARY, 1);
++ }
++ p->nSet = i+1;
++ }
++ if( pOp->p3 ){
++ sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
++ }else{
++ assert( pTos>=p->aStack );
++ Stringify(pTos);
++ sqliteHashInsert(&p->aSet[i].hash, pTos->z, pTos->n, p);
++ Release(pTos);
++ pTos--;
++ }
++ if( sqlite_malloc_failed ) goto no_mem;
++ break;
++}
++
++/* Opcode: SetFound P1 P2 *
++**
++** Pop the stack once and compare the value popped off with the
++** contents of set P1. If the element popped exists in set P1,
++** then jump to P2. Otherwise fall through.
++*/
++case OP_SetFound: {
++ int i = pOp->p1;
++ assert( pTos>=p->aStack );
++ Stringify(pTos);
++ if( i>=0 && i<p->nSet && sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)){
++ pc = pOp->p2 - 1;
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: SetNotFound P1 P2 *
++**
++** Pop the stack once and compare the value popped off with the
++** contents of set P1. If the element popped does not exists in
++** set P1, then jump to P2. Otherwise fall through.
++*/
++case OP_SetNotFound: {
++ int i = pOp->p1;
++ assert( pTos>=p->aStack );
++ Stringify(pTos);
++ if( i<0 || i>=p->nSet ||
++ sqliteHashFind(&p->aSet[i].hash, pTos->z, pTos->n)==0 ){
++ pc = pOp->p2 - 1;
++ }
++ Release(pTos);
++ pTos--;
++ break;
++}
++
++/* Opcode: SetFirst P1 P2 *
++**
++** Read the first element from set P1 and push it onto the stack. If the
++** set is empty, push nothing and jump immediately to P2. This opcode is
++** used in combination with OP_SetNext to loop over all elements of a set.
++*/
++/* Opcode: SetNext P1 P2 *
++**
++** Read the next element from set P1 and push it onto the stack. If there
++** are no more elements in the set, do not do the push and fall through.
++** Otherwise, jump to P2 after pushing the next set element.
++*/
++case OP_SetFirst:
++case OP_SetNext: {
++ Set *pSet;
++ CHECK_FOR_INTERRUPT;
++ if( pOp->p1<0 || pOp->p1>=p->nSet ){
++ if( pOp->opcode==OP_SetFirst ) pc = pOp->p2 - 1;
++ break;
++ }
++ pSet = &p->aSet[pOp->p1];
++ if( pOp->opcode==OP_SetFirst ){
++ pSet->prev = sqliteHashFirst(&pSet->hash);
++ if( pSet->prev==0 ){
++ pc = pOp->p2 - 1;
++ break;
++ }
++ }else{
++ if( pSet->prev ){
++ pSet->prev = sqliteHashNext(pSet->prev);
++ }
++ if( pSet->prev==0 ){
++ break;
++ }else{
++ pc = pOp->p2 - 1;
++ }
++ }
++ pTos++;
++ pTos->z = sqliteHashKey(pSet->prev);
++ pTos->n = sqliteHashKeysize(pSet->prev);
++ pTos->flags = MEM_Str | MEM_Ephem;
++ break;
++}
++
++/* Opcode: Vacuum * * *
++**
++** Vacuum the entire database. This opcode will cause other virtual
++** machines to be created and run. It may not be called from within
++** a transaction.
++*/
++case OP_Vacuum: {
++ if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
++ rc = sqliteRunVacuum(&p->zErrMsg, db);
++ if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
++ break;
++}
++
++/* Opcode: StackDepth * * *
++**
++** Push an integer onto the stack which is the depth of the stack prior
++** to that integer being pushed.
++*/
++case OP_StackDepth: {
++ int depth = (&pTos[1]) - p->aStack;
++ pTos++;
++ pTos->i = depth;
++ pTos->flags = MEM_Int;
++ break;
++}
++
++/* Opcode: StackReset * * *
++**
++** Pop a single integer off of the stack. Then pop the stack
++** as many times as necessary to get the depth of the stack down
++** to the value of the integer that was popped.
++*/
++case OP_StackReset: {
++ int depth, goal;
++ assert( pTos>=p->aStack );
++ Integerify(pTos);
++ goal = pTos->i;
++ depth = (&pTos[1]) - p->aStack;
++ assert( goal<depth );
++ popStack(&pTos, depth-goal);
++ break;
++}
++
++/* An other opcode is illegal...
++*/
++default: {
++ sqlite_snprintf(sizeof(zBuf),zBuf,"%d",pOp->opcode);
++ sqliteSetString(&p->zErrMsg, "unknown opcode ", zBuf, (char*)0);
++ rc = SQLITE_INTERNAL;
++ break;
++}
++
++/*****************************************************************************
++** The cases of the switch statement above this line should all be indented
++** by 6 spaces. But the left-most 6 spaces have been removed to improve the
++** readability. From this point on down, the normal indentation rules are
++** restored.
++*****************************************************************************/
++ }
++
++#ifdef VDBE_PROFILE
++ {
++ long long elapse = hwtime() - start;
++ pOp->cycles += elapse;
++ pOp->cnt++;
++#if 0
++ fprintf(stdout, "%10lld ", elapse);
++ sqliteVdbePrintOp(stdout, origPc, &p->aOp[origPc]);
++#endif
++ }
++#endif
++
++ /* The following code adds nothing to the actual functionality
++ ** of the program. It is only here for testing and debugging.
++ ** On the other hand, it does burn CPU cycles every time through
++ ** the evaluator loop. So we can leave it out when NDEBUG is defined.
++ */
++#ifndef NDEBUG
++ /* Sanity checking on the top element of the stack */
++ if( pTos>=p->aStack ){
++ assert( pTos->flags!=0 ); /* Must define some type */
++ if( pTos->flags & MEM_Str ){
++ int x = pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
++ assert( x!=0 ); /* Strings must define a string subtype */
++ assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
++ assert( pTos->z!=0 ); /* Strings must have a value */
++ /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
++ assert( (pTos->flags & MEM_Short)==0 || pTos->z==pTos->zShort );
++ assert( (pTos->flags & MEM_Short)!=0 || pTos->z!=pTos->zShort );
++ }else{
++ /* Cannot define a string subtype for non-string objects */
++ assert( (pTos->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
++ }
++ /* MEM_Null excludes all other types */
++ assert( pTos->flags==MEM_Null || (pTos->flags&MEM_Null)==0 );
++ }
++ if( pc<-1 || pc>=p->nOp ){
++ sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
++ rc = SQLITE_INTERNAL;
++ }
++ if( p->trace && pTos>=p->aStack ){
++ int i;
++ fprintf(p->trace, "Stack:");
++ for(i=0; i>-5 && &pTos[i]>=p->aStack; i--){
++ if( pTos[i].flags & MEM_Null ){
++ fprintf(p->trace, " NULL");
++ }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
++ fprintf(p->trace, " si:%d", pTos[i].i);
++ }else if( pTos[i].flags & MEM_Int ){
++ fprintf(p->trace, " i:%d", pTos[i].i);
++ }else if( pTos[i].flags & MEM_Real ){
++ fprintf(p->trace, " r:%g", pTos[i].r);
++ }else if( pTos[i].flags & MEM_Str ){
++ int j, k;
++ char zBuf[100];
++ zBuf[0] = ' ';
++ if( pTos[i].flags & MEM_Dyn ){
++ zBuf[1] = 'z';
++ assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
++ }else if( pTos[i].flags & MEM_Static ){
++ zBuf[1] = 't';
++ assert( (pTos[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
++ }else if( pTos[i].flags & MEM_Ephem ){
++ zBuf[1] = 'e';
++ assert( (pTos[i].flags & (MEM_Static|MEM_Dyn))==0 );
++ }else{
++ zBuf[1] = 's';
++ }
++ zBuf[2] = '[';
++ k = 3;
++ for(j=0; j<20 && j<pTos[i].n; j++){
++ int c = pTos[i].z[j];
++ if( c==0 && j==pTos[i].n-1 ) break;
++ if( isprint(c) && !isspace(c) ){
++ zBuf[k++] = c;
++ }else{
++ zBuf[k++] = '.';
++ }
++ }
++ zBuf[k++] = ']';
++ zBuf[k++] = 0;
++ fprintf(p->trace, "%s", zBuf);
++ }else{
++ fprintf(p->trace, " ???");
++ }
++ }
++ if( rc!=0 ) fprintf(p->trace," rc=%d",rc);
++ fprintf(p->trace,"\n");
++ }
++#endif
++ } /* The end of the for(;;) loop the loops through opcodes */
++
++ /* If we reach this point, it means that execution is finished.
++ */
++vdbe_halt:
++ CHECK_FOR_INTERRUPT
++ if( rc ){
++ p->rc = rc;
++ rc = SQLITE_ERROR;
++ }else{
++ rc = SQLITE_DONE;
++ }
++ p->magic = VDBE_MAGIC_HALT;
++ p->pTos = pTos;
++ return rc;
++
++ /* Jump to here if a malloc() fails. It's hard to get a malloc()
++ ** to fail on a modern VM computer, so this code is untested.
++ */
++no_mem:
++ sqliteSetString(&p->zErrMsg, "out of memory", (char*)0);
++ rc = SQLITE_NOMEM;
++ goto vdbe_halt;
++
++ /* Jump to here for an SQLITE_MISUSE error.
++ */
++abort_due_to_misuse:
++ rc = SQLITE_MISUSE;
++ /* Fall thru into abort_due_to_error */
++
++ /* Jump to here for any other kind of fatal error. The "rc" variable
++ ** should hold the error number.
++ */
++abort_due_to_error:
++ if( p->zErrMsg==0 ){
++ if( sqlite_malloc_failed ) rc = SQLITE_NOMEM;
++ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
++ }
++ goto vdbe_halt;
++
++ /* Jump to here if the sqlite_interrupt() API sets the interrupt
++ ** flag.
++ */
++abort_due_to_interrupt:
++ assert( db->flags & SQLITE_Interrupt );
++ db->flags &= ~SQLITE_Interrupt;
++ if( db->magic!=SQLITE_MAGIC_BUSY ){
++ rc = SQLITE_MISUSE;
++ }else{
++ rc = SQLITE_INTERRUPT;
++ }
++ sqliteSetString(&p->zErrMsg, sqlite_error_string(rc), (char*)0);
++ goto vdbe_halt;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/vdbe.h
+@@ -0,0 +1,112 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** Header file for the Virtual DataBase Engine (VDBE)
++**
++** This header defines the interface to the virtual database engine
++** or VDBE. The VDBE implements an abstract machine that runs a
++** simple program to access and modify the underlying database.
++**
++** $Id$
++*/
++#ifndef _SQLITE_VDBE_H_
++#define _SQLITE_VDBE_H_
++#include <stdio.h>
++
++/*
++** A single VDBE is an opaque structure named "Vdbe". Only routines
++** in the source file sqliteVdbe.c are allowed to see the insides
++** of this structure.
++*/
++typedef struct Vdbe Vdbe;
++
++/*
++** A single instruction of the virtual machine has an opcode
++** and as many as three operands. The instruction is recorded
++** as an instance of the following structure:
++*/
++struct VdbeOp {
++ u8 opcode; /* What operation to perform */
++ int p1; /* First operand */
++ int p2; /* Second parameter (often the jump destination) */
++ char *p3; /* Third parameter */
++ int p3type; /* P3_STATIC, P3_DYNAMIC or P3_POINTER */
++#ifdef VDBE_PROFILE
++ int cnt; /* Number of times this instruction was executed */
++ long long cycles; /* Total time spend executing this instruction */
++#endif
++};
++typedef struct VdbeOp VdbeOp;
++
++/*
++** A smaller version of VdbeOp used for the VdbeAddOpList() function because
++** it takes up less space.
++*/
++struct VdbeOpList {
++ u8 opcode; /* What operation to perform */
++ signed char p1; /* First operand */
++ short int p2; /* Second parameter (often the jump destination) */
++ char *p3; /* Third parameter */
++};
++typedef struct VdbeOpList VdbeOpList;
++
++/*
++** Allowed values of VdbeOp.p3type
++*/
++#define P3_NOTUSED 0 /* The P3 parameter is not used */
++#define P3_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */
++#define P3_STATIC (-2) /* Pointer to a static string */
++#define P3_POINTER (-3) /* P3 is a pointer to some structure or object */
++
++/*
++** The following macro converts a relative address in the p2 field
++** of a VdbeOp structure into a negative number so that
++** sqliteVdbeAddOpList() knows that the address is relative. Calling
++** the macro again restores the address.
++*/
++#define ADDR(X) (-1-(X))
++
++/*
++** The makefile scans the vdbe.c source file and creates the "opcodes.h"
++** header file that defines a number for each opcode used by the VDBE.
++*/
++#include "opcodes.h"
++
++/*
++** Prototypes for the VDBE interface. See comments on the implementation
++** for a description of what each of these routines does.
++*/
++Vdbe *sqliteVdbeCreate(sqlite*);
++void sqliteVdbeCreateCallback(Vdbe*, int*);
++int sqliteVdbeAddOp(Vdbe*,int,int,int);
++int sqliteVdbeOp3(Vdbe*,int,int,int,const char *zP3,int);
++int sqliteVdbeCode(Vdbe*,...);
++int sqliteVdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
++void sqliteVdbeChangeP1(Vdbe*, int addr, int P1);
++void sqliteVdbeChangeP2(Vdbe*, int addr, int P2);
++void sqliteVdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
++void sqliteVdbeDequoteP3(Vdbe*, int addr);
++int sqliteVdbeFindOp(Vdbe*, int, int);
++VdbeOp *sqliteVdbeGetOp(Vdbe*, int);
++int sqliteVdbeMakeLabel(Vdbe*);
++void sqliteVdbeDelete(Vdbe*);
++void sqliteVdbeMakeReady(Vdbe*,int,int);
++int sqliteVdbeExec(Vdbe*);
++int sqliteVdbeList(Vdbe*);
++int sqliteVdbeFinalize(Vdbe*,char**);
++void sqliteVdbeResolveLabel(Vdbe*, int);
++int sqliteVdbeCurrentAddr(Vdbe*);
++void sqliteVdbeTrace(Vdbe*,FILE*);
++void sqliteVdbeCompressSpace(Vdbe*,int);
++int sqliteVdbeReset(Vdbe*,char **);
++int sqliteVdbeSetVariables(Vdbe*,int,const char**);
++
++#endif
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/vdbeInt.h
+@@ -0,0 +1,303 @@
++/*
++** 2003 September 6
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This is the header file for information that is private to the
++** VDBE. This information used to all be at the top of the single
++** source code file "vdbe.c". When that file became too big (over
++** 6000 lines long) it was split up into several smaller files and
++** this header information was factored out.
++*/
++
++/*
++** When converting from the native format to the key format and back
++** again, in addition to changing the byte order we invert the high-order
++** bit of the most significant byte. This causes negative numbers to
++** sort before positive numbers in the memcmp() function.
++*/
++#define keyToInt(X) (sqliteVdbeByteSwap(X) ^ 0x80000000)
++#define intToKey(X) (sqliteVdbeByteSwap((X) ^ 0x80000000))
++
++/*
++** The makefile scans this source file and creates the following
++** array of string constants which are the names of all VDBE opcodes.
++** This array is defined in a separate source code file named opcode.c
++** which is automatically generated by the makefile.
++*/
++extern char *sqliteOpcodeNames[];
++
++/*
++** SQL is translated into a sequence of instructions to be
++** executed by a virtual machine. Each instruction is an instance
++** of the following structure.
++*/
++typedef struct VdbeOp Op;
++
++/*
++** Boolean values
++*/
++typedef unsigned char Bool;
++
++/*
++** A cursor is a pointer into a single BTree within a database file.
++** The cursor can seek to a BTree entry with a particular key, or
++** loop over all entries of the Btree. You can also insert new BTree
++** entries or retrieve the key or data from the entry that the cursor
++** is currently pointing to.
++**
++** Every cursor that the virtual machine has open is represented by an
++** instance of the following structure.
++**
++** If the Cursor.isTriggerRow flag is set it means that this cursor is
++** really a single row that represents the NEW or OLD pseudo-table of
++** a row trigger. The data for the row is stored in Cursor.pData and
++** the rowid is in Cursor.iKey.
++*/
++struct Cursor {
++ BtCursor *pCursor; /* The cursor structure of the backend */
++ int lastRecno; /* Last recno from a Next or NextIdx operation */
++ int nextRowid; /* Next rowid returned by OP_NewRowid */
++ Bool recnoIsValid; /* True if lastRecno is valid */
++ Bool keyAsData; /* The OP_Column command works on key instead of data */
++ Bool atFirst; /* True if pointing to first entry */
++ Bool useRandomRowid; /* Generate new record numbers semi-randomly */
++ Bool nullRow; /* True if pointing to a row with no data */
++ Bool nextRowidValid; /* True if the nextRowid field is valid */
++ Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */
++ Bool deferredMoveto; /* A call to sqliteBtreeMoveto() is needed */
++ int movetoTarget; /* Argument to the deferred sqliteBtreeMoveto() */
++ Btree *pBt; /* Separate file holding temporary table */
++ int nData; /* Number of bytes in pData */
++ char *pData; /* Data for a NEW or OLD pseudo-table */
++ int iKey; /* Key for the NEW or OLD pseudo-table row */
++};
++typedef struct Cursor Cursor;
++
++/*
++** A sorter builds a list of elements to be sorted. Each element of
++** the list is an instance of the following structure.
++*/
++typedef struct Sorter Sorter;
++struct Sorter {
++ int nKey; /* Number of bytes in the key */
++ char *zKey; /* The key by which we will sort */
++ int nData; /* Number of bytes in the data */
++ char *pData; /* The data associated with this key */
++ Sorter *pNext; /* Next in the list */
++};
++
++/*
++** Number of buckets used for merge-sort.
++*/
++#define NSORT 30
++
++/*
++** Number of bytes of string storage space available to each stack
++** layer without having to malloc. NBFS is short for Number of Bytes
++** For Strings.
++*/
++#define NBFS 32
++
++/*
++** A single level of the stack or a single memory cell
++** is an instance of the following structure.
++*/
++struct Mem {
++ int i; /* Integer value */
++ int n; /* Number of characters in string value, including '\0' */
++ int flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */
++ double r; /* Real value */
++ char *z; /* String value */
++ char zShort[NBFS]; /* Space for short strings */
++};
++typedef struct Mem Mem;
++
++/*
++** Allowed values for Mem.flags
++*/
++#define MEM_Null 0x0001 /* Value is NULL */
++#define MEM_Str 0x0002 /* Value is a string */
++#define MEM_Int 0x0004 /* Value is an integer */
++#define MEM_Real 0x0008 /* Value is a real number */
++#define MEM_Dyn 0x0010 /* Need to call sqliteFree() on Mem.z */
++#define MEM_Static 0x0020 /* Mem.z points to a static string */
++#define MEM_Ephem 0x0040 /* Mem.z points to an ephemeral string */
++#define MEM_Short 0x0080 /* Mem.z points to Mem.zShort */
++
++/* The following MEM_ value appears only in AggElem.aMem.s.flag fields.
++** It indicates that the corresponding AggElem.aMem.z points to a
++** aggregate function context that needs to be finalized.
++*/
++#define MEM_AggCtx 0x0100 /* Mem.z points to an agg function context */
++
++/*
++** The "context" argument for a installable function. A pointer to an
++** instance of this structure is the first argument to the routines used
++** implement the SQL functions.
++**
++** There is a typedef for this structure in sqlite.h. So all routines,
++** even the public interface to SQLite, can use a pointer to this structure.
++** But this file is the only place where the internal details of this
++** structure are known.
++**
++** This structure is defined inside of vdbe.c because it uses substructures
++** (Mem) which are only defined there.
++*/
++struct sqlite_func {
++ FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */
++ Mem s; /* The return value is stored here */
++ void *pAgg; /* Aggregate context */
++ u8 isError; /* Set to true for an error */
++ u8 isStep; /* Current in the step function */
++ int cnt; /* Number of times that the step function has been called */
++};
++
++/*
++** An Agg structure describes an Aggregator. Each Agg consists of
++** zero or more Aggregator elements (AggElem). Each AggElem contains
++** a key and one or more values. The values are used in processing
++** aggregate functions in a SELECT. The key is used to implement
++** the GROUP BY clause of a select.
++*/
++typedef struct Agg Agg;
++typedef struct AggElem AggElem;
++struct Agg {
++ int nMem; /* Number of values stored in each AggElem */
++ AggElem *pCurrent; /* The AggElem currently in focus */
++ HashElem *pSearch; /* The hash element for pCurrent */
++ Hash hash; /* Hash table of all aggregate elements */
++ FuncDef **apFunc; /* Information about aggregate functions */
++};
++struct AggElem {
++ char *zKey; /* The key to this AggElem */
++ int nKey; /* Number of bytes in the key, including '\0' at end */
++ Mem aMem[1]; /* The values for this AggElem */
++};
++
++/*
++** A Set structure is used for quick testing to see if a value
++** is part of a small set. Sets are used to implement code like
++** this:
++** x.y IN ('hi','hoo','hum')
++*/
++typedef struct Set Set;
++struct Set {
++ Hash hash; /* A set is just a hash table */
++ HashElem *prev; /* Previously accessed hash elemen */
++};
++
++/*
++** A Keylist is a bunch of keys into a table. The keylist can
++** grow without bound. The keylist stores the ROWIDs of database
++** records that need to be deleted or updated.
++*/
++typedef struct Keylist Keylist;
++struct Keylist {
++ int nKey; /* Number of slots in aKey[] */
++ int nUsed; /* Next unwritten slot in aKey[] */
++ int nRead; /* Next unread slot in aKey[] */
++ Keylist *pNext; /* Next block of keys */
++ int aKey[1]; /* One or more keys. Extra space allocated as needed */
++};
++
++/*
++** A Context stores the last insert rowid, the last statement change count,
++** and the current statement change count (i.e. changes since last statement).
++** Elements of Context structure type make up the ContextStack, which is
++** updated by the ContextPush and ContextPop opcodes (used by triggers)
++*/
++typedef struct Context Context;
++struct Context {
++ int lastRowid; /* Last insert rowid (from db->lastRowid) */
++ int lsChange; /* Last statement change count (from db->lsChange) */
++ int csChange; /* Current statement change count (from db->csChange) */
++};
++
++/*
++** An instance of the virtual machine. This structure contains the complete
++** state of the virtual machine.
++**
++** The "sqlite_vm" structure pointer that is returned by sqlite_compile()
++** is really a pointer to an instance of this structure.
++*/
++struct Vdbe {
++ sqlite *db; /* The whole database */
++ Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */
++ FILE *trace; /* Write an execution trace here, if not NULL */
++ int nOp; /* Number of instructions in the program */
++ int nOpAlloc; /* Number of slots allocated for aOp[] */
++ Op *aOp; /* Space to hold the virtual machine's program */
++ int nLabel; /* Number of labels used */
++ int nLabelAlloc; /* Number of slots allocated in aLabel[] */
++ int *aLabel; /* Space to hold the labels */
++ Mem *aStack; /* The operand stack, except string values */
++ Mem *pTos; /* Top entry in the operand stack */
++ char **zArgv; /* Text values used by the callback */
++ char **azColName; /* Becomes the 4th parameter to callbacks */
++ int nCursor; /* Number of slots in aCsr[] */
++ Cursor *aCsr; /* One element of this array for each open cursor */
++ Sorter *pSort; /* A linked list of objects to be sorted */
++ FILE *pFile; /* At most one open file handler */
++ int nField; /* Number of file fields */
++ char **azField; /* Data for each file field */
++ int nVar; /* Number of entries in azVariable[] */
++ char **azVar; /* Values for the OP_Variable opcode */
++ int *anVar; /* Length of each value in azVariable[] */
++ u8 *abVar; /* TRUE if azVariable[i] needs to be sqliteFree()ed */
++ char *zLine; /* A single line from the input file */
++ int nLineAlloc; /* Number of spaces allocated for zLine */
++ int magic; /* Magic number for sanity checking */
++ int nMem; /* Number of memory locations currently allocated */
++ Mem *aMem; /* The memory locations */
++ Agg agg; /* Aggregate information */
++ int nSet; /* Number of sets allocated */
++ Set *aSet; /* An array of sets */
++ int nCallback; /* Number of callbacks invoked so far */
++ Keylist *pList; /* A list of ROWIDs */
++ int keylistStackDepth; /* The size of the "keylist" stack */
++ Keylist **keylistStack; /* The stack used by opcodes ListPush & ListPop */
++ int contextStackDepth; /* The size of the "context" stack */
++ Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/
++ int pc; /* The program counter */
++ int rc; /* Value to return */
++ unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */
++ int errorAction; /* Recovery action to do in case of an error */
++ int undoTransOnError; /* If error, either ROLLBACK or COMMIT */
++ int inTempTrans; /* True if temp database is transactioned */
++ int returnStack[100]; /* Return address stack for OP_Gosub & OP_Return */
++ int returnDepth; /* Next unused element in returnStack[] */
++ int nResColumn; /* Number of columns in one row of the result set */
++ char **azResColumn; /* Values for one row of result */
++ int popStack; /* Pop the stack this much on entry to VdbeExec() */
++ char *zErrMsg; /* Error message written here */
++ u8 explain; /* True if EXPLAIN present on SQL command */
++};
++
++/*
++** The following are allowed values for Vdbe.magic
++*/
++#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */
++#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */
++#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */
++#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */
++
++/*
++** Function prototypes
++*/
++void sqliteVdbeCleanupCursor(Cursor*);
++void sqliteVdbeSorterReset(Vdbe*);
++void sqliteVdbeAggReset(Agg*);
++void sqliteVdbeKeylistFree(Keylist*);
++void sqliteVdbePopStack(Vdbe*,int);
++int sqliteVdbeCursorMoveto(Cursor*);
++int sqliteVdbeByteSwap(int);
++#if !defined(NDEBUG) || defined(VDBE_PROFILE)
++void sqliteVdbePrintOp(FILE*, int, Op*);
++#endif
+--- /dev/null
++++ b/ext/sqlite/libsqlite/src/where.c
+@@ -0,0 +1,1235 @@
++/*
++** 2001 September 15
++**
++** The author disclaims copyright to this source code. In place of
++** a legal notice, here is a blessing:
++**
++** May you do good and not evil.
++** May you find forgiveness for yourself and forgive others.
++** May you share freely, never taking more than you give.
++**
++*************************************************************************
++** This module contains C code that generates VDBE code used to process
++** the WHERE clause of SQL statements.
++**
++** $Id$
++*/
++#include "sqliteInt.h"
++
++/*
++** The query generator uses an array of instances of this structure to
++** help it analyze the subexpressions of the WHERE clause. Each WHERE
++** clause subexpression is separated from the others by an AND operator.
++*/
++typedef struct ExprInfo ExprInfo;
++struct ExprInfo {
++ Expr *p; /* Pointer to the subexpression */
++ u8 indexable; /* True if this subexprssion is usable by an index */
++ short int idxLeft; /* p->pLeft is a column in this table number. -1 if
++ ** p->pLeft is not the column of any table */
++ short int idxRight; /* p->pRight is a column in this table number. -1 if
++ ** p->pRight is not the column of any table */
++ unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */
++ unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */
++ unsigned prereqAll; /* Bitmask of tables referenced by p */
++};
++
++/*
++** An instance of the following structure keeps track of a mapping
++** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers
++** are small integers contained in SrcList_item.iCursor and Expr.iTable
++** fields. For any given WHERE clause, we want to track which cursors
++** are being used, so we assign a single bit in a 32-bit word to track
++** that cursor. Then a 32-bit integer is able to show the set of all
++** cursors being used.
++*/
++typedef struct ExprMaskSet ExprMaskSet;
++struct ExprMaskSet {
++ int n; /* Number of assigned cursor values */
++ int ix[31]; /* Cursor assigned to each bit */
++};
++
++/*
++** Determine the number of elements in an array.
++*/
++#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0]))
++
++/*
++** This routine is used to divide the WHERE expression into subexpressions
++** separated by the AND operator.
++**
++** aSlot[] is an array of subexpressions structures.
++** There are nSlot spaces left in this array. This routine attempts to
++** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
++** The return value is the number of slots filled.
++*/
++static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
++ int cnt = 0;
++ if( pExpr==0 || nSlot<1 ) return 0;
++ if( nSlot==1 || pExpr->op!=TK_AND ){
++ aSlot[0].p = pExpr;
++ return 1;
++ }
++ if( pExpr->pLeft->op!=TK_AND ){
++ aSlot[0].p = pExpr->pLeft;
++ cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
++ }else{
++ cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
++ cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
++ }
++ return cnt;
++}
++
++/*
++** Initialize an expression mask set
++*/
++#define initMaskSet(P) memset(P, 0, sizeof(*P))
++
++/*
++** Return the bitmask for the given cursor. Assign a new bitmask
++** if this is the first time the cursor has been seen.
++*/
++static int getMask(ExprMaskSet *pMaskSet, int iCursor){
++ int i;
++ for(i=0; i<pMaskSet->n; i++){
++ if( pMaskSet->ix[i]==iCursor ) return 1<<i;
++ }
++ if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
++ pMaskSet->n++;
++ pMaskSet->ix[i] = iCursor;
++ return 1<<i;
++ }
++ return 0;
++}
++
++/*
++** Destroy an expression mask set
++*/
++#define freeMaskSet(P) /* NO-OP */
++
++/*
++** This routine walks (recursively) an expression tree and generates
++** a bitmask indicating which tables are used in that expression
++** tree.
++**
++** In order for this routine to work, the calling function must have
++** previously invoked sqliteExprResolveIds() on the expression. See
++** the header comment on that routine for additional information.
++** The sqliteExprResolveIds() routines looks for column names and
++** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
++** the VDBE cursor number of the table.
++*/
++static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
++ unsigned int mask = 0;
++ if( p==0 ) return 0;
++ if( p->op==TK_COLUMN ){
++ mask = getMask(pMaskSet, p->iTable);
++ if( mask==0 ) mask = -1;
++ return mask;
++ }
++ if( p->pRight ){
++ mask = exprTableUsage(pMaskSet, p->pRight);
++ }
++ if( p->pLeft ){
++ mask |= exprTableUsage(pMaskSet, p->pLeft);
++ }
++ if( p->pList ){
++ int i;
++ for(i=0; i<p->pList->nExpr; i++){
++ mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
++ }
++ }
++ return mask;
++}
++
++/*
++** Return TRUE if the given operator is one of the operators that is
++** allowed for an indexable WHERE clause. The allowed operators are
++** "=", "<", ">", "<=", ">=", and "IN".
++*/
++static int allowedOp(int op){
++ switch( op ){
++ case TK_LT:
++ case TK_LE:
++ case TK_GT:
++ case TK_GE:
++ case TK_EQ:
++ case TK_IN:
++ return 1;
++ default:
++ return 0;
++ }
++}
++
++/*
++** The input to this routine is an ExprInfo structure with only the
++** "p" field filled in. The job of this routine is to analyze the
++** subexpression and populate all the other fields of the ExprInfo
++** structure.
++*/
++static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){
++ Expr *pExpr = pInfo->p;
++ pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
++ pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
++ pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
++ pInfo->indexable = 0;
++ pInfo->idxLeft = -1;
++ pInfo->idxRight = -1;
++ if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
++ if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
++ pInfo->idxRight = pExpr->pRight->iTable;
++ pInfo->indexable = 1;
++ }
++ if( pExpr->pLeft->op==TK_COLUMN ){
++ pInfo->idxLeft = pExpr->pLeft->iTable;
++ pInfo->indexable = 1;
++ }
++ }
++}
++
++/*
++** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
++** left-most table in the FROM clause of that same SELECT statement and
++** the table has a cursor number of "base".
++**
++** This routine attempts to find an index for pTab that generates the
++** correct record sequence for the given ORDER BY clause. The return value
++** is a pointer to an index that does the job. NULL is returned if the
++** table has no index that will generate the correct sort order.
++**
++** If there are two or more indices that generate the correct sort order
++** and pPreferredIdx is one of those indices, then return pPreferredIdx.
++**
++** nEqCol is the number of columns of pPreferredIdx that are used as
++** equality constraints. Any index returned must have exactly this same
++** set of columns. The ORDER BY clause only matches index columns beyond the
++** the first nEqCol columns.
++**
++** All terms of the ORDER BY clause must be either ASC or DESC. The
++** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
++** set to 0 if the ORDER BY clause is all ASC.
++*/
++static Index *findSortingIndex(
++ Table *pTab, /* The table to be sorted */
++ int base, /* Cursor number for pTab */
++ ExprList *pOrderBy, /* The ORDER BY clause */
++ Index *pPreferredIdx, /* Use this index, if possible and not NULL */
++ int nEqCol, /* Number of index columns used with == constraints */
++ int *pbRev /* Set to 1 if ORDER BY is DESC */
++){
++ int i, j;
++ Index *pMatch;
++ Index *pIdx;
++ int sortOrder;
++
++ assert( pOrderBy!=0 );
++ assert( pOrderBy->nExpr>0 );
++ sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
++ for(i=0; i<pOrderBy->nExpr; i++){
++ Expr *p;
++ if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
++ /* Indices can only be used if all ORDER BY terms are either
++ ** DESC or ASC. Indices cannot be used on a mixture. */
++ return 0;
++ }
++ if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
++ /* Do not sort by index if there is a COLLATE clause */
++ return 0;
++ }
++ p = pOrderBy->a[i].pExpr;
++ if( p->op!=TK_COLUMN || p->iTable!=base ){
++ /* Can not use an index sort on anything that is not a column in the
++ ** left-most table of the FROM clause */
++ return 0;
++ }
++ }
++
++ /* If we get this far, it means the ORDER BY clause consists only of
++ ** ascending columns in the left-most table of the FROM clause. Now
++ ** check for a matching index.
++ */
++ pMatch = 0;
++ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
++ int nExpr = pOrderBy->nExpr;
++ if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
++ for(i=j=0; i<nEqCol; i++){
++ if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
++ if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
++ }
++ if( i<nEqCol ) continue;
++ for(i=0; i+j<nExpr; i++){
++ if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
++ }
++ if( i+j>=nExpr ){
++ pMatch = pIdx;
++ if( pIdx==pPreferredIdx ) break;
++ }
++ }
++ if( pMatch && pbRev ){
++ *pbRev = sortOrder==SQLITE_SO_DESC;
++ }
++ return pMatch;
++}
++
++/*
++** Disable a term in the WHERE clause. Except, do not disable the term
++** if it controls a LEFT OUTER JOIN and it did not originate in the ON
++** or USING clause of that join.
++**
++** Consider the term t2.z='ok' in the following queries:
++**
++** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
++** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
++** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
++**
++** The t2.z='ok' is disabled in the in (2) because it did not originate
++** in the ON clause. The term is disabled in (3) because it is not part
++** of a LEFT OUTER JOIN. In (1), the term is not disabled.
++**
++** Disabling a term causes that term to not be tested in the inner loop
++** of the join. Disabling is an optimization. We would get the correct
++** results if nothing were ever disabled, but joins might run a little
++** slower. The trick is to disable as much as we can without disabling
++** too much. If we disabled in (1), we'd get the wrong answer.
++** See ticket #813.
++*/
++static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){
++ Expr *pExpr = *ppExpr;
++ if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){
++ *ppExpr = 0;
++ }
++}
++
++/*
++** Generate the beginning of the loop used for WHERE clause processing.
++** The return value is a pointer to an (opaque) structure that contains
++** information needed to terminate the loop. Later, the calling routine
++** should invoke sqliteWhereEnd() with the return value of this function
++** in order to complete the WHERE clause processing.
++**
++** If an error occurs, this routine returns NULL.
++**
++** The basic idea is to do a nested loop, one loop for each table in
++** the FROM clause of a select. (INSERT and UPDATE statements are the
++** same as a SELECT with only a single table in the FROM clause.) For
++** example, if the SQL is this:
++**
++** SELECT * FROM t1, t2, t3 WHERE ...;
++**
++** Then the code generated is conceptually like the following:
++**
++** foreach row1 in t1 do \ Code generated
++** foreach row2 in t2 do |-- by sqliteWhereBegin()
++** foreach row3 in t3 do /
++** ...
++** end \ Code generated
++** end |-- by sqliteWhereEnd()
++** end /
++**
++** There are Btree cursors associated with each table. t1 uses cursor
++** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
++** And so forth. This routine generates code to open those VDBE cursors
++** and sqliteWhereEnd() generates the code to close them.
++**
++** If the WHERE clause is empty, the foreach loops must each scan their
++** entire tables. Thus a three-way join is an O(N^3) operation. But if
++** the tables have indices and there are terms in the WHERE clause that
++** refer to those indices, a complete table scan can be avoided and the
++** code will run much faster. Most of the work of this routine is checking
++** to see if there are indices that can be used to speed up the loop.
++**
++** Terms of the WHERE clause are also used to limit which rows actually
++** make it to the "..." in the middle of the loop. After each "foreach",
++** terms of the WHERE clause that use only terms in that loop and outer
++** loops are evaluated and if false a jump is made around all subsequent
++** inner loops (or around the "..." if the test occurs within the inner-
++** most loop)
++**
++** OUTER JOINS
++**
++** An outer join of tables t1 and t2 is conceptally coded as follows:
++**
++** foreach row1 in t1 do
++** flag = 0
++** foreach row2 in t2 do
++** start:
++** ...
++** flag = 1
++** end
++** if flag==0 then
++** move the row2 cursor to a null row
++** goto start
++** fi
++** end
++**
++** ORDER BY CLAUSE PROCESSING
++**
++** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
++** if there is one. If there is no ORDER BY clause or if this routine
++** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
++**
++** If an index can be used so that the natural output order of the table
++** scan is correct for the ORDER BY clause, then that index is used and
++** *ppOrderBy is set to NULL. This is an optimization that prevents an
++** unnecessary sort of the result set if an index appropriate for the
++** ORDER BY clause already exists.
++**
++** If the where clause loops cannot be arranged to provide the correct
++** output order, then the *ppOrderBy is unchanged.
++*/
++WhereInfo *sqliteWhereBegin(
++ Parse *pParse, /* The parser context */
++ SrcList *pTabList, /* A list of all tables to be scanned */
++ Expr *pWhere, /* The WHERE clause */
++ int pushKey, /* If TRUE, leave the table key on the stack */
++ ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
++){
++ int i; /* Loop counter */
++ WhereInfo *pWInfo; /* Will become the return value of this function */
++ Vdbe *v = pParse->pVdbe; /* The virtual database engine */
++ int brk, cont = 0; /* Addresses used during code generation */
++ int nExpr; /* Number of subexpressions in the WHERE clause */
++ int loopMask; /* One bit set for each outer loop */
++ int haveKey; /* True if KEY is on the stack */
++ ExprMaskSet maskSet; /* The expression mask set */
++ int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */
++ int iDirectLt[32]; /* Term of the form ROWID<X or ROWID<=X */
++ int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */
++ ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
++
++ /* pushKey is only allowed if there is a single table (as in an INSERT or
++ ** UPDATE statement)
++ */
++ assert( pushKey==0 || pTabList->nSrc==1 );
++
++ /* Split the WHERE clause into separate subexpressions where each
++ ** subexpression is separated by an AND operator. If the aExpr[]
++ ** array fills up, the last entry might point to an expression which
++ ** contains additional unfactored AND operators.
++ */
++ initMaskSet(&maskSet);
++ memset(aExpr, 0, sizeof(aExpr));
++ nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
++ if( nExpr==ARRAYSIZE(aExpr) ){
++ sqliteErrorMsg(pParse, "WHERE clause too complex - no more "
++ "than %d terms allowed", (int)ARRAYSIZE(aExpr)-1);
++ return 0;
++ }
++
++ /* Allocate and initialize the WhereInfo structure that will become the
++ ** return value.
++ */
++ pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
++ if( sqlite_malloc_failed ){
++ sqliteFree(pWInfo);
++ return 0;
++ }
++ pWInfo->pParse = pParse;
++ pWInfo->pTabList = pTabList;
++ pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
++ pWInfo->iBreak = sqliteVdbeMakeLabel(v);
++
++ /* Special case: a WHERE clause that is constant. Evaluate the
++ ** expression and either jump over all of the code or fall thru.
++ */
++ if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
++ sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
++ pWhere = 0;
++ }
++
++ /* Analyze all of the subexpressions.
++ */
++ for(i=0; i<nExpr; i++){
++ exprAnalyze(&maskSet, &aExpr[i]);
++
++ /* If we are executing a trigger body, remove all references to
++ ** new.* and old.* tables from the prerequisite masks.
++ */
++ if( pParse->trigStack ){
++ int x;
++ if( (x = pParse->trigStack->newIdx) >= 0 ){
++ int mask = ~getMask(&maskSet, x);
++ aExpr[i].prereqRight &= mask;
++ aExpr[i].prereqLeft &= mask;
++ aExpr[i].prereqAll &= mask;
++ }
++ if( (x = pParse->trigStack->oldIdx) >= 0 ){
++ int mask = ~getMask(&maskSet, x);
++ aExpr[i].prereqRight &= mask;
++ aExpr[i].prereqLeft &= mask;
++ aExpr[i].prereqAll &= mask;
++ }
++ }
++ }
++
++ /* Figure out what index to use (if any) for each nested loop.
++ ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
++ ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
++ ** loop.
++ **
++ ** If terms exist that use the ROWID of any table, then set the
++ ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
++ ** to the index of the term containing the ROWID. We always prefer
++ ** to use a ROWID which can directly access a table rather than an
++ ** index which requires reading an index first to get the rowid then
++ ** doing a second read of the actual database table.
++ **
++ ** Actually, if there are more than 32 tables in the join, only the
++ ** first 32 tables are candidates for indices. This is (again) due
++ ** to the limit of 32 bits in an integer bitmask.
++ */
++ loopMask = 0;
++ for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
++ int j;
++ int iCur = pTabList->a[i].iCursor; /* The cursor for this table */
++ int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */
++ Table *pTab = pTabList->a[i].pTab;
++ Index *pIdx;
++ Index *pBestIdx = 0;
++ int bestScore = 0;
++
++ /* Check to see if there is an expression that uses only the
++ ** ROWID field of this table. For terms of the form ROWID==expr
++ ** set iDirectEq[i] to the index of the term. For terms of the
++ ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
++ ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
++ **
++ ** (Added:) Treat ROWID IN expr like ROWID=expr.
++ */
++ pWInfo->a[i].iCur = -1;
++ iDirectEq[i] = -1;
++ iDirectLt[i] = -1;
++ iDirectGt[i] = -1;
++ for(j=0; j<nExpr; j++){
++ if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0
++ && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
++ switch( aExpr[j].p->op ){
++ case TK_IN:
++ case TK_EQ: iDirectEq[i] = j; break;
++ case TK_LE:
++ case TK_LT: iDirectLt[i] = j; break;
++ case TK_GE:
++ case TK_GT: iDirectGt[i] = j; break;
++ }
++ }
++ if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
++ && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
++ switch( aExpr[j].p->op ){
++ case TK_EQ: iDirectEq[i] = j; break;
++ case TK_LE:
++ case TK_LT: iDirectGt[i] = j; break;
++ case TK_GE:
++ case TK_GT: iDirectLt[i] = j; break;
++ }
++ }
++ }
++ if( iDirectEq[i]>=0 ){
++ loopMask |= mask;
++ pWInfo->a[i].pIdx = 0;
++ continue;
++ }
++
++ /* Do a search for usable indices. Leave pBestIdx pointing to
++ ** the "best" index. pBestIdx is left set to NULL if no indices
++ ** are usable.
++ **
++ ** The best index is determined as follows. For each of the
++ ** left-most terms that is fixed by an equality operator, add
++ ** 8 to the score. The right-most term of the index may be
++ ** constrained by an inequality. Add 1 if for an "x<..." constraint
++ ** and add 2 for an "x>..." constraint. Chose the index that
++ ** gives the best score.
++ **
++ ** This scoring system is designed so that the score can later be
++ ** used to determine how the index is used. If the score&7 is 0
++ ** then all constraints are equalities. If score&1 is not 0 then
++ ** there is an inequality used as a termination key. (ex: "x<...")
++ ** If score&2 is not 0 then there is an inequality used as the
++ ** start key. (ex: "x>..."). A score or 4 is the special case
++ ** of an IN operator constraint. (ex: "x IN ...").
++ **
++ ** The IN operator (as in "<expr> IN (...)") is treated the same as
++ ** an equality comparison except that it can only be used on the
++ ** left-most column of an index and other terms of the WHERE clause
++ ** cannot be used in conjunction with the IN operator to help satisfy
++ ** other columns of the index.
++ */
++ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
++ int eqMask = 0; /* Index columns covered by an x=... term */
++ int ltMask = 0; /* Index columns covered by an x<... term */
++ int gtMask = 0; /* Index columns covered by an x>... term */
++ int inMask = 0; /* Index columns covered by an x IN .. term */
++ int nEq, m, score;
++
++ if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */
++ for(j=0; j<nExpr; j++){
++ if( aExpr[j].idxLeft==iCur
++ && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
++ int iColumn = aExpr[j].p->pLeft->iColumn;
++ int k;
++ for(k=0; k<pIdx->nColumn; k++){
++ if( pIdx->aiColumn[k]==iColumn ){
++ switch( aExpr[j].p->op ){
++ case TK_IN: {
++ if( k==0 ) inMask |= 1;
++ break;
++ }
++ case TK_EQ: {
++ eqMask |= 1<<k;
++ break;
++ }
++ case TK_LE:
++ case TK_LT: {
++ ltMask |= 1<<k;
++ break;
++ }
++ case TK_GE:
++ case TK_GT: {
++ gtMask |= 1<<k;
++ break;
++ }
++ default: {
++ /* CANT_HAPPEN */
++ assert( 0 );
++ break;
++ }
++ }
++ break;
++ }
++ }
++ }
++ if( aExpr[j].idxRight==iCur
++ && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
++ int iColumn = aExpr[j].p->pRight->iColumn;
++ int k;
++ for(k=0; k<pIdx->nColumn; k++){
++ if( pIdx->aiColumn[k]==iColumn ){
++ switch( aExpr[j].p->op ){
++ case TK_EQ: {
++ eqMask |= 1<<k;
++ break;
++ }
++ case TK_LE:
++ case TK_LT: {
++ gtMask |= 1<<k;
++ break;
++ }
++ case TK_GE:
++ case TK_GT: {
++ ltMask |= 1<<k;
++ break;
++ }
++ default: {
++ /* CANT_HAPPEN */
++ assert( 0 );
++ break;
++ }
++ }
++ break;
++ }
++ }
++ }
++ }
++
++ /* The following loop ends with nEq set to the number of columns
++ ** on the left of the index with == constraints.
++ */
++ for(nEq=0; nEq<pIdx->nColumn; nEq++){
++ m = (1<<(nEq+1))-1;
++ if( (m & eqMask)!=m ) break;
++ }
++ score = nEq*8; /* Base score is 8 times number of == constraints */
++ m = 1<<nEq;
++ if( m & ltMask ) score++; /* Increase score for a < constraint */
++ if( m & gtMask ) score+=2; /* Increase score for a > constraint */
++ if( score==0 && inMask ) score = 4; /* Default score for IN constraint */
++ if( score>bestScore ){
++ pBestIdx = pIdx;
++ bestScore = score;
++ }
++ }
++ pWInfo->a[i].pIdx = pBestIdx;
++ pWInfo->a[i].score = bestScore;
++ pWInfo->a[i].bRev = 0;
++ loopMask |= mask;
++ if( pBestIdx ){
++ pWInfo->a[i].iCur = pParse->nTab++;
++ pWInfo->peakNTab = pParse->nTab;
++ }
++ }
++
++ /* Check to see if the ORDER BY clause is or can be satisfied by the
++ ** use of an index on the first table.
++ */
++ if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
++ Index *pSortIdx;
++ Index *pIdx;
++ Table *pTab;
++ int bRev = 0;
++
++ pTab = pTabList->a[0].pTab;
++ pIdx = pWInfo->a[0].pIdx;
++ if( pIdx && pWInfo->a[0].score==4 ){
++ /* If there is already an IN index on the left-most table,
++ ** it will not give the correct sort order.
++ ** So, pretend that no suitable index is found.
++ */
++ pSortIdx = 0;
++ }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
++ /* If the left-most column is accessed using its ROWID, then do
++ ** not try to sort by index.
++ */
++ pSortIdx = 0;
++ }else{
++ int nEqCol = (pWInfo->a[0].score+4)/8;
++ pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor,
++ *ppOrderBy, pIdx, nEqCol, &bRev);
++ }
++ if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
++ if( pIdx==0 ){
++ pWInfo->a[0].pIdx = pSortIdx;
++ pWInfo->a[0].iCur = pParse->nTab++;
++ pWInfo->peakNTab = pParse->nTab;
++ }
++ pWInfo->a[0].bRev = bRev;
++ *ppOrderBy = 0;
++ }
++ }
++
++ /* Open all tables in the pTabList and all indices used by those tables.
++ */
++ for(i=0; i<pTabList->nSrc; i++){
++ Table *pTab;
++ Index *pIx;
++
++ pTab = pTabList->a[i].pTab;
++ if( pTab->isTransient || pTab->pSelect ) continue;
++ sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
++ sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum,
++ pTab->zName, P3_STATIC);
++ sqliteCodeVerifySchema(pParse, pTab->iDb);
++ if( (pIx = pWInfo->a[i].pIdx)!=0 ){
++ sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0);
++ sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0);
++ }
++ }
++
++ /* Generate the code to do the search
++ */
++ loopMask = 0;
++ for(i=0; i<pTabList->nSrc; i++){
++ int j, k;
++ int iCur = pTabList->a[i].iCursor;
++ Index *pIdx;
++ WhereLevel *pLevel = &pWInfo->a[i];
++
++ /* If this is the right table of a LEFT OUTER JOIN, allocate and
++ ** initialize a memory cell that records if this table matches any
++ ** row of the left table of the join.
++ */
++ if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
++ if( !pParse->nMem ) pParse->nMem++;
++ pLevel->iLeftJoin = pParse->nMem++;
++ sqliteVdbeAddOp(v, OP_String, 0, 0);
++ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
++ }
++
++ pIdx = pLevel->pIdx;
++ pLevel->inOp = OP_Noop;
++ if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
++ /* Case 1: We can directly reference a single row using an
++ ** equality comparison against the ROWID field. Or
++ ** we reference multiple rows using a "rowid IN (...)"
++ ** construct.
++ */
++ k = iDirectEq[i];
++ assert( k<nExpr );
++ assert( aExpr[k].p!=0 );
++ assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
++ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
++ if( aExpr[k].idxLeft==iCur ){
++ Expr *pX = aExpr[k].p;
++ if( pX->op!=TK_IN ){
++ sqliteExprCode(pParse, aExpr[k].p->pRight);
++ }else if( pX->pList ){
++ sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
++ pLevel->inOp = OP_SetNext;
++ pLevel->inP1 = pX->iTable;
++ pLevel->inP2 = sqliteVdbeCurrentAddr(v);
++ }else{
++ assert( pX->pSelect );
++ sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
++ sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
++ pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
++ pLevel->inOp = OP_Next;
++ pLevel->inP1 = pX->iTable;
++ }
++ }else{
++ sqliteExprCode(pParse, aExpr[k].p->pLeft);
++ }
++ disableTerm(pLevel, &aExpr[k].p);
++ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
++ sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
++ haveKey = 0;
++ sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
++ pLevel->op = OP_Noop;
++ }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
++ /* Case 2: There is an index and all terms of the WHERE clause that
++ ** refer to the index use the "==" or "IN" operators.
++ */
++ int start;
++ int testOp;
++ int nColumn = (pLevel->score+4)/8;
++ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
++ for(j=0; j<nColumn; j++){
++ for(k=0; k<nExpr; k++){
++ Expr *pX = aExpr[k].p;
++ if( pX==0 ) continue;
++ if( aExpr[k].idxLeft==iCur
++ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
++ && pX->pLeft->iColumn==pIdx->aiColumn[j]
++ ){
++ if( pX->op==TK_EQ ){
++ sqliteExprCode(pParse, pX->pRight);
++ disableTerm(pLevel, &aExpr[k].p);
++ break;
++ }
++ if( pX->op==TK_IN && nColumn==1 ){
++ if( pX->pList ){
++ sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
++ pLevel->inOp = OP_SetNext;
++ pLevel->inP1 = pX->iTable;
++ pLevel->inP2 = sqliteVdbeCurrentAddr(v);
++ }else{
++ assert( pX->pSelect );
++ sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
++ sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
++ pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
++ pLevel->inOp = OP_Next;
++ pLevel->inP1 = pX->iTable;
++ }
++ disableTerm(pLevel, &aExpr[k].p);
++ break;
++ }
++ }
++ if( aExpr[k].idxRight==iCur
++ && aExpr[k].p->op==TK_EQ
++ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
++ && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
++ ){
++ sqliteExprCode(pParse, aExpr[k].p->pLeft);
++ disableTerm(pLevel, &aExpr[k].p);
++ break;
++ }
++ }
++ }
++ pLevel->iMem = pParse->nMem++;
++ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
++ sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3);
++ sqliteVdbeAddOp(v, OP_Pop, nColumn, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, brk);
++ sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
++ sqliteAddIdxKeyType(v, pIdx);
++ if( nColumn==pIdx->nColumn || pLevel->bRev ){
++ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
++ testOp = OP_IdxGT;
++ }else{
++ sqliteVdbeAddOp(v, OP_Dup, 0, 0);
++ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
++ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
++ testOp = OP_IdxGE;
++ }
++ if( pLevel->bRev ){
++ /* Scan in reverse order */
++ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
++ sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
++ start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
++ sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
++ pLevel->op = OP_Prev;
++ }else{
++ /* Scan in the forward order */
++ sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
++ start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
++ sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
++ pLevel->op = OP_Next;
++ }
++ sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
++ sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont);
++ sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
++ if( i==pTabList->nSrc-1 && pushKey ){
++ haveKey = 1;
++ }else{
++ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
++ haveKey = 0;
++ }
++ pLevel->p1 = pLevel->iCur;
++ pLevel->p2 = start;
++ }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
++ /* Case 3: We have an inequality comparison against the ROWID field.
++ */
++ int testOp = OP_Noop;
++ int start;
++
++ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
++ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
++ if( iDirectGt[i]>=0 ){
++ k = iDirectGt[i];
++ assert( k<nExpr );
++ assert( aExpr[k].p!=0 );
++ assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
++ if( aExpr[k].idxLeft==iCur ){
++ sqliteExprCode(pParse, aExpr[k].p->pRight);
++ }else{
++ sqliteExprCode(pParse, aExpr[k].p->pLeft);
++ }
++ sqliteVdbeAddOp(v, OP_ForceInt,
++ aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk);
++ sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
++ disableTerm(pLevel, &aExpr[k].p);
++ }else{
++ sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
++ }
++ if( iDirectLt[i]>=0 ){
++ k = iDirectLt[i];
++ assert( k<nExpr );
++ assert( aExpr[k].p!=0 );
++ assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
++ if( aExpr[k].idxLeft==iCur ){
++ sqliteExprCode(pParse, aExpr[k].p->pRight);
++ }else{
++ sqliteExprCode(pParse, aExpr[k].p->pLeft);
++ }
++ /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
++ pLevel->iMem = pParse->nMem++;
++ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
++ if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
++ testOp = OP_Ge;
++ }else{
++ testOp = OP_Gt;
++ }
++ disableTerm(pLevel, &aExpr[k].p);
++ }
++ start = sqliteVdbeCurrentAddr(v);
++ pLevel->op = OP_Next;
++ pLevel->p1 = iCur;
++ pLevel->p2 = start;
++ if( testOp!=OP_Noop ){
++ sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
++ sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
++ sqliteVdbeAddOp(v, testOp, 0, brk);
++ }
++ haveKey = 0;
++ }else if( pIdx==0 ){
++ /* Case 4: There is no usable index. We must do a complete
++ ** scan of the entire database table.
++ */
++ int start;
++
++ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
++ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
++ sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
++ start = sqliteVdbeCurrentAddr(v);
++ pLevel->op = OP_Next;
++ pLevel->p1 = iCur;
++ pLevel->p2 = start;
++ haveKey = 0;
++ }else{
++ /* Case 5: The WHERE clause term that refers to the right-most
++ ** column of the index is an inequality. For example, if
++ ** the index is on (x,y,z) and the WHERE clause is of the
++ ** form "x=5 AND y<10" then this case is used. Only the
++ ** right-most column can be an inequality - the rest must
++ ** use the "==" operator.
++ **
++ ** This case is also used when there are no WHERE clause
++ ** constraints but an index is selected anyway, in order
++ ** to force the output order to conform to an ORDER BY.
++ */
++ int score = pLevel->score;
++ int nEqColumn = score/8;
++ int start;
++ int leFlag, geFlag;
++ int testOp;
++
++ /* Evaluate the equality constraints
++ */
++ for(j=0; j<nEqColumn; j++){
++ for(k=0; k<nExpr; k++){
++ if( aExpr[k].p==0 ) continue;
++ if( aExpr[k].idxLeft==iCur
++ && aExpr[k].p->op==TK_EQ
++ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
++ && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
++ ){
++ sqliteExprCode(pParse, aExpr[k].p->pRight);
++ disableTerm(pLevel, &aExpr[k].p);
++ break;
++ }
++ if( aExpr[k].idxRight==iCur
++ && aExpr[k].p->op==TK_EQ
++ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
++ && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
++ ){
++ sqliteExprCode(pParse, aExpr[k].p->pLeft);
++ disableTerm(pLevel, &aExpr[k].p);
++ break;
++ }
++ }
++ }
++
++ /* Duplicate the equality term values because they will all be
++ ** used twice: once to make the termination key and once to make the
++ ** start key.
++ */
++ for(j=0; j<nEqColumn; j++){
++ sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
++ }
++
++ /* Labels for the beginning and end of the loop
++ */
++ cont = pLevel->cont = sqliteVdbeMakeLabel(v);
++ brk = pLevel->brk = sqliteVdbeMakeLabel(v);
++
++ /* Generate the termination key. This is the key value that
++ ** will end the search. There is no termination key if there
++ ** are no equality terms and no "X<..." term.
++ **
++ ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
++ ** key computed here really ends up being the start key.
++ */
++ if( (score & 1)!=0 ){
++ for(k=0; k<nExpr; k++){
++ Expr *pExpr = aExpr[k].p;
++ if( pExpr==0 ) continue;
++ if( aExpr[k].idxLeft==iCur
++ && (pExpr->op==TK_LT || pExpr->op==TK_LE)
++ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
++ && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
++ ){
++ sqliteExprCode(pParse, pExpr->pRight);
++ leFlag = pExpr->op==TK_LE;
++ disableTerm(pLevel, &aExpr[k].p);
++ break;
++ }
++ if( aExpr[k].idxRight==iCur
++ && (pExpr->op==TK_GT || pExpr->op==TK_GE)
++ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
++ && pExpr->pRight->iColumn==pIdx->aiColumn[j]
++ ){
++ sqliteExprCode(pParse, pExpr->pLeft);
++ leFlag = pExpr->op==TK_GE;
++ disableTerm(pLevel, &aExpr[k].p);
++ break;
++ }
++ }
++ testOp = OP_IdxGE;
++ }else{
++ testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
++ leFlag = 1;
++ }
++ if( testOp!=OP_Noop ){
++ int nCol = nEqColumn + (score & 1);
++ pLevel->iMem = pParse->nMem++;
++ sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
++ sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, brk);
++ sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
++ sqliteAddIdxKeyType(v, pIdx);
++ if( leFlag ){
++ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
++ }
++ if( pLevel->bRev ){
++ sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
++ }else{
++ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
++ }
++ }else if( pLevel->bRev ){
++ sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
++ }
++
++ /* Generate the start key. This is the key that defines the lower
++ ** bound on the search. There is no start key if there are no
++ ** equality terms and if there is no "X>..." term. In
++ ** that case, generate a "Rewind" instruction in place of the
++ ** start key search.
++ **
++ ** 2002-Dec-04: In the case of a reverse-order search, the so-called
++ ** "start" key really ends up being used as the termination key.
++ */
++ if( (score & 2)!=0 ){
++ for(k=0; k<nExpr; k++){
++ Expr *pExpr = aExpr[k].p;
++ if( pExpr==0 ) continue;
++ if( aExpr[k].idxLeft==iCur
++ && (pExpr->op==TK_GT || pExpr->op==TK_GE)
++ && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
++ && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
++ ){
++ sqliteExprCode(pParse, pExpr->pRight);
++ geFlag = pExpr->op==TK_GE;
++ disableTerm(pLevel, &aExpr[k].p);
++ break;
++ }
++ if( aExpr[k].idxRight==iCur
++ && (pExpr->op==TK_LT || pExpr->op==TK_LE)
++ && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
++ && pExpr->pRight->iColumn==pIdx->aiColumn[j]
++ ){
++ sqliteExprCode(pParse, pExpr->pLeft);
++ geFlag = pExpr->op==TK_LE;
++ disableTerm(pLevel, &aExpr[k].p);
++ break;
++ }
++ }
++ }else{
++ geFlag = 1;
++ }
++ if( nEqColumn>0 || (score&2)!=0 ){
++ int nCol = nEqColumn + ((score&2)!=0);
++ sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3);
++ sqliteVdbeAddOp(v, OP_Pop, nCol, 0);
++ sqliteVdbeAddOp(v, OP_Goto, 0, brk);
++ sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0);
++ sqliteAddIdxKeyType(v, pIdx);
++ if( !geFlag ){
++ sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
++ }
++ if( pLevel->bRev ){
++ pLevel->iMem = pParse->nMem++;
++ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
++ testOp = OP_IdxLT;
++ }else{
++ sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
++ }
++ }else if( pLevel->bRev ){
++ testOp = OP_Noop;
++ }else{
++ sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
++ }
++
++ /* Generate the the top of the loop. If there is a termination
++ ** key we have to test for that key and abort at the top of the
++ ** loop.
++ */
++ start = sqliteVdbeCurrentAddr(v);
++ if( testOp!=OP_Noop ){
++ sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
++ sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
++ }
++ sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0);
++ sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont);
++ sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
++ if( i==pTabList->nSrc-1 && pushKey ){
++ haveKey = 1;
++ }else{
++ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
++ haveKey = 0;
++ }
++
++ /* Record the instruction used to terminate the loop.
++ */
++ pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
++ pLevel->p1 = pLevel->iCur;
++ pLevel->p2 = start;
++ }
++ loopMask |= getMask(&maskSet, iCur);
++
++ /* Insert code to test every subexpression that can be completely
++ ** computed using the current set of tables.
++ */
++ for(j=0; j<nExpr; j++){
++ if( aExpr[j].p==0 ) continue;
++ if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
++ if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
++ continue;
++ }
++ if( haveKey ){
++ haveKey = 0;
++ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
++ }
++ sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
++ aExpr[j].p = 0;
++ }
++ brk = cont;
++
++ /* For a LEFT OUTER JOIN, generate code that will record the fact that
++ ** at least one row of the right table has matched the left table.
++ */
++ if( pLevel->iLeftJoin ){
++ pLevel->top = sqliteVdbeCurrentAddr(v);
++ sqliteVdbeAddOp(v, OP_Integer, 1, 0);
++ sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
++ for(j=0; j<nExpr; j++){
++ if( aExpr[j].p==0 ) continue;
++ if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
++ if( haveKey ){
++ /* Cannot happen. "haveKey" can only be true if pushKey is true
++ ** an pushKey can only be true for DELETE and UPDATE and there are
++ ** no outer joins with DELETE and UPDATE.
++ */
++ haveKey = 0;
++ sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
++ }
++ sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
++ aExpr[j].p = 0;
++ }
++ }
++ }
++ pWInfo->iContinue = cont;
++ if( pushKey && !haveKey ){
++ sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
++ }
++ freeMaskSet(&maskSet);
++ return pWInfo;
++}
++
++/*
++** Generate the end of the WHERE loop. See comments on
++** sqliteWhereBegin() for additional information.
++*/
++void sqliteWhereEnd(WhereInfo *pWInfo){
++ Vdbe *v = pWInfo->pParse->pVdbe;
++ int i;
++ WhereLevel *pLevel;
++ SrcList *pTabList = pWInfo->pTabList;
++
++ for(i=pTabList->nSrc-1; i>=0; i--){
++ pLevel = &pWInfo->a[i];
++ sqliteVdbeResolveLabel(v, pLevel->cont);
++ if( pLevel->op!=OP_Noop ){
++ sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
++ }
++ sqliteVdbeResolveLabel(v, pLevel->brk);
++ if( pLevel->inOp!=OP_Noop ){
++ sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
++ }
++ if( pLevel->iLeftJoin ){
++ int addr;
++ addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
++ sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
++ sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
++ if( pLevel->iCur>=0 ){
++ sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
++ }
++ sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
++ }
++ }
++ sqliteVdbeResolveLabel(v, pWInfo->iBreak);
++ for(i=0; i<pTabList->nSrc; i++){
++ Table *pTab = pTabList->a[i].pTab;
++ assert( pTab!=0 );
++ if( pTab->isTransient || pTab->pSelect ) continue;
++ pLevel = &pWInfo->a[i];
++ sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
++ if( pLevel->pIdx!=0 ){
++ sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
++ }
++ }
++#if 0 /* Never reuse a cursor */
++ if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
++ pWInfo->pParse->nTab = pWInfo->savedNTab;
++ }
++#endif
++ sqliteFree(pWInfo);
++ return;
++}
+--- /dev/null
++++ b/ext/sqlite/libsqlite/VERSION
+@@ -0,0 +1 @@
++2.8.17
+--- /dev/null
++++ b/ext/sqlite/Makefile.frag
+@@ -0,0 +1,2 @@
++$(srcdir)/libsqlite/src/parse.c: $(srcdir)/libsqlite/src/parse.y
++ @$(LEMON) $(srcdir)/libsqlite/src/parse.y
+--- /dev/null
++++ b/ext/sqlite/package.xml
+@@ -0,0 +1,136 @@
++<?xml version="1.0" encoding="ISO-8859-1" ?>
++<!DOCTYPE package SYSTEM "../pear/package.dtd">
++<package>
++ <name>SQLite</name>
++ <summary>SQLite database bindings</summary>
++ <maintainers>
++ <maintainer>
++ <user>wez</user>
++ <name>Wez Furlong</name>
++ <email>wez@php.net</email>
++ <role>lead</role>
++ </maintainer>
++ <maintainer>
++ <user>tal</user>
++ <name>Tal Peer</name>
++ <email>tal@php.net</email>
++ <role>developer</role>
++ </maintainer>
++ <maintainer>
++ <user>helly</user>
++ <name>Marcus Börger</name>
++ <email>helly@php.net</email>
++ <role>lead</role>
++ </maintainer>
++ <maintainer>
++ <user>iliaa</user>
++ <name>Ilia Alshanetsky</name>
++ <email>ilia@php.net</email>
++ <role>developer</role>
++ </maintainer>
++ </maintainers>
++ <description>
++SQLite is a C library that implements an embeddable SQL database engine.
++Programs that link with the SQLite library can have SQL database access
++without running a separate RDBMS process.
++This extension allows you to access SQLite databases from within PHP.
++
++Windows binary available from:
++http://snaps.php.net/win32/PECL_STABLE/php_sqlite.dll
++ </description>
++ <license>PHP</license>
++ <release>
++ <state>stable</state>
++ <version>2.0-dev</version>
++ <date>TBA</date>
++ <notes>
++ Added:
++ OO API (Marcus).
++ </notes>
++ <filelist>
++ <file role="src" name="config.m4"/>
++ <file role="src" name="config.w32"/>
++ <file role="src" name="sqlite.c"/>
++ <file role="src" name="sqlite.dsp"/>
++ <file role="src" name="php_sqlite.h"/>
++ <file role="src" name="php_sqlite.def"/>
++ <file role="doc" name="CREDITS"/>
++ <file role="doc" name="README"/>
++ <file role="doc" name="TODO"/>
++ <file role="doc" name="sqlite.php"/>
++ <file role="test" name="tests/sqlite_001.phpt"/>
++ <file role="test" name="tests/sqlite_002.phpt"/>
++ <file role="test" name="tests/sqlite_003.phpt"/>
++ <file role="test" name="tests/sqlite_004.phpt"/>
++ <file role="test" name="tests/sqlite_005.phpt"/>
++ <file role="test" name="tests/sqlite_006.phpt"/>
++ <file role="test" name="tests/sqlite_007.phpt"/>
++ <file role="test" name="tests/sqlite_008.phpt"/>
++ <file role="test" name="tests/sqlite_009.phpt"/>
++ <file role="test" name="tests/sqlite_010.phpt"/>
++ <file role="test" name="tests/sqlite_011.phpt"/>
++ <file role="test" name="tests/sqlite_012.phpt"/>
++ <file role="test" name="tests/sqlite_013.phpt"/>
++ <file role="test" name="tests/sqlite_014.phpt"/>
++ <file role="test" name="tests/sqlite_015.phpt"/>
++ <file role="test" name="tests/sqlite_016.phpt"/>
++ <file role="test" name="tests/sqlite_017.phpt"/>
++ <file role="test" name="tests/blankdb.inc"/>
++
++ <dir name="libsqlite">
++ <file role="doc" name="README"/>
++ <file role="src" name="VERSION"/>
++
++ <dir name="src">
++ <file role="src" name="attach.c"/>
++ <file role="src" name="auth.c"/>
++ <file role="src" name="btree.c"/>
++ <file role="src" name="btree_rb.c"/>
++ <file role="src" name="build.c"/>
++ <file role="src" name="copy.c"/>
++ <file role="src" name="delete.c"/>
++ <file role="src" name="encode.c"/>
++ <file role="src" name="expr.c"/>
++ <file role="src" name="func.c"/>
++ <file role="src" name="hash.c"/>
++ <file role="src" name="insert.c"/>
++ <file role="src" name="main.c"/>
++ <file role="src" name="opcodes.c"/>
++ <file role="src" name="os.c"/>
++ <file role="src" name="pager.c"/>
++ <file role="src" name="parse.c"/>
++ <file role="src" name="parse.y"/>
++ <file role="src" name="pragma.c"/>
++ <file role="src" name="printf.c"/>
++ <file role="src" name="random.c"/>
++ <file role="src" name="select.c"/>
++ <file role="src" name="table.c"/>
++ <file role="src" name="tokenize.c"/>
++ <file role="src" name="trigger.c"/>
++ <file role="src" name="update.c"/>
++ <file role="src" name="util.c"/>
++ <file role="src" name="vacuum.c"/>
++ <file role="src" name="vdbe.c"/>
++ <file role="src" name="where.c"/>
++ <file role="src" name="btree.h"/>
++ <file role="src" name="hash.h"/>
++ <file role="src" name="opcodes.h"/>
++ <file role="src" name="os.h"/>
++ <file role="src" name="pager.h"/>
++ <file role="src" name="parse.h"/>
++ <file role="src" name="sqlite_config.w32.h"/>
++ <file role="src" name="sqlite.h.in"/>
++ <file role="src" name="sqliteInt.h"/>
++ <file role="src" name="sqlite.w32.h"/>
++ <file role="src" name="vdbe.h"/>
++ </dir>
++ </dir>
++ </filelist>
++ <deps>
++ <dep type="php" rel="ge" version="5" />
++ </deps>
++ </release>
++</package>
++<!--
++vim:et:ts=1:sw=1
++-->
+--- /dev/null
++++ b/ext/sqlite/pdo_sqlite2.c
+@@ -0,0 +1,638 @@
++/*
++ +----------------------------------------------------------------------+
++ | PHP Version 5 |
++ +----------------------------------------------------------------------+
++ | Copyright (c) 1997-2012 The PHP Group |
++ +----------------------------------------------------------------------+
++ | This source file is subject to version 3.01 of the PHP license, |
++ | that is bundled with this package in the file LICENSE, and is |
++ | available through the world-wide-web at the following url: |
++ | http://www.php.net/license/3_01.txt |
++ | If you did not receive a copy of the PHP license and are unable to |
++ | obtain it through the world-wide-web, please send a note to |
++ | license@php.net so we can mail you a copy immediately. |
++ +----------------------------------------------------------------------+
++ | Author: Wez Furlong <wez@php.net> |
++ +----------------------------------------------------------------------+
++*/
++
++/* $Id$ */
++#ifdef HAVE_CONFIG_H
++#include "config.h"
++#endif
++#include "php.h"
++
++#ifdef PHP_SQLITE2_HAVE_PDO
++#include "sqlite.h"
++#include "pdo/php_pdo.h"
++#include "pdo/php_pdo_driver.h"
++#include "zend_exceptions.h"
++
++#define php_sqlite_encode_binary(in, n, out) sqlite_encode_binary((const unsigned char *)in, n, (unsigned char *)out)
++#define php_sqlite_decode_binary(in, out) sqlite_decode_binary((const unsigned char *)in, (unsigned char *)out)
++
++
++typedef struct {
++ const char *file;
++ int line;
++ unsigned int errcode;
++ char *errmsg;
++} pdo_sqlite2_error_info;
++
++typedef struct {
++ sqlite *db;
++ pdo_sqlite2_error_info einfo;
++} pdo_sqlite2_db_handle;
++
++typedef struct {
++ pdo_sqlite2_db_handle *H;
++ sqlite_vm *vm;
++ const char **rowdata, **colnames;
++ int ncols;
++ unsigned pre_fetched:1;
++ unsigned done:1;
++ pdo_sqlite2_error_info einfo;
++} pdo_sqlite2_stmt;
++
++extern int _pdo_sqlite2_error(pdo_dbh_t *dbh, pdo_stmt_t *stmt, char *errmsg, const char *file, int line TSRMLS_DC);
++#define pdo_sqlite2_error(msg, s) _pdo_sqlite2_error(s, NULL, msg, __FILE__, __LINE__ TSRMLS_CC)
++#define pdo_sqlite2_error_stmt(msg, s) _pdo_sqlite2_error(stmt->dbh, stmt, msg, __FILE__, __LINE__ TSRMLS_CC)
++
++extern struct pdo_stmt_methods sqlite2_stmt_methods;
++
++static int pdo_sqlite2_stmt_dtor(pdo_stmt_t *stmt TSRMLS_DC)
++{
++ pdo_sqlite2_stmt *S = (pdo_sqlite2_stmt*)stmt->driver_data;
++
++ if (S->vm) {
++ char *errmsg = NULL;
++ sqlite_finalize(S->vm, &errmsg);
++ if (errmsg) {
++ sqlite_freemem(errmsg);
++ }
++ S->vm = NULL;
++ }
++ if (S->einfo.errmsg) {
++ pefree(S->einfo.errmsg, stmt->dbh->is_persistent);
++ }
++ efree(S);
++ return 1;
++}
++
++static int pdo_sqlite2_stmt_execute(pdo_stmt_t *stmt TSRMLS_DC)
++{
++ pdo_sqlite2_stmt *S = (pdo_sqlite2_stmt*)stmt->driver_data;
++ char *errmsg = NULL;
++ const char *tail;
++
++ if (stmt->executed && !S->done) {
++ sqlite_finalize(S->vm, &errmsg);
++ pdo_sqlite2_error_stmt(errmsg, stmt);
++ errmsg = NULL;
++ S->vm = NULL;
++ }
++
++ S->einfo.errcode = sqlite_compile(S->H->db, stmt->active_query_string, &tail, &S->vm, &errmsg);
++ if (S->einfo.errcode != SQLITE_OK) {
++ pdo_sqlite2_error_stmt(errmsg, stmt);
++ return 0;
++ }
++
++ S->done = 0;
++ S->einfo.errcode = sqlite_step(S->vm, &S->ncols, &S->rowdata, &S->colnames);
++ switch (S->einfo.errcode) {
++ case SQLITE_ROW:
++ S->pre_fetched = 1;
++ stmt->column_count = S->ncols;
++ return 1;
++
++ case SQLITE_DONE:
++ stmt->column_count = S->ncols;
++ stmt->row_count = sqlite_changes(S->H->db);
++ S->einfo.errcode = sqlite_reset(S->vm, &errmsg);
++ if (S->einfo.errcode != SQLITE_OK) {
++ pdo_sqlite2_error_stmt(errmsg, stmt);
++ }
++ S->done = 1;
++ return 1;
++
++ case SQLITE_ERROR:
++ case SQLITE_MISUSE:
++ case SQLITE_BUSY:
++ default:
++ pdo_sqlite2_error_stmt(errmsg, stmt);
++ return 0;
++ }
++}
++
++static int pdo_sqlite2_stmt_param_hook(pdo_stmt_t *stmt, struct pdo_bound_param_data *param,
++ enum pdo_param_event event_type TSRMLS_DC)
++{
++ return 1;
++}
++
++static int pdo_sqlite2_stmt_fetch(pdo_stmt_t *stmt,
++ enum pdo_fetch_orientation ori, long offset TSRMLS_DC)
++{
++ pdo_sqlite2_stmt *S = (pdo_sqlite2_stmt*)stmt->driver_data;
++ char *errmsg = NULL;
++
++ if (!S->vm) {
++ return 0;
++ }
++ if (S->pre_fetched) {
++ S->pre_fetched = 0;
++ return 1;
++ }
++ if (S->done) {
++ return 0;
++ }
++
++ S->einfo.errcode = sqlite_step(S->vm, &S->ncols, &S->rowdata, &S->colnames);
++ switch (S->einfo.errcode) {
++ case SQLITE_ROW:
++ return 1;
++
++ case SQLITE_DONE:
++ S->done = 1;
++ S->einfo.errcode = sqlite_reset(S->vm, &errmsg);
++ if (S->einfo.errcode != SQLITE_OK) {
++ pdo_sqlite2_error_stmt(errmsg, stmt);
++ errmsg = NULL;
++ }
++ return 0;
++
++ default:
++ pdo_sqlite2_error_stmt(errmsg, stmt);
++ return 0;
++ }
++}
++
++static int pdo_sqlite2_stmt_describe(pdo_stmt_t *stmt, int colno TSRMLS_DC)
++{
++ pdo_sqlite2_stmt *S = (pdo_sqlite2_stmt*)stmt->driver_data;
++
++ if(colno >= S->ncols) {
++ /* error invalid column */
++ pdo_sqlite2_error_stmt(NULL, stmt);
++ return 0;
++ }
++
++ stmt->columns[colno].name = estrdup(S->colnames[colno]);
++ stmt->columns[colno].namelen = strlen(stmt->columns[colno].name);
++ stmt->columns[colno].maxlen = 0xffffffff;
++ stmt->columns[colno].precision = 0;
++ stmt->columns[colno].param_type = PDO_PARAM_STR;
++
++ return 1;
++}
++
++static int pdo_sqlite2_stmt_get_col(pdo_stmt_t *stmt, int colno, char **ptr, unsigned long *len, int *caller_frees TSRMLS_DC)
++{
++ pdo_sqlite2_stmt *S = (pdo_sqlite2_stmt*)stmt->driver_data;
++ if (!S->vm) {
++ return 0;
++ }
++ if(colno >= S->ncols) {
++ /* error invalid column */
++ pdo_sqlite2_error_stmt(NULL, stmt);
++ return 0;
++ }
++ if (S->rowdata[colno]) {
++ if (S->rowdata[colno][0] == '\x01') {
++ /* encoded */
++ *caller_frees = 1;
++ *ptr = emalloc(strlen(S->rowdata[colno]));
++ *len = php_sqlite_decode_binary(S->rowdata[colno]+1, *ptr);
++ (*(char**)ptr)[*len] = '\0';
++ } else {
++ *ptr = (char*)S->rowdata[colno];
++ *len = strlen(*ptr);
++ }
++ } else {
++ *ptr = NULL;
++ *len = 0;
++ }
++ return 1;
++}
++
++struct pdo_stmt_methods sqlite2_stmt_methods = {
++ pdo_sqlite2_stmt_dtor,
++ pdo_sqlite2_stmt_execute,
++ pdo_sqlite2_stmt_fetch,
++ pdo_sqlite2_stmt_describe,
++ pdo_sqlite2_stmt_get_col,
++ pdo_sqlite2_stmt_param_hook,
++ NULL, /* set_attr */
++ NULL, /* get_attr */
++ NULL
++};
++
++
++int _pdo_sqlite2_error(pdo_dbh_t *dbh, pdo_stmt_t *stmt, char *errmsg, const char *file, int line TSRMLS_DC) /* {{{ */
++{
++ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
++ pdo_error_type *pdo_err = stmt ? &stmt->error_code : &dbh->error_code;
++ pdo_sqlite2_error_info *einfo = &H->einfo;
++ pdo_sqlite2_stmt *S;
++
++ if (stmt) {
++ S = stmt->driver_data;
++ einfo = &S->einfo;
++ }
++
++ einfo->file = file;
++ einfo->line = line;
++
++ if (einfo->errmsg) {
++ pefree(einfo->errmsg, dbh->is_persistent);
++ einfo->errmsg = NULL;
++ }
++
++ if (einfo->errcode != SQLITE_OK) {
++ if (errmsg) {
++ einfo->errmsg = pestrdup(errmsg, dbh->is_persistent);
++ sqlite_freemem(errmsg);
++ } else {
++ einfo->errmsg = pestrdup(sqlite_error_string(einfo->errcode), dbh->is_persistent);
++ }
++ } else { /* no error */
++ strcpy(*pdo_err, PDO_ERR_NONE);
++ return 0;
++ }
++ switch (einfo->errcode) {
++ case SQLITE_NOTFOUND:
++ strcpy(*pdo_err, "42S02");
++ break;
++
++ case SQLITE_INTERRUPT:
++ strcpy(*pdo_err, "01002");
++ break;
++
++ case SQLITE_NOLFS:
++ strcpy(*pdo_err, "HYC00");
++ break;
++
++ case SQLITE_TOOBIG:
++ strcpy(*pdo_err, "22001");
++ break;
++
++ case SQLITE_CONSTRAINT:
++ strcpy(*pdo_err, "23000");
++ break;
++
++ case SQLITE_ERROR:
++ default:
++ strcpy(*pdo_err, "HY000");
++ break;
++ }
++
++ if (!dbh->methods) {
++ zend_throw_exception_ex(php_pdo_get_exception(), 0 TSRMLS_CC, "SQLSTATE[%s] [%d] %s",
++ *pdo_err, einfo->errcode, einfo->errmsg);
++ }
++
++ return einfo->errcode;
++}
++/* }}} */
++
++static int pdo_sqlite2_fetch_error_func(pdo_dbh_t *dbh, pdo_stmt_t *stmt, zval *info TSRMLS_DC)
++{
++ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
++ pdo_sqlite2_error_info *einfo = &H->einfo;
++ pdo_sqlite2_stmt *S;
++
++ if (stmt) {
++ S = stmt->driver_data;
++ einfo = &S->einfo;
++ }
++
++ if (einfo->errcode) {
++ add_next_index_long(info, einfo->errcode);
++ if (einfo->errmsg) {
++ add_next_index_string(info, einfo->errmsg, 1);
++ }
++ }
++
++ return 1;
++}
++
++static int sqlite2_handle_closer(pdo_dbh_t *dbh TSRMLS_DC) /* {{{ */
++{
++ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
++
++ if (H) {
++ if (H->db) {
++ sqlite_close(H->db);
++ H->db = NULL;
++ }
++ if (H->einfo.errmsg) {
++ pefree(H->einfo.errmsg, dbh->is_persistent);
++ H->einfo.errmsg = NULL;
++ }
++ pefree(H, dbh->is_persistent);
++ dbh->driver_data = NULL;
++ }
++ return 0;
++}
++/* }}} */
++
++static int sqlite2_handle_preparer(pdo_dbh_t *dbh, const char *sql, long sql_len, pdo_stmt_t *stmt, zval *driver_options TSRMLS_DC)
++{
++ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
++ pdo_sqlite2_stmt *S = ecalloc(1, sizeof(pdo_sqlite2_stmt));
++
++ S->H = H;
++ stmt->driver_data = S;
++ stmt->methods = &sqlite2_stmt_methods;
++ stmt->supports_placeholders = PDO_PLACEHOLDER_NONE;
++
++ if (PDO_CURSOR_FWDONLY != pdo_attr_lval(driver_options, PDO_ATTR_CURSOR, PDO_CURSOR_FWDONLY TSRMLS_CC)) {
++ H->einfo.errcode = SQLITE_ERROR;
++ pdo_sqlite2_error(NULL, dbh);
++ return 0;
++ }
++
++ return 1;
++}
++
++static long sqlite2_handle_doer(pdo_dbh_t *dbh, const char *sql, long sql_len TSRMLS_DC)
++{
++ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
++ char *errmsg = NULL;
++
++ if ((H->einfo.errcode = sqlite_exec(H->db, sql, NULL, NULL, &errmsg)) != SQLITE_OK) {
++ pdo_sqlite2_error(errmsg, dbh);
++ return -1;
++ } else {
++ return sqlite_changes(H->db);
++ }
++}
++
++static char *pdo_sqlite2_last_insert_id(pdo_dbh_t *dbh, const char *name, unsigned int *len TSRMLS_DC)
++{
++ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
++ char *id;
++
++ id = php_pdo_int64_to_str(sqlite_last_insert_rowid(H->db) TSRMLS_CC);
++ *len = strlen(id);
++ return id;
++}
++
++static int sqlite2_handle_quoter(pdo_dbh_t *dbh, const char *unquoted, int unquotedlen, char **quoted, int *quotedlen, enum pdo_param_type paramtype TSRMLS_DC)
++{
++ char *ret;
++
++ if (unquotedlen && (unquoted[0] == '\x01' || memchr(unquoted, '\0', unquotedlen) != NULL)) {
++ /* binary string */
++ int len;
++ ret = safe_emalloc(1 + unquotedlen / 254, 257, 5);
++ ret[0] = '\'';
++ ret[1] = '\x01';
++ len = php_sqlite_encode_binary(unquoted, unquotedlen, ret+2);
++ ret[len + 2] = '\'';
++ ret[len + 3] = '\0';
++ *quoted = ret;
++ *quotedlen = len + 3;
++ /* fprintf(stderr, "Quoting:%d:%.*s:\n", *quotedlen, *quotedlen, *quoted); */
++ return 1;
++ } else if (unquotedlen) {
++ ret = sqlite_mprintf("'%q'", unquoted);
++ if (ret) {
++ *quoted = estrdup(ret);
++ *quotedlen = strlen(ret);
++ sqlite_freemem(ret);
++ return 1;
++ }
++ return 0;
++ } else {
++ *quoted = estrdup("''");
++ *quotedlen = 2;
++ return 1;
++ }
++}
++
++static int sqlite2_handle_begin(pdo_dbh_t *dbh TSRMLS_DC)
++{
++ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
++ char *errmsg = NULL;
++
++ if (sqlite_exec(H->db, "BEGIN", NULL, NULL, &errmsg) != SQLITE_OK) {
++ pdo_sqlite2_error(errmsg, dbh);
++ return 0;
++ }
++ return 1;
++}
++
++static int sqlite2_handle_commit(pdo_dbh_t *dbh TSRMLS_DC)
++{
++ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
++ char *errmsg = NULL;
++
++ if (sqlite_exec(H->db, "COMMIT", NULL, NULL, &errmsg) != SQLITE_OK) {
++ pdo_sqlite2_error(errmsg, dbh);
++ return 0;
++ }
++ return 1;
++}
++
++static int sqlite2_handle_rollback(pdo_dbh_t *dbh TSRMLS_DC)
++{
++ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
++ char *errmsg = NULL;
++
++ if (sqlite_exec(H->db, "ROLLBACK", NULL, NULL, &errmsg) != SQLITE_OK) {
++ pdo_sqlite2_error(errmsg, dbh);
++ return 0;
++ }
++ return 1;
++}
++
++static int pdo_sqlite2_get_attribute(pdo_dbh_t *dbh, long attr, zval *return_value TSRMLS_DC)
++{
++ switch (attr) {
++ case PDO_ATTR_CLIENT_VERSION:
++ case PDO_ATTR_SERVER_VERSION:
++ ZVAL_STRING(return_value, (char *)sqlite_libversion(), 1);
++ break;
++
++ default:
++ return 0;
++ }
++
++ return 1;
++}
++
++static int pdo_sqlite2_set_attr(pdo_dbh_t *dbh, long attr, zval *val TSRMLS_DC)
++{
++ pdo_sqlite2_db_handle *H = (pdo_sqlite2_db_handle *)dbh->driver_data;
++
++ switch (attr) {
++ case PDO_ATTR_TIMEOUT:
++ convert_to_long(val);
++ sqlite_busy_timeout(H->db, Z_LVAL_P(val) * 1000);
++ return 1;
++ }
++ return 0;
++}
++
++static PHP_FUNCTION(sqlite2_create_function)
++{
++ /* TODO: implement this stuff */
++}
++
++static const zend_function_entry dbh_methods[] = {
++ PHP_FE(sqlite2_create_function, NULL)
++ {NULL, NULL, NULL}
++};
++
++static const zend_function_entry *get_driver_methods(pdo_dbh_t *dbh, int kind TSRMLS_DC)
++{
++ switch (kind) {
++ case PDO_DBH_DRIVER_METHOD_KIND_DBH:
++ return dbh_methods;
++
++ default:
++ return NULL;
++ }
++}
++
++static struct pdo_dbh_methods sqlite2_methods = {
++ sqlite2_handle_closer,
++ sqlite2_handle_preparer,
++ sqlite2_handle_doer,
++ sqlite2_handle_quoter,
++ sqlite2_handle_begin,
++ sqlite2_handle_commit,
++ sqlite2_handle_rollback,
++ pdo_sqlite2_set_attr,
++ pdo_sqlite2_last_insert_id,
++ pdo_sqlite2_fetch_error_func,
++ pdo_sqlite2_get_attribute,
++ NULL, /* check_liveness: not needed */
++ get_driver_methods
++};
++
++static char *make_filename_safe(const char *filename TSRMLS_DC)
++{
++ if (*filename && strncmp(filename, ":memory:", sizeof(":memory:")-1)) {
++ char *fullpath = expand_filepath(filename, NULL TSRMLS_CC);
++
++ if (!fullpath) {
++ return NULL;
++ }
++
++ if (PG(safe_mode) && (!php_checkuid(fullpath, NULL, CHECKUID_CHECK_FILE_AND_DIR))) {
++ efree(fullpath);
++ return NULL;
++ }
++
++ if (php_check_open_basedir(fullpath TSRMLS_CC)) {
++ efree(fullpath);
++ return NULL;
++ }
++ return fullpath;
++ }
++ return estrdup(filename);
++}
++
++static int authorizer(void *autharg, int access_type, const char *arg3, const char *arg4,
++ const char *arg5, const char *arg6)
++{
++ char *filename;
++ switch (access_type) {
++ case SQLITE_COPY: {
++ TSRMLS_FETCH();
++ filename = make_filename_safe(arg4 TSRMLS_CC);
++ if (!filename) {
++ return SQLITE_DENY;
++ }
++ efree(filename);
++ return SQLITE_OK;
++ }
++
++ case SQLITE_ATTACH: {
++ TSRMLS_FETCH();
++ filename = make_filename_safe(arg3 TSRMLS_CC);
++ if (!filename) {
++ return SQLITE_DENY;
++ }
++ efree(filename);
++ return SQLITE_OK;
++ }
++
++ default:
++ /* access allowed */
++ return SQLITE_OK;
++ }
++}
++
++static int pdo_sqlite2_handle_factory(pdo_dbh_t *dbh, zval *driver_options TSRMLS_DC) /* {{{ */
++{
++ pdo_sqlite2_db_handle *H;
++ int ret = 0;
++ long timeout = 60;
++ char *filename;
++ char *errmsg = NULL;
++
++ H = pecalloc(1, sizeof(pdo_sqlite2_db_handle), dbh->is_persistent);
++
++ H->einfo.errcode = 0;
++ H->einfo.errmsg = NULL;
++ dbh->driver_data = H;
++
++ filename = make_filename_safe(dbh->data_source TSRMLS_CC);
++
++ if (!filename) {
++ zend_throw_exception_ex(php_pdo_get_exception(), 0 TSRMLS_CC,
++ "safe_mode/open_basedir prohibits opening %s",
++ dbh->data_source);
++ goto cleanup;
++ }
++
++ H->db = sqlite_open(filename, 0666, &errmsg);
++ efree(filename);
++
++ if (!H->db) {
++ H->einfo.errcode = SQLITE_ERROR;
++ pdo_sqlite2_error(errmsg, dbh);
++ goto cleanup;
++ }
++
++ sqlite_set_authorizer(H->db, authorizer, NULL);
++
++ if (driver_options) {
++ timeout = pdo_attr_lval(driver_options, PDO_ATTR_TIMEOUT, timeout TSRMLS_CC);
++ }
++ sqlite_busy_timeout(H->db, timeout * 1000);
++
++ dbh->alloc_own_columns = 1;
++ dbh->max_escaped_char_length = 2;
++
++ ret = 1;
++
++cleanup:
++ dbh->methods = &sqlite2_methods;
++
++ return ret;
++}
++/* }}} */
++
++pdo_driver_t pdo_sqlite2_driver = {
++ PDO_DRIVER_HEADER(sqlite2),
++ pdo_sqlite2_handle_factory
++};
++
++
++
++#endif
++
++
++/*
++ * Local variables:
++ * tab-width: 4
++ * c-basic-offset: 4
++ * End:
++ * vim600: noet sw=4 ts=4 fdm=marker
++ * vim<600: noet sw=4 ts=4
++ */
+--- /dev/null
++++ b/ext/sqlite/php_sqlite.def
+@@ -0,0 +1,43 @@
++EXPORTS
++sqlite_open
++sqlite_close
++sqlite_exec
++sqlite_last_insert_rowid
++sqlite_changes
++sqlite_error_string
++sqlite_interrupt
++sqlite_complete
++sqlite_busy_handler
++sqlite_busy_timeout
++sqlite_get_table
++sqlite_free_table
++sqlite_exec_printf
++sqlite_exec_vprintf
++sqlite_get_table_printf
++sqlite_get_table_vprintf
++sqlite_mprintf
++sqlite_vmprintf
++sqlite_freemem
++sqlite_libversion
++sqlite_libencoding
++sqlite_create_function
++sqlite_create_aggregate
++sqlite_function_type
++sqlite_set_result_string
++sqlite_set_result_int
++sqlite_set_result_double
++sqlite_set_result_error
++sqlite_user_data
++sqlite_aggregate_context
++sqlite_aggregate_count
++sqlite_set_authorizer
++sqlite_trace
++sqlite_compile
++sqlite_step
++sqlite_finalize
++; some experimental stuff
++sqlite_last_statement_changes
++sqlite_reset
++sqlite_bind
++sqlite_progress_handler
++sqlite_commit_hook
+--- /dev/null
++++ b/ext/sqlite/php_sqlite.h
+@@ -0,0 +1,107 @@
++/*
++ +----------------------------------------------------------------------+
++ | PHP Version 5 |
++ +----------------------------------------------------------------------+
++ | Copyright (c) 1997-2012 The PHP Group |
++ +----------------------------------------------------------------------+
++ | This source file is subject to version 3.01 of the PHP license, |
++ | that is bundled with this package in the file LICENSE, and is |
++ | available through the world-wide-web at the following url: |
++ | http://www.php.net/license/3_01.txt |
++ | If you did not receive a copy of the PHP license and are unable to |
++ | obtain it through the world-wide-web, please send a note to |
++ | license@php.net so we can mail you a copy immediately. |
++ +----------------------------------------------------------------------+
++ | Authors: Wez Furlong <wez@thebrainroom.com> |
++ | Tal Peer <tal@php.net> |
++ | Marcus Boerger <helly@php.net> |
++ +----------------------------------------------------------------------+
++
++ $Id$
++*/
++
++#ifndef PHP_SQLITE_H
++#define PHP_SQLITE_H
++
++extern zend_module_entry sqlite_module_entry;
++#define phpext_sqlite_ptr &sqlite_module_entry
++
++#ifdef ZTS
++#include "TSRM.h"
++#endif
++
++PHP_MINIT_FUNCTION(sqlite);
++PHP_MSHUTDOWN_FUNCTION(sqlite);
++PHP_RSHUTDOWN_FUNCTION(sqlite);
++PHP_MINFO_FUNCTION(sqlite);
++
++PHP_FUNCTION(sqlite_open);
++PHP_FUNCTION(sqlite_popen);
++PHP_FUNCTION(sqlite_close);
++PHP_FUNCTION(sqlite_query);
++PHP_FUNCTION(sqlite_exec);
++PHP_FUNCTION(sqlite_unbuffered_query);
++PHP_FUNCTION(sqlite_array_query);
++PHP_FUNCTION(sqlite_single_query);
++
++PHP_FUNCTION(sqlite_fetch_array);
++PHP_FUNCTION(sqlite_fetch_object);
++PHP_FUNCTION(sqlite_fetch_single);
++PHP_FUNCTION(sqlite_fetch_all);
++PHP_FUNCTION(sqlite_current);
++PHP_FUNCTION(sqlite_column);
++
++PHP_FUNCTION(sqlite_num_rows);
++PHP_FUNCTION(sqlite_num_fields);
++PHP_FUNCTION(sqlite_field_name);
++PHP_FUNCTION(sqlite_seek);
++PHP_FUNCTION(sqlite_rewind);
++PHP_FUNCTION(sqlite_next);
++PHP_FUNCTION(sqlite_prev);
++PHP_FUNCTION(sqlite_key);
++
++PHP_FUNCTION(sqlite_valid);
++PHP_FUNCTION(sqlite_has_prev);
++
++PHP_FUNCTION(sqlite_libversion);
++PHP_FUNCTION(sqlite_libencoding);
++
++PHP_FUNCTION(sqlite_changes);
++PHP_FUNCTION(sqlite_last_insert_rowid);
++
++PHP_FUNCTION(sqlite_escape_string);
++
++PHP_FUNCTION(sqlite_busy_timeout);
++
++PHP_FUNCTION(sqlite_last_error);
++PHP_FUNCTION(sqlite_error_string);
++
++PHP_FUNCTION(sqlite_create_aggregate);
++PHP_FUNCTION(sqlite_create_function);
++PHP_FUNCTION(sqlite_udf_decode_binary);
++PHP_FUNCTION(sqlite_udf_encode_binary);
++
++PHP_FUNCTION(sqlite_factory);
++
++PHP_FUNCTION(sqlite_fetch_column_types);
++
++ZEND_BEGIN_MODULE_GLOBALS(sqlite)
++ long assoc_case;
++ZEND_END_MODULE_GLOBALS(sqlite)
++
++#ifdef ZTS
++#define SQLITE_G(v) TSRMG(sqlite_globals_id, zend_sqlite_globals *, v)
++#else
++#define SQLITE_G(v) (sqlite_globals.v)
++#endif
++
++#endif
++
++
++/*
++ * Local variables:
++ * tab-width: 4
++ * c-basic-offset: 4
++ * indent-tabs-mode: t
++ * End:
++ */
+--- /dev/null
++++ b/ext/sqlite/README
+@@ -0,0 +1,14 @@
++This is an extension for the SQLite Embeddable SQL Database Engine.
++http://www.sqlite.org/
++
++SQLite is a C library that implements an embeddable SQL database engine.
++Programs that link with the SQLite library can have SQL database access
++without running a separate RDBMS process.
++
++SQLite is not a client library used to connect to a big database server.
++SQLite is the server. The SQLite library reads and writes directly to and from
++the database files on disk
++
++
++
++vim:tw=78:et
+--- /dev/null
++++ b/ext/sqlite/sess_sqlite.c
+@@ -0,0 +1,201 @@
++/*
++ +----------------------------------------------------------------------+
++ | PHP Version 5 |
++ +----------------------------------------------------------------------+
++ | Copyright (c) 1997-2012 The PHP Group |
++ +----------------------------------------------------------------------+
++ | This source file is subject to version 3.01 of the PHP license, |
++ | that is bundled with this package in the file LICENSE, and is |
++ | available through the world-wide-web at the following url: |
++ | http://www.php.net/license/3_01.txt |
++ | If you did not receive a copy of the PHP license and are unable to |
++ | obtain it through the world-wide-web, please send a note to |
++ | license@php.net so we can mail you a copy immediately. |
++ +----------------------------------------------------------------------+
++ | Authors: John Coggeshall <john@php.net> |
++ | Wez Furlong <wez@thebrainroom.com> |
++ +----------------------------------------------------------------------+
++ */
++
++/* $Id$ */
++
++#include "php.h"
++
++#if HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION)
++
++#include "ext/session/php_session.h"
++#include "ext/standard/php_lcg.h"
++#include <sqlite.h>
++#define SQLITE_RETVAL(__r) ((__r) == SQLITE_OK ? SUCCESS : FAILURE)
++#define PS_SQLITE_DATA sqlite *db = (sqlite*)PS_GET_MOD_DATA()
++extern int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out);
++extern int sqlite_decode_binary(const unsigned char *in, unsigned char *out);
++
++PS_FUNCS(sqlite);
++
++ps_module ps_mod_sqlite = {
++ PS_MOD(sqlite)
++};
++
++PS_OPEN_FUNC(sqlite)
++{
++ char *errmsg = NULL;
++ sqlite *db;
++
++ /* TODO: do we need a safe_mode check here? */
++ db = sqlite_open(save_path, 0666, &errmsg);
++ if (db == NULL) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING,
++ "SQLite: failed to open/create session database `%s' - %s", save_path, errmsg);
++ sqlite_freemem(errmsg);
++ return FAILURE;
++ }
++
++ /* allow up to 1 minute when busy */
++ sqlite_busy_timeout(db, 60000);
++
++ sqlite_exec(db, "PRAGMA default_synchronous = OFF", NULL, NULL, NULL);
++ sqlite_exec(db, "PRAGMA count_changes = OFF", NULL, NULL, NULL);
++
++ /* This will fail if the table already exists, but that's not a big problem. I'm
++ unclear as to how to check for a table's existence in SQLite -- that would be better here. */
++ sqlite_exec(db,
++ "CREATE TABLE session_data ("
++ " sess_id PRIMARY KEY,"
++ " value TEXT, "
++ " updated INTEGER "
++ ")", NULL, NULL, NULL);
++
++ PS_SET_MOD_DATA(db);
++
++ return SUCCESS;
++}
++
++PS_CLOSE_FUNC(sqlite)
++{
++ PS_SQLITE_DATA;
++
++ sqlite_close(db);
++
++ return SUCCESS;
++}
++
++PS_READ_FUNC(sqlite)
++{
++ PS_SQLITE_DATA;
++ char *query;
++ const char *tail;
++ sqlite_vm *vm;
++ int colcount, result;
++ const char **rowdata, **colnames;
++ char *error;
++
++ *val = NULL;
++ *vallen = 0;
++
++ query = sqlite_mprintf("SELECT value FROM session_data WHERE sess_id='%q' LIMIT 1", key);
++ if (query == NULL) {
++ /* no memory */
++ return FAILURE;
++ }
++
++ if (sqlite_compile(db, query, &tail, &vm, &error) != SQLITE_OK) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "SQLite: Could not compile session read query: %s", error);
++ sqlite_freemem(error);
++ sqlite_freemem(query);
++ return FAILURE;
++ }
++
++ switch ((result = sqlite_step(vm, &colcount, &rowdata, &colnames))) {
++ case SQLITE_ROW:
++ if (rowdata[0] != NULL) {
++ *vallen = strlen(rowdata[0]);
++ if (*vallen) {
++ *val = emalloc(*vallen);
++ *vallen = sqlite_decode_binary(rowdata[0], *val);
++ (*val)[*vallen] = '\0';
++ } else {
++ *val = STR_EMPTY_ALLOC();
++ }
++ }
++ break;
++ default:
++ sqlite_freemem(error);
++ error = NULL;
++ }
++
++ if (SQLITE_OK != sqlite_finalize(vm, &error)) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "SQLite: session read: error %s", error);
++ sqlite_freemem(error);
++ error = NULL;
++ }
++
++ sqlite_freemem(query);
++
++ return *val == NULL ? FAILURE : SUCCESS;
++}
++
++PS_WRITE_FUNC(sqlite)
++{
++ PS_SQLITE_DATA;
++ char *error;
++ time_t t;
++ char *binary;
++ int binlen;
++ int rv;
++
++ t = time(NULL);
++
++ binary = safe_emalloc(1 + vallen / 254, 257, 3);
++ binlen = sqlite_encode_binary((const unsigned char*)val, vallen, binary);
++
++ rv = sqlite_exec_printf(db, "REPLACE INTO session_data VALUES('%q', '%q', %d)", NULL, NULL, &error, key, binary, t);
++ if (rv != SQLITE_OK) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "SQLite: session write query failed: %s", error);
++ sqlite_freemem(error);
++ }
++ efree(binary);
++
++ return SQLITE_RETVAL(rv);
++}
++
++PS_DESTROY_FUNC(sqlite)
++{
++ int rv;
++ PS_SQLITE_DATA;
++
++ rv = sqlite_exec_printf(db, "DELETE FROM session_data WHERE sess_id='%q'", NULL, NULL, NULL, key);
++
++ return SQLITE_RETVAL(rv);
++}
++
++PS_GC_FUNC(sqlite)
++{
++ PS_SQLITE_DATA;
++ int rv;
++ time_t t = time(NULL);
++
++ rv = sqlite_exec_printf(db,
++ "DELETE FROM session_data WHERE (%d - updated) > %d",
++ NULL, NULL, NULL, t, maxlifetime);
++
++ /* because SQLite does not actually clear the deleted data from the database
++ * we need to occassionaly do so manually to prevent the sessions database
++ * from growing endlessly.
++ */
++ if ((int) ((float) PS(gc_divisor) * PS(gc_divisor) * php_combined_lcg(TSRMLS_C)) < PS(gc_probability)) {
++ rv = sqlite_exec_printf(db, "VACUUM", NULL, NULL, NULL);
++ }
++ return SQLITE_RETVAL(rv);
++}
++
++#endif /* HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION) */
++
++/*
++ * Local variables:
++ * tab-width: 4
++ * c-basic-offset: 4
++ * End:
++ * vim600: sw=4 ts=4 fdm=marker
++ * vim<600: sw=4 ts=4
++ */
+--- /dev/null
++++ b/ext/sqlite/sqlite.c
+@@ -0,0 +1,3448 @@
++/*
++ +----------------------------------------------------------------------+
++ | PHP Version 5 |
++ +----------------------------------------------------------------------+
++ | Copyright (c) 1997-2012 The PHP Group |
++ +----------------------------------------------------------------------+
++ | This source file is subject to version 3.01 of the PHP license, |
++ | that is bundled with this package in the file LICENSE, and is |
++ | available through the world-wide-web at the following url: |
++ | http://www.php.net/license/3_01.txt |
++ | If you did not receive a copy of the PHP license and are unable to |
++ | obtain it through the world-wide-web, please send a note to |
++ | license@php.net so we can mail you a copy immediately. |
++ +----------------------------------------------------------------------+
++ | Authors: Wez Furlong <wez@thebrainroom.com> |
++ | Tal Peer <tal@php.net> |
++ | Marcus Boerger <helly@php.net> |
++ +----------------------------------------------------------------------+
++
++ $Id$
++*/
++
++#ifdef HAVE_CONFIG_H
++#include "config.h"
++#endif
++
++#define PHP_SQLITE_MODULE_VERSION "2.0-dev"
++
++#include "php.h"
++#include "php_ini.h"
++#include "ext/standard/info.h"
++#if HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION)
++#include "ext/session/php_session.h"
++#endif
++#include "php_sqlite.h"
++
++#if HAVE_TIME_H
++# include <time.h>
++#endif
++#if HAVE_UNISTD_H
++#include <unistd.h>
++#endif
++
++#include <sqlite.h>
++
++#include "zend_exceptions.h"
++#include "zend_interfaces.h"
++
++#if defined(HAVE_SPL) && ((PHP_MAJOR_VERSION > 5) || (PHP_MAJOR_VERSION == 5 && PHP_MINOR_VERSION >= 1))
++extern PHPAPI zend_class_entry *spl_ce_RuntimeException;
++extern PHPAPI zend_class_entry *spl_ce_Countable;
++#endif
++
++#if PHP_SQLITE2_HAVE_PDO
++# include "pdo/php_pdo.h"
++# include "pdo/php_pdo_driver.h"
++extern pdo_driver_t pdo_sqlite2_driver;
++#endif
++
++#ifndef safe_emalloc
++# define safe_emalloc(a,b,c) emalloc((a)*(b)+(c))
++#endif
++
++ZEND_DECLARE_MODULE_GLOBALS(sqlite)
++static PHP_GINIT_FUNCTION(sqlite);
++
++#if HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION)
++extern ps_module ps_mod_sqlite;
++#define ps_sqlite_ptr &ps_mod_sqlite
++#endif
++
++extern int sqlite_encode_binary(const unsigned char *in, int n, unsigned char *out);
++extern int sqlite_decode_binary(const unsigned char *in, unsigned char *out);
++
++#define php_sqlite_encode_binary(in, n, out) sqlite_encode_binary((const unsigned char *)in, n, (unsigned char *)out)
++#define php_sqlite_decode_binary(in, out) in && *in ? sqlite_decode_binary((const unsigned char *)in, (unsigned char *)out) : 0
++
++static int sqlite_count_elements(zval *object, long *count TSRMLS_DC);
++
++static int le_sqlite_db, le_sqlite_result, le_sqlite_pdb;
++
++static inline void php_sqlite_strtoupper(char *s)
++{
++ while (*s!='\0') {
++ *s = toupper(*s);
++ s++;
++ }
++}
++
++static inline void php_sqlite_strtolower(char *s)
++{
++ while (*s!='\0') {
++ *s = tolower(*s);
++ s++;
++ }
++}
++
++/* {{{ PHP_INI
++ */
++PHP_INI_BEGIN()
++STD_PHP_INI_ENTRY_EX("sqlite.assoc_case", "0", PHP_INI_ALL, OnUpdateLong, assoc_case, zend_sqlite_globals, sqlite_globals, display_link_numbers)
++PHP_INI_END()
++/* }}} */
++
++#define DB_FROM_ZVAL(db, zv) ZEND_FETCH_RESOURCE2(db, struct php_sqlite_db *, zv, -1, "sqlite database", le_sqlite_db, le_sqlite_pdb)
++
++#define DB_FROM_OBJECT(db, object) \
++ { \
++ sqlite_object *obj = (sqlite_object*) zend_object_store_get_object(object TSRMLS_CC); \
++ db = obj->u.db; \
++ if (!db) { \
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "The database wasn't opened"); \
++ RETURN_NULL(); \
++ } \
++ }
++
++#define RES_FROM_OBJECT_RESTORE_ERH(res, object, error_handling) \
++ { \
++ sqlite_object *obj = (sqlite_object*) zend_object_store_get_object(object TSRMLS_CC); \
++ res = obj->u.res; \
++ if (!res) { \
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "No result set available"); \
++ if (error_handling) \
++ zend_restore_error_handling(error_handling TSRMLS_CC); \
++ RETURN_NULL(); \
++ } \
++ }
++
++#define RES_FROM_OBJECT(res, object) RES_FROM_OBJECT_RESTORE_ERH(res, object, NULL)
++
++#define PHP_SQLITE_EMPTY_QUERY \
++ if (!sql_len || !*sql) { \
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Cannot execute empty query."); \
++ RETURN_FALSE; \
++ }
++
++struct php_sqlite_result {
++ struct php_sqlite_db *db;
++ sqlite_vm *vm;
++ int buffered;
++ int ncolumns;
++ int nrows;
++ int curr_row;
++ char **col_names;
++ int alloc_rows;
++ int mode;
++ char **table;
++};
++
++struct php_sqlite_db {
++ sqlite *db;
++ int last_err_code;
++ zend_bool is_persistent;
++ long rsrc_id;
++
++ HashTable callbacks;
++};
++
++struct php_sqlite_agg_functions {
++ struct php_sqlite_db *db;
++ int is_valid;
++ zval *step;
++ zval *fini;
++};
++
++static void php_sqlite_fetch_array(struct php_sqlite_result *res, int mode, zend_bool decode_binary, int move_next, zval *return_value TSRMLS_DC);
++static int php_sqlite_fetch(struct php_sqlite_result *rres TSRMLS_DC);
++
++enum { PHPSQLITE_ASSOC = 1, PHPSQLITE_NUM = 2, PHPSQLITE_BOTH = PHPSQLITE_ASSOC|PHPSQLITE_NUM };
++
++/* {{{ arginfo */
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_popen, 0, 0, 1)
++ ZEND_ARG_INFO(0, filename)
++ ZEND_ARG_INFO(0, mode)
++ ZEND_ARG_INFO(1, error_message)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_open, 0, 0, 1)
++ ZEND_ARG_INFO(0, filename)
++ ZEND_ARG_INFO(0, mode)
++ ZEND_ARG_INFO(1, error_message)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_factory, 0, 0, 1)
++ ZEND_ARG_INFO(0, filename)
++ ZEND_ARG_INFO(0, mode)
++ ZEND_ARG_INFO(1, error_message)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_busy_timeout, 0, 0, 2)
++ ZEND_ARG_INFO(0, db)
++ ZEND_ARG_INFO(0, ms)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_busy_timeout, 0, 0, 1)
++ ZEND_ARG_INFO(0, ms)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_close, 0, 0, 1)
++ ZEND_ARG_INFO(0, db)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_unbuffered_query, 0, 0, 2)
++ ZEND_ARG_INFO(0, query)
++ ZEND_ARG_INFO(0, db)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(1, error_message)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_unbuffered_query, 0, 0, 1)
++ ZEND_ARG_INFO(0, query)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(1, error_message)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_fetch_column_types, 0, 0, 2)
++ ZEND_ARG_INFO(0, table_name)
++ ZEND_ARG_INFO(0, db)
++ ZEND_ARG_INFO(0, result_type)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_fetch_column_types, 0, 0, 1)
++ ZEND_ARG_INFO(0, table_name)
++ ZEND_ARG_INFO(0, result_type)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_query, 0, 0, 2)
++ ZEND_ARG_INFO(0, query)
++ ZEND_ARG_INFO(0, db)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(1, error_message)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_query, 0, 0, 1)
++ ZEND_ARG_INFO(0, query)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(1, error_message)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_exec, 0, 0, 2)
++ ZEND_ARG_INFO(0, query)
++ ZEND_ARG_INFO(0, db)
++ ZEND_ARG_INFO(1, error_message)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_exec, 0, 0, 1)
++ ZEND_ARG_INFO(0, query)
++ ZEND_ARG_INFO(1, error_message)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_fetch_all, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_fetch_all, 0, 0, 0)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_fetch_array, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_fetch_array, 0, 0, 0)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_fetch_object, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ ZEND_ARG_INFO(0, class_name)
++ ZEND_ARG_INFO(0, ctor_params)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_fetch_object, 0, 0, 0)
++ ZEND_ARG_INFO(0, class_name)
++ ZEND_ARG_INFO(0, ctor_params)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_array_query, 0, 0, 2)
++ ZEND_ARG_INFO(0, db)
++ ZEND_ARG_INFO(0, query)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_array_query, 0, 0, 1)
++ ZEND_ARG_INFO(0, query)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_single_query, 0, 0, 2)
++ ZEND_ARG_INFO(0, db)
++ ZEND_ARG_INFO(0, query)
++ ZEND_ARG_INFO(0, first_row_only)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_single_query, 0, 0, 1)
++ ZEND_ARG_INFO(0, query)
++ ZEND_ARG_INFO(0, first_row_only)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_fetch_single, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_fetch_single, 0, 0, 0)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_current, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_current, 0, 0, 0)
++ ZEND_ARG_INFO(0, result_type)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_column, 0, 0, 2)
++ ZEND_ARG_INFO(0, result)
++ ZEND_ARG_INFO(0, index_or_name)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_column, 0, 0, 1)
++ ZEND_ARG_INFO(0, index_or_name)
++ ZEND_ARG_INFO(0, decode_binary)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_libversion, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_libencoding, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_changes, 0, 0, 1)
++ ZEND_ARG_INFO(0, db)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_changes, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_last_insert_rowid, 0, 0, 1)
++ ZEND_ARG_INFO(0, db)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_last_insert_rowid, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_num_rows, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_num_rows, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_valid, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_valid, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_has_prev, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_has_prev, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_num_fields, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_num_fields, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_field_name, 0, 0, 2)
++ ZEND_ARG_INFO(0, result)
++ ZEND_ARG_INFO(0, field_index)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_field_name, 0, 0, 1)
++ ZEND_ARG_INFO(0, field_index)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_seek, 0, 0, 2)
++ ZEND_ARG_INFO(0, result)
++ ZEND_ARG_INFO(0, row)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_seek, 0, 0, 1)
++ ZEND_ARG_INFO(0, row)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_rewind, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_rewind, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_next, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_next, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_key, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_key, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_prev, 0, 0, 1)
++ ZEND_ARG_INFO(0, result)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_prev, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_escape_string, 0, 0, 1)
++ ZEND_ARG_INFO(0, item)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_last_error, 0, 0, 1)
++ ZEND_ARG_INFO(0, db)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO(arginfo_sqlite_method_last_error, 0)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_error_string, 0, 0, 1)
++ ZEND_ARG_INFO(0, error_code)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_create_aggregate, 0, 0, 4)
++ ZEND_ARG_INFO(0, db)
++ ZEND_ARG_INFO(0, funcname)
++ ZEND_ARG_INFO(0, step_func)
++ ZEND_ARG_INFO(0, finalize_func)
++ ZEND_ARG_INFO(0, num_args)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_create_aggregate, 0, 0, 3)
++ ZEND_ARG_INFO(0, funcname)
++ ZEND_ARG_INFO(0, step_func)
++ ZEND_ARG_INFO(0, finalize_func)
++ ZEND_ARG_INFO(0, num_args)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_create_function, 0, 0, 3)
++ ZEND_ARG_INFO(0, db)
++ ZEND_ARG_INFO(0, funcname)
++ ZEND_ARG_INFO(0, callback)
++ ZEND_ARG_INFO(0, num_args)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_method_create_function, 0, 0, 2)
++ ZEND_ARG_INFO(0, funcname)
++ ZEND_ARG_INFO(0, callback)
++ ZEND_ARG_INFO(0, num_args)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_udf_encode_binary, 0, 0, 1)
++ ZEND_ARG_INFO(0, data)
++ZEND_END_ARG_INFO()
++
++ZEND_BEGIN_ARG_INFO_EX(arginfo_sqlite_udf_decode_binary, 0, 0, 1)
++ ZEND_ARG_INFO(0, data)
++ZEND_END_ARG_INFO()
++/* }}} */
++
++const zend_function_entry sqlite_functions[] = {
++ PHP_FE(sqlite_open, arginfo_sqlite_open)
++ PHP_FE(sqlite_popen, arginfo_sqlite_popen)
++ PHP_FE(sqlite_close, arginfo_sqlite_close)
++ PHP_FE(sqlite_query, arginfo_sqlite_query)
++ PHP_FE(sqlite_exec, arginfo_sqlite_exec)
++ PHP_FE(sqlite_array_query, arginfo_sqlite_array_query)
++ PHP_FE(sqlite_single_query, arginfo_sqlite_single_query)
++ PHP_FE(sqlite_fetch_array, arginfo_sqlite_fetch_array)
++ PHP_FE(sqlite_fetch_object, arginfo_sqlite_fetch_object)
++ PHP_FE(sqlite_fetch_single, arginfo_sqlite_fetch_single)
++ PHP_FALIAS(sqlite_fetch_string, sqlite_fetch_single, arginfo_sqlite_fetch_single)
++ PHP_FE(sqlite_fetch_all, arginfo_sqlite_fetch_all)
++ PHP_FE(sqlite_current, arginfo_sqlite_current)
++ PHP_FE(sqlite_column, arginfo_sqlite_column)
++ PHP_FE(sqlite_libversion, arginfo_sqlite_libversion)
++ PHP_FE(sqlite_libencoding, arginfo_sqlite_libencoding)
++ PHP_FE(sqlite_changes, arginfo_sqlite_changes)
++ PHP_FE(sqlite_last_insert_rowid, arginfo_sqlite_last_insert_rowid)
++ PHP_FE(sqlite_num_rows, arginfo_sqlite_num_rows)
++ PHP_FE(sqlite_num_fields, arginfo_sqlite_num_fields)
++ PHP_FE(sqlite_field_name, arginfo_sqlite_field_name)
++ PHP_FE(sqlite_seek, arginfo_sqlite_seek)
++ PHP_FE(sqlite_rewind, arginfo_sqlite_rewind)
++ PHP_FE(sqlite_next, arginfo_sqlite_next)
++ PHP_FE(sqlite_prev, arginfo_sqlite_prev)
++ PHP_FE(sqlite_valid, arginfo_sqlite_valid)
++ PHP_FALIAS(sqlite_has_more, sqlite_valid, arginfo_sqlite_valid)
++ PHP_FE(sqlite_has_prev, arginfo_sqlite_has_prev)
++ PHP_FE(sqlite_escape_string, arginfo_sqlite_escape_string)
++ PHP_FE(sqlite_busy_timeout, arginfo_sqlite_busy_timeout)
++ PHP_FE(sqlite_last_error, arginfo_sqlite_last_error)
++ PHP_FE(sqlite_error_string, arginfo_sqlite_error_string)
++ PHP_FE(sqlite_unbuffered_query, arginfo_sqlite_unbuffered_query)
++ PHP_FE(sqlite_create_aggregate, arginfo_sqlite_create_aggregate)
++ PHP_FE(sqlite_create_function, arginfo_sqlite_create_function)
++ PHP_FE(sqlite_factory, arginfo_sqlite_factory)
++ PHP_FE(sqlite_udf_encode_binary, arginfo_sqlite_udf_encode_binary)
++ PHP_FE(sqlite_udf_decode_binary, arginfo_sqlite_udf_decode_binary)
++ PHP_FE(sqlite_fetch_column_types, arginfo_sqlite_fetch_column_types)
++ {NULL, NULL, NULL}
++};
++
++const zend_function_entry sqlite_funcs_db[] = {
++ PHP_ME_MAPPING(__construct, sqlite_open, arginfo_sqlite_open, 0)
++/* PHP_ME_MAPPING(close, sqlite_close, NULL, 0)*/
++ PHP_ME_MAPPING(query, sqlite_query, arginfo_sqlite_method_query, 0)
++ PHP_ME_MAPPING(queryExec, sqlite_exec, arginfo_sqlite_method_exec, 0)
++ PHP_ME_MAPPING(arrayQuery, sqlite_array_query, arginfo_sqlite_method_array_query, 0)
++ PHP_ME_MAPPING(singleQuery, sqlite_single_query, arginfo_sqlite_method_single_query, 0)
++ PHP_ME_MAPPING(unbufferedQuery, sqlite_unbuffered_query, arginfo_sqlite_method_unbuffered_query, 0)
++ PHP_ME_MAPPING(lastInsertRowid, sqlite_last_insert_rowid, arginfo_sqlite_method_last_insert_rowid, 0)
++ PHP_ME_MAPPING(changes, sqlite_changes, arginfo_sqlite_method_changes, 0)
++ PHP_ME_MAPPING(createAggregate, sqlite_create_aggregate, arginfo_sqlite_method_create_aggregate, 0)
++ PHP_ME_MAPPING(createFunction, sqlite_create_function, arginfo_sqlite_method_create_function, 0)
++ PHP_ME_MAPPING(busyTimeout, sqlite_busy_timeout, arginfo_sqlite_method_busy_timeout, 0)
++ PHP_ME_MAPPING(lastError, sqlite_last_error, arginfo_sqlite_method_last_error, 0)
++ PHP_ME_MAPPING(fetchColumnTypes, sqlite_fetch_column_types, arginfo_sqlite_method_fetch_column_types, 0)
++/* PHP_ME_MAPPING(error_string, sqlite_error_string, NULL, 0) static */
++/* PHP_ME_MAPPING(escape_string, sqlite_escape_string, NULL, 0) static */
++ {NULL, NULL, NULL}
++};
++
++const zend_function_entry sqlite_funcs_query[] = {
++ PHP_ME_MAPPING(fetch, sqlite_fetch_array, arginfo_sqlite_method_fetch_array, 0)
++ PHP_ME_MAPPING(fetchObject, sqlite_fetch_object, arginfo_sqlite_method_fetch_object, 0)
++ PHP_ME_MAPPING(fetchSingle, sqlite_fetch_single, arginfo_sqlite_method_fetch_single, 0)
++ PHP_ME_MAPPING(fetchAll, sqlite_fetch_all, arginfo_sqlite_method_fetch_all, 0)
++ PHP_ME_MAPPING(column, sqlite_column, arginfo_sqlite_method_column, 0)
++ PHP_ME_MAPPING(numFields, sqlite_num_fields, arginfo_sqlite_method_num_fields, 0)
++ PHP_ME_MAPPING(fieldName, sqlite_field_name, arginfo_sqlite_method_field_name, 0)
++ /* iterator */
++ PHP_ME_MAPPING(current, sqlite_current, arginfo_sqlite_method_current, 0)
++ PHP_ME_MAPPING(key, sqlite_key, arginfo_sqlite_method_key, 0)
++ PHP_ME_MAPPING(next, sqlite_next, arginfo_sqlite_method_next, 0)
++ PHP_ME_MAPPING(valid, sqlite_valid, arginfo_sqlite_method_valid, 0)
++ PHP_ME_MAPPING(rewind, sqlite_rewind, arginfo_sqlite_method_rewind, 0)
++ /* countable */
++ PHP_ME_MAPPING(count, sqlite_num_rows, arginfo_sqlite_method_num_rows, 0)
++ /* additional */
++ PHP_ME_MAPPING(prev, sqlite_prev, arginfo_sqlite_method_prev, 0)
++ PHP_ME_MAPPING(hasPrev, sqlite_has_prev, arginfo_sqlite_method_has_prev, 0)
++ PHP_ME_MAPPING(numRows, sqlite_num_rows, arginfo_sqlite_method_num_rows, 0)
++ PHP_ME_MAPPING(seek, sqlite_seek, arginfo_sqlite_method_seek, 0)
++ {NULL, NULL, NULL}
++};
++
++const zend_function_entry sqlite_funcs_ub_query[] = {
++ PHP_ME_MAPPING(fetch, sqlite_fetch_array, arginfo_sqlite_method_fetch_array, 0)
++ PHP_ME_MAPPING(fetchObject, sqlite_fetch_object, arginfo_sqlite_method_fetch_object, 0)
++ PHP_ME_MAPPING(fetchSingle, sqlite_fetch_single, arginfo_sqlite_method_fetch_single, 0)
++ PHP_ME_MAPPING(fetchAll, sqlite_fetch_all, arginfo_sqlite_method_fetch_all, 0)
++ PHP_ME_MAPPING(column, sqlite_column, arginfo_sqlite_method_column, 0)
++ PHP_ME_MAPPING(numFields, sqlite_num_fields, arginfo_sqlite_method_num_fields, 0)
++ PHP_ME_MAPPING(fieldName, sqlite_field_name, arginfo_sqlite_method_field_name, 0)
++ /* iterator */
++ PHP_ME_MAPPING(current, sqlite_current, arginfo_sqlite_method_current, 0)
++ PHP_ME_MAPPING(next, sqlite_next, arginfo_sqlite_method_next, 0)
++ PHP_ME_MAPPING(valid, sqlite_valid, arginfo_sqlite_method_valid, 0)
++ {NULL, NULL, NULL}
++};
++
++const zend_function_entry sqlite_funcs_exception[] = {
++ {NULL, NULL, NULL}
++};
++
++/* Dependancies */
++static const zend_module_dep sqlite_deps[] = {
++#if defined(HAVE_SPL) && ((PHP_MAJOR_VERSION > 5) || (PHP_MAJOR_VERSION == 5 && PHP_MINOR_VERSION >= 1))
++ ZEND_MOD_REQUIRED("spl")
++#endif
++#if HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION)
++ ZEND_MOD_REQUIRED("session")
++#endif
++#ifdef PHP_SQLITE2_HAVE_PDO
++ ZEND_MOD_REQUIRED("pdo")
++#endif
++ {NULL, NULL, NULL}
++};
++
++zend_module_entry sqlite_module_entry = {
++#if ZEND_MODULE_API_NO >= 20050922
++ STANDARD_MODULE_HEADER_EX, NULL,
++ sqlite_deps,
++#elif ZEND_MODULE_API_NO >= 20010901
++ STANDARD_MODULE_HEADER,
++#endif
++ "SQLite",
++ sqlite_functions,
++ PHP_MINIT(sqlite),
++ PHP_MSHUTDOWN(sqlite),
++ NULL,
++ PHP_RSHUTDOWN(sqlite),
++ PHP_MINFO(sqlite),
++#if ZEND_MODULE_API_NO >= 20010901
++ PHP_SQLITE_MODULE_VERSION,
++#endif
++#if ZEND_MODULE_API_NO >= 20060613
++ PHP_MODULE_GLOBALS(sqlite),
++ PHP_GINIT(sqlite),
++ NULL,
++ NULL,
++ STANDARD_MODULE_PROPERTIES_EX
++#else
++ STANDARD_MODULE_PROPERTIES
++#endif
++};
++
++
++#ifdef COMPILE_DL_SQLITE
++ZEND_GET_MODULE(sqlite)
++#endif
++
++static int php_sqlite_callback_invalidator(struct php_sqlite_agg_functions *funcs TSRMLS_DC)
++{
++ if (!funcs->is_valid) {
++ return 0;
++ }
++
++ if (funcs->step) {
++ zval_ptr_dtor(&funcs->step);
++ funcs->step = NULL;
++ }
++
++ if (funcs->fini) {
++ zval_ptr_dtor(&funcs->fini);
++ funcs->fini = NULL;
++ }
++
++ funcs->is_valid = 0;
++
++ return 0;
++}
++
++
++static void php_sqlite_callback_dtor(void *pDest)
++{
++ struct php_sqlite_agg_functions *funcs = (struct php_sqlite_agg_functions*)pDest;
++
++ if (funcs->is_valid) {
++ TSRMLS_FETCH();
++
++ php_sqlite_callback_invalidator(funcs TSRMLS_CC);
++ }
++}
++
++static ZEND_RSRC_DTOR_FUNC(php_sqlite_db_dtor)
++{
++ if (rsrc->ptr) {
++ struct php_sqlite_db *db = (struct php_sqlite_db*)rsrc->ptr;
++
++ sqlite_close(db->db);
++
++ zend_hash_destroy(&db->callbacks);
++
++ pefree(db, db->is_persistent);
++
++ rsrc->ptr = NULL;
++ }
++}
++
++static void real_result_dtor(struct php_sqlite_result *res TSRMLS_DC)
++{
++ int i, j, base;
++
++ if (res->vm) {
++ sqlite_finalize(res->vm, NULL);
++ }
++
++ if (res->table) {
++ if (!res->buffered && res->nrows) {
++ res->nrows = 1; /* only one row is stored */
++ }
++ for (i = 0; i < res->nrows; i++) {
++ base = i * res->ncolumns;
++ for (j = 0; j < res->ncolumns; j++) {
++ if (res->table[base + j] != NULL) {
++ efree(res->table[base + j]);
++ }
++ }
++ }
++ efree(res->table);
++ }
++ if (res->col_names) {
++ for (j = 0; j < res->ncolumns; j++) {
++ efree(res->col_names[j]);
++ }
++ efree(res->col_names);
++ }
++
++ if (res->db) {
++ zend_list_delete(res->db->rsrc_id);
++ }
++ efree(res);
++}
++
++static int _clean_unfinished_results(zend_rsrc_list_entry *le, void *db TSRMLS_DC)
++{
++ if (Z_TYPE_P(le) == le_sqlite_result) {
++ struct php_sqlite_result *res = (struct php_sqlite_result *)le->ptr;
++ if (res->db->rsrc_id == ((struct php_sqlite_db*)db)->rsrc_id) {
++ return ZEND_HASH_APPLY_REMOVE;
++ }
++ }
++ return ZEND_HASH_APPLY_KEEP;
++}
++
++static ZEND_RSRC_DTOR_FUNC(php_sqlite_result_dtor)
++{
++ struct php_sqlite_result *res = (struct php_sqlite_result *)rsrc->ptr;
++ real_result_dtor(res TSRMLS_CC);
++}
++
++static int php_sqlite_forget_persistent_id_numbers(zend_rsrc_list_entry *rsrc TSRMLS_DC)
++{
++ struct php_sqlite_db *db = (struct php_sqlite_db*)rsrc->ptr;
++
++ if (Z_TYPE_P(rsrc) != le_sqlite_pdb) {
++ return 0;
++ }
++
++ /* prevent bad mojo if someone tries to use a previously registered function in the next request */
++ zend_hash_apply(&db->callbacks, (apply_func_t)php_sqlite_callback_invalidator TSRMLS_CC);
++
++ db->rsrc_id = FAILURE;
++
++ /* don't leave pending commits hanging around */
++ sqlite_exec(db->db, "ROLLBACK", NULL, NULL, NULL);
++
++ return 0;
++}
++
++PHP_RSHUTDOWN_FUNCTION(sqlite)
++{
++ zend_hash_apply(&EG(persistent_list), (apply_func_t)php_sqlite_forget_persistent_id_numbers TSRMLS_CC);
++ return SUCCESS;
++}
++
++/* {{{ PHP Function interface */
++static void php_sqlite_generic_function_callback(sqlite_func *func, int argc, const char **argv)
++{
++ zval *retval = NULL;
++ zval ***zargs = NULL;
++ zval funcname;
++ int i, res;
++ char *callable = NULL, *errbuf=NULL;
++ TSRMLS_FETCH();
++
++ /* sanity check the args */
++ if (argc == 0) {
++ sqlite_set_result_error(func, "not enough parameters", -1);
++ return;
++ }
++
++ ZVAL_STRING(&funcname, (char*)argv[0], 1);
++
++ if (!zend_make_callable(&funcname, &callable TSRMLS_CC)) {
++ spprintf(&errbuf, 0, "function `%s' is not a function name", callable);
++ sqlite_set_result_error(func, errbuf, -1);
++ efree(errbuf);
++ efree(callable);
++ zval_dtor(&funcname);
++ return;
++ }
++
++ if (argc > 1) {
++ zargs = (zval ***)safe_emalloc((argc - 1), sizeof(zval **), 0);
++
++ for (i = 0; i < argc-1; i++) {
++ zargs[i] = emalloc(sizeof(zval *));
++ MAKE_STD_ZVAL(*zargs[i]);
++ ZVAL_STRING(*zargs[i], (char*)argv[i+1], 1);
++ }
++ }
++
++ res = call_user_function_ex(EG(function_table),
++ NULL,
++ &funcname,
++ &retval,
++ argc-1,
++ zargs,
++ 0, NULL TSRMLS_CC);
++
++ zval_dtor(&funcname);
++
++ if (res == SUCCESS) {
++ if (retval == NULL) {
++ sqlite_set_result_string(func, NULL, 0);
++ } else {
++ switch (Z_TYPE_P(retval)) {
++ case IS_STRING:
++ sqlite_set_result_string(func, Z_STRVAL_P(retval), Z_STRLEN_P(retval));
++ break;
++ case IS_LONG:
++ case IS_BOOL:
++ sqlite_set_result_int(func, Z_LVAL_P(retval));
++ break;
++ case IS_DOUBLE:
++ sqlite_set_result_double(func, Z_DVAL_P(retval));
++ break;
++ case IS_NULL:
++ default:
++ sqlite_set_result_string(func, NULL, 0);
++ }
++ }
++ } else {
++ char *errbuf;
++ spprintf(&errbuf, 0, "call_user_function_ex failed for function %s()", callable);
++ sqlite_set_result_error(func, errbuf, -1);
++ efree(errbuf);
++ }
++
++ efree(callable);
++
++ if (retval) {
++ zval_ptr_dtor(&retval);
++ }
++
++ if (zargs) {
++ for (i = 0; i < argc-1; i++) {
++ zval_ptr_dtor(zargs[i]);
++ efree(zargs[i]);
++ }
++ efree(zargs);
++ }
++}
++/* }}} */
++
++/* {{{ callback for sqlite_create_function */
++static void php_sqlite_function_callback(sqlite_func *func, int argc, const char **argv)
++{
++ zval *retval = NULL;
++ zval ***zargs = NULL;
++ int i, res;
++ struct php_sqlite_agg_functions *funcs = sqlite_user_data(func);
++ TSRMLS_FETCH();
++
++ if (!funcs->is_valid) {
++ sqlite_set_result_error(func, "this function has not been correctly defined for this request", -1);
++ return;
++ }
++
++ if (argc > 0) {
++ zargs = (zval ***)safe_emalloc(argc, sizeof(zval **), 0);
++
++ for (i = 0; i < argc; i++) {
++ zargs[i] = emalloc(sizeof(zval *));
++ MAKE_STD_ZVAL(*zargs[i]);
++
++ if (argv[i] == NULL) {
++ ZVAL_NULL(*zargs[i]);
++ } else {
++ ZVAL_STRING(*zargs[i], (char*)argv[i], 1);
++ }
++ }
++ }
++
++ res = call_user_function_ex(EG(function_table),
++ NULL,
++ funcs->step,
++ &retval,
++ argc,
++ zargs,
++ 0, NULL TSRMLS_CC);
++
++ if (res == SUCCESS) {
++ if (retval == NULL) {
++ sqlite_set_result_string(func, NULL, 0);
++ } else {
++ switch (Z_TYPE_P(retval)) {
++ case IS_STRING:
++ /* TODO: for binary results, need to encode the string */
++ sqlite_set_result_string(func, Z_STRVAL_P(retval), Z_STRLEN_P(retval));
++ break;
++ case IS_LONG:
++ case IS_BOOL:
++ sqlite_set_result_int(func, Z_LVAL_P(retval));
++ break;
++ case IS_DOUBLE:
++ sqlite_set_result_double(func, Z_DVAL_P(retval));
++ break;
++ case IS_NULL:
++ default:
++ sqlite_set_result_string(func, NULL, 0);
++ }
++ }
++ } else {
++ sqlite_set_result_error(func, "call_user_function_ex failed", -1);
++ }
++
++ if (retval) {
++ zval_ptr_dtor(&retval);
++ }
++
++ if (zargs) {
++ for (i = 0; i < argc; i++) {
++ zval_ptr_dtor(zargs[i]);
++ efree(zargs[i]);
++ }
++ efree(zargs);
++ }
++}
++/* }}} */
++
++/* {{{ callback for sqlite_create_aggregate: step function */
++static void php_sqlite_agg_step_function_callback(sqlite_func *func, int argc, const char **argv)
++{
++ zval *retval = NULL;
++ zval ***zargs;
++ zval **context_p;
++ int i, res, zargc;
++ struct php_sqlite_agg_functions *funcs = sqlite_user_data(func);
++ TSRMLS_FETCH();
++
++ if (!funcs->is_valid) {
++ sqlite_set_result_error(func, "this function has not been correctly defined for this request", -1);
++ return;
++ }
++
++ /* sanity check the args */
++ if (argc < 1) {
++ return;
++ }
++
++ zargc = argc + 1;
++ zargs = (zval ***)safe_emalloc(zargc, sizeof(zval **), 0);
++
++ /* first arg is always the context zval */
++ context_p = (zval **)sqlite_aggregate_context(func, sizeof(*context_p));
++
++ if (*context_p == NULL) {
++ MAKE_STD_ZVAL(*context_p);
++ Z_SET_ISREF_PP(context_p);
++ Z_TYPE_PP(context_p) = IS_NULL;
++ }
++
++ zargs[0] = context_p;
++
++ /* copy the other args */
++ for (i = 0; i < argc; i++) {
++ zargs[i+1] = emalloc(sizeof(zval *));
++ MAKE_STD_ZVAL(*zargs[i+1]);
++ if (argv[i] == NULL) {
++ ZVAL_NULL(*zargs[i+1]);
++ } else {
++ ZVAL_STRING(*zargs[i+1], (char*)argv[i], 1);
++ }
++ }
++
++ res = call_user_function_ex(EG(function_table),
++ NULL,
++ funcs->step,
++ &retval,
++ zargc,
++ zargs,
++ 0, NULL TSRMLS_CC);
++
++ if (res != SUCCESS) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "call_user_function_ex failed");
++ }
++
++ if (retval) {
++ zval_ptr_dtor(&retval);
++ }
++
++ if (zargs) {
++ for (i = 1; i < zargc; i++) {
++ zval_ptr_dtor(zargs[i]);
++ efree(zargs[i]);
++ }
++ efree(zargs);
++ }
++}
++/* }}} */
++
++/* {{{ callback for sqlite_create_aggregate: finalize function */
++static void php_sqlite_agg_fini_function_callback(sqlite_func *func)
++{
++ zval *retval = NULL;
++ int res;
++ struct php_sqlite_agg_functions *funcs = sqlite_user_data(func);
++ zval **context_p;
++ TSRMLS_FETCH();
++
++ if (!funcs->is_valid) {
++ sqlite_set_result_error(func, "this function has not been correctly defined for this request", -1);
++ return;
++ }
++
++ context_p = (zval **)sqlite_aggregate_context(func, sizeof(*context_p));
++
++ res = call_user_function_ex(EG(function_table),
++ NULL,
++ funcs->fini,
++ &retval,
++ 1,
++ &context_p,
++ 0, NULL TSRMLS_CC);
++
++ if (res == SUCCESS) {
++ if (retval == NULL) {
++ sqlite_set_result_string(func, NULL, 0);
++ } else {
++ switch (Z_TYPE_P(retval)) {
++ case IS_STRING:
++ /* TODO: for binary results, need to encode the string */
++ sqlite_set_result_string(func, Z_STRVAL_P(retval), Z_STRLEN_P(retval));
++ break;
++ case IS_LONG:
++ case IS_BOOL:
++ sqlite_set_result_int(func, Z_LVAL_P(retval));
++ break;
++ case IS_DOUBLE:
++ sqlite_set_result_double(func, Z_DVAL_P(retval));
++ break;
++ case IS_NULL:
++ default:
++ sqlite_set_result_string(func, NULL, 0);
++ }
++ }
++ } else {
++ sqlite_set_result_error(func, "call_user_function_ex failed", -1);
++ }
++
++ if (retval) {
++ zval_ptr_dtor(&retval);
++ }
++
++ zval_ptr_dtor(context_p);
++}
++/* }}} */
++
++/* {{{ Authorization Callback */
++static int php_sqlite_authorizer(void *autharg, int access_type, const char *arg3, const char *arg4,
++ const char *arg5, const char *arg6)
++{
++ switch (access_type) {
++ case SQLITE_COPY:
++ if (strncmp(arg4, ":memory:", sizeof(":memory:") - 1)) {
++ TSRMLS_FETCH();
++ if (PG(safe_mode) && (!php_checkuid(arg4, NULL, CHECKUID_CHECK_FILE_AND_DIR))) {
++ return SQLITE_DENY;
++ }
++
++ if (php_check_open_basedir(arg4 TSRMLS_CC)) {
++ return SQLITE_DENY;
++ }
++ }
++ return SQLITE_OK;
++#ifdef SQLITE_ATTACH
++ case SQLITE_ATTACH:
++ if (strncmp(arg3, ":memory:", sizeof(":memory:") - 1)) {
++ TSRMLS_FETCH();
++ if (PG(safe_mode) && (!php_checkuid(arg3, NULL, CHECKUID_CHECK_FILE_AND_DIR))) {
++ return SQLITE_DENY;
++ }
++
++ if (php_check_open_basedir(arg3 TSRMLS_CC)) {
++ return SQLITE_DENY;
++ }
++ }
++ return SQLITE_OK;
++#endif
++
++ default:
++ /* access allowed */
++ return SQLITE_OK;
++ }
++}
++/* }}} */
++
++/* {{{ OO init/structure stuff */
++#define REGISTER_SQLITE_CLASS(name, c_name, parent) \
++ { \
++ zend_class_entry ce; \
++ INIT_CLASS_ENTRY(ce, "SQLite" # name, sqlite_funcs_ ## c_name); \
++ ce.create_object = sqlite_object_new_ ## c_name; \
++ sqlite_ce_ ## c_name = zend_register_internal_class_ex(&ce, parent, NULL TSRMLS_CC); \
++ memcpy(&sqlite_object_handlers_ ## c_name, zend_get_std_object_handlers(), sizeof(zend_object_handlers)); \
++ sqlite_object_handlers_ ## c_name.clone_obj = NULL; \
++ sqlite_ce_ ## c_name->ce_flags |= ZEND_ACC_FINAL_CLASS; \
++ }
++
++zend_class_entry *sqlite_ce_db, *sqlite_ce_exception;
++zend_class_entry *sqlite_ce_query, *sqlite_ce_ub_query;
++
++static zend_object_handlers sqlite_object_handlers_db;
++static zend_object_handlers sqlite_object_handlers_query;
++static zend_object_handlers sqlite_object_handlers_ub_query;
++static zend_object_handlers sqlite_object_handlers_exception;
++
++typedef enum {
++ is_db,
++ is_result
++} sqlite_obj_type;
++
++typedef struct _sqlite_object {
++ zend_object std;
++ sqlite_obj_type type;
++ union {
++ struct php_sqlite_db *db;
++ struct php_sqlite_result *res;
++ void *ptr;
++ } u;
++} sqlite_object;
++
++static int sqlite_free_persistent(zend_rsrc_list_entry *le, void *ptr TSRMLS_DC)
++{
++ return le->ptr == ptr ? ZEND_HASH_APPLY_REMOVE : ZEND_HASH_APPLY_KEEP;
++}
++
++static void sqlite_object_free_storage(void *object TSRMLS_DC)
++{
++ sqlite_object *intern = (sqlite_object *)object;
++
++ zend_object_std_dtor(&intern->std TSRMLS_CC);
++
++ if (intern->u.ptr) {
++ if (intern->type == is_db) {
++ if (intern->u.db->rsrc_id) {
++ zend_list_delete(intern->u.db->rsrc_id);
++ zend_hash_apply_with_argument(&EG(persistent_list), (apply_func_arg_t) sqlite_free_persistent, &intern->u.ptr TSRMLS_CC);
++ }
++ } else {
++ real_result_dtor(intern->u.res TSRMLS_CC);
++ }
++ }
++
++ efree(object);
++}
++
++static void sqlite_object_new(zend_class_entry *class_type, zend_object_handlers *handlers, zend_object_value *retval TSRMLS_DC)
++{
++ sqlite_object *intern;
++ zval *tmp;
++
++ intern = emalloc(sizeof(sqlite_object));
++ memset(intern, 0, sizeof(sqlite_object));
++
++ zend_object_std_init(&intern->std, class_type TSRMLS_CC);
++ zend_hash_copy(intern->std.properties, &class_type->default_properties, (copy_ctor_func_t) zval_add_ref, (void *) &tmp, sizeof(zval *));
++
++ retval->handle = zend_objects_store_put(intern, (zend_objects_store_dtor_t)zend_objects_destroy_object, (zend_objects_free_object_storage_t) sqlite_object_free_storage, NULL TSRMLS_CC);
++ retval->handlers = handlers;
++}
++
++static zend_object_value sqlite_object_new_db(zend_class_entry *class_type TSRMLS_DC)
++{
++ zend_object_value retval;
++
++ sqlite_object_new(class_type, &sqlite_object_handlers_db, &retval TSRMLS_CC);
++ return retval;
++}
++
++static zend_object_value sqlite_object_new_query(zend_class_entry *class_type TSRMLS_DC)
++{
++ zend_object_value retval;
++
++ sqlite_object_new(class_type, &sqlite_object_handlers_query, &retval TSRMLS_CC);
++ return retval;
++}
++
++static zend_object_value sqlite_object_new_ub_query(zend_class_entry *class_type TSRMLS_DC)
++{
++ zend_object_value retval;
++
++ sqlite_object_new(class_type, &sqlite_object_handlers_ub_query, &retval TSRMLS_CC);
++ return retval;
++}
++
++static zend_object_value sqlite_object_new_exception(zend_class_entry *class_type TSRMLS_DC)
++{
++ zend_object_value retval;
++
++ sqlite_object_new(class_type, &sqlite_object_handlers_exception, &retval TSRMLS_CC);
++ return retval;
++}
++
++#define SQLITE_REGISTER_OBJECT(_type, _object, _ptr) \
++ { \
++ sqlite_object *obj; \
++ obj = (sqlite_object*)zend_object_store_get_object(_object TSRMLS_CC); \
++ obj->type = is_ ## _type; \
++ obj->u._type = _ptr; \
++ }
++
++static zend_class_entry *sqlite_get_ce_query(const zval *object TSRMLS_DC)
++{
++ return sqlite_ce_query;
++}
++
++static zend_class_entry *sqlite_get_ce_ub_query(const zval *object TSRMLS_DC)
++{
++ return sqlite_ce_ub_query;
++}
++
++static zval * sqlite_instanciate(zend_class_entry *pce, zval *object TSRMLS_DC)
++{
++ if (!object) {
++ ALLOC_ZVAL(object);
++ }
++ Z_TYPE_P(object) = IS_OBJECT;
++ object_init_ex(object, pce);
++ Z_SET_REFCOUNT_P(object, 1);
++ Z_SET_ISREF_P(object);
++ return object;
++}
++
++typedef struct _sqlite_object_iterator {
++ zend_object_iterator it;
++ struct php_sqlite_result *res;
++ zval *value;
++} sqlite_object_iterator;
++
++void sqlite_iterator_dtor(zend_object_iterator *iter TSRMLS_DC)
++{
++ zval *object = (zval*)((sqlite_object_iterator*)iter)->it.data;
++
++ if (((sqlite_object_iterator*)iter)->value) {
++ zval_ptr_dtor(&((sqlite_object_iterator*)iter)->value);
++ ((sqlite_object_iterator*)iter)->value = NULL;
++ }
++ zval_ptr_dtor(&object);
++ efree(iter);
++}
++
++void sqlite_iterator_rewind(zend_object_iterator *iter TSRMLS_DC)
++{
++ struct php_sqlite_result *res = ((sqlite_object_iterator*)iter)->res;
++
++ if (((sqlite_object_iterator*)iter)->value) {
++ zval_ptr_dtor(&((sqlite_object_iterator*)iter)->value);
++ ((sqlite_object_iterator*)iter)->value = NULL;
++ }
++ if (res) {
++ res->curr_row = 0;
++ }
++}
++
++int sqlite_iterator_valid(zend_object_iterator *iter TSRMLS_DC)
++{
++ struct php_sqlite_result *res = ((sqlite_object_iterator*)iter)->res;
++
++ if (res && res->curr_row < res->nrows && res->nrows) { /* curr_row may be -1 */
++ return SUCCESS;
++ } else {
++ return FAILURE;
++ }
++}
++
++void sqlite_iterator_get_current_data(zend_object_iterator *iter, zval ***data TSRMLS_DC)
++{
++ struct php_sqlite_result *res = ((sqlite_object_iterator*)iter)->res;
++
++ *data = &((sqlite_object_iterator*)iter)->value;
++ if (res && !**data) {
++ MAKE_STD_ZVAL(**data);
++ php_sqlite_fetch_array(res, res->mode, 1, 0, **data TSRMLS_CC);
++ }
++
++}
++
++int sqlite_iterator_get_current_key(zend_object_iterator *iter, char **str_key, uint *str_key_len, ulong *int_key TSRMLS_DC)
++{
++ struct php_sqlite_result *res = ((sqlite_object_iterator*)iter)->res;
++
++ *str_key = NULL;
++ *str_key_len = 0;
++ *int_key = res ? res->curr_row : 0;
++ return HASH_KEY_IS_LONG;
++}
++
++void sqlite_iterator_move_forward(zend_object_iterator *iter TSRMLS_DC)
++{
++ struct php_sqlite_result *res = ((sqlite_object_iterator*)iter)->res;
++
++ if (((sqlite_object_iterator*)iter)->value) {
++ zval_ptr_dtor(&((sqlite_object_iterator*)iter)->value);
++ ((sqlite_object_iterator*)iter)->value = NULL;
++ }
++ if (res) {
++ if (!res->buffered && res->vm) {
++ php_sqlite_fetch(res TSRMLS_CC);
++ }
++ if (res->curr_row >= res->nrows) {
++ /* php_error_docref(NULL TSRMLS_CC, E_WARNING, "no more rows available"); */
++ return;
++ }
++
++ res->curr_row++;
++ }
++}
++
++zend_object_iterator_funcs sqlite_ub_query_iterator_funcs = {
++ sqlite_iterator_dtor,
++ sqlite_iterator_valid,
++ sqlite_iterator_get_current_data,
++ sqlite_iterator_get_current_key,
++ sqlite_iterator_move_forward,
++ NULL
++};
++
++zend_object_iterator_funcs sqlite_query_iterator_funcs = {
++ sqlite_iterator_dtor,
++ sqlite_iterator_valid,
++ sqlite_iterator_get_current_data,
++ sqlite_iterator_get_current_key,
++ sqlite_iterator_move_forward,
++ sqlite_iterator_rewind
++};
++
++zend_object_iterator *sqlite_get_iterator(zend_class_entry *ce, zval *object, int by_ref TSRMLS_DC)
++{
++ sqlite_object_iterator *iterator = emalloc(sizeof(sqlite_object_iterator));
++
++ sqlite_object *obj = (sqlite_object*) zend_object_store_get_object(object TSRMLS_CC);
++
++ if (by_ref) {
++ zend_error(E_RECOVERABLE_ERROR, "An iterator cannot be used with foreach by reference");
++ }
++ Z_ADDREF_P(object);
++ iterator->it.data = (void*)object;
++ iterator->it.funcs = ce->iterator_funcs.funcs;
++ iterator->res = obj->u.res;
++ iterator->value = NULL;
++ return (zend_object_iterator*)iterator;
++}
++/* }}} */
++
++static PHP_GINIT_FUNCTION(sqlite)
++{
++ sqlite_globals->assoc_case = 0;
++}
++
++PHP_MINIT_FUNCTION(sqlite)
++{
++ REGISTER_SQLITE_CLASS(Database, db, NULL);
++ REGISTER_SQLITE_CLASS(Result, query, NULL);
++ REGISTER_SQLITE_CLASS(Unbuffered, ub_query, NULL);
++#if defined(HAVE_SPL) && ((PHP_MAJOR_VERSION > 5) || (PHP_MAJOR_VERSION == 5 && PHP_MINOR_VERSION >= 1))
++ REGISTER_SQLITE_CLASS(Exception, exception, spl_ce_RuntimeException);
++#else
++ REGISTER_SQLITE_CLASS(Exception, exception, zend_exception_get_default(TSRMLS_C));
++#endif
++
++ sqlite_ce_db->ce_flags &= ~ZEND_ACC_FINAL_CLASS;
++ sqlite_ce_db->constructor->common.fn_flags |= ZEND_ACC_FINAL;
++
++ sqlite_object_handlers_query.get_class_entry = sqlite_get_ce_query;
++ sqlite_object_handlers_ub_query.get_class_entry = sqlite_get_ce_ub_query;
++ sqlite_object_handlers_ub_query.count_elements = sqlite_count_elements;
++
++ sqlite_ce_ub_query->get_iterator = sqlite_get_iterator;
++ sqlite_ce_ub_query->iterator_funcs.funcs = &sqlite_ub_query_iterator_funcs;
++
++#if defined(HAVE_SPL) && ((PHP_MAJOR_VERSION > 5) || (PHP_MAJOR_VERSION == 5 && PHP_MINOR_VERSION >= 1))
++ zend_class_implements(sqlite_ce_query TSRMLS_CC, 2, zend_ce_iterator, spl_ce_Countable);
++#else
++ zend_class_implements(sqlite_ce_query TSRMLS_CC, 1, zend_ce_iterator);
++#endif
++ sqlite_ce_query->get_iterator = sqlite_get_iterator;
++ sqlite_ce_query->iterator_funcs.funcs = &sqlite_query_iterator_funcs;
++
++ REGISTER_INI_ENTRIES();
++
++#if HAVE_PHP_SESSION && !defined(COMPILE_DL_SESSION)
++ php_session_register_module(ps_sqlite_ptr);
++#endif
++
++ le_sqlite_db = zend_register_list_destructors_ex(php_sqlite_db_dtor, NULL, "sqlite database", module_number);
++ le_sqlite_pdb = zend_register_list_destructors_ex(NULL, php_sqlite_db_dtor, "sqlite database (persistent)", module_number);
++ le_sqlite_result = zend_register_list_destructors_ex(php_sqlite_result_dtor, NULL, "sqlite result", module_number);
++
++ REGISTER_LONG_CONSTANT("SQLITE_BOTH", PHPSQLITE_BOTH, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_NUM", PHPSQLITE_NUM, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_ASSOC", PHPSQLITE_ASSOC, CONST_CS|CONST_PERSISTENT);
++
++ REGISTER_LONG_CONSTANT("SQLITE_OK", SQLITE_OK, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_ERROR", SQLITE_ERROR, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_INTERNAL", SQLITE_INTERNAL, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_PERM", SQLITE_PERM, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_ABORT", SQLITE_ABORT, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_BUSY", SQLITE_BUSY, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_LOCKED", SQLITE_LOCKED, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_NOMEM", SQLITE_NOMEM, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_READONLY", SQLITE_READONLY, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_INTERRUPT", SQLITE_INTERRUPT, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_IOERR", SQLITE_IOERR, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_CORRUPT", SQLITE_CORRUPT, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_NOTFOUND", SQLITE_NOTFOUND, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_FULL", SQLITE_FULL, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_CANTOPEN", SQLITE_CANTOPEN, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_PROTOCOL", SQLITE_PROTOCOL, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_EMPTY", SQLITE_EMPTY, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_SCHEMA", SQLITE_SCHEMA, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_TOOBIG", SQLITE_TOOBIG, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_CONSTRAINT", SQLITE_CONSTRAINT, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_MISMATCH", SQLITE_MISMATCH, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_MISUSE", SQLITE_MISUSE, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_NOLFS", SQLITE_NOLFS, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_AUTH", SQLITE_AUTH, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_NOTADB", SQLITE_NOTADB, CONST_CS|CONST_PERSISTENT);
++#ifdef SQLITE_FORMAT
++ REGISTER_LONG_CONSTANT("SQLITE_FORMAT", SQLITE_FORMAT, CONST_CS|CONST_PERSISTENT);
++#endif
++ REGISTER_LONG_CONSTANT("SQLITE_ROW", SQLITE_ROW, CONST_CS|CONST_PERSISTENT);
++ REGISTER_LONG_CONSTANT("SQLITE_DONE", SQLITE_DONE, CONST_CS|CONST_PERSISTENT);
++
++#ifdef PHP_SQLITE2_HAVE_PDO
++ if (FAILURE == php_pdo_register_driver(&pdo_sqlite2_driver)) {
++ return FAILURE;
++ }
++#endif
++
++ return SUCCESS;
++}
++
++PHP_MSHUTDOWN_FUNCTION(sqlite)
++{
++ UNREGISTER_INI_ENTRIES();
++
++#ifdef PHP_SQLITE2_HAVE_PDO
++ php_pdo_unregister_driver(&pdo_sqlite2_driver);
++#endif
++
++ return SUCCESS;
++}
++
++PHP_MINFO_FUNCTION(sqlite)
++{
++ php_info_print_table_start();
++ php_info_print_table_header(2, "SQLite support", "enabled");
++ php_info_print_table_row(2, "PECL Module version", PHP_SQLITE_MODULE_VERSION " $Id$");
++ php_info_print_table_row(2, "SQLite Library", sqlite_libversion());
++ php_info_print_table_row(2, "SQLite Encoding", sqlite_libencoding());
++ php_info_print_table_end();
++
++ DISPLAY_INI_ENTRIES();
++}
++
++static struct php_sqlite_db *php_sqlite_open(char *filename, int mode, char *persistent_id, zval *return_value, zval *errmsg, zval *object TSRMLS_DC)
++{
++ char *errtext = NULL;
++ sqlite *sdb = NULL;
++ struct php_sqlite_db *db = NULL;
++
++ sdb = sqlite_open(filename, mode, &errtext);
++
++ if (sdb == NULL) {
++
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
++
++ if (errmsg) {
++ ZVAL_STRING(errmsg, errtext, 1);
++ }
++
++ sqlite_freemem(errtext);
++
++ /* if object is not an object then we're called from the factory() function */
++ if (object && Z_TYPE_P(object) != IS_OBJECT) {
++ RETVAL_NULL();
++ } else {
++ RETVAL_FALSE;
++ }
++ return NULL;
++ }
++
++ db = (struct php_sqlite_db *)pemalloc(sizeof(struct php_sqlite_db), persistent_id ? 1 : 0);
++ db->is_persistent = persistent_id ? 1 : 0;
++ db->last_err_code = SQLITE_OK;
++ db->db = sdb;
++
++ zend_hash_init(&db->callbacks, 0, NULL, php_sqlite_callback_dtor, db->is_persistent);
++
++ /* register the PHP functions */
++ sqlite_create_function(sdb, "php", -1, php_sqlite_generic_function_callback, 0);
++
++ /* set default busy handler; keep retrying up until 1 minute has passed,
++ * then fail with a busy status code */
++ sqlite_busy_timeout(sdb, 60000);
++
++ /* authorizer hook so we can enforce safe mode
++ * Note: the declaration of php_sqlite_authorizer is correct for 2.8.2 of libsqlite,
++ * and IS backwards binary compatible with earlier versions */
++ if (PG(safe_mode) || (PG(open_basedir) && *PG(open_basedir))) {
++ sqlite_set_authorizer(sdb, php_sqlite_authorizer, NULL);
++ }
++
++ db->rsrc_id = ZEND_REGISTER_RESOURCE(object ? NULL : return_value, db, persistent_id ? le_sqlite_pdb : le_sqlite_db);
++ if (object) {
++ /* if object is not an object then we're called from the factory() function */
++ if (Z_TYPE_P(object) != IS_OBJECT) {
++ sqlite_instanciate(sqlite_ce_db, object TSRMLS_CC);
++ }
++ /* and now register the object */
++ SQLITE_REGISTER_OBJECT(db, object, db)
++ }
++
++ if (persistent_id) {
++ zend_rsrc_list_entry le;
++
++ Z_TYPE(le) = le_sqlite_pdb;
++ le.ptr = db;
++
++ if (FAILURE == zend_hash_update(&EG(persistent_list), persistent_id,
++ strlen(persistent_id)+1,
++ (void *)&le, sizeof(le), NULL)) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Failed to register persistent resource");
++ }
++ }
++
++ return db;
++}
++
++/* {{{ proto resource sqlite_popen(string filename [, int mode [, string &error_message]])
++ Opens a persistent handle to a SQLite database. Will create the database if it does not exist. */
++PHP_FUNCTION(sqlite_popen)
++{
++ long mode = 0666;
++ char *filename, *fullpath, *hashkey;
++ int filename_len, hashkeylen;
++ zval *errmsg = NULL;
++ struct php_sqlite_db *db = NULL;
++ zend_rsrc_list_entry *le;
++
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz/",
++ &filename, &filename_len, &mode, &errmsg)) {
++ return;
++ }
++ if (errmsg) {
++ zval_dtor(errmsg);
++ ZVAL_NULL(errmsg);
++ }
++
++ if (strlen(filename) != filename_len) {
++ RETURN_FALSE;
++ }
++ if (strncmp(filename, ":memory:", sizeof(":memory:") - 1)) {
++ /* resolve the fully-qualified path name to use as the hash key */
++ if (!(fullpath = expand_filepath(filename, NULL TSRMLS_CC))) {
++ RETURN_FALSE;
++ }
++
++ if ((PG(safe_mode) && (!php_checkuid(fullpath, NULL, CHECKUID_CHECK_FILE_AND_DIR))) ||
++ php_check_open_basedir(fullpath TSRMLS_CC)) {
++ efree(fullpath);
++ RETURN_FALSE;
++ }
++ } else {
++ fullpath = estrndup(filename, filename_len);
++ }
++
++ hashkeylen = spprintf(&hashkey, 0, "sqlite_pdb_%s:%ld", fullpath, mode);
++
++ /* do we have an existing persistent connection ? */
++ if (SUCCESS == zend_hash_find(&EG(persistent_list), hashkey, hashkeylen+1, (void*)&le)) {
++ if (Z_TYPE_P(le) == le_sqlite_pdb) {
++ db = (struct php_sqlite_db*)le->ptr;
++
++ if (db->rsrc_id == FAILURE) {
++ /* give it a valid resource id for this request */
++ db->rsrc_id = ZEND_REGISTER_RESOURCE(return_value, db, le_sqlite_pdb);
++ } else {
++ int type;
++ /* sanity check to ensure that the resource is still a valid regular resource
++ * number */
++ if (zend_list_find(db->rsrc_id, &type) == db) {
++ /* already accessed this request; map it */
++ zend_list_addref(db->rsrc_id);
++ ZVAL_RESOURCE(return_value, db->rsrc_id);
++ } else {
++ db->rsrc_id = ZEND_REGISTER_RESOURCE(return_value, db, le_sqlite_pdb);
++ }
++ }
++
++ /* all set */
++ goto done;
++ }
++
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Some other type of persistent resource is using this hash key!?");
++ RETVAL_FALSE;
++ goto done;
++ }
++
++ /* now we need to open the database */
++ php_sqlite_open(fullpath, (int)mode, hashkey, return_value, errmsg, NULL TSRMLS_CC);
++done:
++ efree(fullpath);
++ efree(hashkey);
++}
++/* }}} */
++
++/* {{{ proto resource sqlite_open(string filename [, int mode [, string &error_message]])
++ Opens a SQLite database. Will create the database if it does not exist. */
++PHP_FUNCTION(sqlite_open)
++{
++ long mode = 0666;
++ char *filename, *fullpath = NULL;
++ int filename_len;
++ zval *errmsg = NULL;
++ zval *object = getThis();
++ zend_error_handling error_handling;
++
++ zend_replace_error_handling(object ? EH_THROW : EH_NORMAL, sqlite_ce_exception, &error_handling TSRMLS_CC);
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz/",
++ &filename, &filename_len, &mode, &errmsg)) {
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ return;
++ }
++ if (errmsg) {
++ zval_dtor(errmsg);
++ ZVAL_NULL(errmsg);
++ }
++
++ if (strlen(filename) != filename_len) {
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ RETURN_FALSE;
++ }
++
++ if (strncmp(filename, ":memory:", sizeof(":memory:") - 1)) {
++ /* resolve the fully-qualified path name to use as the hash key */
++ if (!(fullpath = expand_filepath(filename, NULL TSRMLS_CC))) {
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ if (object) {
++ RETURN_NULL();
++ } else {
++ RETURN_FALSE;
++ }
++ }
++
++ if ((PG(safe_mode) && (!php_checkuid(fullpath, NULL, CHECKUID_CHECK_FILE_AND_DIR))) ||
++ php_check_open_basedir(fullpath TSRMLS_CC)) {
++ efree(fullpath);
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ if (object) {
++ RETURN_NULL();
++ } else {
++ RETURN_FALSE;
++ }
++ }
++ }
++
++ php_sqlite_open(fullpath ? fullpath : filename, (int)mode, NULL, return_value, errmsg, object TSRMLS_CC);
++
++ if (fullpath) {
++ efree(fullpath);
++ }
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++}
++/* }}} */
++
++/* {{{ proto object sqlite_factory(string filename [, int mode [, string &error_message]])
++ Opens a SQLite database and creates an object for it. Will create the database if it does not exist. */
++PHP_FUNCTION(sqlite_factory)
++{
++ long mode = 0666;
++ char *filename, *fullpath = NULL;
++ int filename_len;
++ zval *errmsg = NULL;
++ zend_error_handling error_handling;
++
++ zend_replace_error_handling(EH_THROW, sqlite_ce_exception, &error_handling TSRMLS_CC);
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz/",
++ &filename, &filename_len, &mode, &errmsg)) {
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ RETURN_NULL();
++ }
++ if (errmsg) {
++ zval_dtor(errmsg);
++ ZVAL_NULL(errmsg);
++ }
++
++ if (strlen(filename) != filename_len) {
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ RETURN_FALSE;
++ }
++
++ if (strncmp(filename, ":memory:", sizeof(":memory:") - 1)) {
++ /* resolve the fully-qualified path name to use as the hash key */
++ if (!(fullpath = expand_filepath(filename, NULL TSRMLS_CC))) {
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ RETURN_NULL();
++ }
++
++ if ((PG(safe_mode) && (!php_checkuid(fullpath, NULL, CHECKUID_CHECK_FILE_AND_DIR))) ||
++ php_check_open_basedir(fullpath TSRMLS_CC)) {
++ efree(fullpath);
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ RETURN_NULL();
++ }
++ }
++
++ php_sqlite_open(fullpath ? fullpath : filename, (int)mode, NULL, return_value, errmsg, return_value TSRMLS_CC);
++ if (fullpath) {
++ efree(fullpath);
++ }
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++}
++/* }}} */
++
++/* {{{ proto void sqlite_busy_timeout(resource db, int ms)
++ Set busy timeout duration. If ms <= 0, all busy handlers are disabled. */
++PHP_FUNCTION(sqlite_busy_timeout)
++{
++ zval *zdb;
++ struct php_sqlite_db *db;
++ long ms;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &ms)) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rl", &zdb, &ms)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ sqlite_busy_timeout(db->db, ms);
++}
++/* }}} */
++
++/* {{{ proto void sqlite_close(resource db)
++ Closes an open sqlite database. */
++PHP_FUNCTION(sqlite_close)
++{
++ zval *zdb;
++ struct php_sqlite_db *db;
++ zval *object = getThis();
++
++ if (object) {
++ php_error_docref(NULL TSRMLS_CC, E_NOTICE, "Ignored, you must destruct the object instead");
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zdb)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ zend_hash_apply_with_argument(&EG(regular_list),
++ (apply_func_arg_t) _clean_unfinished_results,
++ db TSRMLS_CC);
++
++ zend_list_delete(Z_RESVAL_P(zdb));
++}
++/* }}} */
++
++/* {{{ php_sqlite_fetch */
++static int php_sqlite_fetch(struct php_sqlite_result *rres TSRMLS_DC)
++{
++ const char **rowdata, **colnames;
++ int ret, i, base;
++ char *errtext = NULL;
++
++next_row:
++ ret = sqlite_step(rres->vm, &rres->ncolumns, &rowdata, &colnames);
++ if (!rres->nrows) {
++ /* first row - lets copy the column names */
++ rres->col_names = safe_emalloc(rres->ncolumns, sizeof(char *), 0);
++ for (i = 0; i < rres->ncolumns; i++) {
++ rres->col_names[i] = estrdup((char*)colnames[i]);
++
++ if (SQLITE_G(assoc_case) == 1) {
++ php_sqlite_strtoupper(rres->col_names[i]);
++ } else if (SQLITE_G(assoc_case) == 2) {
++ php_sqlite_strtolower(rres->col_names[i]);
++ }
++ }
++ if (!rres->buffered) {
++ /* non buffered mode - also fetch memory for on single row */
++ rres->table = safe_emalloc(rres->ncolumns, sizeof(char *), 0);
++ }
++ }
++
++ switch (ret) {
++ case SQLITE_ROW:
++ if (rres->buffered) {
++ /* add the row to our collection */
++ if (rres->nrows + 1 >= rres->alloc_rows) {
++ rres->alloc_rows = rres->alloc_rows ? rres->alloc_rows * 2 : 16;
++ rres->table = safe_erealloc(rres->table, rres->alloc_rows, rres->ncolumns*sizeof(char *), 0);
++ }
++ base = rres->nrows * rres->ncolumns;
++ for (i = 0; i < rres->ncolumns; i++) {
++ if (rowdata[i]) {
++ rres->table[base + i] = estrdup(rowdata[i]);
++ } else {
++ rres->table[base + i] = NULL;
++ }
++ }
++ rres->nrows++;
++ goto next_row;
++ } else {
++ /* non buffered: only fetch one row but first free data if not first row */
++ if (rres->nrows++) {
++ for (i = 0; i < rres->ncolumns; i++) {
++ if (rres->table[i]) {
++ efree(rres->table[i]);
++ }
++ }
++ }
++ for (i = 0; i < rres->ncolumns; i++) {
++ if (rowdata[i]) {
++ rres->table[i] = estrdup(rowdata[i]);
++ } else {
++ rres->table[i] = NULL;
++ }
++ }
++ }
++ ret = SQLITE_OK;
++ break;
++
++ case SQLITE_BUSY:
++ case SQLITE_ERROR:
++ case SQLITE_MISUSE:
++ case SQLITE_DONE:
++ default:
++ if (rres->vm) {
++ ret = sqlite_finalize(rres->vm, &errtext);
++ }
++ rres->vm = NULL;
++ if (ret != SQLITE_OK) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
++ sqlite_freemem(errtext);
++ }
++ break;
++ }
++ rres->db->last_err_code = ret;
++
++ return ret;
++}
++/* }}} */
++
++/* {{{ sqlite_query */
++void sqlite_query(zval *object, struct php_sqlite_db *db, char *sql, long sql_len, int mode, int buffered, zval *return_value, struct php_sqlite_result **prres, zval *errmsg TSRMLS_DC)
++{
++ struct php_sqlite_result res, *rres;
++ int ret;
++ char *errtext = NULL;
++ const char *tail;
++
++ memset(&res, 0, sizeof(res));
++ res.buffered = buffered;
++ res.mode = mode;
++
++ ret = sqlite_compile(db->db, sql, &tail, &res.vm, &errtext);
++ db->last_err_code = ret;
++
++ if (ret != SQLITE_OK) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
++ if (errmsg) {
++ ZVAL_STRING(errmsg, errtext, 1);
++ }
++ sqlite_freemem(errtext);
++ goto terminate;
++ } else if (!res.vm) { /* empty query */
++terminate:
++ if (return_value) {
++ RETURN_FALSE;
++ } else {
++ return;
++ }
++ }
++
++ if (!prres) {
++ rres = NULL;
++ prres = &rres;
++ }
++ if (!*prres) {
++ *prres = (struct php_sqlite_result*)emalloc(sizeof(**prres));
++ }
++ memcpy(*prres, &res, sizeof(**prres));
++ (*prres)->db = db;
++ zend_list_addref(db->rsrc_id);
++
++
++ /* now the result set is ready for stepping: get first row */
++ if (php_sqlite_fetch((*prres) TSRMLS_CC) != SQLITE_OK) {
++ real_result_dtor((*prres) TSRMLS_CC);
++ *prres = NULL;
++ if (return_value) {
++ RETURN_FALSE;
++ } else {
++ return;
++ }
++ }
++
++ (*prres)->curr_row = 0;
++
++ if (object) {
++ sqlite_object *obj;
++ if (buffered) {
++ sqlite_instanciate(sqlite_ce_query, return_value TSRMLS_CC);
++ } else {
++ sqlite_instanciate(sqlite_ce_ub_query, return_value TSRMLS_CC);
++ }
++ obj = (sqlite_object *) zend_object_store_get_object(return_value TSRMLS_CC);
++ obj->type = is_result;
++ obj->u.res = (*prres);
++ } else if (return_value) {
++ ZEND_REGISTER_RESOURCE(object ? NULL : return_value, (*prres), le_sqlite_result);
++ }
++}
++/* }}} */
++
++/* {{{ proto resource sqlite_unbuffered_query(string query, resource db [ , int result_type [, string &error_message]])
++ Executes a query that does not prefetch and buffer all data. */
++PHP_FUNCTION(sqlite_unbuffered_query)
++{
++ zval *zdb;
++ struct php_sqlite_db *db;
++ char *sql;
++ int sql_len;
++ long mode = PHPSQLITE_BOTH;
++ char *errtext = NULL;
++ zval *errmsg = NULL;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz/", &sql, &sql_len, &mode, &errmsg)) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
++ ZEND_NUM_ARGS() TSRMLS_CC, "sr|lz/", &sql, &sql_len, &zdb, &mode, &errmsg) &&
++ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|lz/", &zdb, &sql, &sql_len, &mode, &errmsg)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ if (errmsg) {
++ zval_dtor(errmsg);
++ ZVAL_NULL(errmsg);
++ }
++
++ PHP_SQLITE_EMPTY_QUERY;
++
++ /* avoid doing work if we can */
++ if (!return_value_used) {
++ db->last_err_code = sqlite_exec(db->db, sql, NULL, NULL, &errtext);
++
++ if (db->last_err_code != SQLITE_OK) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
++ if (errmsg) {
++ ZVAL_STRING(errmsg, errtext, 1);
++ }
++ sqlite_freemem(errtext);
++ }
++ return;
++ }
++
++ sqlite_query(object, db, sql, sql_len, (int)mode, 0, return_value, NULL, errmsg TSRMLS_CC);
++}
++/* }}} */
++
++/* {{{ proto resource sqlite_fetch_column_types(string table_name, resource db [, int result_type])
++ Return an array of column types from a particular table. */
++PHP_FUNCTION(sqlite_fetch_column_types)
++{
++ zval *zdb;
++ struct php_sqlite_db *db;
++ char *tbl, *sql;
++ int tbl_len;
++ char *errtext = NULL;
++ zval *object = getThis();
++ struct php_sqlite_result res;
++ const char **rowdata, **colnames, *tail;
++ int i, ncols;
++ long result_type = PHPSQLITE_ASSOC;
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|l", &tbl, &tbl_len, &result_type)) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
++ ZEND_NUM_ARGS() TSRMLS_CC, "sr|l", &tbl, &tbl_len, &zdb, &result_type) &&
++ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|l", &zdb, &tbl, &tbl_len, &result_type)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ if (!(sql = sqlite_mprintf("SELECT * FROM '%q' LIMIT 1", tbl))) {
++ RETURN_FALSE;
++ }
++
++ sqlite_exec(db->db, "PRAGMA show_datatypes = ON", NULL, NULL, NULL);
++
++ db->last_err_code = sqlite_compile(db->db, sql, &tail, &res.vm, &errtext);
++
++ sqlite_freemem(sql);
++
++ if (db->last_err_code != SQLITE_OK) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
++ sqlite_freemem(errtext);
++ RETVAL_FALSE;
++ goto done;
++ }
++
++ sqlite_step(res.vm, &ncols, &rowdata, &colnames);
++
++ array_init(return_value);
++
++ for (i = 0; i < ncols; i++) {
++ if (result_type == PHPSQLITE_ASSOC) {
++ char *colname = estrdup((char *)colnames[i]);
++
++ if (SQLITE_G(assoc_case) == 1) {
++ php_sqlite_strtoupper(colname);
++ } else if (SQLITE_G(assoc_case) == 2) {
++ php_sqlite_strtolower(colname);
++ }
++
++ add_assoc_string(return_value, colname, colnames[ncols + i] ? (char *)colnames[ncols + i] : "", 1);
++ efree(colname);
++ }
++ if (result_type == PHPSQLITE_NUM) {
++ add_index_string(return_value, i, colnames[ncols + i] ? (char *)colnames[ncols + i] : "", 1);
++ }
++ }
++ if (res.vm) {
++ sqlite_finalize(res.vm, NULL);
++ }
++done:
++ sqlite_exec(db->db, "PRAGMA show_datatypes = OFF", NULL, NULL, NULL);
++}
++/* }}} */
++
++/* {{{ proto resource sqlite_query(string query, resource db [, int result_type [, string &error_message]])
++ Executes a query against a given database and returns a result handle. */
++PHP_FUNCTION(sqlite_query)
++{
++ zval *zdb;
++ struct php_sqlite_db *db;
++ char *sql;
++ int sql_len;
++ long mode = PHPSQLITE_BOTH;
++ char *errtext = NULL;
++ zval *errmsg = NULL;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz/", &sql, &sql_len, &mode, &errmsg)) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
++ ZEND_NUM_ARGS() TSRMLS_CC, "sr|lz/", &sql, &sql_len, &zdb, &mode, &errmsg) &&
++ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|lz/", &zdb, &sql, &sql_len, &mode, &errmsg)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ if (errmsg) {
++ zval_dtor(errmsg);
++ ZVAL_NULL(errmsg);
++ }
++
++ PHP_SQLITE_EMPTY_QUERY;
++
++ /* avoid doing work if we can */
++ if (!return_value_used) {
++ db->last_err_code = sqlite_exec(db->db, sql, NULL, NULL, &errtext);
++
++ if (db->last_err_code != SQLITE_OK) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
++ if (errmsg) {
++ ZVAL_STRING(errmsg, errtext, 1);
++ }
++ sqlite_freemem(errtext);
++ }
++ return;
++ }
++
++ sqlite_query(object, db, sql, sql_len, (int)mode, 1, return_value, NULL, errmsg TSRMLS_CC);
++}
++/* }}} */
++
++/* {{{ proto boolean sqlite_exec(string query, resource db[, string &error_message])
++ Executes a result-less query against a given database */
++PHP_FUNCTION(sqlite_exec)
++{
++ zval *zdb;
++ struct php_sqlite_db *db;
++ char *sql;
++ int sql_len;
++ char *errtext = NULL;
++ zval *errmsg = NULL;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|z/", &sql, &sql_len, &errmsg)) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if(FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
++ ZEND_NUM_ARGS() TSRMLS_CC, "sr", &sql, &sql_len, &zdb) &&
++ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|z/", &zdb, &sql, &sql_len, &errmsg)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ if (errmsg) {
++ zval_dtor(errmsg);
++ ZVAL_NULL(errmsg);
++ }
++
++ PHP_SQLITE_EMPTY_QUERY;
++
++ db->last_err_code = sqlite_exec(db->db, sql, NULL, NULL, &errtext);
++
++ if (db->last_err_code != SQLITE_OK) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
++ if (errmsg) {
++ ZVAL_STRING(errmsg, errtext, 1);
++ }
++ sqlite_freemem(errtext);
++ RETURN_FALSE;
++ }
++
++ RETURN_TRUE;
++}
++/* }}} */
++
++/* {{{ php_sqlite_fetch_array */
++static void php_sqlite_fetch_array(struct php_sqlite_result *res, int mode, zend_bool decode_binary, int move_next, zval *return_value TSRMLS_DC)
++{
++ int j, n = res->ncolumns, buffered = res->buffered;
++ const char **rowdata, **colnames;
++
++ /* check range of the row */
++ if (res->curr_row >= res->nrows) {
++ /* no more */
++ RETURN_FALSE;
++ }
++ colnames = (const char**)res->col_names;
++ if (res->buffered) {
++ rowdata = (const char**)&res->table[res->curr_row * res->ncolumns];
++ } else {
++ rowdata = (const char**)res->table;
++ }
++
++ /* now populate the result */
++ array_init(return_value);
++
++ for (j = 0; j < n; j++) {
++ zval *decoded;
++ MAKE_STD_ZVAL(decoded);
++
++ if (rowdata[j] == NULL) {
++ ZVAL_NULL(decoded);
++ } else if (decode_binary && rowdata[j][0] == '\x01') {
++ Z_STRVAL_P(decoded) = emalloc(strlen(rowdata[j]));
++ Z_STRLEN_P(decoded) = php_sqlite_decode_binary(rowdata[j]+1, Z_STRVAL_P(decoded));
++ Z_STRVAL_P(decoded)[Z_STRLEN_P(decoded)] = '\0';
++ Z_TYPE_P(decoded) = IS_STRING;
++ if (!buffered) {
++ efree((char*)rowdata[j]);
++ rowdata[j] = NULL;
++ }
++ } else {
++ ZVAL_STRING(decoded, (char*)rowdata[j], buffered);
++ if (!buffered) {
++ rowdata[j] = NULL;
++ }
++ }
++
++ if (mode & PHPSQLITE_NUM) {
++ if (mode & PHPSQLITE_ASSOC) {
++ add_index_zval(return_value, j, decoded);
++ Z_ADDREF_P(decoded);
++ add_assoc_zval(return_value, (char*)colnames[j], decoded);
++ } else {
++ add_next_index_zval(return_value, decoded);
++ }
++ } else {
++ add_assoc_zval(return_value, (char*)colnames[j], decoded);
++ }
++ }
++
++ if (move_next) {
++ if (!res->buffered) {
++ /* non buffered: fetch next row */
++ php_sqlite_fetch(res TSRMLS_CC);
++ }
++ /* advance the row pointer */
++ res->curr_row++;
++ }
++}
++/* }}} */
++
++/* {{{ php_sqlite_fetch_column */
++static void php_sqlite_fetch_column(struct php_sqlite_result *res, zval *which, zend_bool decode_binary, zval *return_value TSRMLS_DC)
++{
++ int j;
++ const char **rowdata, **colnames;
++
++ /* check range of the row */
++ if (res->curr_row >= res->nrows) {
++ /* no more */
++ RETURN_FALSE;
++ }
++ colnames = (const char**)res->col_names;
++
++ if (Z_TYPE_P(which) == IS_LONG) {
++ j = Z_LVAL_P(which);
++ } else {
++ convert_to_string_ex(&which);
++ for (j = 0; j < res->ncolumns; j++) {
++ if (!strcasecmp((char*)colnames[j], Z_STRVAL_P(which))) {
++ break;
++ }
++ }
++ }
++ if (j < 0 || j >= res->ncolumns) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "No such column %d", j);
++ RETURN_FALSE;
++ }
++
++ if (res->buffered) {
++ rowdata = (const char**)&res->table[res->curr_row * res->ncolumns];
++ } else {
++ rowdata = (const char**)res->table;
++ }
++
++ if (rowdata[j] == NULL) {
++ RETURN_NULL();
++ } else if (decode_binary && rowdata[j] != NULL && rowdata[j][0] == '\x01') {
++ int l = strlen(rowdata[j]);
++ char *decoded = emalloc(l);
++ l = php_sqlite_decode_binary(rowdata[j]+1, decoded);
++ decoded[l] = '\0';
++ RETVAL_STRINGL(decoded, l, 0);
++ if (!res->buffered) {
++ efree((char*)rowdata[j]);
++ rowdata[j] = NULL;
++ }
++ } else {
++ RETVAL_STRING((char*)rowdata[j], res->buffered);
++ if (!res->buffered) {
++ rowdata[j] = NULL;
++ }
++ }
++}
++/* }}} */
++
++/* {{{ proto array sqlite_fetch_all(resource result [, int result_type [, bool decode_binary]])
++ Fetches all rows from a result set as an array of arrays. */
++PHP_FUNCTION(sqlite_fetch_all)
++{
++ zval *zres, *ent;
++ long mode = PHPSQLITE_BOTH;
++ zend_bool decode_binary = 1;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|lb", &mode, &decode_binary)) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ if (!ZEND_NUM_ARGS()) {
++ mode = res->mode;
++ }
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r|lb", &zres, &mode, &decode_binary)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ if (ZEND_NUM_ARGS() < 2) {
++ mode = res->mode;
++ }
++ }
++
++ if (res->curr_row >= res->nrows && res->nrows) {
++ if (!res->buffered) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "One or more rowsets were already returned; returning NULL this time");
++ } else {
++ res->curr_row = 0;
++ }
++ }
++
++ array_init(return_value);
++
++ while (res->curr_row < res->nrows) {
++ MAKE_STD_ZVAL(ent);
++ php_sqlite_fetch_array(res, mode, decode_binary, 1, ent TSRMLS_CC);
++ add_next_index_zval(return_value, ent);
++ }
++}
++/* }}} */
++
++/* {{{ proto array sqlite_fetch_array(resource result [, int result_type [, bool decode_binary]])
++ Fetches the next row from a result set as an array. */
++PHP_FUNCTION(sqlite_fetch_array)
++{
++ zval *zres;
++ long mode = PHPSQLITE_BOTH;
++ zend_bool decode_binary = 1;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|lb", &mode, &decode_binary)) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ if (!ZEND_NUM_ARGS()) {
++ mode = res->mode;
++ }
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r|lb", &zres, &mode, &decode_binary)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ if (ZEND_NUM_ARGS() < 2) {
++ mode = res->mode;
++ }
++ }
++
++ php_sqlite_fetch_array(res, mode, decode_binary, 1, return_value TSRMLS_CC);
++}
++/* }}} */
++
++/* {{{ proto object sqlite_fetch_object(resource result [, string class_name [, NULL|array ctor_params [, bool decode_binary]]])
++ Fetches the next row from a result set as an object. */
++ /* note that you can do array(&$val) for param ctor_params */
++PHP_FUNCTION(sqlite_fetch_object)
++{
++ zval *zres;
++ zend_bool decode_binary = 1;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++ char *class_name = NULL;
++ int class_name_len;
++ zend_class_entry *ce;
++ zval dataset;
++ zend_fcall_info fci;
++ zend_fcall_info_cache fcc;
++ zval *retval_ptr;
++ zval *ctor_params = NULL;
++ zend_error_handling error_handling;
++
++ zend_replace_error_handling(object ? EH_THROW : EH_NORMAL, sqlite_ce_exception, &error_handling TSRMLS_CC);
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|szb", &class_name, &class_name_len, &ctor_params, &decode_binary)) {
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ return;
++ }
++ RES_FROM_OBJECT_RESTORE_ERH(res, object, &error_handling);
++ if (!class_name) {
++ ce = zend_standard_class_def;
++ } else {
++ ce = zend_fetch_class(class_name, class_name_len, ZEND_FETCH_CLASS_AUTO TSRMLS_CC);
++ }
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r|szb", &zres, &class_name, &class_name_len, &ctor_params, &decode_binary)) {
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ if (!class_name) {
++ ce = zend_standard_class_def;
++ } else {
++ ce = zend_fetch_class(class_name, class_name_len, ZEND_FETCH_CLASS_AUTO TSRMLS_CC);
++ }
++ }
++
++ if (!ce) {
++ zend_throw_exception_ex(sqlite_ce_exception, 0 TSRMLS_CC, "Could not find class '%s'", class_name);
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ return;
++ }
++
++ if (res->curr_row < res->nrows) {
++ php_sqlite_fetch_array(res, PHPSQLITE_ASSOC, decode_binary, 1, &dataset TSRMLS_CC);
++ } else {
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++ RETURN_FALSE;
++ }
++
++ object_and_properties_init(return_value, ce, NULL);
++ zend_merge_properties(return_value, Z_ARRVAL(dataset), 1 TSRMLS_CC);
++
++ zend_restore_error_handling(&error_handling TSRMLS_CC);
++
++ if (ce->constructor) {
++ fci.size = sizeof(fci);
++ fci.function_table = &ce->function_table;
++ fci.function_name = NULL;
++ fci.symbol_table = NULL;
++ fci.object_ptr = return_value;
++ fci.retval_ptr_ptr = &retval_ptr;
++ if (ctor_params && Z_TYPE_P(ctor_params) != IS_NULL) {
++ if (Z_TYPE_P(ctor_params) == IS_ARRAY) {
++ HashTable *ht = Z_ARRVAL_P(ctor_params);
++ Bucket *p;
++
++ fci.param_count = 0;
++ fci.params = safe_emalloc(sizeof(zval*), ht->nNumOfElements, 0);
++ p = ht->pListHead;
++ while (p != NULL) {
++ fci.params[fci.param_count++] = (zval**)p->pData;
++ p = p->pListNext;
++ }
++ } else {
++ /* Two problems why we throw exceptions here: PHP is typeless
++ * and hence passing one argument that's not an array could be
++ * by mistake and the other way round is possible, too. The
++ * single value is an array. Also we'd have to make that one
++ * argument passed by reference.
++ */
++ zend_throw_exception(sqlite_ce_exception, "Parameter ctor_params must be an array", 0 TSRMLS_CC);
++ return;
++ }
++ } else {
++ fci.param_count = 0;
++ fci.params = NULL;
++ }
++ fci.no_separation = 1;
++
++ fcc.initialized = 1;
++ fcc.function_handler = ce->constructor;
++ fcc.calling_scope = EG(scope);
++ fcc.called_scope = Z_OBJCE_P(return_value);
++ fcc.object_ptr = return_value;
++
++ if (zend_call_function(&fci, &fcc TSRMLS_CC) == FAILURE) {
++ zend_throw_exception_ex(sqlite_ce_exception, 0 TSRMLS_CC, "Could not execute %s::%s()", class_name, ce->constructor->common.function_name);
++ } else {
++ if (retval_ptr) {
++ zval_ptr_dtor(&retval_ptr);
++ }
++ }
++ if (fci.params) {
++ efree(fci.params);
++ }
++ } else if (ctor_params && Z_TYPE_P(ctor_params) != IS_NULL) {
++ zend_throw_exception_ex(sqlite_ce_exception, 0 TSRMLS_CC, "Class %s does not have a constructor, use NULL for parameter ctor_params or omit it", class_name);
++ }
++}
++/* }}} */
++
++/* {{{ proto array sqlite_array_query(resource db, string query [ , int result_type [, bool decode_binary]])
++ Executes a query against a given database and returns an array of arrays. */
++PHP_FUNCTION(sqlite_array_query)
++{
++ zval *zdb, *ent;
++ struct php_sqlite_db *db;
++ struct php_sqlite_result *rres;
++ char *sql;
++ int sql_len;
++ long mode = PHPSQLITE_BOTH;
++ char *errtext = NULL;
++ zend_bool decode_binary = 1;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lb", &sql, &sql_len, &mode, &decode_binary)) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
++ ZEND_NUM_ARGS() TSRMLS_CC, "sr|lb", &sql, &sql_len, &zdb, &mode, &decode_binary) &&
++ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|lb", &zdb, &sql, &sql_len, &mode, &decode_binary)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ PHP_SQLITE_EMPTY_QUERY;
++
++ /* avoid doing work if we can */
++ if (!return_value_used) {
++ db->last_err_code = sqlite_exec(db->db, sql, NULL, NULL, &errtext);
++
++ if (db->last_err_code != SQLITE_OK) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
++ sqlite_freemem(errtext);
++ }
++ return;
++ }
++
++ rres = (struct php_sqlite_result *)ecalloc(1, sizeof(*rres));
++ sqlite_query(NULL, db, sql, sql_len, (int)mode, 0, NULL, &rres, NULL TSRMLS_CC);
++ if (db->last_err_code != SQLITE_OK) {
++ if (rres) {
++ efree(rres);
++ }
++ RETURN_FALSE;
++ }
++
++ array_init(return_value);
++
++ while (rres->curr_row < rres->nrows) {
++ MAKE_STD_ZVAL(ent);
++ php_sqlite_fetch_array(rres, mode, decode_binary, 1, ent TSRMLS_CC);
++ add_next_index_zval(return_value, ent);
++ }
++ real_result_dtor(rres TSRMLS_CC);
++}
++/* }}} */
++
++/* {{{ php_sqlite_fetch_single */
++static void php_sqlite_fetch_single(struct php_sqlite_result *res, zend_bool decode_binary, zval *return_value TSRMLS_DC)
++{
++ const char **rowdata;
++ char *decoded;
++ int decoded_len;
++
++ /* check range of the row */
++ if (res->curr_row >= res->nrows) {
++ /* no more */
++ RETURN_FALSE;
++ }
++
++ if (res->buffered) {
++ rowdata = (const char**)&res->table[res->curr_row * res->ncolumns];
++ } else {
++ rowdata = (const char**)res->table;
++ }
++
++ if (decode_binary && rowdata[0] != NULL && rowdata[0][0] == '\x01') {
++ decoded = emalloc(strlen(rowdata[0]));
++ decoded_len = php_sqlite_decode_binary(rowdata[0]+1, decoded);
++ if (!res->buffered) {
++ efree((char*)rowdata[0]);
++ rowdata[0] = NULL;
++ }
++ } else if (rowdata[0]) {
++ decoded_len = strlen((char*)rowdata[0]);
++ if (res->buffered) {
++ decoded = estrndup((char*)rowdata[0], decoded_len);
++ } else {
++ decoded = (char*)rowdata[0];
++ rowdata[0] = NULL;
++ }
++ } else {
++ decoded = NULL;
++ decoded_len = 0;
++ }
++
++ if (!res->buffered) {
++ /* non buffered: fetch next row */
++ php_sqlite_fetch(res TSRMLS_CC);
++ }
++ /* advance the row pointer */
++ res->curr_row++;
++
++ if (decoded == NULL) {
++ RETURN_NULL();
++ } else {
++ RETURN_STRINGL(decoded, decoded_len, 0);
++ }
++}
++/* }}} */
++
++
++/* {{{ proto array sqlite_single_query(resource db, string query [, bool first_row_only [, bool decode_binary]])
++ Executes a query and returns either an array for one single column or the value of the first row. */
++PHP_FUNCTION(sqlite_single_query)
++{
++ zval *zdb, *ent;
++ struct php_sqlite_db *db;
++ struct php_sqlite_result *rres;
++ char *sql;
++ int sql_len;
++ char *errtext = NULL;
++ zend_bool decode_binary = 1;
++ zend_bool srow = 1;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|bb", &sql, &sql_len, &srow, &decode_binary)) {
++ return;
++ }
++ RES_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters_ex(ZEND_PARSE_PARAMS_QUIET,
++ ZEND_NUM_ARGS() TSRMLS_CC, "sr|bb", &sql, &sql_len, &zdb, &srow, &decode_binary) &&
++ FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rs|bb", &zdb, &sql, &sql_len, &srow, &decode_binary)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ PHP_SQLITE_EMPTY_QUERY;
++
++ /* avoid doing work if we can */
++ if (!return_value_used) {
++ db->last_err_code = sqlite_exec(db->db, sql, NULL, NULL, &errtext);
++
++ if (db->last_err_code != SQLITE_OK) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "%s", errtext);
++ sqlite_freemem(errtext);
++ }
++ return;
++ }
++
++ rres = (struct php_sqlite_result *)ecalloc(1, sizeof(*rres));
++ sqlite_query(NULL, db, sql, sql_len, PHPSQLITE_NUM, 0, NULL, &rres, NULL TSRMLS_CC);
++ if (db->last_err_code != SQLITE_OK) {
++ if (rres) {
++ efree(rres);
++ }
++ RETURN_FALSE;
++ }
++
++ if (!srow) {
++ array_init(return_value);
++ }
++
++ while (rres->curr_row < rres->nrows) {
++ MAKE_STD_ZVAL(ent);
++ php_sqlite_fetch_single(rres, decode_binary, ent TSRMLS_CC);
++
++ /* if set and we only have 1 row in the result set, return the result as a string. */
++ if (srow) {
++ if (rres->curr_row == 1 && rres->curr_row >= rres->nrows) {
++ *return_value = *ent;
++ zval_copy_ctor(return_value);
++ zval_dtor(ent);
++ FREE_ZVAL(ent);
++ break;
++ } else {
++ srow = 0;
++ array_init(return_value);
++ }
++ }
++ add_next_index_zval(return_value, ent);
++ }
++
++ real_result_dtor(rres TSRMLS_CC);
++}
++/* }}} */
++
++
++/* {{{ proto string sqlite_fetch_single(resource result [, bool decode_binary])
++ Fetches the first column of a result set as a string. */
++PHP_FUNCTION(sqlite_fetch_single)
++{
++ zval *zres;
++ zend_bool decode_binary = 1;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|b", &decode_binary)) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r|b", &zres, &decode_binary)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ php_sqlite_fetch_single(res, decode_binary, return_value TSRMLS_CC);
++}
++/* }}} */
++
++/* {{{ proto array sqlite_current(resource result [, int result_type [, bool decode_binary]])
++ Fetches the current row from a result set as an array. */
++PHP_FUNCTION(sqlite_current)
++{
++ zval *zres;
++ long mode = PHPSQLITE_BOTH;
++ zend_bool decode_binary = 1;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (ZEND_NUM_ARGS() && FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|lb", &mode, &decode_binary)) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ if (!ZEND_NUM_ARGS()) {
++ mode = res->mode;
++ }
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r|lb", &zres, &mode, &decode_binary)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ if (ZEND_NUM_ARGS() < 2) {
++ mode = res->mode;
++ }
++ }
++
++ php_sqlite_fetch_array(res, mode, decode_binary, 0, return_value TSRMLS_CC);
++}
++/* }}} */
++
++/* {{{ proto mixed sqlite_column(resource result, mixed index_or_name [, bool decode_binary])
++ Fetches a column from the current row of a result set. */
++PHP_FUNCTION(sqlite_column)
++{
++ zval *zres;
++ zval *which;
++ zend_bool decode_binary = 1;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "z|b", &which, &decode_binary)) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rz|b", &zres, &which, &decode_binary)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ php_sqlite_fetch_column(res, which, decode_binary, return_value TSRMLS_CC);
++}
++/* }}} */
++
++/* {{{ proto string sqlite_libversion()
++ Returns the version of the linked SQLite library. */
++PHP_FUNCTION(sqlite_libversion)
++{
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ RETURN_STRING((char*)sqlite_libversion(), 1);
++}
++/* }}} */
++
++/* {{{ proto string sqlite_libencoding()
++ Returns the encoding (iso8859 or UTF-8) of the linked SQLite library. */
++PHP_FUNCTION(sqlite_libencoding)
++{
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ RETURN_STRING((char*)sqlite_libencoding(), 1);
++}
++/* }}} */
++
++/* {{{ proto int sqlite_changes(resource db)
++ Returns the number of rows that were changed by the most recent SQL statement. */
++PHP_FUNCTION(sqlite_changes)
++{
++ zval *zdb;
++ struct php_sqlite_db *db;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zdb)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ RETURN_LONG(sqlite_changes(db->db));
++}
++/* }}} */
++
++/* {{{ proto int sqlite_last_insert_rowid(resource db)
++ Returns the rowid of the most recently inserted row. */
++PHP_FUNCTION(sqlite_last_insert_rowid)
++{
++ zval *zdb;
++ struct php_sqlite_db *db;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zdb)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ RETURN_LONG(sqlite_last_insert_rowid(db->db));
++}
++/* }}} */
++
++static int sqlite_count_elements(zval *object, long *count TSRMLS_DC) /* {{{ */
++{
++ sqlite_object *obj = (sqlite_object*) zend_object_store_get_object(object TSRMLS_CC);
++
++ if (obj->u.res == NULL) {
++ zend_throw_exception(sqlite_ce_exception, "Row count is not available for this query", 0 TSRMLS_CC);
++ return FAILURE;
++ }
++
++ if (obj->u.res->buffered) {
++ * count = obj->u.res->nrows;
++ return SUCCESS;
++ } else {
++ zend_throw_exception(sqlite_ce_exception, "Row count is not available for unbuffered queries", 0 TSRMLS_CC);
++ return FAILURE;
++ }
++} /* }}} */
++
++/* {{{ proto int sqlite_num_rows(resource result)
++ Returns the number of rows in a buffered result set. */
++PHP_FUNCTION(sqlite_num_rows)
++{
++ zval *zres;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ if (res->buffered) {
++ RETURN_LONG(res->nrows);
++ } else {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Row count is not available for unbuffered queries");
++ RETURN_FALSE;
++ }
++}
++/* }}} */
++
++/* {{{ proto bool sqlite_valid(resource result)
++ Returns whether more rows are available. */
++PHP_FUNCTION(sqlite_valid)
++{
++ zval *zres;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ RETURN_BOOL(res->curr_row < res->nrows && res->nrows); /* curr_row may be -1 */
++}
++/* }}} */
++
++/* {{{ proto bool sqlite_has_prev(resource result)
++ * Returns whether a previous row is available. */
++PHP_FUNCTION(sqlite_has_prev)
++{
++ zval *zres;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ if(!res->buffered) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "you cannot use sqlite_has_prev on unbuffered querys");
++ RETURN_FALSE;
++ }
++
++ RETURN_BOOL(res->curr_row);
++}
++/* }}} */
++
++/* {{{ proto int sqlite_num_fields(resource result)
++ Returns the number of fields in a result set. */
++PHP_FUNCTION(sqlite_num_fields)
++{
++ zval *zres;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ RETURN_LONG(res->ncolumns);
++}
++/* }}} */
++
++/* {{{ proto string sqlite_field_name(resource result, int field_index)
++ Returns the name of a particular field of a result set. */
++PHP_FUNCTION(sqlite_field_name)
++{
++ zval *zres;
++ struct php_sqlite_result *res;
++ long field;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &field)) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rl", &zres, &field)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ if (field < 0 || field >= res->ncolumns) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "field %ld out of range", field);
++ RETURN_FALSE;
++ }
++
++ RETURN_STRING(res->col_names[field], 1);
++}
++/* }}} */
++
++/* {{{ proto bool sqlite_seek(resource result, int row)
++ Seek to a particular row number of a buffered result set. */
++PHP_FUNCTION(sqlite_seek)
++{
++ zval *zres;
++ struct php_sqlite_result *res;
++ long row;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &row)) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rl", &zres, &row)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ if (!res->buffered) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Cannot seek an unbuffered result set");
++ RETURN_FALSE;
++ }
++
++ if (row < 0 || row >= res->nrows) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "row %ld out of range", row);
++ RETURN_FALSE;
++ }
++
++ res->curr_row = row;
++ RETURN_TRUE;
++}
++/* }}} */
++
++/* {{{ proto bool sqlite_rewind(resource result)
++ Seek to the first row number of a buffered result set. */
++PHP_FUNCTION(sqlite_rewind)
++{
++ zval *zres;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ if (!res->buffered) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "Cannot rewind an unbuffered result set");
++ RETURN_FALSE;
++ }
++
++ if (!res->nrows) {
++ php_error_docref(NULL TSRMLS_CC, E_NOTICE, "no rows received");
++ RETURN_FALSE;
++ }
++
++ res->curr_row = 0;
++ RETURN_TRUE;
++}
++/* }}} */
++
++/* {{{ proto bool sqlite_next(resource result)
++ Seek to the next row number of a result set. */
++PHP_FUNCTION(sqlite_next)
++{
++ zval *zres;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ if (!res->buffered && res->vm) {
++ php_sqlite_fetch(res TSRMLS_CC);
++ }
++
++ if (res->curr_row >= res->nrows) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "no more rows available");
++ RETURN_FALSE;
++ }
++
++ res->curr_row++;
++
++ RETURN_TRUE;
++}
++/* }}} */
++
++/* {{{ proto int sqlite_key(resource result)
++ Return the current row index of a buffered result. */
++PHP_FUNCTION(sqlite_key)
++{
++ zval *zres;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ RETURN_LONG(res->curr_row);
++}
++/* }}} */
++
++/* {{{ proto bool sqlite_prev(resource result)
++ * Seek to the previous row number of a result set. */
++PHP_FUNCTION(sqlite_prev)
++{
++ zval *zres;
++ struct php_sqlite_result *res;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ RES_FROM_OBJECT(res, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zres)) {
++ return;
++ }
++ ZEND_FETCH_RESOURCE(res, struct php_sqlite_result *, &zres, -1, "sqlite result", le_sqlite_result);
++ }
++
++ if (!res->buffered) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "you cannot use sqlite_prev on unbuffered querys");
++ RETURN_FALSE;
++ }
++
++ if (res->curr_row <= 0) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "no previous row available");
++ RETURN_FALSE;
++ }
++
++ res->curr_row--;
++
++ RETURN_TRUE;
++}
++/* }}} */
++
++/* {{{ proto string sqlite_escape_string(string item)
++ Escapes a string for use as a query parameter. */
++PHP_FUNCTION(sqlite_escape_string)
++{
++ char *string = NULL;
++ int stringlen;
++ char *ret;
++
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &string, &stringlen)) {
++ return;
++ }
++
++ if (stringlen && (string[0] == '\x01' || memchr(string, '\0', stringlen) != NULL)) {
++ /* binary string */
++ int enclen;
++
++ ret = safe_emalloc(1 + stringlen / 254, 257, 3);
++ ret[0] = '\x01';
++ enclen = php_sqlite_encode_binary(string, stringlen, ret+1);
++ RETVAL_STRINGL(ret, enclen+1, 0);
++
++ } else if (stringlen) {
++ ret = sqlite_mprintf("%q", string);
++ if (ret) {
++ RETVAL_STRING(ret, 1);
++ sqlite_freemem(ret);
++ }
++ } else {
++ RETURN_EMPTY_STRING();
++ }
++}
++/* }}} */
++
++/* {{{ proto int sqlite_last_error(resource db)
++ Returns the error code of the last error for a database. */
++PHP_FUNCTION(sqlite_last_error)
++{
++ zval *zdb;
++ struct php_sqlite_db *db;
++ zval *object = getThis();
++
++ if (object) {
++ if (zend_parse_parameters_none() == FAILURE) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "r", &zdb)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ RETURN_LONG(db->last_err_code);
++}
++/* }}} */
++
++/* {{{ proto string sqlite_error_string(int error_code)
++ Returns the textual description of an error code. */
++PHP_FUNCTION(sqlite_error_string)
++{
++ long code;
++ const char *msg;
++
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &code)) {
++ return;
++ }
++
++ msg = sqlite_error_string(code);
++
++ if (msg) {
++ RETURN_STRING((char*)msg, 1);
++ } else {
++ RETURN_NULL();
++ }
++}
++/* }}} */
++
++/* manages duplicate registrations of a particular function, and
++ * also handles the case where the db is using a persistent connection */
++enum callback_prep_t { DO_REG, SKIP_REG, ERR };
++
++static enum callback_prep_t prep_callback_struct(struct php_sqlite_db *db, int is_agg,
++ char *funcname,
++ zval *step, zval *fini, struct php_sqlite_agg_functions **funcs)
++{
++ struct php_sqlite_agg_functions *alloc_funcs, func_tmp;
++ char *hashkey;
++ int hashkeylen;
++ enum callback_prep_t ret;
++
++ hashkeylen = spprintf(&hashkey, 0, "%s-%s", is_agg ? "agg" : "reg", funcname);
++
++ /* is it already registered ? */
++ if (SUCCESS == zend_hash_find(&db->callbacks, hashkey, hashkeylen+1, (void*)&alloc_funcs)) {
++ /* override the previous definition */
++
++ if (alloc_funcs->is_valid) {
++ /* release these */
++
++ if (alloc_funcs->step) {
++ zval_ptr_dtor(&alloc_funcs->step);
++ alloc_funcs->step = NULL;
++ }
++
++ if (alloc_funcs->fini) {
++ zval_ptr_dtor(&alloc_funcs->fini);
++ alloc_funcs->fini = NULL;
++ }
++ }
++
++ ret = SKIP_REG;
++ } else {
++ /* add a new one */
++ func_tmp.db = db;
++
++ ret = SUCCESS == zend_hash_update(&db->callbacks, hashkey, hashkeylen+1,
++ (void*)&func_tmp, sizeof(func_tmp), (void**)&alloc_funcs) ? DO_REG : ERR;
++ }
++
++ efree(hashkey);
++
++ MAKE_STD_ZVAL(alloc_funcs->step);
++ *(alloc_funcs->step) = *step;
++ zval_copy_ctor(alloc_funcs->step);
++ INIT_PZVAL(alloc_funcs->step);
++
++ if (is_agg) {
++ MAKE_STD_ZVAL(alloc_funcs->fini);
++ *(alloc_funcs->fini) = *fini;
++ zval_copy_ctor(alloc_funcs->fini);
++ INIT_PZVAL(alloc_funcs->fini);
++ } else {
++ alloc_funcs->fini = NULL;
++ }
++ alloc_funcs->is_valid = 1;
++ *funcs = alloc_funcs;
++
++ return ret;
++}
++
++
++/* {{{ proto bool sqlite_create_aggregate(resource db, string funcname, mixed step_func, mixed finalize_func[, long num_args])
++ Registers an aggregate function for queries. */
++PHP_FUNCTION(sqlite_create_aggregate)
++{
++ char *funcname = NULL;
++ int funcname_len;
++ zval *zstep, *zfinal, *zdb;
++ struct php_sqlite_db *db;
++ struct php_sqlite_agg_functions *funcs;
++ char *callable = NULL;
++ long num_args = -1;
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "szz|l", &funcname, &funcname_len, &zstep, &zfinal, &num_args)) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rszz|l", &zdb, &funcname, &funcname_len, &zstep, &zfinal, &num_args)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ if (!zend_is_callable(zstep, 0, &callable TSRMLS_CC)) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "step function `%s' is not callable", callable);
++ efree(callable);
++ return;
++ }
++ efree(callable);
++
++ if (!zend_is_callable(zfinal, 0, &callable TSRMLS_CC)) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "finalize function `%s' is not callable", callable);
++ efree(callable);
++ return;
++ }
++ efree(callable);
++
++
++ if (prep_callback_struct(db, 1, funcname, zstep, zfinal, &funcs) == DO_REG) {
++ sqlite_create_aggregate(db->db, funcname, num_args,
++ php_sqlite_agg_step_function_callback,
++ php_sqlite_agg_fini_function_callback, funcs);
++ }
++
++
++}
++/* }}} */
++
++/* {{{ proto bool sqlite_create_function(resource db, string funcname, mixed callback[, long num_args])
++ Registers a "regular" function for queries. */
++PHP_FUNCTION(sqlite_create_function)
++{
++ char *funcname = NULL;
++ int funcname_len;
++ zval *zcall, *zdb;
++ struct php_sqlite_db *db;
++ struct php_sqlite_agg_functions *funcs;
++ char *callable = NULL;
++ long num_args = -1;
++
++ zval *object = getThis();
++
++ if (object) {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "sz|l", &funcname, &funcname_len, &zcall, &num_args)) {
++ return;
++ }
++ DB_FROM_OBJECT(db, object);
++ } else {
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "rsz|l", &zdb, &funcname, &funcname_len, &zcall, &num_args)) {
++ return;
++ }
++ DB_FROM_ZVAL(db, &zdb);
++ }
++
++ if (!zend_is_callable(zcall, 0, &callable TSRMLS_CC)) {
++ php_error_docref(NULL TSRMLS_CC, E_WARNING, "function `%s' is not callable", callable);
++ efree(callable);
++ return;
++ }
++ efree(callable);
++
++ if (prep_callback_struct(db, 0, funcname, zcall, NULL, &funcs) == DO_REG) {
++ sqlite_create_function(db->db, funcname, num_args, php_sqlite_function_callback, funcs);
++ }
++}
++/* }}} */
++
++/* {{{ proto string sqlite_udf_encode_binary(string data)
++ Apply binary encoding (if required) to a string to return from an UDF. */
++PHP_FUNCTION(sqlite_udf_encode_binary)
++{
++ char *data = NULL;
++ int datalen;
++
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s!", &data, &datalen)) {
++ return;
++ }
++
++ if (data == NULL) {
++ RETURN_NULL();
++ }
++ if (datalen && (data[0] == '\x01' || memchr(data, '\0', datalen) != NULL)) {
++ /* binary string */
++ int enclen;
++ char *ret;
++
++ ret = safe_emalloc(1 + datalen / 254, 257, 3);
++ ret[0] = '\x01';
++ enclen = php_sqlite_encode_binary(data, datalen, ret+1);
++ RETVAL_STRINGL(ret, enclen+1, 0);
++ } else {
++ RETVAL_STRINGL(data, datalen, 1);
++ }
++}
++/* }}} */
++
++/* {{{ proto string sqlite_udf_decode_binary(string data)
++ Decode binary encoding on a string parameter passed to an UDF. */
++PHP_FUNCTION(sqlite_udf_decode_binary)
++{
++ char *data = NULL;
++ int datalen;
++
++ if (FAILURE == zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s!", &data, &datalen)) {
++ return;
++ }
++
++ if (data == NULL) {
++ RETURN_NULL();
++ }
++ if (datalen && data[0] == '\x01') {
++ /* encoded string */
++ int enclen;
++ char *ret;
++
++ ret = emalloc(datalen);
++ enclen = php_sqlite_decode_binary(data+1, ret);
++ ret[enclen] = '\0';
++ RETVAL_STRINGL(ret, enclen, 0);
++ } else {
++ RETVAL_STRINGL(data, datalen, 1);
++ }
++}
++/* }}} */
++
++
++/*
++ * Local variables:
++ * tab-width: 4
++ * c-basic-offset: 4
++ * End:
++ * vim600: sw=4 ts=4 fdm=marker
++ * vim<600: sw=4 ts=4
++ */
+--- /dev/null
++++ b/ext/sqlite/sqlite.dsp
+@@ -0,0 +1,339 @@
++# Microsoft Developer Studio Project File - Name="sqlite" - Package Owner=<4>\r
++# Microsoft Developer Studio Generated Build File, Format Version 6.00\r
++# ** DO NOT EDIT **\r
++\r
++# TARGTYPE "Win32 (x86) Dynamic-Link Library" 0x0102\r
++\r
++CFG=sqlite - Win32 Debug_TS\r
++!MESSAGE This is not a valid makefile. To build this project using NMAKE,\r
++!MESSAGE use the Export Makefile command and run\r
++!MESSAGE \r
++!MESSAGE NMAKE /f "sqlite.mak".\r
++!MESSAGE \r
++!MESSAGE You can specify a configuration when running NMAKE\r
++!MESSAGE by defining the macro CFG on the command line. For example:\r
++!MESSAGE \r
++!MESSAGE NMAKE /f "sqlite.mak" CFG="sqlite - Win32 Debug_TS"\r
++!MESSAGE \r
++!MESSAGE Possible choices for configuration are:\r
++!MESSAGE \r
++!MESSAGE "sqlite - Win32 Release_TS" (based on "Win32 (x86) Dynamic-Link Library")\r
++!MESSAGE "sqlite - Win32 Debug_TS" (based on "Win32 (x86) Dynamic-Link Library")\r
++!MESSAGE \r
++\r
++# Begin Project\r
++# PROP AllowPerConfigDependencies 0\r
++# PROP Scc_ProjName ""\r
++# PROP Scc_LocalPath ""\r
++CPP=cl.exe\r
++MTL=midl.exe\r
++RSC=rc.exe\r
++\r
++!IF "$(CFG)" == "sqlite - Win32 Release_TS"\r
++\r
++# PROP BASE Use_MFC 0\r
++# PROP BASE Use_Debug_Libraries 0\r
++# PROP BASE Output_Dir "Release_TS"\r
++# PROP BASE Intermediate_Dir "Release_TS"\r
++# PROP BASE Ignore_Export_Lib 0\r
++# PROP BASE Target_Dir ""\r
++# PROP Use_MFC 0\r
++# PROP Use_Debug_Libraries 0\r
++# PROP Output_Dir "Release_TS"\r
++# PROP Intermediate_Dir "Release_TS"\r
++# PROP Ignore_Export_Lib 0\r
++# PROP Target_Dir ""\r
++# ADD BASE CPP /nologo /MD /W3 /GX /O2 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "SQLITE_EXPORTS" /YX /FD /c\r
++# ADD CPP /nologo /MD /W3 /GX /O2 /I "..\.." /I "..\..\main" /I "..\..\Zend" /I "..\..\TSRM" /I "..\..\win32" /I "..\..\..\php_build" /D ZEND_DEBUG=0 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "COMPILE_DL_SQLITE" /D ZTS=1 /D "ZEND_WIN32" /D "PHP_WIN32" /D HAVE_SQLITE=1 /D "PHP_SQLITE_EXPORTS" /FR /YX /FD /c\r
++# ADD BASE MTL /nologo /D "NDEBUG" /mktyplib203 /win32\r
++# ADD MTL /nologo /D "NDEBUG" /mktyplib203 /win32\r
++# ADD BASE RSC /l 0x407 /d "NDEBUG"\r
++# ADD RSC /l 0x407 /d "NDEBUG"\r
++BSC32=bscmake.exe\r
++# ADD BASE BSC32 /nologo\r
++# ADD BSC32 /nologo\r
++LINK32=link.exe\r
++# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386\r
++# ADD LINK32 php5ts.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /machine:I386 /out:"..\..\Release_TS\php_sqlite.dll" /libpath:"..\..\Release_TS" /libpath:"..\..\Release_TS_Inline" /libpath:"..\..\..\php_build\release"\r
++\r
++!ELSEIF "$(CFG)" == "sqlite - Win32 Debug_TS"\r
++\r
++# PROP BASE Use_MFC 0\r
++# PROP BASE Use_Debug_Libraries 1\r
++# PROP BASE Output_Dir "Debug_TS"\r
++# PROP BASE Intermediate_Dir "Debug_TS"\r
++# PROP BASE Target_Dir ""\r
++# PROP Use_MFC 0\r
++# PROP Use_Debug_Libraries 1\r
++# PROP Output_Dir "Debug_TS"\r
++# PROP Intermediate_Dir "Debug_TS"\r
++# PROP Ignore_Export_Lib 0\r
++# PROP Target_Dir ""\r
++# ADD BASE CPP /nologo /MDd /W3 /Gm /GX /ZI /Od /D "WIN32" /D "_DEBUG" /D "_WINDOWS" /D "_MBCS" /D "_USRDLL" /D "SQLITE_EXPORTS" /YX /FD /GZ /c\r
++# ADD CPP /nologo /MDd /W3 /Gm /GX /ZI /Od /I "..\.." /I "..\..\main" /I "..\..\Zend" /I "..\..\TSRM" /I "..\..\win32" /I "..\..\..\php_build" /D ZEND_DEBUG=1 /D "WIN32" /D "NDEBUG" /D "_WINDOWS" /D "COMPILE_DL_SQLITE" /D ZTS=1 /D "ZEND_WIN32" /D "PHP_WIN32" /D HAVE_SQLITE=1 /D "PHP_SQLITE_EXPORTS" /YX /FD /GZ /c\r
++# ADD BASE MTL /nologo /D "_DEBUG" /mktyplib203 /win32\r
++# ADD MTL /nologo /D "_DEBUG" /mktyplib203 /win32\r
++# ADD BASE RSC /l 0x407 /d "_DEBUG"\r
++# ADD RSC /l 0x407 /d "_DEBUG"\r
++BSC32=bscmake.exe\r
++# ADD BASE BSC32 /nologo\r
++# ADD BSC32 /nologo\r
++LINK32=link.exe\r
++# ADD BASE LINK32 kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /pdbtype:sept\r
++# ADD LINK32 php5ts_debug.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /nologo /dll /debug /machine:I386 /out:"..\..\Debug_TS\php_sqlite.dll" /pdbtype:sept /libpath:"..\..\Debug_TS" /libpath:"..\..\..\php_build\release"\r
++\r
++!ENDIF \r
++\r
++# Begin Target\r
++\r
++# Name "sqlite - Win32 Release_TS"\r
++# Name "sqlite - Win32 Debug_TS"\r
++# Begin Group "Source Files"\r
++\r
++# PROP Default_Filter "cpp;c;cxx;rc;def;r;odl;idl;hpj;bat"\r
++# Begin Group "libsqlite"\r
++\r
++# PROP Default_Filter ""\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\attach.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\auth.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\btree.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\btree.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\btree_rb.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\build.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\config.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\copy.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\date.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\delete.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\encode.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\expr.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\func.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\hash.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\hash.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\insert.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\main.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\opcodes.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\opcodes.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\os.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\os.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\pager.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\pager.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\parse.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\parse.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\pragma.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\printf.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\random.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\select.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\sqlite.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\sqlite.w32.h\r
++\r
++!IF "$(CFG)" == "sqlite - Win32 Release_TS"\r
++\r
++# Begin Custom Build\r
++InputDir=.\libsqlite\src\r
++InputPath=.\libsqlite\src\sqlite.w32.h\r
++\r
++"$(InputDir)\sqlite.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"\r
++ copy $(InputPath) $(InputDir)\sqlite.h\r
++\r
++# End Custom Build\r
++\r
++!ELSEIF "$(CFG)" == "sqlite - Win32 Debug_TS"\r
++\r
++# Begin Custom Build\r
++InputDir=.\libsqlite\src\r
++InputPath=.\libsqlite\src\sqlite.w32.h\r
++\r
++"$(InputDir)\sqlite.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"\r
++ copy $(InputPath) $(InputDir)\sqlite.h\r
++\r
++# End Custom Build\r
++\r
++!ENDIF \r
++\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\sqlite_config.w32.h\r
++\r
++!IF "$(CFG)" == "sqlite - Win32 Release_TS"\r
++\r
++# Begin Custom Build\r
++InputDir=.\libsqlite\src\r
++InputPath=.\libsqlite\src\sqlite_config.w32.h\r
++\r
++"$(InputDir)\config.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"\r
++ copy $(InputPath) $(InputDir)\config.h\r
++\r
++# End Custom Build\r
++\r
++!ELSEIF "$(CFG)" == "sqlite - Win32 Debug_TS"\r
++\r
++# Begin Custom Build\r
++InputDir=.\libsqlite\src\r
++InputPath=.\libsqlite\src\sqlite_config.w32.h\r
++\r
++"$(InputDir)\config.h" : $(SOURCE) "$(INTDIR)" "$(OUTDIR)"\r
++ copy $(InputPath) $(InputDir)\config.h\r
++\r
++# End Custom Build\r
++\r
++!ENDIF \r
++\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\sqliteInt.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\table.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\tokenize.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\trigger.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\update.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\util.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\vacuum.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\vdbe.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\vdbe.h\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\vdbeaux.c\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\libsqlite\src\where.c\r
++# End Source File\r
++# End Group\r
++# Begin Source File\r
++\r
++SOURCE=.\php_sqlite.def\r
++# End Source File\r
++# Begin Source File\r
++\r
++SOURCE=.\sqlite.c\r
++# ADD CPP /I "libsqlite\src"\r
++# End Source File\r
++# End Group\r
++# Begin Group "Header Files"\r
++\r
++# PROP Default_Filter "h;hpp;hxx;hm;inl"\r
++# Begin Source File\r
++\r
++SOURCE=.\php_sqlite.h\r
++# End Source File\r
++# End Group\r
++# End Target\r
++# End Project\r
+--- /dev/null
++++ b/ext/sqlite/sqlite.php
+@@ -0,0 +1,36 @@
++<?php
++if (!extension_loaded("sqlite")) {
++ dl("sqlite.so");
++ if (!extension_loaded("sqlite")) {
++ exit("Please enable SQLite support\n");
++ }
++}
++
++debug_zval_dump(sqlite_libversion());
++debug_zval_dump(sqlite_libencoding());
++
++$s = sqlite_open("weztest.sqlite", 0666, $err);
++
++debug_zval_dump($err);
++debug_zval_dump($s);
++
++$r = sqlite_query("create table foo (a INTEGER PRIMARY KEY, b INTEGER )", $s);
++debug_zval_dump(sqlite_last_error($s));
++debug_zval_dump(sqlite_error_string(sqlite_last_error($s)));
++
++$r = sqlite_query("select *, php('md5', sql) as o from sqlite_master", $s);
++debug_zval_dump($r);
++debug_zval_dump(sqlite_num_rows($r));
++debug_zval_dump(sqlite_num_fields($r));
++
++for ($j = 0; $j < sqlite_num_fields($r); $j++) {
++ echo "Field $j is " . sqlite_field_name($r, $j) . "\n";
++}
++
++while ($row = sqlite_fetch_array($r, SQLITE_ASSOC)) {
++ print_r($row);
++}
++
++sqlite_close($s);
++
++?>
+--- /dev/null
++++ b/ext/sqlite/tests/blankdb.inc
+@@ -0,0 +1,3 @@
++<?php #vim:ft=php
++$db = sqlite_open(":memory:");
++?>
+--- /dev/null
++++ b/ext/sqlite/tests/blankdb_oo.inc
+@@ -0,0 +1,3 @@
++<?php #vim:ft=php
++$db = new SQLiteDatabase(":memory:");
++?>
+--- /dev/null
++++ b/ext/sqlite/tests/bug26911.phpt
+@@ -0,0 +1,12 @@
++--TEST--
++Bug #26911 (crash when fetching data from empty queries)
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++ $db = sqlite_open(":memory:");
++ $a = sqlite_query($db, " ");
++ echo "I am ok\n";
++?>
++--EXPECT--
++I am ok
+--- /dev/null
++++ b/ext/sqlite/tests/bug28112.phpt
+@@ -0,0 +1,16 @@
++--TEST--
++Bug #28112 (sqlite_query() crashing apache on malformed query)
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++
++if (!($db = sqlite_open(":memory:", 666, $error))) die ("Couldn't open the database");
++sqlite_query($db, "create table frob (foo INTEGER PRIMARY KEY, bar text);");
++$res = @sqlite_array_query($db, "");
++
++?>
++===DONE===
++<?php exit(0); ?>
++--EXPECTF--
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/tests/bug35248.phpt
+@@ -0,0 +1,15 @@
++--TEST--
++Bug #35248 (sqlite_query does not return parse error message)
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++ $db = sqlite_open(":memory:");
++ $res = @sqlite_query($db, "asdfesdfa", SQLITE_NUM, $err);
++ var_dump($err);
++ $res = @sqlite_unbuffered_query($db, "asdfesdfa", SQLITE_NUM, $err);
++ var_dump($err);
++?>
++--EXPECT--
++string(30) "near "asdfesdfa": syntax error"
++string(30) "near "asdfesdfa": syntax error"
+--- /dev/null
++++ b/ext/sqlite/tests/bug38759.phpt
+@@ -0,0 +1,18 @@
++--TEST--
++Bug #38759 (sqlite2 empty query causes segfault)
++--SKIPIF--
++<?php
++if (!extension_loaded("pdo")) print "skip";
++if (!extension_loaded("sqlite")) print "skip";
++?>
++--FILE--
++<?php
++
++$dbh = new PDO('sqlite2::memory:');
++var_dump($dbh->query(" "));
++
++echo "Done\n";
++?>
++--EXPECTF--
++bool(false)
++Done
+--- /dev/null
++++ b/ext/sqlite/tests/bug48679.phpt
+@@ -0,0 +1,20 @@
++--TEST--
++Bug #48679 (sqlite2 count on unbuffered query causes segfault)
++--SKIPIF--
++<?php
++if (!extension_loaded("sqlite")) print "skip";
++?>
++--FILE--
++<?php
++
++try {
++ $x = new sqliteunbuffered;
++ count($x);
++} catch (SQLiteException $e) {
++ var_dump($e->getMessage());
++}
++echo "Done\n";
++?>
++--EXPECT--
++string(41) "Row count is not available for this query"
++Done
+--- /dev/null
++++ b/ext/sqlite/tests/pdo/common.phpt
+@@ -0,0 +1,12 @@
++--TEST--
++SQLite2
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded('pdo') || !extension_loaded('sqlite')) print 'skip'; ?>
++--REDIRECTTEST--
++return array(
++ 'ENV' => array(
++ 'PDOTEST_DSN' => 'sqlite2::memory:'
++ ),
++ 'TESTS' => 'ext/pdo/tests'
++ );
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_001.phpt
+@@ -0,0 +1,16 @@
++--TEST--
++sqlite: sqlite_open/close
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++require_once('blankdb.inc');
++echo "$db\n";
++sqlite_close($db);
++echo "Done\n";
++?>
++--EXPECTF--
++Resource id #%d
++Done
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_002.phpt
+@@ -0,0 +1,32 @@
++--TEST--
++sqlite: Simple insert/select
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++sqlite_query("CREATE TABLE foo(c1 date, c2 time, c3 varchar(64))", $db);
++sqlite_query("INSERT INTO foo VALUES ('2002-01-02', '12:49:00', NULL)", $db);
++$r = sqlite_query("SELECT * from foo", $db);
++var_dump(sqlite_fetch_array($r));
++sqlite_close($db);
++?>
++--EXPECT--
++array(6) {
++ [0]=>
++ string(10) "2002-01-02"
++ ["c1"]=>
++ string(10) "2002-01-02"
++ [1]=>
++ string(8) "12:49:00"
++ ["c2"]=>
++ string(8) "12:49:00"
++ [2]=>
++ NULL
++ ["c3"]=>
++ NULL
++}
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_003.phpt
+@@ -0,0 +1,52 @@
++--TEST--
++sqlite: Simple insert/select, different result represenatation
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++sqlite_query("CREATE TABLE foo(c1 date, c2 time, c3 varchar(64))", $db);
++sqlite_query("INSERT INTO foo VALUES ('2002-01-02', '12:49:00', NULL)", $db);
++$r = sqlite_query("SELECT * from foo", $db);
++var_dump(sqlite_fetch_array($r, SQLITE_BOTH));
++$r = sqlite_query("SELECT * from foo", $db);
++var_dump(sqlite_fetch_array($r, SQLITE_NUM));
++$r = sqlite_query("SELECT * from foo", $db);
++var_dump(sqlite_fetch_array($r, SQLITE_ASSOC));
++sqlite_close($db);
++?>
++--EXPECT--
++array(6) {
++ [0]=>
++ string(10) "2002-01-02"
++ ["c1"]=>
++ string(10) "2002-01-02"
++ [1]=>
++ string(8) "12:49:00"
++ ["c2"]=>
++ string(8) "12:49:00"
++ [2]=>
++ NULL
++ ["c3"]=>
++ NULL
++}
++array(3) {
++ [0]=>
++ string(10) "2002-01-02"
++ [1]=>
++ string(8) "12:49:00"
++ [2]=>
++ NULL
++}
++array(3) {
++ ["c1"]=>
++ string(10) "2002-01-02"
++ ["c2"]=>
++ string(8) "12:49:00"
++ ["c3"]=>
++ NULL
++}
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_004.phpt
+@@ -0,0 +1,49 @@
++--TEST--
++sqlite: binary encoding
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$strings = array(
++ "hello",
++ "hello\x01o",
++ "\x01hello there",
++ "hello\x00there",
++ ""
++);
++
++sqlite_query("CREATE TABLE strings(a)", $db);
++
++foreach ($strings as $str) {
++ sqlite_query("INSERT INTO strings VALUES('" . sqlite_escape_string($str) . "')", $db);
++}
++
++$i = 0;
++$r = sqlite_query("SELECT * from strings", $db);
++while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
++ if ($row[0] !== $strings[$i]) {
++ echo "FAIL!\n";
++ var_dump($row[0]);
++ var_dump($strings[$i]);
++ } else {
++ echo "OK!\n";
++ }
++ $i++;
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++OK!
++OK!
++OK!
++OK!
++OK!
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_005.phpt
+@@ -0,0 +1,50 @@
++--TEST--
++sqlite: aggregate functions
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++sqlite_query("CREATE TABLE strings(a)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('" . sqlite_escape_string($str) . "')", $db);
++}
++
++function cat_step(&$context, $string)
++{
++ $context .= $string;
++}
++
++function cat_fin(&$context)
++{
++ return $context;
++}
++
++sqlite_create_aggregate($db, "cat", "cat_step", "cat_fin");
++
++$r = sqlite_query("SELECT cat(a) from strings", $db);
++while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
++ var_dump($row);
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++array(1) {
++ [0]=>
++ string(11) "onetwothree"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_006.phpt
+@@ -0,0 +1,55 @@
++--TEST--
++sqlite: regular functions
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ array("one", "uno"),
++ array("two", "dos"),
++ array("three", "tres"),
++ );
++
++sqlite_query("CREATE TABLE strings(a,b)", $db);
++
++function implode_args()
++{
++ $args = func_get_args();
++ $sep = array_shift($args);
++ return implode($sep, $args);
++}
++
++foreach ($data as $row) {
++ sqlite_query("INSERT INTO strings VALUES('" . sqlite_escape_string($row[0]) . "','" . sqlite_escape_string($row[1]) . "')", $db);
++}
++
++sqlite_create_function($db, "implode", "implode_args");
++
++$r = sqlite_query("SELECT implode('-', a, b) from strings", $db);
++while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
++ var_dump($row);
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++array(1) {
++ [0]=>
++ string(7) "one-uno"
++}
++array(1) {
++ [0]=>
++ string(7) "two-dos"
++}
++array(1) {
++ [0]=>
++ string(10) "three-tres"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_007.phpt
+@@ -0,0 +1,52 @@
++--TEST--
++sqlite: Simple insert/select (unbuffered)
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++sqlite_query("CREATE TABLE foo(c1 date, c2 time, c3 varchar(64))", $db);
++sqlite_query("INSERT INTO foo VALUES ('2002-01-02', '12:49:00', NULL)", $db);
++$r = sqlite_unbuffered_query("SELECT * from foo", $db);
++var_dump(sqlite_fetch_array($r, SQLITE_BOTH));
++$r = sqlite_unbuffered_query("SELECT * from foo", $db);
++var_dump(sqlite_fetch_array($r, SQLITE_NUM));
++$r = sqlite_unbuffered_query("SELECT * from foo", $db);
++var_dump(sqlite_fetch_array($r, SQLITE_ASSOC));
++sqlite_close($db);
++?>
++--EXPECT--
++array(6) {
++ [0]=>
++ string(10) "2002-01-02"
++ ["c1"]=>
++ string(10) "2002-01-02"
++ [1]=>
++ string(8) "12:49:00"
++ ["c2"]=>
++ string(8) "12:49:00"
++ [2]=>
++ NULL
++ ["c3"]=>
++ NULL
++}
++array(3) {
++ [0]=>
++ string(10) "2002-01-02"
++ [1]=>
++ string(8) "12:49:00"
++ [2]=>
++ NULL
++}
++array(3) {
++ ["c1"]=>
++ string(10) "2002-01-02"
++ ["c2"]=>
++ string(8) "12:49:00"
++ ["c3"]=>
++ NULL
++}
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_008.phpt
+@@ -0,0 +1,46 @@
++--TEST--
++sqlite: fetch all (buffered)
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++sqlite_query("CREATE TABLE strings(a VARCHAR)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
++}
++
++$r = sqlite_query("SELECT a from strings", $db);
++while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
++ var_dump($row);
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_009.phpt
+@@ -0,0 +1,46 @@
++--TEST--
++sqlite: fetch all (unbuffered)
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++sqlite_query("CREATE TABLE strings(a VARCHAR)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
++}
++
++$r = sqlite_unbuffered_query("SELECT a from strings", $db);
++while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
++ var_dump($row);
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_010.phpt
+@@ -0,0 +1,81 @@
++--TEST--
++sqlite: fetch all (iterator)
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++sqlite_query("CREATE TABLE strings(a VARCHAR)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
++}
++
++$r = sqlite_unbuffered_query("SELECT a from strings", $db);
++while (sqlite_valid($r)) {
++ var_dump(sqlite_current($r, SQLITE_NUM));
++ sqlite_next($r);
++}
++$r = sqlite_query("SELECT a from strings", $db);
++while (sqlite_valid($r)) {
++ var_dump(sqlite_current($r, SQLITE_NUM));
++ sqlite_next($r);
++}
++sqlite_rewind($r);
++while (sqlite_valid($r)) {
++ var_dump(sqlite_current($r, SQLITE_NUM));
++ sqlite_next($r);
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_011.phpt
+@@ -0,0 +1,34 @@
++--TEST--
++sqlite: returned associative column names
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++sqlite_query("CREATE TABLE foo (c1 char, c2 char, c3 char)", $db);
++sqlite_query("CREATE TABLE bar (c1 char, c2 char, c3 char)", $db);
++sqlite_query("INSERT INTO foo VALUES ('1', '2', '3')", $db);
++sqlite_query("INSERT INTO bar VALUES ('4', '5', '6')", $db);
++$r = sqlite_query("SELECT * from foo, bar", $db, SQLITE_ASSOC);
++var_dump(sqlite_fetch_array($r));
++sqlite_close($db);
++?>
++--EXPECT--
++array(6) {
++ ["foo.c1"]=>
++ string(1) "1"
++ ["foo.c2"]=>
++ string(1) "2"
++ ["foo.c3"]=>
++ string(1) "3"
++ ["bar.c1"]=>
++ string(1) "4"
++ ["bar.c2"]=>
++ string(1) "5"
++ ["bar.c3"]=>
++ string(1) "6"
++}
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_012.phpt
+@@ -0,0 +1,38 @@
++--TEST--
++sqlite: read field names
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++sqlite_query("CREATE TABLE strings(foo VARCHAR, bar VARCHAR, baz VARCHAR)", $db);
++
++echo "Buffered\n";
++$r = sqlite_query("SELECT * from strings", $db);
++for($i=0; $i<sqlite_num_fields($r); $i++) {
++ var_dump(sqlite_field_name($r, $i));
++}
++echo "Unbuffered\n";
++$r = sqlite_unbuffered_query("SELECT * from strings", $db);
++for($i=0; $i<sqlite_num_fields($r); $i++) {
++ var_dump(sqlite_field_name($r, $i));
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++Buffered
++string(3) "foo"
++string(3) "bar"
++string(3) "baz"
++Unbuffered
++string(3) "foo"
++string(3) "bar"
++string(3) "baz"
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_013.phpt
+@@ -0,0 +1,78 @@
++--TEST--
++sqlite: fetch column
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ array (0 => 'one', 1 => 'two'),
++ array (0 => 'three', 1 => 'four')
++ );
++
++sqlite_query("CREATE TABLE strings(a VARCHAR, b VARCHAR)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('${str[0]}','${str[1]}')", $db);
++}
++
++echo "====BUFFERED====\n";
++$r = sqlite_query("SELECT a, b from strings", $db);
++while (sqlite_valid($r)) {
++ var_dump(sqlite_current($r, SQLITE_NUM));
++ var_dump(sqlite_column($r, 0));
++ var_dump(sqlite_column($r, 1));
++ var_dump(sqlite_column($r, 'a'));
++ var_dump(sqlite_column($r, 'b'));
++ sqlite_next($r);
++}
++echo "====UNBUFFERED====\n";
++$r = sqlite_unbuffered_query("SELECT a, b from strings", $db);
++while (sqlite_valid($r)) {
++ var_dump(sqlite_column($r, 0));
++ var_dump(sqlite_column($r, 'b'));
++ var_dump(sqlite_column($r, 1));
++ var_dump(sqlite_column($r, 'a'));
++ sqlite_next($r);
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++====BUFFERED====
++array(2) {
++ [0]=>
++ string(3) "one"
++ [1]=>
++ string(3) "two"
++}
++string(3) "one"
++string(3) "two"
++string(3) "one"
++string(3) "two"
++array(2) {
++ [0]=>
++ string(5) "three"
++ [1]=>
++ string(4) "four"
++}
++string(5) "three"
++string(4) "four"
++string(5) "three"
++string(4) "four"
++====UNBUFFERED====
++string(3) "one"
++string(3) "two"
++NULL
++NULL
++string(5) "three"
++string(4) "four"
++NULL
++NULL
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_014.phpt
+@@ -0,0 +1,120 @@
++--TEST--
++sqlite: fetch all (fetch_all)
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++sqlite_query("CREATE TABLE strings(a VARCHAR)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
++}
++
++echo "unbuffered twice\n";
++$r = sqlite_unbuffered_query("SELECT a from strings", $db, SQLITE_NUM);
++var_dump(sqlite_fetch_all($r));
++var_dump(sqlite_fetch_all($r));
++
++echo "unbuffered with fetch_array\n";
++$r = sqlite_unbuffered_query("SELECT a from strings", $db, SQLITE_NUM);
++var_dump(sqlite_fetch_array($r));
++var_dump(sqlite_fetch_all($r));
++
++echo "buffered\n";
++$r = sqlite_query("SELECT a from strings", $db, SQLITE_NUM);
++var_dump(sqlite_fetch_all($r));
++var_dump(sqlite_fetch_array($r));
++var_dump(sqlite_fetch_all($r));
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECTF--
++unbuffered twice
++array(3) {
++ [0]=>
++ array(1) {
++ [0]=>
++ string(3) "one"
++ }
++ [1]=>
++ array(1) {
++ [0]=>
++ string(3) "two"
++ }
++ [2]=>
++ array(1) {
++ [0]=>
++ string(5) "three"
++ }
++}
++
++Warning: sqlite_fetch_all(): One or more rowsets were already returned; returning NULL this time in %ssqlite_014.php on line %d
++array(0) {
++}
++unbuffered with fetch_array
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(2) {
++ [0]=>
++ array(1) {
++ [0]=>
++ string(3) "two"
++ }
++ [1]=>
++ array(1) {
++ [0]=>
++ string(5) "three"
++ }
++}
++buffered
++array(3) {
++ [0]=>
++ array(1) {
++ [0]=>
++ string(3) "one"
++ }
++ [1]=>
++ array(1) {
++ [0]=>
++ string(3) "two"
++ }
++ [2]=>
++ array(1) {
++ [0]=>
++ string(5) "three"
++ }
++}
++bool(false)
++array(3) {
++ [0]=>
++ array(1) {
++ [0]=>
++ string(3) "one"
++ }
++ [1]=>
++ array(1) {
++ [0]=>
++ string(3) "two"
++ }
++ [2]=>
++ array(1) {
++ [0]=>
++ string(5) "three"
++ }
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_015.phpt
+@@ -0,0 +1,49 @@
++--TEST--
++sqlite: fetch all (array_query)
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++sqlite_query("CREATE TABLE strings(a VARCHAR)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
++}
++
++$res = sqlite_array_query("SELECT a from strings", $db, SQLITE_NUM);
++var_dump($res);
++
++$db = null;
++
++echo "DONE!\n";
++?>
++--EXPECTF--
++array(3) {
++ [0]=>
++ array(1) {
++ [0]=>
++ string(3) "one"
++ }
++ [1]=>
++ array(1) {
++ [0]=>
++ string(3) "two"
++ }
++ [2]=>
++ array(1) {
++ [0]=>
++ string(5) "three"
++ }
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_016.phpt
+@@ -0,0 +1,45 @@
++--TEST--
++sqlite: fetch single
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ array (0 => 'one', 1 => 'two'),
++ array (0 => 'three', 1 => 'four')
++ );
++
++sqlite_query("CREATE TABLE strings(a VARCHAR, b VARCHAR)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('${str[0]}','${str[1]}')", $db);
++}
++
++echo "====BUFFERED====\n";
++$r = sqlite_query("SELECT a, b from strings", $db);
++while (sqlite_valid($r)) {
++ var_dump(sqlite_fetch_single($r));
++}
++echo "====UNBUFFERED====\n";
++$r = sqlite_unbuffered_query("SELECT a, b from strings", $db);
++while (sqlite_valid($r)) {
++ var_dump(sqlite_fetch_single($r));
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++====BUFFERED====
++string(3) "one"
++string(5) "three"
++====UNBUFFERED====
++string(3) "one"
++string(5) "three"
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_017.phpt
+@@ -0,0 +1,33 @@
++--TEST--
++sqlite: UDF binary handling functions
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++
++$data = array(
++ "hello there",
++ "this has a \x00 char in the middle",
++ "\x01 this has an 0x01 at the start",
++ "this has \x01 in the middle"
++ );
++
++foreach ($data as $item) {
++ $coded = sqlite_udf_encode_binary($item);
++ echo bin2hex($coded) . "\n";
++ $decoded = sqlite_udf_decode_binary($coded);
++ if ($item != $decoded) {
++ echo "FAIL! $item decoded is $decoded\n";
++ }
++}
++
++echo "OK!\n";
++
++?>
++--EXPECT--
++68656c6c6f207468657265
++0101736768721f6760721f601fff1f626760711f686d1f7367641f6c6863636b64
++0102ff1e726667711e665f711e5f6c1e2e762e2f1e5f721e7266631e71725f7072
++7468697320686173200120696e20746865206d6964646c65
++OK!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_018.phpt
+@@ -0,0 +1,14 @@
++--TEST--
++sqlite: crash on bad queries inside sqlite_array_query()
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++sqlite_array_query($db, "SELECT foo FROM foobar");
++sqlite_close($db);
++?>
++--EXPECTF--
++Warning: sqlite_array_query(): no such table: foobar in %s on line %d
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_019.phpt
+@@ -0,0 +1,47 @@
++--TEST--
++sqlite: single query
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++sqlite_query($db, "CREATE TABLE test_db ( id INTEGER PRIMARY KEY, data VARCHAR(100) )");
++for ($i = 0; $i < 10; $i++) {
++ sqlite_query($db, "INSERT INTO test_db (data) VALUES('{$i}data')");
++}
++sqlite_query($db, "INSERT INTO test_db (data) VALUES(NULL)");
++
++var_dump(sqlite_single_query($db, "SELECT id FROM test_db WHERE id=5"));
++var_dump(sqlite_single_query($db, "SELECT * FROM test_db WHERE id=4"));
++var_dump(sqlite_single_query($db, "SELECT data FROM test_db WHERE id=6"));
++var_dump(sqlite_single_query($db, "SELECT * FROM test_db WHERE id < 5"));
++var_dump(sqlite_single_query($db, "SELECT * FROM test db WHERE id < 4"));
++var_dump(sqlite_single_query($db, "SELECT * FROM test_db WHERE id=999999"));
++var_dump(sqlite_single_query($db, "SELECT id FROM test_db WHERE id=5", FALSE));
++
++sqlite_close($db);
++?>
++--EXPECTF--
++string(1) "5"
++string(1) "4"
++string(5) "5data"
++array(4) {
++ [0]=>
++ string(1) "1"
++ [1]=>
++ string(1) "2"
++ [2]=>
++ string(1) "3"
++ [3]=>
++ string(1) "4"
++}
++
++Warning: sqlite_single_query(): no such table: test in %s on line %d
++bool(false)
++NULL
++array(1) {
++ [0]=>
++ string(1) "5"
++}
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_022.phpt
+@@ -0,0 +1,101 @@
++--TEST--
++sqlite: sqlite_seek
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++sqlite_query("CREATE TABLE strings(a)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
++}
++
++$res = sqlite_query("SELECT a FROM strings", $db, SQLITE_NUM);
++for ($idx = -1; $idx < 4; $idx++) {
++ echo "====SEEK:$idx====\n";
++ sqlite_seek($res, $idx);
++ var_dump(sqlite_current($res));
++}
++echo "====AGAIN====\n";
++for ($idx = -1; $idx < 4; $idx++) {
++ echo "====SEEK:$idx====\n";
++ sqlite_seek($res, $idx);
++ var_dump(sqlite_current($res));
++}
++
++sqlite_close($db);
++
++echo "====DONE!====\n";
++?>
++--EXPECTF--
++====SEEK:-1====
++
++Warning: sqlite_seek(): row -1 out of range in %ssqlite_022.php on line %d
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++====SEEK:0====
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++====SEEK:1====
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++====SEEK:2====
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====SEEK:3====
++
++Warning: sqlite_seek(): row 3 out of range in %ssqlite_022.php on line %d
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====AGAIN====
++====SEEK:-1====
++
++Warning: sqlite_seek(): row -1 out of range in %ssqlite_022.php on line %d
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====SEEK:0====
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++====SEEK:1====
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++====SEEK:2====
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====SEEK:3====
++
++Warning: sqlite_seek(): row 3 out of range in %ssqlite_022.php on line %d
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====DONE!====
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_023.phpt
+@@ -0,0 +1,105 @@
++--TEST--
++sqlite: sqlite_[has_]prev
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++sqlite_query("CREATE TABLE strings(a)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('$str')", $db);
++}
++
++$r = sqlite_query("SELECT a FROM strings", $db, SQLITE_NUM);
++
++echo "====TRAVERSE====\n";
++for(sqlite_rewind($r); sqlite_valid($r); sqlite_next($r)) {
++ var_dump(sqlite_current($r));
++
++}
++echo "====REVERSE====\n";
++do {
++ sqlite_prev($r);
++ var_dump(sqlite_current($r));
++} while(sqlite_has_prev($r));
++
++echo "====UNBUFFERED====\n";
++
++$r = sqlite_unbuffered_query("SELECT a FROM strings", $db, SQLITE_NUM);
++
++echo "====TRAVERSE====\n";
++for(sqlite_rewind($r); sqlite_valid($r); sqlite_next($r)) {
++ var_dump(sqlite_current($r));
++
++}
++echo "====REVERSE====\n";
++do {
++ sqlite_prev($r);
++ var_dump(sqlite_current($r));
++} while(sqlite_has_prev($r));
++
++sqlite_close($db);
++
++echo "====DONE!====\n";
++?>
++--EXPECTF--
++====TRAVERSE====
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====REVERSE====
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++====UNBUFFERED====
++====TRAVERSE====
++
++Warning: sqlite_rewind(): Cannot rewind an unbuffered result set in %ssqlite_023.php on line %d
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====REVERSE====
++
++Warning: sqlite_prev(): you cannot use sqlite_prev on unbuffered querys in %ssqlite_023.php on line %d
++bool(false)
++
++Warning: sqlite_has_prev(): you cannot use sqlite_has_prev on unbuffered querys in %ssqlite_023.php on line %d
++====DONE!====
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_024.phpt
+@@ -0,0 +1,76 @@
++--TEST--
++sqlite: sqlite_fetch_object
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++class class24 {
++ function __construct() {
++ echo __METHOD__ . "\n";
++ }
++}
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++sqlite_query($db, "CREATE TABLE strings(a)");
++
++foreach ($data as $str) {
++ sqlite_query($db, "INSERT INTO strings VALUES('$str')");
++}
++
++echo "====class24====\n";
++$res = sqlite_query($db, "SELECT a FROM strings", SQLITE_ASSOC);
++while (sqlite_valid($res)) {
++ var_dump(sqlite_fetch_object($res, 'class24'));
++}
++
++echo "====stdclass====\n";
++$res = sqlite_query($db, "SELECT a FROM strings", SQLITE_ASSOC);
++while (sqlite_valid($res)) {
++ var_dump(sqlite_fetch_object($res));
++}
++
++sqlite_close($db);
++
++echo "====DONE!====\n";
++?>
++--EXPECTF--
++====class24====
++class24::__construct
++object(class24)#%d (1) {
++ ["a"]=>
++ string(3) "one"
++}
++class24::__construct
++object(class24)#%d (1) {
++ ["a"]=>
++ string(3) "two"
++}
++class24::__construct
++object(class24)#%d (1) {
++ ["a"]=>
++ string(5) "three"
++}
++====stdclass====
++object(stdClass)#%d (1) {
++ ["a"]=>
++ string(3) "one"
++}
++object(stdClass)#%d (1) {
++ ["a"]=>
++ string(3) "two"
++}
++object(stdClass)#%d (1) {
++ ["a"]=>
++ string(5) "three"
++}
++====DONE!====
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_025.phpt
+@@ -0,0 +1,38 @@
++--TEST--
++sqlite: sqlite_fetch_object in a loop
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++sqlite_query($db, "CREATE TABLE strings(a)");
++
++foreach (array("one", "two", "three") as $str) {
++ sqlite_query($db, "INSERT INTO strings VALUES('$str')");
++}
++
++$res = sqlite_query("SELECT * FROM strings", $db);
++
++while (($obj = sqlite_fetch_object($res))) {
++ var_dump($obj);
++}
++
++sqlite_close($db);
++?>
++--EXPECTF--
++object(stdClass)#1 (1) {
++ ["a"]=>
++ string(3) "one"
++}
++object(stdClass)#2 (1) {
++ ["a"]=>
++ string(3) "two"
++}
++object(stdClass)#1 (1) {
++ ["a"]=>
++ string(5) "three"
++}
+\ No newline at end of file
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_026.phpt
+@@ -0,0 +1,27 @@
++--TEST--
++sqlite: sqlite_fetch_column_types
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++sqlite_query($db, "CREATE TABLE strings(a, b INTEGER, c VARCHAR(10), d)");
++sqlite_query($db, "INSERT INTO strings VALUES('1', '2', '3', 'abc')");
++
++var_dump(sqlite_fetch_column_types($db, "strings"));
++
++sqlite_close($db);
++?>
++--EXPECT--
++array(4) {
++ ["a"]=>
++ string(0) ""
++ ["b"]=>
++ string(7) "INTEGER"
++ ["c"]=>
++ string(11) "VARCHAR(10)"
++ ["d"]=>
++ string(0) ""
++}
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_027.phpt
+@@ -0,0 +1,15 @@
++--TEST--
++sqlite: crash inside sqlite_escape_string() & sqlite_udf_encode_binary
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--INI--
++memory_limit=-1
++--FILE--
++<?php
++ var_dump(strlen(sqlite_escape_string(str_repeat("\0", 20000000))));
++ var_dump(strlen(sqlite_udf_encode_binary(str_repeat("\0", 20000000))));
++?>
++--EXPECT--
++int(20000002)
++int(20000002)
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_closures_001.phpt
+@@ -0,0 +1,54 @@
++--TEST--
++sqlite: aggregate functions with closures
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++sqlite_query("CREATE TABLE strings(a)", $db);
++
++foreach ($data as $str) {
++ sqlite_query("INSERT INTO strings VALUES('" . sqlite_escape_string($str) . "')", $db);
++}
++
++function cat_step(&$context, $string)
++{
++ $context .= $string;
++}
++
++function cat_fin(&$context)
++{
++ return $context;
++}
++
++sqlite_create_aggregate($db, "cat", function (&$context, $string) {
++ $context .= $string;
++}, function (&$context) {
++ return $context;
++});
++
++$r = sqlite_query("SELECT cat(a) from strings", $db);
++while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
++ var_dump($row);
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++array(1) {
++ [0]=>
++ string(11) "onetwothree"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_closures_002.phpt
+@@ -0,0 +1,52 @@
++--TEST--
++sqlite: regular functions with closures
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb.inc";
++
++$data = array(
++ array("one", "uno"),
++ array("two", "dos"),
++ array("three", "tres"),
++ );
++
++sqlite_query("CREATE TABLE strings(a,b)", $db);
++
++foreach ($data as $row) {
++ sqlite_query("INSERT INTO strings VALUES('" . sqlite_escape_string($row[0]) . "','" . sqlite_escape_string($row[1]) . "')", $db);
++}
++
++sqlite_create_function($db, "implode", function () {
++ $args = func_get_args();
++ $sep = array_shift($args);
++ return implode($sep, $args);
++});
++
++$r = sqlite_query("SELECT implode('-', a, b) from strings", $db);
++while ($row = sqlite_fetch_array($r, SQLITE_NUM)) {
++ var_dump($row);
++}
++
++sqlite_close($db);
++
++echo "DONE!\n";
++?>
++--EXPECT--
++array(1) {
++ [0]=>
++ string(7) "one-uno"
++}
++array(1) {
++ [0]=>
++ string(7) "two-dos"
++}
++array(1) {
++ [0]=>
++ string(10) "three-tres"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlitedatabase_arrayquery.phpt
+@@ -0,0 +1,23 @@
++--TEST--
++Testing SQLiteDatabase::ArrayQuery with NULL-byte string
++--SKIPIF--
++<?php
++if (!extension_loaded("sqlite")) print "skip";
++?>
++--FILE--
++<?php
++
++$method = new ReflectionMethod('sqlitedatabase::arrayquery');
++
++$class = $method->getDeclaringClass()->newInstanceArgs(array(':memory:'));
++
++$p = "\0";
++
++$method->invokeArgs($class, array_fill(0, 2, $p));
++$method->invokeArgs($class, array_fill(0, 1, $p));
++
++?>
++--EXPECTF--
++Warning: SQLiteDatabase::arrayQuery() expects parameter 2 to be long, string given in %s on line %d
++
++Warning: SQLiteDatabase::arrayQuery(): Cannot execute empty query. in %s on line %d
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_exec_basic.phpt
+@@ -0,0 +1,34 @@
++--TEST--
++Test sqlite_exec() function : basic functionality
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip sqlite extension not loaded"; ?>
++--FILE--
++<?php
++/* Prototype : boolean sqlite_exec(string query, resource db[, string &error_message])
++ * Description: Executes a result-less query against a given database
++ * Source code: ext/sqlite/sqlite.c
++ * Alias to functions:
++ */
++
++echo "*** Testing sqlite_exec() : basic functionality ***\n";
++
++// set up variables
++$query = 'CREATE TABLE foobar (id INTEGER PRIMARY KEY, name CHAR(255));';
++$error_message = null;
++
++// procedural
++$db = sqlite_open(':memory:');
++var_dump( sqlite_exec($db, $query) );
++sqlite_close($db);
++
++// oo-style
++$db = new SQLiteDatabase(':memory:');
++var_dump( $db->queryExec($query, $error_message) );
++
++?>
++===DONE===
++--EXPECTF--
++*** Testing sqlite_exec() : basic functionality ***
++bool(true)
++bool(true)
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_exec_error.phpt
+@@ -0,0 +1,44 @@
++--TEST--
++Test sqlite_exec() function : error behaviour and functionality
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip sqlite extension not loaded"; ?>
++--FILE--
++<?php
++/* Prototype : boolean sqlite_exec(string query, resource db[, string &error_message])
++ * Description: Executes a result-less query against a given database
++ * Source code: ext/sqlite/sqlite.c
++ * Alias to functions:
++ */
++
++echo "*** Testing sqlite_exec() : error functionality ***\n";
++
++// set up variables
++$fail = 'CRE ATE TABLE';
++$error_message = null;
++
++// procedural
++$db = sqlite_open(':memory:');
++var_dump( sqlite_exec($db, $fail, $error_message) );
++var_dump( $error_message );
++var_dump( sqlite_exec($db) );
++sqlite_close($db);
++
++// oo-style
++$db = new SQLiteDatabase(':memory:');
++var_dump( $db->queryExec($fail, $error_message, 'fooparam') );
++
++?>
++===DONE===
++--EXPECTF--
++*** Testing sqlite_exec() : error functionality ***
++
++Warning: sqlite_exec(): near "CRE": syntax error in %s on line %d
++bool(false)
++%string|unicode%(24) "near "CRE": syntax error"
++
++Warning: sqlite_exec() expects at least 2 parameters, 1 given in %s on line %d
++NULL
++
++Warning: SQLiteDatabase::queryExec() expects at most 2 parameters, 3 given in %s on line %d
++NULL
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_last_error_basic.phpt
+@@ -0,0 +1,48 @@
++--TEST--
++Test sqlite_last_error() function : basic functionality
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip sqlite extension not loaded"; ?>
++--FILE--
++<?php
++/* Prototype : int sqlite_last_error(resource db)
++ * Description: Returns the error code of the last error for a database.
++ * Source code: ext/sqlite/sqlite.c
++ * Alias to functions:
++ */
++
++echo "*** Testing sqlite_last_error() : basic functionality ***\n";
++
++// set up variables
++$query = 'CREATE TAB LE foobar (id INTEGER PRIMARY KEY, name CHAR(255));';
++$query_ok = 'CREATE TABLE foobar (id INTEGER, name CHAR(255));';
++
++// procedural
++$db = sqlite_open(':memory:');
++var_dump( sqlite_last_error($db) === SQLITE_OK );
++sqlite_exec($db, $query);
++var_dump( sqlite_last_error($db) === SQLITE_ERROR );
++sqlite_exec($db, $query_ok);
++var_dump( sqlite_last_error($db) === SQLITE_OK );
++sqlite_close($db);
++
++// oo-style
++$db = new SQLiteDatabase(':memory:');
++$db->queryExec($query);
++var_dump( $db->lastError() === SQLITE_ERROR );
++$db->queryExec($query_ok);
++var_dump( $db->lastError() === SQLITE_OK );
++
++?>
++===DONE===
++--EXPECTF--
++*** Testing sqlite_last_error() : basic functionality ***
++bool(true)
++
++Warning: sqlite_exec(): near "TAB": syntax error in %s on line %d
++bool(true)
++bool(true)
++
++Warning: SQLiteDatabase::queryExec(): near "TAB": syntax error in %s on line %d
++bool(true)
++bool(true)
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_last_error_error.phpt
+@@ -0,0 +1,47 @@
++--TEST--
++Test sqlite_last_error() function : error conditions
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip sqlite extension not loaded"; ?>
++--FILE--
++<?php
++/* Prototype : int sqlite_last_error(resource db)
++ * Description: Returns the error code of the last error for a database.
++ * Source code: ext/sqlite/sqlite.c
++ * Alias to functions:
++ */
++
++echo "*** Testing sqlite_last_error() : error conditions ***\n";
++
++// Zero arguments
++echo "\n-- Testing sqlite_last_error() function with Zero arguments --\n";
++var_dump( sqlite_last_error() );
++
++//Test sqlite_last_error with one more than the expected number of arguments
++echo "\n-- Testing sqlite_last_error() function with more than expected no. of arguments --\n";
++
++$db = sqlite_open(':memory:');
++$extra_arg = 10;
++var_dump( sqlite_last_error($db, $extra_arg) );
++sqlite_close($db);
++
++$db = new SQLiteDatabase(':memory:');
++var_dump( $db->lastError($extra_arg) );
++
++?>
++===DONE===
++--EXPECTF--
++*** Testing sqlite_last_error() : error conditions ***
++
++-- Testing sqlite_last_error() function with Zero arguments --
++
++Warning: sqlite_last_error() expects exactly 1 parameter, 0 given in %s on line %d
++NULL
++
++-- Testing sqlite_last_error() function with more than expected no. of arguments --
++
++Warning: sqlite_last_error() expects exactly 1 parameter, 2 given in %s on line %d
++NULL
++
++Warning: SQLiteDatabase::lastError() expects exactly 0 parameters, 1 given in %s on line %d
++NULL
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_001.phpt
+@@ -0,0 +1,17 @@
++--TEST--
++sqlite-oo: sqlite_open/close
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++require_once('blankdb_oo.inc');
++var_dump($db);
++$db = NULL;
++echo "Done\n";
++?>
++--EXPECTF--
++object(SQLiteDatabase)#%d (0) {
++}
++Done
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_002.phpt
+@@ -0,0 +1,41 @@
++--TEST--
++sqlite-oo: Simple insert/select
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++require_once('blankdb_oo.inc');
++var_dump($db);
++
++var_dump($db->query("CREATE TABLE foo(c1 date, c2 time, c3 varchar(64))"));
++var_dump($db->query("INSERT INTO foo VALUES ('2002-01-02', '12:49:00', NULL)"));
++$r = $db->query("SELECT * from foo");
++var_dump($r);
++var_dump($r->fetch());
++?>
++--EXPECTF--
++object(SQLiteDatabase)#%d (0) {
++}
++object(SQLiteResult)#%d (0) {
++}
++object(SQLiteResult)#%d (0) {
++}
++object(SQLiteResult)#%d (0) {
++}
++array(6) {
++ [0]=>
++ string(10) "2002-01-02"
++ ["c1"]=>
++ string(10) "2002-01-02"
++ [1]=>
++ string(8) "12:49:00"
++ ["c2"]=>
++ string(8) "12:49:00"
++ [2]=>
++ NULL
++ ["c3"]=>
++ NULL
++}
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_003.phpt
+@@ -0,0 +1,51 @@
++--TEST--
++sqlite-oo: Simple insert/select, different result representation
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$db->query("CREATE TABLE foo(c1 date, c2 time, c3 varchar(64))");
++$db->query("INSERT INTO foo VALUES ('2002-01-02', '12:49:00', NULL)");
++$r = $db->query("SELECT * from foo");
++var_dump($r->fetch(SQLITE_BOTH));
++$r = $db->query("SELECT * from foo");
++var_dump($r->fetch(SQLITE_NUM));
++$r = $db->query("SELECT * from foo");
++var_dump($r->fetch(SQLITE_ASSOC));
++?>
++--EXPECT--
++array(6) {
++ [0]=>
++ string(10) "2002-01-02"
++ ["c1"]=>
++ string(10) "2002-01-02"
++ [1]=>
++ string(8) "12:49:00"
++ ["c2"]=>
++ string(8) "12:49:00"
++ [2]=>
++ NULL
++ ["c3"]=>
++ NULL
++}
++array(3) {
++ [0]=>
++ string(10) "2002-01-02"
++ [1]=>
++ string(8) "12:49:00"
++ [2]=>
++ NULL
++}
++array(3) {
++ ["c1"]=>
++ string(10) "2002-01-02"
++ ["c2"]=>
++ string(8) "12:49:00"
++ ["c3"]=>
++ NULL
++}
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_008.phpt
+@@ -0,0 +1,43 @@
++--TEST--
++sqlite-oo: fetch all (buffered)
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++$db->query("CREATE TABLE strings(a VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('$str')");
++}
++
++$r = $db->query("SELECT a from strings");
++while ($row = $r->fetch(SQLITE_NUM)) {
++ var_dump($row);
++}
++echo "DONE!\n";
++?>
++--EXPECT--
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_009.phpt
+@@ -0,0 +1,43 @@
++--TEST--
++sqlite-oo: fetch all (unbuffered)
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++$db->query("CREATE TABLE strings(a VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('$str')");
++}
++
++$r = $db->unbufferedQuery("SELECT a from strings");
++while ($row = $r->fetch(SQLITE_NUM)) {
++ var_dump($row);
++}
++echo "DONE!\n";
++?>
++--EXPECT--
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_010.phpt
+@@ -0,0 +1,44 @@
++--TEST--
++sqlite-oo: fetch all (iterator)
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++$db->query("CREATE TABLE strings(a VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('$str')");
++}
++
++$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
++while ($row = $r->valid()) {
++ var_dump($r->current());
++ $r->next();
++}
++echo "DONE!\n";
++?>
++--EXPECT--
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_011.phpt
+@@ -0,0 +1,33 @@
++--TEST--
++sqlite-oo: returned associative column names
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$db->query("CREATE TABLE foo (c1 char, c2 char, c3 char)");
++$db->query("CREATE TABLE bar (c1 char, c2 char, c3 char)");
++$db->query("INSERT INTO foo VALUES ('1', '2', '3')");
++$db->query("INSERT INTO bar VALUES ('4', '5', '6')");
++$r = $db->query("SELECT * from foo, bar", SQLITE_ASSOC);
++var_dump($r->fetch());
++?>
++--EXPECT--
++array(6) {
++ ["foo.c1"]=>
++ string(1) "1"
++ ["foo.c2"]=>
++ string(1) "2"
++ ["foo.c3"]=>
++ string(1) "3"
++ ["bar.c1"]=>
++ string(1) "4"
++ ["bar.c2"]=>
++ string(1) "5"
++ ["bar.c3"]=>
++ string(1) "6"
++}
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_012.phpt
+@@ -0,0 +1,35 @@
++--TEST--
++sqlite-oo: read field names
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$db->query("CREATE TABLE strings(foo VARCHAR, bar VARCHAR, baz VARCHAR)");
++
++echo "Buffered\n";
++$r = $db->query("SELECT * from strings");
++for($i=0; $i<$r->numFields(); $i++) {
++ var_dump($r->fieldName($i));
++}
++echo "Unbuffered\n";
++$r = $db->unbufferedQuery("SELECT * from strings");
++for($i=0; $i<$r->numFields(); $i++) {
++ var_dump($r->fieldName($i));
++}
++echo "DONE!\n";
++?>
++--EXPECT--
++Buffered
++string(3) "foo"
++string(3) "bar"
++string(3) "baz"
++Unbuffered
++string(3) "foo"
++string(3) "bar"
++string(3) "baz"
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_013.phpt
+@@ -0,0 +1,75 @@
++--TEST--
++sqlite-oo: fetch column
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array(
++ array (0 => 'one', 1 => 'two'),
++ array (0 => 'three', 1 => 'four')
++ );
++
++$db->query("CREATE TABLE strings(a VARCHAR, b VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('${str[0]}','${str[1]}')");
++}
++
++echo "====BUFFERED====\n";
++$r = $db->query("SELECT a, b from strings");
++while ($r->valid()) {
++ var_dump($r->current(SQLITE_NUM));
++ var_dump($r->column(0));
++ var_dump($r->column(1));
++ var_dump($r->column('a'));
++ var_dump($r->column('b'));
++ $r->next();
++}
++echo "====UNBUFFERED====\n";
++$r = $db->unbufferedQuery("SELECT a, b from strings");
++while ($r->valid()) {
++ var_dump($r->column(0));
++ var_dump($r->column('b'));
++ var_dump($r->column(1));
++ var_dump($r->column('a'));
++ $r->next();
++}
++echo "DONE!\n";
++?>
++--EXPECT--
++====BUFFERED====
++array(2) {
++ [0]=>
++ string(3) "one"
++ [1]=>
++ string(3) "two"
++}
++string(3) "one"
++string(3) "two"
++string(3) "one"
++string(3) "two"
++array(2) {
++ [0]=>
++ string(5) "three"
++ [1]=>
++ string(4) "four"
++}
++string(5) "three"
++string(4) "four"
++string(5) "three"
++string(4) "four"
++====UNBUFFERED====
++string(3) "one"
++string(3) "two"
++NULL
++NULL
++string(5) "three"
++string(4) "four"
++NULL
++NULL
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_014.phpt
+@@ -0,0 +1,118 @@
++--TEST--
++sqlite-oo: fetch all
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++$db->query("CREATE TABLE strings(a VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('$str')");
++}
++
++echo "unbuffered twice\n";
++$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
++var_dump($r->fetchAll());
++var_dump($r->fetchAll());
++
++echo "unbuffered with fetch_array\n";
++$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
++var_dump($r->fetch());
++var_dump($r->fetchAll());
++
++echo "buffered\n";
++$r = $db->query("SELECT a from strings", SQLITE_NUM);
++var_dump($r->fetchAll());
++var_dump($r->fetch());
++var_dump($r->fetchAll());
++
++echo "DONE!\n";
++?>
++--EXPECTF--
++unbuffered twice
++array(3) {
++ [0]=>
++ array(1) {
++ [0]=>
++ string(3) "one"
++ }
++ [1]=>
++ array(1) {
++ [0]=>
++ string(3) "two"
++ }
++ [2]=>
++ array(1) {
++ [0]=>
++ string(5) "three"
++ }
++}
++
++Warning: SQLiteUnbuffered::fetchAll(): One or more rowsets were already returned; returning NULL this time in %ssqlite_oo_014.php on line %d
++array(0) {
++}
++unbuffered with fetch_array
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(2) {
++ [0]=>
++ array(1) {
++ [0]=>
++ string(3) "two"
++ }
++ [1]=>
++ array(1) {
++ [0]=>
++ string(5) "three"
++ }
++}
++buffered
++array(3) {
++ [0]=>
++ array(1) {
++ [0]=>
++ string(3) "one"
++ }
++ [1]=>
++ array(1) {
++ [0]=>
++ string(3) "two"
++ }
++ [2]=>
++ array(1) {
++ [0]=>
++ string(5) "three"
++ }
++}
++bool(false)
++array(3) {
++ [0]=>
++ array(1) {
++ [0]=>
++ string(3) "one"
++ }
++ [1]=>
++ array(1) {
++ [0]=>
++ string(3) "two"
++ }
++ [2]=>
++ array(1) {
++ [0]=>
++ string(5) "three"
++ }
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_015.phpt
+@@ -0,0 +1,47 @@
++--TEST--
++sqlite-oo: array_query
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++$db->query("CREATE TABLE strings(a VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('$str')");
++}
++
++$res = $db->arrayQuery("SELECT a from strings", SQLITE_NUM);
++var_dump($res);
++
++echo "DONE!\n";
++?>
++--EXPECTF--
++array(3) {
++ [0]=>
++ array(1) {
++ [0]=>
++ string(3) "one"
++ }
++ [1]=>
++ array(1) {
++ [0]=>
++ string(3) "two"
++ }
++ [2]=>
++ array(1) {
++ [0]=>
++ string(5) "three"
++ }
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_016.phpt
+@@ -0,0 +1,42 @@
++--TEST--
++sqlite-oo: fetch single
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array(
++ array (0 => 'one', 1 => 'two'),
++ array (0 => 'three', 1 => 'four')
++ );
++
++$db->query("CREATE TABLE strings(a VARCHAR, b VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('${str[0]}','${str[1]}')");
++}
++
++echo "====BUFFERED====\n";
++$r = $db->query("SELECT a, b from strings");
++while ($r->valid()) {
++ var_dump($r->fetchSingle());
++}
++echo "====UNBUFFERED====\n";
++$r = $db->unbufferedQuery("SELECT a, b from strings");
++while ($r->valid()) {
++ var_dump($r->fetchSingle());
++}
++echo "DONE!\n";
++?>
++--EXPECT--
++====BUFFERED====
++string(3) "one"
++string(5) "three"
++====UNBUFFERED====
++string(3) "one"
++string(5) "three"
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_020.phpt
+@@ -0,0 +1,66 @@
++--TEST--
++sqlite-oo: factory and exception
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++$dbname = tempnam(dirname(__FILE__), "phpsql");
++function cleanup() {
++ global $db, $dbname;
++
++ $db = NULL;
++ unlink($dbname);
++}
++register_shutdown_function("cleanup");
++
++try {
++ $db = sqlite_factory();
++} catch(SQLiteException $err) {
++ echo "Message: ".$err->getMessage()."\n";
++ echo "File: ".$err->getFile()."\n";
++ //echo "Line: ".$err->getLine()."\n";
++ //print_r($err->getTrace());
++ //echo "BackTrace: ".$err->getTraceAsString()."\n";
++}
++
++$db = sqlite_factory($dbname);
++
++$data = array(
++ array (0 => 'one', 1 => 'two'),
++ array (0 => 'three', 1 => 'four')
++ );
++
++$db->query("CREATE TABLE strings(a VARCHAR, b VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('${str[0]}','${str[1]}')");
++}
++
++$r = $db->unbufferedQuery("SELECT a, b from strings");
++while ($r->valid()) {
++ var_dump($r->current(SQLITE_NUM));
++ $r->next();
++}
++$r = null;
++$db = null;
++echo "DONE!\n";
++?>
++--EXPECTF--
++Message: sqlite_factory() expects at least 1 parameter, 0 given
++File: %ssqlite_oo_020.php
++array(2) {
++ [0]=>
++ string(3) "one"
++ [1]=>
++ string(3) "two"
++}
++array(2) {
++ [0]=>
++ string(5) "three"
++ [1]=>
++ string(4) "four"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_021.phpt
+@@ -0,0 +1,48 @@
++--TEST--
++sqlite-oo: single query
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$db->query("CREATE TABLE test_db ( id INTEGER PRIMARY KEY, data VARCHAR(100) )");
++for ($i = 0; $i < 10; $i++) {
++ $db->query("INSERT INTO test_db (data) VALUES('{$i}data')");
++}
++$db->query("INSERT INTO test_db (data) VALUES(NULL)");
++
++var_dump($db->singleQuery("SELECT id FROM test_db WHERE id=5"));
++var_dump($db->singleQuery("SELECT * FROM test_db WHERE id=4"));
++var_dump($db->singleQuery("SELECT data FROM test_db WHERE id=6"));
++var_dump($db->singleQuery("SELECT * FROM test_db WHERE id < 5"));
++var_dump($db->singleQuery("SELECT * FROM test db WHERE id < 4"));
++var_dump($db->singleQuery("SELECT * FROM test_db WHERE id=999999"));
++var_dump($db->singleQuery("SELECT id FROM test_db WHERE id=5", FALSE));
++
++echo "DONE!\n";
++?>
++--EXPECTF--
++string(1) "5"
++string(1) "4"
++string(5) "5data"
++array(4) {
++ [0]=>
++ string(1) "1"
++ [1]=>
++ string(1) "2"
++ [2]=>
++ string(1) "3"
++ [3]=>
++ string(1) "4"
++}
++
++Warning: SQLiteDatabase::singleQuery(): no such table: test in %s on line %d
++bool(false)
++NULL
++array(1) {
++ [0]=>
++ string(1) "5"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_022.phpt
+@@ -0,0 +1,98 @@
++--TEST--
++sqlite-oo: sqlite::seek
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++$db->query("CREATE TABLE strings(a)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('$str')");
++}
++
++$res = $db->query("SELECT a FROM strings", SQLITE_NUM);
++for ($idx = -1; $idx < 4; $idx++) {
++ echo "====SEEK:$idx====\n";
++ $res->seek($idx);
++ var_dump($res->current());
++}
++echo "====AGAIN====\n";
++for ($idx = -1; $idx < 4; $idx++) {
++ echo "====SEEK:$idx====\n";
++ $res->seek($idx);
++ var_dump($res->current());
++}
++echo "====DONE!====\n";
++?>
++--EXPECTF--
++====SEEK:-1====
++
++Warning: SQLiteResult::seek(): row -1 out of range in %ssqlite_oo_022.php on line %d
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++====SEEK:0====
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++====SEEK:1====
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++====SEEK:2====
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====SEEK:3====
++
++Warning: SQLiteResult::seek(): row 3 out of range in %ssqlite_oo_022.php on line %d
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====AGAIN====
++====SEEK:-1====
++
++Warning: SQLiteResult::seek(): row -1 out of range in %ssqlite_oo_022.php on line %d
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====SEEK:0====
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++====SEEK:1====
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++====SEEK:2====
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====SEEK:3====
++
++Warning: SQLiteResult::seek(): row 3 out of range in %ssqlite_oo_022.php on line %d
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====DONE!====
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_024.phpt
+@@ -0,0 +1,74 @@
++--TEST--
++sqlite-oo: sqlite::fetch_object
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++class class24 {
++ function __construct() {
++ echo __METHOD__ . "\n";
++ }
++}
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++$db->query("CREATE TABLE strings(a)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('$str')");
++}
++
++echo "====class24====\n";
++$res = $db->query("SELECT a FROM strings", SQLITE_ASSOC);
++while ($res->valid()) {
++ var_dump($res->fetchObject('class24'));
++}
++
++echo "====stdclass====\n";
++$res = $db->query("SELECT a FROM strings", SQLITE_ASSOC);
++while ($res->valid()) {
++ var_dump($res->fetchObject());
++}
++
++echo "====DONE!====\n";
++?>
++--EXPECTF--
++====class24====
++class24::__construct
++object(class24)#%d (1) {
++ ["a"]=>
++ string(3) "one"
++}
++class24::__construct
++object(class24)#%d (1) {
++ ["a"]=>
++ string(3) "two"
++}
++class24::__construct
++object(class24)#%d (1) {
++ ["a"]=>
++ string(5) "three"
++}
++====stdclass====
++object(stdClass)#%d (1) {
++ ["a"]=>
++ string(3) "one"
++}
++object(stdClass)#%d (1) {
++ ["a"]=>
++ string(3) "two"
++}
++object(stdClass)#%d (1) {
++ ["a"]=>
++ string(5) "three"
++}
++====DONE!====
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_025.phpt
+@@ -0,0 +1,103 @@
++--TEST--
++sqlite-oo: sqlite / foreach
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip";
++?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++$db->query("CREATE TABLE strings(a VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('$str')");
++}
++
++echo "====UNBUFFERED====\n";
++$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
++//var_dump(class_implements($r));
++foreach($r as $row) {
++ var_dump($row);
++}
++echo "====NO-MORE====\n";
++foreach($r as $row) {
++ var_dump($row);
++}
++echo "====DIRECT====\n";
++foreach($db->unbufferedQuery("SELECT a from strings", SQLITE_NUM) as $row) {
++ var_dump($row);
++}
++echo "====BUFFERED====\n";
++$r = $db->query("SELECT a from strings", SQLITE_NUM);
++//var_dump(class_implements($r));
++foreach($r as $row) {
++ var_dump($row);
++}
++foreach($r as $row) {
++ var_dump($row);
++}
++echo "DONE!\n";
++?>
++--EXPECT--
++====UNBUFFERED====
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====NO-MORE====
++====DIRECT====
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++====BUFFERED====
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++array(1) {
++ [0]=>
++ string(3) "one"
++}
++array(1) {
++ [0]=>
++ string(3) "two"
++}
++array(1) {
++ [0]=>
++ string(5) "three"
++}
++DONE!
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_026.phpt
+@@ -0,0 +1,56 @@
++--TEST--
++sqlite-oo: unbuffered
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip";
++?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array(
++ "one",
++ "two",
++ "three"
++ );
++
++$db->query("CREATE TABLE strings(a VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('$str')");
++}
++
++echo "====FOREACH====\n";
++$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
++foreach($r as $idx => $row) {
++ var_dump($row[0]);
++ var_dump($row[0]);
++}
++echo "====FOR====\n";
++$r = $db->unbufferedQuery("SELECT a from strings", SQLITE_NUM);
++for(;$r->valid(); $r->next()) {
++ $v = $r->column(0);
++ var_dump($v);
++ $c = $r->column(0);
++ var_dump(is_null($c) || $c==$v);
++}
++echo "===DONE===\n";
++?>
++--EXPECT--
++====FOREACH====
++string(3) "one"
++string(3) "one"
++string(3) "two"
++string(3) "two"
++string(5) "three"
++string(5) "three"
++====FOR====
++string(3) "one"
++bool(true)
++string(3) "two"
++bool(true)
++string(5) "three"
++bool(true)
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_027.phpt
+@@ -0,0 +1,42 @@
++--TEST--
++sqlite-oo: changes
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip";
++?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$data = array("one", "two", "three");
++
++$db->query("CREATE TABLE strings(a VARCHAR)");
++
++foreach ($data as $str) {
++ $db->query("INSERT INTO strings VALUES('$str')");
++ echo $db->changes() . "\n";
++}
++
++$db->query("UPDATE strings SET a='foo' WHERE a!='two'");
++echo $db->changes() . "\n";
++
++$db->query("DELETE FROM strings WHERE 1");
++echo $db->changes() . "\n";
++
++$str = '';
++foreach ($data as $s) {
++ $str .= "INSERT INTO strings VALUES('".$s."');";
++}
++$db->query($str);
++echo $db->changes() . "\n";
++
++?>
++--EXPECT--
++1
++1
++1
++2
++3
++3
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_028.phpt
+@@ -0,0 +1,25 @@
++--TEST--
++sqlite-oo: sqlite_fetch_column_types
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$db->query("CREATE TABLE strings(a, b INTEGER, c VARCHAR(10), d)");
++$db->query("INSERT INTO strings VALUES('1', '2', '3', 'abc')");
++
++var_dump($db->fetchColumnTypes("strings"));
++?>
++--EXPECT--
++array(4) {
++ ["a"]=>
++ string(0) ""
++ ["b"]=>
++ string(7) "INTEGER"
++ ["c"]=>
++ string(11) "VARCHAR(10)"
++ ["d"]=>
++ string(0) ""
++}
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_029.phpt
+@@ -0,0 +1,53 @@
++--TEST--
++sqlite-oo: call method with $this
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip";
++?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$db->query("CREATE TABLE strings(key VARCHAR(10), var VARCHAR(10))");
++$db->query("INSERT INTO strings VALUES('foo', 'foo')");
++
++class sqlite_help
++{
++ function __construct($db){
++ $this->db = $db;
++ $this->db->createFunction('link_keywords', array(&$this, 'linkers'), 1);
++ }
++
++ function getSingle($key)
++ {
++ return $this->db->singleQuery('SELECT link_keywords(var) FROM strings WHERE key=\''.$key.'\'', 1);
++ }
++
++ function linkers($str)
++ {
++ $str = str_replace('foo', 'bar', $str);
++ return $str;
++ }
++
++ function free()
++ {
++ unset($this->db);
++ }
++
++ function __destruct()
++ {
++ echo "DESTRUCTED\n";
++ }
++}
++
++$obj = new sqlite_help($db);
++echo $obj->getSingle('foo')."\n";
++$obj->free();
++unset($obj);
++
++?>
++===DONE===
++--EXPECT--
++bar
++===DONE===
++DESTRUCTED
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_oo_030.phpt
+@@ -0,0 +1,44 @@
++--TEST--
++sqlite-oo: calling static methods
++--INI--
++sqlite.assoc_case=0
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip";
++?>
++--FILE--
++<?php
++
++require_once('blankdb_oo.inc');
++
++class foo {
++ static function bar($param = NULL) {
++ return $param;
++ }
++}
++
++function baz($param = NULL) {
++ return $param;
++}
++
++var_dump($db->singleQuery("select php('baz')", 1));
++var_dump($db->singleQuery("select php('baz', 1)", 1));
++var_dump($db->singleQuery("select php('baz', \"PHP\")", 1));
++var_dump($db->singleQuery("select php('foo::bar')", 1));
++var_dump($db->singleQuery("select php('foo::bar', 1)", 1));
++var_dump($db->singleQuery("select php('foo::bar', \"PHP\")", 1));
++var_dump($db->singleQuery("select php('foo::bar(\"PHP\")')", 1));
++
++?>
++===DONE===
++--EXPECTF--
++NULL
++string(1) "1"
++string(3) "PHP"
++NULL
++string(1) "1"
++string(3) "PHP"
++
++Warning: SQLiteDatabase::singleQuery(): function `foo::bar("PHP")' is not a function name in %ssqlite_oo_030.php on line %d
++bool(false)
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_popen_basic.phpt
+@@ -0,0 +1,27 @@
++--TEST--
++SQLite: sqlite_popen() basic tests
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip"; ?>
++--FILE--
++<?php
++/* Prototype : resource sqlite_popen(string filename [, int mode [, string &error_message]])
++ * Description: Opens a persistent handle to a SQLite database. Will create the database if it does not exist.
++ * Source code: ext/sqlite/sqlite.c
++ * Alias to functions:
++*/
++
++ $db1 = sqlite_popen(":memory:");
++ $db2 = sqlite_popen(":memory:");
++
++ var_dump($db1);
++ var_dump($db2);
++
++ list($resourceId1) = sscanf((string) $db1, "resource(%d) of type (sqlite database (persistent))");
++ list($resourceId2) = sscanf((string) $db2, "resource(%d) of type (sqlite database (persistent))");
++
++ var_dump($resourceId1 === $resourceId2);
++?>
++--EXPECTF--
++resource(%d) of type (sqlite database (persistent))
++resource(%d) of type (sqlite database (persistent))
++bool(true)
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_popen_error.phpt
+@@ -0,0 +1,34 @@
++--TEST--
++Test sqlite_popen() function : error conditions
++--SKIPIF--
++<?php if (!extension_loaded("sqlite")) print "skip sqlite extension not loaded"; ?>
++--FILE--
++<?php
++/* Prototype : resource sqlite_popen(string filename [, int mode [, string &error_message]])
++ * Description: Opens a persistent handle to a SQLite database. Will create the database if it does not exist.
++ * Source code: ext/sqlite/sqlite.c
++ * Alias to functions:
++ */
++
++$message = '';
++
++echo "*** Testing sqlite_popen() : error conditions ***\n";
++
++var_dump( sqlite_popen() );
++var_dump( sqlite_popen(":memory:", 0666, $message, 'foobar') );
++var_dump( sqlite_popen("", 0666, $message) );
++var_dump( $message );
++
++?>
++===DONE===
++--EXPECTF--
++*** Testing sqlite_popen() : error conditions ***
++
++Warning: sqlite_popen() expects at least 1 parameter, 0 given in %s on line %d
++NULL
++
++Warning: sqlite_popen() expects at most 3 parameters, 4 given in %s on line %d
++NULL
++bool(false)
++NULL
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_session_001.phpt
+@@ -0,0 +1,46 @@
++--TEST--
++sqlite, session storage test
++--CREDITS--
++Mats Lindh <mats at lindh.no>
++#Testfest php.no
++--INI--
++session.save_handler = sqlite
++--SKIPIF--
++if (!extension_loaded("session"))
++{
++ die("skip Session module not loaded");
++}
++if (!extension_loaded("sqlite"))
++{
++ die("skip Session module not loaded");
++}
++--FILE--
++<?php
++/* Description: Tests that sqlite can be used as a session save handler
++* Source code: ext/sqlite/sess_sqlite.c
++*/
++
++ob_start();
++session_save_path(__DIR__ . "/sessiondb.sdb");
++
++// create the session and set a session value
++session_start();
++$_SESSION["test"] = "foo_bar";
++
++// close the session and unset the value
++session_write_close();
++unset($_SESSION["test"]);
++var_dump(isset($_SESSION["test"]));
++
++// start the session again and check that we have the proper value
++session_start();
++var_dump($_SESSION["test"]);
++ob_end_flush();
++?>
++--EXPECTF--
++bool(false)
++%unicode|string%(7) "foo_bar"
++--CLEAN--
++<?php
++ unlink(__DIR__ . "/sessiondb.sdb")
++?>
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_session_002.phpt
+@@ -0,0 +1,54 @@
++--TEST--
++sqlite, session destroy test
++--CREDITS--
++Mats Lindh <mats at lindh.no>
++#Testfest php.no
++--INI--
++session.save_handler = sqlite
++--SKIPIF--
++if (!extension_loaded("session"))
++{
++ die("skip Session module not loaded");
++}
++if (!extension_loaded("sqlite"))
++{
++ die("skip sqlite module not loaded");
++}
++--FILE--
++<?php
++/* Description: Tests that sqlite will destroy a session when used as a session handler
++* Source code: ext/sqlite/sess_sqlite.c
++*/
++ob_start();
++session_save_path(__DIR__ . "/sessiondb.sdb");
++
++// start a session and save a value to it before commiting the session to the database
++session_start();
++$_SESSION["test"] = "foo_bar";
++session_write_close();
++
++// remove the session value
++unset($_SESSION["test"]);
++var_dump(isset($_SESSION["test"]));
++
++// start the session again and destroy it
++session_start();
++var_dump($_SESSION["test"]);
++session_destroy();
++session_write_close();
++
++unset($_SESSION["test"]);
++
++// check that the session has been destroyed
++session_start();
++var_dump(isset($_SESSION["test"]));
++ob_end_flush();
++?>
++--EXPECTF--
++bool(false)
++%unicode|string%(7) "foo_bar"
++bool(false)
++--CLEAN--
++<?php
++ unlink(__DIR__ . "/sessiondb.sdb")
++?>
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_spl_001.phpt
+@@ -0,0 +1,125 @@
++--TEST--
++sqlite-spl: Iteration
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip";
++if (!extension_loaded("spl")) print "skip SPL is not present";
++?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$db->query("CREATE TABLE menu(id_l int PRIMARY KEY, id_r int UNIQUE, key VARCHAR(10))");
++$db->query("INSERT INTO menu VALUES( 1, 12, 'A')");
++$db->query("INSERT INTO menu VALUES( 2, 9, 'B')");
++$db->query("INSERT INTO menu VALUES(10, 11, 'F')");
++$db->query("INSERT INTO menu VALUES( 3, 6, 'C')");
++$db->query("INSERT INTO menu VALUES( 7, 8, 'E')");
++$db->query("INSERT INTO menu VALUES( 4, 5, 'D')");
++
++class SqliteNestedsetElement
++{
++ protected $id_l;
++ protected $id_r;
++ protected $key;
++
++ function __construct($db)
++ {
++ $this->db = $db;
++ }
++
++ function getLeft()
++ {
++ return $this->id_l;
++ }
++
++ function getRight()
++ {
++ return $this->id_r;
++ }
++
++ function __toString()
++ {
++ return $this->key;
++ }
++
++ function key()
++ {
++ return $this->key;
++ }
++}
++
++class SqliteNestedset implements RecursiveIterator
++{
++ protected $id;
++ protected $id_l;
++ protected $id_r;
++ protected $entry;
++
++ function __construct($db, $id_l = 1)
++ {
++ $this->db = $db;
++ $this->id_l = $id_l;
++ $this->id_r = $this->db->singleQuery('SELECT id_r FROM menu WHERE id_l='.$id_l, 1);
++ $this->id = $id_l;
++ }
++
++ function rewind()
++ {
++ $this->id = $this->id_l;
++ $this->fetch();
++ }
++
++ function valid()
++ {
++ return is_object($this->entry);
++ }
++
++ function current()
++ {
++ return $this->entry->__toString();
++ }
++
++ function key()
++ {
++ return $this->entry->key();;
++ }
++
++ function next()
++ {
++ $this->id = $this->entry->getRight() + 1;
++ $this->fetch();
++ }
++
++ protected function fetch()
++ {
++ $res = $this->db->unbufferedQuery('SELECT * FROM menu WHERE id_l='.$this->id);
++ $this->entry = $res->fetchObject('SqliteNestedsetElement', array(&$this->db));
++ unset($res);
++ }
++
++ function hasChildren()
++ {
++ return $this->entry->getLeft() + 1 < $this->entry->getRight();
++ }
++
++ function getChildren()
++ {
++ return new SqliteNestedset($this->db, $this->entry->getLeft() + 1, $this->entry->getRight() - 1);
++ }
++}
++
++$menu_iterator = new RecursiveIteratorIterator(new SqliteNestedset($db), RecursiveIteratorIterator::SELF_FIRST);
++foreach($menu_iterator as $entry) {
++ echo $menu_iterator->getDepth() . $entry . "\n";
++}
++?>
++===DONE===
++--EXPECT--
++0A
++1B
++2C
++3D
++2E
++1F
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_spl_002.phpt
+@@ -0,0 +1,29 @@
++--TEST--
++sqlite-spl: Countable
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip";
++if (!extension_loaded("spl")) print "skip SPL is not present";
++?>
++--FILE--
++<?php
++include "blankdb_oo.inc";
++
++$db->query("CREATE TABLE menu(id_l int PRIMARY KEY, id_r int UNIQUE, key VARCHAR(10))");
++$db->query("INSERT INTO menu VALUES( 1, 12, 'A')");
++$db->query("INSERT INTO menu VALUES( 2, 9, 'B')");
++$db->query("INSERT INTO menu VALUES(10, 11, 'F')");
++$db->query("INSERT INTO menu VALUES( 3, 6, 'C')");
++$db->query("INSERT INTO menu VALUES( 7, 8, 'E')");
++$db->query("INSERT INTO menu VALUES( 4, 5, 'D')");
++
++$res = $db->query("SELECT * from menu");
++
++var_dump($res->count());
++var_dump(count($res));
++?>
++===DONE===
++--EXPECT--
++int(6)
++int(6)
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/tests/sqlite_spl_003.phpt
+@@ -0,0 +1,28 @@
++--TEST--
++sqlite-spl: Exception
++--SKIPIF--
++<?php # vim:ft=php
++if (!extension_loaded("sqlite")) print "skip";
++if (!extension_loaded("spl")) print "skip SPL is not present";
++?>
++--FILE--
++<?php
++
++try
++{
++ $db = sqlite_factory();
++}
++catch(SQLiteException $e)
++{
++ $parents = class_parents($e);
++ if (array_key_exists('RuntimeException', $parents))
++ {
++ echo "GOOD\n";
++ }
++}
++
++?>
++===DONE===
++--EXPECT--
++GOOD
++===DONE===
+--- /dev/null
++++ b/ext/sqlite/TODO
+@@ -0,0 +1,19 @@
++- Implement a PDO driver, called sqlite2
++
++- Transparent binary encoding of return values from PHP callback functions.
++
++- Add user-space callback for the authorizer function (this is potentially
++ very slow, so it needs to be implemented carefully).
++
++- Add user-space callback to handle busy databases.
++
++ o Test how robust we are when a user-space function is registered as
++ a callback for a persistent connection in script A, then script B is
++ called that doesn't register the callback but does make use of the
++ function in an SQL query.
++ --> Our test suite doesn't allow us to test persistent connections
++ at this time :/
++
++- Use later version of built-in library
++
++vim:tw=78