MIPS: math-emu: Unify ieee754sp_m{add,sub}f
authorPaul Burton <paul.burton@imgtec.com>
Thu, 21 Apr 2016 13:04:49 +0000 (14:04 +0100)
committerRalf Baechle <ralf@linux-mips.org>
Fri, 13 May 2016 12:02:22 +0000 (14:02 +0200)
The code for emulating MIPSr6 madd.s & msub.s instructions has
previously been implemented as 2 different functions, namely
ieee754sp_maddf & ieee754sp_msubf. The difference in behaviour of these
2 instructions is merely the sign of the product, so we can easily share
the code implementing them. Do this for the single precision variant,
removing the original ieee754sp_msubf in favor of reusing the code from
ieee754sp_maddf.

Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/13154/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
arch/mips/math-emu/Makefile
arch/mips/math-emu/sp_maddf.c
arch/mips/math-emu/sp_msubf.c [deleted file]

index a19641d3ac23cacdb327fdfaecd2b40924d0d6f5..3389aff217833a3d3e3ccbf4ec8ab8c228481fc8 100644 (file)
@@ -6,7 +6,7 @@ obj-y   += cp1emu.o ieee754dp.o ieee754sp.o ieee754.o \
           dp_div.o dp_mul.o dp_sub.o dp_add.o dp_fsp.o dp_cmp.o dp_simple.o \
           dp_tint.o dp_fint.o dp_maddf.o dp_msubf.o dp_2008class.o dp_fmin.o dp_fmax.o \
           sp_div.o sp_mul.o sp_sub.o sp_add.o sp_fdp.o sp_cmp.o sp_simple.o \
-          sp_tint.o sp_fint.o sp_maddf.o sp_msubf.o sp_2008class.o sp_fmin.o sp_fmax.o \
+          sp_tint.o sp_fint.o sp_maddf.o sp_2008class.o sp_fmin.o sp_fmax.o \
           dsemul.o
 
 lib-y  += ieee754d.o \
index dd1dd83e34eb0ba604a2b88c9e4db20c96174d8c..93b7132d60e2addf4aa7eec6eaa6bcc04b96b75e 100644 (file)
 
 #include "ieee754sp.h"
 
-union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
-                               union ieee754sp y)
+enum maddf_flags {
+       maddf_negate_product    = 1 << 0,
+};
+
+static union ieee754sp _sp_maddf(union ieee754sp z, union ieee754sp x,
+                                union ieee754sp y, enum maddf_flags flags)
 {
        int re;
        int rs;
@@ -154,6 +158,8 @@ union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
 
        re = xe + ye;
        rs = xs ^ ys;
+       if (flags & maddf_negate_product)
+               rs ^= 1;
 
        /* shunt to top of word */
        xm <<= 32 - (SP_FBITS + 1);
@@ -253,3 +259,15 @@ union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
        }
        return ieee754sp_format(zs, ze, zm);
 }
+
+union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
+                               union ieee754sp y)
+{
+       return _sp_maddf(z, x, y, 0);
+}
+
+union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x,
+                               union ieee754sp y)
+{
+       return _sp_maddf(z, x, y, maddf_negate_product);
+}
diff --git a/arch/mips/math-emu/sp_msubf.c b/arch/mips/math-emu/sp_msubf.c
deleted file mode 100644 (file)
index 81c38b9..0000000
+++ /dev/null
@@ -1,258 +0,0 @@
-/*
- * IEEE754 floating point arithmetic
- * single precision: MSUB.f (Fused Multiply Subtract)
- * MSUBF.fmt: FPR[fd] = FPR[fd] - (FPR[fs] x FPR[ft])
- *
- * MIPS floating point support
- * Copyright (C) 2015 Imagination Technologies, Ltd.
- * Author: Markos Chandras <markos.chandras@imgtec.com>
- *
- *  This program is free software; you can distribute it and/or modify it
- *  under the terms of the GNU General Public License as published by the
- *  Free Software Foundation; version 2 of the License.
- */
-
-#include "ieee754sp.h"
-
-union ieee754sp ieee754sp_msubf(union ieee754sp z, union ieee754sp x,
-                               union ieee754sp y)
-{
-       int re;
-       int rs;
-       unsigned rm;
-       unsigned short lxm;
-       unsigned short hxm;
-       unsigned short lym;
-       unsigned short hym;
-       unsigned lrm;
-       unsigned hrm;
-       unsigned t;
-       unsigned at;
-       int s;
-
-       COMPXSP;
-       COMPYSP;
-       u32 zm; int ze; int zs __maybe_unused; int zc;
-
-       EXPLODEXSP;
-       EXPLODEYSP;
-       EXPLODESP(z, zc, zs, ze, zm)
-
-       FLUSHXSP;
-       FLUSHYSP;
-       FLUSHSP(z, zc, zs, ze, zm);
-
-       ieee754_clearcx();
-
-       switch (zc) {
-       case IEEE754_CLASS_SNAN:
-               ieee754_setcx(IEEE754_INVALID_OPERATION);
-               return ieee754sp_nanxcpt(z);
-       case IEEE754_CLASS_DNORM:
-               SPDNORMx(zm, ze);
-       /* QNAN is handled separately below */
-       }
-
-       switch (CLPAIR(xc, yc)) {
-       case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
-       case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
-       case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
-       case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
-       case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
-               return ieee754sp_nanxcpt(y);
-
-       case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
-       case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
-       case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
-       case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
-       case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
-       case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
-               return ieee754sp_nanxcpt(x);
-
-       case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
-       case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
-       case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
-       case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
-               return y;
-
-       case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
-       case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
-       case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
-       case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
-       case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
-               return x;
-
-       /*
-        * Infinity handling
-        */
-       case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
-       case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
-               if (zc == IEEE754_CLASS_QNAN)
-                       return z;
-               ieee754_setcx(IEEE754_INVALID_OPERATION);
-               return ieee754sp_indef();
-
-       case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
-       case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
-       case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
-       case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
-       case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
-               if (zc == IEEE754_CLASS_QNAN)
-                       return z;
-               return ieee754sp_inf(xs ^ ys);
-
-       case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
-       case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
-       case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
-       case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
-       case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
-               if (zc == IEEE754_CLASS_INF)
-                       return ieee754sp_inf(zs);
-               /* Multiplication is 0 so just return z */
-               return z;
-
-       case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
-               SPDNORMX;
-
-       case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
-               if (zc == IEEE754_CLASS_QNAN)
-                       return z;
-               else if (zc == IEEE754_CLASS_INF)
-                       return ieee754sp_inf(zs);
-               SPDNORMY;
-               break;
-
-       case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
-               if (zc == IEEE754_CLASS_QNAN)
-                       return z;
-               else if (zc == IEEE754_CLASS_INF)
-                       return ieee754sp_inf(zs);
-               SPDNORMX;
-               break;
-
-       case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
-               if (zc == IEEE754_CLASS_QNAN)
-                       return z;
-               else if (zc == IEEE754_CLASS_INF)
-                       return ieee754sp_inf(zs);
-               /* fall through to real compuation */
-       }
-
-       /* Finally get to do some computation */
-
-       /*
-        * Do the multiplication bit first
-        *
-        * rm = xm * ym, re = xe + ye basically
-        *
-        * At this point xm and ym should have been normalized.
-        */
-
-       /* rm = xm * ym, re = xe+ye basically */
-       assert(xm & SP_HIDDEN_BIT);
-       assert(ym & SP_HIDDEN_BIT);
-
-       re = xe + ye;
-       rs = xs ^ ys;
-
-       /* shunt to top of word */
-       xm <<= 32 - (SP_FBITS + 1);
-       ym <<= 32 - (SP_FBITS + 1);
-
-       /*
-        * Multiply 32 bits xm, ym to give high 32 bits rm with stickness.
-        */
-       lxm = xm & 0xffff;
-       hxm = xm >> 16;
-       lym = ym & 0xffff;
-       hym = ym >> 16;
-
-       lrm = lxm * lym;        /* 16 * 16 => 32 */
-       hrm = hxm * hym;        /* 16 * 16 => 32 */
-
-       t = lxm * hym; /* 16 * 16 => 32 */
-       at = lrm + (t << 16);
-       hrm += at < lrm;
-       lrm = at;
-       hrm = hrm + (t >> 16);
-
-       t = hxm * lym; /* 16 * 16 => 32 */
-       at = lrm + (t << 16);
-       hrm += at < lrm;
-       lrm = at;
-       hrm = hrm + (t >> 16);
-
-       rm = hrm | (lrm != 0);
-
-       /*
-        * Sticky shift down to normal rounding precision.
-        */
-       if ((int) rm < 0) {
-               rm = (rm >> (32 - (SP_FBITS + 1 + 3))) |
-                   ((rm << (SP_FBITS + 1 + 3)) != 0);
-               re++;
-       } else {
-               rm = (rm >> (32 - (SP_FBITS + 1 + 3 + 1))) |
-                    ((rm << (SP_FBITS + 1 + 3 + 1)) != 0);
-       }
-       assert(rm & (SP_HIDDEN_BIT << 3));
-
-       /* And now the subtraction */
-
-       /* Flip sign of r and handle as add */
-       rs ^= 1;
-
-       assert(zm & SP_HIDDEN_BIT);
-
-       /*
-        * Provide guard,round and stick bit space.
-        */
-       zm <<= 3;
-
-       if (ze > re) {
-               /*
-                * Have to shift y fraction right to align.
-                */
-               s = ze - re;
-               SPXSRSYn(s);
-       } else if (re > ze) {
-               /*
-                * Have to shift x fraction right to align.
-                */
-               s = re - ze;
-               SPXSRSYn(s);
-       }
-       assert(ze == re);
-       assert(ze <= SP_EMAX);
-
-       if (zs == rs) {
-               /*
-                * Generate 28 bit result of adding two 27 bit numbers
-                * leaving result in zm, zs and ze.
-                */
-               zm = zm + rm;
-
-               if (zm >> (SP_FBITS + 1 + 3)) { /* carry out */
-                       SPXSRSX1(); /* shift preserving sticky */
-               }
-       } else {
-               if (zm >= rm) {
-                       zm = zm - rm;
-               } else {
-                       zm = rm - zm;
-                       zs = rs;
-               }
-               if (zm == 0)
-                       return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
-
-               /*
-                * Normalize in extended single precision
-                */
-               while ((zm >> (SP_MBITS + 3)) == 0) {
-                       zm <<= 1;
-                       ze--;
-               }
-
-       }
-       return ieee754sp_format(zs, ze, zm);
-}