* available in the platform for running secure guests is hotplugged.
* Whenever a page belonging to the guest becomes secure, a page from this
* private device memory is used to represent and track that secure page
- * on the HV side.
+ * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
+ * shared between UV and HV. However such pages aren't represented by
+ * device private memory and mappings to shared memory exist in both
+ * UV and HV page tables.
*/
/*
* UV splits and remaps the 2MB page if necessary and copies out the
* required 64K page contents.
*
+ * Shared pages: Whenever guest shares a secure page, UV will split and
+ * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
+ *
* In summary, the current secure pages handling code in HV assumes
* 64K page size and in fact fails any page-in/page-out requests of
* non-64K size upfront. If and when UV starts supporting multiple
struct kvmppc_uvmem_page_pvt {
struct kvm *kvm;
unsigned long gpa;
+ bool skip_page_out;
};
int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
return ret;
}
+/*
+ * Shares the page with HV, thus making it a normal page.
+ *
+ * - If the page is already secure, then provision a new page and share
+ * - If the page is a normal page, share the existing page
+ *
+ * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
+ * to unmap the device page from QEMU's page tables.
+ */
+static unsigned long
+kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift)
+{
+
+ int ret = H_PARAMETER;
+ struct page *uvmem_page;
+ struct kvmppc_uvmem_page_pvt *pvt;
+ unsigned long pfn;
+ unsigned long gfn = gpa >> page_shift;
+ int srcu_idx;
+ unsigned long uvmem_pfn;
+
+ srcu_idx = srcu_read_lock(&kvm->srcu);
+ mutex_lock(&kvm->arch.uvmem_lock);
+ if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
+ uvmem_page = pfn_to_page(uvmem_pfn);
+ pvt = uvmem_page->zone_device_data;
+ pvt->skip_page_out = true;
+ }
+
+retry:
+ mutex_unlock(&kvm->arch.uvmem_lock);
+ pfn = gfn_to_pfn(kvm, gfn);
+ if (is_error_noslot_pfn(pfn))
+ goto out;
+
+ mutex_lock(&kvm->arch.uvmem_lock);
+ if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
+ uvmem_page = pfn_to_page(uvmem_pfn);
+ pvt = uvmem_page->zone_device_data;
+ pvt->skip_page_out = true;
+ kvm_release_pfn_clean(pfn);
+ goto retry;
+ }
+
+ if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift))
+ ret = H_SUCCESS;
+ kvm_release_pfn_clean(pfn);
+ mutex_unlock(&kvm->arch.uvmem_lock);
+out:
+ srcu_read_unlock(&kvm->srcu, srcu_idx);
+ return ret;
+}
+
/*
* H_SVM_PAGE_IN: Move page from normal memory to secure memory.
+ *
+ * H_PAGE_IN_SHARED flag makes the page shared which means that the same
+ * memory in is visible from both UV and HV.
*/
unsigned long
kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
if (page_shift != PAGE_SHIFT)
return H_P3;
- if (flags)
+ if (flags & ~H_PAGE_IN_SHARED)
return H_P2;
+ if (flags & H_PAGE_IN_SHARED)
+ return kvmppc_share_page(kvm, gpa, page_shift);
+
ret = H_PARAMETER;
srcu_idx = srcu_read_lock(&kvm->srcu);
down_write(&kvm->mm->mmap_sem);
unsigned long src_pfn, dst_pfn = 0;
struct migrate_vma mig;
struct page *dpage, *spage;
+ struct kvmppc_uvmem_page_pvt *pvt;
unsigned long pfn;
int ret = U_SUCCESS;
}
lock_page(dpage);
+ pvt = spage->zone_device_data;
pfn = page_to_pfn(dpage);
- ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
- gpa, 0, page_shift);
+ /*
+ * This function is used in two cases:
+ * - When HV touches a secure page, for which we do UV_PAGE_OUT
+ * - When a secure page is converted to shared page, we *get*
+ * the page to essentially unmap the device page. In this
+ * case we skip page-out.
+ */
+ if (!pvt->skip_page_out)
+ ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
+ gpa, 0, page_shift);
+
if (ret == U_SUCCESS)
*mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED;
else {