#endif
/*
- * Despite its name it doesn't necessarily has to be a full barrier.
- * It should only guarantee that a STORE before the critical section
- * can not be reordered with LOADs and STOREs inside this section.
- * spin_lock() is the one-way barrier, this LOAD can not escape out
- * of the region. So the default implementation simply ensures that
- * a STORE can not move into the critical section, smp_wmb() should
- * serialize it with another STORE done by spin_lock().
+ * This barrier must provide two things:
+ *
+ * - it must guarantee a STORE before the spin_lock() is ordered against a
+ * LOAD after it, see the comments at its two usage sites.
+ *
+ * - it must ensure the critical section is RCsc.
+ *
+ * The latter is important for cases where we observe values written by other
+ * CPUs in spin-loops, without barriers, while being subject to scheduling.
+ *
+ * CPU0 CPU1 CPU2
+ *
+ * for (;;) {
+ * if (READ_ONCE(X))
+ * break;
+ * }
+ * X=1
+ * <sched-out>
+ * <sched-in>
+ * r = X;
+ *
+ * without transitivity it could be that CPU1 observes X!=0 breaks the loop,
+ * we get migrated and CPU2 sees X==0.
+ *
+ * Since most load-store architectures implement ACQUIRE with an smp_mb() after
+ * the LL/SC loop, they need no further barriers. Similarly all our TSO
+ * architectures imply an smp_mb() for each atomic instruction and equally don't
+ * need more.
+ *
+ * Architectures that can implement ACQUIRE better need to take care.
*/
- #ifndef smp_mb__before_spinlock
- #define smp_mb__before_spinlock() smp_wmb()
+ #ifndef smp_mb__after_spinlock
+ #define smp_mb__after_spinlock() do { } while (0)
#endif
-/**
- * raw_spin_unlock_wait - wait until the spinlock gets unlocked
- * @lock: the spinlock in question.
- */
-#define raw_spin_unlock_wait(lock) arch_spin_unlock_wait(&(lock)->raw_lock)
-
#ifdef CONFIG_DEBUG_SPINLOCK
extern void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock);
#define do_raw_spin_lock_flags(lock, flags) do_raw_spin_lock(lock)