--- /dev/null
+From 30367636930864f71b2bd462adedcf8484313864 Mon Sep 17 00:00:00 2001
+From: Linus Walleij <linus.walleij@linaro.org>
+Date: Sun, 23 Oct 2022 16:47:06 +0200
+Subject: [PATCH 02/29] usb: fotg210: Collect pieces of dual mode controller
+
+The Faraday FOTG210 is a dual-mode OTG USB controller that can
+act as host, peripheral or both. To be able to probe from one
+hardware description and to follow the pattern of other dual-
+mode controllers such as MUSB or MTU3 we need to collect the
+two, currently completely separate drivers in the same
+directory.
+
+After this, users need to select the main symbol USB_FOTG210
+and then each respective subdriver. We pave the road to
+compile both drivers into the same kernel and select the
+one we want to use at probe() time, and possibly add OTG
+support in the end.
+
+This patch doesn't do much more than create the new symbol
+and collect the drivers in one place. We also add a comment
+for the section of dual-mode controllers in the Kconfig
+file so people can see what these selections are about.
+
+Also add myself as maintainer as there has been little
+response on my patches to these drivers.
+
+Cc: Fabian Vogt <fabian@ritter-vogt.de>
+Cc: Yuan-Hsin Chen <yhchen@faraday-tech.com>
+Cc: Felipe Balbi <balbi@kernel.org>
+Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
+Link: https://lore.kernel.org/r/20221023144708.3596563-1-linus.walleij@linaro.org
+Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
+---
+--- a/drivers/usb/Kconfig
++++ b/drivers/usb/Kconfig
+@@ -111,8 +111,12 @@ source "drivers/usb/usbip/Kconfig"
+
+ endif
+
++comment "USB dual-mode controller drivers"
++
+ source "drivers/usb/cdns3/Kconfig"
+
++source "drivers/usb/fotg210/Kconfig"
++
+ source "drivers/usb/mtu3/Kconfig"
+
+ source "drivers/usb/musb/Kconfig"
+--- a/drivers/usb/Makefile
++++ b/drivers/usb/Makefile
+@@ -17,6 +17,8 @@ obj-$(CONFIG_USB_CDNS_SUPPORT) += cdns3/
+ obj-$(CONFIG_USB_CDNS3) += cdns3/
+ obj-$(CONFIG_USB_CDNSP_PCI) += cdns3/
+
++obj-$(CONFIG_USB_FOTG210) += fotg210/
++
+ obj-$(CONFIG_USB_MON) += mon/
+ obj-$(CONFIG_USB_MTU3) += mtu3/
+
+--- /dev/null
++++ b/drivers/usb/fotg210/Kconfig
+@@ -0,0 +1,36 @@
++# SPDX-License-Identifier: GPL-2.0
++
++config USB_FOTG210
++ tristate "Faraday FOTG210 USB2 Dual Role controller"
++ depends on USB || USB_GADGET
++ depends on HAS_DMA && HAS_IOMEM
++ default ARCH_GEMINI
++ help
++ Faraday FOTG210 is a dual-mode USB controller that can act
++ in both host controller and peripheral controller mode.
++
++if USB_FOTG210
++
++config USB_FOTG210_HCD
++ tristate "Faraday FOTG210 USB Host Controller support"
++ depends on USB
++ help
++ Faraday FOTG210 is an OTG controller which can be configured as
++ an USB2.0 host. It is designed to meet USB2.0 EHCI specification
++ with minor modification.
++
++ To compile this driver as a module, choose M here: the
++ module will be called fotg210-hcd.
++
++config USB_FOTG210_UDC
++ depends on USB_GADGET
++ tristate "Faraday FOTG210 USB Peripheral Controller support"
++ help
++ Faraday USB2.0 OTG controller which can be configured as
++ high speed or full speed USB device. This driver suppports
++ Bulk Transfer so far.
++
++ Say "y" to link the driver statically, or "m" to build a
++ dynamically linked module called "fotg210-udc".
++
++endif
+--- /dev/null
++++ b/drivers/usb/fotg210/Makefile
+@@ -0,0 +1,3 @@
++# SPDX-License-Identifier: GPL-2.0
++obj-$(CONFIG_USB_FOTG210_HCD) += fotg210-hcd.o
++obj-$(CONFIG_USB_FOTG210_UDC) += fotg210-udc.o
+--- a/drivers/usb/host/fotg210-hcd.c
++++ /dev/null
+@@ -1,5727 +0,0 @@
+-// SPDX-License-Identifier: GPL-2.0+
+-/* Faraday FOTG210 EHCI-like driver
+- *
+- * Copyright (c) 2013 Faraday Technology Corporation
+- *
+- * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
+- * Feng-Hsin Chiang <john453@faraday-tech.com>
+- * Po-Yu Chuang <ratbert.chuang@gmail.com>
+- *
+- * Most of code borrowed from the Linux-3.7 EHCI driver
+- */
+-#include <linux/module.h>
+-#include <linux/of.h>
+-#include <linux/device.h>
+-#include <linux/dmapool.h>
+-#include <linux/kernel.h>
+-#include <linux/delay.h>
+-#include <linux/ioport.h>
+-#include <linux/sched.h>
+-#include <linux/vmalloc.h>
+-#include <linux/errno.h>
+-#include <linux/init.h>
+-#include <linux/hrtimer.h>
+-#include <linux/list.h>
+-#include <linux/interrupt.h>
+-#include <linux/usb.h>
+-#include <linux/usb/hcd.h>
+-#include <linux/moduleparam.h>
+-#include <linux/dma-mapping.h>
+-#include <linux/debugfs.h>
+-#include <linux/slab.h>
+-#include <linux/uaccess.h>
+-#include <linux/platform_device.h>
+-#include <linux/io.h>
+-#include <linux/iopoll.h>
+-#include <linux/clk.h>
+-
+-#include <asm/byteorder.h>
+-#include <asm/irq.h>
+-#include <asm/unaligned.h>
+-
+-#define DRIVER_AUTHOR "Yuan-Hsin Chen"
+-#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
+-static const char hcd_name[] = "fotg210_hcd";
+-
+-#undef FOTG210_URB_TRACE
+-#define FOTG210_STATS
+-
+-/* magic numbers that can affect system performance */
+-#define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
+-#define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
+-#define FOTG210_TUNE_RL_TT 0
+-#define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
+-#define FOTG210_TUNE_MULT_TT 1
+-
+-/* Some drivers think it's safe to schedule isochronous transfers more than 256
+- * ms into the future (partly as a result of an old bug in the scheduling
+- * code). In an attempt to avoid trouble, we will use a minimum scheduling
+- * length of 512 frames instead of 256.
+- */
+-#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
+-
+-/* Initial IRQ latency: faster than hw default */
+-static int log2_irq_thresh; /* 0 to 6 */
+-module_param(log2_irq_thresh, int, S_IRUGO);
+-MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
+-
+-/* initial park setting: slower than hw default */
+-static unsigned park;
+-module_param(park, uint, S_IRUGO);
+-MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
+-
+-/* for link power management(LPM) feature */
+-static unsigned int hird;
+-module_param(hird, int, S_IRUGO);
+-MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
+-
+-#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
+-
+-#include "fotg210.h"
+-
+-#define fotg210_dbg(fotg210, fmt, args...) \
+- dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
+-#define fotg210_err(fotg210, fmt, args...) \
+- dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
+-#define fotg210_info(fotg210, fmt, args...) \
+- dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
+-#define fotg210_warn(fotg210, fmt, args...) \
+- dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
+-
+-/* check the values in the HCSPARAMS register (host controller _Structural_
+- * parameters) see EHCI spec, Table 2-4 for each value
+- */
+-static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
+-{
+- u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
+-
+- fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
+- HCS_N_PORTS(params));
+-}
+-
+-/* check the values in the HCCPARAMS register (host controller _Capability_
+- * parameters) see EHCI Spec, Table 2-5 for each value
+- */
+-static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
+-{
+- u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
+-
+- fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
+- params,
+- HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
+- HCC_CANPARK(params) ? " park" : "");
+-}
+-
+-static void __maybe_unused
+-dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
+-{
+- fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
+- hc32_to_cpup(fotg210, &qtd->hw_next),
+- hc32_to_cpup(fotg210, &qtd->hw_alt_next),
+- hc32_to_cpup(fotg210, &qtd->hw_token),
+- hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
+- if (qtd->hw_buf[1])
+- fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
+- hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
+- hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
+- hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
+- hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
+-}
+-
+-static void __maybe_unused
+-dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
+-{
+- struct fotg210_qh_hw *hw = qh->hw;
+-
+- fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
+- hw->hw_next, hw->hw_info1, hw->hw_info2,
+- hw->hw_current);
+-
+- dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
+-}
+-
+-static void __maybe_unused
+-dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
+-{
+- fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
+- itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
+- itd->urb);
+-
+- fotg210_dbg(fotg210,
+- " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
+- hc32_to_cpu(fotg210, itd->hw_transaction[0]),
+- hc32_to_cpu(fotg210, itd->hw_transaction[1]),
+- hc32_to_cpu(fotg210, itd->hw_transaction[2]),
+- hc32_to_cpu(fotg210, itd->hw_transaction[3]),
+- hc32_to_cpu(fotg210, itd->hw_transaction[4]),
+- hc32_to_cpu(fotg210, itd->hw_transaction[5]),
+- hc32_to_cpu(fotg210, itd->hw_transaction[6]),
+- hc32_to_cpu(fotg210, itd->hw_transaction[7]));
+-
+- fotg210_dbg(fotg210,
+- " buf: %08x %08x %08x %08x %08x %08x %08x\n",
+- hc32_to_cpu(fotg210, itd->hw_bufp[0]),
+- hc32_to_cpu(fotg210, itd->hw_bufp[1]),
+- hc32_to_cpu(fotg210, itd->hw_bufp[2]),
+- hc32_to_cpu(fotg210, itd->hw_bufp[3]),
+- hc32_to_cpu(fotg210, itd->hw_bufp[4]),
+- hc32_to_cpu(fotg210, itd->hw_bufp[5]),
+- hc32_to_cpu(fotg210, itd->hw_bufp[6]));
+-
+- fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
+- itd->index[0], itd->index[1], itd->index[2],
+- itd->index[3], itd->index[4], itd->index[5],
+- itd->index[6], itd->index[7]);
+-}
+-
+-static int __maybe_unused
+-dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
+-{
+- return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
+- label, label[0] ? " " : "", status,
+- (status & STS_ASS) ? " Async" : "",
+- (status & STS_PSS) ? " Periodic" : "",
+- (status & STS_RECL) ? " Recl" : "",
+- (status & STS_HALT) ? " Halt" : "",
+- (status & STS_IAA) ? " IAA" : "",
+- (status & STS_FATAL) ? " FATAL" : "",
+- (status & STS_FLR) ? " FLR" : "",
+- (status & STS_PCD) ? " PCD" : "",
+- (status & STS_ERR) ? " ERR" : "",
+- (status & STS_INT) ? " INT" : "");
+-}
+-
+-static int __maybe_unused
+-dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
+-{
+- return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
+- label, label[0] ? " " : "", enable,
+- (enable & STS_IAA) ? " IAA" : "",
+- (enable & STS_FATAL) ? " FATAL" : "",
+- (enable & STS_FLR) ? " FLR" : "",
+- (enable & STS_PCD) ? " PCD" : "",
+- (enable & STS_ERR) ? " ERR" : "",
+- (enable & STS_INT) ? " INT" : "");
+-}
+-
+-static const char *const fls_strings[] = { "1024", "512", "256", "??" };
+-
+-static int dbg_command_buf(char *buf, unsigned len, const char *label,
+- u32 command)
+-{
+- return scnprintf(buf, len,
+- "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
+- label, label[0] ? " " : "", command,
+- (command & CMD_PARK) ? " park" : "(park)",
+- CMD_PARK_CNT(command),
+- (command >> 16) & 0x3f,
+- (command & CMD_IAAD) ? " IAAD" : "",
+- (command & CMD_ASE) ? " Async" : "",
+- (command & CMD_PSE) ? " Periodic" : "",
+- fls_strings[(command >> 2) & 0x3],
+- (command & CMD_RESET) ? " Reset" : "",
+- (command & CMD_RUN) ? "RUN" : "HALT");
+-}
+-
+-static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
+- u32 status)
+-{
+- char *sig;
+-
+- /* signaling state */
+- switch (status & (3 << 10)) {
+- case 0 << 10:
+- sig = "se0";
+- break;
+- case 1 << 10:
+- sig = "k";
+- break; /* low speed */
+- case 2 << 10:
+- sig = "j";
+- break;
+- default:
+- sig = "?";
+- break;
+- }
+-
+- scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
+- label, label[0] ? " " : "", port, status,
+- status >> 25, /*device address */
+- sig,
+- (status & PORT_RESET) ? " RESET" : "",
+- (status & PORT_SUSPEND) ? " SUSPEND" : "",
+- (status & PORT_RESUME) ? " RESUME" : "",
+- (status & PORT_PEC) ? " PEC" : "",
+- (status & PORT_PE) ? " PE" : "",
+- (status & PORT_CSC) ? " CSC" : "",
+- (status & PORT_CONNECT) ? " CONNECT" : "");
+-
+- return buf;
+-}
+-
+-/* functions have the "wrong" filename when they're output... */
+-#define dbg_status(fotg210, label, status) { \
+- char _buf[80]; \
+- dbg_status_buf(_buf, sizeof(_buf), label, status); \
+- fotg210_dbg(fotg210, "%s\n", _buf); \
+-}
+-
+-#define dbg_cmd(fotg210, label, command) { \
+- char _buf[80]; \
+- dbg_command_buf(_buf, sizeof(_buf), label, command); \
+- fotg210_dbg(fotg210, "%s\n", _buf); \
+-}
+-
+-#define dbg_port(fotg210, label, port, status) { \
+- char _buf[80]; \
+- fotg210_dbg(fotg210, "%s\n", \
+- dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
+-}
+-
+-/* troubleshooting help: expose state in debugfs */
+-static int debug_async_open(struct inode *, struct file *);
+-static int debug_periodic_open(struct inode *, struct file *);
+-static int debug_registers_open(struct inode *, struct file *);
+-static int debug_async_open(struct inode *, struct file *);
+-
+-static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
+-static int debug_close(struct inode *, struct file *);
+-
+-static const struct file_operations debug_async_fops = {
+- .owner = THIS_MODULE,
+- .open = debug_async_open,
+- .read = debug_output,
+- .release = debug_close,
+- .llseek = default_llseek,
+-};
+-static const struct file_operations debug_periodic_fops = {
+- .owner = THIS_MODULE,
+- .open = debug_periodic_open,
+- .read = debug_output,
+- .release = debug_close,
+- .llseek = default_llseek,
+-};
+-static const struct file_operations debug_registers_fops = {
+- .owner = THIS_MODULE,
+- .open = debug_registers_open,
+- .read = debug_output,
+- .release = debug_close,
+- .llseek = default_llseek,
+-};
+-
+-static struct dentry *fotg210_debug_root;
+-
+-struct debug_buffer {
+- ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
+- struct usb_bus *bus;
+- struct mutex mutex; /* protect filling of buffer */
+- size_t count; /* number of characters filled into buffer */
+- char *output_buf;
+- size_t alloc_size;
+-};
+-
+-static inline char speed_char(u32 scratch)
+-{
+- switch (scratch & (3 << 12)) {
+- case QH_FULL_SPEED:
+- return 'f';
+-
+- case QH_LOW_SPEED:
+- return 'l';
+-
+- case QH_HIGH_SPEED:
+- return 'h';
+-
+- default:
+- return '?';
+- }
+-}
+-
+-static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
+-{
+- __u32 v = hc32_to_cpu(fotg210, token);
+-
+- if (v & QTD_STS_ACTIVE)
+- return '*';
+- if (v & QTD_STS_HALT)
+- return '-';
+- if (!IS_SHORT_READ(v))
+- return ' ';
+- /* tries to advance through hw_alt_next */
+- return '/';
+-}
+-
+-static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
+- char **nextp, unsigned *sizep)
+-{
+- u32 scratch;
+- u32 hw_curr;
+- struct fotg210_qtd *td;
+- unsigned temp;
+- unsigned size = *sizep;
+- char *next = *nextp;
+- char mark;
+- __le32 list_end = FOTG210_LIST_END(fotg210);
+- struct fotg210_qh_hw *hw = qh->hw;
+-
+- if (hw->hw_qtd_next == list_end) /* NEC does this */
+- mark = '@';
+- else
+- mark = token_mark(fotg210, hw->hw_token);
+- if (mark == '/') { /* qh_alt_next controls qh advance? */
+- if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
+- fotg210->async->hw->hw_alt_next)
+- mark = '#'; /* blocked */
+- else if (hw->hw_alt_next == list_end)
+- mark = '.'; /* use hw_qtd_next */
+- /* else alt_next points to some other qtd */
+- }
+- scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
+- hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
+- temp = scnprintf(next, size,
+- "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
+- qh, scratch & 0x007f,
+- speed_char(scratch),
+- (scratch >> 8) & 0x000f,
+- scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
+- hc32_to_cpup(fotg210, &hw->hw_token), mark,
+- (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
+- ? "data1" : "data0",
+- (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
+- size -= temp;
+- next += temp;
+-
+- /* hc may be modifying the list as we read it ... */
+- list_for_each_entry(td, &qh->qtd_list, qtd_list) {
+- scratch = hc32_to_cpup(fotg210, &td->hw_token);
+- mark = ' ';
+- if (hw_curr == td->qtd_dma)
+- mark = '*';
+- else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
+- mark = '+';
+- else if (QTD_LENGTH(scratch)) {
+- if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
+- mark = '#';
+- else if (td->hw_alt_next != list_end)
+- mark = '/';
+- }
+- temp = snprintf(next, size,
+- "\n\t%p%c%s len=%d %08x urb %p",
+- td, mark, ({ char *tmp;
+- switch ((scratch>>8)&0x03) {
+- case 0:
+- tmp = "out";
+- break;
+- case 1:
+- tmp = "in";
+- break;
+- case 2:
+- tmp = "setup";
+- break;
+- default:
+- tmp = "?";
+- break;
+- } tmp; }),
+- (scratch >> 16) & 0x7fff,
+- scratch,
+- td->urb);
+- if (size < temp)
+- temp = size;
+- size -= temp;
+- next += temp;
+- if (temp == size)
+- goto done;
+- }
+-
+- temp = snprintf(next, size, "\n");
+- if (size < temp)
+- temp = size;
+-
+- size -= temp;
+- next += temp;
+-
+-done:
+- *sizep = size;
+- *nextp = next;
+-}
+-
+-static ssize_t fill_async_buffer(struct debug_buffer *buf)
+-{
+- struct usb_hcd *hcd;
+- struct fotg210_hcd *fotg210;
+- unsigned long flags;
+- unsigned temp, size;
+- char *next;
+- struct fotg210_qh *qh;
+-
+- hcd = bus_to_hcd(buf->bus);
+- fotg210 = hcd_to_fotg210(hcd);
+- next = buf->output_buf;
+- size = buf->alloc_size;
+-
+- *next = 0;
+-
+- /* dumps a snapshot of the async schedule.
+- * usually empty except for long-term bulk reads, or head.
+- * one QH per line, and TDs we know about
+- */
+- spin_lock_irqsave(&fotg210->lock, flags);
+- for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
+- qh = qh->qh_next.qh)
+- qh_lines(fotg210, qh, &next, &size);
+- if (fotg210->async_unlink && size > 0) {
+- temp = scnprintf(next, size, "\nunlink =\n");
+- size -= temp;
+- next += temp;
+-
+- for (qh = fotg210->async_unlink; size > 0 && qh;
+- qh = qh->unlink_next)
+- qh_lines(fotg210, qh, &next, &size);
+- }
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+-
+- return strlen(buf->output_buf);
+-}
+-
+-/* count tds, get ep direction */
+-static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
+- struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
+-{
+- u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
+- struct fotg210_qtd *qtd;
+- char *type = "";
+- unsigned temp = 0;
+-
+- /* count tds, get ep direction */
+- list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
+- temp++;
+- switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
+- case 0:
+- type = "out";
+- continue;
+- case 1:
+- type = "in";
+- continue;
+- }
+- }
+-
+- return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
+- speed_char(scratch), scratch & 0x007f,
+- (scratch >> 8) & 0x000f, type, qh->usecs,
+- qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
+-}
+-
+-#define DBG_SCHED_LIMIT 64
+-static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
+-{
+- struct usb_hcd *hcd;
+- struct fotg210_hcd *fotg210;
+- unsigned long flags;
+- union fotg210_shadow p, *seen;
+- unsigned temp, size, seen_count;
+- char *next;
+- unsigned i;
+- __hc32 tag;
+-
+- seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
+- if (!seen)
+- return 0;
+-
+- seen_count = 0;
+-
+- hcd = bus_to_hcd(buf->bus);
+- fotg210 = hcd_to_fotg210(hcd);
+- next = buf->output_buf;
+- size = buf->alloc_size;
+-
+- temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
+- size -= temp;
+- next += temp;
+-
+- /* dump a snapshot of the periodic schedule.
+- * iso changes, interrupt usually doesn't.
+- */
+- spin_lock_irqsave(&fotg210->lock, flags);
+- for (i = 0; i < fotg210->periodic_size; i++) {
+- p = fotg210->pshadow[i];
+- if (likely(!p.ptr))
+- continue;
+-
+- tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
+-
+- temp = scnprintf(next, size, "%4d: ", i);
+- size -= temp;
+- next += temp;
+-
+- do {
+- struct fotg210_qh_hw *hw;
+-
+- switch (hc32_to_cpu(fotg210, tag)) {
+- case Q_TYPE_QH:
+- hw = p.qh->hw;
+- temp = scnprintf(next, size, " qh%d-%04x/%p",
+- p.qh->period,
+- hc32_to_cpup(fotg210,
+- &hw->hw_info2)
+- /* uframe masks */
+- & (QH_CMASK | QH_SMASK),
+- p.qh);
+- size -= temp;
+- next += temp;
+- /* don't repeat what follows this qh */
+- for (temp = 0; temp < seen_count; temp++) {
+- if (seen[temp].ptr != p.ptr)
+- continue;
+- if (p.qh->qh_next.ptr) {
+- temp = scnprintf(next, size,
+- " ...");
+- size -= temp;
+- next += temp;
+- }
+- break;
+- }
+- /* show more info the first time around */
+- if (temp == seen_count) {
+- temp = output_buf_tds_dir(next,
+- fotg210, hw,
+- p.qh, size);
+-
+- if (seen_count < DBG_SCHED_LIMIT)
+- seen[seen_count++].qh = p.qh;
+- } else
+- temp = 0;
+- tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
+- p = p.qh->qh_next;
+- break;
+- case Q_TYPE_FSTN:
+- temp = scnprintf(next, size,
+- " fstn-%8x/%p",
+- p.fstn->hw_prev, p.fstn);
+- tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
+- p = p.fstn->fstn_next;
+- break;
+- case Q_TYPE_ITD:
+- temp = scnprintf(next, size,
+- " itd/%p", p.itd);
+- tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
+- p = p.itd->itd_next;
+- break;
+- }
+- size -= temp;
+- next += temp;
+- } while (p.ptr);
+-
+- temp = scnprintf(next, size, "\n");
+- size -= temp;
+- next += temp;
+- }
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- kfree(seen);
+-
+- return buf->alloc_size - size;
+-}
+-#undef DBG_SCHED_LIMIT
+-
+-static const char *rh_state_string(struct fotg210_hcd *fotg210)
+-{
+- switch (fotg210->rh_state) {
+- case FOTG210_RH_HALTED:
+- return "halted";
+- case FOTG210_RH_SUSPENDED:
+- return "suspended";
+- case FOTG210_RH_RUNNING:
+- return "running";
+- case FOTG210_RH_STOPPING:
+- return "stopping";
+- }
+- return "?";
+-}
+-
+-static ssize_t fill_registers_buffer(struct debug_buffer *buf)
+-{
+- struct usb_hcd *hcd;
+- struct fotg210_hcd *fotg210;
+- unsigned long flags;
+- unsigned temp, size, i;
+- char *next, scratch[80];
+- static const char fmt[] = "%*s\n";
+- static const char label[] = "";
+-
+- hcd = bus_to_hcd(buf->bus);
+- fotg210 = hcd_to_fotg210(hcd);
+- next = buf->output_buf;
+- size = buf->alloc_size;
+-
+- spin_lock_irqsave(&fotg210->lock, flags);
+-
+- if (!HCD_HW_ACCESSIBLE(hcd)) {
+- size = scnprintf(next, size,
+- "bus %s, device %s\n"
+- "%s\n"
+- "SUSPENDED(no register access)\n",
+- hcd->self.controller->bus->name,
+- dev_name(hcd->self.controller),
+- hcd->product_desc);
+- goto done;
+- }
+-
+- /* Capability Registers */
+- i = HC_VERSION(fotg210, fotg210_readl(fotg210,
+- &fotg210->caps->hc_capbase));
+- temp = scnprintf(next, size,
+- "bus %s, device %s\n"
+- "%s\n"
+- "EHCI %x.%02x, rh state %s\n",
+- hcd->self.controller->bus->name,
+- dev_name(hcd->self.controller),
+- hcd->product_desc,
+- i >> 8, i & 0x0ff, rh_state_string(fotg210));
+- size -= temp;
+- next += temp;
+-
+- /* FIXME interpret both types of params */
+- i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
+- temp = scnprintf(next, size, "structural params 0x%08x\n", i);
+- size -= temp;
+- next += temp;
+-
+- i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
+- temp = scnprintf(next, size, "capability params 0x%08x\n", i);
+- size -= temp;
+- next += temp;
+-
+- /* Operational Registers */
+- temp = dbg_status_buf(scratch, sizeof(scratch), label,
+- fotg210_readl(fotg210, &fotg210->regs->status));
+- temp = scnprintf(next, size, fmt, temp, scratch);
+- size -= temp;
+- next += temp;
+-
+- temp = dbg_command_buf(scratch, sizeof(scratch), label,
+- fotg210_readl(fotg210, &fotg210->regs->command));
+- temp = scnprintf(next, size, fmt, temp, scratch);
+- size -= temp;
+- next += temp;
+-
+- temp = dbg_intr_buf(scratch, sizeof(scratch), label,
+- fotg210_readl(fotg210, &fotg210->regs->intr_enable));
+- temp = scnprintf(next, size, fmt, temp, scratch);
+- size -= temp;
+- next += temp;
+-
+- temp = scnprintf(next, size, "uframe %04x\n",
+- fotg210_read_frame_index(fotg210));
+- size -= temp;
+- next += temp;
+-
+- if (fotg210->async_unlink) {
+- temp = scnprintf(next, size, "async unlink qh %p\n",
+- fotg210->async_unlink);
+- size -= temp;
+- next += temp;
+- }
+-
+-#ifdef FOTG210_STATS
+- temp = scnprintf(next, size,
+- "irq normal %ld err %ld iaa %ld(lost %ld)\n",
+- fotg210->stats.normal, fotg210->stats.error,
+- fotg210->stats.iaa, fotg210->stats.lost_iaa);
+- size -= temp;
+- next += temp;
+-
+- temp = scnprintf(next, size, "complete %ld unlink %ld\n",
+- fotg210->stats.complete, fotg210->stats.unlink);
+- size -= temp;
+- next += temp;
+-#endif
+-
+-done:
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+-
+- return buf->alloc_size - size;
+-}
+-
+-static struct debug_buffer
+-*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
+-{
+- struct debug_buffer *buf;
+-
+- buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
+-
+- if (buf) {
+- buf->bus = bus;
+- buf->fill_func = fill_func;
+- mutex_init(&buf->mutex);
+- buf->alloc_size = PAGE_SIZE;
+- }
+-
+- return buf;
+-}
+-
+-static int fill_buffer(struct debug_buffer *buf)
+-{
+- int ret = 0;
+-
+- if (!buf->output_buf)
+- buf->output_buf = vmalloc(buf->alloc_size);
+-
+- if (!buf->output_buf) {
+- ret = -ENOMEM;
+- goto out;
+- }
+-
+- ret = buf->fill_func(buf);
+-
+- if (ret >= 0) {
+- buf->count = ret;
+- ret = 0;
+- }
+-
+-out:
+- return ret;
+-}
+-
+-static ssize_t debug_output(struct file *file, char __user *user_buf,
+- size_t len, loff_t *offset)
+-{
+- struct debug_buffer *buf = file->private_data;
+- int ret = 0;
+-
+- mutex_lock(&buf->mutex);
+- if (buf->count == 0) {
+- ret = fill_buffer(buf);
+- if (ret != 0) {
+- mutex_unlock(&buf->mutex);
+- goto out;
+- }
+- }
+- mutex_unlock(&buf->mutex);
+-
+- ret = simple_read_from_buffer(user_buf, len, offset,
+- buf->output_buf, buf->count);
+-
+-out:
+- return ret;
+-
+-}
+-
+-static int debug_close(struct inode *inode, struct file *file)
+-{
+- struct debug_buffer *buf = file->private_data;
+-
+- if (buf) {
+- vfree(buf->output_buf);
+- kfree(buf);
+- }
+-
+- return 0;
+-}
+-static int debug_async_open(struct inode *inode, struct file *file)
+-{
+- file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
+-
+- return file->private_data ? 0 : -ENOMEM;
+-}
+-
+-static int debug_periodic_open(struct inode *inode, struct file *file)
+-{
+- struct debug_buffer *buf;
+-
+- buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
+- if (!buf)
+- return -ENOMEM;
+-
+- buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
+- file->private_data = buf;
+- return 0;
+-}
+-
+-static int debug_registers_open(struct inode *inode, struct file *file)
+-{
+- file->private_data = alloc_buffer(inode->i_private,
+- fill_registers_buffer);
+-
+- return file->private_data ? 0 : -ENOMEM;
+-}
+-
+-static inline void create_debug_files(struct fotg210_hcd *fotg210)
+-{
+- struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
+- struct dentry *root;
+-
+- root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
+-
+- debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
+- debugfs_create_file("periodic", S_IRUGO, root, bus,
+- &debug_periodic_fops);
+- debugfs_create_file("registers", S_IRUGO, root, bus,
+- &debug_registers_fops);
+-}
+-
+-static inline void remove_debug_files(struct fotg210_hcd *fotg210)
+-{
+- struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
+-
+- debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root);
+-}
+-
+-/* handshake - spin reading hc until handshake completes or fails
+- * @ptr: address of hc register to be read
+- * @mask: bits to look at in result of read
+- * @done: value of those bits when handshake succeeds
+- * @usec: timeout in microseconds
+- *
+- * Returns negative errno, or zero on success
+- *
+- * Success happens when the "mask" bits have the specified value (hardware
+- * handshake done). There are two failure modes: "usec" have passed (major
+- * hardware flakeout), or the register reads as all-ones (hardware removed).
+- *
+- * That last failure should_only happen in cases like physical cardbus eject
+- * before driver shutdown. But it also seems to be caused by bugs in cardbus
+- * bridge shutdown: shutting down the bridge before the devices using it.
+- */
+-static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
+- u32 mask, u32 done, int usec)
+-{
+- u32 result;
+- int ret;
+-
+- ret = readl_poll_timeout_atomic(ptr, result,
+- ((result & mask) == done ||
+- result == U32_MAX), 1, usec);
+- if (result == U32_MAX) /* card removed */
+- return -ENODEV;
+-
+- return ret;
+-}
+-
+-/* Force HC to halt state from unknown (EHCI spec section 2.3).
+- * Must be called with interrupts enabled and the lock not held.
+- */
+-static int fotg210_halt(struct fotg210_hcd *fotg210)
+-{
+- u32 temp;
+-
+- spin_lock_irq(&fotg210->lock);
+-
+- /* disable any irqs left enabled by previous code */
+- fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
+-
+- /*
+- * This routine gets called during probe before fotg210->command
+- * has been initialized, so we can't rely on its value.
+- */
+- fotg210->command &= ~CMD_RUN;
+- temp = fotg210_readl(fotg210, &fotg210->regs->command);
+- temp &= ~(CMD_RUN | CMD_IAAD);
+- fotg210_writel(fotg210, temp, &fotg210->regs->command);
+-
+- spin_unlock_irq(&fotg210->lock);
+- synchronize_irq(fotg210_to_hcd(fotg210)->irq);
+-
+- return handshake(fotg210, &fotg210->regs->status,
+- STS_HALT, STS_HALT, 16 * 125);
+-}
+-
+-/* Reset a non-running (STS_HALT == 1) controller.
+- * Must be called with interrupts enabled and the lock not held.
+- */
+-static int fotg210_reset(struct fotg210_hcd *fotg210)
+-{
+- int retval;
+- u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
+-
+- /* If the EHCI debug controller is active, special care must be
+- * taken before and after a host controller reset
+- */
+- if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
+- fotg210->debug = NULL;
+-
+- command |= CMD_RESET;
+- dbg_cmd(fotg210, "reset", command);
+- fotg210_writel(fotg210, command, &fotg210->regs->command);
+- fotg210->rh_state = FOTG210_RH_HALTED;
+- fotg210->next_statechange = jiffies;
+- retval = handshake(fotg210, &fotg210->regs->command,
+- CMD_RESET, 0, 250 * 1000);
+-
+- if (retval)
+- return retval;
+-
+- if (fotg210->debug)
+- dbgp_external_startup(fotg210_to_hcd(fotg210));
+-
+- fotg210->port_c_suspend = fotg210->suspended_ports =
+- fotg210->resuming_ports = 0;
+- return retval;
+-}
+-
+-/* Idle the controller (turn off the schedules).
+- * Must be called with interrupts enabled and the lock not held.
+- */
+-static void fotg210_quiesce(struct fotg210_hcd *fotg210)
+-{
+- u32 temp;
+-
+- if (fotg210->rh_state != FOTG210_RH_RUNNING)
+- return;
+-
+- /* wait for any schedule enables/disables to take effect */
+- temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
+- handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
+- 16 * 125);
+-
+- /* then disable anything that's still active */
+- spin_lock_irq(&fotg210->lock);
+- fotg210->command &= ~(CMD_ASE | CMD_PSE);
+- fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
+- spin_unlock_irq(&fotg210->lock);
+-
+- /* hardware can take 16 microframes to turn off ... */
+- handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
+- 16 * 125);
+-}
+-
+-static void end_unlink_async(struct fotg210_hcd *fotg210);
+-static void unlink_empty_async(struct fotg210_hcd *fotg210);
+-static void fotg210_work(struct fotg210_hcd *fotg210);
+-static void start_unlink_intr(struct fotg210_hcd *fotg210,
+- struct fotg210_qh *qh);
+-static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
+-
+-/* Set a bit in the USBCMD register */
+-static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
+-{
+- fotg210->command |= bit;
+- fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
+-
+- /* unblock posted write */
+- fotg210_readl(fotg210, &fotg210->regs->command);
+-}
+-
+-/* Clear a bit in the USBCMD register */
+-static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
+-{
+- fotg210->command &= ~bit;
+- fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
+-
+- /* unblock posted write */
+- fotg210_readl(fotg210, &fotg210->regs->command);
+-}
+-
+-/* EHCI timer support... Now using hrtimers.
+- *
+- * Lots of different events are triggered from fotg210->hrtimer. Whenever
+- * the timer routine runs, it checks each possible event; events that are
+- * currently enabled and whose expiration time has passed get handled.
+- * The set of enabled events is stored as a collection of bitflags in
+- * fotg210->enabled_hrtimer_events, and they are numbered in order of
+- * increasing delay values (ranging between 1 ms and 100 ms).
+- *
+- * Rather than implementing a sorted list or tree of all pending events,
+- * we keep track only of the lowest-numbered pending event, in
+- * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
+- * expiration time is set to the timeout value for this event.
+- *
+- * As a result, events might not get handled right away; the actual delay
+- * could be anywhere up to twice the requested delay. This doesn't
+- * matter, because none of the events are especially time-critical. The
+- * ones that matter most all have a delay of 1 ms, so they will be
+- * handled after 2 ms at most, which is okay. In addition to this, we
+- * allow for an expiration range of 1 ms.
+- */
+-
+-/* Delay lengths for the hrtimer event types.
+- * Keep this list sorted by delay length, in the same order as
+- * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
+- */
+-static unsigned event_delays_ns[] = {
+- 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
+- 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
+- 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
+- 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
+- 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
+- 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
+- 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
+- 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
+- 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
+- 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
+-};
+-
+-/* Enable a pending hrtimer event */
+-static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
+- bool resched)
+-{
+- ktime_t *timeout = &fotg210->hr_timeouts[event];
+-
+- if (resched)
+- *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
+- fotg210->enabled_hrtimer_events |= (1 << event);
+-
+- /* Track only the lowest-numbered pending event */
+- if (event < fotg210->next_hrtimer_event) {
+- fotg210->next_hrtimer_event = event;
+- hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
+- NSEC_PER_MSEC, HRTIMER_MODE_ABS);
+- }
+-}
+-
+-
+-/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
+-static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
+-{
+- unsigned actual, want;
+-
+- /* Don't enable anything if the controller isn't running (e.g., died) */
+- if (fotg210->rh_state != FOTG210_RH_RUNNING)
+- return;
+-
+- want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
+- actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
+-
+- if (want != actual) {
+-
+- /* Poll again later, but give up after about 20 ms */
+- if (fotg210->ASS_poll_count++ < 20) {
+- fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
+- true);
+- return;
+- }
+- fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
+- want, actual);
+- }
+- fotg210->ASS_poll_count = 0;
+-
+- /* The status is up-to-date; restart or stop the schedule as needed */
+- if (want == 0) { /* Stopped */
+- if (fotg210->async_count > 0)
+- fotg210_set_command_bit(fotg210, CMD_ASE);
+-
+- } else { /* Running */
+- if (fotg210->async_count == 0) {
+-
+- /* Turn off the schedule after a while */
+- fotg210_enable_event(fotg210,
+- FOTG210_HRTIMER_DISABLE_ASYNC,
+- true);
+- }
+- }
+-}
+-
+-/* Turn off the async schedule after a brief delay */
+-static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
+-{
+- fotg210_clear_command_bit(fotg210, CMD_ASE);
+-}
+-
+-
+-/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
+-static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
+-{
+- unsigned actual, want;
+-
+- /* Don't do anything if the controller isn't running (e.g., died) */
+- if (fotg210->rh_state != FOTG210_RH_RUNNING)
+- return;
+-
+- want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
+- actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
+-
+- if (want != actual) {
+-
+- /* Poll again later, but give up after about 20 ms */
+- if (fotg210->PSS_poll_count++ < 20) {
+- fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
+- true);
+- return;
+- }
+- fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
+- want, actual);
+- }
+- fotg210->PSS_poll_count = 0;
+-
+- /* The status is up-to-date; restart or stop the schedule as needed */
+- if (want == 0) { /* Stopped */
+- if (fotg210->periodic_count > 0)
+- fotg210_set_command_bit(fotg210, CMD_PSE);
+-
+- } else { /* Running */
+- if (fotg210->periodic_count == 0) {
+-
+- /* Turn off the schedule after a while */
+- fotg210_enable_event(fotg210,
+- FOTG210_HRTIMER_DISABLE_PERIODIC,
+- true);
+- }
+- }
+-}
+-
+-/* Turn off the periodic schedule after a brief delay */
+-static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
+-{
+- fotg210_clear_command_bit(fotg210, CMD_PSE);
+-}
+-
+-
+-/* Poll the STS_HALT status bit; see when a dead controller stops */
+-static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
+-{
+- if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
+-
+- /* Give up after a few milliseconds */
+- if (fotg210->died_poll_count++ < 5) {
+- /* Try again later */
+- fotg210_enable_event(fotg210,
+- FOTG210_HRTIMER_POLL_DEAD, true);
+- return;
+- }
+- fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
+- }
+-
+- /* Clean up the mess */
+- fotg210->rh_state = FOTG210_RH_HALTED;
+- fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
+- fotg210_work(fotg210);
+- end_unlink_async(fotg210);
+-
+- /* Not in process context, so don't try to reset the controller */
+-}
+-
+-
+-/* Handle unlinked interrupt QHs once they are gone from the hardware */
+-static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
+-{
+- bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
+-
+- /*
+- * Process all the QHs on the intr_unlink list that were added
+- * before the current unlink cycle began. The list is in
+- * temporal order, so stop when we reach the first entry in the
+- * current cycle. But if the root hub isn't running then
+- * process all the QHs on the list.
+- */
+- fotg210->intr_unlinking = true;
+- while (fotg210->intr_unlink) {
+- struct fotg210_qh *qh = fotg210->intr_unlink;
+-
+- if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
+- break;
+- fotg210->intr_unlink = qh->unlink_next;
+- qh->unlink_next = NULL;
+- end_unlink_intr(fotg210, qh);
+- }
+-
+- /* Handle remaining entries later */
+- if (fotg210->intr_unlink) {
+- fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
+- true);
+- ++fotg210->intr_unlink_cycle;
+- }
+- fotg210->intr_unlinking = false;
+-}
+-
+-
+-/* Start another free-iTDs/siTDs cycle */
+-static void start_free_itds(struct fotg210_hcd *fotg210)
+-{
+- if (!(fotg210->enabled_hrtimer_events &
+- BIT(FOTG210_HRTIMER_FREE_ITDS))) {
+- fotg210->last_itd_to_free = list_entry(
+- fotg210->cached_itd_list.prev,
+- struct fotg210_itd, itd_list);
+- fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
+- }
+-}
+-
+-/* Wait for controller to stop using old iTDs and siTDs */
+-static void end_free_itds(struct fotg210_hcd *fotg210)
+-{
+- struct fotg210_itd *itd, *n;
+-
+- if (fotg210->rh_state < FOTG210_RH_RUNNING)
+- fotg210->last_itd_to_free = NULL;
+-
+- list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
+- list_del(&itd->itd_list);
+- dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
+- if (itd == fotg210->last_itd_to_free)
+- break;
+- }
+-
+- if (!list_empty(&fotg210->cached_itd_list))
+- start_free_itds(fotg210);
+-}
+-
+-
+-/* Handle lost (or very late) IAA interrupts */
+-static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
+-{
+- if (fotg210->rh_state != FOTG210_RH_RUNNING)
+- return;
+-
+- /*
+- * Lost IAA irqs wedge things badly; seen first with a vt8235.
+- * So we need this watchdog, but must protect it against both
+- * (a) SMP races against real IAA firing and retriggering, and
+- * (b) clean HC shutdown, when IAA watchdog was pending.
+- */
+- if (fotg210->async_iaa) {
+- u32 cmd, status;
+-
+- /* If we get here, IAA is *REALLY* late. It's barely
+- * conceivable that the system is so busy that CMD_IAAD
+- * is still legitimately set, so let's be sure it's
+- * clear before we read STS_IAA. (The HC should clear
+- * CMD_IAAD when it sets STS_IAA.)
+- */
+- cmd = fotg210_readl(fotg210, &fotg210->regs->command);
+-
+- /*
+- * If IAA is set here it either legitimately triggered
+- * after the watchdog timer expired (_way_ late, so we'll
+- * still count it as lost) ... or a silicon erratum:
+- * - VIA seems to set IAA without triggering the IRQ;
+- * - IAAD potentially cleared without setting IAA.
+- */
+- status = fotg210_readl(fotg210, &fotg210->regs->status);
+- if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
+- INCR(fotg210->stats.lost_iaa);
+- fotg210_writel(fotg210, STS_IAA,
+- &fotg210->regs->status);
+- }
+-
+- fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
+- status, cmd);
+- end_unlink_async(fotg210);
+- }
+-}
+-
+-
+-/* Enable the I/O watchdog, if appropriate */
+-static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
+-{
+- /* Not needed if the controller isn't running or it's already enabled */
+- if (fotg210->rh_state != FOTG210_RH_RUNNING ||
+- (fotg210->enabled_hrtimer_events &
+- BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
+- return;
+-
+- /*
+- * Isochronous transfers always need the watchdog.
+- * For other sorts we use it only if the flag is set.
+- */
+- if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
+- fotg210->async_count + fotg210->intr_count > 0))
+- fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
+- true);
+-}
+-
+-
+-/* Handler functions for the hrtimer event types.
+- * Keep this array in the same order as the event types indexed by
+- * enum fotg210_hrtimer_event in fotg210.h.
+- */
+-static void (*event_handlers[])(struct fotg210_hcd *) = {
+- fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
+- fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
+- fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
+- fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
+- end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
+- unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
+- fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
+- fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
+- fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
+- fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
+-};
+-
+-static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
+-{
+- struct fotg210_hcd *fotg210 =
+- container_of(t, struct fotg210_hcd, hrtimer);
+- ktime_t now;
+- unsigned long events;
+- unsigned long flags;
+- unsigned e;
+-
+- spin_lock_irqsave(&fotg210->lock, flags);
+-
+- events = fotg210->enabled_hrtimer_events;
+- fotg210->enabled_hrtimer_events = 0;
+- fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
+-
+- /*
+- * Check each pending event. If its time has expired, handle
+- * the event; otherwise re-enable it.
+- */
+- now = ktime_get();
+- for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
+- if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
+- event_handlers[e](fotg210);
+- else
+- fotg210_enable_event(fotg210, e, false);
+- }
+-
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- return HRTIMER_NORESTART;
+-}
+-
+-#define fotg210_bus_suspend NULL
+-#define fotg210_bus_resume NULL
+-
+-static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
+- u32 __iomem *status_reg, int port_status)
+-{
+- if (!(port_status & PORT_CONNECT))
+- return port_status;
+-
+- /* if reset finished and it's still not enabled -- handoff */
+- if (!(port_status & PORT_PE))
+- /* with integrated TT, there's nobody to hand it to! */
+- fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
+- index + 1);
+- else
+- fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
+- index + 1);
+-
+- return port_status;
+-}
+-
+-
+-/* build "status change" packet (one or two bytes) from HC registers */
+-
+-static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- u32 temp, status;
+- u32 mask;
+- int retval = 1;
+- unsigned long flags;
+-
+- /* init status to no-changes */
+- buf[0] = 0;
+-
+- /* Inform the core about resumes-in-progress by returning
+- * a non-zero value even if there are no status changes.
+- */
+- status = fotg210->resuming_ports;
+-
+- mask = PORT_CSC | PORT_PEC;
+- /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
+-
+- /* no hub change reports (bit 0) for now (power, ...) */
+-
+- /* port N changes (bit N)? */
+- spin_lock_irqsave(&fotg210->lock, flags);
+-
+- temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
+-
+- /*
+- * Return status information even for ports with OWNER set.
+- * Otherwise hub_wq wouldn't see the disconnect event when a
+- * high-speed device is switched over to the companion
+- * controller by the user.
+- */
+-
+- if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
+- (fotg210->reset_done[0] &&
+- time_after_eq(jiffies, fotg210->reset_done[0]))) {
+- buf[0] |= 1 << 1;
+- status = STS_PCD;
+- }
+- /* FIXME autosuspend idle root hubs */
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- return status ? retval : 0;
+-}
+-
+-static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
+- struct usb_hub_descriptor *desc)
+-{
+- int ports = HCS_N_PORTS(fotg210->hcs_params);
+- u16 temp;
+-
+- desc->bDescriptorType = USB_DT_HUB;
+- desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
+- desc->bHubContrCurrent = 0;
+-
+- desc->bNbrPorts = ports;
+- temp = 1 + (ports / 8);
+- desc->bDescLength = 7 + 2 * temp;
+-
+- /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
+- memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
+- memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
+-
+- temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
+- temp |= HUB_CHAR_NO_LPSM; /* no power switching */
+- desc->wHubCharacteristics = cpu_to_le16(temp);
+-}
+-
+-static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
+- u16 wIndex, char *buf, u16 wLength)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- int ports = HCS_N_PORTS(fotg210->hcs_params);
+- u32 __iomem *status_reg = &fotg210->regs->port_status;
+- u32 temp, temp1, status;
+- unsigned long flags;
+- int retval = 0;
+- unsigned selector;
+-
+- /*
+- * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
+- * HCS_INDICATOR may say we can change LEDs to off/amber/green.
+- * (track current state ourselves) ... blink for diagnostics,
+- * power, "this is the one", etc. EHCI spec supports this.
+- */
+-
+- spin_lock_irqsave(&fotg210->lock, flags);
+- switch (typeReq) {
+- case ClearHubFeature:
+- switch (wValue) {
+- case C_HUB_LOCAL_POWER:
+- case C_HUB_OVER_CURRENT:
+- /* no hub-wide feature/status flags */
+- break;
+- default:
+- goto error;
+- }
+- break;
+- case ClearPortFeature:
+- if (!wIndex || wIndex > ports)
+- goto error;
+- wIndex--;
+- temp = fotg210_readl(fotg210, status_reg);
+- temp &= ~PORT_RWC_BITS;
+-
+- /*
+- * Even if OWNER is set, so the port is owned by the
+- * companion controller, hub_wq needs to be able to clear
+- * the port-change status bits (especially
+- * USB_PORT_STAT_C_CONNECTION).
+- */
+-
+- switch (wValue) {
+- case USB_PORT_FEAT_ENABLE:
+- fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
+- break;
+- case USB_PORT_FEAT_C_ENABLE:
+- fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
+- break;
+- case USB_PORT_FEAT_SUSPEND:
+- if (temp & PORT_RESET)
+- goto error;
+- if (!(temp & PORT_SUSPEND))
+- break;
+- if ((temp & PORT_PE) == 0)
+- goto error;
+-
+- /* resume signaling for 20 msec */
+- fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
+- fotg210->reset_done[wIndex] = jiffies
+- + msecs_to_jiffies(USB_RESUME_TIMEOUT);
+- break;
+- case USB_PORT_FEAT_C_SUSPEND:
+- clear_bit(wIndex, &fotg210->port_c_suspend);
+- break;
+- case USB_PORT_FEAT_C_CONNECTION:
+- fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
+- break;
+- case USB_PORT_FEAT_C_OVER_CURRENT:
+- fotg210_writel(fotg210, temp | OTGISR_OVC,
+- &fotg210->regs->otgisr);
+- break;
+- case USB_PORT_FEAT_C_RESET:
+- /* GetPortStatus clears reset */
+- break;
+- default:
+- goto error;
+- }
+- fotg210_readl(fotg210, &fotg210->regs->command);
+- break;
+- case GetHubDescriptor:
+- fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
+- buf);
+- break;
+- case GetHubStatus:
+- /* no hub-wide feature/status flags */
+- memset(buf, 0, 4);
+- /*cpu_to_le32s ((u32 *) buf); */
+- break;
+- case GetPortStatus:
+- if (!wIndex || wIndex > ports)
+- goto error;
+- wIndex--;
+- status = 0;
+- temp = fotg210_readl(fotg210, status_reg);
+-
+- /* wPortChange bits */
+- if (temp & PORT_CSC)
+- status |= USB_PORT_STAT_C_CONNECTION << 16;
+- if (temp & PORT_PEC)
+- status |= USB_PORT_STAT_C_ENABLE << 16;
+-
+- temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
+- if (temp1 & OTGISR_OVC)
+- status |= USB_PORT_STAT_C_OVERCURRENT << 16;
+-
+- /* whoever resumes must GetPortStatus to complete it!! */
+- if (temp & PORT_RESUME) {
+-
+- /* Remote Wakeup received? */
+- if (!fotg210->reset_done[wIndex]) {
+- /* resume signaling for 20 msec */
+- fotg210->reset_done[wIndex] = jiffies
+- + msecs_to_jiffies(20);
+- /* check the port again */
+- mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
+- fotg210->reset_done[wIndex]);
+- }
+-
+- /* resume completed? */
+- else if (time_after_eq(jiffies,
+- fotg210->reset_done[wIndex])) {
+- clear_bit(wIndex, &fotg210->suspended_ports);
+- set_bit(wIndex, &fotg210->port_c_suspend);
+- fotg210->reset_done[wIndex] = 0;
+-
+- /* stop resume signaling */
+- temp = fotg210_readl(fotg210, status_reg);
+- fotg210_writel(fotg210, temp &
+- ~(PORT_RWC_BITS | PORT_RESUME),
+- status_reg);
+- clear_bit(wIndex, &fotg210->resuming_ports);
+- retval = handshake(fotg210, status_reg,
+- PORT_RESUME, 0, 2000);/* 2ms */
+- if (retval != 0) {
+- fotg210_err(fotg210,
+- "port %d resume error %d\n",
+- wIndex + 1, retval);
+- goto error;
+- }
+- temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
+- }
+- }
+-
+- /* whoever resets must GetPortStatus to complete it!! */
+- if ((temp & PORT_RESET) && time_after_eq(jiffies,
+- fotg210->reset_done[wIndex])) {
+- status |= USB_PORT_STAT_C_RESET << 16;
+- fotg210->reset_done[wIndex] = 0;
+- clear_bit(wIndex, &fotg210->resuming_ports);
+-
+- /* force reset to complete */
+- fotg210_writel(fotg210,
+- temp & ~(PORT_RWC_BITS | PORT_RESET),
+- status_reg);
+- /* REVISIT: some hardware needs 550+ usec to clear
+- * this bit; seems too long to spin routinely...
+- */
+- retval = handshake(fotg210, status_reg,
+- PORT_RESET, 0, 1000);
+- if (retval != 0) {
+- fotg210_err(fotg210, "port %d reset error %d\n",
+- wIndex + 1, retval);
+- goto error;
+- }
+-
+- /* see what we found out */
+- temp = check_reset_complete(fotg210, wIndex, status_reg,
+- fotg210_readl(fotg210, status_reg));
+-
+- /* restart schedule */
+- fotg210->command |= CMD_RUN;
+- fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
+- }
+-
+- if (!(temp & (PORT_RESUME|PORT_RESET))) {
+- fotg210->reset_done[wIndex] = 0;
+- clear_bit(wIndex, &fotg210->resuming_ports);
+- }
+-
+- /* transfer dedicated ports to the companion hc */
+- if ((temp & PORT_CONNECT) &&
+- test_bit(wIndex, &fotg210->companion_ports)) {
+- temp &= ~PORT_RWC_BITS;
+- fotg210_writel(fotg210, temp, status_reg);
+- fotg210_dbg(fotg210, "port %d --> companion\n",
+- wIndex + 1);
+- temp = fotg210_readl(fotg210, status_reg);
+- }
+-
+- /*
+- * Even if OWNER is set, there's no harm letting hub_wq
+- * see the wPortStatus values (they should all be 0 except
+- * for PORT_POWER anyway).
+- */
+-
+- if (temp & PORT_CONNECT) {
+- status |= USB_PORT_STAT_CONNECTION;
+- status |= fotg210_port_speed(fotg210, temp);
+- }
+- if (temp & PORT_PE)
+- status |= USB_PORT_STAT_ENABLE;
+-
+- /* maybe the port was unsuspended without our knowledge */
+- if (temp & (PORT_SUSPEND|PORT_RESUME)) {
+- status |= USB_PORT_STAT_SUSPEND;
+- } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
+- clear_bit(wIndex, &fotg210->suspended_ports);
+- clear_bit(wIndex, &fotg210->resuming_ports);
+- fotg210->reset_done[wIndex] = 0;
+- if (temp & PORT_PE)
+- set_bit(wIndex, &fotg210->port_c_suspend);
+- }
+-
+- temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
+- if (temp1 & OTGISR_OVC)
+- status |= USB_PORT_STAT_OVERCURRENT;
+- if (temp & PORT_RESET)
+- status |= USB_PORT_STAT_RESET;
+- if (test_bit(wIndex, &fotg210->port_c_suspend))
+- status |= USB_PORT_STAT_C_SUSPEND << 16;
+-
+- if (status & ~0xffff) /* only if wPortChange is interesting */
+- dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
+- put_unaligned_le32(status, buf);
+- break;
+- case SetHubFeature:
+- switch (wValue) {
+- case C_HUB_LOCAL_POWER:
+- case C_HUB_OVER_CURRENT:
+- /* no hub-wide feature/status flags */
+- break;
+- default:
+- goto error;
+- }
+- break;
+- case SetPortFeature:
+- selector = wIndex >> 8;
+- wIndex &= 0xff;
+-
+- if (!wIndex || wIndex > ports)
+- goto error;
+- wIndex--;
+- temp = fotg210_readl(fotg210, status_reg);
+- temp &= ~PORT_RWC_BITS;
+- switch (wValue) {
+- case USB_PORT_FEAT_SUSPEND:
+- if ((temp & PORT_PE) == 0
+- || (temp & PORT_RESET) != 0)
+- goto error;
+-
+- /* After above check the port must be connected.
+- * Set appropriate bit thus could put phy into low power
+- * mode if we have hostpc feature
+- */
+- fotg210_writel(fotg210, temp | PORT_SUSPEND,
+- status_reg);
+- set_bit(wIndex, &fotg210->suspended_ports);
+- break;
+- case USB_PORT_FEAT_RESET:
+- if (temp & PORT_RESUME)
+- goto error;
+- /* line status bits may report this as low speed,
+- * which can be fine if this root hub has a
+- * transaction translator built in.
+- */
+- fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
+- temp |= PORT_RESET;
+- temp &= ~PORT_PE;
+-
+- /*
+- * caller must wait, then call GetPortStatus
+- * usb 2.0 spec says 50 ms resets on root
+- */
+- fotg210->reset_done[wIndex] = jiffies
+- + msecs_to_jiffies(50);
+- fotg210_writel(fotg210, temp, status_reg);
+- break;
+-
+- /* For downstream facing ports (these): one hub port is put
+- * into test mode according to USB2 11.24.2.13, then the hub
+- * must be reset (which for root hub now means rmmod+modprobe,
+- * or else system reboot). See EHCI 2.3.9 and 4.14 for info
+- * about the EHCI-specific stuff.
+- */
+- case USB_PORT_FEAT_TEST:
+- if (!selector || selector > 5)
+- goto error;
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- fotg210_quiesce(fotg210);
+- spin_lock_irqsave(&fotg210->lock, flags);
+-
+- /* Put all enabled ports into suspend */
+- temp = fotg210_readl(fotg210, status_reg) &
+- ~PORT_RWC_BITS;
+- if (temp & PORT_PE)
+- fotg210_writel(fotg210, temp | PORT_SUSPEND,
+- status_reg);
+-
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- fotg210_halt(fotg210);
+- spin_lock_irqsave(&fotg210->lock, flags);
+-
+- temp = fotg210_readl(fotg210, status_reg);
+- temp |= selector << 16;
+- fotg210_writel(fotg210, temp, status_reg);
+- break;
+-
+- default:
+- goto error;
+- }
+- fotg210_readl(fotg210, &fotg210->regs->command);
+- break;
+-
+- default:
+-error:
+- /* "stall" on error */
+- retval = -EPIPE;
+- }
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- return retval;
+-}
+-
+-static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
+- int portnum)
+-{
+- return;
+-}
+-
+-static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
+- int portnum)
+-{
+- return 0;
+-}
+-
+-/* There's basically three types of memory:
+- * - data used only by the HCD ... kmalloc is fine
+- * - async and periodic schedules, shared by HC and HCD ... these
+- * need to use dma_pool or dma_alloc_coherent
+- * - driver buffers, read/written by HC ... single shot DMA mapped
+- *
+- * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
+- * No memory seen by this driver is pageable.
+- */
+-
+-/* Allocate the key transfer structures from the previously allocated pool */
+-static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
+- struct fotg210_qtd *qtd, dma_addr_t dma)
+-{
+- memset(qtd, 0, sizeof(*qtd));
+- qtd->qtd_dma = dma;
+- qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
+- qtd->hw_next = FOTG210_LIST_END(fotg210);
+- qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
+- INIT_LIST_HEAD(&qtd->qtd_list);
+-}
+-
+-static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
+- gfp_t flags)
+-{
+- struct fotg210_qtd *qtd;
+- dma_addr_t dma;
+-
+- qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
+- if (qtd != NULL)
+- fotg210_qtd_init(fotg210, qtd, dma);
+-
+- return qtd;
+-}
+-
+-static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
+- struct fotg210_qtd *qtd)
+-{
+- dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
+-}
+-
+-
+-static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
+-{
+- /* clean qtds first, and know this is not linked */
+- if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
+- fotg210_dbg(fotg210, "unused qh not empty!\n");
+- BUG();
+- }
+- if (qh->dummy)
+- fotg210_qtd_free(fotg210, qh->dummy);
+- dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
+- kfree(qh);
+-}
+-
+-static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
+- gfp_t flags)
+-{
+- struct fotg210_qh *qh;
+- dma_addr_t dma;
+-
+- qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
+- if (!qh)
+- goto done;
+- qh->hw = (struct fotg210_qh_hw *)
+- dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
+- if (!qh->hw)
+- goto fail;
+- qh->qh_dma = dma;
+- INIT_LIST_HEAD(&qh->qtd_list);
+-
+- /* dummy td enables safe urb queuing */
+- qh->dummy = fotg210_qtd_alloc(fotg210, flags);
+- if (qh->dummy == NULL) {
+- fotg210_dbg(fotg210, "no dummy td\n");
+- goto fail1;
+- }
+-done:
+- return qh;
+-fail1:
+- dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
+-fail:
+- kfree(qh);
+- return NULL;
+-}
+-
+-/* The queue heads and transfer descriptors are managed from pools tied
+- * to each of the "per device" structures.
+- * This is the initialisation and cleanup code.
+- */
+-
+-static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
+-{
+- if (fotg210->async)
+- qh_destroy(fotg210, fotg210->async);
+- fotg210->async = NULL;
+-
+- if (fotg210->dummy)
+- qh_destroy(fotg210, fotg210->dummy);
+- fotg210->dummy = NULL;
+-
+- /* DMA consistent memory and pools */
+- dma_pool_destroy(fotg210->qtd_pool);
+- fotg210->qtd_pool = NULL;
+-
+- dma_pool_destroy(fotg210->qh_pool);
+- fotg210->qh_pool = NULL;
+-
+- dma_pool_destroy(fotg210->itd_pool);
+- fotg210->itd_pool = NULL;
+-
+- if (fotg210->periodic)
+- dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
+- fotg210->periodic_size * sizeof(u32),
+- fotg210->periodic, fotg210->periodic_dma);
+- fotg210->periodic = NULL;
+-
+- /* shadow periodic table */
+- kfree(fotg210->pshadow);
+- fotg210->pshadow = NULL;
+-}
+-
+-/* remember to add cleanup code (above) if you add anything here */
+-static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
+-{
+- int i;
+-
+- /* QTDs for control/bulk/intr transfers */
+- fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
+- fotg210_to_hcd(fotg210)->self.controller,
+- sizeof(struct fotg210_qtd),
+- 32 /* byte alignment (for hw parts) */,
+- 4096 /* can't cross 4K */);
+- if (!fotg210->qtd_pool)
+- goto fail;
+-
+- /* QHs for control/bulk/intr transfers */
+- fotg210->qh_pool = dma_pool_create("fotg210_qh",
+- fotg210_to_hcd(fotg210)->self.controller,
+- sizeof(struct fotg210_qh_hw),
+- 32 /* byte alignment (for hw parts) */,
+- 4096 /* can't cross 4K */);
+- if (!fotg210->qh_pool)
+- goto fail;
+-
+- fotg210->async = fotg210_qh_alloc(fotg210, flags);
+- if (!fotg210->async)
+- goto fail;
+-
+- /* ITD for high speed ISO transfers */
+- fotg210->itd_pool = dma_pool_create("fotg210_itd",
+- fotg210_to_hcd(fotg210)->self.controller,
+- sizeof(struct fotg210_itd),
+- 64 /* byte alignment (for hw parts) */,
+- 4096 /* can't cross 4K */);
+- if (!fotg210->itd_pool)
+- goto fail;
+-
+- /* Hardware periodic table */
+- fotg210->periodic =
+- dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
+- fotg210->periodic_size * sizeof(__le32),
+- &fotg210->periodic_dma, 0);
+- if (fotg210->periodic == NULL)
+- goto fail;
+-
+- for (i = 0; i < fotg210->periodic_size; i++)
+- fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
+-
+- /* software shadow of hardware table */
+- fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
+- flags);
+- if (fotg210->pshadow != NULL)
+- return 0;
+-
+-fail:
+- fotg210_dbg(fotg210, "couldn't init memory\n");
+- fotg210_mem_cleanup(fotg210);
+- return -ENOMEM;
+-}
+-/* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
+- *
+- * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
+- * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
+- * buffers needed for the larger number). We use one QH per endpoint, queue
+- * multiple urbs (all three types) per endpoint. URBs may need several qtds.
+- *
+- * ISO traffic uses "ISO TD" (itd) records, and (along with
+- * interrupts) needs careful scheduling. Performance improvements can be
+- * an ongoing challenge. That's in "ehci-sched.c".
+- *
+- * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
+- * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
+- * (b) special fields in qh entries or (c) split iso entries. TTs will
+- * buffer low/full speed data so the host collects it at high speed.
+- */
+-
+-/* fill a qtd, returning how much of the buffer we were able to queue up */
+-static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
+- dma_addr_t buf, size_t len, int token, int maxpacket)
+-{
+- int i, count;
+- u64 addr = buf;
+-
+- /* one buffer entry per 4K ... first might be short or unaligned */
+- qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
+- qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
+- count = 0x1000 - (buf & 0x0fff); /* rest of that page */
+- if (likely(len < count)) /* ... iff needed */
+- count = len;
+- else {
+- buf += 0x1000;
+- buf &= ~0x0fff;
+-
+- /* per-qtd limit: from 16K to 20K (best alignment) */
+- for (i = 1; count < len && i < 5; i++) {
+- addr = buf;
+- qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
+- qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
+- (u32)(addr >> 32));
+- buf += 0x1000;
+- if ((count + 0x1000) < len)
+- count += 0x1000;
+- else
+- count = len;
+- }
+-
+- /* short packets may only terminate transfers */
+- if (count != len)
+- count -= (count % maxpacket);
+- }
+- qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
+- qtd->length = count;
+-
+- return count;
+-}
+-
+-static inline void qh_update(struct fotg210_hcd *fotg210,
+- struct fotg210_qh *qh, struct fotg210_qtd *qtd)
+-{
+- struct fotg210_qh_hw *hw = qh->hw;
+-
+- /* writes to an active overlay are unsafe */
+- BUG_ON(qh->qh_state != QH_STATE_IDLE);
+-
+- hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
+- hw->hw_alt_next = FOTG210_LIST_END(fotg210);
+-
+- /* Except for control endpoints, we make hardware maintain data
+- * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
+- * and set the pseudo-toggle in udev. Only usb_clear_halt() will
+- * ever clear it.
+- */
+- if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
+- unsigned is_out, epnum;
+-
+- is_out = qh->is_out;
+- epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
+- if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
+- hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
+- usb_settoggle(qh->dev, epnum, is_out, 1);
+- }
+- }
+-
+- hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
+-}
+-
+-/* if it weren't for a common silicon quirk (writing the dummy into the qh
+- * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
+- * recovery (including urb dequeue) would need software changes to a QH...
+- */
+-static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
+-{
+- struct fotg210_qtd *qtd;
+-
+- if (list_empty(&qh->qtd_list))
+- qtd = qh->dummy;
+- else {
+- qtd = list_entry(qh->qtd_list.next,
+- struct fotg210_qtd, qtd_list);
+- /*
+- * first qtd may already be partially processed.
+- * If we come here during unlink, the QH overlay region
+- * might have reference to the just unlinked qtd. The
+- * qtd is updated in qh_completions(). Update the QH
+- * overlay here.
+- */
+- if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
+- qh->hw->hw_qtd_next = qtd->hw_next;
+- qtd = NULL;
+- }
+- }
+-
+- if (qtd)
+- qh_update(fotg210, qh, qtd);
+-}
+-
+-static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
+-
+-static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
+- struct usb_host_endpoint *ep)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- struct fotg210_qh *qh = ep->hcpriv;
+- unsigned long flags;
+-
+- spin_lock_irqsave(&fotg210->lock, flags);
+- qh->clearing_tt = 0;
+- if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
+- && fotg210->rh_state == FOTG210_RH_RUNNING)
+- qh_link_async(fotg210, qh);
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+-}
+-
+-static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
+- struct fotg210_qh *qh, struct urb *urb, u32 token)
+-{
+-
+- /* If an async split transaction gets an error or is unlinked,
+- * the TT buffer may be left in an indeterminate state. We
+- * have to clear the TT buffer.
+- *
+- * Note: this routine is never called for Isochronous transfers.
+- */
+- if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
+- struct usb_device *tt = urb->dev->tt->hub;
+-
+- dev_dbg(&tt->dev,
+- "clear tt buffer port %d, a%d ep%d t%08x\n",
+- urb->dev->ttport, urb->dev->devnum,
+- usb_pipeendpoint(urb->pipe), token);
+-
+- if (urb->dev->tt->hub !=
+- fotg210_to_hcd(fotg210)->self.root_hub) {
+- if (usb_hub_clear_tt_buffer(urb) == 0)
+- qh->clearing_tt = 1;
+- }
+- }
+-}
+-
+-static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
+- size_t length, u32 token)
+-{
+- int status = -EINPROGRESS;
+-
+- /* count IN/OUT bytes, not SETUP (even short packets) */
+- if (likely(QTD_PID(token) != 2))
+- urb->actual_length += length - QTD_LENGTH(token);
+-
+- /* don't modify error codes */
+- if (unlikely(urb->unlinked))
+- return status;
+-
+- /* force cleanup after short read; not always an error */
+- if (unlikely(IS_SHORT_READ(token)))
+- status = -EREMOTEIO;
+-
+- /* serious "can't proceed" faults reported by the hardware */
+- if (token & QTD_STS_HALT) {
+- if (token & QTD_STS_BABBLE) {
+- /* FIXME "must" disable babbling device's port too */
+- status = -EOVERFLOW;
+- /* CERR nonzero + halt --> stall */
+- } else if (QTD_CERR(token)) {
+- status = -EPIPE;
+-
+- /* In theory, more than one of the following bits can be set
+- * since they are sticky and the transaction is retried.
+- * Which to test first is rather arbitrary.
+- */
+- } else if (token & QTD_STS_MMF) {
+- /* fs/ls interrupt xfer missed the complete-split */
+- status = -EPROTO;
+- } else if (token & QTD_STS_DBE) {
+- status = (QTD_PID(token) == 1) /* IN ? */
+- ? -ENOSR /* hc couldn't read data */
+- : -ECOMM; /* hc couldn't write data */
+- } else if (token & QTD_STS_XACT) {
+- /* timeout, bad CRC, wrong PID, etc */
+- fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
+- urb->dev->devpath,
+- usb_pipeendpoint(urb->pipe),
+- usb_pipein(urb->pipe) ? "in" : "out");
+- status = -EPROTO;
+- } else { /* unknown */
+- status = -EPROTO;
+- }
+-
+- fotg210_dbg(fotg210,
+- "dev%d ep%d%s qtd token %08x --> status %d\n",
+- usb_pipedevice(urb->pipe),
+- usb_pipeendpoint(urb->pipe),
+- usb_pipein(urb->pipe) ? "in" : "out",
+- token, status);
+- }
+-
+- return status;
+-}
+-
+-static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
+- int status)
+-__releases(fotg210->lock)
+-__acquires(fotg210->lock)
+-{
+- if (likely(urb->hcpriv != NULL)) {
+- struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
+-
+- /* S-mask in a QH means it's an interrupt urb */
+- if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
+-
+- /* ... update hc-wide periodic stats (for usbfs) */
+- fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
+- }
+- }
+-
+- if (unlikely(urb->unlinked)) {
+- INCR(fotg210->stats.unlink);
+- } else {
+- /* report non-error and short read status as zero */
+- if (status == -EINPROGRESS || status == -EREMOTEIO)
+- status = 0;
+- INCR(fotg210->stats.complete);
+- }
+-
+-#ifdef FOTG210_URB_TRACE
+- fotg210_dbg(fotg210,
+- "%s %s urb %p ep%d%s status %d len %d/%d\n",
+- __func__, urb->dev->devpath, urb,
+- usb_pipeendpoint(urb->pipe),
+- usb_pipein(urb->pipe) ? "in" : "out",
+- status,
+- urb->actual_length, urb->transfer_buffer_length);
+-#endif
+-
+- /* complete() can reenter this HCD */
+- usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
+- spin_unlock(&fotg210->lock);
+- usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
+- spin_lock(&fotg210->lock);
+-}
+-
+-static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
+-
+-/* Process and free completed qtds for a qh, returning URBs to drivers.
+- * Chases up to qh->hw_current. Returns number of completions called,
+- * indicating how much "real" work we did.
+- */
+-static unsigned qh_completions(struct fotg210_hcd *fotg210,
+- struct fotg210_qh *qh)
+-{
+- struct fotg210_qtd *last, *end = qh->dummy;
+- struct fotg210_qtd *qtd, *tmp;
+- int last_status;
+- int stopped;
+- unsigned count = 0;
+- u8 state;
+- struct fotg210_qh_hw *hw = qh->hw;
+-
+- if (unlikely(list_empty(&qh->qtd_list)))
+- return count;
+-
+- /* completions (or tasks on other cpus) must never clobber HALT
+- * till we've gone through and cleaned everything up, even when
+- * they add urbs to this qh's queue or mark them for unlinking.
+- *
+- * NOTE: unlinking expects to be done in queue order.
+- *
+- * It's a bug for qh->qh_state to be anything other than
+- * QH_STATE_IDLE, unless our caller is scan_async() or
+- * scan_intr().
+- */
+- state = qh->qh_state;
+- qh->qh_state = QH_STATE_COMPLETING;
+- stopped = (state == QH_STATE_IDLE);
+-
+-rescan:
+- last = NULL;
+- last_status = -EINPROGRESS;
+- qh->needs_rescan = 0;
+-
+- /* remove de-activated QTDs from front of queue.
+- * after faults (including short reads), cleanup this urb
+- * then let the queue advance.
+- * if queue is stopped, handles unlinks.
+- */
+- list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
+- struct urb *urb;
+- u32 token = 0;
+-
+- urb = qtd->urb;
+-
+- /* clean up any state from previous QTD ...*/
+- if (last) {
+- if (likely(last->urb != urb)) {
+- fotg210_urb_done(fotg210, last->urb,
+- last_status);
+- count++;
+- last_status = -EINPROGRESS;
+- }
+- fotg210_qtd_free(fotg210, last);
+- last = NULL;
+- }
+-
+- /* ignore urbs submitted during completions we reported */
+- if (qtd == end)
+- break;
+-
+- /* hardware copies qtd out of qh overlay */
+- rmb();
+- token = hc32_to_cpu(fotg210, qtd->hw_token);
+-
+- /* always clean up qtds the hc de-activated */
+-retry_xacterr:
+- if ((token & QTD_STS_ACTIVE) == 0) {
+-
+- /* Report Data Buffer Error: non-fatal but useful */
+- if (token & QTD_STS_DBE)
+- fotg210_dbg(fotg210,
+- "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
+- urb, usb_endpoint_num(&urb->ep->desc),
+- usb_endpoint_dir_in(&urb->ep->desc)
+- ? "in" : "out",
+- urb->transfer_buffer_length, qtd, qh);
+-
+- /* on STALL, error, and short reads this urb must
+- * complete and all its qtds must be recycled.
+- */
+- if ((token & QTD_STS_HALT) != 0) {
+-
+- /* retry transaction errors until we
+- * reach the software xacterr limit
+- */
+- if ((token & QTD_STS_XACT) &&
+- QTD_CERR(token) == 0 &&
+- ++qh->xacterrs < QH_XACTERR_MAX &&
+- !urb->unlinked) {
+- fotg210_dbg(fotg210,
+- "detected XactErr len %zu/%zu retry %d\n",
+- qtd->length - QTD_LENGTH(token),
+- qtd->length,
+- qh->xacterrs);
+-
+- /* reset the token in the qtd and the
+- * qh overlay (which still contains
+- * the qtd) so that we pick up from
+- * where we left off
+- */
+- token &= ~QTD_STS_HALT;
+- token |= QTD_STS_ACTIVE |
+- (FOTG210_TUNE_CERR << 10);
+- qtd->hw_token = cpu_to_hc32(fotg210,
+- token);
+- wmb();
+- hw->hw_token = cpu_to_hc32(fotg210,
+- token);
+- goto retry_xacterr;
+- }
+- stopped = 1;
+-
+- /* magic dummy for some short reads; qh won't advance.
+- * that silicon quirk can kick in with this dummy too.
+- *
+- * other short reads won't stop the queue, including
+- * control transfers (status stage handles that) or
+- * most other single-qtd reads ... the queue stops if
+- * URB_SHORT_NOT_OK was set so the driver submitting
+- * the urbs could clean it up.
+- */
+- } else if (IS_SHORT_READ(token) &&
+- !(qtd->hw_alt_next &
+- FOTG210_LIST_END(fotg210))) {
+- stopped = 1;
+- }
+-
+- /* stop scanning when we reach qtds the hc is using */
+- } else if (likely(!stopped
+- && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
+- break;
+-
+- /* scan the whole queue for unlinks whenever it stops */
+- } else {
+- stopped = 1;
+-
+- /* cancel everything if we halt, suspend, etc */
+- if (fotg210->rh_state < FOTG210_RH_RUNNING)
+- last_status = -ESHUTDOWN;
+-
+- /* this qtd is active; skip it unless a previous qtd
+- * for its urb faulted, or its urb was canceled.
+- */
+- else if (last_status == -EINPROGRESS && !urb->unlinked)
+- continue;
+-
+- /* qh unlinked; token in overlay may be most current */
+- if (state == QH_STATE_IDLE &&
+- cpu_to_hc32(fotg210, qtd->qtd_dma)
+- == hw->hw_current) {
+- token = hc32_to_cpu(fotg210, hw->hw_token);
+-
+- /* An unlink may leave an incomplete
+- * async transaction in the TT buffer.
+- * We have to clear it.
+- */
+- fotg210_clear_tt_buffer(fotg210, qh, urb,
+- token);
+- }
+- }
+-
+- /* unless we already know the urb's status, collect qtd status
+- * and update count of bytes transferred. in common short read
+- * cases with only one data qtd (including control transfers),
+- * queue processing won't halt. but with two or more qtds (for
+- * example, with a 32 KB transfer), when the first qtd gets a
+- * short read the second must be removed by hand.
+- */
+- if (last_status == -EINPROGRESS) {
+- last_status = qtd_copy_status(fotg210, urb,
+- qtd->length, token);
+- if (last_status == -EREMOTEIO &&
+- (qtd->hw_alt_next &
+- FOTG210_LIST_END(fotg210)))
+- last_status = -EINPROGRESS;
+-
+- /* As part of low/full-speed endpoint-halt processing
+- * we must clear the TT buffer (11.17.5).
+- */
+- if (unlikely(last_status != -EINPROGRESS &&
+- last_status != -EREMOTEIO)) {
+- /* The TT's in some hubs malfunction when they
+- * receive this request following a STALL (they
+- * stop sending isochronous packets). Since a
+- * STALL can't leave the TT buffer in a busy
+- * state (if you believe Figures 11-48 - 11-51
+- * in the USB 2.0 spec), we won't clear the TT
+- * buffer in this case. Strictly speaking this
+- * is a violation of the spec.
+- */
+- if (last_status != -EPIPE)
+- fotg210_clear_tt_buffer(fotg210, qh,
+- urb, token);
+- }
+- }
+-
+- /* if we're removing something not at the queue head,
+- * patch the hardware queue pointer.
+- */
+- if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
+- last = list_entry(qtd->qtd_list.prev,
+- struct fotg210_qtd, qtd_list);
+- last->hw_next = qtd->hw_next;
+- }
+-
+- /* remove qtd; it's recycled after possible urb completion */
+- list_del(&qtd->qtd_list);
+- last = qtd;
+-
+- /* reinit the xacterr counter for the next qtd */
+- qh->xacterrs = 0;
+- }
+-
+- /* last urb's completion might still need calling */
+- if (likely(last != NULL)) {
+- fotg210_urb_done(fotg210, last->urb, last_status);
+- count++;
+- fotg210_qtd_free(fotg210, last);
+- }
+-
+- /* Do we need to rescan for URBs dequeued during a giveback? */
+- if (unlikely(qh->needs_rescan)) {
+- /* If the QH is already unlinked, do the rescan now. */
+- if (state == QH_STATE_IDLE)
+- goto rescan;
+-
+- /* Otherwise we have to wait until the QH is fully unlinked.
+- * Our caller will start an unlink if qh->needs_rescan is
+- * set. But if an unlink has already started, nothing needs
+- * to be done.
+- */
+- if (state != QH_STATE_LINKED)
+- qh->needs_rescan = 0;
+- }
+-
+- /* restore original state; caller must unlink or relink */
+- qh->qh_state = state;
+-
+- /* be sure the hardware's done with the qh before refreshing
+- * it after fault cleanup, or recovering from silicon wrongly
+- * overlaying the dummy qtd (which reduces DMA chatter).
+- */
+- if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
+- switch (state) {
+- case QH_STATE_IDLE:
+- qh_refresh(fotg210, qh);
+- break;
+- case QH_STATE_LINKED:
+- /* We won't refresh a QH that's linked (after the HC
+- * stopped the queue). That avoids a race:
+- * - HC reads first part of QH;
+- * - CPU updates that first part and the token;
+- * - HC reads rest of that QH, including token
+- * Result: HC gets an inconsistent image, and then
+- * DMAs to/from the wrong memory (corrupting it).
+- *
+- * That should be rare for interrupt transfers,
+- * except maybe high bandwidth ...
+- */
+-
+- /* Tell the caller to start an unlink */
+- qh->needs_rescan = 1;
+- break;
+- /* otherwise, unlink already started */
+- }
+- }
+-
+- return count;
+-}
+-
+-/* reverse of qh_urb_transaction: free a list of TDs.
+- * used for cleanup after errors, before HC sees an URB's TDs.
+- */
+-static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
+- struct list_head *head)
+-{
+- struct fotg210_qtd *qtd, *temp;
+-
+- list_for_each_entry_safe(qtd, temp, head, qtd_list) {
+- list_del(&qtd->qtd_list);
+- fotg210_qtd_free(fotg210, qtd);
+- }
+-}
+-
+-/* create a list of filled qtds for this URB; won't link into qh.
+- */
+-static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
+- struct urb *urb, struct list_head *head, gfp_t flags)
+-{
+- struct fotg210_qtd *qtd, *qtd_prev;
+- dma_addr_t buf;
+- int len, this_sg_len, maxpacket;
+- int is_input;
+- u32 token;
+- int i;
+- struct scatterlist *sg;
+-
+- /*
+- * URBs map to sequences of QTDs: one logical transaction
+- */
+- qtd = fotg210_qtd_alloc(fotg210, flags);
+- if (unlikely(!qtd))
+- return NULL;
+- list_add_tail(&qtd->qtd_list, head);
+- qtd->urb = urb;
+-
+- token = QTD_STS_ACTIVE;
+- token |= (FOTG210_TUNE_CERR << 10);
+- /* for split transactions, SplitXState initialized to zero */
+-
+- len = urb->transfer_buffer_length;
+- is_input = usb_pipein(urb->pipe);
+- if (usb_pipecontrol(urb->pipe)) {
+- /* SETUP pid */
+- qtd_fill(fotg210, qtd, urb->setup_dma,
+- sizeof(struct usb_ctrlrequest),
+- token | (2 /* "setup" */ << 8), 8);
+-
+- /* ... and always at least one more pid */
+- token ^= QTD_TOGGLE;
+- qtd_prev = qtd;
+- qtd = fotg210_qtd_alloc(fotg210, flags);
+- if (unlikely(!qtd))
+- goto cleanup;
+- qtd->urb = urb;
+- qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
+- list_add_tail(&qtd->qtd_list, head);
+-
+- /* for zero length DATA stages, STATUS is always IN */
+- if (len == 0)
+- token |= (1 /* "in" */ << 8);
+- }
+-
+- /*
+- * data transfer stage: buffer setup
+- */
+- i = urb->num_mapped_sgs;
+- if (len > 0 && i > 0) {
+- sg = urb->sg;
+- buf = sg_dma_address(sg);
+-
+- /* urb->transfer_buffer_length may be smaller than the
+- * size of the scatterlist (or vice versa)
+- */
+- this_sg_len = min_t(int, sg_dma_len(sg), len);
+- } else {
+- sg = NULL;
+- buf = urb->transfer_dma;
+- this_sg_len = len;
+- }
+-
+- if (is_input)
+- token |= (1 /* "in" */ << 8);
+- /* else it's already initted to "out" pid (0 << 8) */
+-
+- maxpacket = usb_maxpacket(urb->dev, urb->pipe);
+-
+- /*
+- * buffer gets wrapped in one or more qtds;
+- * last one may be "short" (including zero len)
+- * and may serve as a control status ack
+- */
+- for (;;) {
+- int this_qtd_len;
+-
+- this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
+- maxpacket);
+- this_sg_len -= this_qtd_len;
+- len -= this_qtd_len;
+- buf += this_qtd_len;
+-
+- /*
+- * short reads advance to a "magic" dummy instead of the next
+- * qtd ... that forces the queue to stop, for manual cleanup.
+- * (this will usually be overridden later.)
+- */
+- if (is_input)
+- qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
+-
+- /* qh makes control packets use qtd toggle; maybe switch it */
+- if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
+- token ^= QTD_TOGGLE;
+-
+- if (likely(this_sg_len <= 0)) {
+- if (--i <= 0 || len <= 0)
+- break;
+- sg = sg_next(sg);
+- buf = sg_dma_address(sg);
+- this_sg_len = min_t(int, sg_dma_len(sg), len);
+- }
+-
+- qtd_prev = qtd;
+- qtd = fotg210_qtd_alloc(fotg210, flags);
+- if (unlikely(!qtd))
+- goto cleanup;
+- qtd->urb = urb;
+- qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
+- list_add_tail(&qtd->qtd_list, head);
+- }
+-
+- /*
+- * unless the caller requires manual cleanup after short reads,
+- * have the alt_next mechanism keep the queue running after the
+- * last data qtd (the only one, for control and most other cases).
+- */
+- if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
+- usb_pipecontrol(urb->pipe)))
+- qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
+-
+- /*
+- * control requests may need a terminating data "status" ack;
+- * other OUT ones may need a terminating short packet
+- * (zero length).
+- */
+- if (likely(urb->transfer_buffer_length != 0)) {
+- int one_more = 0;
+-
+- if (usb_pipecontrol(urb->pipe)) {
+- one_more = 1;
+- token ^= 0x0100; /* "in" <--> "out" */
+- token |= QTD_TOGGLE; /* force DATA1 */
+- } else if (usb_pipeout(urb->pipe)
+- && (urb->transfer_flags & URB_ZERO_PACKET)
+- && !(urb->transfer_buffer_length % maxpacket)) {
+- one_more = 1;
+- }
+- if (one_more) {
+- qtd_prev = qtd;
+- qtd = fotg210_qtd_alloc(fotg210, flags);
+- if (unlikely(!qtd))
+- goto cleanup;
+- qtd->urb = urb;
+- qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
+- list_add_tail(&qtd->qtd_list, head);
+-
+- /* never any data in such packets */
+- qtd_fill(fotg210, qtd, 0, 0, token, 0);
+- }
+- }
+-
+- /* by default, enable interrupt on urb completion */
+- if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
+- qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
+- return head;
+-
+-cleanup:
+- qtd_list_free(fotg210, urb, head);
+- return NULL;
+-}
+-
+-/* Would be best to create all qh's from config descriptors,
+- * when each interface/altsetting is established. Unlink
+- * any previous qh and cancel its urbs first; endpoints are
+- * implicitly reset then (data toggle too).
+- * That'd mean updating how usbcore talks to HCDs. (2.7?)
+- */
+-
+-
+-/* Each QH holds a qtd list; a QH is used for everything except iso.
+- *
+- * For interrupt urbs, the scheduler must set the microframe scheduling
+- * mask(s) each time the QH gets scheduled. For highspeed, that's
+- * just one microframe in the s-mask. For split interrupt transactions
+- * there are additional complications: c-mask, maybe FSTNs.
+- */
+-static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
+- gfp_t flags)
+-{
+- struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
+- struct usb_host_endpoint *ep;
+- u32 info1 = 0, info2 = 0;
+- int is_input, type;
+- int maxp = 0;
+- int mult;
+- struct usb_tt *tt = urb->dev->tt;
+- struct fotg210_qh_hw *hw;
+-
+- if (!qh)
+- return qh;
+-
+- /*
+- * init endpoint/device data for this QH
+- */
+- info1 |= usb_pipeendpoint(urb->pipe) << 8;
+- info1 |= usb_pipedevice(urb->pipe) << 0;
+-
+- is_input = usb_pipein(urb->pipe);
+- type = usb_pipetype(urb->pipe);
+- ep = usb_pipe_endpoint(urb->dev, urb->pipe);
+- maxp = usb_endpoint_maxp(&ep->desc);
+- mult = usb_endpoint_maxp_mult(&ep->desc);
+-
+- /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
+- * acts like up to 3KB, but is built from smaller packets.
+- */
+- if (maxp > 1024) {
+- fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
+- goto done;
+- }
+-
+- /* Compute interrupt scheduling parameters just once, and save.
+- * - allowing for high bandwidth, how many nsec/uframe are used?
+- * - split transactions need a second CSPLIT uframe; same question
+- * - splits also need a schedule gap (for full/low speed I/O)
+- * - qh has a polling interval
+- *
+- * For control/bulk requests, the HC or TT handles these.
+- */
+- if (type == PIPE_INTERRUPT) {
+- qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
+- is_input, 0, mult * maxp));
+- qh->start = NO_FRAME;
+-
+- if (urb->dev->speed == USB_SPEED_HIGH) {
+- qh->c_usecs = 0;
+- qh->gap_uf = 0;
+-
+- qh->period = urb->interval >> 3;
+- if (qh->period == 0 && urb->interval != 1) {
+- /* NOTE interval 2 or 4 uframes could work.
+- * But interval 1 scheduling is simpler, and
+- * includes high bandwidth.
+- */
+- urb->interval = 1;
+- } else if (qh->period > fotg210->periodic_size) {
+- qh->period = fotg210->periodic_size;
+- urb->interval = qh->period << 3;
+- }
+- } else {
+- int think_time;
+-
+- /* gap is f(FS/LS transfer times) */
+- qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
+- is_input, 0, maxp) / (125 * 1000);
+-
+- /* FIXME this just approximates SPLIT/CSPLIT times */
+- if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
+- qh->c_usecs = qh->usecs + HS_USECS(0);
+- qh->usecs = HS_USECS(1);
+- } else { /* SPLIT+DATA, gap, CSPLIT */
+- qh->usecs += HS_USECS(1);
+- qh->c_usecs = HS_USECS(0);
+- }
+-
+- think_time = tt ? tt->think_time : 0;
+- qh->tt_usecs = NS_TO_US(think_time +
+- usb_calc_bus_time(urb->dev->speed,
+- is_input, 0, maxp));
+- qh->period = urb->interval;
+- if (qh->period > fotg210->periodic_size) {
+- qh->period = fotg210->periodic_size;
+- urb->interval = qh->period;
+- }
+- }
+- }
+-
+- /* support for tt scheduling, and access to toggles */
+- qh->dev = urb->dev;
+-
+- /* using TT? */
+- switch (urb->dev->speed) {
+- case USB_SPEED_LOW:
+- info1 |= QH_LOW_SPEED;
+- fallthrough;
+-
+- case USB_SPEED_FULL:
+- /* EPS 0 means "full" */
+- if (type != PIPE_INTERRUPT)
+- info1 |= (FOTG210_TUNE_RL_TT << 28);
+- if (type == PIPE_CONTROL) {
+- info1 |= QH_CONTROL_EP; /* for TT */
+- info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
+- }
+- info1 |= maxp << 16;
+-
+- info2 |= (FOTG210_TUNE_MULT_TT << 30);
+-
+- /* Some Freescale processors have an erratum in which the
+- * port number in the queue head was 0..N-1 instead of 1..N.
+- */
+- if (fotg210_has_fsl_portno_bug(fotg210))
+- info2 |= (urb->dev->ttport-1) << 23;
+- else
+- info2 |= urb->dev->ttport << 23;
+-
+- /* set the address of the TT; for TDI's integrated
+- * root hub tt, leave it zeroed.
+- */
+- if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
+- info2 |= tt->hub->devnum << 16;
+-
+- /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
+-
+- break;
+-
+- case USB_SPEED_HIGH: /* no TT involved */
+- info1 |= QH_HIGH_SPEED;
+- if (type == PIPE_CONTROL) {
+- info1 |= (FOTG210_TUNE_RL_HS << 28);
+- info1 |= 64 << 16; /* usb2 fixed maxpacket */
+- info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
+- info2 |= (FOTG210_TUNE_MULT_HS << 30);
+- } else if (type == PIPE_BULK) {
+- info1 |= (FOTG210_TUNE_RL_HS << 28);
+- /* The USB spec says that high speed bulk endpoints
+- * always use 512 byte maxpacket. But some device
+- * vendors decided to ignore that, and MSFT is happy
+- * to help them do so. So now people expect to use
+- * such nonconformant devices with Linux too; sigh.
+- */
+- info1 |= maxp << 16;
+- info2 |= (FOTG210_TUNE_MULT_HS << 30);
+- } else { /* PIPE_INTERRUPT */
+- info1 |= maxp << 16;
+- info2 |= mult << 30;
+- }
+- break;
+- default:
+- fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
+- urb->dev->speed);
+-done:
+- qh_destroy(fotg210, qh);
+- return NULL;
+- }
+-
+- /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
+-
+- /* init as live, toggle clear, advance to dummy */
+- qh->qh_state = QH_STATE_IDLE;
+- hw = qh->hw;
+- hw->hw_info1 = cpu_to_hc32(fotg210, info1);
+- hw->hw_info2 = cpu_to_hc32(fotg210, info2);
+- qh->is_out = !is_input;
+- usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
+- qh_refresh(fotg210, qh);
+- return qh;
+-}
+-
+-static void enable_async(struct fotg210_hcd *fotg210)
+-{
+- if (fotg210->async_count++)
+- return;
+-
+- /* Stop waiting to turn off the async schedule */
+- fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
+-
+- /* Don't start the schedule until ASS is 0 */
+- fotg210_poll_ASS(fotg210);
+- turn_on_io_watchdog(fotg210);
+-}
+-
+-static void disable_async(struct fotg210_hcd *fotg210)
+-{
+- if (--fotg210->async_count)
+- return;
+-
+- /* The async schedule and async_unlink list are supposed to be empty */
+- WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
+-
+- /* Don't turn off the schedule until ASS is 1 */
+- fotg210_poll_ASS(fotg210);
+-}
+-
+-/* move qh (and its qtds) onto async queue; maybe enable queue. */
+-
+-static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
+-{
+- __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
+- struct fotg210_qh *head;
+-
+- /* Don't link a QH if there's a Clear-TT-Buffer pending */
+- if (unlikely(qh->clearing_tt))
+- return;
+-
+- WARN_ON(qh->qh_state != QH_STATE_IDLE);
+-
+- /* clear halt and/or toggle; and maybe recover from silicon quirk */
+- qh_refresh(fotg210, qh);
+-
+- /* splice right after start */
+- head = fotg210->async;
+- qh->qh_next = head->qh_next;
+- qh->hw->hw_next = head->hw->hw_next;
+- wmb();
+-
+- head->qh_next.qh = qh;
+- head->hw->hw_next = dma;
+-
+- qh->xacterrs = 0;
+- qh->qh_state = QH_STATE_LINKED;
+- /* qtd completions reported later by interrupt */
+-
+- enable_async(fotg210);
+-}
+-
+-/* For control/bulk/interrupt, return QH with these TDs appended.
+- * Allocates and initializes the QH if necessary.
+- * Returns null if it can't allocate a QH it needs to.
+- * If the QH has TDs (urbs) already, that's great.
+- */
+-static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
+- struct urb *urb, struct list_head *qtd_list,
+- int epnum, void **ptr)
+-{
+- struct fotg210_qh *qh = NULL;
+- __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
+-
+- qh = (struct fotg210_qh *) *ptr;
+- if (unlikely(qh == NULL)) {
+- /* can't sleep here, we have fotg210->lock... */
+- qh = qh_make(fotg210, urb, GFP_ATOMIC);
+- *ptr = qh;
+- }
+- if (likely(qh != NULL)) {
+- struct fotg210_qtd *qtd;
+-
+- if (unlikely(list_empty(qtd_list)))
+- qtd = NULL;
+- else
+- qtd = list_entry(qtd_list->next, struct fotg210_qtd,
+- qtd_list);
+-
+- /* control qh may need patching ... */
+- if (unlikely(epnum == 0)) {
+- /* usb_reset_device() briefly reverts to address 0 */
+- if (usb_pipedevice(urb->pipe) == 0)
+- qh->hw->hw_info1 &= ~qh_addr_mask;
+- }
+-
+- /* just one way to queue requests: swap with the dummy qtd.
+- * only hc or qh_refresh() ever modify the overlay.
+- */
+- if (likely(qtd != NULL)) {
+- struct fotg210_qtd *dummy;
+- dma_addr_t dma;
+- __hc32 token;
+-
+- /* to avoid racing the HC, use the dummy td instead of
+- * the first td of our list (becomes new dummy). both
+- * tds stay deactivated until we're done, when the
+- * HC is allowed to fetch the old dummy (4.10.2).
+- */
+- token = qtd->hw_token;
+- qtd->hw_token = HALT_BIT(fotg210);
+-
+- dummy = qh->dummy;
+-
+- dma = dummy->qtd_dma;
+- *dummy = *qtd;
+- dummy->qtd_dma = dma;
+-
+- list_del(&qtd->qtd_list);
+- list_add(&dummy->qtd_list, qtd_list);
+- list_splice_tail(qtd_list, &qh->qtd_list);
+-
+- fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
+- qh->dummy = qtd;
+-
+- /* hc must see the new dummy at list end */
+- dma = qtd->qtd_dma;
+- qtd = list_entry(qh->qtd_list.prev,
+- struct fotg210_qtd, qtd_list);
+- qtd->hw_next = QTD_NEXT(fotg210, dma);
+-
+- /* let the hc process these next qtds */
+- wmb();
+- dummy->hw_token = token;
+-
+- urb->hcpriv = qh;
+- }
+- }
+- return qh;
+-}
+-
+-static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
+- struct list_head *qtd_list, gfp_t mem_flags)
+-{
+- int epnum;
+- unsigned long flags;
+- struct fotg210_qh *qh = NULL;
+- int rc;
+-
+- epnum = urb->ep->desc.bEndpointAddress;
+-
+-#ifdef FOTG210_URB_TRACE
+- {
+- struct fotg210_qtd *qtd;
+-
+- qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
+- fotg210_dbg(fotg210,
+- "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
+- __func__, urb->dev->devpath, urb,
+- epnum & 0x0f, (epnum & USB_DIR_IN)
+- ? "in" : "out",
+- urb->transfer_buffer_length,
+- qtd, urb->ep->hcpriv);
+- }
+-#endif
+-
+- spin_lock_irqsave(&fotg210->lock, flags);
+- if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
+- rc = -ESHUTDOWN;
+- goto done;
+- }
+- rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
+- if (unlikely(rc))
+- goto done;
+-
+- qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
+- if (unlikely(qh == NULL)) {
+- usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
+- rc = -ENOMEM;
+- goto done;
+- }
+-
+- /* Control/bulk operations through TTs don't need scheduling,
+- * the HC and TT handle it when the TT has a buffer ready.
+- */
+- if (likely(qh->qh_state == QH_STATE_IDLE))
+- qh_link_async(fotg210, qh);
+-done:
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- if (unlikely(qh == NULL))
+- qtd_list_free(fotg210, urb, qtd_list);
+- return rc;
+-}
+-
+-static void single_unlink_async(struct fotg210_hcd *fotg210,
+- struct fotg210_qh *qh)
+-{
+- struct fotg210_qh *prev;
+-
+- /* Add to the end of the list of QHs waiting for the next IAAD */
+- qh->qh_state = QH_STATE_UNLINK;
+- if (fotg210->async_unlink)
+- fotg210->async_unlink_last->unlink_next = qh;
+- else
+- fotg210->async_unlink = qh;
+- fotg210->async_unlink_last = qh;
+-
+- /* Unlink it from the schedule */
+- prev = fotg210->async;
+- while (prev->qh_next.qh != qh)
+- prev = prev->qh_next.qh;
+-
+- prev->hw->hw_next = qh->hw->hw_next;
+- prev->qh_next = qh->qh_next;
+- if (fotg210->qh_scan_next == qh)
+- fotg210->qh_scan_next = qh->qh_next.qh;
+-}
+-
+-static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
+-{
+- /*
+- * Do nothing if an IAA cycle is already running or
+- * if one will be started shortly.
+- */
+- if (fotg210->async_iaa || fotg210->async_unlinking)
+- return;
+-
+- /* Do all the waiting QHs at once */
+- fotg210->async_iaa = fotg210->async_unlink;
+- fotg210->async_unlink = NULL;
+-
+- /* If the controller isn't running, we don't have to wait for it */
+- if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
+- if (!nested) /* Avoid recursion */
+- end_unlink_async(fotg210);
+-
+- /* Otherwise start a new IAA cycle */
+- } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
+- /* Make sure the unlinks are all visible to the hardware */
+- wmb();
+-
+- fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
+- &fotg210->regs->command);
+- fotg210_readl(fotg210, &fotg210->regs->command);
+- fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
+- true);
+- }
+-}
+-
+-/* the async qh for the qtds being unlinked are now gone from the HC */
+-
+-static void end_unlink_async(struct fotg210_hcd *fotg210)
+-{
+- struct fotg210_qh *qh;
+-
+- /* Process the idle QHs */
+-restart:
+- fotg210->async_unlinking = true;
+- while (fotg210->async_iaa) {
+- qh = fotg210->async_iaa;
+- fotg210->async_iaa = qh->unlink_next;
+- qh->unlink_next = NULL;
+-
+- qh->qh_state = QH_STATE_IDLE;
+- qh->qh_next.qh = NULL;
+-
+- qh_completions(fotg210, qh);
+- if (!list_empty(&qh->qtd_list) &&
+- fotg210->rh_state == FOTG210_RH_RUNNING)
+- qh_link_async(fotg210, qh);
+- disable_async(fotg210);
+- }
+- fotg210->async_unlinking = false;
+-
+- /* Start a new IAA cycle if any QHs are waiting for it */
+- if (fotg210->async_unlink) {
+- start_iaa_cycle(fotg210, true);
+- if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
+- goto restart;
+- }
+-}
+-
+-static void unlink_empty_async(struct fotg210_hcd *fotg210)
+-{
+- struct fotg210_qh *qh, *next;
+- bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
+- bool check_unlinks_later = false;
+-
+- /* Unlink all the async QHs that have been empty for a timer cycle */
+- next = fotg210->async->qh_next.qh;
+- while (next) {
+- qh = next;
+- next = qh->qh_next.qh;
+-
+- if (list_empty(&qh->qtd_list) &&
+- qh->qh_state == QH_STATE_LINKED) {
+- if (!stopped && qh->unlink_cycle ==
+- fotg210->async_unlink_cycle)
+- check_unlinks_later = true;
+- else
+- single_unlink_async(fotg210, qh);
+- }
+- }
+-
+- /* Start a new IAA cycle if any QHs are waiting for it */
+- if (fotg210->async_unlink)
+- start_iaa_cycle(fotg210, false);
+-
+- /* QHs that haven't been empty for long enough will be handled later */
+- if (check_unlinks_later) {
+- fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
+- true);
+- ++fotg210->async_unlink_cycle;
+- }
+-}
+-
+-/* makes sure the async qh will become idle */
+-/* caller must own fotg210->lock */
+-
+-static void start_unlink_async(struct fotg210_hcd *fotg210,
+- struct fotg210_qh *qh)
+-{
+- /*
+- * If the QH isn't linked then there's nothing we can do
+- * unless we were called during a giveback, in which case
+- * qh_completions() has to deal with it.
+- */
+- if (qh->qh_state != QH_STATE_LINKED) {
+- if (qh->qh_state == QH_STATE_COMPLETING)
+- qh->needs_rescan = 1;
+- return;
+- }
+-
+- single_unlink_async(fotg210, qh);
+- start_iaa_cycle(fotg210, false);
+-}
+-
+-static void scan_async(struct fotg210_hcd *fotg210)
+-{
+- struct fotg210_qh *qh;
+- bool check_unlinks_later = false;
+-
+- fotg210->qh_scan_next = fotg210->async->qh_next.qh;
+- while (fotg210->qh_scan_next) {
+- qh = fotg210->qh_scan_next;
+- fotg210->qh_scan_next = qh->qh_next.qh;
+-rescan:
+- /* clean any finished work for this qh */
+- if (!list_empty(&qh->qtd_list)) {
+- int temp;
+-
+- /*
+- * Unlinks could happen here; completion reporting
+- * drops the lock. That's why fotg210->qh_scan_next
+- * always holds the next qh to scan; if the next qh
+- * gets unlinked then fotg210->qh_scan_next is adjusted
+- * in single_unlink_async().
+- */
+- temp = qh_completions(fotg210, qh);
+- if (qh->needs_rescan) {
+- start_unlink_async(fotg210, qh);
+- } else if (list_empty(&qh->qtd_list)
+- && qh->qh_state == QH_STATE_LINKED) {
+- qh->unlink_cycle = fotg210->async_unlink_cycle;
+- check_unlinks_later = true;
+- } else if (temp != 0)
+- goto rescan;
+- }
+- }
+-
+- /*
+- * Unlink empty entries, reducing DMA usage as well
+- * as HCD schedule-scanning costs. Delay for any qh
+- * we just scanned, there's a not-unusual case that it
+- * doesn't stay idle for long.
+- */
+- if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
+- !(fotg210->enabled_hrtimer_events &
+- BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
+- fotg210_enable_event(fotg210,
+- FOTG210_HRTIMER_ASYNC_UNLINKS, true);
+- ++fotg210->async_unlink_cycle;
+- }
+-}
+-/* EHCI scheduled transaction support: interrupt, iso, split iso
+- * These are called "periodic" transactions in the EHCI spec.
+- *
+- * Note that for interrupt transfers, the QH/QTD manipulation is shared
+- * with the "asynchronous" transaction support (control/bulk transfers).
+- * The only real difference is in how interrupt transfers are scheduled.
+- *
+- * For ISO, we make an "iso_stream" head to serve the same role as a QH.
+- * It keeps track of every ITD (or SITD) that's linked, and holds enough
+- * pre-calculated schedule data to make appending to the queue be quick.
+- */
+-static int fotg210_get_frame(struct usb_hcd *hcd);
+-
+-/* periodic_next_shadow - return "next" pointer on shadow list
+- * @periodic: host pointer to qh/itd
+- * @tag: hardware tag for type of this record
+- */
+-static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
+- union fotg210_shadow *periodic, __hc32 tag)
+-{
+- switch (hc32_to_cpu(fotg210, tag)) {
+- case Q_TYPE_QH:
+- return &periodic->qh->qh_next;
+- case Q_TYPE_FSTN:
+- return &periodic->fstn->fstn_next;
+- default:
+- return &periodic->itd->itd_next;
+- }
+-}
+-
+-static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
+- union fotg210_shadow *periodic, __hc32 tag)
+-{
+- switch (hc32_to_cpu(fotg210, tag)) {
+- /* our fotg210_shadow.qh is actually software part */
+- case Q_TYPE_QH:
+- return &periodic->qh->hw->hw_next;
+- /* others are hw parts */
+- default:
+- return periodic->hw_next;
+- }
+-}
+-
+-/* caller must hold fotg210->lock */
+-static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
+- void *ptr)
+-{
+- union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
+- __hc32 *hw_p = &fotg210->periodic[frame];
+- union fotg210_shadow here = *prev_p;
+-
+- /* find predecessor of "ptr"; hw and shadow lists are in sync */
+- while (here.ptr && here.ptr != ptr) {
+- prev_p = periodic_next_shadow(fotg210, prev_p,
+- Q_NEXT_TYPE(fotg210, *hw_p));
+- hw_p = shadow_next_periodic(fotg210, &here,
+- Q_NEXT_TYPE(fotg210, *hw_p));
+- here = *prev_p;
+- }
+- /* an interrupt entry (at list end) could have been shared */
+- if (!here.ptr)
+- return;
+-
+- /* update shadow and hardware lists ... the old "next" pointers
+- * from ptr may still be in use, the caller updates them.
+- */
+- *prev_p = *periodic_next_shadow(fotg210, &here,
+- Q_NEXT_TYPE(fotg210, *hw_p));
+-
+- *hw_p = *shadow_next_periodic(fotg210, &here,
+- Q_NEXT_TYPE(fotg210, *hw_p));
+-}
+-
+-/* how many of the uframe's 125 usecs are allocated? */
+-static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
+- unsigned frame, unsigned uframe)
+-{
+- __hc32 *hw_p = &fotg210->periodic[frame];
+- union fotg210_shadow *q = &fotg210->pshadow[frame];
+- unsigned usecs = 0;
+- struct fotg210_qh_hw *hw;
+-
+- while (q->ptr) {
+- switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
+- case Q_TYPE_QH:
+- hw = q->qh->hw;
+- /* is it in the S-mask? */
+- if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
+- usecs += q->qh->usecs;
+- /* ... or C-mask? */
+- if (hw->hw_info2 & cpu_to_hc32(fotg210,
+- 1 << (8 + uframe)))
+- usecs += q->qh->c_usecs;
+- hw_p = &hw->hw_next;
+- q = &q->qh->qh_next;
+- break;
+- /* case Q_TYPE_FSTN: */
+- default:
+- /* for "save place" FSTNs, count the relevant INTR
+- * bandwidth from the previous frame
+- */
+- if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
+- fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
+-
+- hw_p = &q->fstn->hw_next;
+- q = &q->fstn->fstn_next;
+- break;
+- case Q_TYPE_ITD:
+- if (q->itd->hw_transaction[uframe])
+- usecs += q->itd->stream->usecs;
+- hw_p = &q->itd->hw_next;
+- q = &q->itd->itd_next;
+- break;
+- }
+- }
+- if (usecs > fotg210->uframe_periodic_max)
+- fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
+- frame * 8 + uframe, usecs);
+- return usecs;
+-}
+-
+-static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
+-{
+- if (!dev1->tt || !dev2->tt)
+- return 0;
+- if (dev1->tt != dev2->tt)
+- return 0;
+- if (dev1->tt->multi)
+- return dev1->ttport == dev2->ttport;
+- else
+- return 1;
+-}
+-
+-/* return true iff the device's transaction translator is available
+- * for a periodic transfer starting at the specified frame, using
+- * all the uframes in the mask.
+- */
+-static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
+- struct usb_device *dev, unsigned frame, u32 uf_mask)
+-{
+- if (period == 0) /* error */
+- return 0;
+-
+- /* note bandwidth wastage: split never follows csplit
+- * (different dev or endpoint) until the next uframe.
+- * calling convention doesn't make that distinction.
+- */
+- for (; frame < fotg210->periodic_size; frame += period) {
+- union fotg210_shadow here;
+- __hc32 type;
+- struct fotg210_qh_hw *hw;
+-
+- here = fotg210->pshadow[frame];
+- type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
+- while (here.ptr) {
+- switch (hc32_to_cpu(fotg210, type)) {
+- case Q_TYPE_ITD:
+- type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
+- here = here.itd->itd_next;
+- continue;
+- case Q_TYPE_QH:
+- hw = here.qh->hw;
+- if (same_tt(dev, here.qh->dev)) {
+- u32 mask;
+-
+- mask = hc32_to_cpu(fotg210,
+- hw->hw_info2);
+- /* "knows" no gap is needed */
+- mask |= mask >> 8;
+- if (mask & uf_mask)
+- break;
+- }
+- type = Q_NEXT_TYPE(fotg210, hw->hw_next);
+- here = here.qh->qh_next;
+- continue;
+- /* case Q_TYPE_FSTN: */
+- default:
+- fotg210_dbg(fotg210,
+- "periodic frame %d bogus type %d\n",
+- frame, type);
+- }
+-
+- /* collision or error */
+- return 0;
+- }
+- }
+-
+- /* no collision */
+- return 1;
+-}
+-
+-static void enable_periodic(struct fotg210_hcd *fotg210)
+-{
+- if (fotg210->periodic_count++)
+- return;
+-
+- /* Stop waiting to turn off the periodic schedule */
+- fotg210->enabled_hrtimer_events &=
+- ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
+-
+- /* Don't start the schedule until PSS is 0 */
+- fotg210_poll_PSS(fotg210);
+- turn_on_io_watchdog(fotg210);
+-}
+-
+-static void disable_periodic(struct fotg210_hcd *fotg210)
+-{
+- if (--fotg210->periodic_count)
+- return;
+-
+- /* Don't turn off the schedule until PSS is 1 */
+- fotg210_poll_PSS(fotg210);
+-}
+-
+-/* periodic schedule slots have iso tds (normal or split) first, then a
+- * sparse tree for active interrupt transfers.
+- *
+- * this just links in a qh; caller guarantees uframe masks are set right.
+- * no FSTN support (yet; fotg210 0.96+)
+- */
+-static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
+-{
+- unsigned i;
+- unsigned period = qh->period;
+-
+- dev_dbg(&qh->dev->dev,
+- "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
+- hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
+- (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
+- qh->c_usecs);
+-
+- /* high bandwidth, or otherwise every microframe */
+- if (period == 0)
+- period = 1;
+-
+- for (i = qh->start; i < fotg210->periodic_size; i += period) {
+- union fotg210_shadow *prev = &fotg210->pshadow[i];
+- __hc32 *hw_p = &fotg210->periodic[i];
+- union fotg210_shadow here = *prev;
+- __hc32 type = 0;
+-
+- /* skip the iso nodes at list head */
+- while (here.ptr) {
+- type = Q_NEXT_TYPE(fotg210, *hw_p);
+- if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
+- break;
+- prev = periodic_next_shadow(fotg210, prev, type);
+- hw_p = shadow_next_periodic(fotg210, &here, type);
+- here = *prev;
+- }
+-
+- /* sorting each branch by period (slow-->fast)
+- * enables sharing interior tree nodes
+- */
+- while (here.ptr && qh != here.qh) {
+- if (qh->period > here.qh->period)
+- break;
+- prev = &here.qh->qh_next;
+- hw_p = &here.qh->hw->hw_next;
+- here = *prev;
+- }
+- /* link in this qh, unless some earlier pass did that */
+- if (qh != here.qh) {
+- qh->qh_next = here;
+- if (here.qh)
+- qh->hw->hw_next = *hw_p;
+- wmb();
+- prev->qh = qh;
+- *hw_p = QH_NEXT(fotg210, qh->qh_dma);
+- }
+- }
+- qh->qh_state = QH_STATE_LINKED;
+- qh->xacterrs = 0;
+-
+- /* update per-qh bandwidth for usbfs */
+- fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
+- ? ((qh->usecs + qh->c_usecs) / qh->period)
+- : (qh->usecs * 8);
+-
+- list_add(&qh->intr_node, &fotg210->intr_qh_list);
+-
+- /* maybe enable periodic schedule processing */
+- ++fotg210->intr_count;
+- enable_periodic(fotg210);
+-}
+-
+-static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
+- struct fotg210_qh *qh)
+-{
+- unsigned i;
+- unsigned period;
+-
+- /*
+- * If qh is for a low/full-speed device, simply unlinking it
+- * could interfere with an ongoing split transaction. To unlink
+- * it safely would require setting the QH_INACTIVATE bit and
+- * waiting at least one frame, as described in EHCI 4.12.2.5.
+- *
+- * We won't bother with any of this. Instead, we assume that the
+- * only reason for unlinking an interrupt QH while the current URB
+- * is still active is to dequeue all the URBs (flush the whole
+- * endpoint queue).
+- *
+- * If rebalancing the periodic schedule is ever implemented, this
+- * approach will no longer be valid.
+- */
+-
+- /* high bandwidth, or otherwise part of every microframe */
+- period = qh->period;
+- if (!period)
+- period = 1;
+-
+- for (i = qh->start; i < fotg210->periodic_size; i += period)
+- periodic_unlink(fotg210, i, qh);
+-
+- /* update per-qh bandwidth for usbfs */
+- fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
+- ? ((qh->usecs + qh->c_usecs) / qh->period)
+- : (qh->usecs * 8);
+-
+- dev_dbg(&qh->dev->dev,
+- "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
+- qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
+- (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
+- qh->c_usecs);
+-
+- /* qh->qh_next still "live" to HC */
+- qh->qh_state = QH_STATE_UNLINK;
+- qh->qh_next.ptr = NULL;
+-
+- if (fotg210->qh_scan_next == qh)
+- fotg210->qh_scan_next = list_entry(qh->intr_node.next,
+- struct fotg210_qh, intr_node);
+- list_del(&qh->intr_node);
+-}
+-
+-static void start_unlink_intr(struct fotg210_hcd *fotg210,
+- struct fotg210_qh *qh)
+-{
+- /* If the QH isn't linked then there's nothing we can do
+- * unless we were called during a giveback, in which case
+- * qh_completions() has to deal with it.
+- */
+- if (qh->qh_state != QH_STATE_LINKED) {
+- if (qh->qh_state == QH_STATE_COMPLETING)
+- qh->needs_rescan = 1;
+- return;
+- }
+-
+- qh_unlink_periodic(fotg210, qh);
+-
+- /* Make sure the unlinks are visible before starting the timer */
+- wmb();
+-
+- /*
+- * The EHCI spec doesn't say how long it takes the controller to
+- * stop accessing an unlinked interrupt QH. The timer delay is
+- * 9 uframes; presumably that will be long enough.
+- */
+- qh->unlink_cycle = fotg210->intr_unlink_cycle;
+-
+- /* New entries go at the end of the intr_unlink list */
+- if (fotg210->intr_unlink)
+- fotg210->intr_unlink_last->unlink_next = qh;
+- else
+- fotg210->intr_unlink = qh;
+- fotg210->intr_unlink_last = qh;
+-
+- if (fotg210->intr_unlinking)
+- ; /* Avoid recursive calls */
+- else if (fotg210->rh_state < FOTG210_RH_RUNNING)
+- fotg210_handle_intr_unlinks(fotg210);
+- else if (fotg210->intr_unlink == qh) {
+- fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
+- true);
+- ++fotg210->intr_unlink_cycle;
+- }
+-}
+-
+-static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
+-{
+- struct fotg210_qh_hw *hw = qh->hw;
+- int rc;
+-
+- qh->qh_state = QH_STATE_IDLE;
+- hw->hw_next = FOTG210_LIST_END(fotg210);
+-
+- qh_completions(fotg210, qh);
+-
+- /* reschedule QH iff another request is queued */
+- if (!list_empty(&qh->qtd_list) &&
+- fotg210->rh_state == FOTG210_RH_RUNNING) {
+- rc = qh_schedule(fotg210, qh);
+-
+- /* An error here likely indicates handshake failure
+- * or no space left in the schedule. Neither fault
+- * should happen often ...
+- *
+- * FIXME kill the now-dysfunctional queued urbs
+- */
+- if (rc != 0)
+- fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
+- qh, rc);
+- }
+-
+- /* maybe turn off periodic schedule */
+- --fotg210->intr_count;
+- disable_periodic(fotg210);
+-}
+-
+-static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
+- unsigned uframe, unsigned period, unsigned usecs)
+-{
+- int claimed;
+-
+- /* complete split running into next frame?
+- * given FSTN support, we could sometimes check...
+- */
+- if (uframe >= 8)
+- return 0;
+-
+- /* convert "usecs we need" to "max already claimed" */
+- usecs = fotg210->uframe_periodic_max - usecs;
+-
+- /* we "know" 2 and 4 uframe intervals were rejected; so
+- * for period 0, check _every_ microframe in the schedule.
+- */
+- if (unlikely(period == 0)) {
+- do {
+- for (uframe = 0; uframe < 7; uframe++) {
+- claimed = periodic_usecs(fotg210, frame,
+- uframe);
+- if (claimed > usecs)
+- return 0;
+- }
+- } while ((frame += 1) < fotg210->periodic_size);
+-
+- /* just check the specified uframe, at that period */
+- } else {
+- do {
+- claimed = periodic_usecs(fotg210, frame, uframe);
+- if (claimed > usecs)
+- return 0;
+- } while ((frame += period) < fotg210->periodic_size);
+- }
+-
+- /* success! */
+- return 1;
+-}
+-
+-static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
+- unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
+-{
+- int retval = -ENOSPC;
+- u8 mask = 0;
+-
+- if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
+- goto done;
+-
+- if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
+- goto done;
+- if (!qh->c_usecs) {
+- retval = 0;
+- *c_maskp = 0;
+- goto done;
+- }
+-
+- /* Make sure this tt's buffer is also available for CSPLITs.
+- * We pessimize a bit; probably the typical full speed case
+- * doesn't need the second CSPLIT.
+- *
+- * NOTE: both SPLIT and CSPLIT could be checked in just
+- * one smart pass...
+- */
+- mask = 0x03 << (uframe + qh->gap_uf);
+- *c_maskp = cpu_to_hc32(fotg210, mask << 8);
+-
+- mask |= 1 << uframe;
+- if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
+- if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
+- qh->period, qh->c_usecs))
+- goto done;
+- if (!check_period(fotg210, frame, uframe + qh->gap_uf,
+- qh->period, qh->c_usecs))
+- goto done;
+- retval = 0;
+- }
+-done:
+- return retval;
+-}
+-
+-/* "first fit" scheduling policy used the first time through,
+- * or when the previous schedule slot can't be re-used.
+- */
+-static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
+-{
+- int status;
+- unsigned uframe;
+- __hc32 c_mask;
+- unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
+- struct fotg210_qh_hw *hw = qh->hw;
+-
+- qh_refresh(fotg210, qh);
+- hw->hw_next = FOTG210_LIST_END(fotg210);
+- frame = qh->start;
+-
+- /* reuse the previous schedule slots, if we can */
+- if (frame < qh->period) {
+- uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
+- status = check_intr_schedule(fotg210, frame, --uframe,
+- qh, &c_mask);
+- } else {
+- uframe = 0;
+- c_mask = 0;
+- status = -ENOSPC;
+- }
+-
+- /* else scan the schedule to find a group of slots such that all
+- * uframes have enough periodic bandwidth available.
+- */
+- if (status) {
+- /* "normal" case, uframing flexible except with splits */
+- if (qh->period) {
+- int i;
+-
+- for (i = qh->period; status && i > 0; --i) {
+- frame = ++fotg210->random_frame % qh->period;
+- for (uframe = 0; uframe < 8; uframe++) {
+- status = check_intr_schedule(fotg210,
+- frame, uframe, qh,
+- &c_mask);
+- if (status == 0)
+- break;
+- }
+- }
+-
+- /* qh->period == 0 means every uframe */
+- } else {
+- frame = 0;
+- status = check_intr_schedule(fotg210, 0, 0, qh,
+- &c_mask);
+- }
+- if (status)
+- goto done;
+- qh->start = frame;
+-
+- /* reset S-frame and (maybe) C-frame masks */
+- hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
+- hw->hw_info2 |= qh->period
+- ? cpu_to_hc32(fotg210, 1 << uframe)
+- : cpu_to_hc32(fotg210, QH_SMASK);
+- hw->hw_info2 |= c_mask;
+- } else
+- fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
+-
+- /* stuff into the periodic schedule */
+- qh_link_periodic(fotg210, qh);
+-done:
+- return status;
+-}
+-
+-static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
+- struct list_head *qtd_list, gfp_t mem_flags)
+-{
+- unsigned epnum;
+- unsigned long flags;
+- struct fotg210_qh *qh;
+- int status;
+- struct list_head empty;
+-
+- /* get endpoint and transfer/schedule data */
+- epnum = urb->ep->desc.bEndpointAddress;
+-
+- spin_lock_irqsave(&fotg210->lock, flags);
+-
+- if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
+- status = -ESHUTDOWN;
+- goto done_not_linked;
+- }
+- status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
+- if (unlikely(status))
+- goto done_not_linked;
+-
+- /* get qh and force any scheduling errors */
+- INIT_LIST_HEAD(&empty);
+- qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
+- if (qh == NULL) {
+- status = -ENOMEM;
+- goto done;
+- }
+- if (qh->qh_state == QH_STATE_IDLE) {
+- status = qh_schedule(fotg210, qh);
+- if (status)
+- goto done;
+- }
+-
+- /* then queue the urb's tds to the qh */
+- qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
+- BUG_ON(qh == NULL);
+-
+- /* ... update usbfs periodic stats */
+- fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
+-
+-done:
+- if (unlikely(status))
+- usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
+-done_not_linked:
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- if (status)
+- qtd_list_free(fotg210, urb, qtd_list);
+-
+- return status;
+-}
+-
+-static void scan_intr(struct fotg210_hcd *fotg210)
+-{
+- struct fotg210_qh *qh;
+-
+- list_for_each_entry_safe(qh, fotg210->qh_scan_next,
+- &fotg210->intr_qh_list, intr_node) {
+-rescan:
+- /* clean any finished work for this qh */
+- if (!list_empty(&qh->qtd_list)) {
+- int temp;
+-
+- /*
+- * Unlinks could happen here; completion reporting
+- * drops the lock. That's why fotg210->qh_scan_next
+- * always holds the next qh to scan; if the next qh
+- * gets unlinked then fotg210->qh_scan_next is adjusted
+- * in qh_unlink_periodic().
+- */
+- temp = qh_completions(fotg210, qh);
+- if (unlikely(qh->needs_rescan ||
+- (list_empty(&qh->qtd_list) &&
+- qh->qh_state == QH_STATE_LINKED)))
+- start_unlink_intr(fotg210, qh);
+- else if (temp != 0)
+- goto rescan;
+- }
+- }
+-}
+-
+-/* fotg210_iso_stream ops work with both ITD and SITD */
+-
+-static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
+-{
+- struct fotg210_iso_stream *stream;
+-
+- stream = kzalloc(sizeof(*stream), mem_flags);
+- if (likely(stream != NULL)) {
+- INIT_LIST_HEAD(&stream->td_list);
+- INIT_LIST_HEAD(&stream->free_list);
+- stream->next_uframe = -1;
+- }
+- return stream;
+-}
+-
+-static void iso_stream_init(struct fotg210_hcd *fotg210,
+- struct fotg210_iso_stream *stream, struct usb_device *dev,
+- int pipe, unsigned interval)
+-{
+- u32 buf1;
+- unsigned epnum, maxp;
+- int is_input;
+- long bandwidth;
+- unsigned multi;
+- struct usb_host_endpoint *ep;
+-
+- /*
+- * this might be a "high bandwidth" highspeed endpoint,
+- * as encoded in the ep descriptor's wMaxPacket field
+- */
+- epnum = usb_pipeendpoint(pipe);
+- is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
+- ep = usb_pipe_endpoint(dev, pipe);
+- maxp = usb_endpoint_maxp(&ep->desc);
+- if (is_input)
+- buf1 = (1 << 11);
+- else
+- buf1 = 0;
+-
+- multi = usb_endpoint_maxp_mult(&ep->desc);
+- buf1 |= maxp;
+- maxp *= multi;
+-
+- stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
+- stream->buf1 = cpu_to_hc32(fotg210, buf1);
+- stream->buf2 = cpu_to_hc32(fotg210, multi);
+-
+- /* usbfs wants to report the average usecs per frame tied up
+- * when transfers on this endpoint are scheduled ...
+- */
+- if (dev->speed == USB_SPEED_FULL) {
+- interval <<= 3;
+- stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
+- is_input, 1, maxp));
+- stream->usecs /= 8;
+- } else {
+- stream->highspeed = 1;
+- stream->usecs = HS_USECS_ISO(maxp);
+- }
+- bandwidth = stream->usecs * 8;
+- bandwidth /= interval;
+-
+- stream->bandwidth = bandwidth;
+- stream->udev = dev;
+- stream->bEndpointAddress = is_input | epnum;
+- stream->interval = interval;
+- stream->maxp = maxp;
+-}
+-
+-static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
+- struct urb *urb)
+-{
+- unsigned epnum;
+- struct fotg210_iso_stream *stream;
+- struct usb_host_endpoint *ep;
+- unsigned long flags;
+-
+- epnum = usb_pipeendpoint(urb->pipe);
+- if (usb_pipein(urb->pipe))
+- ep = urb->dev->ep_in[epnum];
+- else
+- ep = urb->dev->ep_out[epnum];
+-
+- spin_lock_irqsave(&fotg210->lock, flags);
+- stream = ep->hcpriv;
+-
+- if (unlikely(stream == NULL)) {
+- stream = iso_stream_alloc(GFP_ATOMIC);
+- if (likely(stream != NULL)) {
+- ep->hcpriv = stream;
+- stream->ep = ep;
+- iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
+- urb->interval);
+- }
+-
+- /* if dev->ep[epnum] is a QH, hw is set */
+- } else if (unlikely(stream->hw != NULL)) {
+- fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
+- urb->dev->devpath, epnum,
+- usb_pipein(urb->pipe) ? "in" : "out");
+- stream = NULL;
+- }
+-
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- return stream;
+-}
+-
+-/* fotg210_iso_sched ops can be ITD-only or SITD-only */
+-
+-static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
+- gfp_t mem_flags)
+-{
+- struct fotg210_iso_sched *iso_sched;
+-
+- iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
+- if (likely(iso_sched != NULL))
+- INIT_LIST_HEAD(&iso_sched->td_list);
+-
+- return iso_sched;
+-}
+-
+-static inline void itd_sched_init(struct fotg210_hcd *fotg210,
+- struct fotg210_iso_sched *iso_sched,
+- struct fotg210_iso_stream *stream, struct urb *urb)
+-{
+- unsigned i;
+- dma_addr_t dma = urb->transfer_dma;
+-
+- /* how many uframes are needed for these transfers */
+- iso_sched->span = urb->number_of_packets * stream->interval;
+-
+- /* figure out per-uframe itd fields that we'll need later
+- * when we fit new itds into the schedule.
+- */
+- for (i = 0; i < urb->number_of_packets; i++) {
+- struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
+- unsigned length;
+- dma_addr_t buf;
+- u32 trans;
+-
+- length = urb->iso_frame_desc[i].length;
+- buf = dma + urb->iso_frame_desc[i].offset;
+-
+- trans = FOTG210_ISOC_ACTIVE;
+- trans |= buf & 0x0fff;
+- if (unlikely(((i + 1) == urb->number_of_packets))
+- && !(urb->transfer_flags & URB_NO_INTERRUPT))
+- trans |= FOTG210_ITD_IOC;
+- trans |= length << 16;
+- uframe->transaction = cpu_to_hc32(fotg210, trans);
+-
+- /* might need to cross a buffer page within a uframe */
+- uframe->bufp = (buf & ~(u64)0x0fff);
+- buf += length;
+- if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
+- uframe->cross = 1;
+- }
+-}
+-
+-static void iso_sched_free(struct fotg210_iso_stream *stream,
+- struct fotg210_iso_sched *iso_sched)
+-{
+- if (!iso_sched)
+- return;
+- /* caller must hold fotg210->lock!*/
+- list_splice(&iso_sched->td_list, &stream->free_list);
+- kfree(iso_sched);
+-}
+-
+-static int itd_urb_transaction(struct fotg210_iso_stream *stream,
+- struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
+-{
+- struct fotg210_itd *itd;
+- dma_addr_t itd_dma;
+- int i;
+- unsigned num_itds;
+- struct fotg210_iso_sched *sched;
+- unsigned long flags;
+-
+- sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
+- if (unlikely(sched == NULL))
+- return -ENOMEM;
+-
+- itd_sched_init(fotg210, sched, stream, urb);
+-
+- if (urb->interval < 8)
+- num_itds = 1 + (sched->span + 7) / 8;
+- else
+- num_itds = urb->number_of_packets;
+-
+- /* allocate/init ITDs */
+- spin_lock_irqsave(&fotg210->lock, flags);
+- for (i = 0; i < num_itds; i++) {
+-
+- /*
+- * Use iTDs from the free list, but not iTDs that may
+- * still be in use by the hardware.
+- */
+- if (likely(!list_empty(&stream->free_list))) {
+- itd = list_first_entry(&stream->free_list,
+- struct fotg210_itd, itd_list);
+- if (itd->frame == fotg210->now_frame)
+- goto alloc_itd;
+- list_del(&itd->itd_list);
+- itd_dma = itd->itd_dma;
+- } else {
+-alloc_itd:
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
+- &itd_dma);
+- spin_lock_irqsave(&fotg210->lock, flags);
+- if (!itd) {
+- iso_sched_free(stream, sched);
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- return -ENOMEM;
+- }
+- }
+-
+- memset(itd, 0, sizeof(*itd));
+- itd->itd_dma = itd_dma;
+- list_add(&itd->itd_list, &sched->td_list);
+- }
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+-
+- /* temporarily store schedule info in hcpriv */
+- urb->hcpriv = sched;
+- urb->error_count = 0;
+- return 0;
+-}
+-
+-static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
+- u8 usecs, u32 period)
+-{
+- uframe %= period;
+- do {
+- /* can't commit more than uframe_periodic_max usec */
+- if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
+- > (fotg210->uframe_periodic_max - usecs))
+- return 0;
+-
+- /* we know urb->interval is 2^N uframes */
+- uframe += period;
+- } while (uframe < mod);
+- return 1;
+-}
+-
+-/* This scheduler plans almost as far into the future as it has actual
+- * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
+- * "as small as possible" to be cache-friendlier.) That limits the size
+- * transfers you can stream reliably; avoid more than 64 msec per urb.
+- * Also avoid queue depths of less than fotg210's worst irq latency (affected
+- * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
+- * and other factors); or more than about 230 msec total (for portability,
+- * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
+- */
+-
+-#define SCHEDULE_SLOP 80 /* microframes */
+-
+-static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
+- struct fotg210_iso_stream *stream)
+-{
+- u32 now, next, start, period, span;
+- int status;
+- unsigned mod = fotg210->periodic_size << 3;
+- struct fotg210_iso_sched *sched = urb->hcpriv;
+-
+- period = urb->interval;
+- span = sched->span;
+-
+- if (span > mod - SCHEDULE_SLOP) {
+- fotg210_dbg(fotg210, "iso request %p too long\n", urb);
+- status = -EFBIG;
+- goto fail;
+- }
+-
+- now = fotg210_read_frame_index(fotg210) & (mod - 1);
+-
+- /* Typical case: reuse current schedule, stream is still active.
+- * Hopefully there are no gaps from the host falling behind
+- * (irq delays etc), but if there are we'll take the next
+- * slot in the schedule, implicitly assuming URB_ISO_ASAP.
+- */
+- if (likely(!list_empty(&stream->td_list))) {
+- u32 excess;
+-
+- /* For high speed devices, allow scheduling within the
+- * isochronous scheduling threshold. For full speed devices
+- * and Intel PCI-based controllers, don't (work around for
+- * Intel ICH9 bug).
+- */
+- if (!stream->highspeed && fotg210->fs_i_thresh)
+- next = now + fotg210->i_thresh;
+- else
+- next = now;
+-
+- /* Fell behind (by up to twice the slop amount)?
+- * We decide based on the time of the last currently-scheduled
+- * slot, not the time of the next available slot.
+- */
+- excess = (stream->next_uframe - period - next) & (mod - 1);
+- if (excess >= mod - 2 * SCHEDULE_SLOP)
+- start = next + excess - mod + period *
+- DIV_ROUND_UP(mod - excess, period);
+- else
+- start = next + excess + period;
+- if (start - now >= mod) {
+- fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
+- urb, start - now - period, period,
+- mod);
+- status = -EFBIG;
+- goto fail;
+- }
+- }
+-
+- /* need to schedule; when's the next (u)frame we could start?
+- * this is bigger than fotg210->i_thresh allows; scheduling itself
+- * isn't free, the slop should handle reasonably slow cpus. it
+- * can also help high bandwidth if the dma and irq loads don't
+- * jump until after the queue is primed.
+- */
+- else {
+- int done = 0;
+-
+- start = SCHEDULE_SLOP + (now & ~0x07);
+-
+- /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
+-
+- /* find a uframe slot with enough bandwidth.
+- * Early uframes are more precious because full-speed
+- * iso IN transfers can't use late uframes,
+- * and therefore they should be allocated last.
+- */
+- next = start;
+- start += period;
+- do {
+- start--;
+- /* check schedule: enough space? */
+- if (itd_slot_ok(fotg210, mod, start,
+- stream->usecs, period))
+- done = 1;
+- } while (start > next && !done);
+-
+- /* no room in the schedule */
+- if (!done) {
+- fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
+- urb, now, now + mod);
+- status = -ENOSPC;
+- goto fail;
+- }
+- }
+-
+- /* Tried to schedule too far into the future? */
+- if (unlikely(start - now + span - period >=
+- mod - 2 * SCHEDULE_SLOP)) {
+- fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
+- urb, start - now, span - period,
+- mod - 2 * SCHEDULE_SLOP);
+- status = -EFBIG;
+- goto fail;
+- }
+-
+- stream->next_uframe = start & (mod - 1);
+-
+- /* report high speed start in uframes; full speed, in frames */
+- urb->start_frame = stream->next_uframe;
+- if (!stream->highspeed)
+- urb->start_frame >>= 3;
+-
+- /* Make sure scan_isoc() sees these */
+- if (fotg210->isoc_count == 0)
+- fotg210->next_frame = now >> 3;
+- return 0;
+-
+-fail:
+- iso_sched_free(stream, sched);
+- urb->hcpriv = NULL;
+- return status;
+-}
+-
+-static inline void itd_init(struct fotg210_hcd *fotg210,
+- struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
+-{
+- int i;
+-
+- /* it's been recently zeroed */
+- itd->hw_next = FOTG210_LIST_END(fotg210);
+- itd->hw_bufp[0] = stream->buf0;
+- itd->hw_bufp[1] = stream->buf1;
+- itd->hw_bufp[2] = stream->buf2;
+-
+- for (i = 0; i < 8; i++)
+- itd->index[i] = -1;
+-
+- /* All other fields are filled when scheduling */
+-}
+-
+-static inline void itd_patch(struct fotg210_hcd *fotg210,
+- struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
+- unsigned index, u16 uframe)
+-{
+- struct fotg210_iso_packet *uf = &iso_sched->packet[index];
+- unsigned pg = itd->pg;
+-
+- uframe &= 0x07;
+- itd->index[uframe] = index;
+-
+- itd->hw_transaction[uframe] = uf->transaction;
+- itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
+- itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
+- itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
+-
+- /* iso_frame_desc[].offset must be strictly increasing */
+- if (unlikely(uf->cross)) {
+- u64 bufp = uf->bufp + 4096;
+-
+- itd->pg = ++pg;
+- itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
+- itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
+- }
+-}
+-
+-static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
+- struct fotg210_itd *itd)
+-{
+- union fotg210_shadow *prev = &fotg210->pshadow[frame];
+- __hc32 *hw_p = &fotg210->periodic[frame];
+- union fotg210_shadow here = *prev;
+- __hc32 type = 0;
+-
+- /* skip any iso nodes which might belong to previous microframes */
+- while (here.ptr) {
+- type = Q_NEXT_TYPE(fotg210, *hw_p);
+- if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
+- break;
+- prev = periodic_next_shadow(fotg210, prev, type);
+- hw_p = shadow_next_periodic(fotg210, &here, type);
+- here = *prev;
+- }
+-
+- itd->itd_next = here;
+- itd->hw_next = *hw_p;
+- prev->itd = itd;
+- itd->frame = frame;
+- wmb();
+- *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
+-}
+-
+-/* fit urb's itds into the selected schedule slot; activate as needed */
+-static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
+- unsigned mod, struct fotg210_iso_stream *stream)
+-{
+- int packet;
+- unsigned next_uframe, uframe, frame;
+- struct fotg210_iso_sched *iso_sched = urb->hcpriv;
+- struct fotg210_itd *itd;
+-
+- next_uframe = stream->next_uframe & (mod - 1);
+-
+- if (unlikely(list_empty(&stream->td_list))) {
+- fotg210_to_hcd(fotg210)->self.bandwidth_allocated
+- += stream->bandwidth;
+- fotg210_dbg(fotg210,
+- "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
+- urb->dev->devpath, stream->bEndpointAddress & 0x0f,
+- (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
+- urb->interval,
+- next_uframe >> 3, next_uframe & 0x7);
+- }
+-
+- /* fill iTDs uframe by uframe */
+- for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
+- if (itd == NULL) {
+- /* ASSERT: we have all necessary itds */
+-
+- /* ASSERT: no itds for this endpoint in this uframe */
+-
+- itd = list_entry(iso_sched->td_list.next,
+- struct fotg210_itd, itd_list);
+- list_move_tail(&itd->itd_list, &stream->td_list);
+- itd->stream = stream;
+- itd->urb = urb;
+- itd_init(fotg210, stream, itd);
+- }
+-
+- uframe = next_uframe & 0x07;
+- frame = next_uframe >> 3;
+-
+- itd_patch(fotg210, itd, iso_sched, packet, uframe);
+-
+- next_uframe += stream->interval;
+- next_uframe &= mod - 1;
+- packet++;
+-
+- /* link completed itds into the schedule */
+- if (((next_uframe >> 3) != frame)
+- || packet == urb->number_of_packets) {
+- itd_link(fotg210, frame & (fotg210->periodic_size - 1),
+- itd);
+- itd = NULL;
+- }
+- }
+- stream->next_uframe = next_uframe;
+-
+- /* don't need that schedule data any more */
+- iso_sched_free(stream, iso_sched);
+- urb->hcpriv = NULL;
+-
+- ++fotg210->isoc_count;
+- enable_periodic(fotg210);
+-}
+-
+-#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
+- FOTG210_ISOC_XACTERR)
+-
+-/* Process and recycle a completed ITD. Return true iff its urb completed,
+- * and hence its completion callback probably added things to the hardware
+- * schedule.
+- *
+- * Note that we carefully avoid recycling this descriptor until after any
+- * completion callback runs, so that it won't be reused quickly. That is,
+- * assuming (a) no more than two urbs per frame on this endpoint, and also
+- * (b) only this endpoint's completions submit URBs. It seems some silicon
+- * corrupts things if you reuse completed descriptors very quickly...
+- */
+-static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
+-{
+- struct urb *urb = itd->urb;
+- struct usb_iso_packet_descriptor *desc;
+- u32 t;
+- unsigned uframe;
+- int urb_index = -1;
+- struct fotg210_iso_stream *stream = itd->stream;
+- struct usb_device *dev;
+- bool retval = false;
+-
+- /* for each uframe with a packet */
+- for (uframe = 0; uframe < 8; uframe++) {
+- if (likely(itd->index[uframe] == -1))
+- continue;
+- urb_index = itd->index[uframe];
+- desc = &urb->iso_frame_desc[urb_index];
+-
+- t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
+- itd->hw_transaction[uframe] = 0;
+-
+- /* report transfer status */
+- if (unlikely(t & ISO_ERRS)) {
+- urb->error_count++;
+- if (t & FOTG210_ISOC_BUF_ERR)
+- desc->status = usb_pipein(urb->pipe)
+- ? -ENOSR /* hc couldn't read */
+- : -ECOMM; /* hc couldn't write */
+- else if (t & FOTG210_ISOC_BABBLE)
+- desc->status = -EOVERFLOW;
+- else /* (t & FOTG210_ISOC_XACTERR) */
+- desc->status = -EPROTO;
+-
+- /* HC need not update length with this error */
+- if (!(t & FOTG210_ISOC_BABBLE)) {
+- desc->actual_length = FOTG210_ITD_LENGTH(t);
+- urb->actual_length += desc->actual_length;
+- }
+- } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
+- desc->status = 0;
+- desc->actual_length = FOTG210_ITD_LENGTH(t);
+- urb->actual_length += desc->actual_length;
+- } else {
+- /* URB was too late */
+- desc->status = -EXDEV;
+- }
+- }
+-
+- /* handle completion now? */
+- if (likely((urb_index + 1) != urb->number_of_packets))
+- goto done;
+-
+- /* ASSERT: it's really the last itd for this urb
+- * list_for_each_entry (itd, &stream->td_list, itd_list)
+- * BUG_ON (itd->urb == urb);
+- */
+-
+- /* give urb back to the driver; completion often (re)submits */
+- dev = urb->dev;
+- fotg210_urb_done(fotg210, urb, 0);
+- retval = true;
+- urb = NULL;
+-
+- --fotg210->isoc_count;
+- disable_periodic(fotg210);
+-
+- if (unlikely(list_is_singular(&stream->td_list))) {
+- fotg210_to_hcd(fotg210)->self.bandwidth_allocated
+- -= stream->bandwidth;
+- fotg210_dbg(fotg210,
+- "deschedule devp %s ep%d%s-iso\n",
+- dev->devpath, stream->bEndpointAddress & 0x0f,
+- (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
+- }
+-
+-done:
+- itd->urb = NULL;
+-
+- /* Add to the end of the free list for later reuse */
+- list_move_tail(&itd->itd_list, &stream->free_list);
+-
+- /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
+- if (list_empty(&stream->td_list)) {
+- list_splice_tail_init(&stream->free_list,
+- &fotg210->cached_itd_list);
+- start_free_itds(fotg210);
+- }
+-
+- return retval;
+-}
+-
+-static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
+- gfp_t mem_flags)
+-{
+- int status = -EINVAL;
+- unsigned long flags;
+- struct fotg210_iso_stream *stream;
+-
+- /* Get iso_stream head */
+- stream = iso_stream_find(fotg210, urb);
+- if (unlikely(stream == NULL)) {
+- fotg210_dbg(fotg210, "can't get iso stream\n");
+- return -ENOMEM;
+- }
+- if (unlikely(urb->interval != stream->interval &&
+- fotg210_port_speed(fotg210, 0) ==
+- USB_PORT_STAT_HIGH_SPEED)) {
+- fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
+- stream->interval, urb->interval);
+- goto done;
+- }
+-
+-#ifdef FOTG210_URB_TRACE
+- fotg210_dbg(fotg210,
+- "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
+- __func__, urb->dev->devpath, urb,
+- usb_pipeendpoint(urb->pipe),
+- usb_pipein(urb->pipe) ? "in" : "out",
+- urb->transfer_buffer_length,
+- urb->number_of_packets, urb->interval,
+- stream);
+-#endif
+-
+- /* allocate ITDs w/o locking anything */
+- status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
+- if (unlikely(status < 0)) {
+- fotg210_dbg(fotg210, "can't init itds\n");
+- goto done;
+- }
+-
+- /* schedule ... need to lock */
+- spin_lock_irqsave(&fotg210->lock, flags);
+- if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
+- status = -ESHUTDOWN;
+- goto done_not_linked;
+- }
+- status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
+- if (unlikely(status))
+- goto done_not_linked;
+- status = iso_stream_schedule(fotg210, urb, stream);
+- if (likely(status == 0))
+- itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
+- else
+- usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
+-done_not_linked:
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+-done:
+- return status;
+-}
+-
+-static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
+- unsigned now_frame, bool live)
+-{
+- unsigned uf;
+- bool modified;
+- union fotg210_shadow q, *q_p;
+- __hc32 type, *hw_p;
+-
+- /* scan each element in frame's queue for completions */
+- q_p = &fotg210->pshadow[frame];
+- hw_p = &fotg210->periodic[frame];
+- q.ptr = q_p->ptr;
+- type = Q_NEXT_TYPE(fotg210, *hw_p);
+- modified = false;
+-
+- while (q.ptr) {
+- switch (hc32_to_cpu(fotg210, type)) {
+- case Q_TYPE_ITD:
+- /* If this ITD is still active, leave it for
+- * later processing ... check the next entry.
+- * No need to check for activity unless the
+- * frame is current.
+- */
+- if (frame == now_frame && live) {
+- rmb();
+- for (uf = 0; uf < 8; uf++) {
+- if (q.itd->hw_transaction[uf] &
+- ITD_ACTIVE(fotg210))
+- break;
+- }
+- if (uf < 8) {
+- q_p = &q.itd->itd_next;
+- hw_p = &q.itd->hw_next;
+- type = Q_NEXT_TYPE(fotg210,
+- q.itd->hw_next);
+- q = *q_p;
+- break;
+- }
+- }
+-
+- /* Take finished ITDs out of the schedule
+- * and process them: recycle, maybe report
+- * URB completion. HC won't cache the
+- * pointer for much longer, if at all.
+- */
+- *q_p = q.itd->itd_next;
+- *hw_p = q.itd->hw_next;
+- type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
+- wmb();
+- modified = itd_complete(fotg210, q.itd);
+- q = *q_p;
+- break;
+- default:
+- fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
+- type, frame, q.ptr);
+- fallthrough;
+- case Q_TYPE_QH:
+- case Q_TYPE_FSTN:
+- /* End of the iTDs and siTDs */
+- q.ptr = NULL;
+- break;
+- }
+-
+- /* assume completion callbacks modify the queue */
+- if (unlikely(modified && fotg210->isoc_count > 0))
+- return -EINVAL;
+- }
+- return 0;
+-}
+-
+-static void scan_isoc(struct fotg210_hcd *fotg210)
+-{
+- unsigned uf, now_frame, frame, ret;
+- unsigned fmask = fotg210->periodic_size - 1;
+- bool live;
+-
+- /*
+- * When running, scan from last scan point up to "now"
+- * else clean up by scanning everything that's left.
+- * Touches as few pages as possible: cache-friendly.
+- */
+- if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
+- uf = fotg210_read_frame_index(fotg210);
+- now_frame = (uf >> 3) & fmask;
+- live = true;
+- } else {
+- now_frame = (fotg210->next_frame - 1) & fmask;
+- live = false;
+- }
+- fotg210->now_frame = now_frame;
+-
+- frame = fotg210->next_frame;
+- for (;;) {
+- ret = 1;
+- while (ret != 0)
+- ret = scan_frame_queue(fotg210, frame,
+- now_frame, live);
+-
+- /* Stop when we have reached the current frame */
+- if (frame == now_frame)
+- break;
+- frame = (frame + 1) & fmask;
+- }
+- fotg210->next_frame = now_frame;
+-}
+-
+-/* Display / Set uframe_periodic_max
+- */
+-static ssize_t uframe_periodic_max_show(struct device *dev,
+- struct device_attribute *attr, char *buf)
+-{
+- struct fotg210_hcd *fotg210;
+- int n;
+-
+- fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
+- n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
+- return n;
+-}
+-
+-
+-static ssize_t uframe_periodic_max_store(struct device *dev,
+- struct device_attribute *attr, const char *buf, size_t count)
+-{
+- struct fotg210_hcd *fotg210;
+- unsigned uframe_periodic_max;
+- unsigned frame, uframe;
+- unsigned short allocated_max;
+- unsigned long flags;
+- ssize_t ret;
+-
+- fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
+- if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
+- return -EINVAL;
+-
+- if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
+- fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
+- uframe_periodic_max);
+- return -EINVAL;
+- }
+-
+- ret = -EINVAL;
+-
+- /*
+- * lock, so that our checking does not race with possible periodic
+- * bandwidth allocation through submitting new urbs.
+- */
+- spin_lock_irqsave(&fotg210->lock, flags);
+-
+- /*
+- * for request to decrease max periodic bandwidth, we have to check
+- * every microframe in the schedule to see whether the decrease is
+- * possible.
+- */
+- if (uframe_periodic_max < fotg210->uframe_periodic_max) {
+- allocated_max = 0;
+-
+- for (frame = 0; frame < fotg210->periodic_size; ++frame)
+- for (uframe = 0; uframe < 7; ++uframe)
+- allocated_max = max(allocated_max,
+- periodic_usecs(fotg210, frame,
+- uframe));
+-
+- if (allocated_max > uframe_periodic_max) {
+- fotg210_info(fotg210,
+- "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
+- allocated_max, uframe_periodic_max);
+- goto out_unlock;
+- }
+- }
+-
+- /* increasing is always ok */
+-
+- fotg210_info(fotg210,
+- "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
+- 100 * uframe_periodic_max/125, uframe_periodic_max);
+-
+- if (uframe_periodic_max != 100)
+- fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
+-
+- fotg210->uframe_periodic_max = uframe_periodic_max;
+- ret = count;
+-
+-out_unlock:
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- return ret;
+-}
+-
+-static DEVICE_ATTR_RW(uframe_periodic_max);
+-
+-static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
+-{
+- struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
+-
+- return device_create_file(controller, &dev_attr_uframe_periodic_max);
+-}
+-
+-static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
+-{
+- struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
+-
+- device_remove_file(controller, &dev_attr_uframe_periodic_max);
+-}
+-/* On some systems, leaving remote wakeup enabled prevents system shutdown.
+- * The firmware seems to think that powering off is a wakeup event!
+- * This routine turns off remote wakeup and everything else, on all ports.
+- */
+-static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
+-{
+- u32 __iomem *status_reg = &fotg210->regs->port_status;
+-
+- fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
+-}
+-
+-/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
+- * Must be called with interrupts enabled and the lock not held.
+- */
+-static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
+-{
+- fotg210_halt(fotg210);
+-
+- spin_lock_irq(&fotg210->lock);
+- fotg210->rh_state = FOTG210_RH_HALTED;
+- fotg210_turn_off_all_ports(fotg210);
+- spin_unlock_irq(&fotg210->lock);
+-}
+-
+-/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
+- * This forcibly disables dma and IRQs, helping kexec and other cases
+- * where the next system software may expect clean state.
+- */
+-static void fotg210_shutdown(struct usb_hcd *hcd)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+-
+- spin_lock_irq(&fotg210->lock);
+- fotg210->shutdown = true;
+- fotg210->rh_state = FOTG210_RH_STOPPING;
+- fotg210->enabled_hrtimer_events = 0;
+- spin_unlock_irq(&fotg210->lock);
+-
+- fotg210_silence_controller(fotg210);
+-
+- hrtimer_cancel(&fotg210->hrtimer);
+-}
+-
+-/* fotg210_work is called from some interrupts, timers, and so on.
+- * it calls driver completion functions, after dropping fotg210->lock.
+- */
+-static void fotg210_work(struct fotg210_hcd *fotg210)
+-{
+- /* another CPU may drop fotg210->lock during a schedule scan while
+- * it reports urb completions. this flag guards against bogus
+- * attempts at re-entrant schedule scanning.
+- */
+- if (fotg210->scanning) {
+- fotg210->need_rescan = true;
+- return;
+- }
+- fotg210->scanning = true;
+-
+-rescan:
+- fotg210->need_rescan = false;
+- if (fotg210->async_count)
+- scan_async(fotg210);
+- if (fotg210->intr_count > 0)
+- scan_intr(fotg210);
+- if (fotg210->isoc_count > 0)
+- scan_isoc(fotg210);
+- if (fotg210->need_rescan)
+- goto rescan;
+- fotg210->scanning = false;
+-
+- /* the IO watchdog guards against hardware or driver bugs that
+- * misplace IRQs, and should let us run completely without IRQs.
+- * such lossage has been observed on both VT6202 and VT8235.
+- */
+- turn_on_io_watchdog(fotg210);
+-}
+-
+-/* Called when the fotg210_hcd module is removed.
+- */
+-static void fotg210_stop(struct usb_hcd *hcd)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+-
+- fotg210_dbg(fotg210, "stop\n");
+-
+- /* no more interrupts ... */
+-
+- spin_lock_irq(&fotg210->lock);
+- fotg210->enabled_hrtimer_events = 0;
+- spin_unlock_irq(&fotg210->lock);
+-
+- fotg210_quiesce(fotg210);
+- fotg210_silence_controller(fotg210);
+- fotg210_reset(fotg210);
+-
+- hrtimer_cancel(&fotg210->hrtimer);
+- remove_sysfs_files(fotg210);
+- remove_debug_files(fotg210);
+-
+- /* root hub is shut down separately (first, when possible) */
+- spin_lock_irq(&fotg210->lock);
+- end_free_itds(fotg210);
+- spin_unlock_irq(&fotg210->lock);
+- fotg210_mem_cleanup(fotg210);
+-
+-#ifdef FOTG210_STATS
+- fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
+- fotg210->stats.normal, fotg210->stats.error,
+- fotg210->stats.iaa, fotg210->stats.lost_iaa);
+- fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
+- fotg210->stats.complete, fotg210->stats.unlink);
+-#endif
+-
+- dbg_status(fotg210, "fotg210_stop completed",
+- fotg210_readl(fotg210, &fotg210->regs->status));
+-}
+-
+-/* one-time init, only for memory state */
+-static int hcd_fotg210_init(struct usb_hcd *hcd)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- u32 temp;
+- int retval;
+- u32 hcc_params;
+- struct fotg210_qh_hw *hw;
+-
+- spin_lock_init(&fotg210->lock);
+-
+- /*
+- * keep io watchdog by default, those good HCDs could turn off it later
+- */
+- fotg210->need_io_watchdog = 1;
+-
+- hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
+- fotg210->hrtimer.function = fotg210_hrtimer_func;
+- fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
+-
+- hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
+-
+- /*
+- * by default set standard 80% (== 100 usec/uframe) max periodic
+- * bandwidth as required by USB 2.0
+- */
+- fotg210->uframe_periodic_max = 100;
+-
+- /*
+- * hw default: 1K periodic list heads, one per frame.
+- * periodic_size can shrink by USBCMD update if hcc_params allows.
+- */
+- fotg210->periodic_size = DEFAULT_I_TDPS;
+- INIT_LIST_HEAD(&fotg210->intr_qh_list);
+- INIT_LIST_HEAD(&fotg210->cached_itd_list);
+-
+- if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
+- /* periodic schedule size can be smaller than default */
+- switch (FOTG210_TUNE_FLS) {
+- case 0:
+- fotg210->periodic_size = 1024;
+- break;
+- case 1:
+- fotg210->periodic_size = 512;
+- break;
+- case 2:
+- fotg210->periodic_size = 256;
+- break;
+- default:
+- BUG();
+- }
+- }
+- retval = fotg210_mem_init(fotg210, GFP_KERNEL);
+- if (retval < 0)
+- return retval;
+-
+- /* controllers may cache some of the periodic schedule ... */
+- fotg210->i_thresh = 2;
+-
+- /*
+- * dedicate a qh for the async ring head, since we couldn't unlink
+- * a 'real' qh without stopping the async schedule [4.8]. use it
+- * as the 'reclamation list head' too.
+- * its dummy is used in hw_alt_next of many tds, to prevent the qh
+- * from automatically advancing to the next td after short reads.
+- */
+- fotg210->async->qh_next.qh = NULL;
+- hw = fotg210->async->hw;
+- hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
+- hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
+- hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
+- hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
+- fotg210->async->qh_state = QH_STATE_LINKED;
+- hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
+-
+- /* clear interrupt enables, set irq latency */
+- if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
+- log2_irq_thresh = 0;
+- temp = 1 << (16 + log2_irq_thresh);
+- if (HCC_CANPARK(hcc_params)) {
+- /* HW default park == 3, on hardware that supports it (like
+- * NVidia and ALI silicon), maximizes throughput on the async
+- * schedule by avoiding QH fetches between transfers.
+- *
+- * With fast usb storage devices and NForce2, "park" seems to
+- * make problems: throughput reduction (!), data errors...
+- */
+- if (park) {
+- park = min_t(unsigned, park, 3);
+- temp |= CMD_PARK;
+- temp |= park << 8;
+- }
+- fotg210_dbg(fotg210, "park %d\n", park);
+- }
+- if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
+- /* periodic schedule size can be smaller than default */
+- temp &= ~(3 << 2);
+- temp |= (FOTG210_TUNE_FLS << 2);
+- }
+- fotg210->command = temp;
+-
+- /* Accept arbitrarily long scatter-gather lists */
+- if (!hcd->localmem_pool)
+- hcd->self.sg_tablesize = ~0;
+- return 0;
+-}
+-
+-/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
+-static int fotg210_run(struct usb_hcd *hcd)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- u32 temp;
+-
+- hcd->uses_new_polling = 1;
+-
+- /* EHCI spec section 4.1 */
+-
+- fotg210_writel(fotg210, fotg210->periodic_dma,
+- &fotg210->regs->frame_list);
+- fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
+- &fotg210->regs->async_next);
+-
+- /*
+- * hcc_params controls whether fotg210->regs->segment must (!!!)
+- * be used; it constrains QH/ITD/SITD and QTD locations.
+- * dma_pool consistent memory always uses segment zero.
+- * streaming mappings for I/O buffers, like dma_map_single(),
+- * can return segments above 4GB, if the device allows.
+- *
+- * NOTE: the dma mask is visible through dev->dma_mask, so
+- * drivers can pass this info along ... like NETIF_F_HIGHDMA,
+- * Scsi_Host.highmem_io, and so forth. It's readonly to all
+- * host side drivers though.
+- */
+- fotg210_readl(fotg210, &fotg210->caps->hcc_params);
+-
+- /*
+- * Philips, Intel, and maybe others need CMD_RUN before the
+- * root hub will detect new devices (why?); NEC doesn't
+- */
+- fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
+- fotg210->command |= CMD_RUN;
+- fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
+- dbg_cmd(fotg210, "init", fotg210->command);
+-
+- /*
+- * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
+- * are explicitly handed to companion controller(s), so no TT is
+- * involved with the root hub. (Except where one is integrated,
+- * and there's no companion controller unless maybe for USB OTG.)
+- *
+- * Turning on the CF flag will transfer ownership of all ports
+- * from the companions to the EHCI controller. If any of the
+- * companions are in the middle of a port reset at the time, it
+- * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
+- * guarantees that no resets are in progress. After we set CF,
+- * a short delay lets the hardware catch up; new resets shouldn't
+- * be started before the port switching actions could complete.
+- */
+- down_write(&ehci_cf_port_reset_rwsem);
+- fotg210->rh_state = FOTG210_RH_RUNNING;
+- /* unblock posted writes */
+- fotg210_readl(fotg210, &fotg210->regs->command);
+- usleep_range(5000, 10000);
+- up_write(&ehci_cf_port_reset_rwsem);
+- fotg210->last_periodic_enable = ktime_get_real();
+-
+- temp = HC_VERSION(fotg210,
+- fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
+- fotg210_info(fotg210,
+- "USB %x.%x started, EHCI %x.%02x\n",
+- ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
+- temp >> 8, temp & 0xff);
+-
+- fotg210_writel(fotg210, INTR_MASK,
+- &fotg210->regs->intr_enable); /* Turn On Interrupts */
+-
+- /* GRR this is run-once init(), being done every time the HC starts.
+- * So long as they're part of class devices, we can't do it init()
+- * since the class device isn't created that early.
+- */
+- create_debug_files(fotg210);
+- create_sysfs_files(fotg210);
+-
+- return 0;
+-}
+-
+-static int fotg210_setup(struct usb_hcd *hcd)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- int retval;
+-
+- fotg210->regs = (void __iomem *)fotg210->caps +
+- HC_LENGTH(fotg210,
+- fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
+- dbg_hcs_params(fotg210, "reset");
+- dbg_hcc_params(fotg210, "reset");
+-
+- /* cache this readonly data; minimize chip reads */
+- fotg210->hcs_params = fotg210_readl(fotg210,
+- &fotg210->caps->hcs_params);
+-
+- fotg210->sbrn = HCD_USB2;
+-
+- /* data structure init */
+- retval = hcd_fotg210_init(hcd);
+- if (retval)
+- return retval;
+-
+- retval = fotg210_halt(fotg210);
+- if (retval)
+- return retval;
+-
+- fotg210_reset(fotg210);
+-
+- return 0;
+-}
+-
+-static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- u32 status, masked_status, pcd_status = 0, cmd;
+- int bh;
+-
+- spin_lock(&fotg210->lock);
+-
+- status = fotg210_readl(fotg210, &fotg210->regs->status);
+-
+- /* e.g. cardbus physical eject */
+- if (status == ~(u32) 0) {
+- fotg210_dbg(fotg210, "device removed\n");
+- goto dead;
+- }
+-
+- /*
+- * We don't use STS_FLR, but some controllers don't like it to
+- * remain on, so mask it out along with the other status bits.
+- */
+- masked_status = status & (INTR_MASK | STS_FLR);
+-
+- /* Shared IRQ? */
+- if (!masked_status ||
+- unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
+- spin_unlock(&fotg210->lock);
+- return IRQ_NONE;
+- }
+-
+- /* clear (just) interrupts */
+- fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
+- cmd = fotg210_readl(fotg210, &fotg210->regs->command);
+- bh = 0;
+-
+- /* unrequested/ignored: Frame List Rollover */
+- dbg_status(fotg210, "irq", status);
+-
+- /* INT, ERR, and IAA interrupt rates can be throttled */
+-
+- /* normal [4.15.1.2] or error [4.15.1.1] completion */
+- if (likely((status & (STS_INT|STS_ERR)) != 0)) {
+- if (likely((status & STS_ERR) == 0))
+- INCR(fotg210->stats.normal);
+- else
+- INCR(fotg210->stats.error);
+- bh = 1;
+- }
+-
+- /* complete the unlinking of some qh [4.15.2.3] */
+- if (status & STS_IAA) {
+-
+- /* Turn off the IAA watchdog */
+- fotg210->enabled_hrtimer_events &=
+- ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
+-
+- /*
+- * Mild optimization: Allow another IAAD to reset the
+- * hrtimer, if one occurs before the next expiration.
+- * In theory we could always cancel the hrtimer, but
+- * tests show that about half the time it will be reset
+- * for some other event anyway.
+- */
+- if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
+- ++fotg210->next_hrtimer_event;
+-
+- /* guard against (alleged) silicon errata */
+- if (cmd & CMD_IAAD)
+- fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
+- if (fotg210->async_iaa) {
+- INCR(fotg210->stats.iaa);
+- end_unlink_async(fotg210);
+- } else
+- fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
+- }
+-
+- /* remote wakeup [4.3.1] */
+- if (status & STS_PCD) {
+- int pstatus;
+- u32 __iomem *status_reg = &fotg210->regs->port_status;
+-
+- /* kick root hub later */
+- pcd_status = status;
+-
+- /* resume root hub? */
+- if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
+- usb_hcd_resume_root_hub(hcd);
+-
+- pstatus = fotg210_readl(fotg210, status_reg);
+-
+- if (test_bit(0, &fotg210->suspended_ports) &&
+- ((pstatus & PORT_RESUME) ||
+- !(pstatus & PORT_SUSPEND)) &&
+- (pstatus & PORT_PE) &&
+- fotg210->reset_done[0] == 0) {
+-
+- /* start 20 msec resume signaling from this port,
+- * and make hub_wq collect PORT_STAT_C_SUSPEND to
+- * stop that signaling. Use 5 ms extra for safety,
+- * like usb_port_resume() does.
+- */
+- fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
+- set_bit(0, &fotg210->resuming_ports);
+- fotg210_dbg(fotg210, "port 1 remote wakeup\n");
+- mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
+- }
+- }
+-
+- /* PCI errors [4.15.2.4] */
+- if (unlikely((status & STS_FATAL) != 0)) {
+- fotg210_err(fotg210, "fatal error\n");
+- dbg_cmd(fotg210, "fatal", cmd);
+- dbg_status(fotg210, "fatal", status);
+-dead:
+- usb_hc_died(hcd);
+-
+- /* Don't let the controller do anything more */
+- fotg210->shutdown = true;
+- fotg210->rh_state = FOTG210_RH_STOPPING;
+- fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
+- fotg210_writel(fotg210, fotg210->command,
+- &fotg210->regs->command);
+- fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
+- fotg210_handle_controller_death(fotg210);
+-
+- /* Handle completions when the controller stops */
+- bh = 0;
+- }
+-
+- if (bh)
+- fotg210_work(fotg210);
+- spin_unlock(&fotg210->lock);
+- if (pcd_status)
+- usb_hcd_poll_rh_status(hcd);
+- return IRQ_HANDLED;
+-}
+-
+-/* non-error returns are a promise to giveback() the urb later
+- * we drop ownership so next owner (or urb unlink) can get it
+- *
+- * urb + dev is in hcd.self.controller.urb_list
+- * we're queueing TDs onto software and hardware lists
+- *
+- * hcd-specific init for hcpriv hasn't been done yet
+- *
+- * NOTE: control, bulk, and interrupt share the same code to append TDs
+- * to a (possibly active) QH, and the same QH scanning code.
+- */
+-static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
+- gfp_t mem_flags)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- struct list_head qtd_list;
+-
+- INIT_LIST_HEAD(&qtd_list);
+-
+- switch (usb_pipetype(urb->pipe)) {
+- case PIPE_CONTROL:
+- /* qh_completions() code doesn't handle all the fault cases
+- * in multi-TD control transfers. Even 1KB is rare anyway.
+- */
+- if (urb->transfer_buffer_length > (16 * 1024))
+- return -EMSGSIZE;
+- fallthrough;
+- /* case PIPE_BULK: */
+- default:
+- if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
+- return -ENOMEM;
+- return submit_async(fotg210, urb, &qtd_list, mem_flags);
+-
+- case PIPE_INTERRUPT:
+- if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
+- return -ENOMEM;
+- return intr_submit(fotg210, urb, &qtd_list, mem_flags);
+-
+- case PIPE_ISOCHRONOUS:
+- return itd_submit(fotg210, urb, mem_flags);
+- }
+-}
+-
+-/* remove from hardware lists
+- * completions normally happen asynchronously
+- */
+-
+-static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- struct fotg210_qh *qh;
+- unsigned long flags;
+- int rc;
+-
+- spin_lock_irqsave(&fotg210->lock, flags);
+- rc = usb_hcd_check_unlink_urb(hcd, urb, status);
+- if (rc)
+- goto done;
+-
+- switch (usb_pipetype(urb->pipe)) {
+- /* case PIPE_CONTROL: */
+- /* case PIPE_BULK:*/
+- default:
+- qh = (struct fotg210_qh *) urb->hcpriv;
+- if (!qh)
+- break;
+- switch (qh->qh_state) {
+- case QH_STATE_LINKED:
+- case QH_STATE_COMPLETING:
+- start_unlink_async(fotg210, qh);
+- break;
+- case QH_STATE_UNLINK:
+- case QH_STATE_UNLINK_WAIT:
+- /* already started */
+- break;
+- case QH_STATE_IDLE:
+- /* QH might be waiting for a Clear-TT-Buffer */
+- qh_completions(fotg210, qh);
+- break;
+- }
+- break;
+-
+- case PIPE_INTERRUPT:
+- qh = (struct fotg210_qh *) urb->hcpriv;
+- if (!qh)
+- break;
+- switch (qh->qh_state) {
+- case QH_STATE_LINKED:
+- case QH_STATE_COMPLETING:
+- start_unlink_intr(fotg210, qh);
+- break;
+- case QH_STATE_IDLE:
+- qh_completions(fotg210, qh);
+- break;
+- default:
+- fotg210_dbg(fotg210, "bogus qh %p state %d\n",
+- qh, qh->qh_state);
+- goto done;
+- }
+- break;
+-
+- case PIPE_ISOCHRONOUS:
+- /* itd... */
+-
+- /* wait till next completion, do it then. */
+- /* completion irqs can wait up to 1024 msec, */
+- break;
+- }
+-done:
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- return rc;
+-}
+-
+-/* bulk qh holds the data toggle */
+-
+-static void fotg210_endpoint_disable(struct usb_hcd *hcd,
+- struct usb_host_endpoint *ep)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- unsigned long flags;
+- struct fotg210_qh *qh, *tmp;
+-
+- /* ASSERT: any requests/urbs are being unlinked */
+- /* ASSERT: nobody can be submitting urbs for this any more */
+-
+-rescan:
+- spin_lock_irqsave(&fotg210->lock, flags);
+- qh = ep->hcpriv;
+- if (!qh)
+- goto done;
+-
+- /* endpoints can be iso streams. for now, we don't
+- * accelerate iso completions ... so spin a while.
+- */
+- if (qh->hw == NULL) {
+- struct fotg210_iso_stream *stream = ep->hcpriv;
+-
+- if (!list_empty(&stream->td_list))
+- goto idle_timeout;
+-
+- /* BUG_ON(!list_empty(&stream->free_list)); */
+- kfree(stream);
+- goto done;
+- }
+-
+- if (fotg210->rh_state < FOTG210_RH_RUNNING)
+- qh->qh_state = QH_STATE_IDLE;
+- switch (qh->qh_state) {
+- case QH_STATE_LINKED:
+- case QH_STATE_COMPLETING:
+- for (tmp = fotg210->async->qh_next.qh;
+- tmp && tmp != qh;
+- tmp = tmp->qh_next.qh)
+- continue;
+- /* periodic qh self-unlinks on empty, and a COMPLETING qh
+- * may already be unlinked.
+- */
+- if (tmp)
+- start_unlink_async(fotg210, qh);
+- fallthrough;
+- case QH_STATE_UNLINK: /* wait for hw to finish? */
+- case QH_STATE_UNLINK_WAIT:
+-idle_timeout:
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+- schedule_timeout_uninterruptible(1);
+- goto rescan;
+- case QH_STATE_IDLE: /* fully unlinked */
+- if (qh->clearing_tt)
+- goto idle_timeout;
+- if (list_empty(&qh->qtd_list)) {
+- qh_destroy(fotg210, qh);
+- break;
+- }
+- fallthrough;
+- default:
+- /* caller was supposed to have unlinked any requests;
+- * that's not our job. just leak this memory.
+- */
+- fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
+- qh, ep->desc.bEndpointAddress, qh->qh_state,
+- list_empty(&qh->qtd_list) ? "" : "(has tds)");
+- break;
+- }
+-done:
+- ep->hcpriv = NULL;
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+-}
+-
+-static void fotg210_endpoint_reset(struct usb_hcd *hcd,
+- struct usb_host_endpoint *ep)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+- struct fotg210_qh *qh;
+- int eptype = usb_endpoint_type(&ep->desc);
+- int epnum = usb_endpoint_num(&ep->desc);
+- int is_out = usb_endpoint_dir_out(&ep->desc);
+- unsigned long flags;
+-
+- if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
+- return;
+-
+- spin_lock_irqsave(&fotg210->lock, flags);
+- qh = ep->hcpriv;
+-
+- /* For Bulk and Interrupt endpoints we maintain the toggle state
+- * in the hardware; the toggle bits in udev aren't used at all.
+- * When an endpoint is reset by usb_clear_halt() we must reset
+- * the toggle bit in the QH.
+- */
+- if (qh) {
+- usb_settoggle(qh->dev, epnum, is_out, 0);
+- if (!list_empty(&qh->qtd_list)) {
+- WARN_ONCE(1, "clear_halt for a busy endpoint\n");
+- } else if (qh->qh_state == QH_STATE_LINKED ||
+- qh->qh_state == QH_STATE_COMPLETING) {
+-
+- /* The toggle value in the QH can't be updated
+- * while the QH is active. Unlink it now;
+- * re-linking will call qh_refresh().
+- */
+- if (eptype == USB_ENDPOINT_XFER_BULK)
+- start_unlink_async(fotg210, qh);
+- else
+- start_unlink_intr(fotg210, qh);
+- }
+- }
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+-}
+-
+-static int fotg210_get_frame(struct usb_hcd *hcd)
+-{
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+-
+- return (fotg210_read_frame_index(fotg210) >> 3) %
+- fotg210->periodic_size;
+-}
+-
+-/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
+- * because its registers (and irq) are shared between host/gadget/otg
+- * functions and in order to facilitate role switching we cannot
+- * give the fotg210 driver exclusive access to those.
+- */
+-MODULE_DESCRIPTION(DRIVER_DESC);
+-MODULE_AUTHOR(DRIVER_AUTHOR);
+-MODULE_LICENSE("GPL");
+-
+-static const struct hc_driver fotg210_fotg210_hc_driver = {
+- .description = hcd_name,
+- .product_desc = "Faraday USB2.0 Host Controller",
+- .hcd_priv_size = sizeof(struct fotg210_hcd),
+-
+- /*
+- * generic hardware linkage
+- */
+- .irq = fotg210_irq,
+- .flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
+-
+- /*
+- * basic lifecycle operations
+- */
+- .reset = hcd_fotg210_init,
+- .start = fotg210_run,
+- .stop = fotg210_stop,
+- .shutdown = fotg210_shutdown,
+-
+- /*
+- * managing i/o requests and associated device resources
+- */
+- .urb_enqueue = fotg210_urb_enqueue,
+- .urb_dequeue = fotg210_urb_dequeue,
+- .endpoint_disable = fotg210_endpoint_disable,
+- .endpoint_reset = fotg210_endpoint_reset,
+-
+- /*
+- * scheduling support
+- */
+- .get_frame_number = fotg210_get_frame,
+-
+- /*
+- * root hub support
+- */
+- .hub_status_data = fotg210_hub_status_data,
+- .hub_control = fotg210_hub_control,
+- .bus_suspend = fotg210_bus_suspend,
+- .bus_resume = fotg210_bus_resume,
+-
+- .relinquish_port = fotg210_relinquish_port,
+- .port_handed_over = fotg210_port_handed_over,
+-
+- .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
+-};
+-
+-static void fotg210_init(struct fotg210_hcd *fotg210)
+-{
+- u32 value;
+-
+- iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
+- &fotg210->regs->gmir);
+-
+- value = ioread32(&fotg210->regs->otgcsr);
+- value &= ~OTGCSR_A_BUS_DROP;
+- value |= OTGCSR_A_BUS_REQ;
+- iowrite32(value, &fotg210->regs->otgcsr);
+-}
+-
+-/*
+- * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
+- *
+- * Allocates basic resources for this USB host controller, and
+- * then invokes the start() method for the HCD associated with it
+- * through the hotplug entry's driver_data.
+- */
+-static int fotg210_hcd_probe(struct platform_device *pdev)
+-{
+- struct device *dev = &pdev->dev;
+- struct usb_hcd *hcd;
+- struct resource *res;
+- int irq;
+- int retval;
+- struct fotg210_hcd *fotg210;
+-
+- if (usb_disabled())
+- return -ENODEV;
+-
+- pdev->dev.power.power_state = PMSG_ON;
+-
+- irq = platform_get_irq(pdev, 0);
+- if (irq < 0)
+- return irq;
+-
+- hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
+- dev_name(dev));
+- if (!hcd) {
+- dev_err(dev, "failed to create hcd\n");
+- retval = -ENOMEM;
+- goto fail_create_hcd;
+- }
+-
+- hcd->has_tt = 1;
+-
+- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+- hcd->regs = devm_ioremap_resource(&pdev->dev, res);
+- if (IS_ERR(hcd->regs)) {
+- retval = PTR_ERR(hcd->regs);
+- goto failed_put_hcd;
+- }
+-
+- hcd->rsrc_start = res->start;
+- hcd->rsrc_len = resource_size(res);
+-
+- fotg210 = hcd_to_fotg210(hcd);
+-
+- fotg210->caps = hcd->regs;
+-
+- /* It's OK not to supply this clock */
+- fotg210->pclk = clk_get(dev, "PCLK");
+- if (!IS_ERR(fotg210->pclk)) {
+- retval = clk_prepare_enable(fotg210->pclk);
+- if (retval) {
+- dev_err(dev, "failed to enable PCLK\n");
+- goto failed_put_hcd;
+- }
+- } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
+- /*
+- * Percolate deferrals, for anything else,
+- * just live without the clocking.
+- */
+- retval = PTR_ERR(fotg210->pclk);
+- goto failed_dis_clk;
+- }
+-
+- retval = fotg210_setup(hcd);
+- if (retval)
+- goto failed_dis_clk;
+-
+- fotg210_init(fotg210);
+-
+- retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
+- if (retval) {
+- dev_err(dev, "failed to add hcd with err %d\n", retval);
+- goto failed_dis_clk;
+- }
+- device_wakeup_enable(hcd->self.controller);
+- platform_set_drvdata(pdev, hcd);
+-
+- return retval;
+-
+-failed_dis_clk:
+- if (!IS_ERR(fotg210->pclk)) {
+- clk_disable_unprepare(fotg210->pclk);
+- clk_put(fotg210->pclk);
+- }
+-failed_put_hcd:
+- usb_put_hcd(hcd);
+-fail_create_hcd:
+- dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
+- return retval;
+-}
+-
+-/*
+- * fotg210_hcd_remove - shutdown processing for EHCI HCDs
+- * @dev: USB Host Controller being removed
+- *
+- */
+-static int fotg210_hcd_remove(struct platform_device *pdev)
+-{
+- struct usb_hcd *hcd = platform_get_drvdata(pdev);
+- struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
+-
+- if (!IS_ERR(fotg210->pclk)) {
+- clk_disable_unprepare(fotg210->pclk);
+- clk_put(fotg210->pclk);
+- }
+-
+- usb_remove_hcd(hcd);
+- usb_put_hcd(hcd);
+-
+- return 0;
+-}
+-
+-#ifdef CONFIG_OF
+-static const struct of_device_id fotg210_of_match[] = {
+- { .compatible = "faraday,fotg210" },
+- {},
+-};
+-MODULE_DEVICE_TABLE(of, fotg210_of_match);
+-#endif
+-
+-static struct platform_driver fotg210_hcd_driver = {
+- .driver = {
+- .name = "fotg210-hcd",
+- .of_match_table = of_match_ptr(fotg210_of_match),
+- },
+- .probe = fotg210_hcd_probe,
+- .remove = fotg210_hcd_remove,
+-};
+-
+-static int __init fotg210_hcd_init(void)
+-{
+- int retval = 0;
+-
+- if (usb_disabled())
+- return -ENODEV;
+-
+- set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
+- if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
+- test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
+- pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
+-
+- pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
+- hcd_name, sizeof(struct fotg210_qh),
+- sizeof(struct fotg210_qtd),
+- sizeof(struct fotg210_itd));
+-
+- fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
+-
+- retval = platform_driver_register(&fotg210_hcd_driver);
+- if (retval < 0)
+- goto clean;
+- return retval;
+-
+-clean:
+- debugfs_remove(fotg210_debug_root);
+- fotg210_debug_root = NULL;
+-
+- clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
+- return retval;
+-}
+-module_init(fotg210_hcd_init);
+-
+-static void __exit fotg210_hcd_cleanup(void)
+-{
+- platform_driver_unregister(&fotg210_hcd_driver);
+- debugfs_remove(fotg210_debug_root);
+- clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
+-}
+-module_exit(fotg210_hcd_cleanup);
+--- /dev/null
++++ b/drivers/usb/fotg210/fotg210-hcd.c
+@@ -0,0 +1,5727 @@
++// SPDX-License-Identifier: GPL-2.0+
++/* Faraday FOTG210 EHCI-like driver
++ *
++ * Copyright (c) 2013 Faraday Technology Corporation
++ *
++ * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
++ * Feng-Hsin Chiang <john453@faraday-tech.com>
++ * Po-Yu Chuang <ratbert.chuang@gmail.com>
++ *
++ * Most of code borrowed from the Linux-3.7 EHCI driver
++ */
++#include <linux/module.h>
++#include <linux/of.h>
++#include <linux/device.h>
++#include <linux/dmapool.h>
++#include <linux/kernel.h>
++#include <linux/delay.h>
++#include <linux/ioport.h>
++#include <linux/sched.h>
++#include <linux/vmalloc.h>
++#include <linux/errno.h>
++#include <linux/init.h>
++#include <linux/hrtimer.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/usb.h>
++#include <linux/usb/hcd.h>
++#include <linux/moduleparam.h>
++#include <linux/dma-mapping.h>
++#include <linux/debugfs.h>
++#include <linux/slab.h>
++#include <linux/uaccess.h>
++#include <linux/platform_device.h>
++#include <linux/io.h>
++#include <linux/iopoll.h>
++#include <linux/clk.h>
++
++#include <asm/byteorder.h>
++#include <asm/irq.h>
++#include <asm/unaligned.h>
++
++#define DRIVER_AUTHOR "Yuan-Hsin Chen"
++#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
++static const char hcd_name[] = "fotg210_hcd";
++
++#undef FOTG210_URB_TRACE
++#define FOTG210_STATS
++
++/* magic numbers that can affect system performance */
++#define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
++#define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
++#define FOTG210_TUNE_RL_TT 0
++#define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
++#define FOTG210_TUNE_MULT_TT 1
++
++/* Some drivers think it's safe to schedule isochronous transfers more than 256
++ * ms into the future (partly as a result of an old bug in the scheduling
++ * code). In an attempt to avoid trouble, we will use a minimum scheduling
++ * length of 512 frames instead of 256.
++ */
++#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
++
++/* Initial IRQ latency: faster than hw default */
++static int log2_irq_thresh; /* 0 to 6 */
++module_param(log2_irq_thresh, int, S_IRUGO);
++MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
++
++/* initial park setting: slower than hw default */
++static unsigned park;
++module_param(park, uint, S_IRUGO);
++MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
++
++/* for link power management(LPM) feature */
++static unsigned int hird;
++module_param(hird, int, S_IRUGO);
++MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
++
++#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
++
++#include "fotg210-hcd.h"
++
++#define fotg210_dbg(fotg210, fmt, args...) \
++ dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
++#define fotg210_err(fotg210, fmt, args...) \
++ dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
++#define fotg210_info(fotg210, fmt, args...) \
++ dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
++#define fotg210_warn(fotg210, fmt, args...) \
++ dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
++
++/* check the values in the HCSPARAMS register (host controller _Structural_
++ * parameters) see EHCI spec, Table 2-4 for each value
++ */
++static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
++{
++ u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
++
++ fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
++ HCS_N_PORTS(params));
++}
++
++/* check the values in the HCCPARAMS register (host controller _Capability_
++ * parameters) see EHCI Spec, Table 2-5 for each value
++ */
++static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
++{
++ u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
++
++ fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
++ params,
++ HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
++ HCC_CANPARK(params) ? " park" : "");
++}
++
++static void __maybe_unused
++dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
++{
++ fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
++ hc32_to_cpup(fotg210, &qtd->hw_next),
++ hc32_to_cpup(fotg210, &qtd->hw_alt_next),
++ hc32_to_cpup(fotg210, &qtd->hw_token),
++ hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
++ if (qtd->hw_buf[1])
++ fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
++ hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
++ hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
++ hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
++ hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
++}
++
++static void __maybe_unused
++dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
++{
++ struct fotg210_qh_hw *hw = qh->hw;
++
++ fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
++ hw->hw_next, hw->hw_info1, hw->hw_info2,
++ hw->hw_current);
++
++ dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
++}
++
++static void __maybe_unused
++dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
++{
++ fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
++ itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
++ itd->urb);
++
++ fotg210_dbg(fotg210,
++ " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
++ hc32_to_cpu(fotg210, itd->hw_transaction[0]),
++ hc32_to_cpu(fotg210, itd->hw_transaction[1]),
++ hc32_to_cpu(fotg210, itd->hw_transaction[2]),
++ hc32_to_cpu(fotg210, itd->hw_transaction[3]),
++ hc32_to_cpu(fotg210, itd->hw_transaction[4]),
++ hc32_to_cpu(fotg210, itd->hw_transaction[5]),
++ hc32_to_cpu(fotg210, itd->hw_transaction[6]),
++ hc32_to_cpu(fotg210, itd->hw_transaction[7]));
++
++ fotg210_dbg(fotg210,
++ " buf: %08x %08x %08x %08x %08x %08x %08x\n",
++ hc32_to_cpu(fotg210, itd->hw_bufp[0]),
++ hc32_to_cpu(fotg210, itd->hw_bufp[1]),
++ hc32_to_cpu(fotg210, itd->hw_bufp[2]),
++ hc32_to_cpu(fotg210, itd->hw_bufp[3]),
++ hc32_to_cpu(fotg210, itd->hw_bufp[4]),
++ hc32_to_cpu(fotg210, itd->hw_bufp[5]),
++ hc32_to_cpu(fotg210, itd->hw_bufp[6]));
++
++ fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
++ itd->index[0], itd->index[1], itd->index[2],
++ itd->index[3], itd->index[4], itd->index[5],
++ itd->index[6], itd->index[7]);
++}
++
++static int __maybe_unused
++dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
++{
++ return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
++ label, label[0] ? " " : "", status,
++ (status & STS_ASS) ? " Async" : "",
++ (status & STS_PSS) ? " Periodic" : "",
++ (status & STS_RECL) ? " Recl" : "",
++ (status & STS_HALT) ? " Halt" : "",
++ (status & STS_IAA) ? " IAA" : "",
++ (status & STS_FATAL) ? " FATAL" : "",
++ (status & STS_FLR) ? " FLR" : "",
++ (status & STS_PCD) ? " PCD" : "",
++ (status & STS_ERR) ? " ERR" : "",
++ (status & STS_INT) ? " INT" : "");
++}
++
++static int __maybe_unused
++dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
++{
++ return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
++ label, label[0] ? " " : "", enable,
++ (enable & STS_IAA) ? " IAA" : "",
++ (enable & STS_FATAL) ? " FATAL" : "",
++ (enable & STS_FLR) ? " FLR" : "",
++ (enable & STS_PCD) ? " PCD" : "",
++ (enable & STS_ERR) ? " ERR" : "",
++ (enable & STS_INT) ? " INT" : "");
++}
++
++static const char *const fls_strings[] = { "1024", "512", "256", "??" };
++
++static int dbg_command_buf(char *buf, unsigned len, const char *label,
++ u32 command)
++{
++ return scnprintf(buf, len,
++ "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
++ label, label[0] ? " " : "", command,
++ (command & CMD_PARK) ? " park" : "(park)",
++ CMD_PARK_CNT(command),
++ (command >> 16) & 0x3f,
++ (command & CMD_IAAD) ? " IAAD" : "",
++ (command & CMD_ASE) ? " Async" : "",
++ (command & CMD_PSE) ? " Periodic" : "",
++ fls_strings[(command >> 2) & 0x3],
++ (command & CMD_RESET) ? " Reset" : "",
++ (command & CMD_RUN) ? "RUN" : "HALT");
++}
++
++static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
++ u32 status)
++{
++ char *sig;
++
++ /* signaling state */
++ switch (status & (3 << 10)) {
++ case 0 << 10:
++ sig = "se0";
++ break;
++ case 1 << 10:
++ sig = "k";
++ break; /* low speed */
++ case 2 << 10:
++ sig = "j";
++ break;
++ default:
++ sig = "?";
++ break;
++ }
++
++ scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
++ label, label[0] ? " " : "", port, status,
++ status >> 25, /*device address */
++ sig,
++ (status & PORT_RESET) ? " RESET" : "",
++ (status & PORT_SUSPEND) ? " SUSPEND" : "",
++ (status & PORT_RESUME) ? " RESUME" : "",
++ (status & PORT_PEC) ? " PEC" : "",
++ (status & PORT_PE) ? " PE" : "",
++ (status & PORT_CSC) ? " CSC" : "",
++ (status & PORT_CONNECT) ? " CONNECT" : "");
++
++ return buf;
++}
++
++/* functions have the "wrong" filename when they're output... */
++#define dbg_status(fotg210, label, status) { \
++ char _buf[80]; \
++ dbg_status_buf(_buf, sizeof(_buf), label, status); \
++ fotg210_dbg(fotg210, "%s\n", _buf); \
++}
++
++#define dbg_cmd(fotg210, label, command) { \
++ char _buf[80]; \
++ dbg_command_buf(_buf, sizeof(_buf), label, command); \
++ fotg210_dbg(fotg210, "%s\n", _buf); \
++}
++
++#define dbg_port(fotg210, label, port, status) { \
++ char _buf[80]; \
++ fotg210_dbg(fotg210, "%s\n", \
++ dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
++}
++
++/* troubleshooting help: expose state in debugfs */
++static int debug_async_open(struct inode *, struct file *);
++static int debug_periodic_open(struct inode *, struct file *);
++static int debug_registers_open(struct inode *, struct file *);
++static int debug_async_open(struct inode *, struct file *);
++
++static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
++static int debug_close(struct inode *, struct file *);
++
++static const struct file_operations debug_async_fops = {
++ .owner = THIS_MODULE,
++ .open = debug_async_open,
++ .read = debug_output,
++ .release = debug_close,
++ .llseek = default_llseek,
++};
++static const struct file_operations debug_periodic_fops = {
++ .owner = THIS_MODULE,
++ .open = debug_periodic_open,
++ .read = debug_output,
++ .release = debug_close,
++ .llseek = default_llseek,
++};
++static const struct file_operations debug_registers_fops = {
++ .owner = THIS_MODULE,
++ .open = debug_registers_open,
++ .read = debug_output,
++ .release = debug_close,
++ .llseek = default_llseek,
++};
++
++static struct dentry *fotg210_debug_root;
++
++struct debug_buffer {
++ ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
++ struct usb_bus *bus;
++ struct mutex mutex; /* protect filling of buffer */
++ size_t count; /* number of characters filled into buffer */
++ char *output_buf;
++ size_t alloc_size;
++};
++
++static inline char speed_char(u32 scratch)
++{
++ switch (scratch & (3 << 12)) {
++ case QH_FULL_SPEED:
++ return 'f';
++
++ case QH_LOW_SPEED:
++ return 'l';
++
++ case QH_HIGH_SPEED:
++ return 'h';
++
++ default:
++ return '?';
++ }
++}
++
++static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
++{
++ __u32 v = hc32_to_cpu(fotg210, token);
++
++ if (v & QTD_STS_ACTIVE)
++ return '*';
++ if (v & QTD_STS_HALT)
++ return '-';
++ if (!IS_SHORT_READ(v))
++ return ' ';
++ /* tries to advance through hw_alt_next */
++ return '/';
++}
++
++static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
++ char **nextp, unsigned *sizep)
++{
++ u32 scratch;
++ u32 hw_curr;
++ struct fotg210_qtd *td;
++ unsigned temp;
++ unsigned size = *sizep;
++ char *next = *nextp;
++ char mark;
++ __le32 list_end = FOTG210_LIST_END(fotg210);
++ struct fotg210_qh_hw *hw = qh->hw;
++
++ if (hw->hw_qtd_next == list_end) /* NEC does this */
++ mark = '@';
++ else
++ mark = token_mark(fotg210, hw->hw_token);
++ if (mark == '/') { /* qh_alt_next controls qh advance? */
++ if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
++ fotg210->async->hw->hw_alt_next)
++ mark = '#'; /* blocked */
++ else if (hw->hw_alt_next == list_end)
++ mark = '.'; /* use hw_qtd_next */
++ /* else alt_next points to some other qtd */
++ }
++ scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
++ hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
++ temp = scnprintf(next, size,
++ "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
++ qh, scratch & 0x007f,
++ speed_char(scratch),
++ (scratch >> 8) & 0x000f,
++ scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
++ hc32_to_cpup(fotg210, &hw->hw_token), mark,
++ (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
++ ? "data1" : "data0",
++ (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
++ size -= temp;
++ next += temp;
++
++ /* hc may be modifying the list as we read it ... */
++ list_for_each_entry(td, &qh->qtd_list, qtd_list) {
++ scratch = hc32_to_cpup(fotg210, &td->hw_token);
++ mark = ' ';
++ if (hw_curr == td->qtd_dma)
++ mark = '*';
++ else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
++ mark = '+';
++ else if (QTD_LENGTH(scratch)) {
++ if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
++ mark = '#';
++ else if (td->hw_alt_next != list_end)
++ mark = '/';
++ }
++ temp = snprintf(next, size,
++ "\n\t%p%c%s len=%d %08x urb %p",
++ td, mark, ({ char *tmp;
++ switch ((scratch>>8)&0x03) {
++ case 0:
++ tmp = "out";
++ break;
++ case 1:
++ tmp = "in";
++ break;
++ case 2:
++ tmp = "setup";
++ break;
++ default:
++ tmp = "?";
++ break;
++ } tmp; }),
++ (scratch >> 16) & 0x7fff,
++ scratch,
++ td->urb);
++ if (size < temp)
++ temp = size;
++ size -= temp;
++ next += temp;
++ if (temp == size)
++ goto done;
++ }
++
++ temp = snprintf(next, size, "\n");
++ if (size < temp)
++ temp = size;
++
++ size -= temp;
++ next += temp;
++
++done:
++ *sizep = size;
++ *nextp = next;
++}
++
++static ssize_t fill_async_buffer(struct debug_buffer *buf)
++{
++ struct usb_hcd *hcd;
++ struct fotg210_hcd *fotg210;
++ unsigned long flags;
++ unsigned temp, size;
++ char *next;
++ struct fotg210_qh *qh;
++
++ hcd = bus_to_hcd(buf->bus);
++ fotg210 = hcd_to_fotg210(hcd);
++ next = buf->output_buf;
++ size = buf->alloc_size;
++
++ *next = 0;
++
++ /* dumps a snapshot of the async schedule.
++ * usually empty except for long-term bulk reads, or head.
++ * one QH per line, and TDs we know about
++ */
++ spin_lock_irqsave(&fotg210->lock, flags);
++ for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
++ qh = qh->qh_next.qh)
++ qh_lines(fotg210, qh, &next, &size);
++ if (fotg210->async_unlink && size > 0) {
++ temp = scnprintf(next, size, "\nunlink =\n");
++ size -= temp;
++ next += temp;
++
++ for (qh = fotg210->async_unlink; size > 0 && qh;
++ qh = qh->unlink_next)
++ qh_lines(fotg210, qh, &next, &size);
++ }
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++
++ return strlen(buf->output_buf);
++}
++
++/* count tds, get ep direction */
++static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
++ struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
++{
++ u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
++ struct fotg210_qtd *qtd;
++ char *type = "";
++ unsigned temp = 0;
++
++ /* count tds, get ep direction */
++ list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
++ temp++;
++ switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
++ case 0:
++ type = "out";
++ continue;
++ case 1:
++ type = "in";
++ continue;
++ }
++ }
++
++ return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
++ speed_char(scratch), scratch & 0x007f,
++ (scratch >> 8) & 0x000f, type, qh->usecs,
++ qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
++}
++
++#define DBG_SCHED_LIMIT 64
++static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
++{
++ struct usb_hcd *hcd;
++ struct fotg210_hcd *fotg210;
++ unsigned long flags;
++ union fotg210_shadow p, *seen;
++ unsigned temp, size, seen_count;
++ char *next;
++ unsigned i;
++ __hc32 tag;
++
++ seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
++ if (!seen)
++ return 0;
++
++ seen_count = 0;
++
++ hcd = bus_to_hcd(buf->bus);
++ fotg210 = hcd_to_fotg210(hcd);
++ next = buf->output_buf;
++ size = buf->alloc_size;
++
++ temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
++ size -= temp;
++ next += temp;
++
++ /* dump a snapshot of the periodic schedule.
++ * iso changes, interrupt usually doesn't.
++ */
++ spin_lock_irqsave(&fotg210->lock, flags);
++ for (i = 0; i < fotg210->periodic_size; i++) {
++ p = fotg210->pshadow[i];
++ if (likely(!p.ptr))
++ continue;
++
++ tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
++
++ temp = scnprintf(next, size, "%4d: ", i);
++ size -= temp;
++ next += temp;
++
++ do {
++ struct fotg210_qh_hw *hw;
++
++ switch (hc32_to_cpu(fotg210, tag)) {
++ case Q_TYPE_QH:
++ hw = p.qh->hw;
++ temp = scnprintf(next, size, " qh%d-%04x/%p",
++ p.qh->period,
++ hc32_to_cpup(fotg210,
++ &hw->hw_info2)
++ /* uframe masks */
++ & (QH_CMASK | QH_SMASK),
++ p.qh);
++ size -= temp;
++ next += temp;
++ /* don't repeat what follows this qh */
++ for (temp = 0; temp < seen_count; temp++) {
++ if (seen[temp].ptr != p.ptr)
++ continue;
++ if (p.qh->qh_next.ptr) {
++ temp = scnprintf(next, size,
++ " ...");
++ size -= temp;
++ next += temp;
++ }
++ break;
++ }
++ /* show more info the first time around */
++ if (temp == seen_count) {
++ temp = output_buf_tds_dir(next,
++ fotg210, hw,
++ p.qh, size);
++
++ if (seen_count < DBG_SCHED_LIMIT)
++ seen[seen_count++].qh = p.qh;
++ } else
++ temp = 0;
++ tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
++ p = p.qh->qh_next;
++ break;
++ case Q_TYPE_FSTN:
++ temp = scnprintf(next, size,
++ " fstn-%8x/%p",
++ p.fstn->hw_prev, p.fstn);
++ tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
++ p = p.fstn->fstn_next;
++ break;
++ case Q_TYPE_ITD:
++ temp = scnprintf(next, size,
++ " itd/%p", p.itd);
++ tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
++ p = p.itd->itd_next;
++ break;
++ }
++ size -= temp;
++ next += temp;
++ } while (p.ptr);
++
++ temp = scnprintf(next, size, "\n");
++ size -= temp;
++ next += temp;
++ }
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ kfree(seen);
++
++ return buf->alloc_size - size;
++}
++#undef DBG_SCHED_LIMIT
++
++static const char *rh_state_string(struct fotg210_hcd *fotg210)
++{
++ switch (fotg210->rh_state) {
++ case FOTG210_RH_HALTED:
++ return "halted";
++ case FOTG210_RH_SUSPENDED:
++ return "suspended";
++ case FOTG210_RH_RUNNING:
++ return "running";
++ case FOTG210_RH_STOPPING:
++ return "stopping";
++ }
++ return "?";
++}
++
++static ssize_t fill_registers_buffer(struct debug_buffer *buf)
++{
++ struct usb_hcd *hcd;
++ struct fotg210_hcd *fotg210;
++ unsigned long flags;
++ unsigned temp, size, i;
++ char *next, scratch[80];
++ static const char fmt[] = "%*s\n";
++ static const char label[] = "";
++
++ hcd = bus_to_hcd(buf->bus);
++ fotg210 = hcd_to_fotg210(hcd);
++ next = buf->output_buf;
++ size = buf->alloc_size;
++
++ spin_lock_irqsave(&fotg210->lock, flags);
++
++ if (!HCD_HW_ACCESSIBLE(hcd)) {
++ size = scnprintf(next, size,
++ "bus %s, device %s\n"
++ "%s\n"
++ "SUSPENDED(no register access)\n",
++ hcd->self.controller->bus->name,
++ dev_name(hcd->self.controller),
++ hcd->product_desc);
++ goto done;
++ }
++
++ /* Capability Registers */
++ i = HC_VERSION(fotg210, fotg210_readl(fotg210,
++ &fotg210->caps->hc_capbase));
++ temp = scnprintf(next, size,
++ "bus %s, device %s\n"
++ "%s\n"
++ "EHCI %x.%02x, rh state %s\n",
++ hcd->self.controller->bus->name,
++ dev_name(hcd->self.controller),
++ hcd->product_desc,
++ i >> 8, i & 0x0ff, rh_state_string(fotg210));
++ size -= temp;
++ next += temp;
++
++ /* FIXME interpret both types of params */
++ i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
++ temp = scnprintf(next, size, "structural params 0x%08x\n", i);
++ size -= temp;
++ next += temp;
++
++ i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
++ temp = scnprintf(next, size, "capability params 0x%08x\n", i);
++ size -= temp;
++ next += temp;
++
++ /* Operational Registers */
++ temp = dbg_status_buf(scratch, sizeof(scratch), label,
++ fotg210_readl(fotg210, &fotg210->regs->status));
++ temp = scnprintf(next, size, fmt, temp, scratch);
++ size -= temp;
++ next += temp;
++
++ temp = dbg_command_buf(scratch, sizeof(scratch), label,
++ fotg210_readl(fotg210, &fotg210->regs->command));
++ temp = scnprintf(next, size, fmt, temp, scratch);
++ size -= temp;
++ next += temp;
++
++ temp = dbg_intr_buf(scratch, sizeof(scratch), label,
++ fotg210_readl(fotg210, &fotg210->regs->intr_enable));
++ temp = scnprintf(next, size, fmt, temp, scratch);
++ size -= temp;
++ next += temp;
++
++ temp = scnprintf(next, size, "uframe %04x\n",
++ fotg210_read_frame_index(fotg210));
++ size -= temp;
++ next += temp;
++
++ if (fotg210->async_unlink) {
++ temp = scnprintf(next, size, "async unlink qh %p\n",
++ fotg210->async_unlink);
++ size -= temp;
++ next += temp;
++ }
++
++#ifdef FOTG210_STATS
++ temp = scnprintf(next, size,
++ "irq normal %ld err %ld iaa %ld(lost %ld)\n",
++ fotg210->stats.normal, fotg210->stats.error,
++ fotg210->stats.iaa, fotg210->stats.lost_iaa);
++ size -= temp;
++ next += temp;
++
++ temp = scnprintf(next, size, "complete %ld unlink %ld\n",
++ fotg210->stats.complete, fotg210->stats.unlink);
++ size -= temp;
++ next += temp;
++#endif
++
++done:
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++
++ return buf->alloc_size - size;
++}
++
++static struct debug_buffer
++*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
++{
++ struct debug_buffer *buf;
++
++ buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
++
++ if (buf) {
++ buf->bus = bus;
++ buf->fill_func = fill_func;
++ mutex_init(&buf->mutex);
++ buf->alloc_size = PAGE_SIZE;
++ }
++
++ return buf;
++}
++
++static int fill_buffer(struct debug_buffer *buf)
++{
++ int ret = 0;
++
++ if (!buf->output_buf)
++ buf->output_buf = vmalloc(buf->alloc_size);
++
++ if (!buf->output_buf) {
++ ret = -ENOMEM;
++ goto out;
++ }
++
++ ret = buf->fill_func(buf);
++
++ if (ret >= 0) {
++ buf->count = ret;
++ ret = 0;
++ }
++
++out:
++ return ret;
++}
++
++static ssize_t debug_output(struct file *file, char __user *user_buf,
++ size_t len, loff_t *offset)
++{
++ struct debug_buffer *buf = file->private_data;
++ int ret = 0;
++
++ mutex_lock(&buf->mutex);
++ if (buf->count == 0) {
++ ret = fill_buffer(buf);
++ if (ret != 0) {
++ mutex_unlock(&buf->mutex);
++ goto out;
++ }
++ }
++ mutex_unlock(&buf->mutex);
++
++ ret = simple_read_from_buffer(user_buf, len, offset,
++ buf->output_buf, buf->count);
++
++out:
++ return ret;
++
++}
++
++static int debug_close(struct inode *inode, struct file *file)
++{
++ struct debug_buffer *buf = file->private_data;
++
++ if (buf) {
++ vfree(buf->output_buf);
++ kfree(buf);
++ }
++
++ return 0;
++}
++static int debug_async_open(struct inode *inode, struct file *file)
++{
++ file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
++
++ return file->private_data ? 0 : -ENOMEM;
++}
++
++static int debug_periodic_open(struct inode *inode, struct file *file)
++{
++ struct debug_buffer *buf;
++
++ buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
++ if (!buf)
++ return -ENOMEM;
++
++ buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
++ file->private_data = buf;
++ return 0;
++}
++
++static int debug_registers_open(struct inode *inode, struct file *file)
++{
++ file->private_data = alloc_buffer(inode->i_private,
++ fill_registers_buffer);
++
++ return file->private_data ? 0 : -ENOMEM;
++}
++
++static inline void create_debug_files(struct fotg210_hcd *fotg210)
++{
++ struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
++ struct dentry *root;
++
++ root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
++
++ debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
++ debugfs_create_file("periodic", S_IRUGO, root, bus,
++ &debug_periodic_fops);
++ debugfs_create_file("registers", S_IRUGO, root, bus,
++ &debug_registers_fops);
++}
++
++static inline void remove_debug_files(struct fotg210_hcd *fotg210)
++{
++ struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
++
++ debugfs_lookup_and_remove(bus->bus_name, fotg210_debug_root);
++}
++
++/* handshake - spin reading hc until handshake completes or fails
++ * @ptr: address of hc register to be read
++ * @mask: bits to look at in result of read
++ * @done: value of those bits when handshake succeeds
++ * @usec: timeout in microseconds
++ *
++ * Returns negative errno, or zero on success
++ *
++ * Success happens when the "mask" bits have the specified value (hardware
++ * handshake done). There are two failure modes: "usec" have passed (major
++ * hardware flakeout), or the register reads as all-ones (hardware removed).
++ *
++ * That last failure should_only happen in cases like physical cardbus eject
++ * before driver shutdown. But it also seems to be caused by bugs in cardbus
++ * bridge shutdown: shutting down the bridge before the devices using it.
++ */
++static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
++ u32 mask, u32 done, int usec)
++{
++ u32 result;
++ int ret;
++
++ ret = readl_poll_timeout_atomic(ptr, result,
++ ((result & mask) == done ||
++ result == U32_MAX), 1, usec);
++ if (result == U32_MAX) /* card removed */
++ return -ENODEV;
++
++ return ret;
++}
++
++/* Force HC to halt state from unknown (EHCI spec section 2.3).
++ * Must be called with interrupts enabled and the lock not held.
++ */
++static int fotg210_halt(struct fotg210_hcd *fotg210)
++{
++ u32 temp;
++
++ spin_lock_irq(&fotg210->lock);
++
++ /* disable any irqs left enabled by previous code */
++ fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
++
++ /*
++ * This routine gets called during probe before fotg210->command
++ * has been initialized, so we can't rely on its value.
++ */
++ fotg210->command &= ~CMD_RUN;
++ temp = fotg210_readl(fotg210, &fotg210->regs->command);
++ temp &= ~(CMD_RUN | CMD_IAAD);
++ fotg210_writel(fotg210, temp, &fotg210->regs->command);
++
++ spin_unlock_irq(&fotg210->lock);
++ synchronize_irq(fotg210_to_hcd(fotg210)->irq);
++
++ return handshake(fotg210, &fotg210->regs->status,
++ STS_HALT, STS_HALT, 16 * 125);
++}
++
++/* Reset a non-running (STS_HALT == 1) controller.
++ * Must be called with interrupts enabled and the lock not held.
++ */
++static int fotg210_reset(struct fotg210_hcd *fotg210)
++{
++ int retval;
++ u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
++
++ /* If the EHCI debug controller is active, special care must be
++ * taken before and after a host controller reset
++ */
++ if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
++ fotg210->debug = NULL;
++
++ command |= CMD_RESET;
++ dbg_cmd(fotg210, "reset", command);
++ fotg210_writel(fotg210, command, &fotg210->regs->command);
++ fotg210->rh_state = FOTG210_RH_HALTED;
++ fotg210->next_statechange = jiffies;
++ retval = handshake(fotg210, &fotg210->regs->command,
++ CMD_RESET, 0, 250 * 1000);
++
++ if (retval)
++ return retval;
++
++ if (fotg210->debug)
++ dbgp_external_startup(fotg210_to_hcd(fotg210));
++
++ fotg210->port_c_suspend = fotg210->suspended_ports =
++ fotg210->resuming_ports = 0;
++ return retval;
++}
++
++/* Idle the controller (turn off the schedules).
++ * Must be called with interrupts enabled and the lock not held.
++ */
++static void fotg210_quiesce(struct fotg210_hcd *fotg210)
++{
++ u32 temp;
++
++ if (fotg210->rh_state != FOTG210_RH_RUNNING)
++ return;
++
++ /* wait for any schedule enables/disables to take effect */
++ temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
++ handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
++ 16 * 125);
++
++ /* then disable anything that's still active */
++ spin_lock_irq(&fotg210->lock);
++ fotg210->command &= ~(CMD_ASE | CMD_PSE);
++ fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
++ spin_unlock_irq(&fotg210->lock);
++
++ /* hardware can take 16 microframes to turn off ... */
++ handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
++ 16 * 125);
++}
++
++static void end_unlink_async(struct fotg210_hcd *fotg210);
++static void unlink_empty_async(struct fotg210_hcd *fotg210);
++static void fotg210_work(struct fotg210_hcd *fotg210);
++static void start_unlink_intr(struct fotg210_hcd *fotg210,
++ struct fotg210_qh *qh);
++static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
++
++/* Set a bit in the USBCMD register */
++static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
++{
++ fotg210->command |= bit;
++ fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
++
++ /* unblock posted write */
++ fotg210_readl(fotg210, &fotg210->regs->command);
++}
++
++/* Clear a bit in the USBCMD register */
++static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
++{
++ fotg210->command &= ~bit;
++ fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
++
++ /* unblock posted write */
++ fotg210_readl(fotg210, &fotg210->regs->command);
++}
++
++/* EHCI timer support... Now using hrtimers.
++ *
++ * Lots of different events are triggered from fotg210->hrtimer. Whenever
++ * the timer routine runs, it checks each possible event; events that are
++ * currently enabled and whose expiration time has passed get handled.
++ * The set of enabled events is stored as a collection of bitflags in
++ * fotg210->enabled_hrtimer_events, and they are numbered in order of
++ * increasing delay values (ranging between 1 ms and 100 ms).
++ *
++ * Rather than implementing a sorted list or tree of all pending events,
++ * we keep track only of the lowest-numbered pending event, in
++ * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
++ * expiration time is set to the timeout value for this event.
++ *
++ * As a result, events might not get handled right away; the actual delay
++ * could be anywhere up to twice the requested delay. This doesn't
++ * matter, because none of the events are especially time-critical. The
++ * ones that matter most all have a delay of 1 ms, so they will be
++ * handled after 2 ms at most, which is okay. In addition to this, we
++ * allow for an expiration range of 1 ms.
++ */
++
++/* Delay lengths for the hrtimer event types.
++ * Keep this list sorted by delay length, in the same order as
++ * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
++ */
++static unsigned event_delays_ns[] = {
++ 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
++ 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
++ 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
++ 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
++ 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
++ 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
++ 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
++ 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
++ 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
++ 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
++};
++
++/* Enable a pending hrtimer event */
++static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
++ bool resched)
++{
++ ktime_t *timeout = &fotg210->hr_timeouts[event];
++
++ if (resched)
++ *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
++ fotg210->enabled_hrtimer_events |= (1 << event);
++
++ /* Track only the lowest-numbered pending event */
++ if (event < fotg210->next_hrtimer_event) {
++ fotg210->next_hrtimer_event = event;
++ hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
++ NSEC_PER_MSEC, HRTIMER_MODE_ABS);
++ }
++}
++
++
++/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
++static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
++{
++ unsigned actual, want;
++
++ /* Don't enable anything if the controller isn't running (e.g., died) */
++ if (fotg210->rh_state != FOTG210_RH_RUNNING)
++ return;
++
++ want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
++ actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
++
++ if (want != actual) {
++
++ /* Poll again later, but give up after about 20 ms */
++ if (fotg210->ASS_poll_count++ < 20) {
++ fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
++ true);
++ return;
++ }
++ fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
++ want, actual);
++ }
++ fotg210->ASS_poll_count = 0;
++
++ /* The status is up-to-date; restart or stop the schedule as needed */
++ if (want == 0) { /* Stopped */
++ if (fotg210->async_count > 0)
++ fotg210_set_command_bit(fotg210, CMD_ASE);
++
++ } else { /* Running */
++ if (fotg210->async_count == 0) {
++
++ /* Turn off the schedule after a while */
++ fotg210_enable_event(fotg210,
++ FOTG210_HRTIMER_DISABLE_ASYNC,
++ true);
++ }
++ }
++}
++
++/* Turn off the async schedule after a brief delay */
++static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
++{
++ fotg210_clear_command_bit(fotg210, CMD_ASE);
++}
++
++
++/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
++static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
++{
++ unsigned actual, want;
++
++ /* Don't do anything if the controller isn't running (e.g., died) */
++ if (fotg210->rh_state != FOTG210_RH_RUNNING)
++ return;
++
++ want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
++ actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
++
++ if (want != actual) {
++
++ /* Poll again later, but give up after about 20 ms */
++ if (fotg210->PSS_poll_count++ < 20) {
++ fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
++ true);
++ return;
++ }
++ fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
++ want, actual);
++ }
++ fotg210->PSS_poll_count = 0;
++
++ /* The status is up-to-date; restart or stop the schedule as needed */
++ if (want == 0) { /* Stopped */
++ if (fotg210->periodic_count > 0)
++ fotg210_set_command_bit(fotg210, CMD_PSE);
++
++ } else { /* Running */
++ if (fotg210->periodic_count == 0) {
++
++ /* Turn off the schedule after a while */
++ fotg210_enable_event(fotg210,
++ FOTG210_HRTIMER_DISABLE_PERIODIC,
++ true);
++ }
++ }
++}
++
++/* Turn off the periodic schedule after a brief delay */
++static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
++{
++ fotg210_clear_command_bit(fotg210, CMD_PSE);
++}
++
++
++/* Poll the STS_HALT status bit; see when a dead controller stops */
++static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
++{
++ if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
++
++ /* Give up after a few milliseconds */
++ if (fotg210->died_poll_count++ < 5) {
++ /* Try again later */
++ fotg210_enable_event(fotg210,
++ FOTG210_HRTIMER_POLL_DEAD, true);
++ return;
++ }
++ fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
++ }
++
++ /* Clean up the mess */
++ fotg210->rh_state = FOTG210_RH_HALTED;
++ fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
++ fotg210_work(fotg210);
++ end_unlink_async(fotg210);
++
++ /* Not in process context, so don't try to reset the controller */
++}
++
++
++/* Handle unlinked interrupt QHs once they are gone from the hardware */
++static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
++{
++ bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
++
++ /*
++ * Process all the QHs on the intr_unlink list that were added
++ * before the current unlink cycle began. The list is in
++ * temporal order, so stop when we reach the first entry in the
++ * current cycle. But if the root hub isn't running then
++ * process all the QHs on the list.
++ */
++ fotg210->intr_unlinking = true;
++ while (fotg210->intr_unlink) {
++ struct fotg210_qh *qh = fotg210->intr_unlink;
++
++ if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
++ break;
++ fotg210->intr_unlink = qh->unlink_next;
++ qh->unlink_next = NULL;
++ end_unlink_intr(fotg210, qh);
++ }
++
++ /* Handle remaining entries later */
++ if (fotg210->intr_unlink) {
++ fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
++ true);
++ ++fotg210->intr_unlink_cycle;
++ }
++ fotg210->intr_unlinking = false;
++}
++
++
++/* Start another free-iTDs/siTDs cycle */
++static void start_free_itds(struct fotg210_hcd *fotg210)
++{
++ if (!(fotg210->enabled_hrtimer_events &
++ BIT(FOTG210_HRTIMER_FREE_ITDS))) {
++ fotg210->last_itd_to_free = list_entry(
++ fotg210->cached_itd_list.prev,
++ struct fotg210_itd, itd_list);
++ fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
++ }
++}
++
++/* Wait for controller to stop using old iTDs and siTDs */
++static void end_free_itds(struct fotg210_hcd *fotg210)
++{
++ struct fotg210_itd *itd, *n;
++
++ if (fotg210->rh_state < FOTG210_RH_RUNNING)
++ fotg210->last_itd_to_free = NULL;
++
++ list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
++ list_del(&itd->itd_list);
++ dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
++ if (itd == fotg210->last_itd_to_free)
++ break;
++ }
++
++ if (!list_empty(&fotg210->cached_itd_list))
++ start_free_itds(fotg210);
++}
++
++
++/* Handle lost (or very late) IAA interrupts */
++static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
++{
++ if (fotg210->rh_state != FOTG210_RH_RUNNING)
++ return;
++
++ /*
++ * Lost IAA irqs wedge things badly; seen first with a vt8235.
++ * So we need this watchdog, but must protect it against both
++ * (a) SMP races against real IAA firing and retriggering, and
++ * (b) clean HC shutdown, when IAA watchdog was pending.
++ */
++ if (fotg210->async_iaa) {
++ u32 cmd, status;
++
++ /* If we get here, IAA is *REALLY* late. It's barely
++ * conceivable that the system is so busy that CMD_IAAD
++ * is still legitimately set, so let's be sure it's
++ * clear before we read STS_IAA. (The HC should clear
++ * CMD_IAAD when it sets STS_IAA.)
++ */
++ cmd = fotg210_readl(fotg210, &fotg210->regs->command);
++
++ /*
++ * If IAA is set here it either legitimately triggered
++ * after the watchdog timer expired (_way_ late, so we'll
++ * still count it as lost) ... or a silicon erratum:
++ * - VIA seems to set IAA without triggering the IRQ;
++ * - IAAD potentially cleared without setting IAA.
++ */
++ status = fotg210_readl(fotg210, &fotg210->regs->status);
++ if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
++ INCR(fotg210->stats.lost_iaa);
++ fotg210_writel(fotg210, STS_IAA,
++ &fotg210->regs->status);
++ }
++
++ fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
++ status, cmd);
++ end_unlink_async(fotg210);
++ }
++}
++
++
++/* Enable the I/O watchdog, if appropriate */
++static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
++{
++ /* Not needed if the controller isn't running or it's already enabled */
++ if (fotg210->rh_state != FOTG210_RH_RUNNING ||
++ (fotg210->enabled_hrtimer_events &
++ BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
++ return;
++
++ /*
++ * Isochronous transfers always need the watchdog.
++ * For other sorts we use it only if the flag is set.
++ */
++ if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
++ fotg210->async_count + fotg210->intr_count > 0))
++ fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
++ true);
++}
++
++
++/* Handler functions for the hrtimer event types.
++ * Keep this array in the same order as the event types indexed by
++ * enum fotg210_hrtimer_event in fotg210.h.
++ */
++static void (*event_handlers[])(struct fotg210_hcd *) = {
++ fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
++ fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
++ fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
++ fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
++ end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
++ unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
++ fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
++ fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
++ fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
++ fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
++};
++
++static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
++{
++ struct fotg210_hcd *fotg210 =
++ container_of(t, struct fotg210_hcd, hrtimer);
++ ktime_t now;
++ unsigned long events;
++ unsigned long flags;
++ unsigned e;
++
++ spin_lock_irqsave(&fotg210->lock, flags);
++
++ events = fotg210->enabled_hrtimer_events;
++ fotg210->enabled_hrtimer_events = 0;
++ fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
++
++ /*
++ * Check each pending event. If its time has expired, handle
++ * the event; otherwise re-enable it.
++ */
++ now = ktime_get();
++ for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
++ if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
++ event_handlers[e](fotg210);
++ else
++ fotg210_enable_event(fotg210, e, false);
++ }
++
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ return HRTIMER_NORESTART;
++}
++
++#define fotg210_bus_suspend NULL
++#define fotg210_bus_resume NULL
++
++static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
++ u32 __iomem *status_reg, int port_status)
++{
++ if (!(port_status & PORT_CONNECT))
++ return port_status;
++
++ /* if reset finished and it's still not enabled -- handoff */
++ if (!(port_status & PORT_PE))
++ /* with integrated TT, there's nobody to hand it to! */
++ fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
++ index + 1);
++ else
++ fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
++ index + 1);
++
++ return port_status;
++}
++
++
++/* build "status change" packet (one or two bytes) from HC registers */
++
++static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ u32 temp, status;
++ u32 mask;
++ int retval = 1;
++ unsigned long flags;
++
++ /* init status to no-changes */
++ buf[0] = 0;
++
++ /* Inform the core about resumes-in-progress by returning
++ * a non-zero value even if there are no status changes.
++ */
++ status = fotg210->resuming_ports;
++
++ mask = PORT_CSC | PORT_PEC;
++ /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
++
++ /* no hub change reports (bit 0) for now (power, ...) */
++
++ /* port N changes (bit N)? */
++ spin_lock_irqsave(&fotg210->lock, flags);
++
++ temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
++
++ /*
++ * Return status information even for ports with OWNER set.
++ * Otherwise hub_wq wouldn't see the disconnect event when a
++ * high-speed device is switched over to the companion
++ * controller by the user.
++ */
++
++ if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
++ (fotg210->reset_done[0] &&
++ time_after_eq(jiffies, fotg210->reset_done[0]))) {
++ buf[0] |= 1 << 1;
++ status = STS_PCD;
++ }
++ /* FIXME autosuspend idle root hubs */
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ return status ? retval : 0;
++}
++
++static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
++ struct usb_hub_descriptor *desc)
++{
++ int ports = HCS_N_PORTS(fotg210->hcs_params);
++ u16 temp;
++
++ desc->bDescriptorType = USB_DT_HUB;
++ desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
++ desc->bHubContrCurrent = 0;
++
++ desc->bNbrPorts = ports;
++ temp = 1 + (ports / 8);
++ desc->bDescLength = 7 + 2 * temp;
++
++ /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
++ memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
++ memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
++
++ temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
++ temp |= HUB_CHAR_NO_LPSM; /* no power switching */
++ desc->wHubCharacteristics = cpu_to_le16(temp);
++}
++
++static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
++ u16 wIndex, char *buf, u16 wLength)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ int ports = HCS_N_PORTS(fotg210->hcs_params);
++ u32 __iomem *status_reg = &fotg210->regs->port_status;
++ u32 temp, temp1, status;
++ unsigned long flags;
++ int retval = 0;
++ unsigned selector;
++
++ /*
++ * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
++ * HCS_INDICATOR may say we can change LEDs to off/amber/green.
++ * (track current state ourselves) ... blink for diagnostics,
++ * power, "this is the one", etc. EHCI spec supports this.
++ */
++
++ spin_lock_irqsave(&fotg210->lock, flags);
++ switch (typeReq) {
++ case ClearHubFeature:
++ switch (wValue) {
++ case C_HUB_LOCAL_POWER:
++ case C_HUB_OVER_CURRENT:
++ /* no hub-wide feature/status flags */
++ break;
++ default:
++ goto error;
++ }
++ break;
++ case ClearPortFeature:
++ if (!wIndex || wIndex > ports)
++ goto error;
++ wIndex--;
++ temp = fotg210_readl(fotg210, status_reg);
++ temp &= ~PORT_RWC_BITS;
++
++ /*
++ * Even if OWNER is set, so the port is owned by the
++ * companion controller, hub_wq needs to be able to clear
++ * the port-change status bits (especially
++ * USB_PORT_STAT_C_CONNECTION).
++ */
++
++ switch (wValue) {
++ case USB_PORT_FEAT_ENABLE:
++ fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
++ break;
++ case USB_PORT_FEAT_C_ENABLE:
++ fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
++ break;
++ case USB_PORT_FEAT_SUSPEND:
++ if (temp & PORT_RESET)
++ goto error;
++ if (!(temp & PORT_SUSPEND))
++ break;
++ if ((temp & PORT_PE) == 0)
++ goto error;
++
++ /* resume signaling for 20 msec */
++ fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
++ fotg210->reset_done[wIndex] = jiffies
++ + msecs_to_jiffies(USB_RESUME_TIMEOUT);
++ break;
++ case USB_PORT_FEAT_C_SUSPEND:
++ clear_bit(wIndex, &fotg210->port_c_suspend);
++ break;
++ case USB_PORT_FEAT_C_CONNECTION:
++ fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
++ break;
++ case USB_PORT_FEAT_C_OVER_CURRENT:
++ fotg210_writel(fotg210, temp | OTGISR_OVC,
++ &fotg210->regs->otgisr);
++ break;
++ case USB_PORT_FEAT_C_RESET:
++ /* GetPortStatus clears reset */
++ break;
++ default:
++ goto error;
++ }
++ fotg210_readl(fotg210, &fotg210->regs->command);
++ break;
++ case GetHubDescriptor:
++ fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
++ buf);
++ break;
++ case GetHubStatus:
++ /* no hub-wide feature/status flags */
++ memset(buf, 0, 4);
++ /*cpu_to_le32s ((u32 *) buf); */
++ break;
++ case GetPortStatus:
++ if (!wIndex || wIndex > ports)
++ goto error;
++ wIndex--;
++ status = 0;
++ temp = fotg210_readl(fotg210, status_reg);
++
++ /* wPortChange bits */
++ if (temp & PORT_CSC)
++ status |= USB_PORT_STAT_C_CONNECTION << 16;
++ if (temp & PORT_PEC)
++ status |= USB_PORT_STAT_C_ENABLE << 16;
++
++ temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
++ if (temp1 & OTGISR_OVC)
++ status |= USB_PORT_STAT_C_OVERCURRENT << 16;
++
++ /* whoever resumes must GetPortStatus to complete it!! */
++ if (temp & PORT_RESUME) {
++
++ /* Remote Wakeup received? */
++ if (!fotg210->reset_done[wIndex]) {
++ /* resume signaling for 20 msec */
++ fotg210->reset_done[wIndex] = jiffies
++ + msecs_to_jiffies(20);
++ /* check the port again */
++ mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
++ fotg210->reset_done[wIndex]);
++ }
++
++ /* resume completed? */
++ else if (time_after_eq(jiffies,
++ fotg210->reset_done[wIndex])) {
++ clear_bit(wIndex, &fotg210->suspended_ports);
++ set_bit(wIndex, &fotg210->port_c_suspend);
++ fotg210->reset_done[wIndex] = 0;
++
++ /* stop resume signaling */
++ temp = fotg210_readl(fotg210, status_reg);
++ fotg210_writel(fotg210, temp &
++ ~(PORT_RWC_BITS | PORT_RESUME),
++ status_reg);
++ clear_bit(wIndex, &fotg210->resuming_ports);
++ retval = handshake(fotg210, status_reg,
++ PORT_RESUME, 0, 2000);/* 2ms */
++ if (retval != 0) {
++ fotg210_err(fotg210,
++ "port %d resume error %d\n",
++ wIndex + 1, retval);
++ goto error;
++ }
++ temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
++ }
++ }
++
++ /* whoever resets must GetPortStatus to complete it!! */
++ if ((temp & PORT_RESET) && time_after_eq(jiffies,
++ fotg210->reset_done[wIndex])) {
++ status |= USB_PORT_STAT_C_RESET << 16;
++ fotg210->reset_done[wIndex] = 0;
++ clear_bit(wIndex, &fotg210->resuming_ports);
++
++ /* force reset to complete */
++ fotg210_writel(fotg210,
++ temp & ~(PORT_RWC_BITS | PORT_RESET),
++ status_reg);
++ /* REVISIT: some hardware needs 550+ usec to clear
++ * this bit; seems too long to spin routinely...
++ */
++ retval = handshake(fotg210, status_reg,
++ PORT_RESET, 0, 1000);
++ if (retval != 0) {
++ fotg210_err(fotg210, "port %d reset error %d\n",
++ wIndex + 1, retval);
++ goto error;
++ }
++
++ /* see what we found out */
++ temp = check_reset_complete(fotg210, wIndex, status_reg,
++ fotg210_readl(fotg210, status_reg));
++
++ /* restart schedule */
++ fotg210->command |= CMD_RUN;
++ fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
++ }
++
++ if (!(temp & (PORT_RESUME|PORT_RESET))) {
++ fotg210->reset_done[wIndex] = 0;
++ clear_bit(wIndex, &fotg210->resuming_ports);
++ }
++
++ /* transfer dedicated ports to the companion hc */
++ if ((temp & PORT_CONNECT) &&
++ test_bit(wIndex, &fotg210->companion_ports)) {
++ temp &= ~PORT_RWC_BITS;
++ fotg210_writel(fotg210, temp, status_reg);
++ fotg210_dbg(fotg210, "port %d --> companion\n",
++ wIndex + 1);
++ temp = fotg210_readl(fotg210, status_reg);
++ }
++
++ /*
++ * Even if OWNER is set, there's no harm letting hub_wq
++ * see the wPortStatus values (they should all be 0 except
++ * for PORT_POWER anyway).
++ */
++
++ if (temp & PORT_CONNECT) {
++ status |= USB_PORT_STAT_CONNECTION;
++ status |= fotg210_port_speed(fotg210, temp);
++ }
++ if (temp & PORT_PE)
++ status |= USB_PORT_STAT_ENABLE;
++
++ /* maybe the port was unsuspended without our knowledge */
++ if (temp & (PORT_SUSPEND|PORT_RESUME)) {
++ status |= USB_PORT_STAT_SUSPEND;
++ } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
++ clear_bit(wIndex, &fotg210->suspended_ports);
++ clear_bit(wIndex, &fotg210->resuming_ports);
++ fotg210->reset_done[wIndex] = 0;
++ if (temp & PORT_PE)
++ set_bit(wIndex, &fotg210->port_c_suspend);
++ }
++
++ temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
++ if (temp1 & OTGISR_OVC)
++ status |= USB_PORT_STAT_OVERCURRENT;
++ if (temp & PORT_RESET)
++ status |= USB_PORT_STAT_RESET;
++ if (test_bit(wIndex, &fotg210->port_c_suspend))
++ status |= USB_PORT_STAT_C_SUSPEND << 16;
++
++ if (status & ~0xffff) /* only if wPortChange is interesting */
++ dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
++ put_unaligned_le32(status, buf);
++ break;
++ case SetHubFeature:
++ switch (wValue) {
++ case C_HUB_LOCAL_POWER:
++ case C_HUB_OVER_CURRENT:
++ /* no hub-wide feature/status flags */
++ break;
++ default:
++ goto error;
++ }
++ break;
++ case SetPortFeature:
++ selector = wIndex >> 8;
++ wIndex &= 0xff;
++
++ if (!wIndex || wIndex > ports)
++ goto error;
++ wIndex--;
++ temp = fotg210_readl(fotg210, status_reg);
++ temp &= ~PORT_RWC_BITS;
++ switch (wValue) {
++ case USB_PORT_FEAT_SUSPEND:
++ if ((temp & PORT_PE) == 0
++ || (temp & PORT_RESET) != 0)
++ goto error;
++
++ /* After above check the port must be connected.
++ * Set appropriate bit thus could put phy into low power
++ * mode if we have hostpc feature
++ */
++ fotg210_writel(fotg210, temp | PORT_SUSPEND,
++ status_reg);
++ set_bit(wIndex, &fotg210->suspended_ports);
++ break;
++ case USB_PORT_FEAT_RESET:
++ if (temp & PORT_RESUME)
++ goto error;
++ /* line status bits may report this as low speed,
++ * which can be fine if this root hub has a
++ * transaction translator built in.
++ */
++ fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
++ temp |= PORT_RESET;
++ temp &= ~PORT_PE;
++
++ /*
++ * caller must wait, then call GetPortStatus
++ * usb 2.0 spec says 50 ms resets on root
++ */
++ fotg210->reset_done[wIndex] = jiffies
++ + msecs_to_jiffies(50);
++ fotg210_writel(fotg210, temp, status_reg);
++ break;
++
++ /* For downstream facing ports (these): one hub port is put
++ * into test mode according to USB2 11.24.2.13, then the hub
++ * must be reset (which for root hub now means rmmod+modprobe,
++ * or else system reboot). See EHCI 2.3.9 and 4.14 for info
++ * about the EHCI-specific stuff.
++ */
++ case USB_PORT_FEAT_TEST:
++ if (!selector || selector > 5)
++ goto error;
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ fotg210_quiesce(fotg210);
++ spin_lock_irqsave(&fotg210->lock, flags);
++
++ /* Put all enabled ports into suspend */
++ temp = fotg210_readl(fotg210, status_reg) &
++ ~PORT_RWC_BITS;
++ if (temp & PORT_PE)
++ fotg210_writel(fotg210, temp | PORT_SUSPEND,
++ status_reg);
++
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ fotg210_halt(fotg210);
++ spin_lock_irqsave(&fotg210->lock, flags);
++
++ temp = fotg210_readl(fotg210, status_reg);
++ temp |= selector << 16;
++ fotg210_writel(fotg210, temp, status_reg);
++ break;
++
++ default:
++ goto error;
++ }
++ fotg210_readl(fotg210, &fotg210->regs->command);
++ break;
++
++ default:
++error:
++ /* "stall" on error */
++ retval = -EPIPE;
++ }
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ return retval;
++}
++
++static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
++ int portnum)
++{
++ return;
++}
++
++static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
++ int portnum)
++{
++ return 0;
++}
++
++/* There's basically three types of memory:
++ * - data used only by the HCD ... kmalloc is fine
++ * - async and periodic schedules, shared by HC and HCD ... these
++ * need to use dma_pool or dma_alloc_coherent
++ * - driver buffers, read/written by HC ... single shot DMA mapped
++ *
++ * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
++ * No memory seen by this driver is pageable.
++ */
++
++/* Allocate the key transfer structures from the previously allocated pool */
++static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
++ struct fotg210_qtd *qtd, dma_addr_t dma)
++{
++ memset(qtd, 0, sizeof(*qtd));
++ qtd->qtd_dma = dma;
++ qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
++ qtd->hw_next = FOTG210_LIST_END(fotg210);
++ qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
++ INIT_LIST_HEAD(&qtd->qtd_list);
++}
++
++static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
++ gfp_t flags)
++{
++ struct fotg210_qtd *qtd;
++ dma_addr_t dma;
++
++ qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
++ if (qtd != NULL)
++ fotg210_qtd_init(fotg210, qtd, dma);
++
++ return qtd;
++}
++
++static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
++ struct fotg210_qtd *qtd)
++{
++ dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
++}
++
++
++static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
++{
++ /* clean qtds first, and know this is not linked */
++ if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
++ fotg210_dbg(fotg210, "unused qh not empty!\n");
++ BUG();
++ }
++ if (qh->dummy)
++ fotg210_qtd_free(fotg210, qh->dummy);
++ dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
++ kfree(qh);
++}
++
++static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
++ gfp_t flags)
++{
++ struct fotg210_qh *qh;
++ dma_addr_t dma;
++
++ qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
++ if (!qh)
++ goto done;
++ qh->hw = (struct fotg210_qh_hw *)
++ dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
++ if (!qh->hw)
++ goto fail;
++ qh->qh_dma = dma;
++ INIT_LIST_HEAD(&qh->qtd_list);
++
++ /* dummy td enables safe urb queuing */
++ qh->dummy = fotg210_qtd_alloc(fotg210, flags);
++ if (qh->dummy == NULL) {
++ fotg210_dbg(fotg210, "no dummy td\n");
++ goto fail1;
++ }
++done:
++ return qh;
++fail1:
++ dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
++fail:
++ kfree(qh);
++ return NULL;
++}
++
++/* The queue heads and transfer descriptors are managed from pools tied
++ * to each of the "per device" structures.
++ * This is the initialisation and cleanup code.
++ */
++
++static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
++{
++ if (fotg210->async)
++ qh_destroy(fotg210, fotg210->async);
++ fotg210->async = NULL;
++
++ if (fotg210->dummy)
++ qh_destroy(fotg210, fotg210->dummy);
++ fotg210->dummy = NULL;
++
++ /* DMA consistent memory and pools */
++ dma_pool_destroy(fotg210->qtd_pool);
++ fotg210->qtd_pool = NULL;
++
++ dma_pool_destroy(fotg210->qh_pool);
++ fotg210->qh_pool = NULL;
++
++ dma_pool_destroy(fotg210->itd_pool);
++ fotg210->itd_pool = NULL;
++
++ if (fotg210->periodic)
++ dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
++ fotg210->periodic_size * sizeof(u32),
++ fotg210->periodic, fotg210->periodic_dma);
++ fotg210->periodic = NULL;
++
++ /* shadow periodic table */
++ kfree(fotg210->pshadow);
++ fotg210->pshadow = NULL;
++}
++
++/* remember to add cleanup code (above) if you add anything here */
++static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
++{
++ int i;
++
++ /* QTDs for control/bulk/intr transfers */
++ fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
++ fotg210_to_hcd(fotg210)->self.controller,
++ sizeof(struct fotg210_qtd),
++ 32 /* byte alignment (for hw parts) */,
++ 4096 /* can't cross 4K */);
++ if (!fotg210->qtd_pool)
++ goto fail;
++
++ /* QHs for control/bulk/intr transfers */
++ fotg210->qh_pool = dma_pool_create("fotg210_qh",
++ fotg210_to_hcd(fotg210)->self.controller,
++ sizeof(struct fotg210_qh_hw),
++ 32 /* byte alignment (for hw parts) */,
++ 4096 /* can't cross 4K */);
++ if (!fotg210->qh_pool)
++ goto fail;
++
++ fotg210->async = fotg210_qh_alloc(fotg210, flags);
++ if (!fotg210->async)
++ goto fail;
++
++ /* ITD for high speed ISO transfers */
++ fotg210->itd_pool = dma_pool_create("fotg210_itd",
++ fotg210_to_hcd(fotg210)->self.controller,
++ sizeof(struct fotg210_itd),
++ 64 /* byte alignment (for hw parts) */,
++ 4096 /* can't cross 4K */);
++ if (!fotg210->itd_pool)
++ goto fail;
++
++ /* Hardware periodic table */
++ fotg210->periodic =
++ dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
++ fotg210->periodic_size * sizeof(__le32),
++ &fotg210->periodic_dma, 0);
++ if (fotg210->periodic == NULL)
++ goto fail;
++
++ for (i = 0; i < fotg210->periodic_size; i++)
++ fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
++
++ /* software shadow of hardware table */
++ fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
++ flags);
++ if (fotg210->pshadow != NULL)
++ return 0;
++
++fail:
++ fotg210_dbg(fotg210, "couldn't init memory\n");
++ fotg210_mem_cleanup(fotg210);
++ return -ENOMEM;
++}
++/* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
++ *
++ * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
++ * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
++ * buffers needed for the larger number). We use one QH per endpoint, queue
++ * multiple urbs (all three types) per endpoint. URBs may need several qtds.
++ *
++ * ISO traffic uses "ISO TD" (itd) records, and (along with
++ * interrupts) needs careful scheduling. Performance improvements can be
++ * an ongoing challenge. That's in "ehci-sched.c".
++ *
++ * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
++ * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
++ * (b) special fields in qh entries or (c) split iso entries. TTs will
++ * buffer low/full speed data so the host collects it at high speed.
++ */
++
++/* fill a qtd, returning how much of the buffer we were able to queue up */
++static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
++ dma_addr_t buf, size_t len, int token, int maxpacket)
++{
++ int i, count;
++ u64 addr = buf;
++
++ /* one buffer entry per 4K ... first might be short or unaligned */
++ qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
++ qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
++ count = 0x1000 - (buf & 0x0fff); /* rest of that page */
++ if (likely(len < count)) /* ... iff needed */
++ count = len;
++ else {
++ buf += 0x1000;
++ buf &= ~0x0fff;
++
++ /* per-qtd limit: from 16K to 20K (best alignment) */
++ for (i = 1; count < len && i < 5; i++) {
++ addr = buf;
++ qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
++ qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
++ (u32)(addr >> 32));
++ buf += 0x1000;
++ if ((count + 0x1000) < len)
++ count += 0x1000;
++ else
++ count = len;
++ }
++
++ /* short packets may only terminate transfers */
++ if (count != len)
++ count -= (count % maxpacket);
++ }
++ qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
++ qtd->length = count;
++
++ return count;
++}
++
++static inline void qh_update(struct fotg210_hcd *fotg210,
++ struct fotg210_qh *qh, struct fotg210_qtd *qtd)
++{
++ struct fotg210_qh_hw *hw = qh->hw;
++
++ /* writes to an active overlay are unsafe */
++ BUG_ON(qh->qh_state != QH_STATE_IDLE);
++
++ hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
++ hw->hw_alt_next = FOTG210_LIST_END(fotg210);
++
++ /* Except for control endpoints, we make hardware maintain data
++ * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
++ * and set the pseudo-toggle in udev. Only usb_clear_halt() will
++ * ever clear it.
++ */
++ if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
++ unsigned is_out, epnum;
++
++ is_out = qh->is_out;
++ epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
++ if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
++ hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
++ usb_settoggle(qh->dev, epnum, is_out, 1);
++ }
++ }
++
++ hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
++}
++
++/* if it weren't for a common silicon quirk (writing the dummy into the qh
++ * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
++ * recovery (including urb dequeue) would need software changes to a QH...
++ */
++static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
++{
++ struct fotg210_qtd *qtd;
++
++ if (list_empty(&qh->qtd_list))
++ qtd = qh->dummy;
++ else {
++ qtd = list_entry(qh->qtd_list.next,
++ struct fotg210_qtd, qtd_list);
++ /*
++ * first qtd may already be partially processed.
++ * If we come here during unlink, the QH overlay region
++ * might have reference to the just unlinked qtd. The
++ * qtd is updated in qh_completions(). Update the QH
++ * overlay here.
++ */
++ if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
++ qh->hw->hw_qtd_next = qtd->hw_next;
++ qtd = NULL;
++ }
++ }
++
++ if (qtd)
++ qh_update(fotg210, qh, qtd);
++}
++
++static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
++
++static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
++ struct usb_host_endpoint *ep)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ struct fotg210_qh *qh = ep->hcpriv;
++ unsigned long flags;
++
++ spin_lock_irqsave(&fotg210->lock, flags);
++ qh->clearing_tt = 0;
++ if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
++ && fotg210->rh_state == FOTG210_RH_RUNNING)
++ qh_link_async(fotg210, qh);
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++}
++
++static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
++ struct fotg210_qh *qh, struct urb *urb, u32 token)
++{
++
++ /* If an async split transaction gets an error or is unlinked,
++ * the TT buffer may be left in an indeterminate state. We
++ * have to clear the TT buffer.
++ *
++ * Note: this routine is never called for Isochronous transfers.
++ */
++ if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
++ struct usb_device *tt = urb->dev->tt->hub;
++
++ dev_dbg(&tt->dev,
++ "clear tt buffer port %d, a%d ep%d t%08x\n",
++ urb->dev->ttport, urb->dev->devnum,
++ usb_pipeendpoint(urb->pipe), token);
++
++ if (urb->dev->tt->hub !=
++ fotg210_to_hcd(fotg210)->self.root_hub) {
++ if (usb_hub_clear_tt_buffer(urb) == 0)
++ qh->clearing_tt = 1;
++ }
++ }
++}
++
++static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
++ size_t length, u32 token)
++{
++ int status = -EINPROGRESS;
++
++ /* count IN/OUT bytes, not SETUP (even short packets) */
++ if (likely(QTD_PID(token) != 2))
++ urb->actual_length += length - QTD_LENGTH(token);
++
++ /* don't modify error codes */
++ if (unlikely(urb->unlinked))
++ return status;
++
++ /* force cleanup after short read; not always an error */
++ if (unlikely(IS_SHORT_READ(token)))
++ status = -EREMOTEIO;
++
++ /* serious "can't proceed" faults reported by the hardware */
++ if (token & QTD_STS_HALT) {
++ if (token & QTD_STS_BABBLE) {
++ /* FIXME "must" disable babbling device's port too */
++ status = -EOVERFLOW;
++ /* CERR nonzero + halt --> stall */
++ } else if (QTD_CERR(token)) {
++ status = -EPIPE;
++
++ /* In theory, more than one of the following bits can be set
++ * since they are sticky and the transaction is retried.
++ * Which to test first is rather arbitrary.
++ */
++ } else if (token & QTD_STS_MMF) {
++ /* fs/ls interrupt xfer missed the complete-split */
++ status = -EPROTO;
++ } else if (token & QTD_STS_DBE) {
++ status = (QTD_PID(token) == 1) /* IN ? */
++ ? -ENOSR /* hc couldn't read data */
++ : -ECOMM; /* hc couldn't write data */
++ } else if (token & QTD_STS_XACT) {
++ /* timeout, bad CRC, wrong PID, etc */
++ fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
++ urb->dev->devpath,
++ usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) ? "in" : "out");
++ status = -EPROTO;
++ } else { /* unknown */
++ status = -EPROTO;
++ }
++
++ fotg210_dbg(fotg210,
++ "dev%d ep%d%s qtd token %08x --> status %d\n",
++ usb_pipedevice(urb->pipe),
++ usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) ? "in" : "out",
++ token, status);
++ }
++
++ return status;
++}
++
++static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
++ int status)
++__releases(fotg210->lock)
++__acquires(fotg210->lock)
++{
++ if (likely(urb->hcpriv != NULL)) {
++ struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
++
++ /* S-mask in a QH means it's an interrupt urb */
++ if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
++
++ /* ... update hc-wide periodic stats (for usbfs) */
++ fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
++ }
++ }
++
++ if (unlikely(urb->unlinked)) {
++ INCR(fotg210->stats.unlink);
++ } else {
++ /* report non-error and short read status as zero */
++ if (status == -EINPROGRESS || status == -EREMOTEIO)
++ status = 0;
++ INCR(fotg210->stats.complete);
++ }
++
++#ifdef FOTG210_URB_TRACE
++ fotg210_dbg(fotg210,
++ "%s %s urb %p ep%d%s status %d len %d/%d\n",
++ __func__, urb->dev->devpath, urb,
++ usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) ? "in" : "out",
++ status,
++ urb->actual_length, urb->transfer_buffer_length);
++#endif
++
++ /* complete() can reenter this HCD */
++ usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
++ spin_unlock(&fotg210->lock);
++ usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
++ spin_lock(&fotg210->lock);
++}
++
++static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
++
++/* Process and free completed qtds for a qh, returning URBs to drivers.
++ * Chases up to qh->hw_current. Returns number of completions called,
++ * indicating how much "real" work we did.
++ */
++static unsigned qh_completions(struct fotg210_hcd *fotg210,
++ struct fotg210_qh *qh)
++{
++ struct fotg210_qtd *last, *end = qh->dummy;
++ struct fotg210_qtd *qtd, *tmp;
++ int last_status;
++ int stopped;
++ unsigned count = 0;
++ u8 state;
++ struct fotg210_qh_hw *hw = qh->hw;
++
++ if (unlikely(list_empty(&qh->qtd_list)))
++ return count;
++
++ /* completions (or tasks on other cpus) must never clobber HALT
++ * till we've gone through and cleaned everything up, even when
++ * they add urbs to this qh's queue or mark them for unlinking.
++ *
++ * NOTE: unlinking expects to be done in queue order.
++ *
++ * It's a bug for qh->qh_state to be anything other than
++ * QH_STATE_IDLE, unless our caller is scan_async() or
++ * scan_intr().
++ */
++ state = qh->qh_state;
++ qh->qh_state = QH_STATE_COMPLETING;
++ stopped = (state == QH_STATE_IDLE);
++
++rescan:
++ last = NULL;
++ last_status = -EINPROGRESS;
++ qh->needs_rescan = 0;
++
++ /* remove de-activated QTDs from front of queue.
++ * after faults (including short reads), cleanup this urb
++ * then let the queue advance.
++ * if queue is stopped, handles unlinks.
++ */
++ list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
++ struct urb *urb;
++ u32 token = 0;
++
++ urb = qtd->urb;
++
++ /* clean up any state from previous QTD ...*/
++ if (last) {
++ if (likely(last->urb != urb)) {
++ fotg210_urb_done(fotg210, last->urb,
++ last_status);
++ count++;
++ last_status = -EINPROGRESS;
++ }
++ fotg210_qtd_free(fotg210, last);
++ last = NULL;
++ }
++
++ /* ignore urbs submitted during completions we reported */
++ if (qtd == end)
++ break;
++
++ /* hardware copies qtd out of qh overlay */
++ rmb();
++ token = hc32_to_cpu(fotg210, qtd->hw_token);
++
++ /* always clean up qtds the hc de-activated */
++retry_xacterr:
++ if ((token & QTD_STS_ACTIVE) == 0) {
++
++ /* Report Data Buffer Error: non-fatal but useful */
++ if (token & QTD_STS_DBE)
++ fotg210_dbg(fotg210,
++ "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
++ urb, usb_endpoint_num(&urb->ep->desc),
++ usb_endpoint_dir_in(&urb->ep->desc)
++ ? "in" : "out",
++ urb->transfer_buffer_length, qtd, qh);
++
++ /* on STALL, error, and short reads this urb must
++ * complete and all its qtds must be recycled.
++ */
++ if ((token & QTD_STS_HALT) != 0) {
++
++ /* retry transaction errors until we
++ * reach the software xacterr limit
++ */
++ if ((token & QTD_STS_XACT) &&
++ QTD_CERR(token) == 0 &&
++ ++qh->xacterrs < QH_XACTERR_MAX &&
++ !urb->unlinked) {
++ fotg210_dbg(fotg210,
++ "detected XactErr len %zu/%zu retry %d\n",
++ qtd->length - QTD_LENGTH(token),
++ qtd->length,
++ qh->xacterrs);
++
++ /* reset the token in the qtd and the
++ * qh overlay (which still contains
++ * the qtd) so that we pick up from
++ * where we left off
++ */
++ token &= ~QTD_STS_HALT;
++ token |= QTD_STS_ACTIVE |
++ (FOTG210_TUNE_CERR << 10);
++ qtd->hw_token = cpu_to_hc32(fotg210,
++ token);
++ wmb();
++ hw->hw_token = cpu_to_hc32(fotg210,
++ token);
++ goto retry_xacterr;
++ }
++ stopped = 1;
++
++ /* magic dummy for some short reads; qh won't advance.
++ * that silicon quirk can kick in with this dummy too.
++ *
++ * other short reads won't stop the queue, including
++ * control transfers (status stage handles that) or
++ * most other single-qtd reads ... the queue stops if
++ * URB_SHORT_NOT_OK was set so the driver submitting
++ * the urbs could clean it up.
++ */
++ } else if (IS_SHORT_READ(token) &&
++ !(qtd->hw_alt_next &
++ FOTG210_LIST_END(fotg210))) {
++ stopped = 1;
++ }
++
++ /* stop scanning when we reach qtds the hc is using */
++ } else if (likely(!stopped
++ && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
++ break;
++
++ /* scan the whole queue for unlinks whenever it stops */
++ } else {
++ stopped = 1;
++
++ /* cancel everything if we halt, suspend, etc */
++ if (fotg210->rh_state < FOTG210_RH_RUNNING)
++ last_status = -ESHUTDOWN;
++
++ /* this qtd is active; skip it unless a previous qtd
++ * for its urb faulted, or its urb was canceled.
++ */
++ else if (last_status == -EINPROGRESS && !urb->unlinked)
++ continue;
++
++ /* qh unlinked; token in overlay may be most current */
++ if (state == QH_STATE_IDLE &&
++ cpu_to_hc32(fotg210, qtd->qtd_dma)
++ == hw->hw_current) {
++ token = hc32_to_cpu(fotg210, hw->hw_token);
++
++ /* An unlink may leave an incomplete
++ * async transaction in the TT buffer.
++ * We have to clear it.
++ */
++ fotg210_clear_tt_buffer(fotg210, qh, urb,
++ token);
++ }
++ }
++
++ /* unless we already know the urb's status, collect qtd status
++ * and update count of bytes transferred. in common short read
++ * cases with only one data qtd (including control transfers),
++ * queue processing won't halt. but with two or more qtds (for
++ * example, with a 32 KB transfer), when the first qtd gets a
++ * short read the second must be removed by hand.
++ */
++ if (last_status == -EINPROGRESS) {
++ last_status = qtd_copy_status(fotg210, urb,
++ qtd->length, token);
++ if (last_status == -EREMOTEIO &&
++ (qtd->hw_alt_next &
++ FOTG210_LIST_END(fotg210)))
++ last_status = -EINPROGRESS;
++
++ /* As part of low/full-speed endpoint-halt processing
++ * we must clear the TT buffer (11.17.5).
++ */
++ if (unlikely(last_status != -EINPROGRESS &&
++ last_status != -EREMOTEIO)) {
++ /* The TT's in some hubs malfunction when they
++ * receive this request following a STALL (they
++ * stop sending isochronous packets). Since a
++ * STALL can't leave the TT buffer in a busy
++ * state (if you believe Figures 11-48 - 11-51
++ * in the USB 2.0 spec), we won't clear the TT
++ * buffer in this case. Strictly speaking this
++ * is a violation of the spec.
++ */
++ if (last_status != -EPIPE)
++ fotg210_clear_tt_buffer(fotg210, qh,
++ urb, token);
++ }
++ }
++
++ /* if we're removing something not at the queue head,
++ * patch the hardware queue pointer.
++ */
++ if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
++ last = list_entry(qtd->qtd_list.prev,
++ struct fotg210_qtd, qtd_list);
++ last->hw_next = qtd->hw_next;
++ }
++
++ /* remove qtd; it's recycled after possible urb completion */
++ list_del(&qtd->qtd_list);
++ last = qtd;
++
++ /* reinit the xacterr counter for the next qtd */
++ qh->xacterrs = 0;
++ }
++
++ /* last urb's completion might still need calling */
++ if (likely(last != NULL)) {
++ fotg210_urb_done(fotg210, last->urb, last_status);
++ count++;
++ fotg210_qtd_free(fotg210, last);
++ }
++
++ /* Do we need to rescan for URBs dequeued during a giveback? */
++ if (unlikely(qh->needs_rescan)) {
++ /* If the QH is already unlinked, do the rescan now. */
++ if (state == QH_STATE_IDLE)
++ goto rescan;
++
++ /* Otherwise we have to wait until the QH is fully unlinked.
++ * Our caller will start an unlink if qh->needs_rescan is
++ * set. But if an unlink has already started, nothing needs
++ * to be done.
++ */
++ if (state != QH_STATE_LINKED)
++ qh->needs_rescan = 0;
++ }
++
++ /* restore original state; caller must unlink or relink */
++ qh->qh_state = state;
++
++ /* be sure the hardware's done with the qh before refreshing
++ * it after fault cleanup, or recovering from silicon wrongly
++ * overlaying the dummy qtd (which reduces DMA chatter).
++ */
++ if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
++ switch (state) {
++ case QH_STATE_IDLE:
++ qh_refresh(fotg210, qh);
++ break;
++ case QH_STATE_LINKED:
++ /* We won't refresh a QH that's linked (after the HC
++ * stopped the queue). That avoids a race:
++ * - HC reads first part of QH;
++ * - CPU updates that first part and the token;
++ * - HC reads rest of that QH, including token
++ * Result: HC gets an inconsistent image, and then
++ * DMAs to/from the wrong memory (corrupting it).
++ *
++ * That should be rare for interrupt transfers,
++ * except maybe high bandwidth ...
++ */
++
++ /* Tell the caller to start an unlink */
++ qh->needs_rescan = 1;
++ break;
++ /* otherwise, unlink already started */
++ }
++ }
++
++ return count;
++}
++
++/* reverse of qh_urb_transaction: free a list of TDs.
++ * used for cleanup after errors, before HC sees an URB's TDs.
++ */
++static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
++ struct list_head *head)
++{
++ struct fotg210_qtd *qtd, *temp;
++
++ list_for_each_entry_safe(qtd, temp, head, qtd_list) {
++ list_del(&qtd->qtd_list);
++ fotg210_qtd_free(fotg210, qtd);
++ }
++}
++
++/* create a list of filled qtds for this URB; won't link into qh.
++ */
++static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
++ struct urb *urb, struct list_head *head, gfp_t flags)
++{
++ struct fotg210_qtd *qtd, *qtd_prev;
++ dma_addr_t buf;
++ int len, this_sg_len, maxpacket;
++ int is_input;
++ u32 token;
++ int i;
++ struct scatterlist *sg;
++
++ /*
++ * URBs map to sequences of QTDs: one logical transaction
++ */
++ qtd = fotg210_qtd_alloc(fotg210, flags);
++ if (unlikely(!qtd))
++ return NULL;
++ list_add_tail(&qtd->qtd_list, head);
++ qtd->urb = urb;
++
++ token = QTD_STS_ACTIVE;
++ token |= (FOTG210_TUNE_CERR << 10);
++ /* for split transactions, SplitXState initialized to zero */
++
++ len = urb->transfer_buffer_length;
++ is_input = usb_pipein(urb->pipe);
++ if (usb_pipecontrol(urb->pipe)) {
++ /* SETUP pid */
++ qtd_fill(fotg210, qtd, urb->setup_dma,
++ sizeof(struct usb_ctrlrequest),
++ token | (2 /* "setup" */ << 8), 8);
++
++ /* ... and always at least one more pid */
++ token ^= QTD_TOGGLE;
++ qtd_prev = qtd;
++ qtd = fotg210_qtd_alloc(fotg210, flags);
++ if (unlikely(!qtd))
++ goto cleanup;
++ qtd->urb = urb;
++ qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
++ list_add_tail(&qtd->qtd_list, head);
++
++ /* for zero length DATA stages, STATUS is always IN */
++ if (len == 0)
++ token |= (1 /* "in" */ << 8);
++ }
++
++ /*
++ * data transfer stage: buffer setup
++ */
++ i = urb->num_mapped_sgs;
++ if (len > 0 && i > 0) {
++ sg = urb->sg;
++ buf = sg_dma_address(sg);
++
++ /* urb->transfer_buffer_length may be smaller than the
++ * size of the scatterlist (or vice versa)
++ */
++ this_sg_len = min_t(int, sg_dma_len(sg), len);
++ } else {
++ sg = NULL;
++ buf = urb->transfer_dma;
++ this_sg_len = len;
++ }
++
++ if (is_input)
++ token |= (1 /* "in" */ << 8);
++ /* else it's already initted to "out" pid (0 << 8) */
++
++ maxpacket = usb_maxpacket(urb->dev, urb->pipe);
++
++ /*
++ * buffer gets wrapped in one or more qtds;
++ * last one may be "short" (including zero len)
++ * and may serve as a control status ack
++ */
++ for (;;) {
++ int this_qtd_len;
++
++ this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
++ maxpacket);
++ this_sg_len -= this_qtd_len;
++ len -= this_qtd_len;
++ buf += this_qtd_len;
++
++ /*
++ * short reads advance to a "magic" dummy instead of the next
++ * qtd ... that forces the queue to stop, for manual cleanup.
++ * (this will usually be overridden later.)
++ */
++ if (is_input)
++ qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
++
++ /* qh makes control packets use qtd toggle; maybe switch it */
++ if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
++ token ^= QTD_TOGGLE;
++
++ if (likely(this_sg_len <= 0)) {
++ if (--i <= 0 || len <= 0)
++ break;
++ sg = sg_next(sg);
++ buf = sg_dma_address(sg);
++ this_sg_len = min_t(int, sg_dma_len(sg), len);
++ }
++
++ qtd_prev = qtd;
++ qtd = fotg210_qtd_alloc(fotg210, flags);
++ if (unlikely(!qtd))
++ goto cleanup;
++ qtd->urb = urb;
++ qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
++ list_add_tail(&qtd->qtd_list, head);
++ }
++
++ /*
++ * unless the caller requires manual cleanup after short reads,
++ * have the alt_next mechanism keep the queue running after the
++ * last data qtd (the only one, for control and most other cases).
++ */
++ if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
++ usb_pipecontrol(urb->pipe)))
++ qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
++
++ /*
++ * control requests may need a terminating data "status" ack;
++ * other OUT ones may need a terminating short packet
++ * (zero length).
++ */
++ if (likely(urb->transfer_buffer_length != 0)) {
++ int one_more = 0;
++
++ if (usb_pipecontrol(urb->pipe)) {
++ one_more = 1;
++ token ^= 0x0100; /* "in" <--> "out" */
++ token |= QTD_TOGGLE; /* force DATA1 */
++ } else if (usb_pipeout(urb->pipe)
++ && (urb->transfer_flags & URB_ZERO_PACKET)
++ && !(urb->transfer_buffer_length % maxpacket)) {
++ one_more = 1;
++ }
++ if (one_more) {
++ qtd_prev = qtd;
++ qtd = fotg210_qtd_alloc(fotg210, flags);
++ if (unlikely(!qtd))
++ goto cleanup;
++ qtd->urb = urb;
++ qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
++ list_add_tail(&qtd->qtd_list, head);
++
++ /* never any data in such packets */
++ qtd_fill(fotg210, qtd, 0, 0, token, 0);
++ }
++ }
++
++ /* by default, enable interrupt on urb completion */
++ if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
++ qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
++ return head;
++
++cleanup:
++ qtd_list_free(fotg210, urb, head);
++ return NULL;
++}
++
++/* Would be best to create all qh's from config descriptors,
++ * when each interface/altsetting is established. Unlink
++ * any previous qh and cancel its urbs first; endpoints are
++ * implicitly reset then (data toggle too).
++ * That'd mean updating how usbcore talks to HCDs. (2.7?)
++ */
++
++
++/* Each QH holds a qtd list; a QH is used for everything except iso.
++ *
++ * For interrupt urbs, the scheduler must set the microframe scheduling
++ * mask(s) each time the QH gets scheduled. For highspeed, that's
++ * just one microframe in the s-mask. For split interrupt transactions
++ * there are additional complications: c-mask, maybe FSTNs.
++ */
++static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
++ gfp_t flags)
++{
++ struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
++ struct usb_host_endpoint *ep;
++ u32 info1 = 0, info2 = 0;
++ int is_input, type;
++ int maxp = 0;
++ int mult;
++ struct usb_tt *tt = urb->dev->tt;
++ struct fotg210_qh_hw *hw;
++
++ if (!qh)
++ return qh;
++
++ /*
++ * init endpoint/device data for this QH
++ */
++ info1 |= usb_pipeendpoint(urb->pipe) << 8;
++ info1 |= usb_pipedevice(urb->pipe) << 0;
++
++ is_input = usb_pipein(urb->pipe);
++ type = usb_pipetype(urb->pipe);
++ ep = usb_pipe_endpoint(urb->dev, urb->pipe);
++ maxp = usb_endpoint_maxp(&ep->desc);
++ mult = usb_endpoint_maxp_mult(&ep->desc);
++
++ /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
++ * acts like up to 3KB, but is built from smaller packets.
++ */
++ if (maxp > 1024) {
++ fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
++ goto done;
++ }
++
++ /* Compute interrupt scheduling parameters just once, and save.
++ * - allowing for high bandwidth, how many nsec/uframe are used?
++ * - split transactions need a second CSPLIT uframe; same question
++ * - splits also need a schedule gap (for full/low speed I/O)
++ * - qh has a polling interval
++ *
++ * For control/bulk requests, the HC or TT handles these.
++ */
++ if (type == PIPE_INTERRUPT) {
++ qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
++ is_input, 0, mult * maxp));
++ qh->start = NO_FRAME;
++
++ if (urb->dev->speed == USB_SPEED_HIGH) {
++ qh->c_usecs = 0;
++ qh->gap_uf = 0;
++
++ qh->period = urb->interval >> 3;
++ if (qh->period == 0 && urb->interval != 1) {
++ /* NOTE interval 2 or 4 uframes could work.
++ * But interval 1 scheduling is simpler, and
++ * includes high bandwidth.
++ */
++ urb->interval = 1;
++ } else if (qh->period > fotg210->periodic_size) {
++ qh->period = fotg210->periodic_size;
++ urb->interval = qh->period << 3;
++ }
++ } else {
++ int think_time;
++
++ /* gap is f(FS/LS transfer times) */
++ qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
++ is_input, 0, maxp) / (125 * 1000);
++
++ /* FIXME this just approximates SPLIT/CSPLIT times */
++ if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
++ qh->c_usecs = qh->usecs + HS_USECS(0);
++ qh->usecs = HS_USECS(1);
++ } else { /* SPLIT+DATA, gap, CSPLIT */
++ qh->usecs += HS_USECS(1);
++ qh->c_usecs = HS_USECS(0);
++ }
++
++ think_time = tt ? tt->think_time : 0;
++ qh->tt_usecs = NS_TO_US(think_time +
++ usb_calc_bus_time(urb->dev->speed,
++ is_input, 0, maxp));
++ qh->period = urb->interval;
++ if (qh->period > fotg210->periodic_size) {
++ qh->period = fotg210->periodic_size;
++ urb->interval = qh->period;
++ }
++ }
++ }
++
++ /* support for tt scheduling, and access to toggles */
++ qh->dev = urb->dev;
++
++ /* using TT? */
++ switch (urb->dev->speed) {
++ case USB_SPEED_LOW:
++ info1 |= QH_LOW_SPEED;
++ fallthrough;
++
++ case USB_SPEED_FULL:
++ /* EPS 0 means "full" */
++ if (type != PIPE_INTERRUPT)
++ info1 |= (FOTG210_TUNE_RL_TT << 28);
++ if (type == PIPE_CONTROL) {
++ info1 |= QH_CONTROL_EP; /* for TT */
++ info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
++ }
++ info1 |= maxp << 16;
++
++ info2 |= (FOTG210_TUNE_MULT_TT << 30);
++
++ /* Some Freescale processors have an erratum in which the
++ * port number in the queue head was 0..N-1 instead of 1..N.
++ */
++ if (fotg210_has_fsl_portno_bug(fotg210))
++ info2 |= (urb->dev->ttport-1) << 23;
++ else
++ info2 |= urb->dev->ttport << 23;
++
++ /* set the address of the TT; for TDI's integrated
++ * root hub tt, leave it zeroed.
++ */
++ if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
++ info2 |= tt->hub->devnum << 16;
++
++ /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
++
++ break;
++
++ case USB_SPEED_HIGH: /* no TT involved */
++ info1 |= QH_HIGH_SPEED;
++ if (type == PIPE_CONTROL) {
++ info1 |= (FOTG210_TUNE_RL_HS << 28);
++ info1 |= 64 << 16; /* usb2 fixed maxpacket */
++ info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
++ info2 |= (FOTG210_TUNE_MULT_HS << 30);
++ } else if (type == PIPE_BULK) {
++ info1 |= (FOTG210_TUNE_RL_HS << 28);
++ /* The USB spec says that high speed bulk endpoints
++ * always use 512 byte maxpacket. But some device
++ * vendors decided to ignore that, and MSFT is happy
++ * to help them do so. So now people expect to use
++ * such nonconformant devices with Linux too; sigh.
++ */
++ info1 |= maxp << 16;
++ info2 |= (FOTG210_TUNE_MULT_HS << 30);
++ } else { /* PIPE_INTERRUPT */
++ info1 |= maxp << 16;
++ info2 |= mult << 30;
++ }
++ break;
++ default:
++ fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
++ urb->dev->speed);
++done:
++ qh_destroy(fotg210, qh);
++ return NULL;
++ }
++
++ /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
++
++ /* init as live, toggle clear, advance to dummy */
++ qh->qh_state = QH_STATE_IDLE;
++ hw = qh->hw;
++ hw->hw_info1 = cpu_to_hc32(fotg210, info1);
++ hw->hw_info2 = cpu_to_hc32(fotg210, info2);
++ qh->is_out = !is_input;
++ usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
++ qh_refresh(fotg210, qh);
++ return qh;
++}
++
++static void enable_async(struct fotg210_hcd *fotg210)
++{
++ if (fotg210->async_count++)
++ return;
++
++ /* Stop waiting to turn off the async schedule */
++ fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
++
++ /* Don't start the schedule until ASS is 0 */
++ fotg210_poll_ASS(fotg210);
++ turn_on_io_watchdog(fotg210);
++}
++
++static void disable_async(struct fotg210_hcd *fotg210)
++{
++ if (--fotg210->async_count)
++ return;
++
++ /* The async schedule and async_unlink list are supposed to be empty */
++ WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
++
++ /* Don't turn off the schedule until ASS is 1 */
++ fotg210_poll_ASS(fotg210);
++}
++
++/* move qh (and its qtds) onto async queue; maybe enable queue. */
++
++static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
++{
++ __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
++ struct fotg210_qh *head;
++
++ /* Don't link a QH if there's a Clear-TT-Buffer pending */
++ if (unlikely(qh->clearing_tt))
++ return;
++
++ WARN_ON(qh->qh_state != QH_STATE_IDLE);
++
++ /* clear halt and/or toggle; and maybe recover from silicon quirk */
++ qh_refresh(fotg210, qh);
++
++ /* splice right after start */
++ head = fotg210->async;
++ qh->qh_next = head->qh_next;
++ qh->hw->hw_next = head->hw->hw_next;
++ wmb();
++
++ head->qh_next.qh = qh;
++ head->hw->hw_next = dma;
++
++ qh->xacterrs = 0;
++ qh->qh_state = QH_STATE_LINKED;
++ /* qtd completions reported later by interrupt */
++
++ enable_async(fotg210);
++}
++
++/* For control/bulk/interrupt, return QH with these TDs appended.
++ * Allocates and initializes the QH if necessary.
++ * Returns null if it can't allocate a QH it needs to.
++ * If the QH has TDs (urbs) already, that's great.
++ */
++static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
++ struct urb *urb, struct list_head *qtd_list,
++ int epnum, void **ptr)
++{
++ struct fotg210_qh *qh = NULL;
++ __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
++
++ qh = (struct fotg210_qh *) *ptr;
++ if (unlikely(qh == NULL)) {
++ /* can't sleep here, we have fotg210->lock... */
++ qh = qh_make(fotg210, urb, GFP_ATOMIC);
++ *ptr = qh;
++ }
++ if (likely(qh != NULL)) {
++ struct fotg210_qtd *qtd;
++
++ if (unlikely(list_empty(qtd_list)))
++ qtd = NULL;
++ else
++ qtd = list_entry(qtd_list->next, struct fotg210_qtd,
++ qtd_list);
++
++ /* control qh may need patching ... */
++ if (unlikely(epnum == 0)) {
++ /* usb_reset_device() briefly reverts to address 0 */
++ if (usb_pipedevice(urb->pipe) == 0)
++ qh->hw->hw_info1 &= ~qh_addr_mask;
++ }
++
++ /* just one way to queue requests: swap with the dummy qtd.
++ * only hc or qh_refresh() ever modify the overlay.
++ */
++ if (likely(qtd != NULL)) {
++ struct fotg210_qtd *dummy;
++ dma_addr_t dma;
++ __hc32 token;
++
++ /* to avoid racing the HC, use the dummy td instead of
++ * the first td of our list (becomes new dummy). both
++ * tds stay deactivated until we're done, when the
++ * HC is allowed to fetch the old dummy (4.10.2).
++ */
++ token = qtd->hw_token;
++ qtd->hw_token = HALT_BIT(fotg210);
++
++ dummy = qh->dummy;
++
++ dma = dummy->qtd_dma;
++ *dummy = *qtd;
++ dummy->qtd_dma = dma;
++
++ list_del(&qtd->qtd_list);
++ list_add(&dummy->qtd_list, qtd_list);
++ list_splice_tail(qtd_list, &qh->qtd_list);
++
++ fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
++ qh->dummy = qtd;
++
++ /* hc must see the new dummy at list end */
++ dma = qtd->qtd_dma;
++ qtd = list_entry(qh->qtd_list.prev,
++ struct fotg210_qtd, qtd_list);
++ qtd->hw_next = QTD_NEXT(fotg210, dma);
++
++ /* let the hc process these next qtds */
++ wmb();
++ dummy->hw_token = token;
++
++ urb->hcpriv = qh;
++ }
++ }
++ return qh;
++}
++
++static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
++ struct list_head *qtd_list, gfp_t mem_flags)
++{
++ int epnum;
++ unsigned long flags;
++ struct fotg210_qh *qh = NULL;
++ int rc;
++
++ epnum = urb->ep->desc.bEndpointAddress;
++
++#ifdef FOTG210_URB_TRACE
++ {
++ struct fotg210_qtd *qtd;
++
++ qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
++ fotg210_dbg(fotg210,
++ "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
++ __func__, urb->dev->devpath, urb,
++ epnum & 0x0f, (epnum & USB_DIR_IN)
++ ? "in" : "out",
++ urb->transfer_buffer_length,
++ qtd, urb->ep->hcpriv);
++ }
++#endif
++
++ spin_lock_irqsave(&fotg210->lock, flags);
++ if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
++ rc = -ESHUTDOWN;
++ goto done;
++ }
++ rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
++ if (unlikely(rc))
++ goto done;
++
++ qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
++ if (unlikely(qh == NULL)) {
++ usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
++ rc = -ENOMEM;
++ goto done;
++ }
++
++ /* Control/bulk operations through TTs don't need scheduling,
++ * the HC and TT handle it when the TT has a buffer ready.
++ */
++ if (likely(qh->qh_state == QH_STATE_IDLE))
++ qh_link_async(fotg210, qh);
++done:
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ if (unlikely(qh == NULL))
++ qtd_list_free(fotg210, urb, qtd_list);
++ return rc;
++}
++
++static void single_unlink_async(struct fotg210_hcd *fotg210,
++ struct fotg210_qh *qh)
++{
++ struct fotg210_qh *prev;
++
++ /* Add to the end of the list of QHs waiting for the next IAAD */
++ qh->qh_state = QH_STATE_UNLINK;
++ if (fotg210->async_unlink)
++ fotg210->async_unlink_last->unlink_next = qh;
++ else
++ fotg210->async_unlink = qh;
++ fotg210->async_unlink_last = qh;
++
++ /* Unlink it from the schedule */
++ prev = fotg210->async;
++ while (prev->qh_next.qh != qh)
++ prev = prev->qh_next.qh;
++
++ prev->hw->hw_next = qh->hw->hw_next;
++ prev->qh_next = qh->qh_next;
++ if (fotg210->qh_scan_next == qh)
++ fotg210->qh_scan_next = qh->qh_next.qh;
++}
++
++static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
++{
++ /*
++ * Do nothing if an IAA cycle is already running or
++ * if one will be started shortly.
++ */
++ if (fotg210->async_iaa || fotg210->async_unlinking)
++ return;
++
++ /* Do all the waiting QHs at once */
++ fotg210->async_iaa = fotg210->async_unlink;
++ fotg210->async_unlink = NULL;
++
++ /* If the controller isn't running, we don't have to wait for it */
++ if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
++ if (!nested) /* Avoid recursion */
++ end_unlink_async(fotg210);
++
++ /* Otherwise start a new IAA cycle */
++ } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
++ /* Make sure the unlinks are all visible to the hardware */
++ wmb();
++
++ fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
++ &fotg210->regs->command);
++ fotg210_readl(fotg210, &fotg210->regs->command);
++ fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
++ true);
++ }
++}
++
++/* the async qh for the qtds being unlinked are now gone from the HC */
++
++static void end_unlink_async(struct fotg210_hcd *fotg210)
++{
++ struct fotg210_qh *qh;
++
++ /* Process the idle QHs */
++restart:
++ fotg210->async_unlinking = true;
++ while (fotg210->async_iaa) {
++ qh = fotg210->async_iaa;
++ fotg210->async_iaa = qh->unlink_next;
++ qh->unlink_next = NULL;
++
++ qh->qh_state = QH_STATE_IDLE;
++ qh->qh_next.qh = NULL;
++
++ qh_completions(fotg210, qh);
++ if (!list_empty(&qh->qtd_list) &&
++ fotg210->rh_state == FOTG210_RH_RUNNING)
++ qh_link_async(fotg210, qh);
++ disable_async(fotg210);
++ }
++ fotg210->async_unlinking = false;
++
++ /* Start a new IAA cycle if any QHs are waiting for it */
++ if (fotg210->async_unlink) {
++ start_iaa_cycle(fotg210, true);
++ if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
++ goto restart;
++ }
++}
++
++static void unlink_empty_async(struct fotg210_hcd *fotg210)
++{
++ struct fotg210_qh *qh, *next;
++ bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
++ bool check_unlinks_later = false;
++
++ /* Unlink all the async QHs that have been empty for a timer cycle */
++ next = fotg210->async->qh_next.qh;
++ while (next) {
++ qh = next;
++ next = qh->qh_next.qh;
++
++ if (list_empty(&qh->qtd_list) &&
++ qh->qh_state == QH_STATE_LINKED) {
++ if (!stopped && qh->unlink_cycle ==
++ fotg210->async_unlink_cycle)
++ check_unlinks_later = true;
++ else
++ single_unlink_async(fotg210, qh);
++ }
++ }
++
++ /* Start a new IAA cycle if any QHs are waiting for it */
++ if (fotg210->async_unlink)
++ start_iaa_cycle(fotg210, false);
++
++ /* QHs that haven't been empty for long enough will be handled later */
++ if (check_unlinks_later) {
++ fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
++ true);
++ ++fotg210->async_unlink_cycle;
++ }
++}
++
++/* makes sure the async qh will become idle */
++/* caller must own fotg210->lock */
++
++static void start_unlink_async(struct fotg210_hcd *fotg210,
++ struct fotg210_qh *qh)
++{
++ /*
++ * If the QH isn't linked then there's nothing we can do
++ * unless we were called during a giveback, in which case
++ * qh_completions() has to deal with it.
++ */
++ if (qh->qh_state != QH_STATE_LINKED) {
++ if (qh->qh_state == QH_STATE_COMPLETING)
++ qh->needs_rescan = 1;
++ return;
++ }
++
++ single_unlink_async(fotg210, qh);
++ start_iaa_cycle(fotg210, false);
++}
++
++static void scan_async(struct fotg210_hcd *fotg210)
++{
++ struct fotg210_qh *qh;
++ bool check_unlinks_later = false;
++
++ fotg210->qh_scan_next = fotg210->async->qh_next.qh;
++ while (fotg210->qh_scan_next) {
++ qh = fotg210->qh_scan_next;
++ fotg210->qh_scan_next = qh->qh_next.qh;
++rescan:
++ /* clean any finished work for this qh */
++ if (!list_empty(&qh->qtd_list)) {
++ int temp;
++
++ /*
++ * Unlinks could happen here; completion reporting
++ * drops the lock. That's why fotg210->qh_scan_next
++ * always holds the next qh to scan; if the next qh
++ * gets unlinked then fotg210->qh_scan_next is adjusted
++ * in single_unlink_async().
++ */
++ temp = qh_completions(fotg210, qh);
++ if (qh->needs_rescan) {
++ start_unlink_async(fotg210, qh);
++ } else if (list_empty(&qh->qtd_list)
++ && qh->qh_state == QH_STATE_LINKED) {
++ qh->unlink_cycle = fotg210->async_unlink_cycle;
++ check_unlinks_later = true;
++ } else if (temp != 0)
++ goto rescan;
++ }
++ }
++
++ /*
++ * Unlink empty entries, reducing DMA usage as well
++ * as HCD schedule-scanning costs. Delay for any qh
++ * we just scanned, there's a not-unusual case that it
++ * doesn't stay idle for long.
++ */
++ if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
++ !(fotg210->enabled_hrtimer_events &
++ BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
++ fotg210_enable_event(fotg210,
++ FOTG210_HRTIMER_ASYNC_UNLINKS, true);
++ ++fotg210->async_unlink_cycle;
++ }
++}
++/* EHCI scheduled transaction support: interrupt, iso, split iso
++ * These are called "periodic" transactions in the EHCI spec.
++ *
++ * Note that for interrupt transfers, the QH/QTD manipulation is shared
++ * with the "asynchronous" transaction support (control/bulk transfers).
++ * The only real difference is in how interrupt transfers are scheduled.
++ *
++ * For ISO, we make an "iso_stream" head to serve the same role as a QH.
++ * It keeps track of every ITD (or SITD) that's linked, and holds enough
++ * pre-calculated schedule data to make appending to the queue be quick.
++ */
++static int fotg210_get_frame(struct usb_hcd *hcd);
++
++/* periodic_next_shadow - return "next" pointer on shadow list
++ * @periodic: host pointer to qh/itd
++ * @tag: hardware tag for type of this record
++ */
++static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
++ union fotg210_shadow *periodic, __hc32 tag)
++{
++ switch (hc32_to_cpu(fotg210, tag)) {
++ case Q_TYPE_QH:
++ return &periodic->qh->qh_next;
++ case Q_TYPE_FSTN:
++ return &periodic->fstn->fstn_next;
++ default:
++ return &periodic->itd->itd_next;
++ }
++}
++
++static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
++ union fotg210_shadow *periodic, __hc32 tag)
++{
++ switch (hc32_to_cpu(fotg210, tag)) {
++ /* our fotg210_shadow.qh is actually software part */
++ case Q_TYPE_QH:
++ return &periodic->qh->hw->hw_next;
++ /* others are hw parts */
++ default:
++ return periodic->hw_next;
++ }
++}
++
++/* caller must hold fotg210->lock */
++static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
++ void *ptr)
++{
++ union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
++ __hc32 *hw_p = &fotg210->periodic[frame];
++ union fotg210_shadow here = *prev_p;
++
++ /* find predecessor of "ptr"; hw and shadow lists are in sync */
++ while (here.ptr && here.ptr != ptr) {
++ prev_p = periodic_next_shadow(fotg210, prev_p,
++ Q_NEXT_TYPE(fotg210, *hw_p));
++ hw_p = shadow_next_periodic(fotg210, &here,
++ Q_NEXT_TYPE(fotg210, *hw_p));
++ here = *prev_p;
++ }
++ /* an interrupt entry (at list end) could have been shared */
++ if (!here.ptr)
++ return;
++
++ /* update shadow and hardware lists ... the old "next" pointers
++ * from ptr may still be in use, the caller updates them.
++ */
++ *prev_p = *periodic_next_shadow(fotg210, &here,
++ Q_NEXT_TYPE(fotg210, *hw_p));
++
++ *hw_p = *shadow_next_periodic(fotg210, &here,
++ Q_NEXT_TYPE(fotg210, *hw_p));
++}
++
++/* how many of the uframe's 125 usecs are allocated? */
++static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
++ unsigned frame, unsigned uframe)
++{
++ __hc32 *hw_p = &fotg210->periodic[frame];
++ union fotg210_shadow *q = &fotg210->pshadow[frame];
++ unsigned usecs = 0;
++ struct fotg210_qh_hw *hw;
++
++ while (q->ptr) {
++ switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
++ case Q_TYPE_QH:
++ hw = q->qh->hw;
++ /* is it in the S-mask? */
++ if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
++ usecs += q->qh->usecs;
++ /* ... or C-mask? */
++ if (hw->hw_info2 & cpu_to_hc32(fotg210,
++ 1 << (8 + uframe)))
++ usecs += q->qh->c_usecs;
++ hw_p = &hw->hw_next;
++ q = &q->qh->qh_next;
++ break;
++ /* case Q_TYPE_FSTN: */
++ default:
++ /* for "save place" FSTNs, count the relevant INTR
++ * bandwidth from the previous frame
++ */
++ if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
++ fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
++
++ hw_p = &q->fstn->hw_next;
++ q = &q->fstn->fstn_next;
++ break;
++ case Q_TYPE_ITD:
++ if (q->itd->hw_transaction[uframe])
++ usecs += q->itd->stream->usecs;
++ hw_p = &q->itd->hw_next;
++ q = &q->itd->itd_next;
++ break;
++ }
++ }
++ if (usecs > fotg210->uframe_periodic_max)
++ fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
++ frame * 8 + uframe, usecs);
++ return usecs;
++}
++
++static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
++{
++ if (!dev1->tt || !dev2->tt)
++ return 0;
++ if (dev1->tt != dev2->tt)
++ return 0;
++ if (dev1->tt->multi)
++ return dev1->ttport == dev2->ttport;
++ else
++ return 1;
++}
++
++/* return true iff the device's transaction translator is available
++ * for a periodic transfer starting at the specified frame, using
++ * all the uframes in the mask.
++ */
++static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
++ struct usb_device *dev, unsigned frame, u32 uf_mask)
++{
++ if (period == 0) /* error */
++ return 0;
++
++ /* note bandwidth wastage: split never follows csplit
++ * (different dev or endpoint) until the next uframe.
++ * calling convention doesn't make that distinction.
++ */
++ for (; frame < fotg210->periodic_size; frame += period) {
++ union fotg210_shadow here;
++ __hc32 type;
++ struct fotg210_qh_hw *hw;
++
++ here = fotg210->pshadow[frame];
++ type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
++ while (here.ptr) {
++ switch (hc32_to_cpu(fotg210, type)) {
++ case Q_TYPE_ITD:
++ type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
++ here = here.itd->itd_next;
++ continue;
++ case Q_TYPE_QH:
++ hw = here.qh->hw;
++ if (same_tt(dev, here.qh->dev)) {
++ u32 mask;
++
++ mask = hc32_to_cpu(fotg210,
++ hw->hw_info2);
++ /* "knows" no gap is needed */
++ mask |= mask >> 8;
++ if (mask & uf_mask)
++ break;
++ }
++ type = Q_NEXT_TYPE(fotg210, hw->hw_next);
++ here = here.qh->qh_next;
++ continue;
++ /* case Q_TYPE_FSTN: */
++ default:
++ fotg210_dbg(fotg210,
++ "periodic frame %d bogus type %d\n",
++ frame, type);
++ }
++
++ /* collision or error */
++ return 0;
++ }
++ }
++
++ /* no collision */
++ return 1;
++}
++
++static void enable_periodic(struct fotg210_hcd *fotg210)
++{
++ if (fotg210->periodic_count++)
++ return;
++
++ /* Stop waiting to turn off the periodic schedule */
++ fotg210->enabled_hrtimer_events &=
++ ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
++
++ /* Don't start the schedule until PSS is 0 */
++ fotg210_poll_PSS(fotg210);
++ turn_on_io_watchdog(fotg210);
++}
++
++static void disable_periodic(struct fotg210_hcd *fotg210)
++{
++ if (--fotg210->periodic_count)
++ return;
++
++ /* Don't turn off the schedule until PSS is 1 */
++ fotg210_poll_PSS(fotg210);
++}
++
++/* periodic schedule slots have iso tds (normal or split) first, then a
++ * sparse tree for active interrupt transfers.
++ *
++ * this just links in a qh; caller guarantees uframe masks are set right.
++ * no FSTN support (yet; fotg210 0.96+)
++ */
++static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
++{
++ unsigned i;
++ unsigned period = qh->period;
++
++ dev_dbg(&qh->dev->dev,
++ "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
++ hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
++ (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
++ qh->c_usecs);
++
++ /* high bandwidth, or otherwise every microframe */
++ if (period == 0)
++ period = 1;
++
++ for (i = qh->start; i < fotg210->periodic_size; i += period) {
++ union fotg210_shadow *prev = &fotg210->pshadow[i];
++ __hc32 *hw_p = &fotg210->periodic[i];
++ union fotg210_shadow here = *prev;
++ __hc32 type = 0;
++
++ /* skip the iso nodes at list head */
++ while (here.ptr) {
++ type = Q_NEXT_TYPE(fotg210, *hw_p);
++ if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
++ break;
++ prev = periodic_next_shadow(fotg210, prev, type);
++ hw_p = shadow_next_periodic(fotg210, &here, type);
++ here = *prev;
++ }
++
++ /* sorting each branch by period (slow-->fast)
++ * enables sharing interior tree nodes
++ */
++ while (here.ptr && qh != here.qh) {
++ if (qh->period > here.qh->period)
++ break;
++ prev = &here.qh->qh_next;
++ hw_p = &here.qh->hw->hw_next;
++ here = *prev;
++ }
++ /* link in this qh, unless some earlier pass did that */
++ if (qh != here.qh) {
++ qh->qh_next = here;
++ if (here.qh)
++ qh->hw->hw_next = *hw_p;
++ wmb();
++ prev->qh = qh;
++ *hw_p = QH_NEXT(fotg210, qh->qh_dma);
++ }
++ }
++ qh->qh_state = QH_STATE_LINKED;
++ qh->xacterrs = 0;
++
++ /* update per-qh bandwidth for usbfs */
++ fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
++ ? ((qh->usecs + qh->c_usecs) / qh->period)
++ : (qh->usecs * 8);
++
++ list_add(&qh->intr_node, &fotg210->intr_qh_list);
++
++ /* maybe enable periodic schedule processing */
++ ++fotg210->intr_count;
++ enable_periodic(fotg210);
++}
++
++static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
++ struct fotg210_qh *qh)
++{
++ unsigned i;
++ unsigned period;
++
++ /*
++ * If qh is for a low/full-speed device, simply unlinking it
++ * could interfere with an ongoing split transaction. To unlink
++ * it safely would require setting the QH_INACTIVATE bit and
++ * waiting at least one frame, as described in EHCI 4.12.2.5.
++ *
++ * We won't bother with any of this. Instead, we assume that the
++ * only reason for unlinking an interrupt QH while the current URB
++ * is still active is to dequeue all the URBs (flush the whole
++ * endpoint queue).
++ *
++ * If rebalancing the periodic schedule is ever implemented, this
++ * approach will no longer be valid.
++ */
++
++ /* high bandwidth, or otherwise part of every microframe */
++ period = qh->period;
++ if (!period)
++ period = 1;
++
++ for (i = qh->start; i < fotg210->periodic_size; i += period)
++ periodic_unlink(fotg210, i, qh);
++
++ /* update per-qh bandwidth for usbfs */
++ fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
++ ? ((qh->usecs + qh->c_usecs) / qh->period)
++ : (qh->usecs * 8);
++
++ dev_dbg(&qh->dev->dev,
++ "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
++ qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
++ (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
++ qh->c_usecs);
++
++ /* qh->qh_next still "live" to HC */
++ qh->qh_state = QH_STATE_UNLINK;
++ qh->qh_next.ptr = NULL;
++
++ if (fotg210->qh_scan_next == qh)
++ fotg210->qh_scan_next = list_entry(qh->intr_node.next,
++ struct fotg210_qh, intr_node);
++ list_del(&qh->intr_node);
++}
++
++static void start_unlink_intr(struct fotg210_hcd *fotg210,
++ struct fotg210_qh *qh)
++{
++ /* If the QH isn't linked then there's nothing we can do
++ * unless we were called during a giveback, in which case
++ * qh_completions() has to deal with it.
++ */
++ if (qh->qh_state != QH_STATE_LINKED) {
++ if (qh->qh_state == QH_STATE_COMPLETING)
++ qh->needs_rescan = 1;
++ return;
++ }
++
++ qh_unlink_periodic(fotg210, qh);
++
++ /* Make sure the unlinks are visible before starting the timer */
++ wmb();
++
++ /*
++ * The EHCI spec doesn't say how long it takes the controller to
++ * stop accessing an unlinked interrupt QH. The timer delay is
++ * 9 uframes; presumably that will be long enough.
++ */
++ qh->unlink_cycle = fotg210->intr_unlink_cycle;
++
++ /* New entries go at the end of the intr_unlink list */
++ if (fotg210->intr_unlink)
++ fotg210->intr_unlink_last->unlink_next = qh;
++ else
++ fotg210->intr_unlink = qh;
++ fotg210->intr_unlink_last = qh;
++
++ if (fotg210->intr_unlinking)
++ ; /* Avoid recursive calls */
++ else if (fotg210->rh_state < FOTG210_RH_RUNNING)
++ fotg210_handle_intr_unlinks(fotg210);
++ else if (fotg210->intr_unlink == qh) {
++ fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
++ true);
++ ++fotg210->intr_unlink_cycle;
++ }
++}
++
++static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
++{
++ struct fotg210_qh_hw *hw = qh->hw;
++ int rc;
++
++ qh->qh_state = QH_STATE_IDLE;
++ hw->hw_next = FOTG210_LIST_END(fotg210);
++
++ qh_completions(fotg210, qh);
++
++ /* reschedule QH iff another request is queued */
++ if (!list_empty(&qh->qtd_list) &&
++ fotg210->rh_state == FOTG210_RH_RUNNING) {
++ rc = qh_schedule(fotg210, qh);
++
++ /* An error here likely indicates handshake failure
++ * or no space left in the schedule. Neither fault
++ * should happen often ...
++ *
++ * FIXME kill the now-dysfunctional queued urbs
++ */
++ if (rc != 0)
++ fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
++ qh, rc);
++ }
++
++ /* maybe turn off periodic schedule */
++ --fotg210->intr_count;
++ disable_periodic(fotg210);
++}
++
++static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
++ unsigned uframe, unsigned period, unsigned usecs)
++{
++ int claimed;
++
++ /* complete split running into next frame?
++ * given FSTN support, we could sometimes check...
++ */
++ if (uframe >= 8)
++ return 0;
++
++ /* convert "usecs we need" to "max already claimed" */
++ usecs = fotg210->uframe_periodic_max - usecs;
++
++ /* we "know" 2 and 4 uframe intervals were rejected; so
++ * for period 0, check _every_ microframe in the schedule.
++ */
++ if (unlikely(period == 0)) {
++ do {
++ for (uframe = 0; uframe < 7; uframe++) {
++ claimed = periodic_usecs(fotg210, frame,
++ uframe);
++ if (claimed > usecs)
++ return 0;
++ }
++ } while ((frame += 1) < fotg210->periodic_size);
++
++ /* just check the specified uframe, at that period */
++ } else {
++ do {
++ claimed = periodic_usecs(fotg210, frame, uframe);
++ if (claimed > usecs)
++ return 0;
++ } while ((frame += period) < fotg210->periodic_size);
++ }
++
++ /* success! */
++ return 1;
++}
++
++static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
++ unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
++{
++ int retval = -ENOSPC;
++ u8 mask = 0;
++
++ if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
++ goto done;
++
++ if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
++ goto done;
++ if (!qh->c_usecs) {
++ retval = 0;
++ *c_maskp = 0;
++ goto done;
++ }
++
++ /* Make sure this tt's buffer is also available for CSPLITs.
++ * We pessimize a bit; probably the typical full speed case
++ * doesn't need the second CSPLIT.
++ *
++ * NOTE: both SPLIT and CSPLIT could be checked in just
++ * one smart pass...
++ */
++ mask = 0x03 << (uframe + qh->gap_uf);
++ *c_maskp = cpu_to_hc32(fotg210, mask << 8);
++
++ mask |= 1 << uframe;
++ if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
++ if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
++ qh->period, qh->c_usecs))
++ goto done;
++ if (!check_period(fotg210, frame, uframe + qh->gap_uf,
++ qh->period, qh->c_usecs))
++ goto done;
++ retval = 0;
++ }
++done:
++ return retval;
++}
++
++/* "first fit" scheduling policy used the first time through,
++ * or when the previous schedule slot can't be re-used.
++ */
++static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
++{
++ int status;
++ unsigned uframe;
++ __hc32 c_mask;
++ unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
++ struct fotg210_qh_hw *hw = qh->hw;
++
++ qh_refresh(fotg210, qh);
++ hw->hw_next = FOTG210_LIST_END(fotg210);
++ frame = qh->start;
++
++ /* reuse the previous schedule slots, if we can */
++ if (frame < qh->period) {
++ uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
++ status = check_intr_schedule(fotg210, frame, --uframe,
++ qh, &c_mask);
++ } else {
++ uframe = 0;
++ c_mask = 0;
++ status = -ENOSPC;
++ }
++
++ /* else scan the schedule to find a group of slots such that all
++ * uframes have enough periodic bandwidth available.
++ */
++ if (status) {
++ /* "normal" case, uframing flexible except with splits */
++ if (qh->period) {
++ int i;
++
++ for (i = qh->period; status && i > 0; --i) {
++ frame = ++fotg210->random_frame % qh->period;
++ for (uframe = 0; uframe < 8; uframe++) {
++ status = check_intr_schedule(fotg210,
++ frame, uframe, qh,
++ &c_mask);
++ if (status == 0)
++ break;
++ }
++ }
++
++ /* qh->period == 0 means every uframe */
++ } else {
++ frame = 0;
++ status = check_intr_schedule(fotg210, 0, 0, qh,
++ &c_mask);
++ }
++ if (status)
++ goto done;
++ qh->start = frame;
++
++ /* reset S-frame and (maybe) C-frame masks */
++ hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
++ hw->hw_info2 |= qh->period
++ ? cpu_to_hc32(fotg210, 1 << uframe)
++ : cpu_to_hc32(fotg210, QH_SMASK);
++ hw->hw_info2 |= c_mask;
++ } else
++ fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
++
++ /* stuff into the periodic schedule */
++ qh_link_periodic(fotg210, qh);
++done:
++ return status;
++}
++
++static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
++ struct list_head *qtd_list, gfp_t mem_flags)
++{
++ unsigned epnum;
++ unsigned long flags;
++ struct fotg210_qh *qh;
++ int status;
++ struct list_head empty;
++
++ /* get endpoint and transfer/schedule data */
++ epnum = urb->ep->desc.bEndpointAddress;
++
++ spin_lock_irqsave(&fotg210->lock, flags);
++
++ if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
++ status = -ESHUTDOWN;
++ goto done_not_linked;
++ }
++ status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
++ if (unlikely(status))
++ goto done_not_linked;
++
++ /* get qh and force any scheduling errors */
++ INIT_LIST_HEAD(&empty);
++ qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
++ if (qh == NULL) {
++ status = -ENOMEM;
++ goto done;
++ }
++ if (qh->qh_state == QH_STATE_IDLE) {
++ status = qh_schedule(fotg210, qh);
++ if (status)
++ goto done;
++ }
++
++ /* then queue the urb's tds to the qh */
++ qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
++ BUG_ON(qh == NULL);
++
++ /* ... update usbfs periodic stats */
++ fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
++
++done:
++ if (unlikely(status))
++ usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
++done_not_linked:
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ if (status)
++ qtd_list_free(fotg210, urb, qtd_list);
++
++ return status;
++}
++
++static void scan_intr(struct fotg210_hcd *fotg210)
++{
++ struct fotg210_qh *qh;
++
++ list_for_each_entry_safe(qh, fotg210->qh_scan_next,
++ &fotg210->intr_qh_list, intr_node) {
++rescan:
++ /* clean any finished work for this qh */
++ if (!list_empty(&qh->qtd_list)) {
++ int temp;
++
++ /*
++ * Unlinks could happen here; completion reporting
++ * drops the lock. That's why fotg210->qh_scan_next
++ * always holds the next qh to scan; if the next qh
++ * gets unlinked then fotg210->qh_scan_next is adjusted
++ * in qh_unlink_periodic().
++ */
++ temp = qh_completions(fotg210, qh);
++ if (unlikely(qh->needs_rescan ||
++ (list_empty(&qh->qtd_list) &&
++ qh->qh_state == QH_STATE_LINKED)))
++ start_unlink_intr(fotg210, qh);
++ else if (temp != 0)
++ goto rescan;
++ }
++ }
++}
++
++/* fotg210_iso_stream ops work with both ITD and SITD */
++
++static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
++{
++ struct fotg210_iso_stream *stream;
++
++ stream = kzalloc(sizeof(*stream), mem_flags);
++ if (likely(stream != NULL)) {
++ INIT_LIST_HEAD(&stream->td_list);
++ INIT_LIST_HEAD(&stream->free_list);
++ stream->next_uframe = -1;
++ }
++ return stream;
++}
++
++static void iso_stream_init(struct fotg210_hcd *fotg210,
++ struct fotg210_iso_stream *stream, struct usb_device *dev,
++ int pipe, unsigned interval)
++{
++ u32 buf1;
++ unsigned epnum, maxp;
++ int is_input;
++ long bandwidth;
++ unsigned multi;
++ struct usb_host_endpoint *ep;
++
++ /*
++ * this might be a "high bandwidth" highspeed endpoint,
++ * as encoded in the ep descriptor's wMaxPacket field
++ */
++ epnum = usb_pipeendpoint(pipe);
++ is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
++ ep = usb_pipe_endpoint(dev, pipe);
++ maxp = usb_endpoint_maxp(&ep->desc);
++ if (is_input)
++ buf1 = (1 << 11);
++ else
++ buf1 = 0;
++
++ multi = usb_endpoint_maxp_mult(&ep->desc);
++ buf1 |= maxp;
++ maxp *= multi;
++
++ stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
++ stream->buf1 = cpu_to_hc32(fotg210, buf1);
++ stream->buf2 = cpu_to_hc32(fotg210, multi);
++
++ /* usbfs wants to report the average usecs per frame tied up
++ * when transfers on this endpoint are scheduled ...
++ */
++ if (dev->speed == USB_SPEED_FULL) {
++ interval <<= 3;
++ stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
++ is_input, 1, maxp));
++ stream->usecs /= 8;
++ } else {
++ stream->highspeed = 1;
++ stream->usecs = HS_USECS_ISO(maxp);
++ }
++ bandwidth = stream->usecs * 8;
++ bandwidth /= interval;
++
++ stream->bandwidth = bandwidth;
++ stream->udev = dev;
++ stream->bEndpointAddress = is_input | epnum;
++ stream->interval = interval;
++ stream->maxp = maxp;
++}
++
++static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
++ struct urb *urb)
++{
++ unsigned epnum;
++ struct fotg210_iso_stream *stream;
++ struct usb_host_endpoint *ep;
++ unsigned long flags;
++
++ epnum = usb_pipeendpoint(urb->pipe);
++ if (usb_pipein(urb->pipe))
++ ep = urb->dev->ep_in[epnum];
++ else
++ ep = urb->dev->ep_out[epnum];
++
++ spin_lock_irqsave(&fotg210->lock, flags);
++ stream = ep->hcpriv;
++
++ if (unlikely(stream == NULL)) {
++ stream = iso_stream_alloc(GFP_ATOMIC);
++ if (likely(stream != NULL)) {
++ ep->hcpriv = stream;
++ stream->ep = ep;
++ iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
++ urb->interval);
++ }
++
++ /* if dev->ep[epnum] is a QH, hw is set */
++ } else if (unlikely(stream->hw != NULL)) {
++ fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
++ urb->dev->devpath, epnum,
++ usb_pipein(urb->pipe) ? "in" : "out");
++ stream = NULL;
++ }
++
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ return stream;
++}
++
++/* fotg210_iso_sched ops can be ITD-only or SITD-only */
++
++static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
++ gfp_t mem_flags)
++{
++ struct fotg210_iso_sched *iso_sched;
++
++ iso_sched = kzalloc(struct_size(iso_sched, packet, packets), mem_flags);
++ if (likely(iso_sched != NULL))
++ INIT_LIST_HEAD(&iso_sched->td_list);
++
++ return iso_sched;
++}
++
++static inline void itd_sched_init(struct fotg210_hcd *fotg210,
++ struct fotg210_iso_sched *iso_sched,
++ struct fotg210_iso_stream *stream, struct urb *urb)
++{
++ unsigned i;
++ dma_addr_t dma = urb->transfer_dma;
++
++ /* how many uframes are needed for these transfers */
++ iso_sched->span = urb->number_of_packets * stream->interval;
++
++ /* figure out per-uframe itd fields that we'll need later
++ * when we fit new itds into the schedule.
++ */
++ for (i = 0; i < urb->number_of_packets; i++) {
++ struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
++ unsigned length;
++ dma_addr_t buf;
++ u32 trans;
++
++ length = urb->iso_frame_desc[i].length;
++ buf = dma + urb->iso_frame_desc[i].offset;
++
++ trans = FOTG210_ISOC_ACTIVE;
++ trans |= buf & 0x0fff;
++ if (unlikely(((i + 1) == urb->number_of_packets))
++ && !(urb->transfer_flags & URB_NO_INTERRUPT))
++ trans |= FOTG210_ITD_IOC;
++ trans |= length << 16;
++ uframe->transaction = cpu_to_hc32(fotg210, trans);
++
++ /* might need to cross a buffer page within a uframe */
++ uframe->bufp = (buf & ~(u64)0x0fff);
++ buf += length;
++ if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
++ uframe->cross = 1;
++ }
++}
++
++static void iso_sched_free(struct fotg210_iso_stream *stream,
++ struct fotg210_iso_sched *iso_sched)
++{
++ if (!iso_sched)
++ return;
++ /* caller must hold fotg210->lock!*/
++ list_splice(&iso_sched->td_list, &stream->free_list);
++ kfree(iso_sched);
++}
++
++static int itd_urb_transaction(struct fotg210_iso_stream *stream,
++ struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
++{
++ struct fotg210_itd *itd;
++ dma_addr_t itd_dma;
++ int i;
++ unsigned num_itds;
++ struct fotg210_iso_sched *sched;
++ unsigned long flags;
++
++ sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
++ if (unlikely(sched == NULL))
++ return -ENOMEM;
++
++ itd_sched_init(fotg210, sched, stream, urb);
++
++ if (urb->interval < 8)
++ num_itds = 1 + (sched->span + 7) / 8;
++ else
++ num_itds = urb->number_of_packets;
++
++ /* allocate/init ITDs */
++ spin_lock_irqsave(&fotg210->lock, flags);
++ for (i = 0; i < num_itds; i++) {
++
++ /*
++ * Use iTDs from the free list, but not iTDs that may
++ * still be in use by the hardware.
++ */
++ if (likely(!list_empty(&stream->free_list))) {
++ itd = list_first_entry(&stream->free_list,
++ struct fotg210_itd, itd_list);
++ if (itd->frame == fotg210->now_frame)
++ goto alloc_itd;
++ list_del(&itd->itd_list);
++ itd_dma = itd->itd_dma;
++ } else {
++alloc_itd:
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
++ &itd_dma);
++ spin_lock_irqsave(&fotg210->lock, flags);
++ if (!itd) {
++ iso_sched_free(stream, sched);
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ return -ENOMEM;
++ }
++ }
++
++ memset(itd, 0, sizeof(*itd));
++ itd->itd_dma = itd_dma;
++ list_add(&itd->itd_list, &sched->td_list);
++ }
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++
++ /* temporarily store schedule info in hcpriv */
++ urb->hcpriv = sched;
++ urb->error_count = 0;
++ return 0;
++}
++
++static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
++ u8 usecs, u32 period)
++{
++ uframe %= period;
++ do {
++ /* can't commit more than uframe_periodic_max usec */
++ if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
++ > (fotg210->uframe_periodic_max - usecs))
++ return 0;
++
++ /* we know urb->interval is 2^N uframes */
++ uframe += period;
++ } while (uframe < mod);
++ return 1;
++}
++
++/* This scheduler plans almost as far into the future as it has actual
++ * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
++ * "as small as possible" to be cache-friendlier.) That limits the size
++ * transfers you can stream reliably; avoid more than 64 msec per urb.
++ * Also avoid queue depths of less than fotg210's worst irq latency (affected
++ * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
++ * and other factors); or more than about 230 msec total (for portability,
++ * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
++ */
++
++#define SCHEDULE_SLOP 80 /* microframes */
++
++static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
++ struct fotg210_iso_stream *stream)
++{
++ u32 now, next, start, period, span;
++ int status;
++ unsigned mod = fotg210->periodic_size << 3;
++ struct fotg210_iso_sched *sched = urb->hcpriv;
++
++ period = urb->interval;
++ span = sched->span;
++
++ if (span > mod - SCHEDULE_SLOP) {
++ fotg210_dbg(fotg210, "iso request %p too long\n", urb);
++ status = -EFBIG;
++ goto fail;
++ }
++
++ now = fotg210_read_frame_index(fotg210) & (mod - 1);
++
++ /* Typical case: reuse current schedule, stream is still active.
++ * Hopefully there are no gaps from the host falling behind
++ * (irq delays etc), but if there are we'll take the next
++ * slot in the schedule, implicitly assuming URB_ISO_ASAP.
++ */
++ if (likely(!list_empty(&stream->td_list))) {
++ u32 excess;
++
++ /* For high speed devices, allow scheduling within the
++ * isochronous scheduling threshold. For full speed devices
++ * and Intel PCI-based controllers, don't (work around for
++ * Intel ICH9 bug).
++ */
++ if (!stream->highspeed && fotg210->fs_i_thresh)
++ next = now + fotg210->i_thresh;
++ else
++ next = now;
++
++ /* Fell behind (by up to twice the slop amount)?
++ * We decide based on the time of the last currently-scheduled
++ * slot, not the time of the next available slot.
++ */
++ excess = (stream->next_uframe - period - next) & (mod - 1);
++ if (excess >= mod - 2 * SCHEDULE_SLOP)
++ start = next + excess - mod + period *
++ DIV_ROUND_UP(mod - excess, period);
++ else
++ start = next + excess + period;
++ if (start - now >= mod) {
++ fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
++ urb, start - now - period, period,
++ mod);
++ status = -EFBIG;
++ goto fail;
++ }
++ }
++
++ /* need to schedule; when's the next (u)frame we could start?
++ * this is bigger than fotg210->i_thresh allows; scheduling itself
++ * isn't free, the slop should handle reasonably slow cpus. it
++ * can also help high bandwidth if the dma and irq loads don't
++ * jump until after the queue is primed.
++ */
++ else {
++ int done = 0;
++
++ start = SCHEDULE_SLOP + (now & ~0x07);
++
++ /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
++
++ /* find a uframe slot with enough bandwidth.
++ * Early uframes are more precious because full-speed
++ * iso IN transfers can't use late uframes,
++ * and therefore they should be allocated last.
++ */
++ next = start;
++ start += period;
++ do {
++ start--;
++ /* check schedule: enough space? */
++ if (itd_slot_ok(fotg210, mod, start,
++ stream->usecs, period))
++ done = 1;
++ } while (start > next && !done);
++
++ /* no room in the schedule */
++ if (!done) {
++ fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
++ urb, now, now + mod);
++ status = -ENOSPC;
++ goto fail;
++ }
++ }
++
++ /* Tried to schedule too far into the future? */
++ if (unlikely(start - now + span - period >=
++ mod - 2 * SCHEDULE_SLOP)) {
++ fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
++ urb, start - now, span - period,
++ mod - 2 * SCHEDULE_SLOP);
++ status = -EFBIG;
++ goto fail;
++ }
++
++ stream->next_uframe = start & (mod - 1);
++
++ /* report high speed start in uframes; full speed, in frames */
++ urb->start_frame = stream->next_uframe;
++ if (!stream->highspeed)
++ urb->start_frame >>= 3;
++
++ /* Make sure scan_isoc() sees these */
++ if (fotg210->isoc_count == 0)
++ fotg210->next_frame = now >> 3;
++ return 0;
++
++fail:
++ iso_sched_free(stream, sched);
++ urb->hcpriv = NULL;
++ return status;
++}
++
++static inline void itd_init(struct fotg210_hcd *fotg210,
++ struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
++{
++ int i;
++
++ /* it's been recently zeroed */
++ itd->hw_next = FOTG210_LIST_END(fotg210);
++ itd->hw_bufp[0] = stream->buf0;
++ itd->hw_bufp[1] = stream->buf1;
++ itd->hw_bufp[2] = stream->buf2;
++
++ for (i = 0; i < 8; i++)
++ itd->index[i] = -1;
++
++ /* All other fields are filled when scheduling */
++}
++
++static inline void itd_patch(struct fotg210_hcd *fotg210,
++ struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
++ unsigned index, u16 uframe)
++{
++ struct fotg210_iso_packet *uf = &iso_sched->packet[index];
++ unsigned pg = itd->pg;
++
++ uframe &= 0x07;
++ itd->index[uframe] = index;
++
++ itd->hw_transaction[uframe] = uf->transaction;
++ itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
++ itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
++ itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
++
++ /* iso_frame_desc[].offset must be strictly increasing */
++ if (unlikely(uf->cross)) {
++ u64 bufp = uf->bufp + 4096;
++
++ itd->pg = ++pg;
++ itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
++ itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
++ }
++}
++
++static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
++ struct fotg210_itd *itd)
++{
++ union fotg210_shadow *prev = &fotg210->pshadow[frame];
++ __hc32 *hw_p = &fotg210->periodic[frame];
++ union fotg210_shadow here = *prev;
++ __hc32 type = 0;
++
++ /* skip any iso nodes which might belong to previous microframes */
++ while (here.ptr) {
++ type = Q_NEXT_TYPE(fotg210, *hw_p);
++ if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
++ break;
++ prev = periodic_next_shadow(fotg210, prev, type);
++ hw_p = shadow_next_periodic(fotg210, &here, type);
++ here = *prev;
++ }
++
++ itd->itd_next = here;
++ itd->hw_next = *hw_p;
++ prev->itd = itd;
++ itd->frame = frame;
++ wmb();
++ *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
++}
++
++/* fit urb's itds into the selected schedule slot; activate as needed */
++static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
++ unsigned mod, struct fotg210_iso_stream *stream)
++{
++ int packet;
++ unsigned next_uframe, uframe, frame;
++ struct fotg210_iso_sched *iso_sched = urb->hcpriv;
++ struct fotg210_itd *itd;
++
++ next_uframe = stream->next_uframe & (mod - 1);
++
++ if (unlikely(list_empty(&stream->td_list))) {
++ fotg210_to_hcd(fotg210)->self.bandwidth_allocated
++ += stream->bandwidth;
++ fotg210_dbg(fotg210,
++ "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
++ urb->dev->devpath, stream->bEndpointAddress & 0x0f,
++ (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
++ urb->interval,
++ next_uframe >> 3, next_uframe & 0x7);
++ }
++
++ /* fill iTDs uframe by uframe */
++ for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
++ if (itd == NULL) {
++ /* ASSERT: we have all necessary itds */
++
++ /* ASSERT: no itds for this endpoint in this uframe */
++
++ itd = list_entry(iso_sched->td_list.next,
++ struct fotg210_itd, itd_list);
++ list_move_tail(&itd->itd_list, &stream->td_list);
++ itd->stream = stream;
++ itd->urb = urb;
++ itd_init(fotg210, stream, itd);
++ }
++
++ uframe = next_uframe & 0x07;
++ frame = next_uframe >> 3;
++
++ itd_patch(fotg210, itd, iso_sched, packet, uframe);
++
++ next_uframe += stream->interval;
++ next_uframe &= mod - 1;
++ packet++;
++
++ /* link completed itds into the schedule */
++ if (((next_uframe >> 3) != frame)
++ || packet == urb->number_of_packets) {
++ itd_link(fotg210, frame & (fotg210->periodic_size - 1),
++ itd);
++ itd = NULL;
++ }
++ }
++ stream->next_uframe = next_uframe;
++
++ /* don't need that schedule data any more */
++ iso_sched_free(stream, iso_sched);
++ urb->hcpriv = NULL;
++
++ ++fotg210->isoc_count;
++ enable_periodic(fotg210);
++}
++
++#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
++ FOTG210_ISOC_XACTERR)
++
++/* Process and recycle a completed ITD. Return true iff its urb completed,
++ * and hence its completion callback probably added things to the hardware
++ * schedule.
++ *
++ * Note that we carefully avoid recycling this descriptor until after any
++ * completion callback runs, so that it won't be reused quickly. That is,
++ * assuming (a) no more than two urbs per frame on this endpoint, and also
++ * (b) only this endpoint's completions submit URBs. It seems some silicon
++ * corrupts things if you reuse completed descriptors very quickly...
++ */
++static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
++{
++ struct urb *urb = itd->urb;
++ struct usb_iso_packet_descriptor *desc;
++ u32 t;
++ unsigned uframe;
++ int urb_index = -1;
++ struct fotg210_iso_stream *stream = itd->stream;
++ struct usb_device *dev;
++ bool retval = false;
++
++ /* for each uframe with a packet */
++ for (uframe = 0; uframe < 8; uframe++) {
++ if (likely(itd->index[uframe] == -1))
++ continue;
++ urb_index = itd->index[uframe];
++ desc = &urb->iso_frame_desc[urb_index];
++
++ t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
++ itd->hw_transaction[uframe] = 0;
++
++ /* report transfer status */
++ if (unlikely(t & ISO_ERRS)) {
++ urb->error_count++;
++ if (t & FOTG210_ISOC_BUF_ERR)
++ desc->status = usb_pipein(urb->pipe)
++ ? -ENOSR /* hc couldn't read */
++ : -ECOMM; /* hc couldn't write */
++ else if (t & FOTG210_ISOC_BABBLE)
++ desc->status = -EOVERFLOW;
++ else /* (t & FOTG210_ISOC_XACTERR) */
++ desc->status = -EPROTO;
++
++ /* HC need not update length with this error */
++ if (!(t & FOTG210_ISOC_BABBLE)) {
++ desc->actual_length = FOTG210_ITD_LENGTH(t);
++ urb->actual_length += desc->actual_length;
++ }
++ } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
++ desc->status = 0;
++ desc->actual_length = FOTG210_ITD_LENGTH(t);
++ urb->actual_length += desc->actual_length;
++ } else {
++ /* URB was too late */
++ desc->status = -EXDEV;
++ }
++ }
++
++ /* handle completion now? */
++ if (likely((urb_index + 1) != urb->number_of_packets))
++ goto done;
++
++ /* ASSERT: it's really the last itd for this urb
++ * list_for_each_entry (itd, &stream->td_list, itd_list)
++ * BUG_ON (itd->urb == urb);
++ */
++
++ /* give urb back to the driver; completion often (re)submits */
++ dev = urb->dev;
++ fotg210_urb_done(fotg210, urb, 0);
++ retval = true;
++ urb = NULL;
++
++ --fotg210->isoc_count;
++ disable_periodic(fotg210);
++
++ if (unlikely(list_is_singular(&stream->td_list))) {
++ fotg210_to_hcd(fotg210)->self.bandwidth_allocated
++ -= stream->bandwidth;
++ fotg210_dbg(fotg210,
++ "deschedule devp %s ep%d%s-iso\n",
++ dev->devpath, stream->bEndpointAddress & 0x0f,
++ (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
++ }
++
++done:
++ itd->urb = NULL;
++
++ /* Add to the end of the free list for later reuse */
++ list_move_tail(&itd->itd_list, &stream->free_list);
++
++ /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
++ if (list_empty(&stream->td_list)) {
++ list_splice_tail_init(&stream->free_list,
++ &fotg210->cached_itd_list);
++ start_free_itds(fotg210);
++ }
++
++ return retval;
++}
++
++static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
++ gfp_t mem_flags)
++{
++ int status = -EINVAL;
++ unsigned long flags;
++ struct fotg210_iso_stream *stream;
++
++ /* Get iso_stream head */
++ stream = iso_stream_find(fotg210, urb);
++ if (unlikely(stream == NULL)) {
++ fotg210_dbg(fotg210, "can't get iso stream\n");
++ return -ENOMEM;
++ }
++ if (unlikely(urb->interval != stream->interval &&
++ fotg210_port_speed(fotg210, 0) ==
++ USB_PORT_STAT_HIGH_SPEED)) {
++ fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
++ stream->interval, urb->interval);
++ goto done;
++ }
++
++#ifdef FOTG210_URB_TRACE
++ fotg210_dbg(fotg210,
++ "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
++ __func__, urb->dev->devpath, urb,
++ usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) ? "in" : "out",
++ urb->transfer_buffer_length,
++ urb->number_of_packets, urb->interval,
++ stream);
++#endif
++
++ /* allocate ITDs w/o locking anything */
++ status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
++ if (unlikely(status < 0)) {
++ fotg210_dbg(fotg210, "can't init itds\n");
++ goto done;
++ }
++
++ /* schedule ... need to lock */
++ spin_lock_irqsave(&fotg210->lock, flags);
++ if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
++ status = -ESHUTDOWN;
++ goto done_not_linked;
++ }
++ status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
++ if (unlikely(status))
++ goto done_not_linked;
++ status = iso_stream_schedule(fotg210, urb, stream);
++ if (likely(status == 0))
++ itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
++ else
++ usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
++done_not_linked:
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++done:
++ return status;
++}
++
++static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
++ unsigned now_frame, bool live)
++{
++ unsigned uf;
++ bool modified;
++ union fotg210_shadow q, *q_p;
++ __hc32 type, *hw_p;
++
++ /* scan each element in frame's queue for completions */
++ q_p = &fotg210->pshadow[frame];
++ hw_p = &fotg210->periodic[frame];
++ q.ptr = q_p->ptr;
++ type = Q_NEXT_TYPE(fotg210, *hw_p);
++ modified = false;
++
++ while (q.ptr) {
++ switch (hc32_to_cpu(fotg210, type)) {
++ case Q_TYPE_ITD:
++ /* If this ITD is still active, leave it for
++ * later processing ... check the next entry.
++ * No need to check for activity unless the
++ * frame is current.
++ */
++ if (frame == now_frame && live) {
++ rmb();
++ for (uf = 0; uf < 8; uf++) {
++ if (q.itd->hw_transaction[uf] &
++ ITD_ACTIVE(fotg210))
++ break;
++ }
++ if (uf < 8) {
++ q_p = &q.itd->itd_next;
++ hw_p = &q.itd->hw_next;
++ type = Q_NEXT_TYPE(fotg210,
++ q.itd->hw_next);
++ q = *q_p;
++ break;
++ }
++ }
++
++ /* Take finished ITDs out of the schedule
++ * and process them: recycle, maybe report
++ * URB completion. HC won't cache the
++ * pointer for much longer, if at all.
++ */
++ *q_p = q.itd->itd_next;
++ *hw_p = q.itd->hw_next;
++ type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
++ wmb();
++ modified = itd_complete(fotg210, q.itd);
++ q = *q_p;
++ break;
++ default:
++ fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
++ type, frame, q.ptr);
++ fallthrough;
++ case Q_TYPE_QH:
++ case Q_TYPE_FSTN:
++ /* End of the iTDs and siTDs */
++ q.ptr = NULL;
++ break;
++ }
++
++ /* assume completion callbacks modify the queue */
++ if (unlikely(modified && fotg210->isoc_count > 0))
++ return -EINVAL;
++ }
++ return 0;
++}
++
++static void scan_isoc(struct fotg210_hcd *fotg210)
++{
++ unsigned uf, now_frame, frame, ret;
++ unsigned fmask = fotg210->periodic_size - 1;
++ bool live;
++
++ /*
++ * When running, scan from last scan point up to "now"
++ * else clean up by scanning everything that's left.
++ * Touches as few pages as possible: cache-friendly.
++ */
++ if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
++ uf = fotg210_read_frame_index(fotg210);
++ now_frame = (uf >> 3) & fmask;
++ live = true;
++ } else {
++ now_frame = (fotg210->next_frame - 1) & fmask;
++ live = false;
++ }
++ fotg210->now_frame = now_frame;
++
++ frame = fotg210->next_frame;
++ for (;;) {
++ ret = 1;
++ while (ret != 0)
++ ret = scan_frame_queue(fotg210, frame,
++ now_frame, live);
++
++ /* Stop when we have reached the current frame */
++ if (frame == now_frame)
++ break;
++ frame = (frame + 1) & fmask;
++ }
++ fotg210->next_frame = now_frame;
++}
++
++/* Display / Set uframe_periodic_max
++ */
++static ssize_t uframe_periodic_max_show(struct device *dev,
++ struct device_attribute *attr, char *buf)
++{
++ struct fotg210_hcd *fotg210;
++ int n;
++
++ fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
++ n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
++ return n;
++}
++
++
++static ssize_t uframe_periodic_max_store(struct device *dev,
++ struct device_attribute *attr, const char *buf, size_t count)
++{
++ struct fotg210_hcd *fotg210;
++ unsigned uframe_periodic_max;
++ unsigned frame, uframe;
++ unsigned short allocated_max;
++ unsigned long flags;
++ ssize_t ret;
++
++ fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
++ if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
++ return -EINVAL;
++
++ if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
++ fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
++ uframe_periodic_max);
++ return -EINVAL;
++ }
++
++ ret = -EINVAL;
++
++ /*
++ * lock, so that our checking does not race with possible periodic
++ * bandwidth allocation through submitting new urbs.
++ */
++ spin_lock_irqsave(&fotg210->lock, flags);
++
++ /*
++ * for request to decrease max periodic bandwidth, we have to check
++ * every microframe in the schedule to see whether the decrease is
++ * possible.
++ */
++ if (uframe_periodic_max < fotg210->uframe_periodic_max) {
++ allocated_max = 0;
++
++ for (frame = 0; frame < fotg210->periodic_size; ++frame)
++ for (uframe = 0; uframe < 7; ++uframe)
++ allocated_max = max(allocated_max,
++ periodic_usecs(fotg210, frame,
++ uframe));
++
++ if (allocated_max > uframe_periodic_max) {
++ fotg210_info(fotg210,
++ "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
++ allocated_max, uframe_periodic_max);
++ goto out_unlock;
++ }
++ }
++
++ /* increasing is always ok */
++
++ fotg210_info(fotg210,
++ "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
++ 100 * uframe_periodic_max/125, uframe_periodic_max);
++
++ if (uframe_periodic_max != 100)
++ fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
++
++ fotg210->uframe_periodic_max = uframe_periodic_max;
++ ret = count;
++
++out_unlock:
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ return ret;
++}
++
++static DEVICE_ATTR_RW(uframe_periodic_max);
++
++static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
++{
++ struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
++
++ return device_create_file(controller, &dev_attr_uframe_periodic_max);
++}
++
++static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
++{
++ struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
++
++ device_remove_file(controller, &dev_attr_uframe_periodic_max);
++}
++/* On some systems, leaving remote wakeup enabled prevents system shutdown.
++ * The firmware seems to think that powering off is a wakeup event!
++ * This routine turns off remote wakeup and everything else, on all ports.
++ */
++static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
++{
++ u32 __iomem *status_reg = &fotg210->regs->port_status;
++
++ fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
++}
++
++/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
++ * Must be called with interrupts enabled and the lock not held.
++ */
++static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
++{
++ fotg210_halt(fotg210);
++
++ spin_lock_irq(&fotg210->lock);
++ fotg210->rh_state = FOTG210_RH_HALTED;
++ fotg210_turn_off_all_ports(fotg210);
++ spin_unlock_irq(&fotg210->lock);
++}
++
++/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
++ * This forcibly disables dma and IRQs, helping kexec and other cases
++ * where the next system software may expect clean state.
++ */
++static void fotg210_shutdown(struct usb_hcd *hcd)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++
++ spin_lock_irq(&fotg210->lock);
++ fotg210->shutdown = true;
++ fotg210->rh_state = FOTG210_RH_STOPPING;
++ fotg210->enabled_hrtimer_events = 0;
++ spin_unlock_irq(&fotg210->lock);
++
++ fotg210_silence_controller(fotg210);
++
++ hrtimer_cancel(&fotg210->hrtimer);
++}
++
++/* fotg210_work is called from some interrupts, timers, and so on.
++ * it calls driver completion functions, after dropping fotg210->lock.
++ */
++static void fotg210_work(struct fotg210_hcd *fotg210)
++{
++ /* another CPU may drop fotg210->lock during a schedule scan while
++ * it reports urb completions. this flag guards against bogus
++ * attempts at re-entrant schedule scanning.
++ */
++ if (fotg210->scanning) {
++ fotg210->need_rescan = true;
++ return;
++ }
++ fotg210->scanning = true;
++
++rescan:
++ fotg210->need_rescan = false;
++ if (fotg210->async_count)
++ scan_async(fotg210);
++ if (fotg210->intr_count > 0)
++ scan_intr(fotg210);
++ if (fotg210->isoc_count > 0)
++ scan_isoc(fotg210);
++ if (fotg210->need_rescan)
++ goto rescan;
++ fotg210->scanning = false;
++
++ /* the IO watchdog guards against hardware or driver bugs that
++ * misplace IRQs, and should let us run completely without IRQs.
++ * such lossage has been observed on both VT6202 and VT8235.
++ */
++ turn_on_io_watchdog(fotg210);
++}
++
++/* Called when the fotg210_hcd module is removed.
++ */
++static void fotg210_stop(struct usb_hcd *hcd)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++
++ fotg210_dbg(fotg210, "stop\n");
++
++ /* no more interrupts ... */
++
++ spin_lock_irq(&fotg210->lock);
++ fotg210->enabled_hrtimer_events = 0;
++ spin_unlock_irq(&fotg210->lock);
++
++ fotg210_quiesce(fotg210);
++ fotg210_silence_controller(fotg210);
++ fotg210_reset(fotg210);
++
++ hrtimer_cancel(&fotg210->hrtimer);
++ remove_sysfs_files(fotg210);
++ remove_debug_files(fotg210);
++
++ /* root hub is shut down separately (first, when possible) */
++ spin_lock_irq(&fotg210->lock);
++ end_free_itds(fotg210);
++ spin_unlock_irq(&fotg210->lock);
++ fotg210_mem_cleanup(fotg210);
++
++#ifdef FOTG210_STATS
++ fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
++ fotg210->stats.normal, fotg210->stats.error,
++ fotg210->stats.iaa, fotg210->stats.lost_iaa);
++ fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
++ fotg210->stats.complete, fotg210->stats.unlink);
++#endif
++
++ dbg_status(fotg210, "fotg210_stop completed",
++ fotg210_readl(fotg210, &fotg210->regs->status));
++}
++
++/* one-time init, only for memory state */
++static int hcd_fotg210_init(struct usb_hcd *hcd)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ u32 temp;
++ int retval;
++ u32 hcc_params;
++ struct fotg210_qh_hw *hw;
++
++ spin_lock_init(&fotg210->lock);
++
++ /*
++ * keep io watchdog by default, those good HCDs could turn off it later
++ */
++ fotg210->need_io_watchdog = 1;
++
++ hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
++ fotg210->hrtimer.function = fotg210_hrtimer_func;
++ fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
++
++ hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
++
++ /*
++ * by default set standard 80% (== 100 usec/uframe) max periodic
++ * bandwidth as required by USB 2.0
++ */
++ fotg210->uframe_periodic_max = 100;
++
++ /*
++ * hw default: 1K periodic list heads, one per frame.
++ * periodic_size can shrink by USBCMD update if hcc_params allows.
++ */
++ fotg210->periodic_size = DEFAULT_I_TDPS;
++ INIT_LIST_HEAD(&fotg210->intr_qh_list);
++ INIT_LIST_HEAD(&fotg210->cached_itd_list);
++
++ if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
++ /* periodic schedule size can be smaller than default */
++ switch (FOTG210_TUNE_FLS) {
++ case 0:
++ fotg210->periodic_size = 1024;
++ break;
++ case 1:
++ fotg210->periodic_size = 512;
++ break;
++ case 2:
++ fotg210->periodic_size = 256;
++ break;
++ default:
++ BUG();
++ }
++ }
++ retval = fotg210_mem_init(fotg210, GFP_KERNEL);
++ if (retval < 0)
++ return retval;
++
++ /* controllers may cache some of the periodic schedule ... */
++ fotg210->i_thresh = 2;
++
++ /*
++ * dedicate a qh for the async ring head, since we couldn't unlink
++ * a 'real' qh without stopping the async schedule [4.8]. use it
++ * as the 'reclamation list head' too.
++ * its dummy is used in hw_alt_next of many tds, to prevent the qh
++ * from automatically advancing to the next td after short reads.
++ */
++ fotg210->async->qh_next.qh = NULL;
++ hw = fotg210->async->hw;
++ hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
++ hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
++ hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
++ hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
++ fotg210->async->qh_state = QH_STATE_LINKED;
++ hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
++
++ /* clear interrupt enables, set irq latency */
++ if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
++ log2_irq_thresh = 0;
++ temp = 1 << (16 + log2_irq_thresh);
++ if (HCC_CANPARK(hcc_params)) {
++ /* HW default park == 3, on hardware that supports it (like
++ * NVidia and ALI silicon), maximizes throughput on the async
++ * schedule by avoiding QH fetches between transfers.
++ *
++ * With fast usb storage devices and NForce2, "park" seems to
++ * make problems: throughput reduction (!), data errors...
++ */
++ if (park) {
++ park = min_t(unsigned, park, 3);
++ temp |= CMD_PARK;
++ temp |= park << 8;
++ }
++ fotg210_dbg(fotg210, "park %d\n", park);
++ }
++ if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
++ /* periodic schedule size can be smaller than default */
++ temp &= ~(3 << 2);
++ temp |= (FOTG210_TUNE_FLS << 2);
++ }
++ fotg210->command = temp;
++
++ /* Accept arbitrarily long scatter-gather lists */
++ if (!hcd->localmem_pool)
++ hcd->self.sg_tablesize = ~0;
++ return 0;
++}
++
++/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
++static int fotg210_run(struct usb_hcd *hcd)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ u32 temp;
++
++ hcd->uses_new_polling = 1;
++
++ /* EHCI spec section 4.1 */
++
++ fotg210_writel(fotg210, fotg210->periodic_dma,
++ &fotg210->regs->frame_list);
++ fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
++ &fotg210->regs->async_next);
++
++ /*
++ * hcc_params controls whether fotg210->regs->segment must (!!!)
++ * be used; it constrains QH/ITD/SITD and QTD locations.
++ * dma_pool consistent memory always uses segment zero.
++ * streaming mappings for I/O buffers, like dma_map_single(),
++ * can return segments above 4GB, if the device allows.
++ *
++ * NOTE: the dma mask is visible through dev->dma_mask, so
++ * drivers can pass this info along ... like NETIF_F_HIGHDMA,
++ * Scsi_Host.highmem_io, and so forth. It's readonly to all
++ * host side drivers though.
++ */
++ fotg210_readl(fotg210, &fotg210->caps->hcc_params);
++
++ /*
++ * Philips, Intel, and maybe others need CMD_RUN before the
++ * root hub will detect new devices (why?); NEC doesn't
++ */
++ fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
++ fotg210->command |= CMD_RUN;
++ fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
++ dbg_cmd(fotg210, "init", fotg210->command);
++
++ /*
++ * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
++ * are explicitly handed to companion controller(s), so no TT is
++ * involved with the root hub. (Except where one is integrated,
++ * and there's no companion controller unless maybe for USB OTG.)
++ *
++ * Turning on the CF flag will transfer ownership of all ports
++ * from the companions to the EHCI controller. If any of the
++ * companions are in the middle of a port reset at the time, it
++ * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
++ * guarantees that no resets are in progress. After we set CF,
++ * a short delay lets the hardware catch up; new resets shouldn't
++ * be started before the port switching actions could complete.
++ */
++ down_write(&ehci_cf_port_reset_rwsem);
++ fotg210->rh_state = FOTG210_RH_RUNNING;
++ /* unblock posted writes */
++ fotg210_readl(fotg210, &fotg210->regs->command);
++ usleep_range(5000, 10000);
++ up_write(&ehci_cf_port_reset_rwsem);
++ fotg210->last_periodic_enable = ktime_get_real();
++
++ temp = HC_VERSION(fotg210,
++ fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
++ fotg210_info(fotg210,
++ "USB %x.%x started, EHCI %x.%02x\n",
++ ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
++ temp >> 8, temp & 0xff);
++
++ fotg210_writel(fotg210, INTR_MASK,
++ &fotg210->regs->intr_enable); /* Turn On Interrupts */
++
++ /* GRR this is run-once init(), being done every time the HC starts.
++ * So long as they're part of class devices, we can't do it init()
++ * since the class device isn't created that early.
++ */
++ create_debug_files(fotg210);
++ create_sysfs_files(fotg210);
++
++ return 0;
++}
++
++static int fotg210_setup(struct usb_hcd *hcd)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ int retval;
++
++ fotg210->regs = (void __iomem *)fotg210->caps +
++ HC_LENGTH(fotg210,
++ fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
++ dbg_hcs_params(fotg210, "reset");
++ dbg_hcc_params(fotg210, "reset");
++
++ /* cache this readonly data; minimize chip reads */
++ fotg210->hcs_params = fotg210_readl(fotg210,
++ &fotg210->caps->hcs_params);
++
++ fotg210->sbrn = HCD_USB2;
++
++ /* data structure init */
++ retval = hcd_fotg210_init(hcd);
++ if (retval)
++ return retval;
++
++ retval = fotg210_halt(fotg210);
++ if (retval)
++ return retval;
++
++ fotg210_reset(fotg210);
++
++ return 0;
++}
++
++static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ u32 status, masked_status, pcd_status = 0, cmd;
++ int bh;
++
++ spin_lock(&fotg210->lock);
++
++ status = fotg210_readl(fotg210, &fotg210->regs->status);
++
++ /* e.g. cardbus physical eject */
++ if (status == ~(u32) 0) {
++ fotg210_dbg(fotg210, "device removed\n");
++ goto dead;
++ }
++
++ /*
++ * We don't use STS_FLR, but some controllers don't like it to
++ * remain on, so mask it out along with the other status bits.
++ */
++ masked_status = status & (INTR_MASK | STS_FLR);
++
++ /* Shared IRQ? */
++ if (!masked_status ||
++ unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
++ spin_unlock(&fotg210->lock);
++ return IRQ_NONE;
++ }
++
++ /* clear (just) interrupts */
++ fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
++ cmd = fotg210_readl(fotg210, &fotg210->regs->command);
++ bh = 0;
++
++ /* unrequested/ignored: Frame List Rollover */
++ dbg_status(fotg210, "irq", status);
++
++ /* INT, ERR, and IAA interrupt rates can be throttled */
++
++ /* normal [4.15.1.2] or error [4.15.1.1] completion */
++ if (likely((status & (STS_INT|STS_ERR)) != 0)) {
++ if (likely((status & STS_ERR) == 0))
++ INCR(fotg210->stats.normal);
++ else
++ INCR(fotg210->stats.error);
++ bh = 1;
++ }
++
++ /* complete the unlinking of some qh [4.15.2.3] */
++ if (status & STS_IAA) {
++
++ /* Turn off the IAA watchdog */
++ fotg210->enabled_hrtimer_events &=
++ ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
++
++ /*
++ * Mild optimization: Allow another IAAD to reset the
++ * hrtimer, if one occurs before the next expiration.
++ * In theory we could always cancel the hrtimer, but
++ * tests show that about half the time it will be reset
++ * for some other event anyway.
++ */
++ if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
++ ++fotg210->next_hrtimer_event;
++
++ /* guard against (alleged) silicon errata */
++ if (cmd & CMD_IAAD)
++ fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
++ if (fotg210->async_iaa) {
++ INCR(fotg210->stats.iaa);
++ end_unlink_async(fotg210);
++ } else
++ fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
++ }
++
++ /* remote wakeup [4.3.1] */
++ if (status & STS_PCD) {
++ int pstatus;
++ u32 __iomem *status_reg = &fotg210->regs->port_status;
++
++ /* kick root hub later */
++ pcd_status = status;
++
++ /* resume root hub? */
++ if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
++ usb_hcd_resume_root_hub(hcd);
++
++ pstatus = fotg210_readl(fotg210, status_reg);
++
++ if (test_bit(0, &fotg210->suspended_ports) &&
++ ((pstatus & PORT_RESUME) ||
++ !(pstatus & PORT_SUSPEND)) &&
++ (pstatus & PORT_PE) &&
++ fotg210->reset_done[0] == 0) {
++
++ /* start 20 msec resume signaling from this port,
++ * and make hub_wq collect PORT_STAT_C_SUSPEND to
++ * stop that signaling. Use 5 ms extra for safety,
++ * like usb_port_resume() does.
++ */
++ fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
++ set_bit(0, &fotg210->resuming_ports);
++ fotg210_dbg(fotg210, "port 1 remote wakeup\n");
++ mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
++ }
++ }
++
++ /* PCI errors [4.15.2.4] */
++ if (unlikely((status & STS_FATAL) != 0)) {
++ fotg210_err(fotg210, "fatal error\n");
++ dbg_cmd(fotg210, "fatal", cmd);
++ dbg_status(fotg210, "fatal", status);
++dead:
++ usb_hc_died(hcd);
++
++ /* Don't let the controller do anything more */
++ fotg210->shutdown = true;
++ fotg210->rh_state = FOTG210_RH_STOPPING;
++ fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
++ fotg210_writel(fotg210, fotg210->command,
++ &fotg210->regs->command);
++ fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
++ fotg210_handle_controller_death(fotg210);
++
++ /* Handle completions when the controller stops */
++ bh = 0;
++ }
++
++ if (bh)
++ fotg210_work(fotg210);
++ spin_unlock(&fotg210->lock);
++ if (pcd_status)
++ usb_hcd_poll_rh_status(hcd);
++ return IRQ_HANDLED;
++}
++
++/* non-error returns are a promise to giveback() the urb later
++ * we drop ownership so next owner (or urb unlink) can get it
++ *
++ * urb + dev is in hcd.self.controller.urb_list
++ * we're queueing TDs onto software and hardware lists
++ *
++ * hcd-specific init for hcpriv hasn't been done yet
++ *
++ * NOTE: control, bulk, and interrupt share the same code to append TDs
++ * to a (possibly active) QH, and the same QH scanning code.
++ */
++static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
++ gfp_t mem_flags)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ struct list_head qtd_list;
++
++ INIT_LIST_HEAD(&qtd_list);
++
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL:
++ /* qh_completions() code doesn't handle all the fault cases
++ * in multi-TD control transfers. Even 1KB is rare anyway.
++ */
++ if (urb->transfer_buffer_length > (16 * 1024))
++ return -EMSGSIZE;
++ fallthrough;
++ /* case PIPE_BULK: */
++ default:
++ if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
++ return -ENOMEM;
++ return submit_async(fotg210, urb, &qtd_list, mem_flags);
++
++ case PIPE_INTERRUPT:
++ if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
++ return -ENOMEM;
++ return intr_submit(fotg210, urb, &qtd_list, mem_flags);
++
++ case PIPE_ISOCHRONOUS:
++ return itd_submit(fotg210, urb, mem_flags);
++ }
++}
++
++/* remove from hardware lists
++ * completions normally happen asynchronously
++ */
++
++static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ struct fotg210_qh *qh;
++ unsigned long flags;
++ int rc;
++
++ spin_lock_irqsave(&fotg210->lock, flags);
++ rc = usb_hcd_check_unlink_urb(hcd, urb, status);
++ if (rc)
++ goto done;
++
++ switch (usb_pipetype(urb->pipe)) {
++ /* case PIPE_CONTROL: */
++ /* case PIPE_BULK:*/
++ default:
++ qh = (struct fotg210_qh *) urb->hcpriv;
++ if (!qh)
++ break;
++ switch (qh->qh_state) {
++ case QH_STATE_LINKED:
++ case QH_STATE_COMPLETING:
++ start_unlink_async(fotg210, qh);
++ break;
++ case QH_STATE_UNLINK:
++ case QH_STATE_UNLINK_WAIT:
++ /* already started */
++ break;
++ case QH_STATE_IDLE:
++ /* QH might be waiting for a Clear-TT-Buffer */
++ qh_completions(fotg210, qh);
++ break;
++ }
++ break;
++
++ case PIPE_INTERRUPT:
++ qh = (struct fotg210_qh *) urb->hcpriv;
++ if (!qh)
++ break;
++ switch (qh->qh_state) {
++ case QH_STATE_LINKED:
++ case QH_STATE_COMPLETING:
++ start_unlink_intr(fotg210, qh);
++ break;
++ case QH_STATE_IDLE:
++ qh_completions(fotg210, qh);
++ break;
++ default:
++ fotg210_dbg(fotg210, "bogus qh %p state %d\n",
++ qh, qh->qh_state);
++ goto done;
++ }
++ break;
++
++ case PIPE_ISOCHRONOUS:
++ /* itd... */
++
++ /* wait till next completion, do it then. */
++ /* completion irqs can wait up to 1024 msec, */
++ break;
++ }
++done:
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ return rc;
++}
++
++/* bulk qh holds the data toggle */
++
++static void fotg210_endpoint_disable(struct usb_hcd *hcd,
++ struct usb_host_endpoint *ep)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ unsigned long flags;
++ struct fotg210_qh *qh, *tmp;
++
++ /* ASSERT: any requests/urbs are being unlinked */
++ /* ASSERT: nobody can be submitting urbs for this any more */
++
++rescan:
++ spin_lock_irqsave(&fotg210->lock, flags);
++ qh = ep->hcpriv;
++ if (!qh)
++ goto done;
++
++ /* endpoints can be iso streams. for now, we don't
++ * accelerate iso completions ... so spin a while.
++ */
++ if (qh->hw == NULL) {
++ struct fotg210_iso_stream *stream = ep->hcpriv;
++
++ if (!list_empty(&stream->td_list))
++ goto idle_timeout;
++
++ /* BUG_ON(!list_empty(&stream->free_list)); */
++ kfree(stream);
++ goto done;
++ }
++
++ if (fotg210->rh_state < FOTG210_RH_RUNNING)
++ qh->qh_state = QH_STATE_IDLE;
++ switch (qh->qh_state) {
++ case QH_STATE_LINKED:
++ case QH_STATE_COMPLETING:
++ for (tmp = fotg210->async->qh_next.qh;
++ tmp && tmp != qh;
++ tmp = tmp->qh_next.qh)
++ continue;
++ /* periodic qh self-unlinks on empty, and a COMPLETING qh
++ * may already be unlinked.
++ */
++ if (tmp)
++ start_unlink_async(fotg210, qh);
++ fallthrough;
++ case QH_STATE_UNLINK: /* wait for hw to finish? */
++ case QH_STATE_UNLINK_WAIT:
++idle_timeout:
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++ schedule_timeout_uninterruptible(1);
++ goto rescan;
++ case QH_STATE_IDLE: /* fully unlinked */
++ if (qh->clearing_tt)
++ goto idle_timeout;
++ if (list_empty(&qh->qtd_list)) {
++ qh_destroy(fotg210, qh);
++ break;
++ }
++ fallthrough;
++ default:
++ /* caller was supposed to have unlinked any requests;
++ * that's not our job. just leak this memory.
++ */
++ fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
++ qh, ep->desc.bEndpointAddress, qh->qh_state,
++ list_empty(&qh->qtd_list) ? "" : "(has tds)");
++ break;
++ }
++done:
++ ep->hcpriv = NULL;
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++}
++
++static void fotg210_endpoint_reset(struct usb_hcd *hcd,
++ struct usb_host_endpoint *ep)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++ struct fotg210_qh *qh;
++ int eptype = usb_endpoint_type(&ep->desc);
++ int epnum = usb_endpoint_num(&ep->desc);
++ int is_out = usb_endpoint_dir_out(&ep->desc);
++ unsigned long flags;
++
++ if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
++ return;
++
++ spin_lock_irqsave(&fotg210->lock, flags);
++ qh = ep->hcpriv;
++
++ /* For Bulk and Interrupt endpoints we maintain the toggle state
++ * in the hardware; the toggle bits in udev aren't used at all.
++ * When an endpoint is reset by usb_clear_halt() we must reset
++ * the toggle bit in the QH.
++ */
++ if (qh) {
++ usb_settoggle(qh->dev, epnum, is_out, 0);
++ if (!list_empty(&qh->qtd_list)) {
++ WARN_ONCE(1, "clear_halt for a busy endpoint\n");
++ } else if (qh->qh_state == QH_STATE_LINKED ||
++ qh->qh_state == QH_STATE_COMPLETING) {
++
++ /* The toggle value in the QH can't be updated
++ * while the QH is active. Unlink it now;
++ * re-linking will call qh_refresh().
++ */
++ if (eptype == USB_ENDPOINT_XFER_BULK)
++ start_unlink_async(fotg210, qh);
++ else
++ start_unlink_intr(fotg210, qh);
++ }
++ }
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++}
++
++static int fotg210_get_frame(struct usb_hcd *hcd)
++{
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++
++ return (fotg210_read_frame_index(fotg210) >> 3) %
++ fotg210->periodic_size;
++}
++
++/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
++ * because its registers (and irq) are shared between host/gadget/otg
++ * functions and in order to facilitate role switching we cannot
++ * give the fotg210 driver exclusive access to those.
++ */
++MODULE_DESCRIPTION(DRIVER_DESC);
++MODULE_AUTHOR(DRIVER_AUTHOR);
++MODULE_LICENSE("GPL");
++
++static const struct hc_driver fotg210_fotg210_hc_driver = {
++ .description = hcd_name,
++ .product_desc = "Faraday USB2.0 Host Controller",
++ .hcd_priv_size = sizeof(struct fotg210_hcd),
++
++ /*
++ * generic hardware linkage
++ */
++ .irq = fotg210_irq,
++ .flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
++
++ /*
++ * basic lifecycle operations
++ */
++ .reset = hcd_fotg210_init,
++ .start = fotg210_run,
++ .stop = fotg210_stop,
++ .shutdown = fotg210_shutdown,
++
++ /*
++ * managing i/o requests and associated device resources
++ */
++ .urb_enqueue = fotg210_urb_enqueue,
++ .urb_dequeue = fotg210_urb_dequeue,
++ .endpoint_disable = fotg210_endpoint_disable,
++ .endpoint_reset = fotg210_endpoint_reset,
++
++ /*
++ * scheduling support
++ */
++ .get_frame_number = fotg210_get_frame,
++
++ /*
++ * root hub support
++ */
++ .hub_status_data = fotg210_hub_status_data,
++ .hub_control = fotg210_hub_control,
++ .bus_suspend = fotg210_bus_suspend,
++ .bus_resume = fotg210_bus_resume,
++
++ .relinquish_port = fotg210_relinquish_port,
++ .port_handed_over = fotg210_port_handed_over,
++
++ .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
++};
++
++static void fotg210_init(struct fotg210_hcd *fotg210)
++{
++ u32 value;
++
++ iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
++ &fotg210->regs->gmir);
++
++ value = ioread32(&fotg210->regs->otgcsr);
++ value &= ~OTGCSR_A_BUS_DROP;
++ value |= OTGCSR_A_BUS_REQ;
++ iowrite32(value, &fotg210->regs->otgcsr);
++}
++
++/*
++ * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
++ *
++ * Allocates basic resources for this USB host controller, and
++ * then invokes the start() method for the HCD associated with it
++ * through the hotplug entry's driver_data.
++ */
++static int fotg210_hcd_probe(struct platform_device *pdev)
++{
++ struct device *dev = &pdev->dev;
++ struct usb_hcd *hcd;
++ struct resource *res;
++ int irq;
++ int retval;
++ struct fotg210_hcd *fotg210;
++
++ if (usb_disabled())
++ return -ENODEV;
++
++ pdev->dev.power.power_state = PMSG_ON;
++
++ irq = platform_get_irq(pdev, 0);
++ if (irq < 0)
++ return irq;
++
++ hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
++ dev_name(dev));
++ if (!hcd) {
++ dev_err(dev, "failed to create hcd\n");
++ retval = -ENOMEM;
++ goto fail_create_hcd;
++ }
++
++ hcd->has_tt = 1;
++
++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ hcd->regs = devm_ioremap_resource(&pdev->dev, res);
++ if (IS_ERR(hcd->regs)) {
++ retval = PTR_ERR(hcd->regs);
++ goto failed_put_hcd;
++ }
++
++ hcd->rsrc_start = res->start;
++ hcd->rsrc_len = resource_size(res);
++
++ fotg210 = hcd_to_fotg210(hcd);
++
++ fotg210->caps = hcd->regs;
++
++ /* It's OK not to supply this clock */
++ fotg210->pclk = clk_get(dev, "PCLK");
++ if (!IS_ERR(fotg210->pclk)) {
++ retval = clk_prepare_enable(fotg210->pclk);
++ if (retval) {
++ dev_err(dev, "failed to enable PCLK\n");
++ goto failed_put_hcd;
++ }
++ } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
++ /*
++ * Percolate deferrals, for anything else,
++ * just live without the clocking.
++ */
++ retval = PTR_ERR(fotg210->pclk);
++ goto failed_dis_clk;
++ }
++
++ retval = fotg210_setup(hcd);
++ if (retval)
++ goto failed_dis_clk;
++
++ fotg210_init(fotg210);
++
++ retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
++ if (retval) {
++ dev_err(dev, "failed to add hcd with err %d\n", retval);
++ goto failed_dis_clk;
++ }
++ device_wakeup_enable(hcd->self.controller);
++ platform_set_drvdata(pdev, hcd);
++
++ return retval;
++
++failed_dis_clk:
++ if (!IS_ERR(fotg210->pclk)) {
++ clk_disable_unprepare(fotg210->pclk);
++ clk_put(fotg210->pclk);
++ }
++failed_put_hcd:
++ usb_put_hcd(hcd);
++fail_create_hcd:
++ dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
++ return retval;
++}
++
++/*
++ * fotg210_hcd_remove - shutdown processing for EHCI HCDs
++ * @dev: USB Host Controller being removed
++ *
++ */
++static int fotg210_hcd_remove(struct platform_device *pdev)
++{
++ struct usb_hcd *hcd = platform_get_drvdata(pdev);
++ struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
++
++ if (!IS_ERR(fotg210->pclk)) {
++ clk_disable_unprepare(fotg210->pclk);
++ clk_put(fotg210->pclk);
++ }
++
++ usb_remove_hcd(hcd);
++ usb_put_hcd(hcd);
++
++ return 0;
++}
++
++#ifdef CONFIG_OF
++static const struct of_device_id fotg210_of_match[] = {
++ { .compatible = "faraday,fotg210" },
++ {},
++};
++MODULE_DEVICE_TABLE(of, fotg210_of_match);
++#endif
++
++static struct platform_driver fotg210_hcd_driver = {
++ .driver = {
++ .name = "fotg210-hcd",
++ .of_match_table = of_match_ptr(fotg210_of_match),
++ },
++ .probe = fotg210_hcd_probe,
++ .remove = fotg210_hcd_remove,
++};
++
++static int __init fotg210_hcd_init(void)
++{
++ int retval = 0;
++
++ if (usb_disabled())
++ return -ENODEV;
++
++ set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
++ if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
++ test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
++ pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
++
++ pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
++ hcd_name, sizeof(struct fotg210_qh),
++ sizeof(struct fotg210_qtd),
++ sizeof(struct fotg210_itd));
++
++ fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
++
++ retval = platform_driver_register(&fotg210_hcd_driver);
++ if (retval < 0)
++ goto clean;
++ return retval;
++
++clean:
++ debugfs_remove(fotg210_debug_root);
++ fotg210_debug_root = NULL;
++
++ clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
++ return retval;
++}
++module_init(fotg210_hcd_init);
++
++static void __exit fotg210_hcd_cleanup(void)
++{
++ platform_driver_unregister(&fotg210_hcd_driver);
++ debugfs_remove(fotg210_debug_root);
++ clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
++}
++module_exit(fotg210_hcd_cleanup);
+--- a/drivers/usb/gadget/udc/fotg210-udc.c
++++ /dev/null
+@@ -1,1239 +0,0 @@
+-// SPDX-License-Identifier: GPL-2.0
+-/*
+- * FOTG210 UDC Driver supports Bulk transfer so far
+- *
+- * Copyright (C) 2013 Faraday Technology Corporation
+- *
+- * Author : Yuan-Hsin Chen <yhchen@faraday-tech.com>
+- */
+-
+-#include <linux/dma-mapping.h>
+-#include <linux/err.h>
+-#include <linux/interrupt.h>
+-#include <linux/io.h>
+-#include <linux/module.h>
+-#include <linux/platform_device.h>
+-#include <linux/usb/ch9.h>
+-#include <linux/usb/gadget.h>
+-
+-#include "fotg210.h"
+-
+-#define DRIVER_DESC "FOTG210 USB Device Controller Driver"
+-#define DRIVER_VERSION "30-April-2013"
+-
+-static const char udc_name[] = "fotg210_udc";
+-static const char * const fotg210_ep_name[] = {
+- "ep0", "ep1", "ep2", "ep3", "ep4"};
+-
+-static void fotg210_disable_fifo_int(struct fotg210_ep *ep)
+-{
+- u32 value = ioread32(ep->fotg210->reg + FOTG210_DMISGR1);
+-
+- if (ep->dir_in)
+- value |= DMISGR1_MF_IN_INT(ep->epnum - 1);
+- else
+- value |= DMISGR1_MF_OUTSPK_INT(ep->epnum - 1);
+- iowrite32(value, ep->fotg210->reg + FOTG210_DMISGR1);
+-}
+-
+-static void fotg210_enable_fifo_int(struct fotg210_ep *ep)
+-{
+- u32 value = ioread32(ep->fotg210->reg + FOTG210_DMISGR1);
+-
+- if (ep->dir_in)
+- value &= ~DMISGR1_MF_IN_INT(ep->epnum - 1);
+- else
+- value &= ~DMISGR1_MF_OUTSPK_INT(ep->epnum - 1);
+- iowrite32(value, ep->fotg210->reg + FOTG210_DMISGR1);
+-}
+-
+-static void fotg210_set_cxdone(struct fotg210_udc *fotg210)
+-{
+- u32 value = ioread32(fotg210->reg + FOTG210_DCFESR);
+-
+- value |= DCFESR_CX_DONE;
+- iowrite32(value, fotg210->reg + FOTG210_DCFESR);
+-}
+-
+-static void fotg210_done(struct fotg210_ep *ep, struct fotg210_request *req,
+- int status)
+-{
+- list_del_init(&req->queue);
+-
+- /* don't modify queue heads during completion callback */
+- if (ep->fotg210->gadget.speed == USB_SPEED_UNKNOWN)
+- req->req.status = -ESHUTDOWN;
+- else
+- req->req.status = status;
+-
+- spin_unlock(&ep->fotg210->lock);
+- usb_gadget_giveback_request(&ep->ep, &req->req);
+- spin_lock(&ep->fotg210->lock);
+-
+- if (ep->epnum) {
+- if (list_empty(&ep->queue))
+- fotg210_disable_fifo_int(ep);
+- } else {
+- fotg210_set_cxdone(ep->fotg210);
+- }
+-}
+-
+-static void fotg210_fifo_ep_mapping(struct fotg210_ep *ep, u32 epnum,
+- u32 dir_in)
+-{
+- struct fotg210_udc *fotg210 = ep->fotg210;
+- u32 val;
+-
+- /* Driver should map an ep to a fifo and then map the fifo
+- * to the ep. What a brain-damaged design!
+- */
+-
+- /* map a fifo to an ep */
+- val = ioread32(fotg210->reg + FOTG210_EPMAP);
+- val &= ~EPMAP_FIFONOMSK(epnum, dir_in);
+- val |= EPMAP_FIFONO(epnum, dir_in);
+- iowrite32(val, fotg210->reg + FOTG210_EPMAP);
+-
+- /* map the ep to the fifo */
+- val = ioread32(fotg210->reg + FOTG210_FIFOMAP);
+- val &= ~FIFOMAP_EPNOMSK(epnum);
+- val |= FIFOMAP_EPNO(epnum);
+- iowrite32(val, fotg210->reg + FOTG210_FIFOMAP);
+-
+- /* enable fifo */
+- val = ioread32(fotg210->reg + FOTG210_FIFOCF);
+- val |= FIFOCF_FIFO_EN(epnum - 1);
+- iowrite32(val, fotg210->reg + FOTG210_FIFOCF);
+-}
+-
+-static void fotg210_set_fifo_dir(struct fotg210_ep *ep, u32 epnum, u32 dir_in)
+-{
+- struct fotg210_udc *fotg210 = ep->fotg210;
+- u32 val;
+-
+- val = ioread32(fotg210->reg + FOTG210_FIFOMAP);
+- val |= (dir_in ? FIFOMAP_DIRIN(epnum - 1) : FIFOMAP_DIROUT(epnum - 1));
+- iowrite32(val, fotg210->reg + FOTG210_FIFOMAP);
+-}
+-
+-static void fotg210_set_tfrtype(struct fotg210_ep *ep, u32 epnum, u32 type)
+-{
+- struct fotg210_udc *fotg210 = ep->fotg210;
+- u32 val;
+-
+- val = ioread32(fotg210->reg + FOTG210_FIFOCF);
+- val |= FIFOCF_TYPE(type, epnum - 1);
+- iowrite32(val, fotg210->reg + FOTG210_FIFOCF);
+-}
+-
+-static void fotg210_set_mps(struct fotg210_ep *ep, u32 epnum, u32 mps,
+- u32 dir_in)
+-{
+- struct fotg210_udc *fotg210 = ep->fotg210;
+- u32 val;
+- u32 offset = dir_in ? FOTG210_INEPMPSR(epnum) :
+- FOTG210_OUTEPMPSR(epnum);
+-
+- val = ioread32(fotg210->reg + offset);
+- val |= INOUTEPMPSR_MPS(mps);
+- iowrite32(val, fotg210->reg + offset);
+-}
+-
+-static int fotg210_config_ep(struct fotg210_ep *ep,
+- const struct usb_endpoint_descriptor *desc)
+-{
+- struct fotg210_udc *fotg210 = ep->fotg210;
+-
+- fotg210_set_fifo_dir(ep, ep->epnum, ep->dir_in);
+- fotg210_set_tfrtype(ep, ep->epnum, ep->type);
+- fotg210_set_mps(ep, ep->epnum, ep->ep.maxpacket, ep->dir_in);
+- fotg210_fifo_ep_mapping(ep, ep->epnum, ep->dir_in);
+-
+- fotg210->ep[ep->epnum] = ep;
+-
+- return 0;
+-}
+-
+-static int fotg210_ep_enable(struct usb_ep *_ep,
+- const struct usb_endpoint_descriptor *desc)
+-{
+- struct fotg210_ep *ep;
+-
+- ep = container_of(_ep, struct fotg210_ep, ep);
+-
+- ep->desc = desc;
+- ep->epnum = usb_endpoint_num(desc);
+- ep->type = usb_endpoint_type(desc);
+- ep->dir_in = usb_endpoint_dir_in(desc);
+- ep->ep.maxpacket = usb_endpoint_maxp(desc);
+-
+- return fotg210_config_ep(ep, desc);
+-}
+-
+-static void fotg210_reset_tseq(struct fotg210_udc *fotg210, u8 epnum)
+-{
+- struct fotg210_ep *ep = fotg210->ep[epnum];
+- u32 value;
+- void __iomem *reg;
+-
+- reg = (ep->dir_in) ?
+- fotg210->reg + FOTG210_INEPMPSR(epnum) :
+- fotg210->reg + FOTG210_OUTEPMPSR(epnum);
+-
+- /* Note: Driver needs to set and clear INOUTEPMPSR_RESET_TSEQ
+- * bit. Controller wouldn't clear this bit. WTF!!!
+- */
+-
+- value = ioread32(reg);
+- value |= INOUTEPMPSR_RESET_TSEQ;
+- iowrite32(value, reg);
+-
+- value = ioread32(reg);
+- value &= ~INOUTEPMPSR_RESET_TSEQ;
+- iowrite32(value, reg);
+-}
+-
+-static int fotg210_ep_release(struct fotg210_ep *ep)
+-{
+- if (!ep->epnum)
+- return 0;
+- ep->epnum = 0;
+- ep->stall = 0;
+- ep->wedged = 0;
+-
+- fotg210_reset_tseq(ep->fotg210, ep->epnum);
+-
+- return 0;
+-}
+-
+-static int fotg210_ep_disable(struct usb_ep *_ep)
+-{
+- struct fotg210_ep *ep;
+- struct fotg210_request *req;
+- unsigned long flags;
+-
+- BUG_ON(!_ep);
+-
+- ep = container_of(_ep, struct fotg210_ep, ep);
+-
+- while (!list_empty(&ep->queue)) {
+- req = list_entry(ep->queue.next,
+- struct fotg210_request, queue);
+- spin_lock_irqsave(&ep->fotg210->lock, flags);
+- fotg210_done(ep, req, -ECONNRESET);
+- spin_unlock_irqrestore(&ep->fotg210->lock, flags);
+- }
+-
+- return fotg210_ep_release(ep);
+-}
+-
+-static struct usb_request *fotg210_ep_alloc_request(struct usb_ep *_ep,
+- gfp_t gfp_flags)
+-{
+- struct fotg210_request *req;
+-
+- req = kzalloc(sizeof(struct fotg210_request), gfp_flags);
+- if (!req)
+- return NULL;
+-
+- INIT_LIST_HEAD(&req->queue);
+-
+- return &req->req;
+-}
+-
+-static void fotg210_ep_free_request(struct usb_ep *_ep,
+- struct usb_request *_req)
+-{
+- struct fotg210_request *req;
+-
+- req = container_of(_req, struct fotg210_request, req);
+- kfree(req);
+-}
+-
+-static void fotg210_enable_dma(struct fotg210_ep *ep,
+- dma_addr_t d, u32 len)
+-{
+- u32 value;
+- struct fotg210_udc *fotg210 = ep->fotg210;
+-
+- /* set transfer length and direction */
+- value = ioread32(fotg210->reg + FOTG210_DMACPSR1);
+- value &= ~(DMACPSR1_DMA_LEN(0xFFFF) | DMACPSR1_DMA_TYPE(1));
+- value |= DMACPSR1_DMA_LEN(len) | DMACPSR1_DMA_TYPE(ep->dir_in);
+- iowrite32(value, fotg210->reg + FOTG210_DMACPSR1);
+-
+- /* set device DMA target FIFO number */
+- value = ioread32(fotg210->reg + FOTG210_DMATFNR);
+- if (ep->epnum)
+- value |= DMATFNR_ACC_FN(ep->epnum - 1);
+- else
+- value |= DMATFNR_ACC_CXF;
+- iowrite32(value, fotg210->reg + FOTG210_DMATFNR);
+-
+- /* set DMA memory address */
+- iowrite32(d, fotg210->reg + FOTG210_DMACPSR2);
+-
+- /* enable MDMA_EROR and MDMA_CMPLT interrupt */
+- value = ioread32(fotg210->reg + FOTG210_DMISGR2);
+- value &= ~(DMISGR2_MDMA_CMPLT | DMISGR2_MDMA_ERROR);
+- iowrite32(value, fotg210->reg + FOTG210_DMISGR2);
+-
+- /* start DMA */
+- value = ioread32(fotg210->reg + FOTG210_DMACPSR1);
+- value |= DMACPSR1_DMA_START;
+- iowrite32(value, fotg210->reg + FOTG210_DMACPSR1);
+-}
+-
+-static void fotg210_disable_dma(struct fotg210_ep *ep)
+-{
+- iowrite32(DMATFNR_DISDMA, ep->fotg210->reg + FOTG210_DMATFNR);
+-}
+-
+-static void fotg210_wait_dma_done(struct fotg210_ep *ep)
+-{
+- u32 value;
+-
+- do {
+- value = ioread32(ep->fotg210->reg + FOTG210_DISGR2);
+- if ((value & DISGR2_USBRST_INT) ||
+- (value & DISGR2_DMA_ERROR))
+- goto dma_reset;
+- } while (!(value & DISGR2_DMA_CMPLT));
+-
+- value &= ~DISGR2_DMA_CMPLT;
+- iowrite32(value, ep->fotg210->reg + FOTG210_DISGR2);
+- return;
+-
+-dma_reset:
+- value = ioread32(ep->fotg210->reg + FOTG210_DMACPSR1);
+- value |= DMACPSR1_DMA_ABORT;
+- iowrite32(value, ep->fotg210->reg + FOTG210_DMACPSR1);
+-
+- /* reset fifo */
+- if (ep->epnum) {
+- value = ioread32(ep->fotg210->reg +
+- FOTG210_FIBCR(ep->epnum - 1));
+- value |= FIBCR_FFRST;
+- iowrite32(value, ep->fotg210->reg +
+- FOTG210_FIBCR(ep->epnum - 1));
+- } else {
+- value = ioread32(ep->fotg210->reg + FOTG210_DCFESR);
+- value |= DCFESR_CX_CLR;
+- iowrite32(value, ep->fotg210->reg + FOTG210_DCFESR);
+- }
+-}
+-
+-static void fotg210_start_dma(struct fotg210_ep *ep,
+- struct fotg210_request *req)
+-{
+- struct device *dev = &ep->fotg210->gadget.dev;
+- dma_addr_t d;
+- u8 *buffer;
+- u32 length;
+-
+- if (ep->epnum) {
+- if (ep->dir_in) {
+- buffer = req->req.buf;
+- length = req->req.length;
+- } else {
+- buffer = req->req.buf + req->req.actual;
+- length = ioread32(ep->fotg210->reg +
+- FOTG210_FIBCR(ep->epnum - 1)) & FIBCR_BCFX;
+- if (length > req->req.length - req->req.actual)
+- length = req->req.length - req->req.actual;
+- }
+- } else {
+- buffer = req->req.buf + req->req.actual;
+- if (req->req.length - req->req.actual > ep->ep.maxpacket)
+- length = ep->ep.maxpacket;
+- else
+- length = req->req.length - req->req.actual;
+- }
+-
+- d = dma_map_single(dev, buffer, length,
+- ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
+-
+- if (dma_mapping_error(dev, d)) {
+- pr_err("dma_mapping_error\n");
+- return;
+- }
+-
+- fotg210_enable_dma(ep, d, length);
+-
+- /* check if dma is done */
+- fotg210_wait_dma_done(ep);
+-
+- fotg210_disable_dma(ep);
+-
+- /* update actual transfer length */
+- req->req.actual += length;
+-
+- dma_unmap_single(dev, d, length, DMA_TO_DEVICE);
+-}
+-
+-static void fotg210_ep0_queue(struct fotg210_ep *ep,
+- struct fotg210_request *req)
+-{
+- if (!req->req.length) {
+- fotg210_done(ep, req, 0);
+- return;
+- }
+- if (ep->dir_in) { /* if IN */
+- fotg210_start_dma(ep, req);
+- if (req->req.length == req->req.actual)
+- fotg210_done(ep, req, 0);
+- } else { /* OUT */
+- u32 value = ioread32(ep->fotg210->reg + FOTG210_DMISGR0);
+-
+- value &= ~DMISGR0_MCX_OUT_INT;
+- iowrite32(value, ep->fotg210->reg + FOTG210_DMISGR0);
+- }
+-}
+-
+-static int fotg210_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
+- gfp_t gfp_flags)
+-{
+- struct fotg210_ep *ep;
+- struct fotg210_request *req;
+- unsigned long flags;
+- int request = 0;
+-
+- ep = container_of(_ep, struct fotg210_ep, ep);
+- req = container_of(_req, struct fotg210_request, req);
+-
+- if (ep->fotg210->gadget.speed == USB_SPEED_UNKNOWN)
+- return -ESHUTDOWN;
+-
+- spin_lock_irqsave(&ep->fotg210->lock, flags);
+-
+- if (list_empty(&ep->queue))
+- request = 1;
+-
+- list_add_tail(&req->queue, &ep->queue);
+-
+- req->req.actual = 0;
+- req->req.status = -EINPROGRESS;
+-
+- if (!ep->epnum) /* ep0 */
+- fotg210_ep0_queue(ep, req);
+- else if (request && !ep->stall)
+- fotg210_enable_fifo_int(ep);
+-
+- spin_unlock_irqrestore(&ep->fotg210->lock, flags);
+-
+- return 0;
+-}
+-
+-static int fotg210_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
+-{
+- struct fotg210_ep *ep;
+- struct fotg210_request *req;
+- unsigned long flags;
+-
+- ep = container_of(_ep, struct fotg210_ep, ep);
+- req = container_of(_req, struct fotg210_request, req);
+-
+- spin_lock_irqsave(&ep->fotg210->lock, flags);
+- if (!list_empty(&ep->queue))
+- fotg210_done(ep, req, -ECONNRESET);
+- spin_unlock_irqrestore(&ep->fotg210->lock, flags);
+-
+- return 0;
+-}
+-
+-static void fotg210_set_epnstall(struct fotg210_ep *ep)
+-{
+- struct fotg210_udc *fotg210 = ep->fotg210;
+- u32 value;
+- void __iomem *reg;
+-
+- /* check if IN FIFO is empty before stall */
+- if (ep->dir_in) {
+- do {
+- value = ioread32(fotg210->reg + FOTG210_DCFESR);
+- } while (!(value & DCFESR_FIFO_EMPTY(ep->epnum - 1)));
+- }
+-
+- reg = (ep->dir_in) ?
+- fotg210->reg + FOTG210_INEPMPSR(ep->epnum) :
+- fotg210->reg + FOTG210_OUTEPMPSR(ep->epnum);
+- value = ioread32(reg);
+- value |= INOUTEPMPSR_STL_EP;
+- iowrite32(value, reg);
+-}
+-
+-static void fotg210_clear_epnstall(struct fotg210_ep *ep)
+-{
+- struct fotg210_udc *fotg210 = ep->fotg210;
+- u32 value;
+- void __iomem *reg;
+-
+- reg = (ep->dir_in) ?
+- fotg210->reg + FOTG210_INEPMPSR(ep->epnum) :
+- fotg210->reg + FOTG210_OUTEPMPSR(ep->epnum);
+- value = ioread32(reg);
+- value &= ~INOUTEPMPSR_STL_EP;
+- iowrite32(value, reg);
+-}
+-
+-static int fotg210_set_halt_and_wedge(struct usb_ep *_ep, int value, int wedge)
+-{
+- struct fotg210_ep *ep;
+- struct fotg210_udc *fotg210;
+- unsigned long flags;
+-
+- ep = container_of(_ep, struct fotg210_ep, ep);
+-
+- fotg210 = ep->fotg210;
+-
+- spin_lock_irqsave(&ep->fotg210->lock, flags);
+-
+- if (value) {
+- fotg210_set_epnstall(ep);
+- ep->stall = 1;
+- if (wedge)
+- ep->wedged = 1;
+- } else {
+- fotg210_reset_tseq(fotg210, ep->epnum);
+- fotg210_clear_epnstall(ep);
+- ep->stall = 0;
+- ep->wedged = 0;
+- if (!list_empty(&ep->queue))
+- fotg210_enable_fifo_int(ep);
+- }
+-
+- spin_unlock_irqrestore(&ep->fotg210->lock, flags);
+- return 0;
+-}
+-
+-static int fotg210_ep_set_halt(struct usb_ep *_ep, int value)
+-{
+- return fotg210_set_halt_and_wedge(_ep, value, 0);
+-}
+-
+-static int fotg210_ep_set_wedge(struct usb_ep *_ep)
+-{
+- return fotg210_set_halt_and_wedge(_ep, 1, 1);
+-}
+-
+-static void fotg210_ep_fifo_flush(struct usb_ep *_ep)
+-{
+-}
+-
+-static const struct usb_ep_ops fotg210_ep_ops = {
+- .enable = fotg210_ep_enable,
+- .disable = fotg210_ep_disable,
+-
+- .alloc_request = fotg210_ep_alloc_request,
+- .free_request = fotg210_ep_free_request,
+-
+- .queue = fotg210_ep_queue,
+- .dequeue = fotg210_ep_dequeue,
+-
+- .set_halt = fotg210_ep_set_halt,
+- .fifo_flush = fotg210_ep_fifo_flush,
+- .set_wedge = fotg210_ep_set_wedge,
+-};
+-
+-static void fotg210_clear_tx0byte(struct fotg210_udc *fotg210)
+-{
+- u32 value = ioread32(fotg210->reg + FOTG210_TX0BYTE);
+-
+- value &= ~(TX0BYTE_EP1 | TX0BYTE_EP2 | TX0BYTE_EP3
+- | TX0BYTE_EP4);
+- iowrite32(value, fotg210->reg + FOTG210_TX0BYTE);
+-}
+-
+-static void fotg210_clear_rx0byte(struct fotg210_udc *fotg210)
+-{
+- u32 value = ioread32(fotg210->reg + FOTG210_RX0BYTE);
+-
+- value &= ~(RX0BYTE_EP1 | RX0BYTE_EP2 | RX0BYTE_EP3
+- | RX0BYTE_EP4);
+- iowrite32(value, fotg210->reg + FOTG210_RX0BYTE);
+-}
+-
+-/* read 8-byte setup packet only */
+-static void fotg210_rdsetupp(struct fotg210_udc *fotg210,
+- u8 *buffer)
+-{
+- int i = 0;
+- u8 *tmp = buffer;
+- u32 data;
+- u32 length = 8;
+-
+- iowrite32(DMATFNR_ACC_CXF, fotg210->reg + FOTG210_DMATFNR);
+-
+- for (i = (length >> 2); i > 0; i--) {
+- data = ioread32(fotg210->reg + FOTG210_CXPORT);
+- *tmp = data & 0xFF;
+- *(tmp + 1) = (data >> 8) & 0xFF;
+- *(tmp + 2) = (data >> 16) & 0xFF;
+- *(tmp + 3) = (data >> 24) & 0xFF;
+- tmp = tmp + 4;
+- }
+-
+- switch (length % 4) {
+- case 1:
+- data = ioread32(fotg210->reg + FOTG210_CXPORT);
+- *tmp = data & 0xFF;
+- break;
+- case 2:
+- data = ioread32(fotg210->reg + FOTG210_CXPORT);
+- *tmp = data & 0xFF;
+- *(tmp + 1) = (data >> 8) & 0xFF;
+- break;
+- case 3:
+- data = ioread32(fotg210->reg + FOTG210_CXPORT);
+- *tmp = data & 0xFF;
+- *(tmp + 1) = (data >> 8) & 0xFF;
+- *(tmp + 2) = (data >> 16) & 0xFF;
+- break;
+- default:
+- break;
+- }
+-
+- iowrite32(DMATFNR_DISDMA, fotg210->reg + FOTG210_DMATFNR);
+-}
+-
+-static void fotg210_set_configuration(struct fotg210_udc *fotg210)
+-{
+- u32 value = ioread32(fotg210->reg + FOTG210_DAR);
+-
+- value |= DAR_AFT_CONF;
+- iowrite32(value, fotg210->reg + FOTG210_DAR);
+-}
+-
+-static void fotg210_set_dev_addr(struct fotg210_udc *fotg210, u32 addr)
+-{
+- u32 value = ioread32(fotg210->reg + FOTG210_DAR);
+-
+- value |= (addr & 0x7F);
+- iowrite32(value, fotg210->reg + FOTG210_DAR);
+-}
+-
+-static void fotg210_set_cxstall(struct fotg210_udc *fotg210)
+-{
+- u32 value = ioread32(fotg210->reg + FOTG210_DCFESR);
+-
+- value |= DCFESR_CX_STL;
+- iowrite32(value, fotg210->reg + FOTG210_DCFESR);
+-}
+-
+-static void fotg210_request_error(struct fotg210_udc *fotg210)
+-{
+- fotg210_set_cxstall(fotg210);
+- pr_err("request error!!\n");
+-}
+-
+-static void fotg210_set_address(struct fotg210_udc *fotg210,
+- struct usb_ctrlrequest *ctrl)
+-{
+- if (le16_to_cpu(ctrl->wValue) >= 0x0100) {
+- fotg210_request_error(fotg210);
+- } else {
+- fotg210_set_dev_addr(fotg210, le16_to_cpu(ctrl->wValue));
+- fotg210_set_cxdone(fotg210);
+- }
+-}
+-
+-static void fotg210_set_feature(struct fotg210_udc *fotg210,
+- struct usb_ctrlrequest *ctrl)
+-{
+- switch (ctrl->bRequestType & USB_RECIP_MASK) {
+- case USB_RECIP_DEVICE:
+- fotg210_set_cxdone(fotg210);
+- break;
+- case USB_RECIP_INTERFACE:
+- fotg210_set_cxdone(fotg210);
+- break;
+- case USB_RECIP_ENDPOINT: {
+- u8 epnum;
+- epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
+- if (epnum)
+- fotg210_set_epnstall(fotg210->ep[epnum]);
+- else
+- fotg210_set_cxstall(fotg210);
+- fotg210_set_cxdone(fotg210);
+- }
+- break;
+- default:
+- fotg210_request_error(fotg210);
+- break;
+- }
+-}
+-
+-static void fotg210_clear_feature(struct fotg210_udc *fotg210,
+- struct usb_ctrlrequest *ctrl)
+-{
+- struct fotg210_ep *ep =
+- fotg210->ep[ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK];
+-
+- switch (ctrl->bRequestType & USB_RECIP_MASK) {
+- case USB_RECIP_DEVICE:
+- fotg210_set_cxdone(fotg210);
+- break;
+- case USB_RECIP_INTERFACE:
+- fotg210_set_cxdone(fotg210);
+- break;
+- case USB_RECIP_ENDPOINT:
+- if (ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK) {
+- if (ep->wedged) {
+- fotg210_set_cxdone(fotg210);
+- break;
+- }
+- if (ep->stall)
+- fotg210_set_halt_and_wedge(&ep->ep, 0, 0);
+- }
+- fotg210_set_cxdone(fotg210);
+- break;
+- default:
+- fotg210_request_error(fotg210);
+- break;
+- }
+-}
+-
+-static int fotg210_is_epnstall(struct fotg210_ep *ep)
+-{
+- struct fotg210_udc *fotg210 = ep->fotg210;
+- u32 value;
+- void __iomem *reg;
+-
+- reg = (ep->dir_in) ?
+- fotg210->reg + FOTG210_INEPMPSR(ep->epnum) :
+- fotg210->reg + FOTG210_OUTEPMPSR(ep->epnum);
+- value = ioread32(reg);
+- return value & INOUTEPMPSR_STL_EP ? 1 : 0;
+-}
+-
+-/* For EP0 requests triggered by this driver (currently GET_STATUS response) */
+-static void fotg210_ep0_complete(struct usb_ep *_ep, struct usb_request *req)
+-{
+- struct fotg210_ep *ep;
+- struct fotg210_udc *fotg210;
+-
+- ep = container_of(_ep, struct fotg210_ep, ep);
+- fotg210 = ep->fotg210;
+-
+- if (req->status || req->actual != req->length) {
+- dev_warn(&fotg210->gadget.dev, "EP0 request failed: %d\n", req->status);
+- }
+-}
+-
+-static void fotg210_get_status(struct fotg210_udc *fotg210,
+- struct usb_ctrlrequest *ctrl)
+-{
+- u8 epnum;
+-
+- switch (ctrl->bRequestType & USB_RECIP_MASK) {
+- case USB_RECIP_DEVICE:
+- fotg210->ep0_data = cpu_to_le16(1 << USB_DEVICE_SELF_POWERED);
+- break;
+- case USB_RECIP_INTERFACE:
+- fotg210->ep0_data = cpu_to_le16(0);
+- break;
+- case USB_RECIP_ENDPOINT:
+- epnum = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
+- if (epnum)
+- fotg210->ep0_data =
+- cpu_to_le16(fotg210_is_epnstall(fotg210->ep[epnum])
+- << USB_ENDPOINT_HALT);
+- else
+- fotg210_request_error(fotg210);
+- break;
+-
+- default:
+- fotg210_request_error(fotg210);
+- return; /* exit */
+- }
+-
+- fotg210->ep0_req->buf = &fotg210->ep0_data;
+- fotg210->ep0_req->length = 2;
+-
+- spin_unlock(&fotg210->lock);
+- fotg210_ep_queue(fotg210->gadget.ep0, fotg210->ep0_req, GFP_ATOMIC);
+- spin_lock(&fotg210->lock);
+-}
+-
+-static int fotg210_setup_packet(struct fotg210_udc *fotg210,
+- struct usb_ctrlrequest *ctrl)
+-{
+- u8 *p = (u8 *)ctrl;
+- u8 ret = 0;
+-
+- fotg210_rdsetupp(fotg210, p);
+-
+- fotg210->ep[0]->dir_in = ctrl->bRequestType & USB_DIR_IN;
+-
+- if (fotg210->gadget.speed == USB_SPEED_UNKNOWN) {
+- u32 value = ioread32(fotg210->reg + FOTG210_DMCR);
+- fotg210->gadget.speed = value & DMCR_HS_EN ?
+- USB_SPEED_HIGH : USB_SPEED_FULL;
+- }
+-
+- /* check request */
+- if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
+- switch (ctrl->bRequest) {
+- case USB_REQ_GET_STATUS:
+- fotg210_get_status(fotg210, ctrl);
+- break;
+- case USB_REQ_CLEAR_FEATURE:
+- fotg210_clear_feature(fotg210, ctrl);
+- break;
+- case USB_REQ_SET_FEATURE:
+- fotg210_set_feature(fotg210, ctrl);
+- break;
+- case USB_REQ_SET_ADDRESS:
+- fotg210_set_address(fotg210, ctrl);
+- break;
+- case USB_REQ_SET_CONFIGURATION:
+- fotg210_set_configuration(fotg210);
+- ret = 1;
+- break;
+- default:
+- ret = 1;
+- break;
+- }
+- } else {
+- ret = 1;
+- }
+-
+- return ret;
+-}
+-
+-static void fotg210_ep0out(struct fotg210_udc *fotg210)
+-{
+- struct fotg210_ep *ep = fotg210->ep[0];
+-
+- if (!list_empty(&ep->queue) && !ep->dir_in) {
+- struct fotg210_request *req;
+-
+- req = list_first_entry(&ep->queue,
+- struct fotg210_request, queue);
+-
+- if (req->req.length)
+- fotg210_start_dma(ep, req);
+-
+- if ((req->req.length - req->req.actual) < ep->ep.maxpacket)
+- fotg210_done(ep, req, 0);
+- } else {
+- pr_err("%s : empty queue\n", __func__);
+- }
+-}
+-
+-static void fotg210_ep0in(struct fotg210_udc *fotg210)
+-{
+- struct fotg210_ep *ep = fotg210->ep[0];
+-
+- if ((!list_empty(&ep->queue)) && (ep->dir_in)) {
+- struct fotg210_request *req;
+-
+- req = list_entry(ep->queue.next,
+- struct fotg210_request, queue);
+-
+- if (req->req.length)
+- fotg210_start_dma(ep, req);
+-
+- if (req->req.actual == req->req.length)
+- fotg210_done(ep, req, 0);
+- } else {
+- fotg210_set_cxdone(fotg210);
+- }
+-}
+-
+-static void fotg210_clear_comabt_int(struct fotg210_udc *fotg210)
+-{
+- u32 value = ioread32(fotg210->reg + FOTG210_DISGR0);
+-
+- value &= ~DISGR0_CX_COMABT_INT;
+- iowrite32(value, fotg210->reg + FOTG210_DISGR0);
+-}
+-
+-static void fotg210_in_fifo_handler(struct fotg210_ep *ep)
+-{
+- struct fotg210_request *req = list_entry(ep->queue.next,
+- struct fotg210_request, queue);
+-
+- if (req->req.length)
+- fotg210_start_dma(ep, req);
+- fotg210_done(ep, req, 0);
+-}
+-
+-static void fotg210_out_fifo_handler(struct fotg210_ep *ep)
+-{
+- struct fotg210_request *req = list_entry(ep->queue.next,
+- struct fotg210_request, queue);
+- int disgr1 = ioread32(ep->fotg210->reg + FOTG210_DISGR1);
+-
+- fotg210_start_dma(ep, req);
+-
+- /* Complete the request when it's full or a short packet arrived.
+- * Like other drivers, short_not_ok isn't handled.
+- */
+-
+- if (req->req.length == req->req.actual ||
+- (disgr1 & DISGR1_SPK_INT(ep->epnum - 1)))
+- fotg210_done(ep, req, 0);
+-}
+-
+-static irqreturn_t fotg210_irq(int irq, void *_fotg210)
+-{
+- struct fotg210_udc *fotg210 = _fotg210;
+- u32 int_grp = ioread32(fotg210->reg + FOTG210_DIGR);
+- u32 int_msk = ioread32(fotg210->reg + FOTG210_DMIGR);
+-
+- int_grp &= ~int_msk;
+-
+- spin_lock(&fotg210->lock);
+-
+- if (int_grp & DIGR_INT_G2) {
+- void __iomem *reg = fotg210->reg + FOTG210_DISGR2;
+- u32 int_grp2 = ioread32(reg);
+- u32 int_msk2 = ioread32(fotg210->reg + FOTG210_DMISGR2);
+- u32 value;
+-
+- int_grp2 &= ~int_msk2;
+-
+- if (int_grp2 & DISGR2_USBRST_INT) {
+- usb_gadget_udc_reset(&fotg210->gadget,
+- fotg210->driver);
+- value = ioread32(reg);
+- value &= ~DISGR2_USBRST_INT;
+- iowrite32(value, reg);
+- pr_info("fotg210 udc reset\n");
+- }
+- if (int_grp2 & DISGR2_SUSP_INT) {
+- value = ioread32(reg);
+- value &= ~DISGR2_SUSP_INT;
+- iowrite32(value, reg);
+- pr_info("fotg210 udc suspend\n");
+- }
+- if (int_grp2 & DISGR2_RESM_INT) {
+- value = ioread32(reg);
+- value &= ~DISGR2_RESM_INT;
+- iowrite32(value, reg);
+- pr_info("fotg210 udc resume\n");
+- }
+- if (int_grp2 & DISGR2_ISO_SEQ_ERR_INT) {
+- value = ioread32(reg);
+- value &= ~DISGR2_ISO_SEQ_ERR_INT;
+- iowrite32(value, reg);
+- pr_info("fotg210 iso sequence error\n");
+- }
+- if (int_grp2 & DISGR2_ISO_SEQ_ABORT_INT) {
+- value = ioread32(reg);
+- value &= ~DISGR2_ISO_SEQ_ABORT_INT;
+- iowrite32(value, reg);
+- pr_info("fotg210 iso sequence abort\n");
+- }
+- if (int_grp2 & DISGR2_TX0BYTE_INT) {
+- fotg210_clear_tx0byte(fotg210);
+- value = ioread32(reg);
+- value &= ~DISGR2_TX0BYTE_INT;
+- iowrite32(value, reg);
+- pr_info("fotg210 transferred 0 byte\n");
+- }
+- if (int_grp2 & DISGR2_RX0BYTE_INT) {
+- fotg210_clear_rx0byte(fotg210);
+- value = ioread32(reg);
+- value &= ~DISGR2_RX0BYTE_INT;
+- iowrite32(value, reg);
+- pr_info("fotg210 received 0 byte\n");
+- }
+- if (int_grp2 & DISGR2_DMA_ERROR) {
+- value = ioread32(reg);
+- value &= ~DISGR2_DMA_ERROR;
+- iowrite32(value, reg);
+- }
+- }
+-
+- if (int_grp & DIGR_INT_G0) {
+- void __iomem *reg = fotg210->reg + FOTG210_DISGR0;
+- u32 int_grp0 = ioread32(reg);
+- u32 int_msk0 = ioread32(fotg210->reg + FOTG210_DMISGR0);
+- struct usb_ctrlrequest ctrl;
+-
+- int_grp0 &= ~int_msk0;
+-
+- /* the highest priority in this source register */
+- if (int_grp0 & DISGR0_CX_COMABT_INT) {
+- fotg210_clear_comabt_int(fotg210);
+- pr_info("fotg210 CX command abort\n");
+- }
+-
+- if (int_grp0 & DISGR0_CX_SETUP_INT) {
+- if (fotg210_setup_packet(fotg210, &ctrl)) {
+- spin_unlock(&fotg210->lock);
+- if (fotg210->driver->setup(&fotg210->gadget,
+- &ctrl) < 0)
+- fotg210_set_cxstall(fotg210);
+- spin_lock(&fotg210->lock);
+- }
+- }
+- if (int_grp0 & DISGR0_CX_COMEND_INT)
+- pr_info("fotg210 cmd end\n");
+-
+- if (int_grp0 & DISGR0_CX_IN_INT)
+- fotg210_ep0in(fotg210);
+-
+- if (int_grp0 & DISGR0_CX_OUT_INT)
+- fotg210_ep0out(fotg210);
+-
+- if (int_grp0 & DISGR0_CX_COMFAIL_INT) {
+- fotg210_set_cxstall(fotg210);
+- pr_info("fotg210 ep0 fail\n");
+- }
+- }
+-
+- if (int_grp & DIGR_INT_G1) {
+- void __iomem *reg = fotg210->reg + FOTG210_DISGR1;
+- u32 int_grp1 = ioread32(reg);
+- u32 int_msk1 = ioread32(fotg210->reg + FOTG210_DMISGR1);
+- int fifo;
+-
+- int_grp1 &= ~int_msk1;
+-
+- for (fifo = 0; fifo < FOTG210_MAX_FIFO_NUM; fifo++) {
+- if (int_grp1 & DISGR1_IN_INT(fifo))
+- fotg210_in_fifo_handler(fotg210->ep[fifo + 1]);
+-
+- if ((int_grp1 & DISGR1_OUT_INT(fifo)) ||
+- (int_grp1 & DISGR1_SPK_INT(fifo)))
+- fotg210_out_fifo_handler(fotg210->ep[fifo + 1]);
+- }
+- }
+-
+- spin_unlock(&fotg210->lock);
+-
+- return IRQ_HANDLED;
+-}
+-
+-static void fotg210_disable_unplug(struct fotg210_udc *fotg210)
+-{
+- u32 reg = ioread32(fotg210->reg + FOTG210_PHYTMSR);
+-
+- reg &= ~PHYTMSR_UNPLUG;
+- iowrite32(reg, fotg210->reg + FOTG210_PHYTMSR);
+-}
+-
+-static int fotg210_udc_start(struct usb_gadget *g,
+- struct usb_gadget_driver *driver)
+-{
+- struct fotg210_udc *fotg210 = gadget_to_fotg210(g);
+- u32 value;
+-
+- /* hook up the driver */
+- fotg210->driver = driver;
+-
+- /* enable device global interrupt */
+- value = ioread32(fotg210->reg + FOTG210_DMCR);
+- value |= DMCR_GLINT_EN;
+- iowrite32(value, fotg210->reg + FOTG210_DMCR);
+-
+- return 0;
+-}
+-
+-static void fotg210_init(struct fotg210_udc *fotg210)
+-{
+- u32 value;
+-
+- /* disable global interrupt and set int polarity to active high */
+- iowrite32(GMIR_MHC_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
+- fotg210->reg + FOTG210_GMIR);
+-
+- /* disable device global interrupt */
+- value = ioread32(fotg210->reg + FOTG210_DMCR);
+- value &= ~DMCR_GLINT_EN;
+- iowrite32(value, fotg210->reg + FOTG210_DMCR);
+-
+- /* enable only grp2 irqs we handle */
+- iowrite32(~(DISGR2_DMA_ERROR | DISGR2_RX0BYTE_INT | DISGR2_TX0BYTE_INT
+- | DISGR2_ISO_SEQ_ABORT_INT | DISGR2_ISO_SEQ_ERR_INT
+- | DISGR2_RESM_INT | DISGR2_SUSP_INT | DISGR2_USBRST_INT),
+- fotg210->reg + FOTG210_DMISGR2);
+-
+- /* disable all fifo interrupt */
+- iowrite32(~(u32)0, fotg210->reg + FOTG210_DMISGR1);
+-
+- /* disable cmd end */
+- value = ioread32(fotg210->reg + FOTG210_DMISGR0);
+- value |= DMISGR0_MCX_COMEND;
+- iowrite32(value, fotg210->reg + FOTG210_DMISGR0);
+-}
+-
+-static int fotg210_udc_stop(struct usb_gadget *g)
+-{
+- struct fotg210_udc *fotg210 = gadget_to_fotg210(g);
+- unsigned long flags;
+-
+- spin_lock_irqsave(&fotg210->lock, flags);
+-
+- fotg210_init(fotg210);
+- fotg210->driver = NULL;
+-
+- spin_unlock_irqrestore(&fotg210->lock, flags);
+-
+- return 0;
+-}
+-
+-static const struct usb_gadget_ops fotg210_gadget_ops = {
+- .udc_start = fotg210_udc_start,
+- .udc_stop = fotg210_udc_stop,
+-};
+-
+-static int fotg210_udc_remove(struct platform_device *pdev)
+-{
+- struct fotg210_udc *fotg210 = platform_get_drvdata(pdev);
+- int i;
+-
+- usb_del_gadget_udc(&fotg210->gadget);
+- iounmap(fotg210->reg);
+- free_irq(platform_get_irq(pdev, 0), fotg210);
+-
+- fotg210_ep_free_request(&fotg210->ep[0]->ep, fotg210->ep0_req);
+- for (i = 0; i < FOTG210_MAX_NUM_EP; i++)
+- kfree(fotg210->ep[i]);
+- kfree(fotg210);
+-
+- return 0;
+-}
+-
+-static int fotg210_udc_probe(struct platform_device *pdev)
+-{
+- struct resource *res, *ires;
+- struct fotg210_udc *fotg210 = NULL;
+- struct fotg210_ep *_ep[FOTG210_MAX_NUM_EP];
+- int ret = 0;
+- int i;
+-
+- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+- if (!res) {
+- pr_err("platform_get_resource error.\n");
+- return -ENODEV;
+- }
+-
+- ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
+- if (!ires) {
+- pr_err("platform_get_resource IORESOURCE_IRQ error.\n");
+- return -ENODEV;
+- }
+-
+- ret = -ENOMEM;
+-
+- /* initialize udc */
+- fotg210 = kzalloc(sizeof(struct fotg210_udc), GFP_KERNEL);
+- if (fotg210 == NULL)
+- goto err;
+-
+- for (i = 0; i < FOTG210_MAX_NUM_EP; i++) {
+- _ep[i] = kzalloc(sizeof(struct fotg210_ep), GFP_KERNEL);
+- if (_ep[i] == NULL)
+- goto err_alloc;
+- fotg210->ep[i] = _ep[i];
+- }
+-
+- fotg210->reg = ioremap(res->start, resource_size(res));
+- if (fotg210->reg == NULL) {
+- pr_err("ioremap error.\n");
+- goto err_alloc;
+- }
+-
+- spin_lock_init(&fotg210->lock);
+-
+- platform_set_drvdata(pdev, fotg210);
+-
+- fotg210->gadget.ops = &fotg210_gadget_ops;
+-
+- fotg210->gadget.max_speed = USB_SPEED_HIGH;
+- fotg210->gadget.dev.parent = &pdev->dev;
+- fotg210->gadget.dev.dma_mask = pdev->dev.dma_mask;
+- fotg210->gadget.name = udc_name;
+-
+- INIT_LIST_HEAD(&fotg210->gadget.ep_list);
+-
+- for (i = 0; i < FOTG210_MAX_NUM_EP; i++) {
+- struct fotg210_ep *ep = fotg210->ep[i];
+-
+- if (i) {
+- INIT_LIST_HEAD(&fotg210->ep[i]->ep.ep_list);
+- list_add_tail(&fotg210->ep[i]->ep.ep_list,
+- &fotg210->gadget.ep_list);
+- }
+- ep->fotg210 = fotg210;
+- INIT_LIST_HEAD(&ep->queue);
+- ep->ep.name = fotg210_ep_name[i];
+- ep->ep.ops = &fotg210_ep_ops;
+- usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
+-
+- if (i == 0) {
+- ep->ep.caps.type_control = true;
+- } else {
+- ep->ep.caps.type_iso = true;
+- ep->ep.caps.type_bulk = true;
+- ep->ep.caps.type_int = true;
+- }
+-
+- ep->ep.caps.dir_in = true;
+- ep->ep.caps.dir_out = true;
+- }
+- usb_ep_set_maxpacket_limit(&fotg210->ep[0]->ep, 0x40);
+- fotg210->gadget.ep0 = &fotg210->ep[0]->ep;
+- INIT_LIST_HEAD(&fotg210->gadget.ep0->ep_list);
+-
+- fotg210->ep0_req = fotg210_ep_alloc_request(&fotg210->ep[0]->ep,
+- GFP_KERNEL);
+- if (fotg210->ep0_req == NULL)
+- goto err_map;
+-
+- fotg210->ep0_req->complete = fotg210_ep0_complete;
+-
+- fotg210_init(fotg210);
+-
+- fotg210_disable_unplug(fotg210);
+-
+- ret = request_irq(ires->start, fotg210_irq, IRQF_SHARED,
+- udc_name, fotg210);
+- if (ret < 0) {
+- pr_err("request_irq error (%d)\n", ret);
+- goto err_req;
+- }
+-
+- ret = usb_add_gadget_udc(&pdev->dev, &fotg210->gadget);
+- if (ret)
+- goto err_add_udc;
+-
+- dev_info(&pdev->dev, "version %s\n", DRIVER_VERSION);
+-
+- return 0;
+-
+-err_add_udc:
+- free_irq(ires->start, fotg210);
+-
+-err_req:
+- fotg210_ep_free_request(&fotg210->ep[0]->ep, fotg210->ep0_req);
+-
+-err_map:
+- iounmap(fotg210->reg);
+-
+-err_alloc:
+- for (i = 0; i < FOTG210_MAX_NUM_EP; i++)
+- kfree(fotg210->ep[i]);
+- kfree(fotg210);
+-
+-err:
+- return ret;
+-}
+-
+-static struct platform_driver fotg210_driver = {
+- .driver = {
+- .name = udc_name,
+- },
+- .probe = fotg210_udc_probe,
+- .remove = fotg210_udc_remove,
+-};
+-
+-module_platform_driver(fotg210_driver);
+-
+-MODULE_AUTHOR("Yuan-Hsin Chen, Feng-Hsin Chiang <john453@faraday-tech.com>");
+-MODULE_LICENSE("GPL");
+-MODULE_DESCRIPTION(DRIVER_DESC);
+--- /dev/null
++++ b/drivers/usb/fotg210/fotg210-udc.c
+@@ -0,0 +1,1239 @@
++// SPDX-License-Identifier: GPL-2.0
++/*
++ * FOTG210 UDC Driver supports Bulk transfer so far
++ *
++ * Copyright (C) 2013 Faraday Technology Corporation
++ *
++ * Author : Yuan-Hsin Chen <yhchen@faraday-tech.com>
++ */
++
++#include <linux/dma-mapping.h>
++#include <linux/err.h>
++#include <linux/interrupt.h>
++#include <linux/io.h>
++#include <linux/module.h>
++#include <linux/platform_device.h>
++#include <linux/usb/ch9.h>
++#include <linux/usb/gadget.h>
++
++#include "fotg210-udc.h"
++
++#define DRIVER_DESC "FOTG210 USB Device Controller Driver"
++#define DRIVER_VERSION "30-April-2013"
++
++static const char udc_name[] = "fotg210_udc";
++static const char * const fotg210_ep_name[] = {
++ "ep0", "ep1", "ep2", "ep3", "ep4"};
++
++static void fotg210_disable_fifo_int(struct fotg210_ep *ep)
++{
++ u32 value = ioread32(ep->fotg210->reg + FOTG210_DMISGR1);
++
++ if (ep->dir_in)
++ value |= DMISGR1_MF_IN_INT(ep->epnum - 1);
++ else
++ value |= DMISGR1_MF_OUTSPK_INT(ep->epnum - 1);
++ iowrite32(value, ep->fotg210->reg + FOTG210_DMISGR1);
++}
++
++static void fotg210_enable_fifo_int(struct fotg210_ep *ep)
++{
++ u32 value = ioread32(ep->fotg210->reg + FOTG210_DMISGR1);
++
++ if (ep->dir_in)
++ value &= ~DMISGR1_MF_IN_INT(ep->epnum - 1);
++ else
++ value &= ~DMISGR1_MF_OUTSPK_INT(ep->epnum - 1);
++ iowrite32(value, ep->fotg210->reg + FOTG210_DMISGR1);
++}
++
++static void fotg210_set_cxdone(struct fotg210_udc *fotg210)
++{
++ u32 value = ioread32(fotg210->reg + FOTG210_DCFESR);
++
++ value |= DCFESR_CX_DONE;
++ iowrite32(value, fotg210->reg + FOTG210_DCFESR);
++}
++
++static void fotg210_done(struct fotg210_ep *ep, struct fotg210_request *req,
++ int status)
++{
++ list_del_init(&req->queue);
++
++ /* don't modify queue heads during completion callback */
++ if (ep->fotg210->gadget.speed == USB_SPEED_UNKNOWN)
++ req->req.status = -ESHUTDOWN;
++ else
++ req->req.status = status;
++
++ spin_unlock(&ep->fotg210->lock);
++ usb_gadget_giveback_request(&ep->ep, &req->req);
++ spin_lock(&ep->fotg210->lock);
++
++ if (ep->epnum) {
++ if (list_empty(&ep->queue))
++ fotg210_disable_fifo_int(ep);
++ } else {
++ fotg210_set_cxdone(ep->fotg210);
++ }
++}
++
++static void fotg210_fifo_ep_mapping(struct fotg210_ep *ep, u32 epnum,
++ u32 dir_in)
++{
++ struct fotg210_udc *fotg210 = ep->fotg210;
++ u32 val;
++
++ /* Driver should map an ep to a fifo and then map the fifo
++ * to the ep. What a brain-damaged design!
++ */
++
++ /* map a fifo to an ep */
++ val = ioread32(fotg210->reg + FOTG210_EPMAP);
++ val &= ~EPMAP_FIFONOMSK(epnum, dir_in);
++ val |= EPMAP_FIFONO(epnum, dir_in);
++ iowrite32(val, fotg210->reg + FOTG210_EPMAP);
++
++ /* map the ep to the fifo */
++ val = ioread32(fotg210->reg + FOTG210_FIFOMAP);
++ val &= ~FIFOMAP_EPNOMSK(epnum);
++ val |= FIFOMAP_EPNO(epnum);
++ iowrite32(val, fotg210->reg + FOTG210_FIFOMAP);
++
++ /* enable fifo */
++ val = ioread32(fotg210->reg + FOTG210_FIFOCF);
++ val |= FIFOCF_FIFO_EN(epnum - 1);
++ iowrite32(val, fotg210->reg + FOTG210_FIFOCF);
++}
++
++static void fotg210_set_fifo_dir(struct fotg210_ep *ep, u32 epnum, u32 dir_in)
++{
++ struct fotg210_udc *fotg210 = ep->fotg210;
++ u32 val;
++
++ val = ioread32(fotg210->reg + FOTG210_FIFOMAP);
++ val |= (dir_in ? FIFOMAP_DIRIN(epnum - 1) : FIFOMAP_DIROUT(epnum - 1));
++ iowrite32(val, fotg210->reg + FOTG210_FIFOMAP);
++}
++
++static void fotg210_set_tfrtype(struct fotg210_ep *ep, u32 epnum, u32 type)
++{
++ struct fotg210_udc *fotg210 = ep->fotg210;
++ u32 val;
++
++ val = ioread32(fotg210->reg + FOTG210_FIFOCF);
++ val |= FIFOCF_TYPE(type, epnum - 1);
++ iowrite32(val, fotg210->reg + FOTG210_FIFOCF);
++}
++
++static void fotg210_set_mps(struct fotg210_ep *ep, u32 epnum, u32 mps,
++ u32 dir_in)
++{
++ struct fotg210_udc *fotg210 = ep->fotg210;
++ u32 val;
++ u32 offset = dir_in ? FOTG210_INEPMPSR(epnum) :
++ FOTG210_OUTEPMPSR(epnum);
++
++ val = ioread32(fotg210->reg + offset);
++ val |= INOUTEPMPSR_MPS(mps);
++ iowrite32(val, fotg210->reg + offset);
++}
++
++static int fotg210_config_ep(struct fotg210_ep *ep,
++ const struct usb_endpoint_descriptor *desc)
++{
++ struct fotg210_udc *fotg210 = ep->fotg210;
++
++ fotg210_set_fifo_dir(ep, ep->epnum, ep->dir_in);
++ fotg210_set_tfrtype(ep, ep->epnum, ep->type);
++ fotg210_set_mps(ep, ep->epnum, ep->ep.maxpacket, ep->dir_in);
++ fotg210_fifo_ep_mapping(ep, ep->epnum, ep->dir_in);
++
++ fotg210->ep[ep->epnum] = ep;
++
++ return 0;
++}
++
++static int fotg210_ep_enable(struct usb_ep *_ep,
++ const struct usb_endpoint_descriptor *desc)
++{
++ struct fotg210_ep *ep;
++
++ ep = container_of(_ep, struct fotg210_ep, ep);
++
++ ep->desc = desc;
++ ep->epnum = usb_endpoint_num(desc);
++ ep->type = usb_endpoint_type(desc);
++ ep->dir_in = usb_endpoint_dir_in(desc);
++ ep->ep.maxpacket = usb_endpoint_maxp(desc);
++
++ return fotg210_config_ep(ep, desc);
++}
++
++static void fotg210_reset_tseq(struct fotg210_udc *fotg210, u8 epnum)
++{
++ struct fotg210_ep *ep = fotg210->ep[epnum];
++ u32 value;
++ void __iomem *reg;
++
++ reg = (ep->dir_in) ?
++ fotg210->reg + FOTG210_INEPMPSR(epnum) :
++ fotg210->reg + FOTG210_OUTEPMPSR(epnum);
++
++ /* Note: Driver needs to set and clear INOUTEPMPSR_RESET_TSEQ
++ * bit. Controller wouldn't clear this bit. WTF!!!
++ */
++
++ value = ioread32(reg);
++ value |= INOUTEPMPSR_RESET_TSEQ;
++ iowrite32(value, reg);
++
++ value = ioread32(reg);
++ value &= ~INOUTEPMPSR_RESET_TSEQ;
++ iowrite32(value, reg);
++}
++
++static int fotg210_ep_release(struct fotg210_ep *ep)
++{
++ if (!ep->epnum)
++ return 0;
++ ep->epnum = 0;
++ ep->stall = 0;
++ ep->wedged = 0;
++
++ fotg210_reset_tseq(ep->fotg210, ep->epnum);
++
++ return 0;
++}
++
++static int fotg210_ep_disable(struct usb_ep *_ep)
++{
++ struct fotg210_ep *ep;
++ struct fotg210_request *req;
++ unsigned long flags;
++
++ BUG_ON(!_ep);
++
++ ep = container_of(_ep, struct fotg210_ep, ep);
++
++ while (!list_empty(&ep->queue)) {
++ req = list_entry(ep->queue.next,
++ struct fotg210_request, queue);
++ spin_lock_irqsave(&ep->fotg210->lock, flags);
++ fotg210_done(ep, req, -ECONNRESET);
++ spin_unlock_irqrestore(&ep->fotg210->lock, flags);
++ }
++
++ return fotg210_ep_release(ep);
++}
++
++static struct usb_request *fotg210_ep_alloc_request(struct usb_ep *_ep,
++ gfp_t gfp_flags)
++{
++ struct fotg210_request *req;
++
++ req = kzalloc(sizeof(struct fotg210_request), gfp_flags);
++ if (!req)
++ return NULL;
++
++ INIT_LIST_HEAD(&req->queue);
++
++ return &req->req;
++}
++
++static void fotg210_ep_free_request(struct usb_ep *_ep,
++ struct usb_request *_req)
++{
++ struct fotg210_request *req;
++
++ req = container_of(_req, struct fotg210_request, req);
++ kfree(req);
++}
++
++static void fotg210_enable_dma(struct fotg210_ep *ep,
++ dma_addr_t d, u32 len)
++{
++ u32 value;
++ struct fotg210_udc *fotg210 = ep->fotg210;
++
++ /* set transfer length and direction */
++ value = ioread32(fotg210->reg + FOTG210_DMACPSR1);
++ value &= ~(DMACPSR1_DMA_LEN(0xFFFF) | DMACPSR1_DMA_TYPE(1));
++ value |= DMACPSR1_DMA_LEN(len) | DMACPSR1_DMA_TYPE(ep->dir_in);
++ iowrite32(value, fotg210->reg + FOTG210_DMACPSR1);
++
++ /* set device DMA target FIFO number */
++ value = ioread32(fotg210->reg + FOTG210_DMATFNR);
++ if (ep->epnum)
++ value |= DMATFNR_ACC_FN(ep->epnum - 1);
++ else
++ value |= DMATFNR_ACC_CXF;
++ iowrite32(value, fotg210->reg + FOTG210_DMATFNR);
++
++ /* set DMA memory address */
++ iowrite32(d, fotg210->reg + FOTG210_DMACPSR2);
++
++ /* enable MDMA_EROR and MDMA_CMPLT interrupt */
++ value = ioread32(fotg210->reg + FOTG210_DMISGR2);
++ value &= ~(DMISGR2_MDMA_CMPLT | DMISGR2_MDMA_ERROR);
++ iowrite32(value, fotg210->reg + FOTG210_DMISGR2);
++
++ /* start DMA */
++ value = ioread32(fotg210->reg + FOTG210_DMACPSR1);
++ value |= DMACPSR1_DMA_START;
++ iowrite32(value, fotg210->reg + FOTG210_DMACPSR1);
++}
++
++static void fotg210_disable_dma(struct fotg210_ep *ep)
++{
++ iowrite32(DMATFNR_DISDMA, ep->fotg210->reg + FOTG210_DMATFNR);
++}
++
++static void fotg210_wait_dma_done(struct fotg210_ep *ep)
++{
++ u32 value;
++
++ do {
++ value = ioread32(ep->fotg210->reg + FOTG210_DISGR2);
++ if ((value & DISGR2_USBRST_INT) ||
++ (value & DISGR2_DMA_ERROR))
++ goto dma_reset;
++ } while (!(value & DISGR2_DMA_CMPLT));
++
++ value &= ~DISGR2_DMA_CMPLT;
++ iowrite32(value, ep->fotg210->reg + FOTG210_DISGR2);
++ return;
++
++dma_reset:
++ value = ioread32(ep->fotg210->reg + FOTG210_DMACPSR1);
++ value |= DMACPSR1_DMA_ABORT;
++ iowrite32(value, ep->fotg210->reg + FOTG210_DMACPSR1);
++
++ /* reset fifo */
++ if (ep->epnum) {
++ value = ioread32(ep->fotg210->reg +
++ FOTG210_FIBCR(ep->epnum - 1));
++ value |= FIBCR_FFRST;
++ iowrite32(value, ep->fotg210->reg +
++ FOTG210_FIBCR(ep->epnum - 1));
++ } else {
++ value = ioread32(ep->fotg210->reg + FOTG210_DCFESR);
++ value |= DCFESR_CX_CLR;
++ iowrite32(value, ep->fotg210->reg + FOTG210_DCFESR);
++ }
++}
++
++static void fotg210_start_dma(struct fotg210_ep *ep,
++ struct fotg210_request *req)
++{
++ struct device *dev = &ep->fotg210->gadget.dev;
++ dma_addr_t d;
++ u8 *buffer;
++ u32 length;
++
++ if (ep->epnum) {
++ if (ep->dir_in) {
++ buffer = req->req.buf;
++ length = req->req.length;
++ } else {
++ buffer = req->req.buf + req->req.actual;
++ length = ioread32(ep->fotg210->reg +
++ FOTG210_FIBCR(ep->epnum - 1)) & FIBCR_BCFX;
++ if (length > req->req.length - req->req.actual)
++ length = req->req.length - req->req.actual;
++ }
++ } else {
++ buffer = req->req.buf + req->req.actual;
++ if (req->req.length - req->req.actual > ep->ep.maxpacket)
++ length = ep->ep.maxpacket;
++ else
++ length = req->req.length - req->req.actual;
++ }
++
++ d = dma_map_single(dev, buffer, length,
++ ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
++
++ if (dma_mapping_error(dev, d)) {
++ pr_err("dma_mapping_error\n");
++ return;
++ }
++
++ fotg210_enable_dma(ep, d, length);
++
++ /* check if dma is done */
++ fotg210_wait_dma_done(ep);
++
++ fotg210_disable_dma(ep);
++
++ /* update actual transfer length */
++ req->req.actual += length;
++
++ dma_unmap_single(dev, d, length, DMA_TO_DEVICE);
++}
++
++static void fotg210_ep0_queue(struct fotg210_ep *ep,
++ struct fotg210_request *req)
++{
++ if (!req->req.length) {
++ fotg210_done(ep, req, 0);
++ return;
++ }
++ if (ep->dir_in) { /* if IN */
++ fotg210_start_dma(ep, req);
++ if (req->req.length == req->req.actual)
++ fotg210_done(ep, req, 0);
++ } else { /* OUT */
++ u32 value = ioread32(ep->fotg210->reg + FOTG210_DMISGR0);
++
++ value &= ~DMISGR0_MCX_OUT_INT;
++ iowrite32(value, ep->fotg210->reg + FOTG210_DMISGR0);
++ }
++}
++
++static int fotg210_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
++ gfp_t gfp_flags)
++{
++ struct fotg210_ep *ep;
++ struct fotg210_request *req;
++ unsigned long flags;
++ int request = 0;
++
++ ep = container_of(_ep, struct fotg210_ep, ep);
++ req = container_of(_req, struct fotg210_request, req);
++
++ if (ep->fotg210->gadget.speed == USB_SPEED_UNKNOWN)
++ return -ESHUTDOWN;
++
++ spin_lock_irqsave(&ep->fotg210->lock, flags);
++
++ if (list_empty(&ep->queue))
++ request = 1;
++
++ list_add_tail(&req->queue, &ep->queue);
++
++ req->req.actual = 0;
++ req->req.status = -EINPROGRESS;
++
++ if (!ep->epnum) /* ep0 */
++ fotg210_ep0_queue(ep, req);
++ else if (request && !ep->stall)
++ fotg210_enable_fifo_int(ep);
++
++ spin_unlock_irqrestore(&ep->fotg210->lock, flags);
++
++ return 0;
++}
++
++static int fotg210_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
++{
++ struct fotg210_ep *ep;
++ struct fotg210_request *req;
++ unsigned long flags;
++
++ ep = container_of(_ep, struct fotg210_ep, ep);
++ req = container_of(_req, struct fotg210_request, req);
++
++ spin_lock_irqsave(&ep->fotg210->lock, flags);
++ if (!list_empty(&ep->queue))
++ fotg210_done(ep, req, -ECONNRESET);
++ spin_unlock_irqrestore(&ep->fotg210->lock, flags);
++
++ return 0;
++}
++
++static void fotg210_set_epnstall(struct fotg210_ep *ep)
++{
++ struct fotg210_udc *fotg210 = ep->fotg210;
++ u32 value;
++ void __iomem *reg;
++
++ /* check if IN FIFO is empty before stall */
++ if (ep->dir_in) {
++ do {
++ value = ioread32(fotg210->reg + FOTG210_DCFESR);
++ } while (!(value & DCFESR_FIFO_EMPTY(ep->epnum - 1)));
++ }
++
++ reg = (ep->dir_in) ?
++ fotg210->reg + FOTG210_INEPMPSR(ep->epnum) :
++ fotg210->reg + FOTG210_OUTEPMPSR(ep->epnum);
++ value = ioread32(reg);
++ value |= INOUTEPMPSR_STL_EP;
++ iowrite32(value, reg);
++}
++
++static void fotg210_clear_epnstall(struct fotg210_ep *ep)
++{
++ struct fotg210_udc *fotg210 = ep->fotg210;
++ u32 value;
++ void __iomem *reg;
++
++ reg = (ep->dir_in) ?
++ fotg210->reg + FOTG210_INEPMPSR(ep->epnum) :
++ fotg210->reg + FOTG210_OUTEPMPSR(ep->epnum);
++ value = ioread32(reg);
++ value &= ~INOUTEPMPSR_STL_EP;
++ iowrite32(value, reg);
++}
++
++static int fotg210_set_halt_and_wedge(struct usb_ep *_ep, int value, int wedge)
++{
++ struct fotg210_ep *ep;
++ struct fotg210_udc *fotg210;
++ unsigned long flags;
++
++ ep = container_of(_ep, struct fotg210_ep, ep);
++
++ fotg210 = ep->fotg210;
++
++ spin_lock_irqsave(&ep->fotg210->lock, flags);
++
++ if (value) {
++ fotg210_set_epnstall(ep);
++ ep->stall = 1;
++ if (wedge)
++ ep->wedged = 1;
++ } else {
++ fotg210_reset_tseq(fotg210, ep->epnum);
++ fotg210_clear_epnstall(ep);
++ ep->stall = 0;
++ ep->wedged = 0;
++ if (!list_empty(&ep->queue))
++ fotg210_enable_fifo_int(ep);
++ }
++
++ spin_unlock_irqrestore(&ep->fotg210->lock, flags);
++ return 0;
++}
++
++static int fotg210_ep_set_halt(struct usb_ep *_ep, int value)
++{
++ return fotg210_set_halt_and_wedge(_ep, value, 0);
++}
++
++static int fotg210_ep_set_wedge(struct usb_ep *_ep)
++{
++ return fotg210_set_halt_and_wedge(_ep, 1, 1);
++}
++
++static void fotg210_ep_fifo_flush(struct usb_ep *_ep)
++{
++}
++
++static const struct usb_ep_ops fotg210_ep_ops = {
++ .enable = fotg210_ep_enable,
++ .disable = fotg210_ep_disable,
++
++ .alloc_request = fotg210_ep_alloc_request,
++ .free_request = fotg210_ep_free_request,
++
++ .queue = fotg210_ep_queue,
++ .dequeue = fotg210_ep_dequeue,
++
++ .set_halt = fotg210_ep_set_halt,
++ .fifo_flush = fotg210_ep_fifo_flush,
++ .set_wedge = fotg210_ep_set_wedge,
++};
++
++static void fotg210_clear_tx0byte(struct fotg210_udc *fotg210)
++{
++ u32 value = ioread32(fotg210->reg + FOTG210_TX0BYTE);
++
++ value &= ~(TX0BYTE_EP1 | TX0BYTE_EP2 | TX0BYTE_EP3
++ | TX0BYTE_EP4);
++ iowrite32(value, fotg210->reg + FOTG210_TX0BYTE);
++}
++
++static void fotg210_clear_rx0byte(struct fotg210_udc *fotg210)
++{
++ u32 value = ioread32(fotg210->reg + FOTG210_RX0BYTE);
++
++ value &= ~(RX0BYTE_EP1 | RX0BYTE_EP2 | RX0BYTE_EP3
++ | RX0BYTE_EP4);
++ iowrite32(value, fotg210->reg + FOTG210_RX0BYTE);
++}
++
++/* read 8-byte setup packet only */
++static void fotg210_rdsetupp(struct fotg210_udc *fotg210,
++ u8 *buffer)
++{
++ int i = 0;
++ u8 *tmp = buffer;
++ u32 data;
++ u32 length = 8;
++
++ iowrite32(DMATFNR_ACC_CXF, fotg210->reg + FOTG210_DMATFNR);
++
++ for (i = (length >> 2); i > 0; i--) {
++ data = ioread32(fotg210->reg + FOTG210_CXPORT);
++ *tmp = data & 0xFF;
++ *(tmp + 1) = (data >> 8) & 0xFF;
++ *(tmp + 2) = (data >> 16) & 0xFF;
++ *(tmp + 3) = (data >> 24) & 0xFF;
++ tmp = tmp + 4;
++ }
++
++ switch (length % 4) {
++ case 1:
++ data = ioread32(fotg210->reg + FOTG210_CXPORT);
++ *tmp = data & 0xFF;
++ break;
++ case 2:
++ data = ioread32(fotg210->reg + FOTG210_CXPORT);
++ *tmp = data & 0xFF;
++ *(tmp + 1) = (data >> 8) & 0xFF;
++ break;
++ case 3:
++ data = ioread32(fotg210->reg + FOTG210_CXPORT);
++ *tmp = data & 0xFF;
++ *(tmp + 1) = (data >> 8) & 0xFF;
++ *(tmp + 2) = (data >> 16) & 0xFF;
++ break;
++ default:
++ break;
++ }
++
++ iowrite32(DMATFNR_DISDMA, fotg210->reg + FOTG210_DMATFNR);
++}
++
++static void fotg210_set_configuration(struct fotg210_udc *fotg210)
++{
++ u32 value = ioread32(fotg210->reg + FOTG210_DAR);
++
++ value |= DAR_AFT_CONF;
++ iowrite32(value, fotg210->reg + FOTG210_DAR);
++}
++
++static void fotg210_set_dev_addr(struct fotg210_udc *fotg210, u32 addr)
++{
++ u32 value = ioread32(fotg210->reg + FOTG210_DAR);
++
++ value |= (addr & 0x7F);
++ iowrite32(value, fotg210->reg + FOTG210_DAR);
++}
++
++static void fotg210_set_cxstall(struct fotg210_udc *fotg210)
++{
++ u32 value = ioread32(fotg210->reg + FOTG210_DCFESR);
++
++ value |= DCFESR_CX_STL;
++ iowrite32(value, fotg210->reg + FOTG210_DCFESR);
++}
++
++static void fotg210_request_error(struct fotg210_udc *fotg210)
++{
++ fotg210_set_cxstall(fotg210);
++ pr_err("request error!!\n");
++}
++
++static void fotg210_set_address(struct fotg210_udc *fotg210,
++ struct usb_ctrlrequest *ctrl)
++{
++ if (le16_to_cpu(ctrl->wValue) >= 0x0100) {
++ fotg210_request_error(fotg210);
++ } else {
++ fotg210_set_dev_addr(fotg210, le16_to_cpu(ctrl->wValue));
++ fotg210_set_cxdone(fotg210);
++ }
++}
++
++static void fotg210_set_feature(struct fotg210_udc *fotg210,
++ struct usb_ctrlrequest *ctrl)
++{
++ switch (ctrl->bRequestType & USB_RECIP_MASK) {
++ case USB_RECIP_DEVICE:
++ fotg210_set_cxdone(fotg210);
++ break;
++ case USB_RECIP_INTERFACE:
++ fotg210_set_cxdone(fotg210);
++ break;
++ case USB_RECIP_ENDPOINT: {
++ u8 epnum;
++ epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
++ if (epnum)
++ fotg210_set_epnstall(fotg210->ep[epnum]);
++ else
++ fotg210_set_cxstall(fotg210);
++ fotg210_set_cxdone(fotg210);
++ }
++ break;
++ default:
++ fotg210_request_error(fotg210);
++ break;
++ }
++}
++
++static void fotg210_clear_feature(struct fotg210_udc *fotg210,
++ struct usb_ctrlrequest *ctrl)
++{
++ struct fotg210_ep *ep =
++ fotg210->ep[ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK];
++
++ switch (ctrl->bRequestType & USB_RECIP_MASK) {
++ case USB_RECIP_DEVICE:
++ fotg210_set_cxdone(fotg210);
++ break;
++ case USB_RECIP_INTERFACE:
++ fotg210_set_cxdone(fotg210);
++ break;
++ case USB_RECIP_ENDPOINT:
++ if (ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK) {
++ if (ep->wedged) {
++ fotg210_set_cxdone(fotg210);
++ break;
++ }
++ if (ep->stall)
++ fotg210_set_halt_and_wedge(&ep->ep, 0, 0);
++ }
++ fotg210_set_cxdone(fotg210);
++ break;
++ default:
++ fotg210_request_error(fotg210);
++ break;
++ }
++}
++
++static int fotg210_is_epnstall(struct fotg210_ep *ep)
++{
++ struct fotg210_udc *fotg210 = ep->fotg210;
++ u32 value;
++ void __iomem *reg;
++
++ reg = (ep->dir_in) ?
++ fotg210->reg + FOTG210_INEPMPSR(ep->epnum) :
++ fotg210->reg + FOTG210_OUTEPMPSR(ep->epnum);
++ value = ioread32(reg);
++ return value & INOUTEPMPSR_STL_EP ? 1 : 0;
++}
++
++/* For EP0 requests triggered by this driver (currently GET_STATUS response) */
++static void fotg210_ep0_complete(struct usb_ep *_ep, struct usb_request *req)
++{
++ struct fotg210_ep *ep;
++ struct fotg210_udc *fotg210;
++
++ ep = container_of(_ep, struct fotg210_ep, ep);
++ fotg210 = ep->fotg210;
++
++ if (req->status || req->actual != req->length) {
++ dev_warn(&fotg210->gadget.dev, "EP0 request failed: %d\n", req->status);
++ }
++}
++
++static void fotg210_get_status(struct fotg210_udc *fotg210,
++ struct usb_ctrlrequest *ctrl)
++{
++ u8 epnum;
++
++ switch (ctrl->bRequestType & USB_RECIP_MASK) {
++ case USB_RECIP_DEVICE:
++ fotg210->ep0_data = cpu_to_le16(1 << USB_DEVICE_SELF_POWERED);
++ break;
++ case USB_RECIP_INTERFACE:
++ fotg210->ep0_data = cpu_to_le16(0);
++ break;
++ case USB_RECIP_ENDPOINT:
++ epnum = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
++ if (epnum)
++ fotg210->ep0_data =
++ cpu_to_le16(fotg210_is_epnstall(fotg210->ep[epnum])
++ << USB_ENDPOINT_HALT);
++ else
++ fotg210_request_error(fotg210);
++ break;
++
++ default:
++ fotg210_request_error(fotg210);
++ return; /* exit */
++ }
++
++ fotg210->ep0_req->buf = &fotg210->ep0_data;
++ fotg210->ep0_req->length = 2;
++
++ spin_unlock(&fotg210->lock);
++ fotg210_ep_queue(fotg210->gadget.ep0, fotg210->ep0_req, GFP_ATOMIC);
++ spin_lock(&fotg210->lock);
++}
++
++static int fotg210_setup_packet(struct fotg210_udc *fotg210,
++ struct usb_ctrlrequest *ctrl)
++{
++ u8 *p = (u8 *)ctrl;
++ u8 ret = 0;
++
++ fotg210_rdsetupp(fotg210, p);
++
++ fotg210->ep[0]->dir_in = ctrl->bRequestType & USB_DIR_IN;
++
++ if (fotg210->gadget.speed == USB_SPEED_UNKNOWN) {
++ u32 value = ioread32(fotg210->reg + FOTG210_DMCR);
++ fotg210->gadget.speed = value & DMCR_HS_EN ?
++ USB_SPEED_HIGH : USB_SPEED_FULL;
++ }
++
++ /* check request */
++ if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
++ switch (ctrl->bRequest) {
++ case USB_REQ_GET_STATUS:
++ fotg210_get_status(fotg210, ctrl);
++ break;
++ case USB_REQ_CLEAR_FEATURE:
++ fotg210_clear_feature(fotg210, ctrl);
++ break;
++ case USB_REQ_SET_FEATURE:
++ fotg210_set_feature(fotg210, ctrl);
++ break;
++ case USB_REQ_SET_ADDRESS:
++ fotg210_set_address(fotg210, ctrl);
++ break;
++ case USB_REQ_SET_CONFIGURATION:
++ fotg210_set_configuration(fotg210);
++ ret = 1;
++ break;
++ default:
++ ret = 1;
++ break;
++ }
++ } else {
++ ret = 1;
++ }
++
++ return ret;
++}
++
++static void fotg210_ep0out(struct fotg210_udc *fotg210)
++{
++ struct fotg210_ep *ep = fotg210->ep[0];
++
++ if (!list_empty(&ep->queue) && !ep->dir_in) {
++ struct fotg210_request *req;
++
++ req = list_first_entry(&ep->queue,
++ struct fotg210_request, queue);
++
++ if (req->req.length)
++ fotg210_start_dma(ep, req);
++
++ if ((req->req.length - req->req.actual) < ep->ep.maxpacket)
++ fotg210_done(ep, req, 0);
++ } else {
++ pr_err("%s : empty queue\n", __func__);
++ }
++}
++
++static void fotg210_ep0in(struct fotg210_udc *fotg210)
++{
++ struct fotg210_ep *ep = fotg210->ep[0];
++
++ if ((!list_empty(&ep->queue)) && (ep->dir_in)) {
++ struct fotg210_request *req;
++
++ req = list_entry(ep->queue.next,
++ struct fotg210_request, queue);
++
++ if (req->req.length)
++ fotg210_start_dma(ep, req);
++
++ if (req->req.actual == req->req.length)
++ fotg210_done(ep, req, 0);
++ } else {
++ fotg210_set_cxdone(fotg210);
++ }
++}
++
++static void fotg210_clear_comabt_int(struct fotg210_udc *fotg210)
++{
++ u32 value = ioread32(fotg210->reg + FOTG210_DISGR0);
++
++ value &= ~DISGR0_CX_COMABT_INT;
++ iowrite32(value, fotg210->reg + FOTG210_DISGR0);
++}
++
++static void fotg210_in_fifo_handler(struct fotg210_ep *ep)
++{
++ struct fotg210_request *req = list_entry(ep->queue.next,
++ struct fotg210_request, queue);
++
++ if (req->req.length)
++ fotg210_start_dma(ep, req);
++ fotg210_done(ep, req, 0);
++}
++
++static void fotg210_out_fifo_handler(struct fotg210_ep *ep)
++{
++ struct fotg210_request *req = list_entry(ep->queue.next,
++ struct fotg210_request, queue);
++ int disgr1 = ioread32(ep->fotg210->reg + FOTG210_DISGR1);
++
++ fotg210_start_dma(ep, req);
++
++ /* Complete the request when it's full or a short packet arrived.
++ * Like other drivers, short_not_ok isn't handled.
++ */
++
++ if (req->req.length == req->req.actual ||
++ (disgr1 & DISGR1_SPK_INT(ep->epnum - 1)))
++ fotg210_done(ep, req, 0);
++}
++
++static irqreturn_t fotg210_irq(int irq, void *_fotg210)
++{
++ struct fotg210_udc *fotg210 = _fotg210;
++ u32 int_grp = ioread32(fotg210->reg + FOTG210_DIGR);
++ u32 int_msk = ioread32(fotg210->reg + FOTG210_DMIGR);
++
++ int_grp &= ~int_msk;
++
++ spin_lock(&fotg210->lock);
++
++ if (int_grp & DIGR_INT_G2) {
++ void __iomem *reg = fotg210->reg + FOTG210_DISGR2;
++ u32 int_grp2 = ioread32(reg);
++ u32 int_msk2 = ioread32(fotg210->reg + FOTG210_DMISGR2);
++ u32 value;
++
++ int_grp2 &= ~int_msk2;
++
++ if (int_grp2 & DISGR2_USBRST_INT) {
++ usb_gadget_udc_reset(&fotg210->gadget,
++ fotg210->driver);
++ value = ioread32(reg);
++ value &= ~DISGR2_USBRST_INT;
++ iowrite32(value, reg);
++ pr_info("fotg210 udc reset\n");
++ }
++ if (int_grp2 & DISGR2_SUSP_INT) {
++ value = ioread32(reg);
++ value &= ~DISGR2_SUSP_INT;
++ iowrite32(value, reg);
++ pr_info("fotg210 udc suspend\n");
++ }
++ if (int_grp2 & DISGR2_RESM_INT) {
++ value = ioread32(reg);
++ value &= ~DISGR2_RESM_INT;
++ iowrite32(value, reg);
++ pr_info("fotg210 udc resume\n");
++ }
++ if (int_grp2 & DISGR2_ISO_SEQ_ERR_INT) {
++ value = ioread32(reg);
++ value &= ~DISGR2_ISO_SEQ_ERR_INT;
++ iowrite32(value, reg);
++ pr_info("fotg210 iso sequence error\n");
++ }
++ if (int_grp2 & DISGR2_ISO_SEQ_ABORT_INT) {
++ value = ioread32(reg);
++ value &= ~DISGR2_ISO_SEQ_ABORT_INT;
++ iowrite32(value, reg);
++ pr_info("fotg210 iso sequence abort\n");
++ }
++ if (int_grp2 & DISGR2_TX0BYTE_INT) {
++ fotg210_clear_tx0byte(fotg210);
++ value = ioread32(reg);
++ value &= ~DISGR2_TX0BYTE_INT;
++ iowrite32(value, reg);
++ pr_info("fotg210 transferred 0 byte\n");
++ }
++ if (int_grp2 & DISGR2_RX0BYTE_INT) {
++ fotg210_clear_rx0byte(fotg210);
++ value = ioread32(reg);
++ value &= ~DISGR2_RX0BYTE_INT;
++ iowrite32(value, reg);
++ pr_info("fotg210 received 0 byte\n");
++ }
++ if (int_grp2 & DISGR2_DMA_ERROR) {
++ value = ioread32(reg);
++ value &= ~DISGR2_DMA_ERROR;
++ iowrite32(value, reg);
++ }
++ }
++
++ if (int_grp & DIGR_INT_G0) {
++ void __iomem *reg = fotg210->reg + FOTG210_DISGR0;
++ u32 int_grp0 = ioread32(reg);
++ u32 int_msk0 = ioread32(fotg210->reg + FOTG210_DMISGR0);
++ struct usb_ctrlrequest ctrl;
++
++ int_grp0 &= ~int_msk0;
++
++ /* the highest priority in this source register */
++ if (int_grp0 & DISGR0_CX_COMABT_INT) {
++ fotg210_clear_comabt_int(fotg210);
++ pr_info("fotg210 CX command abort\n");
++ }
++
++ if (int_grp0 & DISGR0_CX_SETUP_INT) {
++ if (fotg210_setup_packet(fotg210, &ctrl)) {
++ spin_unlock(&fotg210->lock);
++ if (fotg210->driver->setup(&fotg210->gadget,
++ &ctrl) < 0)
++ fotg210_set_cxstall(fotg210);
++ spin_lock(&fotg210->lock);
++ }
++ }
++ if (int_grp0 & DISGR0_CX_COMEND_INT)
++ pr_info("fotg210 cmd end\n");
++
++ if (int_grp0 & DISGR0_CX_IN_INT)
++ fotg210_ep0in(fotg210);
++
++ if (int_grp0 & DISGR0_CX_OUT_INT)
++ fotg210_ep0out(fotg210);
++
++ if (int_grp0 & DISGR0_CX_COMFAIL_INT) {
++ fotg210_set_cxstall(fotg210);
++ pr_info("fotg210 ep0 fail\n");
++ }
++ }
++
++ if (int_grp & DIGR_INT_G1) {
++ void __iomem *reg = fotg210->reg + FOTG210_DISGR1;
++ u32 int_grp1 = ioread32(reg);
++ u32 int_msk1 = ioread32(fotg210->reg + FOTG210_DMISGR1);
++ int fifo;
++
++ int_grp1 &= ~int_msk1;
++
++ for (fifo = 0; fifo < FOTG210_MAX_FIFO_NUM; fifo++) {
++ if (int_grp1 & DISGR1_IN_INT(fifo))
++ fotg210_in_fifo_handler(fotg210->ep[fifo + 1]);
++
++ if ((int_grp1 & DISGR1_OUT_INT(fifo)) ||
++ (int_grp1 & DISGR1_SPK_INT(fifo)))
++ fotg210_out_fifo_handler(fotg210->ep[fifo + 1]);
++ }
++ }
++
++ spin_unlock(&fotg210->lock);
++
++ return IRQ_HANDLED;
++}
++
++static void fotg210_disable_unplug(struct fotg210_udc *fotg210)
++{
++ u32 reg = ioread32(fotg210->reg + FOTG210_PHYTMSR);
++
++ reg &= ~PHYTMSR_UNPLUG;
++ iowrite32(reg, fotg210->reg + FOTG210_PHYTMSR);
++}
++
++static int fotg210_udc_start(struct usb_gadget *g,
++ struct usb_gadget_driver *driver)
++{
++ struct fotg210_udc *fotg210 = gadget_to_fotg210(g);
++ u32 value;
++
++ /* hook up the driver */
++ fotg210->driver = driver;
++
++ /* enable device global interrupt */
++ value = ioread32(fotg210->reg + FOTG210_DMCR);
++ value |= DMCR_GLINT_EN;
++ iowrite32(value, fotg210->reg + FOTG210_DMCR);
++
++ return 0;
++}
++
++static void fotg210_init(struct fotg210_udc *fotg210)
++{
++ u32 value;
++
++ /* disable global interrupt and set int polarity to active high */
++ iowrite32(GMIR_MHC_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
++ fotg210->reg + FOTG210_GMIR);
++
++ /* disable device global interrupt */
++ value = ioread32(fotg210->reg + FOTG210_DMCR);
++ value &= ~DMCR_GLINT_EN;
++ iowrite32(value, fotg210->reg + FOTG210_DMCR);
++
++ /* enable only grp2 irqs we handle */
++ iowrite32(~(DISGR2_DMA_ERROR | DISGR2_RX0BYTE_INT | DISGR2_TX0BYTE_INT
++ | DISGR2_ISO_SEQ_ABORT_INT | DISGR2_ISO_SEQ_ERR_INT
++ | DISGR2_RESM_INT | DISGR2_SUSP_INT | DISGR2_USBRST_INT),
++ fotg210->reg + FOTG210_DMISGR2);
++
++ /* disable all fifo interrupt */
++ iowrite32(~(u32)0, fotg210->reg + FOTG210_DMISGR1);
++
++ /* disable cmd end */
++ value = ioread32(fotg210->reg + FOTG210_DMISGR0);
++ value |= DMISGR0_MCX_COMEND;
++ iowrite32(value, fotg210->reg + FOTG210_DMISGR0);
++}
++
++static int fotg210_udc_stop(struct usb_gadget *g)
++{
++ struct fotg210_udc *fotg210 = gadget_to_fotg210(g);
++ unsigned long flags;
++
++ spin_lock_irqsave(&fotg210->lock, flags);
++
++ fotg210_init(fotg210);
++ fotg210->driver = NULL;
++
++ spin_unlock_irqrestore(&fotg210->lock, flags);
++
++ return 0;
++}
++
++static const struct usb_gadget_ops fotg210_gadget_ops = {
++ .udc_start = fotg210_udc_start,
++ .udc_stop = fotg210_udc_stop,
++};
++
++static int fotg210_udc_remove(struct platform_device *pdev)
++{
++ struct fotg210_udc *fotg210 = platform_get_drvdata(pdev);
++ int i;
++
++ usb_del_gadget_udc(&fotg210->gadget);
++ iounmap(fotg210->reg);
++ free_irq(platform_get_irq(pdev, 0), fotg210);
++
++ fotg210_ep_free_request(&fotg210->ep[0]->ep, fotg210->ep0_req);
++ for (i = 0; i < FOTG210_MAX_NUM_EP; i++)
++ kfree(fotg210->ep[i]);
++ kfree(fotg210);
++
++ return 0;
++}
++
++static int fotg210_udc_probe(struct platform_device *pdev)
++{
++ struct resource *res, *ires;
++ struct fotg210_udc *fotg210 = NULL;
++ struct fotg210_ep *_ep[FOTG210_MAX_NUM_EP];
++ int ret = 0;
++ int i;
++
++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ if (!res) {
++ pr_err("platform_get_resource error.\n");
++ return -ENODEV;
++ }
++
++ ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
++ if (!ires) {
++ pr_err("platform_get_resource IORESOURCE_IRQ error.\n");
++ return -ENODEV;
++ }
++
++ ret = -ENOMEM;
++
++ /* initialize udc */
++ fotg210 = kzalloc(sizeof(struct fotg210_udc), GFP_KERNEL);
++ if (fotg210 == NULL)
++ goto err;
++
++ for (i = 0; i < FOTG210_MAX_NUM_EP; i++) {
++ _ep[i] = kzalloc(sizeof(struct fotg210_ep), GFP_KERNEL);
++ if (_ep[i] == NULL)
++ goto err_alloc;
++ fotg210->ep[i] = _ep[i];
++ }
++
++ fotg210->reg = ioremap(res->start, resource_size(res));
++ if (fotg210->reg == NULL) {
++ pr_err("ioremap error.\n");
++ goto err_alloc;
++ }
++
++ spin_lock_init(&fotg210->lock);
++
++ platform_set_drvdata(pdev, fotg210);
++
++ fotg210->gadget.ops = &fotg210_gadget_ops;
++
++ fotg210->gadget.max_speed = USB_SPEED_HIGH;
++ fotg210->gadget.dev.parent = &pdev->dev;
++ fotg210->gadget.dev.dma_mask = pdev->dev.dma_mask;
++ fotg210->gadget.name = udc_name;
++
++ INIT_LIST_HEAD(&fotg210->gadget.ep_list);
++
++ for (i = 0; i < FOTG210_MAX_NUM_EP; i++) {
++ struct fotg210_ep *ep = fotg210->ep[i];
++
++ if (i) {
++ INIT_LIST_HEAD(&fotg210->ep[i]->ep.ep_list);
++ list_add_tail(&fotg210->ep[i]->ep.ep_list,
++ &fotg210->gadget.ep_list);
++ }
++ ep->fotg210 = fotg210;
++ INIT_LIST_HEAD(&ep->queue);
++ ep->ep.name = fotg210_ep_name[i];
++ ep->ep.ops = &fotg210_ep_ops;
++ usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
++
++ if (i == 0) {
++ ep->ep.caps.type_control = true;
++ } else {
++ ep->ep.caps.type_iso = true;
++ ep->ep.caps.type_bulk = true;
++ ep->ep.caps.type_int = true;
++ }
++
++ ep->ep.caps.dir_in = true;
++ ep->ep.caps.dir_out = true;
++ }
++ usb_ep_set_maxpacket_limit(&fotg210->ep[0]->ep, 0x40);
++ fotg210->gadget.ep0 = &fotg210->ep[0]->ep;
++ INIT_LIST_HEAD(&fotg210->gadget.ep0->ep_list);
++
++ fotg210->ep0_req = fotg210_ep_alloc_request(&fotg210->ep[0]->ep,
++ GFP_KERNEL);
++ if (fotg210->ep0_req == NULL)
++ goto err_map;
++
++ fotg210->ep0_req->complete = fotg210_ep0_complete;
++
++ fotg210_init(fotg210);
++
++ fotg210_disable_unplug(fotg210);
++
++ ret = request_irq(ires->start, fotg210_irq, IRQF_SHARED,
++ udc_name, fotg210);
++ if (ret < 0) {
++ pr_err("request_irq error (%d)\n", ret);
++ goto err_req;
++ }
++
++ ret = usb_add_gadget_udc(&pdev->dev, &fotg210->gadget);
++ if (ret)
++ goto err_add_udc;
++
++ dev_info(&pdev->dev, "version %s\n", DRIVER_VERSION);
++
++ return 0;
++
++err_add_udc:
++ free_irq(ires->start, fotg210);
++
++err_req:
++ fotg210_ep_free_request(&fotg210->ep[0]->ep, fotg210->ep0_req);
++
++err_map:
++ iounmap(fotg210->reg);
++
++err_alloc:
++ for (i = 0; i < FOTG210_MAX_NUM_EP; i++)
++ kfree(fotg210->ep[i]);
++ kfree(fotg210);
++
++err:
++ return ret;
++}
++
++static struct platform_driver fotg210_driver = {
++ .driver = {
++ .name = udc_name,
++ },
++ .probe = fotg210_udc_probe,
++ .remove = fotg210_udc_remove,
++};
++
++module_platform_driver(fotg210_driver);
++
++MODULE_AUTHOR("Yuan-Hsin Chen, Feng-Hsin Chiang <john453@faraday-tech.com>");
++MODULE_LICENSE("GPL");
++MODULE_DESCRIPTION(DRIVER_DESC);
+--- a/drivers/usb/gadget/udc/Kconfig
++++ b/drivers/usb/gadget/udc/Kconfig
+@@ -108,17 +108,6 @@ config USB_FUSB300
+ help
+ Faraday usb device controller FUSB300 driver
+
+-config USB_FOTG210_UDC
+- depends on HAS_DMA
+- tristate "Faraday FOTG210 USB Peripheral Controller"
+- help
+- Faraday USB2.0 OTG controller which can be configured as
+- high speed or full speed USB device. This driver supppors
+- Bulk Transfer so far.
+-
+- Say "y" to link the driver statically, or "m" to build a
+- dynamically linked module called "fotg210_udc".
+-
+ config USB_GR_UDC
+ tristate "Aeroflex Gaisler GRUSBDC USB Peripheral Controller Driver"
+ depends on HAS_DMA
+--- a/drivers/usb/gadget/udc/Makefile
++++ b/drivers/usb/gadget/udc/Makefile
+@@ -34,7 +34,6 @@ obj-$(CONFIG_USB_EG20T) += pch_udc.o
+ obj-$(CONFIG_USB_MV_UDC) += mv_udc.o
+ mv_udc-y := mv_udc_core.o
+ obj-$(CONFIG_USB_FUSB300) += fusb300_udc.o
+-obj-$(CONFIG_USB_FOTG210_UDC) += fotg210-udc.o
+ obj-$(CONFIG_USB_MV_U3D) += mv_u3d_core.o
+ obj-$(CONFIG_USB_GR_UDC) += gr_udc.o
+ obj-$(CONFIG_USB_GADGET_XILINX) += udc-xilinx.o
+--- a/drivers/usb/host/Kconfig
++++ b/drivers/usb/host/Kconfig
+@@ -389,17 +389,6 @@ config USB_ISP1362_HCD
+ To compile this driver as a module, choose M here: the
+ module will be called isp1362-hcd.
+
+-config USB_FOTG210_HCD
+- tristate "FOTG210 HCD support"
+- depends on USB && HAS_DMA && HAS_IOMEM
+- help
+- Faraday FOTG210 is an OTG controller which can be configured as
+- an USB2.0 host. It is designed to meet USB2.0 EHCI specification
+- with minor modification.
+-
+- To compile this driver as a module, choose M here: the
+- module will be called fotg210-hcd.
+-
+ config USB_MAX3421_HCD
+ tristate "MAX3421 HCD (USB-over-SPI) support"
+ depends on USB && SPI
+--- a/drivers/usb/host/Makefile
++++ b/drivers/usb/host/Makefile
+@@ -84,6 +84,5 @@ obj-$(CONFIG_USB_EHCI_FSL) += ehci-fsl.o
+ obj-$(CONFIG_USB_EHCI_MV) += ehci-mv.o
+ obj-$(CONFIG_USB_HCD_BCMA) += bcma-hcd.o
+ obj-$(CONFIG_USB_HCD_SSB) += ssb-hcd.o
+-obj-$(CONFIG_USB_FOTG210_HCD) += fotg210-hcd.o
+ obj-$(CONFIG_USB_MAX3421_HCD) += max3421-hcd.o
+ obj-$(CONFIG_USB_XEN_HCD) += xen-hcd.o
+--- /dev/null
++++ b/drivers/usb/fotg210/fotg210-hcd.h
+@@ -0,0 +1,688 @@
++/* SPDX-License-Identifier: GPL-2.0 */
++#ifndef __LINUX_FOTG210_H
++#define __LINUX_FOTG210_H
++
++#include <linux/usb/ehci-dbgp.h>
++
++/* definitions used for the EHCI driver */
++
++/*
++ * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
++ * __leXX (normally) or __beXX (given FOTG210_BIG_ENDIAN_DESC), depending on
++ * the host controller implementation.
++ *
++ * To facilitate the strongest possible byte-order checking from "sparse"
++ * and so on, we use __leXX unless that's not practical.
++ */
++#define __hc32 __le32
++#define __hc16 __le16
++
++/* statistics can be kept for tuning/monitoring */
++struct fotg210_stats {
++ /* irq usage */
++ unsigned long normal;
++ unsigned long error;
++ unsigned long iaa;
++ unsigned long lost_iaa;
++
++ /* termination of urbs from core */
++ unsigned long complete;
++ unsigned long unlink;
++};
++
++/* fotg210_hcd->lock guards shared data against other CPUs:
++ * fotg210_hcd: async, unlink, periodic (and shadow), ...
++ * usb_host_endpoint: hcpriv
++ * fotg210_qh: qh_next, qtd_list
++ * fotg210_qtd: qtd_list
++ *
++ * Also, hold this lock when talking to HC registers or
++ * when updating hw_* fields in shared qh/qtd/... structures.
++ */
++
++#define FOTG210_MAX_ROOT_PORTS 1 /* see HCS_N_PORTS */
++
++/*
++ * fotg210_rh_state values of FOTG210_RH_RUNNING or above mean that the
++ * controller may be doing DMA. Lower values mean there's no DMA.
++ */
++enum fotg210_rh_state {
++ FOTG210_RH_HALTED,
++ FOTG210_RH_SUSPENDED,
++ FOTG210_RH_RUNNING,
++ FOTG210_RH_STOPPING
++};
++
++/*
++ * Timer events, ordered by increasing delay length.
++ * Always update event_delays_ns[] and event_handlers[] (defined in
++ * ehci-timer.c) in parallel with this list.
++ */
++enum fotg210_hrtimer_event {
++ FOTG210_HRTIMER_POLL_ASS, /* Poll for async schedule off */
++ FOTG210_HRTIMER_POLL_PSS, /* Poll for periodic schedule off */
++ FOTG210_HRTIMER_POLL_DEAD, /* Wait for dead controller to stop */
++ FOTG210_HRTIMER_UNLINK_INTR, /* Wait for interrupt QH unlink */
++ FOTG210_HRTIMER_FREE_ITDS, /* Wait for unused iTDs and siTDs */
++ FOTG210_HRTIMER_ASYNC_UNLINKS, /* Unlink empty async QHs */
++ FOTG210_HRTIMER_IAA_WATCHDOG, /* Handle lost IAA interrupts */
++ FOTG210_HRTIMER_DISABLE_PERIODIC, /* Wait to disable periodic sched */
++ FOTG210_HRTIMER_DISABLE_ASYNC, /* Wait to disable async sched */
++ FOTG210_HRTIMER_IO_WATCHDOG, /* Check for missing IRQs */
++ FOTG210_HRTIMER_NUM_EVENTS /* Must come last */
++};
++#define FOTG210_HRTIMER_NO_EVENT 99
++
++struct fotg210_hcd { /* one per controller */
++ /* timing support */
++ enum fotg210_hrtimer_event next_hrtimer_event;
++ unsigned enabled_hrtimer_events;
++ ktime_t hr_timeouts[FOTG210_HRTIMER_NUM_EVENTS];
++ struct hrtimer hrtimer;
++
++ int PSS_poll_count;
++ int ASS_poll_count;
++ int died_poll_count;
++
++ /* glue to PCI and HCD framework */
++ struct fotg210_caps __iomem *caps;
++ struct fotg210_regs __iomem *regs;
++ struct ehci_dbg_port __iomem *debug;
++
++ __u32 hcs_params; /* cached register copy */
++ spinlock_t lock;
++ enum fotg210_rh_state rh_state;
++
++ /* general schedule support */
++ bool scanning:1;
++ bool need_rescan:1;
++ bool intr_unlinking:1;
++ bool async_unlinking:1;
++ bool shutdown:1;
++ struct fotg210_qh *qh_scan_next;
++
++ /* async schedule support */
++ struct fotg210_qh *async;
++ struct fotg210_qh *dummy; /* For AMD quirk use */
++ struct fotg210_qh *async_unlink;
++ struct fotg210_qh *async_unlink_last;
++ struct fotg210_qh *async_iaa;
++ unsigned async_unlink_cycle;
++ unsigned async_count; /* async activity count */
++
++ /* periodic schedule support */
++#define DEFAULT_I_TDPS 1024 /* some HCs can do less */
++ unsigned periodic_size;
++ __hc32 *periodic; /* hw periodic table */
++ dma_addr_t periodic_dma;
++ struct list_head intr_qh_list;
++ unsigned i_thresh; /* uframes HC might cache */
++
++ union fotg210_shadow *pshadow; /* mirror hw periodic table */
++ struct fotg210_qh *intr_unlink;
++ struct fotg210_qh *intr_unlink_last;
++ unsigned intr_unlink_cycle;
++ unsigned now_frame; /* frame from HC hardware */
++ unsigned next_frame; /* scan periodic, start here */
++ unsigned intr_count; /* intr activity count */
++ unsigned isoc_count; /* isoc activity count */
++ unsigned periodic_count; /* periodic activity count */
++ /* max periodic time per uframe */
++ unsigned uframe_periodic_max;
++
++
++ /* list of itds completed while now_frame was still active */
++ struct list_head cached_itd_list;
++ struct fotg210_itd *last_itd_to_free;
++
++ /* per root hub port */
++ unsigned long reset_done[FOTG210_MAX_ROOT_PORTS];
++
++ /* bit vectors (one bit per port)
++ * which ports were already suspended at the start of a bus suspend
++ */
++ unsigned long bus_suspended;
++
++ /* which ports are edicated to the companion controller */
++ unsigned long companion_ports;
++
++ /* which ports are owned by the companion during a bus suspend */
++ unsigned long owned_ports;
++
++ /* which ports have the change-suspend feature turned on */
++ unsigned long port_c_suspend;
++
++ /* which ports are suspended */
++ unsigned long suspended_ports;
++
++ /* which ports have started to resume */
++ unsigned long resuming_ports;
++
++ /* per-HC memory pools (could be per-bus, but ...) */
++ struct dma_pool *qh_pool; /* qh per active urb */
++ struct dma_pool *qtd_pool; /* one or more per qh */
++ struct dma_pool *itd_pool; /* itd per iso urb */
++
++ unsigned random_frame;
++ unsigned long next_statechange;
++ ktime_t last_periodic_enable;
++ u32 command;
++
++ /* SILICON QUIRKS */
++ unsigned need_io_watchdog:1;
++ unsigned fs_i_thresh:1; /* Intel iso scheduling */
++
++ u8 sbrn; /* packed release number */
++
++ /* irq statistics */
++#ifdef FOTG210_STATS
++ struct fotg210_stats stats;
++# define INCR(x) ((x)++)
++#else
++# define INCR(x) do {} while (0)
++#endif
++
++ /* silicon clock */
++ struct clk *pclk;
++};
++
++/* convert between an HCD pointer and the corresponding FOTG210_HCD */
++static inline struct fotg210_hcd *hcd_to_fotg210(struct usb_hcd *hcd)
++{
++ return (struct fotg210_hcd *)(hcd->hcd_priv);
++}
++static inline struct usb_hcd *fotg210_to_hcd(struct fotg210_hcd *fotg210)
++{
++ return container_of((void *) fotg210, struct usb_hcd, hcd_priv);
++}
++
++/*-------------------------------------------------------------------------*/
++
++/* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
++
++/* Section 2.2 Host Controller Capability Registers */
++struct fotg210_caps {
++ /* these fields are specified as 8 and 16 bit registers,
++ * but some hosts can't perform 8 or 16 bit PCI accesses.
++ * some hosts treat caplength and hciversion as parts of a 32-bit
++ * register, others treat them as two separate registers, this
++ * affects the memory map for big endian controllers.
++ */
++ u32 hc_capbase;
++#define HC_LENGTH(fotg210, p) (0x00ff&((p) >> /* bits 7:0 / offset 00h */ \
++ (fotg210_big_endian_capbase(fotg210) ? 24 : 0)))
++#define HC_VERSION(fotg210, p) (0xffff&((p) >> /* bits 31:16 / offset 02h */ \
++ (fotg210_big_endian_capbase(fotg210) ? 0 : 16)))
++ u32 hcs_params; /* HCSPARAMS - offset 0x4 */
++#define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
++
++ u32 hcc_params; /* HCCPARAMS - offset 0x8 */
++#define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
++#define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
++ u8 portroute[8]; /* nibbles for routing - offset 0xC */
++};
++
++
++/* Section 2.3 Host Controller Operational Registers */
++struct fotg210_regs {
++
++ /* USBCMD: offset 0x00 */
++ u32 command;
++
++/* EHCI 1.1 addendum */
++/* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
++#define CMD_PARK (1<<11) /* enable "park" on async qh */
++#define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
++#define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
++#define CMD_ASE (1<<5) /* async schedule enable */
++#define CMD_PSE (1<<4) /* periodic schedule enable */
++/* 3:2 is periodic frame list size */
++#define CMD_RESET (1<<1) /* reset HC not bus */
++#define CMD_RUN (1<<0) /* start/stop HC */
++
++ /* USBSTS: offset 0x04 */
++ u32 status;
++#define STS_ASS (1<<15) /* Async Schedule Status */
++#define STS_PSS (1<<14) /* Periodic Schedule Status */
++#define STS_RECL (1<<13) /* Reclamation */
++#define STS_HALT (1<<12) /* Not running (any reason) */
++/* some bits reserved */
++ /* these STS_* flags are also intr_enable bits (USBINTR) */
++#define STS_IAA (1<<5) /* Interrupted on async advance */
++#define STS_FATAL (1<<4) /* such as some PCI access errors */
++#define STS_FLR (1<<3) /* frame list rolled over */
++#define STS_PCD (1<<2) /* port change detect */
++#define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
++#define STS_INT (1<<0) /* "normal" completion (short, ...) */
++
++ /* USBINTR: offset 0x08 */
++ u32 intr_enable;
++
++ /* FRINDEX: offset 0x0C */
++ u32 frame_index; /* current microframe number */
++ /* CTRLDSSEGMENT: offset 0x10 */
++ u32 segment; /* address bits 63:32 if needed */
++ /* PERIODICLISTBASE: offset 0x14 */
++ u32 frame_list; /* points to periodic list */
++ /* ASYNCLISTADDR: offset 0x18 */
++ u32 async_next; /* address of next async queue head */
++
++ u32 reserved1;
++ /* PORTSC: offset 0x20 */
++ u32 port_status;
++/* 31:23 reserved */
++#define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
++#define PORT_RESET (1<<8) /* reset port */
++#define PORT_SUSPEND (1<<7) /* suspend port */
++#define PORT_RESUME (1<<6) /* resume it */
++#define PORT_PEC (1<<3) /* port enable change */
++#define PORT_PE (1<<2) /* port enable */
++#define PORT_CSC (1<<1) /* connect status change */
++#define PORT_CONNECT (1<<0) /* device connected */
++#define PORT_RWC_BITS (PORT_CSC | PORT_PEC)
++ u32 reserved2[19];
++
++ /* OTGCSR: offet 0x70 */
++ u32 otgcsr;
++#define OTGCSR_HOST_SPD_TYP (3 << 22)
++#define OTGCSR_A_BUS_DROP (1 << 5)
++#define OTGCSR_A_BUS_REQ (1 << 4)
++
++ /* OTGISR: offset 0x74 */
++ u32 otgisr;
++#define OTGISR_OVC (1 << 10)
++
++ u32 reserved3[15];
++
++ /* GMIR: offset 0xB4 */
++ u32 gmir;
++#define GMIR_INT_POLARITY (1 << 3) /*Active High*/
++#define GMIR_MHC_INT (1 << 2)
++#define GMIR_MOTG_INT (1 << 1)
++#define GMIR_MDEV_INT (1 << 0)
++};
++
++/*-------------------------------------------------------------------------*/
++
++#define QTD_NEXT(fotg210, dma) cpu_to_hc32(fotg210, (u32)dma)
++
++/*
++ * EHCI Specification 0.95 Section 3.5
++ * QTD: describe data transfer components (buffer, direction, ...)
++ * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
++ *
++ * These are associated only with "QH" (Queue Head) structures,
++ * used with control, bulk, and interrupt transfers.
++ */
++struct fotg210_qtd {
++ /* first part defined by EHCI spec */
++ __hc32 hw_next; /* see EHCI 3.5.1 */
++ __hc32 hw_alt_next; /* see EHCI 3.5.2 */
++ __hc32 hw_token; /* see EHCI 3.5.3 */
++#define QTD_TOGGLE (1 << 31) /* data toggle */
++#define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
++#define QTD_IOC (1 << 15) /* interrupt on complete */
++#define QTD_CERR(tok) (((tok)>>10) & 0x3)
++#define QTD_PID(tok) (((tok)>>8) & 0x3)
++#define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
++#define QTD_STS_HALT (1 << 6) /* halted on error */
++#define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
++#define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
++#define QTD_STS_XACT (1 << 3) /* device gave illegal response */
++#define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
++#define QTD_STS_STS (1 << 1) /* split transaction state */
++#define QTD_STS_PING (1 << 0) /* issue PING? */
++
++#define ACTIVE_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_ACTIVE)
++#define HALT_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_HALT)
++#define STATUS_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_STS)
++
++ __hc32 hw_buf[5]; /* see EHCI 3.5.4 */
++ __hc32 hw_buf_hi[5]; /* Appendix B */
++
++ /* the rest is HCD-private */
++ dma_addr_t qtd_dma; /* qtd address */
++ struct list_head qtd_list; /* sw qtd list */
++ struct urb *urb; /* qtd's urb */
++ size_t length; /* length of buffer */
++} __aligned(32);
++
++/* mask NakCnt+T in qh->hw_alt_next */
++#define QTD_MASK(fotg210) cpu_to_hc32(fotg210, ~0x1f)
++
++#define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
++
++/*-------------------------------------------------------------------------*/
++
++/* type tag from {qh,itd,fstn}->hw_next */
++#define Q_NEXT_TYPE(fotg210, dma) ((dma) & cpu_to_hc32(fotg210, 3 << 1))
++
++/*
++ * Now the following defines are not converted using the
++ * cpu_to_le32() macro anymore, since we have to support
++ * "dynamic" switching between be and le support, so that the driver
++ * can be used on one system with SoC EHCI controller using big-endian
++ * descriptors as well as a normal little-endian PCI EHCI controller.
++ */
++/* values for that type tag */
++#define Q_TYPE_ITD (0 << 1)
++#define Q_TYPE_QH (1 << 1)
++#define Q_TYPE_SITD (2 << 1)
++#define Q_TYPE_FSTN (3 << 1)
++
++/* next async queue entry, or pointer to interrupt/periodic QH */
++#define QH_NEXT(fotg210, dma) \
++ (cpu_to_hc32(fotg210, (((u32)dma)&~0x01f)|Q_TYPE_QH))
++
++/* for periodic/async schedules and qtd lists, mark end of list */
++#define FOTG210_LIST_END(fotg210) \
++ cpu_to_hc32(fotg210, 1) /* "null pointer" to hw */
++
++/*
++ * Entries in periodic shadow table are pointers to one of four kinds
++ * of data structure. That's dictated by the hardware; a type tag is
++ * encoded in the low bits of the hardware's periodic schedule. Use
++ * Q_NEXT_TYPE to get the tag.
++ *
++ * For entries in the async schedule, the type tag always says "qh".
++ */
++union fotg210_shadow {
++ struct fotg210_qh *qh; /* Q_TYPE_QH */
++ struct fotg210_itd *itd; /* Q_TYPE_ITD */
++ struct fotg210_fstn *fstn; /* Q_TYPE_FSTN */
++ __hc32 *hw_next; /* (all types) */
++ void *ptr;
++};
++
++/*-------------------------------------------------------------------------*/
++
++/*
++ * EHCI Specification 0.95 Section 3.6
++ * QH: describes control/bulk/interrupt endpoints
++ * See Fig 3-7 "Queue Head Structure Layout".
++ *
++ * These appear in both the async and (for interrupt) periodic schedules.
++ */
++
++/* first part defined by EHCI spec */
++struct fotg210_qh_hw {
++ __hc32 hw_next; /* see EHCI 3.6.1 */
++ __hc32 hw_info1; /* see EHCI 3.6.2 */
++#define QH_CONTROL_EP (1 << 27) /* FS/LS control endpoint */
++#define QH_HEAD (1 << 15) /* Head of async reclamation list */
++#define QH_TOGGLE_CTL (1 << 14) /* Data toggle control */
++#define QH_HIGH_SPEED (2 << 12) /* Endpoint speed */
++#define QH_LOW_SPEED (1 << 12)
++#define QH_FULL_SPEED (0 << 12)
++#define QH_INACTIVATE (1 << 7) /* Inactivate on next transaction */
++ __hc32 hw_info2; /* see EHCI 3.6.2 */
++#define QH_SMASK 0x000000ff
++#define QH_CMASK 0x0000ff00
++#define QH_HUBADDR 0x007f0000
++#define QH_HUBPORT 0x3f800000
++#define QH_MULT 0xc0000000
++ __hc32 hw_current; /* qtd list - see EHCI 3.6.4 */
++
++ /* qtd overlay (hardware parts of a struct fotg210_qtd) */
++ __hc32 hw_qtd_next;
++ __hc32 hw_alt_next;
++ __hc32 hw_token;
++ __hc32 hw_buf[5];
++ __hc32 hw_buf_hi[5];
++} __aligned(32);
++
++struct fotg210_qh {
++ struct fotg210_qh_hw *hw; /* Must come first */
++ /* the rest is HCD-private */
++ dma_addr_t qh_dma; /* address of qh */
++ union fotg210_shadow qh_next; /* ptr to qh; or periodic */
++ struct list_head qtd_list; /* sw qtd list */
++ struct list_head intr_node; /* list of intr QHs */
++ struct fotg210_qtd *dummy;
++ struct fotg210_qh *unlink_next; /* next on unlink list */
++
++ unsigned unlink_cycle;
++
++ u8 needs_rescan; /* Dequeue during giveback */
++ u8 qh_state;
++#define QH_STATE_LINKED 1 /* HC sees this */
++#define QH_STATE_UNLINK 2 /* HC may still see this */
++#define QH_STATE_IDLE 3 /* HC doesn't see this */
++#define QH_STATE_UNLINK_WAIT 4 /* LINKED and on unlink q */
++#define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
++
++ u8 xacterrs; /* XactErr retry counter */
++#define QH_XACTERR_MAX 32 /* XactErr retry limit */
++
++ /* periodic schedule info */
++ u8 usecs; /* intr bandwidth */
++ u8 gap_uf; /* uframes split/csplit gap */
++ u8 c_usecs; /* ... split completion bw */
++ u16 tt_usecs; /* tt downstream bandwidth */
++ unsigned short period; /* polling interval */
++ unsigned short start; /* where polling starts */
++#define NO_FRAME ((unsigned short)~0) /* pick new start */
++
++ struct usb_device *dev; /* access to TT */
++ unsigned is_out:1; /* bulk or intr OUT */
++ unsigned clearing_tt:1; /* Clear-TT-Buf in progress */
++};
++
++/*-------------------------------------------------------------------------*/
++
++/* description of one iso transaction (up to 3 KB data if highspeed) */
++struct fotg210_iso_packet {
++ /* These will be copied to iTD when scheduling */
++ u64 bufp; /* itd->hw_bufp{,_hi}[pg] |= */
++ __hc32 transaction; /* itd->hw_transaction[i] |= */
++ u8 cross; /* buf crosses pages */
++ /* for full speed OUT splits */
++ u32 buf1;
++};
++
++/* temporary schedule data for packets from iso urbs (both speeds)
++ * each packet is one logical usb transaction to the device (not TT),
++ * beginning at stream->next_uframe
++ */
++struct fotg210_iso_sched {
++ struct list_head td_list;
++ unsigned span;
++ struct fotg210_iso_packet packet[];
++};
++
++/*
++ * fotg210_iso_stream - groups all (s)itds for this endpoint.
++ * acts like a qh would, if EHCI had them for ISO.
++ */
++struct fotg210_iso_stream {
++ /* first field matches fotg210_hq, but is NULL */
++ struct fotg210_qh_hw *hw;
++
++ u8 bEndpointAddress;
++ u8 highspeed;
++ struct list_head td_list; /* queued itds */
++ struct list_head free_list; /* list of unused itds */
++ struct usb_device *udev;
++ struct usb_host_endpoint *ep;
++
++ /* output of (re)scheduling */
++ int next_uframe;
++ __hc32 splits;
++
++ /* the rest is derived from the endpoint descriptor,
++ * trusting urb->interval == f(epdesc->bInterval) and
++ * including the extra info for hw_bufp[0..2]
++ */
++ u8 usecs, c_usecs;
++ u16 interval;
++ u16 tt_usecs;
++ u16 maxp;
++ u16 raw_mask;
++ unsigned bandwidth;
++
++ /* This is used to initialize iTD's hw_bufp fields */
++ __hc32 buf0;
++ __hc32 buf1;
++ __hc32 buf2;
++
++ /* this is used to initialize sITD's tt info */
++ __hc32 address;
++};
++
++/*-------------------------------------------------------------------------*/
++
++/*
++ * EHCI Specification 0.95 Section 3.3
++ * Fig 3-4 "Isochronous Transaction Descriptor (iTD)"
++ *
++ * Schedule records for high speed iso xfers
++ */
++struct fotg210_itd {
++ /* first part defined by EHCI spec */
++ __hc32 hw_next; /* see EHCI 3.3.1 */
++ __hc32 hw_transaction[8]; /* see EHCI 3.3.2 */
++#define FOTG210_ISOC_ACTIVE (1<<31) /* activate transfer this slot */
++#define FOTG210_ISOC_BUF_ERR (1<<30) /* Data buffer error */
++#define FOTG210_ISOC_BABBLE (1<<29) /* babble detected */
++#define FOTG210_ISOC_XACTERR (1<<28) /* XactErr - transaction error */
++#define FOTG210_ITD_LENGTH(tok) (((tok)>>16) & 0x0fff)
++#define FOTG210_ITD_IOC (1 << 15) /* interrupt on complete */
++
++#define ITD_ACTIVE(fotg210) cpu_to_hc32(fotg210, FOTG210_ISOC_ACTIVE)
++
++ __hc32 hw_bufp[7]; /* see EHCI 3.3.3 */
++ __hc32 hw_bufp_hi[7]; /* Appendix B */
++
++ /* the rest is HCD-private */
++ dma_addr_t itd_dma; /* for this itd */
++ union fotg210_shadow itd_next; /* ptr to periodic q entry */
++
++ struct urb *urb;
++ struct fotg210_iso_stream *stream; /* endpoint's queue */
++ struct list_head itd_list; /* list of stream's itds */
++
++ /* any/all hw_transactions here may be used by that urb */
++ unsigned frame; /* where scheduled */
++ unsigned pg;
++ unsigned index[8]; /* in urb->iso_frame_desc */
++} __aligned(32);
++
++/*-------------------------------------------------------------------------*/
++
++/*
++ * EHCI Specification 0.96 Section 3.7
++ * Periodic Frame Span Traversal Node (FSTN)
++ *
++ * Manages split interrupt transactions (using TT) that span frame boundaries
++ * into uframes 0/1; see 4.12.2.2. In those uframes, a "save place" FSTN
++ * makes the HC jump (back) to a QH to scan for fs/ls QH completions until
++ * it hits a "restore" FSTN; then it returns to finish other uframe 0/1 work.
++ */
++struct fotg210_fstn {
++ __hc32 hw_next; /* any periodic q entry */
++ __hc32 hw_prev; /* qh or FOTG210_LIST_END */
++
++ /* the rest is HCD-private */
++ dma_addr_t fstn_dma;
++ union fotg210_shadow fstn_next; /* ptr to periodic q entry */
++} __aligned(32);
++
++/*-------------------------------------------------------------------------*/
++
++/* Prepare the PORTSC wakeup flags during controller suspend/resume */
++
++#define fotg210_prepare_ports_for_controller_suspend(fotg210, do_wakeup) \
++ fotg210_adjust_port_wakeup_flags(fotg210, true, do_wakeup)
++
++#define fotg210_prepare_ports_for_controller_resume(fotg210) \
++ fotg210_adjust_port_wakeup_flags(fotg210, false, false)
++
++/*-------------------------------------------------------------------------*/
++
++/*
++ * Some EHCI controllers have a Transaction Translator built into the
++ * root hub. This is a non-standard feature. Each controller will need
++ * to add code to the following inline functions, and call them as
++ * needed (mostly in root hub code).
++ */
++
++static inline unsigned int
++fotg210_get_speed(struct fotg210_hcd *fotg210, unsigned int portsc)
++{
++ return (readl(&fotg210->regs->otgcsr)
++ & OTGCSR_HOST_SPD_TYP) >> 22;
++}
++
++/* Returns the speed of a device attached to a port on the root hub. */
++static inline unsigned int
++fotg210_port_speed(struct fotg210_hcd *fotg210, unsigned int portsc)
++{
++ switch (fotg210_get_speed(fotg210, portsc)) {
++ case 0:
++ return 0;
++ case 1:
++ return USB_PORT_STAT_LOW_SPEED;
++ case 2:
++ default:
++ return USB_PORT_STAT_HIGH_SPEED;
++ }
++}
++
++/*-------------------------------------------------------------------------*/
++
++#define fotg210_has_fsl_portno_bug(e) (0)
++
++/*
++ * While most USB host controllers implement their registers in
++ * little-endian format, a minority (celleb companion chip) implement
++ * them in big endian format.
++ *
++ * This attempts to support either format at compile time without a
++ * runtime penalty, or both formats with the additional overhead
++ * of checking a flag bit.
++ *
++ */
++
++#define fotg210_big_endian_mmio(e) 0
++#define fotg210_big_endian_capbase(e) 0
++
++static inline unsigned int fotg210_readl(const struct fotg210_hcd *fotg210,
++ __u32 __iomem *regs)
++{
++ return readl(regs);
++}
++
++static inline void fotg210_writel(const struct fotg210_hcd *fotg210,
++ const unsigned int val, __u32 __iomem *regs)
++{
++ writel(val, regs);
++}
++
++/* cpu to fotg210 */
++static inline __hc32 cpu_to_hc32(const struct fotg210_hcd *fotg210, const u32 x)
++{
++ return cpu_to_le32(x);
++}
++
++/* fotg210 to cpu */
++static inline u32 hc32_to_cpu(const struct fotg210_hcd *fotg210, const __hc32 x)
++{
++ return le32_to_cpu(x);
++}
++
++static inline u32 hc32_to_cpup(const struct fotg210_hcd *fotg210,
++ const __hc32 *x)
++{
++ return le32_to_cpup(x);
++}
++
++/*-------------------------------------------------------------------------*/
++
++static inline unsigned fotg210_read_frame_index(struct fotg210_hcd *fotg210)
++{
++ return fotg210_readl(fotg210, &fotg210->regs->frame_index);
++}
++
++/*-------------------------------------------------------------------------*/
++
++#endif /* __LINUX_FOTG210_H */
+--- /dev/null
++++ b/drivers/usb/fotg210/fotg210-udc.h
+@@ -0,0 +1,249 @@
++// SPDX-License-Identifier: GPL-2.0+
++/*
++ * Faraday FOTG210 USB OTG controller
++ *
++ * Copyright (C) 2013 Faraday Technology Corporation
++ * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
++ */
++
++#include <linux/kernel.h>
++
++#define FOTG210_MAX_NUM_EP 5 /* ep0...ep4 */
++#define FOTG210_MAX_FIFO_NUM 4 /* fifo0...fifo4 */
++
++/* Global Mask of HC/OTG/DEV interrupt Register(0xC4) */
++#define FOTG210_GMIR 0xC4
++#define GMIR_INT_POLARITY 0x8 /*Active High*/
++#define GMIR_MHC_INT 0x4
++#define GMIR_MOTG_INT 0x2
++#define GMIR_MDEV_INT 0x1
++
++/* Device Main Control Register(0x100) */
++#define FOTG210_DMCR 0x100
++#define DMCR_HS_EN (1 << 6)
++#define DMCR_CHIP_EN (1 << 5)
++#define DMCR_SFRST (1 << 4)
++#define DMCR_GOSUSP (1 << 3)
++#define DMCR_GLINT_EN (1 << 2)
++#define DMCR_HALF_SPEED (1 << 1)
++#define DMCR_CAP_RMWAKUP (1 << 0)
++
++/* Device Address Register(0x104) */
++#define FOTG210_DAR 0x104
++#define DAR_AFT_CONF (1 << 7)
++
++/* Device Test Register(0x108) */
++#define FOTG210_DTR 0x108
++#define DTR_TST_CLRFF (1 << 0)
++
++/* PHY Test Mode Selector register(0x114) */
++#define FOTG210_PHYTMSR 0x114
++#define PHYTMSR_TST_PKT (1 << 4)
++#define PHYTMSR_TST_SE0NAK (1 << 3)
++#define PHYTMSR_TST_KSTA (1 << 2)
++#define PHYTMSR_TST_JSTA (1 << 1)
++#define PHYTMSR_UNPLUG (1 << 0)
++
++/* Cx configuration and FIFO Empty Status register(0x120) */
++#define FOTG210_DCFESR 0x120
++#define DCFESR_FIFO_EMPTY(fifo) (1 << 8 << (fifo))
++#define DCFESR_CX_EMP (1 << 5)
++#define DCFESR_CX_CLR (1 << 3)
++#define DCFESR_CX_STL (1 << 2)
++#define DCFESR_TST_PKDONE (1 << 1)
++#define DCFESR_CX_DONE (1 << 0)
++
++/* Device IDLE Counter Register(0x124) */
++#define FOTG210_DICR 0x124
++
++/* Device Mask of Interrupt Group Register (0x130) */
++#define FOTG210_DMIGR 0x130
++#define DMIGR_MINT_G0 (1 << 0)
++
++/* Device Mask of Interrupt Source Group 0(0x134) */
++#define FOTG210_DMISGR0 0x134
++#define DMISGR0_MCX_COMEND (1 << 3)
++#define DMISGR0_MCX_OUT_INT (1 << 2)
++#define DMISGR0_MCX_IN_INT (1 << 1)
++#define DMISGR0_MCX_SETUP_INT (1 << 0)
++
++/* Device Mask of Interrupt Source Group 1 Register(0x138)*/
++#define FOTG210_DMISGR1 0x138
++#define DMISGR1_MF3_IN_INT (1 << 19)
++#define DMISGR1_MF2_IN_INT (1 << 18)
++#define DMISGR1_MF1_IN_INT (1 << 17)
++#define DMISGR1_MF0_IN_INT (1 << 16)
++#define DMISGR1_MF_IN_INT(fifo) (1 << (16 + (fifo)))
++#define DMISGR1_MF3_SPK_INT (1 << 7)
++#define DMISGR1_MF3_OUT_INT (1 << 6)
++#define DMISGR1_MF2_SPK_INT (1 << 5)
++#define DMISGR1_MF2_OUT_INT (1 << 4)
++#define DMISGR1_MF1_SPK_INT (1 << 3)
++#define DMISGR1_MF1_OUT_INT (1 << 2)
++#define DMISGR1_MF0_SPK_INT (1 << 1)
++#define DMISGR1_MF0_OUT_INT (1 << 0)
++#define DMISGR1_MF_OUTSPK_INT(fifo) (0x3 << (fifo) * 2)
++
++/* Device Mask of Interrupt Source Group 2 Register (0x13C) */
++#define FOTG210_DMISGR2 0x13C
++#define DMISGR2_MDMA_ERROR (1 << 8)
++#define DMISGR2_MDMA_CMPLT (1 << 7)
++
++/* Device Interrupt group Register (0x140) */
++#define FOTG210_DIGR 0x140
++#define DIGR_INT_G2 (1 << 2)
++#define DIGR_INT_G1 (1 << 1)
++#define DIGR_INT_G0 (1 << 0)
++
++/* Device Interrupt Source Group 0 Register (0x144) */
++#define FOTG210_DISGR0 0x144
++#define DISGR0_CX_COMABT_INT (1 << 5)
++#define DISGR0_CX_COMFAIL_INT (1 << 4)
++#define DISGR0_CX_COMEND_INT (1 << 3)
++#define DISGR0_CX_OUT_INT (1 << 2)
++#define DISGR0_CX_IN_INT (1 << 1)
++#define DISGR0_CX_SETUP_INT (1 << 0)
++
++/* Device Interrupt Source Group 1 Register (0x148) */
++#define FOTG210_DISGR1 0x148
++#define DISGR1_OUT_INT(fifo) (1 << ((fifo) * 2))
++#define DISGR1_SPK_INT(fifo) (1 << 1 << ((fifo) * 2))
++#define DISGR1_IN_INT(fifo) (1 << 16 << (fifo))
++
++/* Device Interrupt Source Group 2 Register (0x14C) */
++#define FOTG210_DISGR2 0x14C
++#define DISGR2_DMA_ERROR (1 << 8)
++#define DISGR2_DMA_CMPLT (1 << 7)
++#define DISGR2_RX0BYTE_INT (1 << 6)
++#define DISGR2_TX0BYTE_INT (1 << 5)
++#define DISGR2_ISO_SEQ_ABORT_INT (1 << 4)
++#define DISGR2_ISO_SEQ_ERR_INT (1 << 3)
++#define DISGR2_RESM_INT (1 << 2)
++#define DISGR2_SUSP_INT (1 << 1)
++#define DISGR2_USBRST_INT (1 << 0)
++
++/* Device Receive Zero-Length Data Packet Register (0x150)*/
++#define FOTG210_RX0BYTE 0x150
++#define RX0BYTE_EP8 (1 << 7)
++#define RX0BYTE_EP7 (1 << 6)
++#define RX0BYTE_EP6 (1 << 5)
++#define RX0BYTE_EP5 (1 << 4)
++#define RX0BYTE_EP4 (1 << 3)
++#define RX0BYTE_EP3 (1 << 2)
++#define RX0BYTE_EP2 (1 << 1)
++#define RX0BYTE_EP1 (1 << 0)
++
++/* Device Transfer Zero-Length Data Packet Register (0x154)*/
++#define FOTG210_TX0BYTE 0x154
++#define TX0BYTE_EP8 (1 << 7)
++#define TX0BYTE_EP7 (1 << 6)
++#define TX0BYTE_EP6 (1 << 5)
++#define TX0BYTE_EP5 (1 << 4)
++#define TX0BYTE_EP4 (1 << 3)
++#define TX0BYTE_EP3 (1 << 2)
++#define TX0BYTE_EP2 (1 << 1)
++#define TX0BYTE_EP1 (1 << 0)
++
++/* Device IN Endpoint x MaxPacketSize Register(0x160+4*(x-1)) */
++#define FOTG210_INEPMPSR(ep) (0x160 + 4 * ((ep) - 1))
++#define INOUTEPMPSR_MPS(mps) ((mps) & 0x2FF)
++#define INOUTEPMPSR_STL_EP (1 << 11)
++#define INOUTEPMPSR_RESET_TSEQ (1 << 12)
++
++/* Device OUT Endpoint x MaxPacketSize Register(0x180+4*(x-1)) */
++#define FOTG210_OUTEPMPSR(ep) (0x180 + 4 * ((ep) - 1))
++
++/* Device Endpoint 1~4 Map Register (0x1A0) */
++#define FOTG210_EPMAP 0x1A0
++#define EPMAP_FIFONO(ep, dir) \
++ ((((ep) - 1) << ((ep) - 1) * 8) << ((dir) ? 0 : 4))
++#define EPMAP_FIFONOMSK(ep, dir) \
++ ((3 << ((ep) - 1) * 8) << ((dir) ? 0 : 4))
++
++/* Device FIFO Map Register (0x1A8) */
++#define FOTG210_FIFOMAP 0x1A8
++#define FIFOMAP_DIROUT(fifo) (0x0 << 4 << (fifo) * 8)
++#define FIFOMAP_DIRIN(fifo) (0x1 << 4 << (fifo) * 8)
++#define FIFOMAP_BIDIR(fifo) (0x2 << 4 << (fifo) * 8)
++#define FIFOMAP_NA(fifo) (0x3 << 4 << (fifo) * 8)
++#define FIFOMAP_EPNO(ep) ((ep) << ((ep) - 1) * 8)
++#define FIFOMAP_EPNOMSK(ep) (0xF << ((ep) - 1) * 8)
++
++/* Device FIFO Confuguration Register (0x1AC) */
++#define FOTG210_FIFOCF 0x1AC
++#define FIFOCF_TYPE(type, fifo) ((type) << (fifo) * 8)
++#define FIFOCF_BLK_SIN(fifo) (0x0 << (fifo) * 8 << 2)
++#define FIFOCF_BLK_DUB(fifo) (0x1 << (fifo) * 8 << 2)
++#define FIFOCF_BLK_TRI(fifo) (0x2 << (fifo) * 8 << 2)
++#define FIFOCF_BLKSZ_512(fifo) (0x0 << (fifo) * 8 << 4)
++#define FIFOCF_BLKSZ_1024(fifo) (0x1 << (fifo) * 8 << 4)
++#define FIFOCF_FIFO_EN(fifo) (0x1 << (fifo) * 8 << 5)
++
++/* Device FIFO n Instruction and Byte Count Register (0x1B0+4*n) */
++#define FOTG210_FIBCR(fifo) (0x1B0 + (fifo) * 4)
++#define FIBCR_BCFX 0x7FF
++#define FIBCR_FFRST (1 << 12)
++
++/* Device DMA Target FIFO Number Register (0x1C0) */
++#define FOTG210_DMATFNR 0x1C0
++#define DMATFNR_ACC_CXF (1 << 4)
++#define DMATFNR_ACC_F3 (1 << 3)
++#define DMATFNR_ACC_F2 (1 << 2)
++#define DMATFNR_ACC_F1 (1 << 1)
++#define DMATFNR_ACC_F0 (1 << 0)
++#define DMATFNR_ACC_FN(fifo) (1 << (fifo))
++#define DMATFNR_DISDMA 0
++
++/* Device DMA Controller Parameter setting 1 Register (0x1C8) */
++#define FOTG210_DMACPSR1 0x1C8
++#define DMACPSR1_DMA_LEN(len) (((len) & 0xFFFF) << 8)
++#define DMACPSR1_DMA_ABORT (1 << 3)
++#define DMACPSR1_DMA_TYPE(dir_in) (((dir_in) ? 1 : 0) << 1)
++#define DMACPSR1_DMA_START (1 << 0)
++
++/* Device DMA Controller Parameter setting 2 Register (0x1CC) */
++#define FOTG210_DMACPSR2 0x1CC
++
++/* Device DMA Controller Parameter setting 3 Register (0x1CC) */
++#define FOTG210_CXPORT 0x1D0
++
++struct fotg210_request {
++ struct usb_request req;
++ struct list_head queue;
++};
++
++struct fotg210_ep {
++ struct usb_ep ep;
++ struct fotg210_udc *fotg210;
++
++ struct list_head queue;
++ unsigned stall:1;
++ unsigned wedged:1;
++ unsigned use_dma:1;
++
++ unsigned char epnum;
++ unsigned char type;
++ unsigned char dir_in;
++ unsigned int maxp;
++ const struct usb_endpoint_descriptor *desc;
++};
++
++struct fotg210_udc {
++ spinlock_t lock; /* protect the struct */
++ void __iomem *reg;
++
++ unsigned long irq_trigger;
++
++ struct usb_gadget gadget;
++ struct usb_gadget_driver *driver;
++
++ struct fotg210_ep *ep[FOTG210_MAX_NUM_EP];
++
++ struct usb_request *ep0_req; /* for internal request */
++ __le16 ep0_data;
++ u8 ep0_dir; /* 0/0x80 out/in */
++
++ u8 reenum; /* if re-enumeration */
++};
++
++#define gadget_to_fotg210(g) container_of((g), struct fotg210_udc, gadget)
+--- a/drivers/usb/gadget/udc/fotg210.h
++++ /dev/null
+@@ -1,249 +0,0 @@
+-// SPDX-License-Identifier: GPL-2.0+
+-/*
+- * Faraday FOTG210 USB OTG controller
+- *
+- * Copyright (C) 2013 Faraday Technology Corporation
+- * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
+- */
+-
+-#include <linux/kernel.h>
+-
+-#define FOTG210_MAX_NUM_EP 5 /* ep0...ep4 */
+-#define FOTG210_MAX_FIFO_NUM 4 /* fifo0...fifo4 */
+-
+-/* Global Mask of HC/OTG/DEV interrupt Register(0xC4) */
+-#define FOTG210_GMIR 0xC4
+-#define GMIR_INT_POLARITY 0x8 /*Active High*/
+-#define GMIR_MHC_INT 0x4
+-#define GMIR_MOTG_INT 0x2
+-#define GMIR_MDEV_INT 0x1
+-
+-/* Device Main Control Register(0x100) */
+-#define FOTG210_DMCR 0x100
+-#define DMCR_HS_EN (1 << 6)
+-#define DMCR_CHIP_EN (1 << 5)
+-#define DMCR_SFRST (1 << 4)
+-#define DMCR_GOSUSP (1 << 3)
+-#define DMCR_GLINT_EN (1 << 2)
+-#define DMCR_HALF_SPEED (1 << 1)
+-#define DMCR_CAP_RMWAKUP (1 << 0)
+-
+-/* Device Address Register(0x104) */
+-#define FOTG210_DAR 0x104
+-#define DAR_AFT_CONF (1 << 7)
+-
+-/* Device Test Register(0x108) */
+-#define FOTG210_DTR 0x108
+-#define DTR_TST_CLRFF (1 << 0)
+-
+-/* PHY Test Mode Selector register(0x114) */
+-#define FOTG210_PHYTMSR 0x114
+-#define PHYTMSR_TST_PKT (1 << 4)
+-#define PHYTMSR_TST_SE0NAK (1 << 3)
+-#define PHYTMSR_TST_KSTA (1 << 2)
+-#define PHYTMSR_TST_JSTA (1 << 1)
+-#define PHYTMSR_UNPLUG (1 << 0)
+-
+-/* Cx configuration and FIFO Empty Status register(0x120) */
+-#define FOTG210_DCFESR 0x120
+-#define DCFESR_FIFO_EMPTY(fifo) (1 << 8 << (fifo))
+-#define DCFESR_CX_EMP (1 << 5)
+-#define DCFESR_CX_CLR (1 << 3)
+-#define DCFESR_CX_STL (1 << 2)
+-#define DCFESR_TST_PKDONE (1 << 1)
+-#define DCFESR_CX_DONE (1 << 0)
+-
+-/* Device IDLE Counter Register(0x124) */
+-#define FOTG210_DICR 0x124
+-
+-/* Device Mask of Interrupt Group Register (0x130) */
+-#define FOTG210_DMIGR 0x130
+-#define DMIGR_MINT_G0 (1 << 0)
+-
+-/* Device Mask of Interrupt Source Group 0(0x134) */
+-#define FOTG210_DMISGR0 0x134
+-#define DMISGR0_MCX_COMEND (1 << 3)
+-#define DMISGR0_MCX_OUT_INT (1 << 2)
+-#define DMISGR0_MCX_IN_INT (1 << 1)
+-#define DMISGR0_MCX_SETUP_INT (1 << 0)
+-
+-/* Device Mask of Interrupt Source Group 1 Register(0x138)*/
+-#define FOTG210_DMISGR1 0x138
+-#define DMISGR1_MF3_IN_INT (1 << 19)
+-#define DMISGR1_MF2_IN_INT (1 << 18)
+-#define DMISGR1_MF1_IN_INT (1 << 17)
+-#define DMISGR1_MF0_IN_INT (1 << 16)
+-#define DMISGR1_MF_IN_INT(fifo) (1 << (16 + (fifo)))
+-#define DMISGR1_MF3_SPK_INT (1 << 7)
+-#define DMISGR1_MF3_OUT_INT (1 << 6)
+-#define DMISGR1_MF2_SPK_INT (1 << 5)
+-#define DMISGR1_MF2_OUT_INT (1 << 4)
+-#define DMISGR1_MF1_SPK_INT (1 << 3)
+-#define DMISGR1_MF1_OUT_INT (1 << 2)
+-#define DMISGR1_MF0_SPK_INT (1 << 1)
+-#define DMISGR1_MF0_OUT_INT (1 << 0)
+-#define DMISGR1_MF_OUTSPK_INT(fifo) (0x3 << (fifo) * 2)
+-
+-/* Device Mask of Interrupt Source Group 2 Register (0x13C) */
+-#define FOTG210_DMISGR2 0x13C
+-#define DMISGR2_MDMA_ERROR (1 << 8)
+-#define DMISGR2_MDMA_CMPLT (1 << 7)
+-
+-/* Device Interrupt group Register (0x140) */
+-#define FOTG210_DIGR 0x140
+-#define DIGR_INT_G2 (1 << 2)
+-#define DIGR_INT_G1 (1 << 1)
+-#define DIGR_INT_G0 (1 << 0)
+-
+-/* Device Interrupt Source Group 0 Register (0x144) */
+-#define FOTG210_DISGR0 0x144
+-#define DISGR0_CX_COMABT_INT (1 << 5)
+-#define DISGR0_CX_COMFAIL_INT (1 << 4)
+-#define DISGR0_CX_COMEND_INT (1 << 3)
+-#define DISGR0_CX_OUT_INT (1 << 2)
+-#define DISGR0_CX_IN_INT (1 << 1)
+-#define DISGR0_CX_SETUP_INT (1 << 0)
+-
+-/* Device Interrupt Source Group 1 Register (0x148) */
+-#define FOTG210_DISGR1 0x148
+-#define DISGR1_OUT_INT(fifo) (1 << ((fifo) * 2))
+-#define DISGR1_SPK_INT(fifo) (1 << 1 << ((fifo) * 2))
+-#define DISGR1_IN_INT(fifo) (1 << 16 << (fifo))
+-
+-/* Device Interrupt Source Group 2 Register (0x14C) */
+-#define FOTG210_DISGR2 0x14C
+-#define DISGR2_DMA_ERROR (1 << 8)
+-#define DISGR2_DMA_CMPLT (1 << 7)
+-#define DISGR2_RX0BYTE_INT (1 << 6)
+-#define DISGR2_TX0BYTE_INT (1 << 5)
+-#define DISGR2_ISO_SEQ_ABORT_INT (1 << 4)
+-#define DISGR2_ISO_SEQ_ERR_INT (1 << 3)
+-#define DISGR2_RESM_INT (1 << 2)
+-#define DISGR2_SUSP_INT (1 << 1)
+-#define DISGR2_USBRST_INT (1 << 0)
+-
+-/* Device Receive Zero-Length Data Packet Register (0x150)*/
+-#define FOTG210_RX0BYTE 0x150
+-#define RX0BYTE_EP8 (1 << 7)
+-#define RX0BYTE_EP7 (1 << 6)
+-#define RX0BYTE_EP6 (1 << 5)
+-#define RX0BYTE_EP5 (1 << 4)
+-#define RX0BYTE_EP4 (1 << 3)
+-#define RX0BYTE_EP3 (1 << 2)
+-#define RX0BYTE_EP2 (1 << 1)
+-#define RX0BYTE_EP1 (1 << 0)
+-
+-/* Device Transfer Zero-Length Data Packet Register (0x154)*/
+-#define FOTG210_TX0BYTE 0x154
+-#define TX0BYTE_EP8 (1 << 7)
+-#define TX0BYTE_EP7 (1 << 6)
+-#define TX0BYTE_EP6 (1 << 5)
+-#define TX0BYTE_EP5 (1 << 4)
+-#define TX0BYTE_EP4 (1 << 3)
+-#define TX0BYTE_EP3 (1 << 2)
+-#define TX0BYTE_EP2 (1 << 1)
+-#define TX0BYTE_EP1 (1 << 0)
+-
+-/* Device IN Endpoint x MaxPacketSize Register(0x160+4*(x-1)) */
+-#define FOTG210_INEPMPSR(ep) (0x160 + 4 * ((ep) - 1))
+-#define INOUTEPMPSR_MPS(mps) ((mps) & 0x2FF)
+-#define INOUTEPMPSR_STL_EP (1 << 11)
+-#define INOUTEPMPSR_RESET_TSEQ (1 << 12)
+-
+-/* Device OUT Endpoint x MaxPacketSize Register(0x180+4*(x-1)) */
+-#define FOTG210_OUTEPMPSR(ep) (0x180 + 4 * ((ep) - 1))
+-
+-/* Device Endpoint 1~4 Map Register (0x1A0) */
+-#define FOTG210_EPMAP 0x1A0
+-#define EPMAP_FIFONO(ep, dir) \
+- ((((ep) - 1) << ((ep) - 1) * 8) << ((dir) ? 0 : 4))
+-#define EPMAP_FIFONOMSK(ep, dir) \
+- ((3 << ((ep) - 1) * 8) << ((dir) ? 0 : 4))
+-
+-/* Device FIFO Map Register (0x1A8) */
+-#define FOTG210_FIFOMAP 0x1A8
+-#define FIFOMAP_DIROUT(fifo) (0x0 << 4 << (fifo) * 8)
+-#define FIFOMAP_DIRIN(fifo) (0x1 << 4 << (fifo) * 8)
+-#define FIFOMAP_BIDIR(fifo) (0x2 << 4 << (fifo) * 8)
+-#define FIFOMAP_NA(fifo) (0x3 << 4 << (fifo) * 8)
+-#define FIFOMAP_EPNO(ep) ((ep) << ((ep) - 1) * 8)
+-#define FIFOMAP_EPNOMSK(ep) (0xF << ((ep) - 1) * 8)
+-
+-/* Device FIFO Confuguration Register (0x1AC) */
+-#define FOTG210_FIFOCF 0x1AC
+-#define FIFOCF_TYPE(type, fifo) ((type) << (fifo) * 8)
+-#define FIFOCF_BLK_SIN(fifo) (0x0 << (fifo) * 8 << 2)
+-#define FIFOCF_BLK_DUB(fifo) (0x1 << (fifo) * 8 << 2)
+-#define FIFOCF_BLK_TRI(fifo) (0x2 << (fifo) * 8 << 2)
+-#define FIFOCF_BLKSZ_512(fifo) (0x0 << (fifo) * 8 << 4)
+-#define FIFOCF_BLKSZ_1024(fifo) (0x1 << (fifo) * 8 << 4)
+-#define FIFOCF_FIFO_EN(fifo) (0x1 << (fifo) * 8 << 5)
+-
+-/* Device FIFO n Instruction and Byte Count Register (0x1B0+4*n) */
+-#define FOTG210_FIBCR(fifo) (0x1B0 + (fifo) * 4)
+-#define FIBCR_BCFX 0x7FF
+-#define FIBCR_FFRST (1 << 12)
+-
+-/* Device DMA Target FIFO Number Register (0x1C0) */
+-#define FOTG210_DMATFNR 0x1C0
+-#define DMATFNR_ACC_CXF (1 << 4)
+-#define DMATFNR_ACC_F3 (1 << 3)
+-#define DMATFNR_ACC_F2 (1 << 2)
+-#define DMATFNR_ACC_F1 (1 << 1)
+-#define DMATFNR_ACC_F0 (1 << 0)
+-#define DMATFNR_ACC_FN(fifo) (1 << (fifo))
+-#define DMATFNR_DISDMA 0
+-
+-/* Device DMA Controller Parameter setting 1 Register (0x1C8) */
+-#define FOTG210_DMACPSR1 0x1C8
+-#define DMACPSR1_DMA_LEN(len) (((len) & 0xFFFF) << 8)
+-#define DMACPSR1_DMA_ABORT (1 << 3)
+-#define DMACPSR1_DMA_TYPE(dir_in) (((dir_in) ? 1 : 0) << 1)
+-#define DMACPSR1_DMA_START (1 << 0)
+-
+-/* Device DMA Controller Parameter setting 2 Register (0x1CC) */
+-#define FOTG210_DMACPSR2 0x1CC
+-
+-/* Device DMA Controller Parameter setting 3 Register (0x1CC) */
+-#define FOTG210_CXPORT 0x1D0
+-
+-struct fotg210_request {
+- struct usb_request req;
+- struct list_head queue;
+-};
+-
+-struct fotg210_ep {
+- struct usb_ep ep;
+- struct fotg210_udc *fotg210;
+-
+- struct list_head queue;
+- unsigned stall:1;
+- unsigned wedged:1;
+- unsigned use_dma:1;
+-
+- unsigned char epnum;
+- unsigned char type;
+- unsigned char dir_in;
+- unsigned int maxp;
+- const struct usb_endpoint_descriptor *desc;
+-};
+-
+-struct fotg210_udc {
+- spinlock_t lock; /* protect the struct */
+- void __iomem *reg;
+-
+- unsigned long irq_trigger;
+-
+- struct usb_gadget gadget;
+- struct usb_gadget_driver *driver;
+-
+- struct fotg210_ep *ep[FOTG210_MAX_NUM_EP];
+-
+- struct usb_request *ep0_req; /* for internal request */
+- __le16 ep0_data;
+- u8 ep0_dir; /* 0/0x80 out/in */
+-
+- u8 reenum; /* if re-enumeration */
+-};
+-
+-#define gadget_to_fotg210(g) container_of((g), struct fotg210_udc, gadget)
+--- a/drivers/usb/host/fotg210.h
++++ /dev/null
+@@ -1,688 +0,0 @@
+-/* SPDX-License-Identifier: GPL-2.0 */
+-#ifndef __LINUX_FOTG210_H
+-#define __LINUX_FOTG210_H
+-
+-#include <linux/usb/ehci-dbgp.h>
+-
+-/* definitions used for the EHCI driver */
+-
+-/*
+- * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
+- * __leXX (normally) or __beXX (given FOTG210_BIG_ENDIAN_DESC), depending on
+- * the host controller implementation.
+- *
+- * To facilitate the strongest possible byte-order checking from "sparse"
+- * and so on, we use __leXX unless that's not practical.
+- */
+-#define __hc32 __le32
+-#define __hc16 __le16
+-
+-/* statistics can be kept for tuning/monitoring */
+-struct fotg210_stats {
+- /* irq usage */
+- unsigned long normal;
+- unsigned long error;
+- unsigned long iaa;
+- unsigned long lost_iaa;
+-
+- /* termination of urbs from core */
+- unsigned long complete;
+- unsigned long unlink;
+-};
+-
+-/* fotg210_hcd->lock guards shared data against other CPUs:
+- * fotg210_hcd: async, unlink, periodic (and shadow), ...
+- * usb_host_endpoint: hcpriv
+- * fotg210_qh: qh_next, qtd_list
+- * fotg210_qtd: qtd_list
+- *
+- * Also, hold this lock when talking to HC registers or
+- * when updating hw_* fields in shared qh/qtd/... structures.
+- */
+-
+-#define FOTG210_MAX_ROOT_PORTS 1 /* see HCS_N_PORTS */
+-
+-/*
+- * fotg210_rh_state values of FOTG210_RH_RUNNING or above mean that the
+- * controller may be doing DMA. Lower values mean there's no DMA.
+- */
+-enum fotg210_rh_state {
+- FOTG210_RH_HALTED,
+- FOTG210_RH_SUSPENDED,
+- FOTG210_RH_RUNNING,
+- FOTG210_RH_STOPPING
+-};
+-
+-/*
+- * Timer events, ordered by increasing delay length.
+- * Always update event_delays_ns[] and event_handlers[] (defined in
+- * ehci-timer.c) in parallel with this list.
+- */
+-enum fotg210_hrtimer_event {
+- FOTG210_HRTIMER_POLL_ASS, /* Poll for async schedule off */
+- FOTG210_HRTIMER_POLL_PSS, /* Poll for periodic schedule off */
+- FOTG210_HRTIMER_POLL_DEAD, /* Wait for dead controller to stop */
+- FOTG210_HRTIMER_UNLINK_INTR, /* Wait for interrupt QH unlink */
+- FOTG210_HRTIMER_FREE_ITDS, /* Wait for unused iTDs and siTDs */
+- FOTG210_HRTIMER_ASYNC_UNLINKS, /* Unlink empty async QHs */
+- FOTG210_HRTIMER_IAA_WATCHDOG, /* Handle lost IAA interrupts */
+- FOTG210_HRTIMER_DISABLE_PERIODIC, /* Wait to disable periodic sched */
+- FOTG210_HRTIMER_DISABLE_ASYNC, /* Wait to disable async sched */
+- FOTG210_HRTIMER_IO_WATCHDOG, /* Check for missing IRQs */
+- FOTG210_HRTIMER_NUM_EVENTS /* Must come last */
+-};
+-#define FOTG210_HRTIMER_NO_EVENT 99
+-
+-struct fotg210_hcd { /* one per controller */
+- /* timing support */
+- enum fotg210_hrtimer_event next_hrtimer_event;
+- unsigned enabled_hrtimer_events;
+- ktime_t hr_timeouts[FOTG210_HRTIMER_NUM_EVENTS];
+- struct hrtimer hrtimer;
+-
+- int PSS_poll_count;
+- int ASS_poll_count;
+- int died_poll_count;
+-
+- /* glue to PCI and HCD framework */
+- struct fotg210_caps __iomem *caps;
+- struct fotg210_regs __iomem *regs;
+- struct ehci_dbg_port __iomem *debug;
+-
+- __u32 hcs_params; /* cached register copy */
+- spinlock_t lock;
+- enum fotg210_rh_state rh_state;
+-
+- /* general schedule support */
+- bool scanning:1;
+- bool need_rescan:1;
+- bool intr_unlinking:1;
+- bool async_unlinking:1;
+- bool shutdown:1;
+- struct fotg210_qh *qh_scan_next;
+-
+- /* async schedule support */
+- struct fotg210_qh *async;
+- struct fotg210_qh *dummy; /* For AMD quirk use */
+- struct fotg210_qh *async_unlink;
+- struct fotg210_qh *async_unlink_last;
+- struct fotg210_qh *async_iaa;
+- unsigned async_unlink_cycle;
+- unsigned async_count; /* async activity count */
+-
+- /* periodic schedule support */
+-#define DEFAULT_I_TDPS 1024 /* some HCs can do less */
+- unsigned periodic_size;
+- __hc32 *periodic; /* hw periodic table */
+- dma_addr_t periodic_dma;
+- struct list_head intr_qh_list;
+- unsigned i_thresh; /* uframes HC might cache */
+-
+- union fotg210_shadow *pshadow; /* mirror hw periodic table */
+- struct fotg210_qh *intr_unlink;
+- struct fotg210_qh *intr_unlink_last;
+- unsigned intr_unlink_cycle;
+- unsigned now_frame; /* frame from HC hardware */
+- unsigned next_frame; /* scan periodic, start here */
+- unsigned intr_count; /* intr activity count */
+- unsigned isoc_count; /* isoc activity count */
+- unsigned periodic_count; /* periodic activity count */
+- /* max periodic time per uframe */
+- unsigned uframe_periodic_max;
+-
+-
+- /* list of itds completed while now_frame was still active */
+- struct list_head cached_itd_list;
+- struct fotg210_itd *last_itd_to_free;
+-
+- /* per root hub port */
+- unsigned long reset_done[FOTG210_MAX_ROOT_PORTS];
+-
+- /* bit vectors (one bit per port)
+- * which ports were already suspended at the start of a bus suspend
+- */
+- unsigned long bus_suspended;
+-
+- /* which ports are edicated to the companion controller */
+- unsigned long companion_ports;
+-
+- /* which ports are owned by the companion during a bus suspend */
+- unsigned long owned_ports;
+-
+- /* which ports have the change-suspend feature turned on */
+- unsigned long port_c_suspend;
+-
+- /* which ports are suspended */
+- unsigned long suspended_ports;
+-
+- /* which ports have started to resume */
+- unsigned long resuming_ports;
+-
+- /* per-HC memory pools (could be per-bus, but ...) */
+- struct dma_pool *qh_pool; /* qh per active urb */
+- struct dma_pool *qtd_pool; /* one or more per qh */
+- struct dma_pool *itd_pool; /* itd per iso urb */
+-
+- unsigned random_frame;
+- unsigned long next_statechange;
+- ktime_t last_periodic_enable;
+- u32 command;
+-
+- /* SILICON QUIRKS */
+- unsigned need_io_watchdog:1;
+- unsigned fs_i_thresh:1; /* Intel iso scheduling */
+-
+- u8 sbrn; /* packed release number */
+-
+- /* irq statistics */
+-#ifdef FOTG210_STATS
+- struct fotg210_stats stats;
+-# define INCR(x) ((x)++)
+-#else
+-# define INCR(x) do {} while (0)
+-#endif
+-
+- /* silicon clock */
+- struct clk *pclk;
+-};
+-
+-/* convert between an HCD pointer and the corresponding FOTG210_HCD */
+-static inline struct fotg210_hcd *hcd_to_fotg210(struct usb_hcd *hcd)
+-{
+- return (struct fotg210_hcd *)(hcd->hcd_priv);
+-}
+-static inline struct usb_hcd *fotg210_to_hcd(struct fotg210_hcd *fotg210)
+-{
+- return container_of((void *) fotg210, struct usb_hcd, hcd_priv);
+-}
+-
+-/*-------------------------------------------------------------------------*/
+-
+-/* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
+-
+-/* Section 2.2 Host Controller Capability Registers */
+-struct fotg210_caps {
+- /* these fields are specified as 8 and 16 bit registers,
+- * but some hosts can't perform 8 or 16 bit PCI accesses.
+- * some hosts treat caplength and hciversion as parts of a 32-bit
+- * register, others treat them as two separate registers, this
+- * affects the memory map for big endian controllers.
+- */
+- u32 hc_capbase;
+-#define HC_LENGTH(fotg210, p) (0x00ff&((p) >> /* bits 7:0 / offset 00h */ \
+- (fotg210_big_endian_capbase(fotg210) ? 24 : 0)))
+-#define HC_VERSION(fotg210, p) (0xffff&((p) >> /* bits 31:16 / offset 02h */ \
+- (fotg210_big_endian_capbase(fotg210) ? 0 : 16)))
+- u32 hcs_params; /* HCSPARAMS - offset 0x4 */
+-#define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
+-
+- u32 hcc_params; /* HCCPARAMS - offset 0x8 */
+-#define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
+-#define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
+- u8 portroute[8]; /* nibbles for routing - offset 0xC */
+-};
+-
+-
+-/* Section 2.3 Host Controller Operational Registers */
+-struct fotg210_regs {
+-
+- /* USBCMD: offset 0x00 */
+- u32 command;
+-
+-/* EHCI 1.1 addendum */
+-/* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
+-#define CMD_PARK (1<<11) /* enable "park" on async qh */
+-#define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
+-#define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
+-#define CMD_ASE (1<<5) /* async schedule enable */
+-#define CMD_PSE (1<<4) /* periodic schedule enable */
+-/* 3:2 is periodic frame list size */
+-#define CMD_RESET (1<<1) /* reset HC not bus */
+-#define CMD_RUN (1<<0) /* start/stop HC */
+-
+- /* USBSTS: offset 0x04 */
+- u32 status;
+-#define STS_ASS (1<<15) /* Async Schedule Status */
+-#define STS_PSS (1<<14) /* Periodic Schedule Status */
+-#define STS_RECL (1<<13) /* Reclamation */
+-#define STS_HALT (1<<12) /* Not running (any reason) */
+-/* some bits reserved */
+- /* these STS_* flags are also intr_enable bits (USBINTR) */
+-#define STS_IAA (1<<5) /* Interrupted on async advance */
+-#define STS_FATAL (1<<4) /* such as some PCI access errors */
+-#define STS_FLR (1<<3) /* frame list rolled over */
+-#define STS_PCD (1<<2) /* port change detect */
+-#define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
+-#define STS_INT (1<<0) /* "normal" completion (short, ...) */
+-
+- /* USBINTR: offset 0x08 */
+- u32 intr_enable;
+-
+- /* FRINDEX: offset 0x0C */
+- u32 frame_index; /* current microframe number */
+- /* CTRLDSSEGMENT: offset 0x10 */
+- u32 segment; /* address bits 63:32 if needed */
+- /* PERIODICLISTBASE: offset 0x14 */
+- u32 frame_list; /* points to periodic list */
+- /* ASYNCLISTADDR: offset 0x18 */
+- u32 async_next; /* address of next async queue head */
+-
+- u32 reserved1;
+- /* PORTSC: offset 0x20 */
+- u32 port_status;
+-/* 31:23 reserved */
+-#define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
+-#define PORT_RESET (1<<8) /* reset port */
+-#define PORT_SUSPEND (1<<7) /* suspend port */
+-#define PORT_RESUME (1<<6) /* resume it */
+-#define PORT_PEC (1<<3) /* port enable change */
+-#define PORT_PE (1<<2) /* port enable */
+-#define PORT_CSC (1<<1) /* connect status change */
+-#define PORT_CONNECT (1<<0) /* device connected */
+-#define PORT_RWC_BITS (PORT_CSC | PORT_PEC)
+- u32 reserved2[19];
+-
+- /* OTGCSR: offet 0x70 */
+- u32 otgcsr;
+-#define OTGCSR_HOST_SPD_TYP (3 << 22)
+-#define OTGCSR_A_BUS_DROP (1 << 5)
+-#define OTGCSR_A_BUS_REQ (1 << 4)
+-
+- /* OTGISR: offset 0x74 */
+- u32 otgisr;
+-#define OTGISR_OVC (1 << 10)
+-
+- u32 reserved3[15];
+-
+- /* GMIR: offset 0xB4 */
+- u32 gmir;
+-#define GMIR_INT_POLARITY (1 << 3) /*Active High*/
+-#define GMIR_MHC_INT (1 << 2)
+-#define GMIR_MOTG_INT (1 << 1)
+-#define GMIR_MDEV_INT (1 << 0)
+-};
+-
+-/*-------------------------------------------------------------------------*/
+-
+-#define QTD_NEXT(fotg210, dma) cpu_to_hc32(fotg210, (u32)dma)
+-
+-/*
+- * EHCI Specification 0.95 Section 3.5
+- * QTD: describe data transfer components (buffer, direction, ...)
+- * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
+- *
+- * These are associated only with "QH" (Queue Head) structures,
+- * used with control, bulk, and interrupt transfers.
+- */
+-struct fotg210_qtd {
+- /* first part defined by EHCI spec */
+- __hc32 hw_next; /* see EHCI 3.5.1 */
+- __hc32 hw_alt_next; /* see EHCI 3.5.2 */
+- __hc32 hw_token; /* see EHCI 3.5.3 */
+-#define QTD_TOGGLE (1 << 31) /* data toggle */
+-#define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
+-#define QTD_IOC (1 << 15) /* interrupt on complete */
+-#define QTD_CERR(tok) (((tok)>>10) & 0x3)
+-#define QTD_PID(tok) (((tok)>>8) & 0x3)
+-#define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
+-#define QTD_STS_HALT (1 << 6) /* halted on error */
+-#define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
+-#define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
+-#define QTD_STS_XACT (1 << 3) /* device gave illegal response */
+-#define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
+-#define QTD_STS_STS (1 << 1) /* split transaction state */
+-#define QTD_STS_PING (1 << 0) /* issue PING? */
+-
+-#define ACTIVE_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_ACTIVE)
+-#define HALT_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_HALT)
+-#define STATUS_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_STS)
+-
+- __hc32 hw_buf[5]; /* see EHCI 3.5.4 */
+- __hc32 hw_buf_hi[5]; /* Appendix B */
+-
+- /* the rest is HCD-private */
+- dma_addr_t qtd_dma; /* qtd address */
+- struct list_head qtd_list; /* sw qtd list */
+- struct urb *urb; /* qtd's urb */
+- size_t length; /* length of buffer */
+-} __aligned(32);
+-
+-/* mask NakCnt+T in qh->hw_alt_next */
+-#define QTD_MASK(fotg210) cpu_to_hc32(fotg210, ~0x1f)
+-
+-#define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
+-
+-/*-------------------------------------------------------------------------*/
+-
+-/* type tag from {qh,itd,fstn}->hw_next */
+-#define Q_NEXT_TYPE(fotg210, dma) ((dma) & cpu_to_hc32(fotg210, 3 << 1))
+-
+-/*
+- * Now the following defines are not converted using the
+- * cpu_to_le32() macro anymore, since we have to support
+- * "dynamic" switching between be and le support, so that the driver
+- * can be used on one system with SoC EHCI controller using big-endian
+- * descriptors as well as a normal little-endian PCI EHCI controller.
+- */
+-/* values for that type tag */
+-#define Q_TYPE_ITD (0 << 1)
+-#define Q_TYPE_QH (1 << 1)
+-#define Q_TYPE_SITD (2 << 1)
+-#define Q_TYPE_FSTN (3 << 1)
+-
+-/* next async queue entry, or pointer to interrupt/periodic QH */
+-#define QH_NEXT(fotg210, dma) \
+- (cpu_to_hc32(fotg210, (((u32)dma)&~0x01f)|Q_TYPE_QH))
+-
+-/* for periodic/async schedules and qtd lists, mark end of list */
+-#define FOTG210_LIST_END(fotg210) \
+- cpu_to_hc32(fotg210, 1) /* "null pointer" to hw */
+-
+-/*
+- * Entries in periodic shadow table are pointers to one of four kinds
+- * of data structure. That's dictated by the hardware; a type tag is
+- * encoded in the low bits of the hardware's periodic schedule. Use
+- * Q_NEXT_TYPE to get the tag.
+- *
+- * For entries in the async schedule, the type tag always says "qh".
+- */
+-union fotg210_shadow {
+- struct fotg210_qh *qh; /* Q_TYPE_QH */
+- struct fotg210_itd *itd; /* Q_TYPE_ITD */
+- struct fotg210_fstn *fstn; /* Q_TYPE_FSTN */
+- __hc32 *hw_next; /* (all types) */
+- void *ptr;
+-};
+-
+-/*-------------------------------------------------------------------------*/
+-
+-/*
+- * EHCI Specification 0.95 Section 3.6
+- * QH: describes control/bulk/interrupt endpoints
+- * See Fig 3-7 "Queue Head Structure Layout".
+- *
+- * These appear in both the async and (for interrupt) periodic schedules.
+- */
+-
+-/* first part defined by EHCI spec */
+-struct fotg210_qh_hw {
+- __hc32 hw_next; /* see EHCI 3.6.1 */
+- __hc32 hw_info1; /* see EHCI 3.6.2 */
+-#define QH_CONTROL_EP (1 << 27) /* FS/LS control endpoint */
+-#define QH_HEAD (1 << 15) /* Head of async reclamation list */
+-#define QH_TOGGLE_CTL (1 << 14) /* Data toggle control */
+-#define QH_HIGH_SPEED (2 << 12) /* Endpoint speed */
+-#define QH_LOW_SPEED (1 << 12)
+-#define QH_FULL_SPEED (0 << 12)
+-#define QH_INACTIVATE (1 << 7) /* Inactivate on next transaction */
+- __hc32 hw_info2; /* see EHCI 3.6.2 */
+-#define QH_SMASK 0x000000ff
+-#define QH_CMASK 0x0000ff00
+-#define QH_HUBADDR 0x007f0000
+-#define QH_HUBPORT 0x3f800000
+-#define QH_MULT 0xc0000000
+- __hc32 hw_current; /* qtd list - see EHCI 3.6.4 */
+-
+- /* qtd overlay (hardware parts of a struct fotg210_qtd) */
+- __hc32 hw_qtd_next;
+- __hc32 hw_alt_next;
+- __hc32 hw_token;
+- __hc32 hw_buf[5];
+- __hc32 hw_buf_hi[5];
+-} __aligned(32);
+-
+-struct fotg210_qh {
+- struct fotg210_qh_hw *hw; /* Must come first */
+- /* the rest is HCD-private */
+- dma_addr_t qh_dma; /* address of qh */
+- union fotg210_shadow qh_next; /* ptr to qh; or periodic */
+- struct list_head qtd_list; /* sw qtd list */
+- struct list_head intr_node; /* list of intr QHs */
+- struct fotg210_qtd *dummy;
+- struct fotg210_qh *unlink_next; /* next on unlink list */
+-
+- unsigned unlink_cycle;
+-
+- u8 needs_rescan; /* Dequeue during giveback */
+- u8 qh_state;
+-#define QH_STATE_LINKED 1 /* HC sees this */
+-#define QH_STATE_UNLINK 2 /* HC may still see this */
+-#define QH_STATE_IDLE 3 /* HC doesn't see this */
+-#define QH_STATE_UNLINK_WAIT 4 /* LINKED and on unlink q */
+-#define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
+-
+- u8 xacterrs; /* XactErr retry counter */
+-#define QH_XACTERR_MAX 32 /* XactErr retry limit */
+-
+- /* periodic schedule info */
+- u8 usecs; /* intr bandwidth */
+- u8 gap_uf; /* uframes split/csplit gap */
+- u8 c_usecs; /* ... split completion bw */
+- u16 tt_usecs; /* tt downstream bandwidth */
+- unsigned short period; /* polling interval */
+- unsigned short start; /* where polling starts */
+-#define NO_FRAME ((unsigned short)~0) /* pick new start */
+-
+- struct usb_device *dev; /* access to TT */
+- unsigned is_out:1; /* bulk or intr OUT */
+- unsigned clearing_tt:1; /* Clear-TT-Buf in progress */
+-};
+-
+-/*-------------------------------------------------------------------------*/
+-
+-/* description of one iso transaction (up to 3 KB data if highspeed) */
+-struct fotg210_iso_packet {
+- /* These will be copied to iTD when scheduling */
+- u64 bufp; /* itd->hw_bufp{,_hi}[pg] |= */
+- __hc32 transaction; /* itd->hw_transaction[i] |= */
+- u8 cross; /* buf crosses pages */
+- /* for full speed OUT splits */
+- u32 buf1;
+-};
+-
+-/* temporary schedule data for packets from iso urbs (both speeds)
+- * each packet is one logical usb transaction to the device (not TT),
+- * beginning at stream->next_uframe
+- */
+-struct fotg210_iso_sched {
+- struct list_head td_list;
+- unsigned span;
+- struct fotg210_iso_packet packet[];
+-};
+-
+-/*
+- * fotg210_iso_stream - groups all (s)itds for this endpoint.
+- * acts like a qh would, if EHCI had them for ISO.
+- */
+-struct fotg210_iso_stream {
+- /* first field matches fotg210_hq, but is NULL */
+- struct fotg210_qh_hw *hw;
+-
+- u8 bEndpointAddress;
+- u8 highspeed;
+- struct list_head td_list; /* queued itds */
+- struct list_head free_list; /* list of unused itds */
+- struct usb_device *udev;
+- struct usb_host_endpoint *ep;
+-
+- /* output of (re)scheduling */
+- int next_uframe;
+- __hc32 splits;
+-
+- /* the rest is derived from the endpoint descriptor,
+- * trusting urb->interval == f(epdesc->bInterval) and
+- * including the extra info for hw_bufp[0..2]
+- */
+- u8 usecs, c_usecs;
+- u16 interval;
+- u16 tt_usecs;
+- u16 maxp;
+- u16 raw_mask;
+- unsigned bandwidth;
+-
+- /* This is used to initialize iTD's hw_bufp fields */
+- __hc32 buf0;
+- __hc32 buf1;
+- __hc32 buf2;
+-
+- /* this is used to initialize sITD's tt info */
+- __hc32 address;
+-};
+-
+-/*-------------------------------------------------------------------------*/
+-
+-/*
+- * EHCI Specification 0.95 Section 3.3
+- * Fig 3-4 "Isochronous Transaction Descriptor (iTD)"
+- *
+- * Schedule records for high speed iso xfers
+- */
+-struct fotg210_itd {
+- /* first part defined by EHCI spec */
+- __hc32 hw_next; /* see EHCI 3.3.1 */
+- __hc32 hw_transaction[8]; /* see EHCI 3.3.2 */
+-#define FOTG210_ISOC_ACTIVE (1<<31) /* activate transfer this slot */
+-#define FOTG210_ISOC_BUF_ERR (1<<30) /* Data buffer error */
+-#define FOTG210_ISOC_BABBLE (1<<29) /* babble detected */
+-#define FOTG210_ISOC_XACTERR (1<<28) /* XactErr - transaction error */
+-#define FOTG210_ITD_LENGTH(tok) (((tok)>>16) & 0x0fff)
+-#define FOTG210_ITD_IOC (1 << 15) /* interrupt on complete */
+-
+-#define ITD_ACTIVE(fotg210) cpu_to_hc32(fotg210, FOTG210_ISOC_ACTIVE)
+-
+- __hc32 hw_bufp[7]; /* see EHCI 3.3.3 */
+- __hc32 hw_bufp_hi[7]; /* Appendix B */
+-
+- /* the rest is HCD-private */
+- dma_addr_t itd_dma; /* for this itd */
+- union fotg210_shadow itd_next; /* ptr to periodic q entry */
+-
+- struct urb *urb;
+- struct fotg210_iso_stream *stream; /* endpoint's queue */
+- struct list_head itd_list; /* list of stream's itds */
+-
+- /* any/all hw_transactions here may be used by that urb */
+- unsigned frame; /* where scheduled */
+- unsigned pg;
+- unsigned index[8]; /* in urb->iso_frame_desc */
+-} __aligned(32);
+-
+-/*-------------------------------------------------------------------------*/
+-
+-/*
+- * EHCI Specification 0.96 Section 3.7
+- * Periodic Frame Span Traversal Node (FSTN)
+- *
+- * Manages split interrupt transactions (using TT) that span frame boundaries
+- * into uframes 0/1; see 4.12.2.2. In those uframes, a "save place" FSTN
+- * makes the HC jump (back) to a QH to scan for fs/ls QH completions until
+- * it hits a "restore" FSTN; then it returns to finish other uframe 0/1 work.
+- */
+-struct fotg210_fstn {
+- __hc32 hw_next; /* any periodic q entry */
+- __hc32 hw_prev; /* qh or FOTG210_LIST_END */
+-
+- /* the rest is HCD-private */
+- dma_addr_t fstn_dma;
+- union fotg210_shadow fstn_next; /* ptr to periodic q entry */
+-} __aligned(32);
+-
+-/*-------------------------------------------------------------------------*/
+-
+-/* Prepare the PORTSC wakeup flags during controller suspend/resume */
+-
+-#define fotg210_prepare_ports_for_controller_suspend(fotg210, do_wakeup) \
+- fotg210_adjust_port_wakeup_flags(fotg210, true, do_wakeup)
+-
+-#define fotg210_prepare_ports_for_controller_resume(fotg210) \
+- fotg210_adjust_port_wakeup_flags(fotg210, false, false)
+-
+-/*-------------------------------------------------------------------------*/
+-
+-/*
+- * Some EHCI controllers have a Transaction Translator built into the
+- * root hub. This is a non-standard feature. Each controller will need
+- * to add code to the following inline functions, and call them as
+- * needed (mostly in root hub code).
+- */
+-
+-static inline unsigned int
+-fotg210_get_speed(struct fotg210_hcd *fotg210, unsigned int portsc)
+-{
+- return (readl(&fotg210->regs->otgcsr)
+- & OTGCSR_HOST_SPD_TYP) >> 22;
+-}
+-
+-/* Returns the speed of a device attached to a port on the root hub. */
+-static inline unsigned int
+-fotg210_port_speed(struct fotg210_hcd *fotg210, unsigned int portsc)
+-{
+- switch (fotg210_get_speed(fotg210, portsc)) {
+- case 0:
+- return 0;
+- case 1:
+- return USB_PORT_STAT_LOW_SPEED;
+- case 2:
+- default:
+- return USB_PORT_STAT_HIGH_SPEED;
+- }
+-}
+-
+-/*-------------------------------------------------------------------------*/
+-
+-#define fotg210_has_fsl_portno_bug(e) (0)
+-
+-/*
+- * While most USB host controllers implement their registers in
+- * little-endian format, a minority (celleb companion chip) implement
+- * them in big endian format.
+- *
+- * This attempts to support either format at compile time without a
+- * runtime penalty, or both formats with the additional overhead
+- * of checking a flag bit.
+- *
+- */
+-
+-#define fotg210_big_endian_mmio(e) 0
+-#define fotg210_big_endian_capbase(e) 0
+-
+-static inline unsigned int fotg210_readl(const struct fotg210_hcd *fotg210,
+- __u32 __iomem *regs)
+-{
+- return readl(regs);
+-}
+-
+-static inline void fotg210_writel(const struct fotg210_hcd *fotg210,
+- const unsigned int val, __u32 __iomem *regs)
+-{
+- writel(val, regs);
+-}
+-
+-/* cpu to fotg210 */
+-static inline __hc32 cpu_to_hc32(const struct fotg210_hcd *fotg210, const u32 x)
+-{
+- return cpu_to_le32(x);
+-}
+-
+-/* fotg210 to cpu */
+-static inline u32 hc32_to_cpu(const struct fotg210_hcd *fotg210, const __hc32 x)
+-{
+- return le32_to_cpu(x);
+-}
+-
+-static inline u32 hc32_to_cpup(const struct fotg210_hcd *fotg210,
+- const __hc32 *x)
+-{
+- return le32_to_cpup(x);
+-}
+-
+-/*-------------------------------------------------------------------------*/
+-
+-static inline unsigned fotg210_read_frame_index(struct fotg210_hcd *fotg210)
+-{
+- return fotg210_readl(fotg210, &fotg210->regs->frame_index);
+-}
+-
+-/*-------------------------------------------------------------------------*/
+-
+-#endif /* __LINUX_FOTG210_H */