SET(ubus "")
ENDIF()
-ADD_LIBRARY(unet SHARED curve25519.c siphash.c)
+ADD_LIBRARY(unet SHARED curve25519.c siphash.c sha512.c fprime.c f25519.c ed25519.c edsign.c)
TARGET_LINK_LIBRARIES(unet ubox)
ADD_EXECUTABLE(unetd ${SOURCES})
--- /dev/null
+/* Edwards curve operations
+ * Daniel Beer <dlbeer@gmail.com>, 9 Jan 2014
+ *
+ * This file is in the public domain.
+ */
+
+#include "ed25519.h"
+
+/* Base point is (numbers wrapped):
+ *
+ * x = 151122213495354007725011514095885315114
+ * 54012693041857206046113283949847762202
+ * y = 463168356949264781694283940034751631413
+ * 07993866256225615783033603165251855960
+ *
+ * y is derived by transforming the original Montgomery base (u=9). x
+ * is the corresponding positive coordinate for the new curve equation.
+ * t is x*y.
+ */
+const struct ed25519_pt ed25519_base = {
+ .x = {
+ 0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
+ 0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
+ 0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
+ 0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21
+ },
+ .y = {
+ 0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
+ 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
+ 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
+ 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66
+ },
+ .t = {
+ 0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
+ 0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
+ 0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
+ 0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67
+ },
+ .z = {1, 0}
+};
+
+static const struct ed25519_pt ed25519_neutral = {
+ .x = {0},
+ .y = {1, 0},
+ .t = {0},
+ .z = {1, 0}
+};
+
+/* Conversion to and from projective coordinates */
+void ed25519_project(struct ed25519_pt *p,
+ const uint8_t *x, const uint8_t *y)
+{
+ f25519_copy(p->x, x);
+ f25519_copy(p->y, y);
+ f25519_load(p->z, 1);
+ f25519_mul__distinct(p->t, x, y);
+}
+
+void ed25519_unproject(uint8_t *x, uint8_t *y,
+ const struct ed25519_pt *p)
+{
+ uint8_t z1[F25519_SIZE];
+
+ f25519_inv__distinct(z1, p->z);
+ f25519_mul__distinct(x, p->x, z1);
+ f25519_mul__distinct(y, p->y, z1);
+
+ f25519_normalize(x);
+ f25519_normalize(y);
+}
+
+/* Compress/uncompress points. We compress points by storing the x
+ * coordinate and the parity of the y coordinate.
+ *
+ * Rearranging the curve equation, we obtain explicit formulae for the
+ * coordinates:
+ *
+ * x = sqrt((y^2-1) / (1+dy^2))
+ * y = sqrt((x^2+1) / (1-dx^2))
+ *
+ * Where d = (-121665/121666), or:
+ *
+ * d = 370957059346694393431380835087545651895
+ * 42113879843219016388785533085940283555
+ */
+
+static const uint8_t ed25519_d[F25519_SIZE] = {
+ 0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
+ 0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
+ 0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
+ 0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52
+};
+
+void ed25519_pack(uint8_t *c, const uint8_t *x, const uint8_t *y)
+{
+ uint8_t tmp[F25519_SIZE];
+ uint8_t parity;
+
+ f25519_copy(tmp, x);
+ f25519_normalize(tmp);
+ parity = (tmp[0] & 1) << 7;
+
+ f25519_copy(c, y);
+ f25519_normalize(c);
+ c[31] |= parity;
+}
+
+uint8_t ed25519_try_unpack(uint8_t *x, uint8_t *y, const uint8_t *comp)
+{
+ const int parity = comp[31] >> 7;
+ uint8_t a[F25519_SIZE];
+ uint8_t b[F25519_SIZE];
+ uint8_t c[F25519_SIZE];
+
+ /* Unpack y */
+ f25519_copy(y, comp);
+ y[31] &= 127;
+
+ /* Compute c = y^2 */
+ f25519_mul__distinct(c, y, y);
+
+ /* Compute b = (1+dy^2)^-1 */
+ f25519_mul__distinct(b, c, ed25519_d);
+ f25519_add(a, b, f25519_one);
+ f25519_inv__distinct(b, a);
+
+ /* Compute a = y^2-1 */
+ f25519_sub(a, c, f25519_one);
+
+ /* Compute c = a*b = (y^2-1)/(1-dy^2) */
+ f25519_mul__distinct(c, a, b);
+
+ /* Compute a, b = +/-sqrt(c), if c is square */
+ f25519_sqrt(a, c);
+ f25519_neg(b, a);
+
+ /* Select one of them, based on the compressed parity bit */
+ f25519_select(x, a, b, (a[0] ^ parity) & 1);
+
+ /* Verify that x^2 = c */
+ f25519_mul__distinct(a, x, x);
+ f25519_normalize(a);
+ f25519_normalize(c);
+
+ return f25519_eq(a, c);
+}
+
+/* k = 2d */
+static const uint8_t ed25519_k[F25519_SIZE] = {
+ 0x59, 0xf1, 0xb2, 0x26, 0x94, 0x9b, 0xd6, 0xeb,
+ 0x56, 0xb1, 0x83, 0x82, 0x9a, 0x14, 0xe0, 0x00,
+ 0x30, 0xd1, 0xf3, 0xee, 0xf2, 0x80, 0x8e, 0x19,
+ 0xe7, 0xfc, 0xdf, 0x56, 0xdc, 0xd9, 0x06, 0x24
+};
+
+void ed25519_add(struct ed25519_pt *r,
+ const struct ed25519_pt *p1, const struct ed25519_pt *p2)
+{
+ /* Explicit formulas database: add-2008-hwcd-3
+ *
+ * source 2008 Hisil--Wong--Carter--Dawson,
+ * http://eprint.iacr.org/2008/522, Section 3.1
+ * appliesto extended-1
+ * parameter k
+ * assume k = 2 d
+ * compute A = (Y1-X1)(Y2-X2)
+ * compute B = (Y1+X1)(Y2+X2)
+ * compute C = T1 k T2
+ * compute D = Z1 2 Z2
+ * compute E = B - A
+ * compute F = D - C
+ * compute G = D + C
+ * compute H = B + A
+ * compute X3 = E F
+ * compute Y3 = G H
+ * compute T3 = E H
+ * compute Z3 = F G
+ */
+ uint8_t a[F25519_SIZE];
+ uint8_t b[F25519_SIZE];
+ uint8_t c[F25519_SIZE];
+ uint8_t d[F25519_SIZE];
+ uint8_t e[F25519_SIZE];
+ uint8_t f[F25519_SIZE];
+ uint8_t g[F25519_SIZE];
+ uint8_t h[F25519_SIZE];
+
+ /* A = (Y1-X1)(Y2-X2) */
+ f25519_sub(c, p1->y, p1->x);
+ f25519_sub(d, p2->y, p2->x);
+ f25519_mul__distinct(a, c, d);
+
+ /* B = (Y1+X1)(Y2+X2) */
+ f25519_add(c, p1->y, p1->x);
+ f25519_add(d, p2->y, p2->x);
+ f25519_mul__distinct(b, c, d);
+
+ /* C = T1 k T2 */
+ f25519_mul__distinct(d, p1->t, p2->t);
+ f25519_mul__distinct(c, d, ed25519_k);
+
+ /* D = Z1 2 Z2 */
+ f25519_mul__distinct(d, p1->z, p2->z);
+ f25519_add(d, d, d);
+
+ /* E = B - A */
+ f25519_sub(e, b, a);
+
+ /* F = D - C */
+ f25519_sub(f, d, c);
+
+ /* G = D + C */
+ f25519_add(g, d, c);
+
+ /* H = B + A */
+ f25519_add(h, b, a);
+
+ /* X3 = E F */
+ f25519_mul__distinct(r->x, e, f);
+
+ /* Y3 = G H */
+ f25519_mul__distinct(r->y, g, h);
+
+ /* T3 = E H */
+ f25519_mul__distinct(r->t, e, h);
+
+ /* Z3 = F G */
+ f25519_mul__distinct(r->z, f, g);
+}
+
+static void ed25519_double(struct ed25519_pt *r, const struct ed25519_pt *p)
+{
+ /* Explicit formulas database: dbl-2008-hwcd
+ *
+ * source 2008 Hisil--Wong--Carter--Dawson,
+ * http://eprint.iacr.org/2008/522, Section 3.3
+ * compute A = X1^2
+ * compute B = Y1^2
+ * compute C = 2 Z1^2
+ * compute D = a A
+ * compute E = (X1+Y1)^2-A-B
+ * compute G = D + B
+ * compute F = G - C
+ * compute H = D - B
+ * compute X3 = E F
+ * compute Y3 = G H
+ * compute T3 = E H
+ * compute Z3 = F G
+ */
+ uint8_t a[F25519_SIZE];
+ uint8_t b[F25519_SIZE];
+ uint8_t c[F25519_SIZE];
+ uint8_t e[F25519_SIZE];
+ uint8_t f[F25519_SIZE];
+ uint8_t g[F25519_SIZE];
+ uint8_t h[F25519_SIZE];
+
+ /* A = X1^2 */
+ f25519_mul__distinct(a, p->x, p->x);
+
+ /* B = Y1^2 */
+ f25519_mul__distinct(b, p->y, p->y);
+
+ /* C = 2 Z1^2 */
+ f25519_mul__distinct(c, p->z, p->z);
+ f25519_add(c, c, c);
+
+ /* D = a A (alter sign) */
+ /* E = (X1+Y1)^2-A-B */
+ f25519_add(f, p->x, p->y);
+ f25519_mul__distinct(e, f, f);
+ f25519_sub(e, e, a);
+ f25519_sub(e, e, b);
+
+ /* G = D + B */
+ f25519_sub(g, b, a);
+
+ /* F = G - C */
+ f25519_sub(f, g, c);
+
+ /* H = D - B */
+ f25519_neg(h, b);
+ f25519_sub(h, h, a);
+
+ /* X3 = E F */
+ f25519_mul__distinct(r->x, e, f);
+
+ /* Y3 = G H */
+ f25519_mul__distinct(r->y, g, h);
+
+ /* T3 = E H */
+ f25519_mul__distinct(r->t, e, h);
+
+ /* Z3 = F G */
+ f25519_mul__distinct(r->z, f, g);
+}
+
+void ed25519_smult(struct ed25519_pt *r_out, const struct ed25519_pt *p,
+ const uint8_t *e)
+{
+ struct ed25519_pt r;
+ int i;
+
+ ed25519_copy(&r, &ed25519_neutral);
+
+ for (i = 255; i >= 0; i--) {
+ const uint8_t bit = (e[i >> 3] >> (i & 7)) & 1;
+ struct ed25519_pt s;
+
+ ed25519_double(&r, &r);
+ ed25519_add(&s, &r, p);
+
+ f25519_select(r.x, r.x, s.x, bit);
+ f25519_select(r.y, r.y, s.y, bit);
+ f25519_select(r.z, r.z, s.z, bit);
+ f25519_select(r.t, r.t, s.t, bit);
+ }
+
+ ed25519_copy(r_out, &r);
+}
--- /dev/null
+/* Edwards curve operations
+ * Daniel Beer <dlbeer@gmail.com>, 9 Jan 2014
+ *
+ * This file is in the public domain.
+ */
+
+#ifndef ED25519_H_
+#define ED25519_H_
+
+#include "f25519.h"
+
+/* This is not the Ed25519 signature system. Rather, we're implementing
+ * basic operations on the twisted Edwards curve over (Z mod 2^255-19):
+ *
+ * -x^2 + y^2 = 1 - (121665/121666)x^2y^2
+ *
+ * With the positive-x base point y = 4/5.
+ *
+ * These functions will not leak secret data through timing.
+ *
+ * For more information, see:
+ *
+ * Bernstein, D.J. & Lange, T. (2007) "Faster addition and doubling on
+ * elliptic curves". Document ID: 95616567a6ba20f575c5f25e7cebaf83.
+ *
+ * Hisil, H. & Wong, K K. & Carter, G. & Dawson, E. (2008) "Twisted
+ * Edwards curves revisited". Advances in Cryptology, ASIACRYPT 2008,
+ * Vol. 5350, pp. 326-343.
+ */
+
+/* Projective coordinates */
+struct ed25519_pt {
+ uint8_t x[F25519_SIZE];
+ uint8_t y[F25519_SIZE];
+ uint8_t t[F25519_SIZE];
+ uint8_t z[F25519_SIZE];
+};
+
+extern const struct ed25519_pt ed25519_base;
+
+/* Convert between projective and affine coordinates (x/y in F25519) */
+void ed25519_project(struct ed25519_pt *p,
+ const uint8_t *x, const uint8_t *y);
+
+void ed25519_unproject(uint8_t *x, uint8_t *y,
+ const struct ed25519_pt *p);
+
+/* Compress/uncompress points. try_unpack() will check that the
+ * compressed point is on the curve, returning 1 if the unpacked point
+ * is valid, and 0 otherwise.
+ */
+#define ED25519_PACK_SIZE F25519_SIZE
+
+void ed25519_pack(uint8_t *c, const uint8_t *x, const uint8_t *y);
+uint8_t ed25519_try_unpack(uint8_t *x, uint8_t *y, const uint8_t *c);
+
+/* Add, double and scalar multiply */
+#define ED25519_EXPONENT_SIZE 32
+
+/* Prepare an exponent by clamping appropriate bits */
+static inline void ed25519_prepare(uint8_t *e)
+{
+ e[0] &= 0xf8;
+ e[31] &= 0x7f;
+ e[31] |= 0x40;
+}
+
+/* Order of the group generated by the base point */
+static inline void ed25519_copy(struct ed25519_pt *dst,
+ const struct ed25519_pt *src)
+{
+ memcpy(dst, src, sizeof(*dst));
+}
+
+void ed25519_add(struct ed25519_pt *r,
+ const struct ed25519_pt *a, const struct ed25519_pt *b);
+void ed25519_smult(struct ed25519_pt *r, const struct ed25519_pt *a,
+ const uint8_t *e);
+
+#endif
--- /dev/null
+/* Edwards curve signature system
+ * Daniel Beer <dlbeer@gmail.com>, 22 Apr 2014
+ *
+ * This file is in the public domain.
+ */
+
+#include "ed25519.h"
+#include "sha512.h"
+#include "fprime.h"
+#include "edsign.h"
+
+#define EXPANDED_SIZE 64
+
+static const uint8_t ed25519_order[FPRIME_SIZE] = {
+ 0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
+ 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10
+};
+
+static void expand_key(uint8_t *expanded, const uint8_t *secret)
+{
+ struct sha512_state s;
+
+ sha512_init(&s);
+ sha512_add(&s, secret, EDSIGN_SECRET_KEY_SIZE);
+ sha512_final(&s, expanded);
+
+ ed25519_prepare(expanded);
+}
+
+static uint8_t upp(struct ed25519_pt *p, const uint8_t *packed)
+{
+ uint8_t x[F25519_SIZE];
+ uint8_t y[F25519_SIZE];
+ uint8_t ok = ed25519_try_unpack(x, y, packed);
+
+ ed25519_project(p, x, y);
+ return ok;
+}
+
+static void pp(uint8_t *packed, const struct ed25519_pt *p)
+{
+ uint8_t x[F25519_SIZE];
+ uint8_t y[F25519_SIZE];
+
+ ed25519_unproject(x, y, p);
+ ed25519_pack(packed, x, y);
+}
+
+static void sm_pack(uint8_t *r, const uint8_t *k)
+{
+ struct ed25519_pt p;
+
+ ed25519_smult(&p, &ed25519_base, k);
+ pp(r, &p);
+}
+
+void edsign_sec_to_pub(void *pub, const void *secret)
+{
+ uint8_t expanded[EXPANDED_SIZE];
+
+ expand_key(expanded, secret);
+ sm_pack(pub, expanded);
+}
+
+static void save_hash(struct sha512_state *s, uint8_t *out)
+{
+ void *hash;
+
+ hash = sha512_final_get(s);
+ fprime_from_bytes(out, hash, SHA512_HASH_SIZE, ed25519_order);
+}
+
+static void generate_k(uint8_t *k, const uint8_t *kgen_key,
+ const uint8_t *message, size_t len)
+{
+ struct sha512_state s;
+
+ sha512_init(&s);
+ sha512_add(&s, kgen_key, 32);
+ sha512_add(&s, message, len);
+ save_hash(&s, k);
+}
+
+static void hash_message(uint8_t *z, const uint8_t *r, const uint8_t *a,
+ const uint8_t *m, size_t len)
+{
+ struct sha512_state s;
+
+ sha512_init(&s);
+ sha512_add(&s, r, 32);
+ sha512_add(&s, a, 32);
+ sha512_add(&s, m, len);
+ save_hash(&s, z);
+}
+
+void edsign_sign(uint8_t *signature, const uint8_t *pub,
+ const uint8_t *secret,
+ const uint8_t *message, size_t len)
+{
+ uint8_t expanded[EXPANDED_SIZE];
+ uint8_t e[FPRIME_SIZE];
+ uint8_t s[FPRIME_SIZE];
+ uint8_t k[FPRIME_SIZE];
+ uint8_t z[FPRIME_SIZE];
+
+ expand_key(expanded, secret);
+
+ /* Generate k and R = kB */
+ generate_k(k, expanded + 32, message, len);
+ sm_pack(signature, k);
+
+ /* Compute z = H(R, A, M) */
+ hash_message(z, signature, pub, message, len);
+
+ /* Obtain e */
+ fprime_from_bytes(e, expanded, 32, ed25519_order);
+
+ /* Compute s = ze + k */
+ fprime_mul(s, z, e, ed25519_order);
+ fprime_add(s, k, ed25519_order);
+ memcpy(signature + 32, s, 32);
+}
+
+void edsign_verify_init(struct edsign_verify_state *st, const void *sig,
+ const void *pub)
+{
+ sha512_init(&st->sha);
+ sha512_add(&st->sha, sig, 32);
+ sha512_add(&st->sha, pub, 32);
+}
+
+bool edsign_verify(struct edsign_verify_state *st, const void *sig, const void *pub)
+{
+ struct ed25519_pt p;
+ struct ed25519_pt q;
+ uint8_t lhs[F25519_SIZE];
+ uint8_t rhs[F25519_SIZE];
+ uint8_t z[FPRIME_SIZE];
+ uint8_t ok = 1;
+
+ /* Compute z = H(R, A, M) */
+ save_hash(&st->sha, z);
+
+ /* sB = (ze + k)B = ... */
+ sm_pack(lhs, sig + 32);
+
+ /* ... = zA + R */
+ ok &= upp(&p, pub);
+ ed25519_smult(&p, &p, z);
+ ok &= upp(&q, sig);
+ ed25519_add(&p, &p, &q);
+ pp(rhs, &p);
+
+ /* Equal? */
+ return ok & f25519_eq(lhs, rhs);
+}
--- /dev/null
+/* Edwards curve signature system
+ * Daniel Beer <dlbeer@gmail.com>, 22 Apr 2014
+ *
+ * This file is in the public domain.
+ */
+
+#ifndef EDSIGN_H_
+#define EDSIGN_H_
+
+#include <stdint.h>
+#include <stdbool.h>
+#include "sha512.h"
+
+/* This is the Ed25519 signature system, as described in:
+ *
+ * Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, Bo-Yin
+ * Yang. High-speed high-security signatures. Journal of Cryptographic
+ * Engineering 2 (2012), 77–89. Document ID:
+ * a1a62a2f76d23f65d622484ddd09caf8. URL:
+ * http://cr.yp.to/papers.html#ed25519. Date: 2011.09.26.
+ *
+ * The format and calculation of signatures is compatible with the
+ * Ed25519 implementation in SUPERCOP. Note, however, that our secret
+ * keys are half the size: we don't store a copy of the public key in
+ * the secret key (we generate it on demand).
+ */
+
+/* Any string of 32 random bytes is a valid secret key. There is no
+ * clamping of bits, because we don't use the key directly as an
+ * exponent (the exponent is derived from part of a key expansion).
+ */
+#define EDSIGN_SECRET_KEY_SIZE 32
+
+/* Given a secret key, produce the public key (a packed Edwards-curve
+ * point).
+ */
+#define EDSIGN_PUBLIC_KEY_SIZE 32
+
+void edsign_sec_to_pub(void *pub, const void *secret);
+
+/* Produce a signature for a message. */
+#define EDSIGN_SIGNATURE_SIZE 64
+
+void edsign_sign(uint8_t *signature, const uint8_t *pub,
+ const uint8_t *secret,
+ const uint8_t *message, size_t len);
+
+struct edsign_verify_state {
+ struct sha512_state sha;
+};
+
+void edsign_verify_init(struct edsign_verify_state *st, const void *sig,
+ const void *pub);
+
+static inline void
+edsign_verify_add(struct edsign_verify_state *st, const void *data, int len)
+{
+ sha512_add(&st->sha, data, len);
+}
+
+/* Verify a message signature. Returns non-zero if ok. */
+bool edsign_verify(struct edsign_verify_state *st, const void *sig, const void *pub);
+
+#endif
--- /dev/null
+/* Arithmetic mod p = 2^255-19
+ * Daniel Beer <dlbeer@gmail.com>, 5 Jan 2014
+ *
+ * This file is in the public domain.
+ */
+
+#include "f25519.h"
+
+const uint8_t f25519_one[F25519_SIZE] = {1};
+
+void f25519_load(uint8_t *x, uint32_t c)
+{
+ int i;
+
+ for (i = 0; i < sizeof(c); i++) {
+ x[i] = c;
+ c >>= 8;
+ }
+
+ for (; i < F25519_SIZE; i++)
+ x[i] = 0;
+}
+
+void f25519_normalize(uint8_t *x)
+{
+ uint8_t minusp[F25519_SIZE];
+ uint16_t c;
+ int i;
+
+ /* Reduce using 2^255 = 19 mod p */
+ c = (x[31] >> 7) * 19;
+ x[31] &= 127;
+
+ for (i = 0; i < F25519_SIZE; i++) {
+ c += x[i];
+ x[i] = c;
+ c >>= 8;
+ }
+
+ /* The number is now less than 2^255 + 18, and therefore less than
+ * 2p. Try subtracting p, and conditionally load the subtracted
+ * value if underflow did not occur.
+ */
+ c = 19;
+
+ for (i = 0; i + 1 < F25519_SIZE; i++) {
+ c += x[i];
+ minusp[i] = c;
+ c >>= 8;
+ }
+
+ c += ((uint16_t)x[i]) - 128;
+ minusp[31] = c;
+
+ /* Load x-p if no underflow */
+ f25519_select(x, minusp, x, (c >> 15) & 1);
+}
+
+uint8_t f25519_eq(const uint8_t *x, const uint8_t *y)
+{
+ uint8_t sum = 0;
+ int i;
+
+ for (i = 0; i < F25519_SIZE; i++)
+ sum |= x[i] ^ y[i];
+
+ sum |= (sum >> 4);
+ sum |= (sum >> 2);
+ sum |= (sum >> 1);
+
+ return (sum ^ 1) & 1;
+}
+
+void f25519_select(uint8_t *dst,
+ const uint8_t *zero, const uint8_t *one,
+ uint8_t condition)
+{
+ const uint8_t mask = -condition;
+ int i;
+
+ for (i = 0; i < F25519_SIZE; i++)
+ dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
+}
+
+void f25519_add(uint8_t *r, const uint8_t *a, const uint8_t *b)
+{
+ uint16_t c = 0;
+ int i;
+
+ /* Add */
+ for (i = 0; i < F25519_SIZE; i++) {
+ c >>= 8;
+ c += ((uint16_t)a[i]) + ((uint16_t)b[i]);
+ r[i] = c;
+ }
+
+ /* Reduce with 2^255 = 19 mod p */
+ r[31] &= 127;
+ c = (c >> 7) * 19;
+
+ for (i = 0; i < F25519_SIZE; i++) {
+ c += r[i];
+ r[i] = c;
+ c >>= 8;
+ }
+}
+
+void f25519_sub(uint8_t *r, const uint8_t *a, const uint8_t *b)
+{
+ uint32_t c = 0;
+ int i;
+
+ /* Calculate a + 2p - b, to avoid underflow */
+ c = 218;
+ for (i = 0; i + 1 < F25519_SIZE; i++) {
+ c += 65280 + ((uint32_t)a[i]) - ((uint32_t)b[i]);
+ r[i] = c;
+ c >>= 8;
+ }
+
+ c += ((uint32_t)a[31]) - ((uint32_t)b[31]);
+ r[31] = c & 127;
+ c = (c >> 7) * 19;
+
+ for (i = 0; i < F25519_SIZE; i++) {
+ c += r[i];
+ r[i] = c;
+ c >>= 8;
+ }
+}
+
+void f25519_neg(uint8_t *r, const uint8_t *a)
+{
+ uint32_t c = 0;
+ int i;
+
+ /* Calculate 2p - a, to avoid underflow */
+ c = 218;
+ for (i = 0; i + 1 < F25519_SIZE; i++) {
+ c += 65280 - ((uint32_t)a[i]);
+ r[i] = c;
+ c >>= 8;
+ }
+
+ c -= ((uint32_t)a[31]);
+ r[31] = c & 127;
+ c = (c >> 7) * 19;
+
+ for (i = 0; i < F25519_SIZE; i++) {
+ c += r[i];
+ r[i] = c;
+ c >>= 8;
+ }
+}
+
+void f25519_mul__distinct(uint8_t *r, const uint8_t *a, const uint8_t *b)
+{
+ uint32_t c = 0;
+ int i;
+
+ for (i = 0; i < F25519_SIZE; i++) {
+ int j;
+
+ c >>= 8;
+ for (j = 0; j <= i; j++)
+ c += ((uint32_t)a[j]) * ((uint32_t)b[i - j]);
+
+ for (; j < F25519_SIZE; j++)
+ c += ((uint32_t)a[j]) *
+ ((uint32_t)b[i + F25519_SIZE - j]) * 38;
+
+ r[i] = c;
+ }
+
+ r[31] &= 127;
+ c = (c >> 7) * 19;
+
+ for (i = 0; i < F25519_SIZE; i++) {
+ c += r[i];
+ r[i] = c;
+ c >>= 8;
+ }
+}
+
+static void f25519_mul_c(uint8_t *r, const uint8_t *a, uint32_t b)
+{
+ uint32_t c = 0;
+ int i;
+
+ for (i = 0; i < F25519_SIZE; i++) {
+ c >>= 8;
+ c += b * ((uint32_t)a[i]);
+ r[i] = c;
+ }
+
+ r[31] &= 127;
+ c >>= 7;
+ c *= 19;
+
+ for (i = 0; i < F25519_SIZE; i++) {
+ c += r[i];
+ r[i] = c;
+ c >>= 8;
+ }
+}
+
+void f25519_inv__distinct(uint8_t *r, const uint8_t *x)
+{
+ uint8_t s[F25519_SIZE];
+ int i;
+
+ /* This is a prime field, so by Fermat's little theorem:
+ *
+ * x^(p-1) = 1 mod p
+ *
+ * Therefore, raise to (p-2) = 2^255-21 to get a multiplicative
+ * inverse.
+ *
+ * This is a 255-bit binary number with the digits:
+ *
+ * 11111111... 01011
+ *
+ * We compute the result by the usual binary chain, but
+ * alternate between keeping the accumulator in r and s, so as
+ * to avoid copying temporaries.
+ */
+
+ /* 1 1 */
+ f25519_mul__distinct(s, x, x);
+ f25519_mul__distinct(r, s, x);
+
+ /* 1 x 248 */
+ for (i = 0; i < 248; i++) {
+ f25519_mul__distinct(s, r, r);
+ f25519_mul__distinct(r, s, x);
+ }
+
+ /* 0 */
+ f25519_mul__distinct(s, r, r);
+
+ /* 1 */
+ f25519_mul__distinct(r, s, s);
+ f25519_mul__distinct(s, r, x);
+
+ /* 0 */
+ f25519_mul__distinct(r, s, s);
+
+ /* 1 */
+ f25519_mul__distinct(s, r, r);
+ f25519_mul__distinct(r, s, x);
+
+ /* 1 */
+ f25519_mul__distinct(s, r, r);
+ f25519_mul__distinct(r, s, x);
+}
+
+/* Raise x to the power of (p-5)/8 = 2^252-3, using s for temporary
+ * storage.
+ */
+static void exp2523(uint8_t *r, const uint8_t *x, uint8_t *s)
+{
+ int i;
+
+ /* This number is a 252-bit number with the binary expansion:
+ *
+ * 111111... 01
+ */
+
+ /* 1 1 */
+ f25519_mul__distinct(r, x, x);
+ f25519_mul__distinct(s, r, x);
+
+ /* 1 x 248 */
+ for (i = 0; i < 248; i++) {
+ f25519_mul__distinct(r, s, s);
+ f25519_mul__distinct(s, r, x);
+ }
+
+ /* 0 */
+ f25519_mul__distinct(r, s, s);
+
+ /* 1 */
+ f25519_mul__distinct(s, r, r);
+ f25519_mul__distinct(r, s, x);
+}
+
+void f25519_sqrt(uint8_t *r, const uint8_t *a)
+{
+ uint8_t v[F25519_SIZE];
+ uint8_t i[F25519_SIZE];
+ uint8_t x[F25519_SIZE];
+ uint8_t y[F25519_SIZE];
+
+ /* v = (2a)^((p-5)/8) [x = 2a] */
+ f25519_mul_c(x, a, 2);
+ exp2523(v, x, y);
+
+ /* i = 2av^2 - 1 */
+ f25519_mul__distinct(y, v, v);
+ f25519_mul__distinct(i, x, y);
+ f25519_load(y, 1);
+ f25519_sub(i, i, y);
+
+ /* r = avi */
+ f25519_mul__distinct(x, v, a);
+ f25519_mul__distinct(r, x, i);
+}
--- /dev/null
+/* Arithmetic mod p = 2^255-19
+ * Daniel Beer <dlbeer@gmail.com>, 8 Jan 2014
+ *
+ * This file is in the public domain.
+ */
+
+#ifndef F25519_H_
+#define F25519_H_
+
+#include <stdint.h>
+#include <string.h>
+
+/* Field elements are represented as little-endian byte strings. All
+ * operations have timings which are independent of input data, so they
+ * can be safely used for cryptography.
+ *
+ * Computation is performed on un-normalized elements. These are byte
+ * strings which fall into the range 0 <= x < 2p. Use f25519_normalize()
+ * to convert to a value 0 <= x < p.
+ *
+ * Elements received from the outside may greater even than 2p.
+ * f25519_normalize() will correctly deal with these numbers too.
+ */
+#define F25519_SIZE 32
+
+/* Identity constants */
+extern const uint8_t f25519_one[F25519_SIZE];
+
+/* Load a small constant */
+void f25519_load(uint8_t *x, uint32_t c);
+
+/* Copy two points */
+static inline void f25519_copy(uint8_t *x, const uint8_t *a)
+{
+ memcpy(x, a, F25519_SIZE);
+}
+
+/* Normalize a field point x < 2*p by subtracting p if necessary */
+void f25519_normalize(uint8_t *x);
+
+/* Compare two field points in constant time. Return one if equal, zero
+ * otherwise. This should be performed only on normalized values.
+ */
+uint8_t f25519_eq(const uint8_t *x, const uint8_t *y);
+
+/* Conditional copy. If condition == 0, then zero is copied to dst. If
+ * condition == 1, then one is copied to dst. Any other value results in
+ * undefined behaviour.
+ */
+void f25519_select(uint8_t *dst,
+ const uint8_t *zero, const uint8_t *one,
+ uint8_t condition);
+
+/* Add/subtract two field points. The three pointers are not required to
+ * be distinct.
+ */
+void f25519_add(uint8_t *r, const uint8_t *a, const uint8_t *b);
+void f25519_sub(uint8_t *r, const uint8_t *a, const uint8_t *b);
+
+/* Unary negation */
+void f25519_neg(uint8_t *r, const uint8_t *a);
+
+/* Multiply two field points. The __distinct variant is used when r is
+ * known to be in a different location to a and b.
+ */
+void f25519_mul__distinct(uint8_t *r, const uint8_t *a, const uint8_t *b);
+
+/* Take the reciprocal of a field point. The __distinct variant is used
+ * when r is known to be in a different location to x.
+ */
+void f25519_inv__distinct(uint8_t *r, const uint8_t *x);
+
+/* Compute one of the square roots of the field element, if the element
+ * is square. The other square is -r.
+ *
+ * If the input is not square, the returned value is a valid field
+ * element, but not the correct answer. If you don't already know that
+ * your element is square, you should square the return value and test.
+ */
+void f25519_sqrt(uint8_t *r, const uint8_t *x);
+
+#endif
--- /dev/null
+/* Arithmetic in prime fields
+ * Daniel Beer <dlbeer@gmail.com>, 10 Jan 2014
+ *
+ * This file is in the public domain.
+ */
+
+#include "fprime.h"
+
+static void raw_add(uint8_t *x, const uint8_t *p)
+{
+ uint16_t c = 0;
+ int i;
+
+ for (i = 0; i < FPRIME_SIZE; i++) {
+ c += ((uint16_t)x[i]) + ((uint16_t)p[i]);
+ x[i] = c;
+ c >>= 8;
+ }
+}
+
+static void raw_try_sub(uint8_t *x, const uint8_t *p)
+{
+ uint8_t minusp[FPRIME_SIZE];
+ uint16_t c = 0;
+ int i;
+
+ for (i = 0; i < FPRIME_SIZE; i++) {
+ c = ((uint16_t)x[i]) - ((uint16_t)p[i]) - c;
+ minusp[i] = c;
+ c = (c >> 8) & 1;
+ }
+
+ fprime_select(x, minusp, x, c);
+}
+
+/* Warning: this function is variable-time */
+static int prime_msb(const uint8_t *p)
+{
+ int i;
+ uint8_t x;
+
+ for (i = FPRIME_SIZE - 1; i >= 0; i--)
+ if (p[i])
+ break;
+
+ x = p[i];
+ i <<= 3;
+
+ while (x) {
+ x >>= 1;
+ i++;
+ }
+
+ return i - 1;
+}
+
+/* Warning: this function may be variable-time in the argument n */
+static void shift_n_bits(uint8_t *x, int n)
+{
+ uint16_t c = 0;
+ int i;
+
+ for (i = 0; i < FPRIME_SIZE; i++) {
+ c |= ((uint16_t)x[i]) << n;
+ x[i] = c;
+ c >>= 8;
+ }
+}
+
+static inline int min_int(int a, int b)
+{
+ return a < b ? a : b;
+}
+
+void fprime_from_bytes(uint8_t *n,
+ const uint8_t *x, size_t len,
+ const uint8_t *modulus)
+{
+ const int preload_total = min_int(prime_msb(modulus) - 1, len << 3);
+ const int preload_bytes = preload_total >> 3;
+ const int preload_bits = preload_total & 7;
+ const int rbits = (len << 3) - preload_total;
+ int i;
+
+ memset(n, 0, FPRIME_SIZE);
+
+ for (i = 0; i < preload_bytes; i++)
+ n[i] = x[len - preload_bytes + i];
+
+ if (preload_bits) {
+ shift_n_bits(n, preload_bits);
+ n[0] |= x[len - preload_bytes - 1] >> (8 - preload_bits);
+ }
+
+ for (i = rbits - 1; i >= 0; i--) {
+ const uint8_t bit = (x[i >> 3] >> (i & 7)) & 1;
+
+ shift_n_bits(n, 1);
+ n[0] |= bit;
+ raw_try_sub(n, modulus);
+ }
+}
+
+void fprime_select(uint8_t *dst,
+ const uint8_t *zero, const uint8_t *one,
+ uint8_t condition)
+{
+ const uint8_t mask = -condition;
+ int i;
+
+ for (i = 0; i < FPRIME_SIZE; i++)
+ dst[i] = zero[i] ^ (mask & (one[i] ^ zero[i]));
+}
+
+void fprime_add(uint8_t *r, const uint8_t *a, const uint8_t *modulus)
+{
+ raw_add(r, a);
+ raw_try_sub(r, modulus);
+}
+
+void fprime_mul(uint8_t *r, const uint8_t *a, const uint8_t *b,
+ const uint8_t *modulus)
+{
+ int i;
+
+ memset(r, 0, FPRIME_SIZE);
+
+ for (i = prime_msb(modulus); i >= 0; i--) {
+ const uint8_t bit = (b[i >> 3] >> (i & 7)) & 1;
+ uint8_t plusa[FPRIME_SIZE];
+
+ shift_n_bits(r, 1);
+ raw_try_sub(r, modulus);
+
+ fprime_copy(plusa, r);
+ fprime_add(plusa, a, modulus);
+
+ fprime_select(r, r, plusa, bit);
+ }
+}
--- /dev/null
+/* Arithmetic in prime fields
+ * Daniel Beer <dlbeer@gmail.com>, 10 Jan 2014
+ *
+ * This file is in the public domain.
+ */
+
+#ifndef FPRIME_H_
+#define FPRIME_H_
+
+#include <stdint.h>
+#include <string.h>
+
+/* Maximum size of a field element (or a prime). Field elements are
+ * always manipulated and stored in normalized form, with 0 <= x < p.
+ * You can use normalize() to convert a denormalized bitstring to normal
+ * form.
+ *
+ * Operations are constant with respect to the value of field elements,
+ * but not with respect to the modulus.
+ *
+ * The modulus is a number p, such that 2p-1 fits in FPRIME_SIZE bytes.
+ */
+#define FPRIME_SIZE 32
+
+/* Load a large constant */
+void fprime_from_bytes(uint8_t *x,
+ const uint8_t *in, size_t len,
+ const uint8_t *modulus);
+
+/* Copy an element */
+static inline void fprime_copy(uint8_t *x, const uint8_t *a)
+{
+ memcpy(x, a, FPRIME_SIZE);
+}
+
+/* Compare two field points in constant time. Return one if equal, zero
+ * otherwise. This should be performed only on normalized values.
+ */
+uint8_t fprime_eq(const uint8_t *x, const uint8_t *y);
+
+/* Conditional copy. If condition == 0, then zero is copied to dst. If
+ * condition == 1, then one is copied to dst. Any other value results in
+ * undefined behaviour.
+ */
+void fprime_select(uint8_t *dst,
+ const uint8_t *zero, const uint8_t *one,
+ uint8_t condition);
+
+/* Add one value to another. The two pointers must be distinct. */
+void fprime_add(uint8_t *r, const uint8_t *a, const uint8_t *modulus);
+
+/* Multiply two values to get a third. r must be distinct from a and b */
+void fprime_mul(uint8_t *r, const uint8_t *a, const uint8_t *b,
+ const uint8_t *modulus);
+
+#endif
--- /dev/null
+/*
+ * Copyright (C) 2015 Felix Fietkau <nbd@openwrt.org>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/* SHA512
+ * Daniel Beer <dlbeer@gmail.com>, 22 Apr 2014
+ *
+ * This file is in the public domain.
+ */
+
+#include "sha512.h"
+
+static const uint64_t sha512_initial_state[8] = {
+ 0x6a09e667f3bcc908LL, 0xbb67ae8584caa73bLL,
+ 0x3c6ef372fe94f82bLL, 0xa54ff53a5f1d36f1LL,
+ 0x510e527fade682d1LL, 0x9b05688c2b3e6c1fLL,
+ 0x1f83d9abfb41bd6bLL, 0x5be0cd19137e2179LL,
+};
+
+static const uint64_t round_k[80] = {
+ 0x428a2f98d728ae22LL, 0x7137449123ef65cdLL,
+ 0xb5c0fbcfec4d3b2fLL, 0xe9b5dba58189dbbcLL,
+ 0x3956c25bf348b538LL, 0x59f111f1b605d019LL,
+ 0x923f82a4af194f9bLL, 0xab1c5ed5da6d8118LL,
+ 0xd807aa98a3030242LL, 0x12835b0145706fbeLL,
+ 0x243185be4ee4b28cLL, 0x550c7dc3d5ffb4e2LL,
+ 0x72be5d74f27b896fLL, 0x80deb1fe3b1696b1LL,
+ 0x9bdc06a725c71235LL, 0xc19bf174cf692694LL,
+ 0xe49b69c19ef14ad2LL, 0xefbe4786384f25e3LL,
+ 0x0fc19dc68b8cd5b5LL, 0x240ca1cc77ac9c65LL,
+ 0x2de92c6f592b0275LL, 0x4a7484aa6ea6e483LL,
+ 0x5cb0a9dcbd41fbd4LL, 0x76f988da831153b5LL,
+ 0x983e5152ee66dfabLL, 0xa831c66d2db43210LL,
+ 0xb00327c898fb213fLL, 0xbf597fc7beef0ee4LL,
+ 0xc6e00bf33da88fc2LL, 0xd5a79147930aa725LL,
+ 0x06ca6351e003826fLL, 0x142929670a0e6e70LL,
+ 0x27b70a8546d22ffcLL, 0x2e1b21385c26c926LL,
+ 0x4d2c6dfc5ac42aedLL, 0x53380d139d95b3dfLL,
+ 0x650a73548baf63deLL, 0x766a0abb3c77b2a8LL,
+ 0x81c2c92e47edaee6LL, 0x92722c851482353bLL,
+ 0xa2bfe8a14cf10364LL, 0xa81a664bbc423001LL,
+ 0xc24b8b70d0f89791LL, 0xc76c51a30654be30LL,
+ 0xd192e819d6ef5218LL, 0xd69906245565a910LL,
+ 0xf40e35855771202aLL, 0x106aa07032bbd1b8LL,
+ 0x19a4c116b8d2d0c8LL, 0x1e376c085141ab53LL,
+ 0x2748774cdf8eeb99LL, 0x34b0bcb5e19b48a8LL,
+ 0x391c0cb3c5c95a63LL, 0x4ed8aa4ae3418acbLL,
+ 0x5b9cca4f7763e373LL, 0x682e6ff3d6b2b8a3LL,
+ 0x748f82ee5defb2fcLL, 0x78a5636f43172f60LL,
+ 0x84c87814a1f0ab72LL, 0x8cc702081a6439ecLL,
+ 0x90befffa23631e28LL, 0xa4506cebde82bde9LL,
+ 0xbef9a3f7b2c67915LL, 0xc67178f2e372532bLL,
+ 0xca273eceea26619cLL, 0xd186b8c721c0c207LL,
+ 0xeada7dd6cde0eb1eLL, 0xf57d4f7fee6ed178LL,
+ 0x06f067aa72176fbaLL, 0x0a637dc5a2c898a6LL,
+ 0x113f9804bef90daeLL, 0x1b710b35131c471bLL,
+ 0x28db77f523047d84LL, 0x32caab7b40c72493LL,
+ 0x3c9ebe0a15c9bebcLL, 0x431d67c49c100d4cLL,
+ 0x4cc5d4becb3e42b6LL, 0x597f299cfc657e2aLL,
+ 0x5fcb6fab3ad6faecLL, 0x6c44198c4a475817LL,
+};
+
+static inline uint64_t load64(const uint8_t *x)
+{
+ uint64_t r;
+
+ r = *(x++);
+ r = (r << 8) | *(x++);
+ r = (r << 8) | *(x++);
+ r = (r << 8) | *(x++);
+ r = (r << 8) | *(x++);
+ r = (r << 8) | *(x++);
+ r = (r << 8) | *(x++);
+ r = (r << 8) | *(x++);
+
+ return r;
+}
+
+static inline void store64(uint8_t *x, uint64_t v)
+{
+ x += 7;
+ *(x--) = v;
+ v >>= 8;
+ *(x--) = v;
+ v >>= 8;
+ *(x--) = v;
+ v >>= 8;
+ *(x--) = v;
+ v >>= 8;
+ *(x--) = v;
+ v >>= 8;
+ *(x--) = v;
+ v >>= 8;
+ *(x--) = v;
+ v >>= 8;
+ *(x--) = v;
+}
+
+static inline uint64_t rot64(uint64_t x, int bits)
+{
+ return (x >> bits) | (x << (64 - bits));
+}
+
+static void
+sha512_block(struct sha512_state *s, const uint8_t *blk)
+{
+ uint64_t w[16];
+ uint64_t a, b, c, d, e, f, g, h;
+ int i;
+
+ for (i = 0; i < 16; i++) {
+ w[i] = load64(blk);
+ blk += 8;
+ }
+
+ /* Load state */
+ a = s->h[0];
+ b = s->h[1];
+ c = s->h[2];
+ d = s->h[3];
+ e = s->h[4];
+ f = s->h[5];
+ g = s->h[6];
+ h = s->h[7];
+
+ for (i = 0; i < 80; i++) {
+ /* Compute value of w[i + 16]. w[wrap(i)] is currently w[i] */
+ const uint64_t wi = w[i & 15];
+ const uint64_t wi15 = w[(i + 1) & 15];
+ const uint64_t wi2 = w[(i + 14) & 15];
+ const uint64_t wi7 = w[(i + 9) & 15];
+ const uint64_t s0 =
+ rot64(wi15, 1) ^ rot64(wi15, 8) ^ (wi15 >> 7);
+ const uint64_t s1 =
+ rot64(wi2, 19) ^ rot64(wi2, 61) ^ (wi2 >> 6);
+
+ /* Round calculations */
+ const uint64_t S0 = rot64(a, 28) ^ rot64(a, 34) ^ rot64(a, 39);
+ const uint64_t S1 = rot64(e, 14) ^ rot64(e, 18) ^ rot64(e, 41);
+ const uint64_t ch = (e & f) ^ ((~e) & g);
+ const uint64_t temp1 = h + S1 + ch + round_k[i] + wi;
+ const uint64_t maj = (a & b) ^ (a & c) ^ (b & c);
+ const uint64_t temp2 = S0 + maj;
+
+ /* Update round state */
+ h = g;
+ g = f;
+ f = e;
+ e = d + temp1;
+ d = c;
+ c = b;
+ b = a;
+ a = temp1 + temp2;
+
+ /* w[wrap(i)] becomes w[i + 16] */
+ w[i & 15] = wi + s0 + wi7 + s1;
+ }
+
+ /* Store state */
+ s->h[0] += a;
+ s->h[1] += b;
+ s->h[2] += c;
+ s->h[3] += d;
+ s->h[4] += e;
+ s->h[5] += f;
+ s->h[6] += g;
+ s->h[7] += h;
+}
+
+void sha512_init(struct sha512_state *s)
+{
+ memcpy(s->h, &sha512_initial_state, sizeof(s->h));
+ s->len = 0;
+}
+
+void sha512_add(struct sha512_state *s, const void *data, size_t len)
+{
+ unsigned int partial = s->len & (SHA512_BLOCK_SIZE - 1);
+
+ if (partial) {
+ unsigned int cur = SHA512_BLOCK_SIZE - partial;
+
+ if (cur > len)
+ cur = len;
+
+ memcpy(&s->partial[partial], data, cur);
+
+ s->len += cur;
+ data += cur;
+ len -= cur;
+
+ partial = s->len & (SHA512_BLOCK_SIZE - 1);
+ if (!partial)
+ sha512_block(s, s->partial);
+ }
+
+ while (len >= SHA512_BLOCK_SIZE) {
+ sha512_block(s, data);
+
+ s->len += SHA512_BLOCK_SIZE;
+ data += SHA512_BLOCK_SIZE;
+ len -= SHA512_BLOCK_SIZE;
+ }
+
+ if (!len)
+ return;
+
+ memcpy(s->partial, data, len);
+ s->len += len;
+}
+
+void sha512_final(struct sha512_state *s, uint8_t *hash)
+{
+ size_t last_size = s->len & (SHA512_BLOCK_SIZE - 1);
+ unsigned int len = SHA512_HASH_SIZE;
+ int i = 0;
+
+ s->partial[last_size++] = 0x80;
+ if (last_size < SHA512_BLOCK_SIZE)
+ memset(&s->partial[last_size], 0,
+ SHA512_BLOCK_SIZE - last_size);
+
+ if (last_size > (SHA512_BLOCK_SIZE - 16)) {
+ sha512_block(s, s->partial);
+ memset(s->partial, 0, sizeof(s->partial));
+ }
+
+ /* Note: we assume total_size fits in 61 bits */
+ store64(s->partial + SHA512_BLOCK_SIZE - 8, s->len << 3);
+ sha512_block(s, s->partial);
+
+ /* Read out whole words */
+ while (len >= 8) {
+ store64(hash, s->h[i++]);
+ hash += 8;
+ len -= 8;
+ }
+
+ /* Read out bytes */
+ if (len) {
+ uint8_t tmp[8];
+
+ store64(tmp, s->h[i]);
+ memcpy(hash, tmp, len);
+ }
+}
--- /dev/null
+/*
+ * Copyright (C) 2015 Felix Fietkau <nbd@openwrt.org>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+/* SHA512
+ * Daniel Beer <dlbeer@gmail.com>, 22 Apr 2014
+ *
+ * This file is in the public domain.
+ */
+
+#ifndef SHA512_H_
+#define SHA512_H_
+
+#include <sys/types.h>
+#include <stdint.h>
+#include <stddef.h>
+#include <string.h>
+
+/* Feed a full block in */
+#define SHA512_BLOCK_SIZE 128
+
+/* SHA512 state. State is updated as data is fed in, and then the final
+ * hash can be read out in slices.
+ *
+ * Data is fed in as a sequence of full blocks terminated by a single
+ * partial block.
+ */
+struct sha512_state {
+ uint64_t h[8];
+ uint8_t partial[SHA512_BLOCK_SIZE];
+ size_t len;
+};
+
+/* Set up a new context */
+void sha512_init(struct sha512_state *s);
+
+void sha512_add(struct sha512_state *s, const void *data, size_t len);
+
+/* Fetch a slice of the hash result. */
+#define SHA512_HASH_SIZE 64
+
+void sha512_final(struct sha512_state *s, uint8_t *hash);
+
+static inline void *
+sha512_final_get(struct sha512_state *s)
+{
+ sha512_final(s, s->partial);
+ return s->partial;
+}
+
+#endif