};
/*
- * Create the kmalloc array. Some of the regular kmalloc arrays
- * may already have been created because they were needed to
- * enable allocations for slab creation.
+ * Patch up the size_index table if we have strange large alignment
+ * requirements for the kmalloc array. This is only the case for
+ * MIPS it seems. The standard arches will not generate any code here.
+ *
+ * Largest permitted alignment is 256 bytes due to the way we
+ * handle the index determination for the smaller caches.
+ *
+ * Make sure that nothing crazy happens if someone starts tinkering
+ * around with ARCH_KMALLOC_MINALIGN
*/
-void __init create_kmalloc_caches(unsigned long flags)
+void __init setup_kmalloc_cache_index_table(void)
{
int i;
- /*
- * Patch up the size_index table if we have strange large alignment
- * requirements for the kmalloc array. This is only the case for
- * MIPS it seems. The standard arches will not generate any code here.
- *
- * Largest permitted alignment is 256 bytes due to the way we
- * handle the index determination for the smaller caches.
- *
- * Make sure that nothing crazy happens if someone starts tinkering
- * around with ARCH_KMALLOC_MINALIGN
- */
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
for (i = 128 + 8; i <= 192; i += 8)
size_index[size_index_elem(i)] = 8;
}
+}
+
+/*
+ * Create the kmalloc array. Some of the regular kmalloc arrays
+ * may already have been created because they were needed to
+ * enable allocations for slab creation.
+ */
+void __init create_kmalloc_caches(unsigned long flags)
+{
+ int i;
+
for (i = KMALLOC_LOOP_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
if (!kmalloc_caches[i]) {
kmalloc_caches[i] = create_kmalloc_cache(