ia64/index
m68k/index
powerpc/index
+ openrisc/index
parisc/index
riscv/index
s390/index
+++ /dev/null
-OpenRISC Linux
-==============
-
-This is a port of Linux to the OpenRISC class of microprocessors; the initial
-target architecture, specifically, is the 32-bit OpenRISC 1000 family (or1k).
-
-For information about OpenRISC processors and ongoing development:
-
- website http://openrisc.io
- email openrisc@lists.librecores.org
-
----------------------------------------------------------------------
-
-Build instructions for OpenRISC toolchain and Linux
-===================================================
-
-In order to build and run Linux for OpenRISC, you'll need at least a basic
-toolchain and, perhaps, the architectural simulator. Steps to get these bits
-in place are outlined here.
-
-1) Toolchain
-
-Toolchain binaries can be obtained from openrisc.io or our github releases page.
-Instructions for building the different toolchains can be found on openrisc.io
-or Stafford's toolchain build and release scripts.
-
- binaries https://github.com/openrisc/or1k-gcc/releases
- toolchains https://openrisc.io/software
- building https://github.com/stffrdhrn/or1k-toolchain-build
-
-2) Building
-
-Build the Linux kernel as usual
-
- make ARCH=openrisc defconfig
- make ARCH=openrisc
-
-3) Running on FPGA (optional)
-
-The OpenRISC community typically uses FuseSoC to manage building and programming
-an SoC into an FPGA. The below is an example of programming a De0 Nano
-development board with the OpenRISC SoC. During the build FPGA RTL is code
-downloaded from the FuseSoC IP cores repository and built using the FPGA vendor
-tools. Binaries are loaded onto the board with openocd.
-
- git clone https://github.com/olofk/fusesoc
- cd fusesoc
- sudo pip install -e .
-
- fusesoc init
- fusesoc build de0_nano
- fusesoc pgm de0_nano
-
- openocd -f interface/altera-usb-blaster.cfg \
- -f board/or1k_generic.cfg
-
- telnet localhost 4444
- > init
- > halt; load_image vmlinux ; reset
-
-4) Running on a Simulator (optional)
-
-QEMU is a processor emulator which we recommend for simulating the OpenRISC
-platform. Please follow the OpenRISC instructions on the QEMU website to get
-Linux running on QEMU. You can build QEMU yourself, but your Linux distribution
-likely provides binary packages to support OpenRISC.
-
- qemu openrisc https://wiki.qemu.org/Documentation/Platforms/OpenRISC
-
----------------------------------------------------------------------
-
-Terminology
-===========
-
-In the code, the following particles are used on symbols to limit the scope
-to more or less specific processor implementations:
-
-openrisc: the OpenRISC class of processors
-or1k: the OpenRISC 1000 family of processors
-or1200: the OpenRISC 1200 processor
-
----------------------------------------------------------------------
-
-History
-========
-
-18. 11. 2003 Matjaz Breskvar (phoenix@bsemi.com)
- initial port of linux to OpenRISC/or32 architecture.
- all the core stuff is implemented and seams usable.
-
-08. 12. 2003 Matjaz Breskvar (phoenix@bsemi.com)
- complete change of TLB miss handling.
- rewrite of exceptions handling.
- fully functional sash-3.6 in default initrd.
- a much improved version with changes all around.
-
-10. 04. 2004 Matjaz Breskvar (phoenix@bsemi.com)
- alot of bugfixes all over.
- ethernet support, functional http and telnet servers.
- running many standard linux apps.
-
-26. 06. 2004 Matjaz Breskvar (phoenix@bsemi.com)
- port to 2.6.x
-
-30. 11. 2004 Matjaz Breskvar (phoenix@bsemi.com)
- lots of bugfixes and enhancments.
- added opencores framebuffer driver.
-
-09. 10. 2010 Jonas Bonn (jonas@southpole.se)
- major rewrite to bring up to par with upstream Linux 2.6.36
+++ /dev/null
-The OpenRISC Linux port is fully functional and has been tracking upstream
-since 2.6.35. There are, however, remaining items to be completed within
-the coming months. Here's a list of known-to-be-less-than-stellar items
-that are due for investigation shortly, i.e. our TODO list:
-
--- Implement the rest of the DMA API... dma_map_sg, etc.
-
--- Finish the renaming cleanup... there are references to or32 in the code
- which was an older name for the architecture. The name we've settled on is
- or1k and this change is slowly trickling through the stack. For the time
- being, or32 is equivalent to or1k.
-
--- /dev/null
+.. SPDX-License-Identifier: GPL-2.0
+
+=====================
+OpenRISC Architecture
+=====================
+
+.. toctree::
+ :maxdepth: 2
+
+ openrisc_port
+ todo
+
+.. only:: subproject and html
+
+ Indices
+ =======
+
+ * :ref:`genindex`
--- /dev/null
+==============
+OpenRISC Linux
+==============
+
+This is a port of Linux to the OpenRISC class of microprocessors; the initial
+target architecture, specifically, is the 32-bit OpenRISC 1000 family (or1k).
+
+For information about OpenRISC processors and ongoing development:
+
+ ======= =============================
+ website http://openrisc.io
+ email openrisc@lists.librecores.org
+ ======= =============================
+
+---------------------------------------------------------------------
+
+Build instructions for OpenRISC toolchain and Linux
+===================================================
+
+In order to build and run Linux for OpenRISC, you'll need at least a basic
+toolchain and, perhaps, the architectural simulator. Steps to get these bits
+in place are outlined here.
+
+1) Toolchain
+
+Toolchain binaries can be obtained from openrisc.io or our github releases page.
+Instructions for building the different toolchains can be found on openrisc.io
+or Stafford's toolchain build and release scripts.
+
+ ========== =================================================
+ binaries https://github.com/openrisc/or1k-gcc/releases
+ toolchains https://openrisc.io/software
+ building https://github.com/stffrdhrn/or1k-toolchain-build
+ ========== =================================================
+
+2) Building
+
+Build the Linux kernel as usual::
+
+ make ARCH=openrisc defconfig
+ make ARCH=openrisc
+
+3) Running on FPGA (optional)
+
+The OpenRISC community typically uses FuseSoC to manage building and programming
+an SoC into an FPGA. The below is an example of programming a De0 Nano
+development board with the OpenRISC SoC. During the build FPGA RTL is code
+downloaded from the FuseSoC IP cores repository and built using the FPGA vendor
+tools. Binaries are loaded onto the board with openocd.
+
+::
+
+ git clone https://github.com/olofk/fusesoc
+ cd fusesoc
+ sudo pip install -e .
+
+ fusesoc init
+ fusesoc build de0_nano
+ fusesoc pgm de0_nano
+
+ openocd -f interface/altera-usb-blaster.cfg \
+ -f board/or1k_generic.cfg
+
+ telnet localhost 4444
+ > init
+ > halt; load_image vmlinux ; reset
+
+4) Running on a Simulator (optional)
+
+QEMU is a processor emulator which we recommend for simulating the OpenRISC
+platform. Please follow the OpenRISC instructions on the QEMU website to get
+Linux running on QEMU. You can build QEMU yourself, but your Linux distribution
+likely provides binary packages to support OpenRISC.
+
+ ============= ======================================================
+ qemu openrisc https://wiki.qemu.org/Documentation/Platforms/OpenRISC
+ ============= ======================================================
+
+---------------------------------------------------------------------
+
+Terminology
+===========
+
+In the code, the following particles are used on symbols to limit the scope
+to more or less specific processor implementations:
+
+========= =======================================
+openrisc: the OpenRISC class of processors
+or1k: the OpenRISC 1000 family of processors
+or1200: the OpenRISC 1200 processor
+========= =======================================
+
+---------------------------------------------------------------------
+
+History
+========
+
+18-11-2003 Matjaz Breskvar (phoenix@bsemi.com)
+ initial port of linux to OpenRISC/or32 architecture.
+ all the core stuff is implemented and seams usable.
+
+08-12-2003 Matjaz Breskvar (phoenix@bsemi.com)
+ complete change of TLB miss handling.
+ rewrite of exceptions handling.
+ fully functional sash-3.6 in default initrd.
+ a much improved version with changes all around.
+
+10-04-2004 Matjaz Breskvar (phoenix@bsemi.com)
+ alot of bugfixes all over.
+ ethernet support, functional http and telnet servers.
+ running many standard linux apps.
+
+26-06-2004 Matjaz Breskvar (phoenix@bsemi.com)
+ port to 2.6.x
+
+30-11-2004 Matjaz Breskvar (phoenix@bsemi.com)
+ lots of bugfixes and enhancments.
+ added opencores framebuffer driver.
+
+09-10-2010 Jonas Bonn (jonas@southpole.se)
+ major rewrite to bring up to par with upstream Linux 2.6.36
--- /dev/null
+====
+TODO
+====
+
+The OpenRISC Linux port is fully functional and has been tracking upstream
+since 2.6.35. There are, however, remaining items to be completed within
+the coming months. Here's a list of known-to-be-less-than-stellar items
+that are due for investigation shortly, i.e. our TODO list:
+
+- Implement the rest of the DMA API... dma_map_sg, etc.
+
+- Finish the renaming cleanup... there are references to or32 in the code
+ which was an older name for the architecture. The name we've settled on is
+ or1k and this change is slowly trickling through the stack. For the time
+ being, or32 is equivalent to or1k.