--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright (c) 2019, Intel Corporation. */
+
+#include <linux/bpf_trace.h>
+#include <net/xdp_sock.h>
+#include <net/xdp.h>
+#include "ice.h"
+#include "ice_base.h"
+#include "ice_type.h"
+#include "ice_xsk.h"
+#include "ice_txrx.h"
+#include "ice_txrx_lib.h"
+#include "ice_lib.h"
+
+/**
+ * ice_qp_reset_stats - Resets all stats for rings of given index
+ * @vsi: VSI that contains rings of interest
+ * @q_idx: ring index in array
+ */
+static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
+{
+ memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
+ sizeof(vsi->rx_rings[q_idx]->rx_stats));
+ memset(&vsi->tx_rings[q_idx]->stats, 0,
+ sizeof(vsi->tx_rings[q_idx]->stats));
+ if (ice_is_xdp_ena_vsi(vsi))
+ memset(&vsi->xdp_rings[q_idx]->stats, 0,
+ sizeof(vsi->xdp_rings[q_idx]->stats));
+}
+
+/**
+ * ice_qp_clean_rings - Cleans all the rings of a given index
+ * @vsi: VSI that contains rings of interest
+ * @q_idx: ring index in array
+ */
+static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
+{
+ ice_clean_tx_ring(vsi->tx_rings[q_idx]);
+ if (ice_is_xdp_ena_vsi(vsi))
+ ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
+ ice_clean_rx_ring(vsi->rx_rings[q_idx]);
+}
+
+/**
+ * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
+ * @vsi: VSI that has netdev
+ * @q_vector: q_vector that has NAPI context
+ * @enable: true for enable, false for disable
+ */
+static void
+ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
+ bool enable)
+{
+ if (!vsi->netdev || !q_vector)
+ return;
+
+ if (enable)
+ napi_enable(&q_vector->napi);
+ else
+ napi_disable(&q_vector->napi);
+}
+
+/**
+ * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
+ * @vsi: the VSI that contains queue vector being un-configured
+ * @rx_ring: Rx ring that will have its IRQ disabled
+ * @q_vector: queue vector
+ */
+static void
+ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
+ struct ice_q_vector *q_vector)
+{
+ struct ice_pf *pf = vsi->back;
+ struct ice_hw *hw = &pf->hw;
+ int base = vsi->base_vector;
+ u16 reg;
+ u32 val;
+
+ /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
+ * here only QINT_RQCTL
+ */
+ reg = rx_ring->reg_idx;
+ val = rd32(hw, QINT_RQCTL(reg));
+ val &= ~QINT_RQCTL_CAUSE_ENA_M;
+ wr32(hw, QINT_RQCTL(reg), val);
+
+ if (q_vector) {
+ u16 v_idx = q_vector->v_idx;
+
+ wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
+ ice_flush(hw);
+ synchronize_irq(pf->msix_entries[v_idx + base].vector);
+ }
+}
+
+/**
+ * ice_qvec_cfg_msix - Enable IRQ for given queue vector
+ * @vsi: the VSI that contains queue vector
+ * @q_vector: queue vector
+ */
+static void
+ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
+{
+ u16 reg_idx = q_vector->reg_idx;
+ struct ice_pf *pf = vsi->back;
+ struct ice_hw *hw = &pf->hw;
+ struct ice_ring *ring;
+
+ ice_cfg_itr(hw, q_vector);
+
+ wr32(hw, GLINT_RATE(reg_idx),
+ ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
+
+ ice_for_each_ring(ring, q_vector->tx)
+ ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
+ q_vector->tx.itr_idx);
+
+ ice_for_each_ring(ring, q_vector->rx)
+ ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
+ q_vector->rx.itr_idx);
+
+ ice_flush(hw);
+}
+
+/**
+ * ice_qvec_ena_irq - Enable IRQ for given queue vector
+ * @vsi: the VSI that contains queue vector
+ * @q_vector: queue vector
+ */
+static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
+{
+ struct ice_pf *pf = vsi->back;
+ struct ice_hw *hw = &pf->hw;
+
+ ice_irq_dynamic_ena(hw, vsi, q_vector);
+
+ ice_flush(hw);
+}
+
+/**
+ * ice_qp_dis - Disables a queue pair
+ * @vsi: VSI of interest
+ * @q_idx: ring index in array
+ *
+ * Returns 0 on success, negative on failure.
+ */
+static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
+{
+ struct ice_txq_meta txq_meta = { };
+ struct ice_ring *tx_ring, *rx_ring;
+ struct ice_q_vector *q_vector;
+ int timeout = 50;
+ int err;
+
+ if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
+ return -EINVAL;
+
+ tx_ring = vsi->tx_rings[q_idx];
+ rx_ring = vsi->rx_rings[q_idx];
+ q_vector = rx_ring->q_vector;
+
+ while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) {
+ timeout--;
+ if (!timeout)
+ return -EBUSY;
+ usleep_range(1000, 2000);
+ }
+ netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
+
+ ice_qvec_dis_irq(vsi, rx_ring, q_vector);
+
+ ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
+ err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
+ if (err)
+ return err;
+ if (ice_is_xdp_ena_vsi(vsi)) {
+ struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
+
+ memset(&txq_meta, 0, sizeof(txq_meta));
+ ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
+ err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
+ &txq_meta);
+ if (err)
+ return err;
+ }
+ err = ice_vsi_ctrl_rx_ring(vsi, false, q_idx);
+ if (err)
+ return err;
+
+ ice_qvec_toggle_napi(vsi, q_vector, false);
+ ice_qp_clean_rings(vsi, q_idx);
+ ice_qp_reset_stats(vsi, q_idx);
+
+ return 0;
+}
+
+/**
+ * ice_qp_ena - Enables a queue pair
+ * @vsi: VSI of interest
+ * @q_idx: ring index in array
+ *
+ * Returns 0 on success, negative on failure.
+ */
+static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
+{
+ struct ice_aqc_add_tx_qgrp *qg_buf;
+ struct ice_ring *tx_ring, *rx_ring;
+ struct ice_q_vector *q_vector;
+ int err;
+
+ if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
+ return -EINVAL;
+
+ qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL);
+ if (!qg_buf)
+ return -ENOMEM;
+
+ qg_buf->num_txqs = 1;
+
+ tx_ring = vsi->tx_rings[q_idx];
+ rx_ring = vsi->rx_rings[q_idx];
+ q_vector = rx_ring->q_vector;
+
+ err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
+ if (err)
+ goto free_buf;
+
+ if (ice_is_xdp_ena_vsi(vsi)) {
+ struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
+
+ memset(qg_buf, 0, sizeof(*qg_buf));
+ qg_buf->num_txqs = 1;
+ err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
+ if (err)
+ goto free_buf;
+ ice_set_ring_xdp(xdp_ring);
+ xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
+ }
+
+ err = ice_setup_rx_ctx(rx_ring);
+ if (err)
+ goto free_buf;
+
+ ice_qvec_cfg_msix(vsi, q_vector);
+
+ err = ice_vsi_ctrl_rx_ring(vsi, true, q_idx);
+ if (err)
+ goto free_buf;
+
+ clear_bit(__ICE_CFG_BUSY, vsi->state);
+ ice_qvec_toggle_napi(vsi, q_vector, true);
+ ice_qvec_ena_irq(vsi, q_vector);
+
+ netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
+free_buf:
+ kfree(qg_buf);
+ return err;
+}
+
+/**
+ * ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket
+ * @vsi: VSI to allocate the UMEM on
+ *
+ * Returns 0 on success, negative on error
+ */
+static int ice_xsk_alloc_umems(struct ice_vsi *vsi)
+{
+ if (vsi->xsk_umems)
+ return 0;
+
+ vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
+ GFP_KERNEL);
+
+ if (!vsi->xsk_umems) {
+ vsi->num_xsk_umems = 0;
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/**
+ * ice_xsk_add_umem - add a UMEM region for XDP sockets
+ * @vsi: VSI to which the UMEM will be added
+ * @umem: pointer to a requested UMEM region
+ * @qid: queue ID
+ *
+ * Returns 0 on success, negative on error
+ */
+static int ice_xsk_add_umem(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
+{
+ int err;
+
+ err = ice_xsk_alloc_umems(vsi);
+ if (err)
+ return err;
+
+ vsi->xsk_umems[qid] = umem;
+ vsi->num_xsk_umems_used++;
+
+ return 0;
+}
+
+/**
+ * ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid
+ * @vsi: VSI from which the VSI will be removed
+ * @qid: Ring/qid associated with the UMEM
+ */
+static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid)
+{
+ vsi->xsk_umems[qid] = NULL;
+ vsi->num_xsk_umems_used--;
+
+ if (vsi->num_xsk_umems_used == 0) {
+ kfree(vsi->xsk_umems);
+ vsi->xsk_umems = NULL;
+ vsi->num_xsk_umems = 0;
+ }
+}
+
+/**
+ * ice_xsk_umem_dma_map - DMA map UMEM region for XDP sockets
+ * @vsi: VSI to map the UMEM region
+ * @umem: UMEM to map
+ *
+ * Returns 0 on success, negative on error
+ */
+static int ice_xsk_umem_dma_map(struct ice_vsi *vsi, struct xdp_umem *umem)
+{
+ struct ice_pf *pf = vsi->back;
+ struct device *dev;
+ unsigned int i;
+
+ dev = &pf->pdev->dev;
+ for (i = 0; i < umem->npgs; i++) {
+ dma_addr_t dma = dma_map_page_attrs(dev, umem->pgs[i], 0,
+ PAGE_SIZE,
+ DMA_BIDIRECTIONAL,
+ ICE_RX_DMA_ATTR);
+ if (dma_mapping_error(dev, dma)) {
+ dev_dbg(dev,
+ "XSK UMEM DMA mapping error on page num %d", i);
+ goto out_unmap;
+ }
+
+ umem->pages[i].dma = dma;
+ }
+
+ return 0;
+
+out_unmap:
+ for (; i > 0; i--) {
+ dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
+ DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
+ umem->pages[i].dma = 0;
+ }
+
+ return -EFAULT;
+}
+
+/**
+ * ice_xsk_umem_dma_unmap - DMA unmap UMEM region for XDP sockets
+ * @vsi: VSI from which the UMEM will be unmapped
+ * @umem: UMEM to unmap
+ */
+static void ice_xsk_umem_dma_unmap(struct ice_vsi *vsi, struct xdp_umem *umem)
+{
+ struct ice_pf *pf = vsi->back;
+ struct device *dev;
+ unsigned int i;
+
+ dev = &pf->pdev->dev;
+ for (i = 0; i < umem->npgs; i++) {
+ dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
+ DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
+
+ umem->pages[i].dma = 0;
+ }
+}
+
+/**
+ * ice_xsk_umem_disable - disable a UMEM region
+ * @vsi: Current VSI
+ * @qid: queue ID
+ *
+ * Returns 0 on success, negative on failure
+ */
+static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid)
+{
+ if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
+ !vsi->xsk_umems[qid])
+ return -EINVAL;
+
+ ice_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]);
+ ice_xsk_remove_umem(vsi, qid);
+
+ return 0;
+}
+
+/**
+ * ice_xsk_umem_enable - enable a UMEM region
+ * @vsi: Current VSI
+ * @umem: pointer to a requested UMEM region
+ * @qid: queue ID
+ *
+ * Returns 0 on success, negative on failure
+ */
+static int
+ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
+{
+ struct xdp_umem_fq_reuse *reuseq;
+ int err;
+
+ if (vsi->type != ICE_VSI_PF)
+ return -EINVAL;
+
+ vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq);
+ if (qid >= vsi->num_xsk_umems)
+ return -EINVAL;
+
+ if (vsi->xsk_umems && vsi->xsk_umems[qid])
+ return -EBUSY;
+
+ reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
+ if (!reuseq)
+ return -ENOMEM;
+
+ xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
+
+ err = ice_xsk_umem_dma_map(vsi, umem);
+ if (err)
+ return err;
+
+ err = ice_xsk_add_umem(vsi, umem, qid);
+ if (err)
+ return err;
+
+ return 0;
+}
+
+/**
+ * ice_xsk_umem_setup - enable/disable a UMEM region depending on its state
+ * @vsi: Current VSI
+ * @umem: UMEM to enable/associate to a ring, NULL to disable
+ * @qid: queue ID
+ *
+ * Returns 0 on success, negative on failure
+ */
+int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
+{
+ bool if_running, umem_present = !!umem;
+ int ret = 0, umem_failure = 0;
+
+ if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
+
+ if (if_running) {
+ ret = ice_qp_dis(vsi, qid);
+ if (ret) {
+ netdev_err(vsi->netdev, "ice_qp_dis error = %d", ret);
+ goto xsk_umem_if_up;
+ }
+ }
+
+ umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) :
+ ice_xsk_umem_disable(vsi, qid);
+
+xsk_umem_if_up:
+ if (if_running) {
+ ret = ice_qp_ena(vsi, qid);
+ if (!ret && umem_present)
+ napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
+ else if (ret)
+ netdev_err(vsi->netdev, "ice_qp_ena error = %d", ret);
+ }
+
+ if (umem_failure) {
+ netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d",
+ umem_present ? "en" : "dis", umem_failure);
+ return umem_failure;
+ }
+
+ return ret;
+}
+
+/**
+ * ice_zca_free - Callback for MEM_TYPE_ZERO_COPY allocations
+ * @zca: zero-cpoy allocator
+ * @handle: Buffer handle
+ */
+void ice_zca_free(struct zero_copy_allocator *zca, unsigned long handle)
+{
+ struct ice_rx_buf *rx_buf;
+ struct ice_ring *rx_ring;
+ struct xdp_umem *umem;
+ u64 hr, mask;
+ u16 nta;
+
+ rx_ring = container_of(zca, struct ice_ring, zca);
+ umem = rx_ring->xsk_umem;
+ hr = umem->headroom + XDP_PACKET_HEADROOM;
+
+ mask = umem->chunk_mask;
+
+ nta = rx_ring->next_to_alloc;
+ rx_buf = &rx_ring->rx_buf[nta];
+
+ nta++;
+ rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
+
+ handle &= mask;
+
+ rx_buf->dma = xdp_umem_get_dma(umem, handle);
+ rx_buf->dma += hr;
+
+ rx_buf->addr = xdp_umem_get_data(umem, handle);
+ rx_buf->addr += hr;
+
+ rx_buf->handle = (u64)handle + umem->headroom;
+}
+
+/**
+ * ice_alloc_buf_fast_zc - Retrieve buffer address from XDP umem
+ * @rx_ring: ring with an xdp_umem bound to it
+ * @rx_buf: buffer to which xsk page address will be assigned
+ *
+ * This function allocates an Rx buffer in the hot path.
+ * The buffer can come from fill queue or recycle queue.
+ *
+ * Returns true if an assignment was successful, false if not.
+ */
+static __always_inline bool
+ice_alloc_buf_fast_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
+{
+ struct xdp_umem *umem = rx_ring->xsk_umem;
+ void *addr = rx_buf->addr;
+ u64 handle, hr;
+
+ if (addr) {
+ rx_ring->rx_stats.page_reuse_count++;
+ return true;
+ }
+
+ if (!xsk_umem_peek_addr(umem, &handle)) {
+ rx_ring->rx_stats.alloc_page_failed++;
+ return false;
+ }
+
+ hr = umem->headroom + XDP_PACKET_HEADROOM;
+
+ rx_buf->dma = xdp_umem_get_dma(umem, handle);
+ rx_buf->dma += hr;
+
+ rx_buf->addr = xdp_umem_get_data(umem, handle);
+ rx_buf->addr += hr;
+
+ rx_buf->handle = handle + umem->headroom;
+
+ xsk_umem_discard_addr(umem);
+ return true;
+}
+
+/**
+ * ice_alloc_buf_slow_zc - Retrieve buffer address from XDP umem
+ * @rx_ring: ring with an xdp_umem bound to it
+ * @rx_buf: buffer to which xsk page address will be assigned
+ *
+ * This function allocates an Rx buffer in the slow path.
+ * The buffer can come from fill queue or recycle queue.
+ *
+ * Returns true if an assignment was successful, false if not.
+ */
+static __always_inline bool
+ice_alloc_buf_slow_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
+{
+ struct xdp_umem *umem = rx_ring->xsk_umem;
+ u64 handle, headroom;
+
+ if (!xsk_umem_peek_addr_rq(umem, &handle)) {
+ rx_ring->rx_stats.alloc_page_failed++;
+ return false;
+ }
+
+ handle &= umem->chunk_mask;
+ headroom = umem->headroom + XDP_PACKET_HEADROOM;
+
+ rx_buf->dma = xdp_umem_get_dma(umem, handle);
+ rx_buf->dma += headroom;
+
+ rx_buf->addr = xdp_umem_get_data(umem, handle);
+ rx_buf->addr += headroom;
+
+ rx_buf->handle = handle + umem->headroom;
+
+ xsk_umem_discard_addr_rq(umem);
+ return true;
+}
+
+/**
+ * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
+ * @rx_ring: Rx ring
+ * @count: The number of buffers to allocate
+ * @alloc: the function pointer to call for allocation
+ *
+ * This function allocates a number of Rx buffers from the fill ring
+ * or the internal recycle mechanism and places them on the Rx ring.
+ *
+ * Returns false if all allocations were successful, true if any fail.
+ */
+static bool
+ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, int count,
+ bool alloc(struct ice_ring *, struct ice_rx_buf *))
+{
+ union ice_32b_rx_flex_desc *rx_desc;
+ u16 ntu = rx_ring->next_to_use;
+ struct ice_rx_buf *rx_buf;
+ bool ret = false;
+
+ if (!count)
+ return false;
+
+ rx_desc = ICE_RX_DESC(rx_ring, ntu);
+ rx_buf = &rx_ring->rx_buf[ntu];
+
+ do {
+ if (!alloc(rx_ring, rx_buf)) {
+ ret = true;
+ break;
+ }
+
+ dma_sync_single_range_for_device(rx_ring->dev, rx_buf->dma, 0,
+ rx_ring->rx_buf_len,
+ DMA_BIDIRECTIONAL);
+
+ rx_desc->read.pkt_addr = cpu_to_le64(rx_buf->dma);
+ rx_desc->wb.status_error0 = 0;
+
+ rx_desc++;
+ rx_buf++;
+ ntu++;
+
+ if (unlikely(ntu == rx_ring->count)) {
+ rx_desc = ICE_RX_DESC(rx_ring, 0);
+ rx_buf = rx_ring->rx_buf;
+ ntu = 0;
+ }
+ } while (--count);
+
+ if (rx_ring->next_to_use != ntu)
+ ice_release_rx_desc(rx_ring, ntu);
+
+ return ret;
+}
+
+/**
+ * ice_alloc_rx_bufs_fast_zc - allocate zero copy bufs in the hot path
+ * @rx_ring: Rx ring
+ * @count: number of bufs to allocate
+ *
+ * Returns false on success, true on failure.
+ */
+static bool ice_alloc_rx_bufs_fast_zc(struct ice_ring *rx_ring, u16 count)
+{
+ return ice_alloc_rx_bufs_zc(rx_ring, count,
+ ice_alloc_buf_fast_zc);
+}
+
+/**
+ * ice_alloc_rx_bufs_slow_zc - allocate zero copy bufs in the slow path
+ * @rx_ring: Rx ring
+ * @count: number of bufs to allocate
+ *
+ * Returns false on success, true on failure.
+ */
+bool ice_alloc_rx_bufs_slow_zc(struct ice_ring *rx_ring, u16 count)
+{
+ return ice_alloc_rx_bufs_zc(rx_ring, count,
+ ice_alloc_buf_slow_zc);
+}
+
+/**
+ * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
+ * @rx_ring: Rx ring
+ */
+static void ice_bump_ntc(struct ice_ring *rx_ring)
+{
+ int ntc = rx_ring->next_to_clean + 1;
+
+ ntc = (ntc < rx_ring->count) ? ntc : 0;
+ rx_ring->next_to_clean = ntc;
+ prefetch(ICE_RX_DESC(rx_ring, ntc));
+}
+
+/**
+ * ice_get_rx_buf_zc - Fetch the current Rx buffer
+ * @rx_ring: Rx ring
+ * @size: size of a buffer
+ *
+ * This function returns the current, received Rx buffer and does
+ * DMA synchronization.
+ *
+ * Returns a pointer to the received Rx buffer.
+ */
+static struct ice_rx_buf *ice_get_rx_buf_zc(struct ice_ring *rx_ring, int size)
+{
+ struct ice_rx_buf *rx_buf;
+
+ rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
+
+ dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 0,
+ size, DMA_BIDIRECTIONAL);
+
+ return rx_buf;
+}
+
+/**
+ * ice_reuse_rx_buf_zc - reuse an Rx buffer
+ * @rx_ring: Rx ring
+ * @old_buf: The buffer to recycle
+ *
+ * This function recycles a finished Rx buffer, and places it on the recycle
+ * queue (next_to_alloc).
+ */
+static void
+ice_reuse_rx_buf_zc(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
+{
+ unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
+ u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
+ u16 nta = rx_ring->next_to_alloc;
+ struct ice_rx_buf *new_buf;
+
+ new_buf = &rx_ring->rx_buf[nta++];
+ rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
+
+ new_buf->dma = old_buf->dma & mask;
+ new_buf->dma += hr;
+
+ new_buf->addr = (void *)((unsigned long)old_buf->addr & mask);
+ new_buf->addr += hr;
+
+ new_buf->handle = old_buf->handle & mask;
+ new_buf->handle += rx_ring->xsk_umem->headroom;
+
+ old_buf->addr = NULL;
+}
+
+/**
+ * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
+ * @rx_ring: Rx ring
+ * @rx_buf: zero-copy Rx buffer
+ * @xdp: XDP buffer
+ *
+ * This function allocates a new skb from a zero-copy Rx buffer.
+ *
+ * Returns the skb on success, NULL on failure.
+ */
+static struct sk_buff *
+ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
+ struct xdp_buff *xdp)
+{
+ unsigned int metasize = xdp->data - xdp->data_meta;
+ unsigned int datasize = xdp->data_end - xdp->data;
+ unsigned int datasize_hard = xdp->data_end -
+ xdp->data_hard_start;
+ struct sk_buff *skb;
+
+ skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
+ GFP_ATOMIC | __GFP_NOWARN);
+ if (unlikely(!skb))
+ return NULL;
+
+ skb_reserve(skb, xdp->data - xdp->data_hard_start);
+ memcpy(__skb_put(skb, datasize), xdp->data, datasize);
+ if (metasize)
+ skb_metadata_set(skb, metasize);
+
+ ice_reuse_rx_buf_zc(rx_ring, rx_buf);
+
+ return skb;
+}
+
+/**
+ * ice_run_xdp_zc - Executes an XDP program in zero-copy path
+ * @rx_ring: Rx ring
+ * @xdp: xdp_buff used as input to the XDP program
+ *
+ * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
+ */
+static int
+ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
+{
+ int err, result = ICE_XDP_PASS;
+ struct bpf_prog *xdp_prog;
+ struct ice_ring *xdp_ring;
+ u32 act;
+
+ rcu_read_lock();
+ xdp_prog = READ_ONCE(rx_ring->xdp_prog);
+ if (!xdp_prog) {
+ rcu_read_unlock();
+ return ICE_XDP_PASS;
+ }
+
+ act = bpf_prog_run_xdp(xdp_prog, xdp);
+ xdp->handle += xdp->data - xdp->data_hard_start;
+ switch (act) {
+ case XDP_PASS:
+ break;
+ case XDP_TX:
+ xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
+ result = ice_xmit_xdp_buff(xdp, xdp_ring);
+ break;
+ case XDP_REDIRECT:
+ err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
+ result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
+ break;
+ default:
+ bpf_warn_invalid_xdp_action(act);
+ /* fallthrough -- not supported action */
+ case XDP_ABORTED:
+ trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
+ /* fallthrough -- handle aborts by dropping frame */
+ case XDP_DROP:
+ result = ICE_XDP_CONSUMED;
+ break;
+ }
+
+ rcu_read_unlock();
+ return result;
+}
+
+/**
+ * ice_clean_rx_irq_zc - consumes packets from the hardware ring
+ * @rx_ring: AF_XDP Rx ring
+ * @budget: NAPI budget
+ *
+ * Returns number of processed packets on success, remaining budget on failure.
+ */
+int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
+{
+ unsigned int total_rx_bytes = 0, total_rx_packets = 0;
+ u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
+ unsigned int xdp_xmit = 0;
+ struct xdp_buff xdp;
+ bool failure = 0;
+
+ xdp.rxq = &rx_ring->xdp_rxq;
+
+ while (likely(total_rx_packets < (unsigned int)budget)) {
+ union ice_32b_rx_flex_desc *rx_desc;
+ unsigned int size, xdp_res = 0;
+ struct ice_rx_buf *rx_buf;
+ struct sk_buff *skb;
+ u16 stat_err_bits;
+ u16 vlan_tag = 0;
+ u8 rx_ptype;
+
+ if (cleaned_count >= ICE_RX_BUF_WRITE) {
+ failure |= ice_alloc_rx_bufs_fast_zc(rx_ring,
+ cleaned_count);
+ cleaned_count = 0;
+ }
+
+ rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
+
+ stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
+ if (!ice_test_staterr(rx_desc, stat_err_bits))
+ break;
+
+ /* This memory barrier is needed to keep us from reading
+ * any other fields out of the rx_desc until we have
+ * verified the descriptor has been written back.
+ */
+ dma_rmb();
+
+ size = le16_to_cpu(rx_desc->wb.pkt_len) &
+ ICE_RX_FLX_DESC_PKT_LEN_M;
+ if (!size)
+ break;
+
+ rx_buf = ice_get_rx_buf_zc(rx_ring, size);
+ if (!rx_buf->addr)
+ break;
+
+ xdp.data = rx_buf->addr;
+ xdp.data_meta = xdp.data;
+ xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
+ xdp.data_end = xdp.data + size;
+ xdp.handle = rx_buf->handle;
+
+ xdp_res = ice_run_xdp_zc(rx_ring, &xdp);
+ if (xdp_res) {
+ if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
+ xdp_xmit |= xdp_res;
+ rx_buf->addr = NULL;
+ } else {
+ ice_reuse_rx_buf_zc(rx_ring, rx_buf);
+ }
+
+ total_rx_bytes += size;
+ total_rx_packets++;
+ cleaned_count++;
+
+ ice_bump_ntc(rx_ring);
+ continue;
+ }
+
+ /* XDP_PASS path */
+ skb = ice_construct_skb_zc(rx_ring, rx_buf, &xdp);
+ if (!skb) {
+ rx_ring->rx_stats.alloc_buf_failed++;
+ break;
+ }
+
+ cleaned_count++;
+ ice_bump_ntc(rx_ring);
+
+ if (eth_skb_pad(skb)) {
+ skb = NULL;
+ continue;
+ }
+
+ total_rx_bytes += skb->len;
+ total_rx_packets++;
+
+ stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
+ if (ice_test_staterr(rx_desc, stat_err_bits))
+ vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
+
+ rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
+ ICE_RX_FLEX_DESC_PTYPE_M;
+
+ ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
+ ice_receive_skb(rx_ring, skb, vlan_tag);
+ }
+
+ ice_finalize_xdp_rx(rx_ring, xdp_xmit);
+ ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
+
+ return failure ? budget : (int)total_rx_packets;
+}
+
+/**
+ * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
+ * @xdp_ring: XDP Tx ring
+ * @budget: max number of frames to xmit
+ *
+ * Returns true if cleanup/transmission is done.
+ */
+static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
+{
+ struct ice_tx_desc *tx_desc = NULL;
+ bool work_done = true;
+ struct xdp_desc desc;
+ dma_addr_t dma;
+
+ while (likely(budget-- > 0)) {
+ struct ice_tx_buf *tx_buf;
+
+ if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
+ xdp_ring->tx_stats.tx_busy++;
+ work_done = false;
+ break;
+ }
+
+ tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
+
+ if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
+ break;
+
+ dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
+
+ dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
+ DMA_BIDIRECTIONAL);
+
+ tx_buf->bytecount = desc.len;
+
+ tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
+ tx_desc->buf_addr = cpu_to_le64(dma);
+ tx_desc->cmd_type_offset_bsz = build_ctob(ICE_TXD_LAST_DESC_CMD,
+ 0, desc.len, 0);
+
+ xdp_ring->next_to_use++;
+ if (xdp_ring->next_to_use == xdp_ring->count)
+ xdp_ring->next_to_use = 0;
+ }
+
+ if (tx_desc) {
+ ice_xdp_ring_update_tail(xdp_ring);
+ xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
+ }
+
+ return budget > 0 && work_done;
+}
+
+/**
+ * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
+ * @xdp_ring: XDP Tx ring
+ * @tx_buf: Tx buffer to clean
+ */
+static void
+ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
+{
+ xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
+ dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
+ dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
+ dma_unmap_len_set(tx_buf, len, 0);
+}
+
+/**
+ * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
+ * @xdp_ring: XDP Tx ring
+ * @budget: NAPI budget
+ *
+ * Returns true if cleanup/tranmission is done.
+ */
+bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
+{
+ int total_packets = 0, total_bytes = 0;
+ s16 ntc = xdp_ring->next_to_clean;
+ struct ice_tx_desc *tx_desc;
+ struct ice_tx_buf *tx_buf;
+ bool xmit_done = true;
+ u32 xsk_frames = 0;
+
+ tx_desc = ICE_TX_DESC(xdp_ring, ntc);
+ tx_buf = &xdp_ring->tx_buf[ntc];
+ ntc -= xdp_ring->count;
+
+ do {
+ if (!(tx_desc->cmd_type_offset_bsz &
+ cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
+ break;
+
+ total_bytes += tx_buf->bytecount;
+ total_packets++;
+
+ if (tx_buf->raw_buf) {
+ ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
+ tx_buf->raw_buf = NULL;
+ } else {
+ xsk_frames++;
+ }
+
+ tx_desc->cmd_type_offset_bsz = 0;
+ tx_buf++;
+ tx_desc++;
+ ntc++;
+
+ if (unlikely(!ntc)) {
+ ntc -= xdp_ring->count;
+ tx_buf = xdp_ring->tx_buf;
+ tx_desc = ICE_TX_DESC(xdp_ring, 0);
+ }
+
+ prefetch(tx_desc);
+
+ } while (likely(--budget));
+
+ ntc += xdp_ring->count;
+ xdp_ring->next_to_clean = ntc;
+
+ if (xsk_frames)
+ xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
+
+ ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
+ xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
+
+ return budget > 0 && xmit_done;
+}
+
+/**
+ * ice_xsk_wakeup - Implements ndo_xsk_wakeup
+ * @netdev: net_device
+ * @queue_id: queue to wake up
+ * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
+ *
+ * Returns negative on error, zero otherwise.
+ */
+int
+ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
+ u32 __always_unused flags)
+{
+ struct ice_netdev_priv *np = netdev_priv(netdev);
+ struct ice_q_vector *q_vector;
+ struct ice_vsi *vsi = np->vsi;
+ struct ice_ring *ring;
+
+ if (test_bit(__ICE_DOWN, vsi->state))
+ return -ENETDOWN;
+
+ if (!ice_is_xdp_ena_vsi(vsi))
+ return -ENXIO;
+
+ if (queue_id >= vsi->num_txq)
+ return -ENXIO;
+
+ if (!vsi->xdp_rings[queue_id]->xsk_umem)
+ return -ENXIO;
+
+ ring = vsi->xdp_rings[queue_id];
+
+ /* The idea here is that if NAPI is running, mark a miss, so
+ * it will run again. If not, trigger an interrupt and
+ * schedule the NAPI from interrupt context. If NAPI would be
+ * scheduled here, the interrupt affinity would not be
+ * honored.
+ */
+ q_vector = ring->q_vector;
+ if (!napi_if_scheduled_mark_missed(&q_vector->napi))
+ ice_trigger_sw_intr(&vsi->back->hw, q_vector);
+
+ return 0;
+}
+
+/**
+ * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached
+ * @vsi: VSI to be checked
+ *
+ * Returns true if any of the Rx rings has an AF_XDP UMEM attached
+ */
+bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
+{
+ int i;
+
+ if (!vsi->xsk_umems)
+ return false;
+
+ for (i = 0; i < vsi->num_xsk_umems; i++) {
+ if (vsi->xsk_umems[i])
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring
+ * @rx_ring: ring to be cleaned
+ */
+void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
+{
+ u16 i;
+
+ for (i = 0; i < rx_ring->count; i++) {
+ struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
+
+ if (!rx_buf->addr)
+ continue;
+
+ xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_buf->handle);
+ rx_buf->addr = NULL;
+ }
+}
+
+/**
+ * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues
+ * @xdp_ring: XDP_Tx ring
+ */
+void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
+{
+ u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
+ u32 xsk_frames = 0;
+
+ while (ntc != ntu) {
+ struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
+
+ if (tx_buf->raw_buf)
+ ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
+ else
+ xsk_frames++;
+
+ tx_buf->raw_buf = NULL;
+
+ ntc++;
+ if (ntc >= xdp_ring->count)
+ ntc = 0;
+ }
+
+ if (xsk_frames)
+ xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
+}