.. kernel-doc:: include/linux/math64.h
:internal:
-.. kernel-doc:: lib/div64.c
+.. kernel-doc:: lib/math/div64.c
:functions: div_s64_rem div64_u64_rem div64_u64 div64_s64
-.. kernel-doc:: lib/gcd.c
+.. kernel-doc:: lib/math/gcd.c
:export:
UUID/GUID
This option enables the use of hardware bit-reversal instructions on
architectures which support such operations.
-config RATIONAL
- bool
-
config GENERIC_STRNCPY_FROM_USER
bool
config GENERIC_FIND_FIRST_BIT
bool
+source "lib/math/Kconfig"
+
config NO_GENERIC_PCI_IOPORT_MAP
bool
config CLZ_TAB
bool
-config CORDIC
- tristate "CORDIC algorithm"
- help
- This option provides an implementation of the CORDIC algorithm;
- calculations are in fixed point. Module will be called cordic.
-
config DDR
bool "JEDEC DDR data"
help
config PARMAN
tristate "parman" if COMPILE_TEST
-config PRIME_NUMBERS
- tristate
-
config STRING_SELFTEST
tristate "Test string functions"
lib-y := ctype.o string.o vsprintf.o cmdline.o \
rbtree.o radix-tree.o timerqueue.o xarray.o \
- idr.o int_sqrt.o extable.o \
+ idr.o extable.o \
sha1.o chacha.o irq_regs.o argv_split.o \
flex_proportions.o ratelimit.o show_mem.o \
is_single_threaded.o plist.o decompress.o kobject_uevent.o \
lib-y += kobject.o klist.o
obj-y += lockref.o
-obj-y += bcd.o div64.o sort.o parser.o debug_locks.o random32.o \
+obj-y += bcd.o sort.o parser.o debug_locks.o random32.o \
bust_spinlocks.o kasprintf.o bitmap.o scatterlist.o \
- gcd.o lcm.o list_sort.o uuid.o iov_iter.o clz_ctz.o \
+ list_sort.o uuid.o iov_iter.o clz_ctz.o \
bsearch.o find_bit.o llist.o memweight.o kfifo.o \
- percpu-refcount.o rhashtable.o reciprocal_div.o \
+ percpu-refcount.o rhashtable.o \
once.o refcount.o usercopy.o errseq.o bucket_locks.o \
generic-radix-tree.o
obj-$(CONFIG_STRING_SELFTEST) += test_string.o
obj-$(CONFIG_DEBUG_INFO_REDUCED) += debug_info.o
CFLAGS_debug_info.o += $(call cc-option, -femit-struct-debug-detailed=any)
+obj-y += math/
+
obj-$(CONFIG_GENERIC_IOMAP) += iomap.o
obj-$(CONFIG_GENERIC_PCI_IOMAP) += pci_iomap.o
obj-$(CONFIG_HAS_IOMEM) += iomap_copy.o devres.o
obj-$(CONFIG_BITREVERSE) += bitrev.o
obj-$(CONFIG_PACKING) += packing.o
-obj-$(CONFIG_RATIONAL) += rational.o
obj-$(CONFIG_CRC_CCITT) += crc-ccitt.o
obj-$(CONFIG_CRC16) += crc16.o
obj-$(CONFIG_CRC_T10DIF)+= crc-t10dif.o
obj-$(CONFIG_CPU_RMAP) += cpu_rmap.o
-obj-$(CONFIG_CORDIC) += cordic.o
-
obj-$(CONFIG_DQL) += dynamic_queue_limits.o
obj-$(CONFIG_GLOB) += glob.o
obj-$(CONFIG_FONT_SUPPORT) += fonts/
-obj-$(CONFIG_PRIME_NUMBERS) += prime_numbers.o
-
hostprogs-y := gen_crc32table
hostprogs-y += gen_crc64table
clean-files := crc32table.h
+++ /dev/null
-/*
- * Copyright (c) 2011 Broadcom Corporation
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
- * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
- * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
- * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- */
-#include <linux/module.h>
-#include <linux/cordic.h>
-
-static const s32 arctan_table[] = {
- 2949120,
- 1740967,
- 919879,
- 466945,
- 234379,
- 117304,
- 58666,
- 29335,
- 14668,
- 7334,
- 3667,
- 1833,
- 917,
- 458,
- 229,
- 115,
- 57,
- 29
-};
-
-/*
- * cordic_calc_iq() - calculates the i/q coordinate for given angle
- *
- * theta: angle in degrees for which i/q coordinate is to be calculated
- * coord: function output parameter holding the i/q coordinate
- */
-struct cordic_iq cordic_calc_iq(s32 theta)
-{
- struct cordic_iq coord;
- s32 angle, valtmp;
- unsigned iter;
- int signx = 1;
- int signtheta;
-
- coord.i = CORDIC_ANGLE_GEN;
- coord.q = 0;
- angle = 0;
-
- theta = CORDIC_FIXED(theta);
- signtheta = (theta < 0) ? -1 : 1;
- theta = ((theta + CORDIC_FIXED(180) * signtheta) % CORDIC_FIXED(360)) -
- CORDIC_FIXED(180) * signtheta;
-
- if (CORDIC_FLOAT(theta) > 90) {
- theta -= CORDIC_FIXED(180);
- signx = -1;
- } else if (CORDIC_FLOAT(theta) < -90) {
- theta += CORDIC_FIXED(180);
- signx = -1;
- }
-
- for (iter = 0; iter < CORDIC_NUM_ITER; iter++) {
- if (theta > angle) {
- valtmp = coord.i - (coord.q >> iter);
- coord.q += (coord.i >> iter);
- angle += arctan_table[iter];
- } else {
- valtmp = coord.i + (coord.q >> iter);
- coord.q -= (coord.i >> iter);
- angle -= arctan_table[iter];
- }
- coord.i = valtmp;
- }
-
- coord.i *= signx;
- coord.q *= signx;
- return coord;
-}
-EXPORT_SYMBOL(cordic_calc_iq);
-
-MODULE_DESCRIPTION("CORDIC algorithm");
-MODULE_AUTHOR("Broadcom Corporation");
-MODULE_LICENSE("Dual BSD/GPL");
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0
-/*
- * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
- *
- * Based on former do_div() implementation from asm-parisc/div64.h:
- * Copyright (C) 1999 Hewlett-Packard Co
- * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
- *
- *
- * Generic C version of 64bit/32bit division and modulo, with
- * 64bit result and 32bit remainder.
- *
- * The fast case for (n>>32 == 0) is handled inline by do_div().
- *
- * Code generated for this function might be very inefficient
- * for some CPUs. __div64_32() can be overridden by linking arch-specific
- * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
- * or by defining a preprocessor macro in arch/include/asm/div64.h.
- */
-
-#include <linux/export.h>
-#include <linux/kernel.h>
-#include <linux/math64.h>
-
-/* Not needed on 64bit architectures */
-#if BITS_PER_LONG == 32
-
-#ifndef __div64_32
-uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
-{
- uint64_t rem = *n;
- uint64_t b = base;
- uint64_t res, d = 1;
- uint32_t high = rem >> 32;
-
- /* Reduce the thing a bit first */
- res = 0;
- if (high >= base) {
- high /= base;
- res = (uint64_t) high << 32;
- rem -= (uint64_t) (high*base) << 32;
- }
-
- while ((int64_t)b > 0 && b < rem) {
- b = b+b;
- d = d+d;
- }
-
- do {
- if (rem >= b) {
- rem -= b;
- res += d;
- }
- b >>= 1;
- d >>= 1;
- } while (d);
-
- *n = res;
- return rem;
-}
-EXPORT_SYMBOL(__div64_32);
-#endif
-
-/**
- * div_s64_rem - signed 64bit divide with 64bit divisor and remainder
- * @dividend: 64bit dividend
- * @divisor: 64bit divisor
- * @remainder: 64bit remainder
- */
-#ifndef div_s64_rem
-s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
-{
- u64 quotient;
-
- if (dividend < 0) {
- quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
- *remainder = -*remainder;
- if (divisor > 0)
- quotient = -quotient;
- } else {
- quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
- if (divisor < 0)
- quotient = -quotient;
- }
- return quotient;
-}
-EXPORT_SYMBOL(div_s64_rem);
-#endif
-
-/**
- * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
- * @dividend: 64bit dividend
- * @divisor: 64bit divisor
- * @remainder: 64bit remainder
- *
- * This implementation is a comparable to algorithm used by div64_u64.
- * But this operation, which includes math for calculating the remainder,
- * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
- * systems.
- */
-#ifndef div64_u64_rem
-u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
-{
- u32 high = divisor >> 32;
- u64 quot;
-
- if (high == 0) {
- u32 rem32;
- quot = div_u64_rem(dividend, divisor, &rem32);
- *remainder = rem32;
- } else {
- int n = fls(high);
- quot = div_u64(dividend >> n, divisor >> n);
-
- if (quot != 0)
- quot--;
-
- *remainder = dividend - quot * divisor;
- if (*remainder >= divisor) {
- quot++;
- *remainder -= divisor;
- }
- }
-
- return quot;
-}
-EXPORT_SYMBOL(div64_u64_rem);
-#endif
-
-/**
- * div64_u64 - unsigned 64bit divide with 64bit divisor
- * @dividend: 64bit dividend
- * @divisor: 64bit divisor
- *
- * This implementation is a modified version of the algorithm proposed
- * by the book 'Hacker's Delight'. The original source and full proof
- * can be found here and is available for use without restriction.
- *
- * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
- */
-#ifndef div64_u64
-u64 div64_u64(u64 dividend, u64 divisor)
-{
- u32 high = divisor >> 32;
- u64 quot;
-
- if (high == 0) {
- quot = div_u64(dividend, divisor);
- } else {
- int n = fls(high);
- quot = div_u64(dividend >> n, divisor >> n);
-
- if (quot != 0)
- quot--;
- if ((dividend - quot * divisor) >= divisor)
- quot++;
- }
-
- return quot;
-}
-EXPORT_SYMBOL(div64_u64);
-#endif
-
-/**
- * div64_s64 - signed 64bit divide with 64bit divisor
- * @dividend: 64bit dividend
- * @divisor: 64bit divisor
- */
-#ifndef div64_s64
-s64 div64_s64(s64 dividend, s64 divisor)
-{
- s64 quot, t;
-
- quot = div64_u64(abs(dividend), abs(divisor));
- t = (dividend ^ divisor) >> 63;
-
- return (quot ^ t) - t;
-}
-EXPORT_SYMBOL(div64_s64);
-#endif
-
-#endif /* BITS_PER_LONG == 32 */
-
-/*
- * Iterative div/mod for use when dividend is not expected to be much
- * bigger than divisor.
- */
-u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
-{
- return __iter_div_u64_rem(dividend, divisor, remainder);
-}
-EXPORT_SYMBOL(iter_div_u64_rem);
+++ /dev/null
-#include <linux/kernel.h>
-#include <linux/gcd.h>
-#include <linux/export.h>
-
-/*
- * This implements the binary GCD algorithm. (Often attributed to Stein,
- * but as Knuth has noted, appears in a first-century Chinese math text.)
- *
- * This is faster than the division-based algorithm even on x86, which
- * has decent hardware division.
- */
-
-#if !defined(CONFIG_CPU_NO_EFFICIENT_FFS)
-
-/* If __ffs is available, the even/odd algorithm benchmarks slower. */
-
-/**
- * gcd - calculate and return the greatest common divisor of 2 unsigned longs
- * @a: first value
- * @b: second value
- */
-unsigned long gcd(unsigned long a, unsigned long b)
-{
- unsigned long r = a | b;
-
- if (!a || !b)
- return r;
-
- b >>= __ffs(b);
- if (b == 1)
- return r & -r;
-
- for (;;) {
- a >>= __ffs(a);
- if (a == 1)
- return r & -r;
- if (a == b)
- return a << __ffs(r);
-
- if (a < b)
- swap(a, b);
- a -= b;
- }
-}
-
-#else
-
-/* If normalization is done by loops, the even/odd algorithm is a win. */
-unsigned long gcd(unsigned long a, unsigned long b)
-{
- unsigned long r = a | b;
-
- if (!a || !b)
- return r;
-
- /* Isolate lsbit of r */
- r &= -r;
-
- while (!(b & r))
- b >>= 1;
- if (b == r)
- return r;
-
- for (;;) {
- while (!(a & r))
- a >>= 1;
- if (a == r)
- return r;
- if (a == b)
- return a;
-
- if (a < b)
- swap(a, b);
- a -= b;
- a >>= 1;
- if (a & r)
- a += b;
- a >>= 1;
- }
-}
-
-#endif
-
-EXPORT_SYMBOL_GPL(gcd);
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0
-/*
- * Copyright (C) 2013 Davidlohr Bueso <davidlohr.bueso@hp.com>
- *
- * Based on the shift-and-subtract algorithm for computing integer
- * square root from Guy L. Steele.
- */
-
-#include <linux/kernel.h>
-#include <linux/export.h>
-#include <linux/bitops.h>
-
-/**
- * int_sqrt - computes the integer square root
- * @x: integer of which to calculate the sqrt
- *
- * Computes: floor(sqrt(x))
- */
-unsigned long int_sqrt(unsigned long x)
-{
- unsigned long b, m, y = 0;
-
- if (x <= 1)
- return x;
-
- m = 1UL << (__fls(x) & ~1UL);
- while (m != 0) {
- b = y + m;
- y >>= 1;
-
- if (x >= b) {
- x -= b;
- y += m;
- }
- m >>= 2;
- }
-
- return y;
-}
-EXPORT_SYMBOL(int_sqrt);
-
-#if BITS_PER_LONG < 64
-/**
- * int_sqrt64 - strongly typed int_sqrt function when minimum 64 bit input
- * is expected.
- * @x: 64bit integer of which to calculate the sqrt
- */
-u32 int_sqrt64(u64 x)
-{
- u64 b, m, y = 0;
-
- if (x <= ULONG_MAX)
- return int_sqrt((unsigned long) x);
-
- m = 1ULL << ((fls64(x) - 1) & ~1ULL);
- while (m != 0) {
- b = y + m;
- y >>= 1;
-
- if (x >= b) {
- x -= b;
- y += m;
- }
- m >>= 2;
- }
-
- return y;
-}
-EXPORT_SYMBOL(int_sqrt64);
-#endif
+++ /dev/null
-#include <linux/compiler.h>
-#include <linux/gcd.h>
-#include <linux/export.h>
-#include <linux/lcm.h>
-
-/* Lowest common multiple */
-unsigned long lcm(unsigned long a, unsigned long b)
-{
- if (a && b)
- return (a / gcd(a, b)) * b;
- else
- return 0;
-}
-EXPORT_SYMBOL_GPL(lcm);
-
-unsigned long lcm_not_zero(unsigned long a, unsigned long b)
-{
- unsigned long l = lcm(a, b);
-
- if (l)
- return l;
-
- return (b ? : a);
-}
-EXPORT_SYMBOL_GPL(lcm_not_zero);
--- /dev/null
+config CORDIC
+ tristate "CORDIC algorithm"
+ help
+ This option provides an implementation of the CORDIC algorithm;
+ calculations are in fixed point. Module will be called cordic.
+
+config PRIME_NUMBERS
+ tristate
+
+config RATIONAL
+ bool
--- /dev/null
+obj-y += div64.o gcd.o lcm.o int_sqrt.o reciprocal_div.o
+
+obj-$(CONFIG_CORDIC) += cordic.o
+obj-$(CONFIG_PRIME_NUMBERS) += prime_numbers.o
+obj-$(CONFIG_RATIONAL) += rational.o
--- /dev/null
+/*
+ * Copyright (c) 2011 Broadcom Corporation
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+#include <linux/module.h>
+#include <linux/cordic.h>
+
+static const s32 arctan_table[] = {
+ 2949120,
+ 1740967,
+ 919879,
+ 466945,
+ 234379,
+ 117304,
+ 58666,
+ 29335,
+ 14668,
+ 7334,
+ 3667,
+ 1833,
+ 917,
+ 458,
+ 229,
+ 115,
+ 57,
+ 29
+};
+
+/*
+ * cordic_calc_iq() - calculates the i/q coordinate for given angle
+ *
+ * theta: angle in degrees for which i/q coordinate is to be calculated
+ * coord: function output parameter holding the i/q coordinate
+ */
+struct cordic_iq cordic_calc_iq(s32 theta)
+{
+ struct cordic_iq coord;
+ s32 angle, valtmp;
+ unsigned iter;
+ int signx = 1;
+ int signtheta;
+
+ coord.i = CORDIC_ANGLE_GEN;
+ coord.q = 0;
+ angle = 0;
+
+ theta = CORDIC_FIXED(theta);
+ signtheta = (theta < 0) ? -1 : 1;
+ theta = ((theta + CORDIC_FIXED(180) * signtheta) % CORDIC_FIXED(360)) -
+ CORDIC_FIXED(180) * signtheta;
+
+ if (CORDIC_FLOAT(theta) > 90) {
+ theta -= CORDIC_FIXED(180);
+ signx = -1;
+ } else if (CORDIC_FLOAT(theta) < -90) {
+ theta += CORDIC_FIXED(180);
+ signx = -1;
+ }
+
+ for (iter = 0; iter < CORDIC_NUM_ITER; iter++) {
+ if (theta > angle) {
+ valtmp = coord.i - (coord.q >> iter);
+ coord.q += (coord.i >> iter);
+ angle += arctan_table[iter];
+ } else {
+ valtmp = coord.i + (coord.q >> iter);
+ coord.q -= (coord.i >> iter);
+ angle -= arctan_table[iter];
+ }
+ coord.i = valtmp;
+ }
+
+ coord.i *= signx;
+ coord.q *= signx;
+ return coord;
+}
+EXPORT_SYMBOL(cordic_calc_iq);
+
+MODULE_DESCRIPTION("CORDIC algorithm");
+MODULE_AUTHOR("Broadcom Corporation");
+MODULE_LICENSE("Dual BSD/GPL");
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
+ *
+ * Based on former do_div() implementation from asm-parisc/div64.h:
+ * Copyright (C) 1999 Hewlett-Packard Co
+ * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ *
+ * Generic C version of 64bit/32bit division and modulo, with
+ * 64bit result and 32bit remainder.
+ *
+ * The fast case for (n>>32 == 0) is handled inline by do_div().
+ *
+ * Code generated for this function might be very inefficient
+ * for some CPUs. __div64_32() can be overridden by linking arch-specific
+ * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
+ * or by defining a preprocessor macro in arch/include/asm/div64.h.
+ */
+
+#include <linux/export.h>
+#include <linux/kernel.h>
+#include <linux/math64.h>
+
+/* Not needed on 64bit architectures */
+#if BITS_PER_LONG == 32
+
+#ifndef __div64_32
+uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
+{
+ uint64_t rem = *n;
+ uint64_t b = base;
+ uint64_t res, d = 1;
+ uint32_t high = rem >> 32;
+
+ /* Reduce the thing a bit first */
+ res = 0;
+ if (high >= base) {
+ high /= base;
+ res = (uint64_t) high << 32;
+ rem -= (uint64_t) (high*base) << 32;
+ }
+
+ while ((int64_t)b > 0 && b < rem) {
+ b = b+b;
+ d = d+d;
+ }
+
+ do {
+ if (rem >= b) {
+ rem -= b;
+ res += d;
+ }
+ b >>= 1;
+ d >>= 1;
+ } while (d);
+
+ *n = res;
+ return rem;
+}
+EXPORT_SYMBOL(__div64_32);
+#endif
+
+/**
+ * div_s64_rem - signed 64bit divide with 64bit divisor and remainder
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ * @remainder: 64bit remainder
+ */
+#ifndef div_s64_rem
+s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
+{
+ u64 quotient;
+
+ if (dividend < 0) {
+ quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
+ *remainder = -*remainder;
+ if (divisor > 0)
+ quotient = -quotient;
+ } else {
+ quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
+ if (divisor < 0)
+ quotient = -quotient;
+ }
+ return quotient;
+}
+EXPORT_SYMBOL(div_s64_rem);
+#endif
+
+/**
+ * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ * @remainder: 64bit remainder
+ *
+ * This implementation is a comparable to algorithm used by div64_u64.
+ * But this operation, which includes math for calculating the remainder,
+ * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
+ * systems.
+ */
+#ifndef div64_u64_rem
+u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
+{
+ u32 high = divisor >> 32;
+ u64 quot;
+
+ if (high == 0) {
+ u32 rem32;
+ quot = div_u64_rem(dividend, divisor, &rem32);
+ *remainder = rem32;
+ } else {
+ int n = fls(high);
+ quot = div_u64(dividend >> n, divisor >> n);
+
+ if (quot != 0)
+ quot--;
+
+ *remainder = dividend - quot * divisor;
+ if (*remainder >= divisor) {
+ quot++;
+ *remainder -= divisor;
+ }
+ }
+
+ return quot;
+}
+EXPORT_SYMBOL(div64_u64_rem);
+#endif
+
+/**
+ * div64_u64 - unsigned 64bit divide with 64bit divisor
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ *
+ * This implementation is a modified version of the algorithm proposed
+ * by the book 'Hacker's Delight'. The original source and full proof
+ * can be found here and is available for use without restriction.
+ *
+ * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
+ */
+#ifndef div64_u64
+u64 div64_u64(u64 dividend, u64 divisor)
+{
+ u32 high = divisor >> 32;
+ u64 quot;
+
+ if (high == 0) {
+ quot = div_u64(dividend, divisor);
+ } else {
+ int n = fls(high);
+ quot = div_u64(dividend >> n, divisor >> n);
+
+ if (quot != 0)
+ quot--;
+ if ((dividend - quot * divisor) >= divisor)
+ quot++;
+ }
+
+ return quot;
+}
+EXPORT_SYMBOL(div64_u64);
+#endif
+
+/**
+ * div64_s64 - signed 64bit divide with 64bit divisor
+ * @dividend: 64bit dividend
+ * @divisor: 64bit divisor
+ */
+#ifndef div64_s64
+s64 div64_s64(s64 dividend, s64 divisor)
+{
+ s64 quot, t;
+
+ quot = div64_u64(abs(dividend), abs(divisor));
+ t = (dividend ^ divisor) >> 63;
+
+ return (quot ^ t) - t;
+}
+EXPORT_SYMBOL(div64_s64);
+#endif
+
+#endif /* BITS_PER_LONG == 32 */
+
+/*
+ * Iterative div/mod for use when dividend is not expected to be much
+ * bigger than divisor.
+ */
+u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
+{
+ return __iter_div_u64_rem(dividend, divisor, remainder);
+}
+EXPORT_SYMBOL(iter_div_u64_rem);
--- /dev/null
+#include <linux/kernel.h>
+#include <linux/gcd.h>
+#include <linux/export.h>
+
+/*
+ * This implements the binary GCD algorithm. (Often attributed to Stein,
+ * but as Knuth has noted, appears in a first-century Chinese math text.)
+ *
+ * This is faster than the division-based algorithm even on x86, which
+ * has decent hardware division.
+ */
+
+#if !defined(CONFIG_CPU_NO_EFFICIENT_FFS)
+
+/* If __ffs is available, the even/odd algorithm benchmarks slower. */
+
+/**
+ * gcd - calculate and return the greatest common divisor of 2 unsigned longs
+ * @a: first value
+ * @b: second value
+ */
+unsigned long gcd(unsigned long a, unsigned long b)
+{
+ unsigned long r = a | b;
+
+ if (!a || !b)
+ return r;
+
+ b >>= __ffs(b);
+ if (b == 1)
+ return r & -r;
+
+ for (;;) {
+ a >>= __ffs(a);
+ if (a == 1)
+ return r & -r;
+ if (a == b)
+ return a << __ffs(r);
+
+ if (a < b)
+ swap(a, b);
+ a -= b;
+ }
+}
+
+#else
+
+/* If normalization is done by loops, the even/odd algorithm is a win. */
+unsigned long gcd(unsigned long a, unsigned long b)
+{
+ unsigned long r = a | b;
+
+ if (!a || !b)
+ return r;
+
+ /* Isolate lsbit of r */
+ r &= -r;
+
+ while (!(b & r))
+ b >>= 1;
+ if (b == r)
+ return r;
+
+ for (;;) {
+ while (!(a & r))
+ a >>= 1;
+ if (a == r)
+ return r;
+ if (a == b)
+ return a;
+
+ if (a < b)
+ swap(a, b);
+ a -= b;
+ a >>= 1;
+ if (a & r)
+ a += b;
+ a >>= 1;
+ }
+}
+
+#endif
+
+EXPORT_SYMBOL_GPL(gcd);
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2013 Davidlohr Bueso <davidlohr.bueso@hp.com>
+ *
+ * Based on the shift-and-subtract algorithm for computing integer
+ * square root from Guy L. Steele.
+ */
+
+#include <linux/kernel.h>
+#include <linux/export.h>
+#include <linux/bitops.h>
+
+/**
+ * int_sqrt - computes the integer square root
+ * @x: integer of which to calculate the sqrt
+ *
+ * Computes: floor(sqrt(x))
+ */
+unsigned long int_sqrt(unsigned long x)
+{
+ unsigned long b, m, y = 0;
+
+ if (x <= 1)
+ return x;
+
+ m = 1UL << (__fls(x) & ~1UL);
+ while (m != 0) {
+ b = y + m;
+ y >>= 1;
+
+ if (x >= b) {
+ x -= b;
+ y += m;
+ }
+ m >>= 2;
+ }
+
+ return y;
+}
+EXPORT_SYMBOL(int_sqrt);
+
+#if BITS_PER_LONG < 64
+/**
+ * int_sqrt64 - strongly typed int_sqrt function when minimum 64 bit input
+ * is expected.
+ * @x: 64bit integer of which to calculate the sqrt
+ */
+u32 int_sqrt64(u64 x)
+{
+ u64 b, m, y = 0;
+
+ if (x <= ULONG_MAX)
+ return int_sqrt((unsigned long) x);
+
+ m = 1ULL << ((fls64(x) - 1) & ~1ULL);
+ while (m != 0) {
+ b = y + m;
+ y >>= 1;
+
+ if (x >= b) {
+ x -= b;
+ y += m;
+ }
+ m >>= 2;
+ }
+
+ return y;
+}
+EXPORT_SYMBOL(int_sqrt64);
+#endif
--- /dev/null
+#include <linux/compiler.h>
+#include <linux/gcd.h>
+#include <linux/export.h>
+#include <linux/lcm.h>
+
+/* Lowest common multiple */
+unsigned long lcm(unsigned long a, unsigned long b)
+{
+ if (a && b)
+ return (a / gcd(a, b)) * b;
+ else
+ return 0;
+}
+EXPORT_SYMBOL_GPL(lcm);
+
+unsigned long lcm_not_zero(unsigned long a, unsigned long b)
+{
+ unsigned long l = lcm(a, b);
+
+ if (l)
+ return l;
+
+ return (b ? : a);
+}
+EXPORT_SYMBOL_GPL(lcm_not_zero);
--- /dev/null
+#define pr_fmt(fmt) "prime numbers: " fmt "\n"
+
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/prime_numbers.h>
+#include <linux/slab.h>
+
+#define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
+
+struct primes {
+ struct rcu_head rcu;
+ unsigned long last, sz;
+ unsigned long primes[];
+};
+
+#if BITS_PER_LONG == 64
+static const struct primes small_primes = {
+ .last = 61,
+ .sz = 64,
+ .primes = {
+ BIT(2) |
+ BIT(3) |
+ BIT(5) |
+ BIT(7) |
+ BIT(11) |
+ BIT(13) |
+ BIT(17) |
+ BIT(19) |
+ BIT(23) |
+ BIT(29) |
+ BIT(31) |
+ BIT(37) |
+ BIT(41) |
+ BIT(43) |
+ BIT(47) |
+ BIT(53) |
+ BIT(59) |
+ BIT(61)
+ }
+};
+#elif BITS_PER_LONG == 32
+static const struct primes small_primes = {
+ .last = 31,
+ .sz = 32,
+ .primes = {
+ BIT(2) |
+ BIT(3) |
+ BIT(5) |
+ BIT(7) |
+ BIT(11) |
+ BIT(13) |
+ BIT(17) |
+ BIT(19) |
+ BIT(23) |
+ BIT(29) |
+ BIT(31)
+ }
+};
+#else
+#error "unhandled BITS_PER_LONG"
+#endif
+
+static DEFINE_MUTEX(lock);
+static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
+
+static unsigned long selftest_max;
+
+static bool slow_is_prime_number(unsigned long x)
+{
+ unsigned long y = int_sqrt(x);
+
+ while (y > 1) {
+ if ((x % y) == 0)
+ break;
+ y--;
+ }
+
+ return y == 1;
+}
+
+static unsigned long slow_next_prime_number(unsigned long x)
+{
+ while (x < ULONG_MAX && !slow_is_prime_number(++x))
+ ;
+
+ return x;
+}
+
+static unsigned long clear_multiples(unsigned long x,
+ unsigned long *p,
+ unsigned long start,
+ unsigned long end)
+{
+ unsigned long m;
+
+ m = 2 * x;
+ if (m < start)
+ m = roundup(start, x);
+
+ while (m < end) {
+ __clear_bit(m, p);
+ m += x;
+ }
+
+ return x;
+}
+
+static bool expand_to_next_prime(unsigned long x)
+{
+ const struct primes *p;
+ struct primes *new;
+ unsigned long sz, y;
+
+ /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
+ * there is always at least one prime p between n and 2n - 2.
+ * Equivalently, if n > 1, then there is always at least one prime p
+ * such that n < p < 2n.
+ *
+ * http://mathworld.wolfram.com/BertrandsPostulate.html
+ * https://en.wikipedia.org/wiki/Bertrand's_postulate
+ */
+ sz = 2 * x;
+ if (sz < x)
+ return false;
+
+ sz = round_up(sz, BITS_PER_LONG);
+ new = kmalloc(sizeof(*new) + bitmap_size(sz),
+ GFP_KERNEL | __GFP_NOWARN);
+ if (!new)
+ return false;
+
+ mutex_lock(&lock);
+ p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
+ if (x < p->last) {
+ kfree(new);
+ goto unlock;
+ }
+
+ /* Where memory permits, track the primes using the
+ * Sieve of Eratosthenes. The sieve is to remove all multiples of known
+ * primes from the set, what remains in the set is therefore prime.
+ */
+ bitmap_fill(new->primes, sz);
+ bitmap_copy(new->primes, p->primes, p->sz);
+ for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
+ new->last = clear_multiples(y, new->primes, p->sz, sz);
+ new->sz = sz;
+
+ BUG_ON(new->last <= x);
+
+ rcu_assign_pointer(primes, new);
+ if (p != &small_primes)
+ kfree_rcu((struct primes *)p, rcu);
+
+unlock:
+ mutex_unlock(&lock);
+ return true;
+}
+
+static void free_primes(void)
+{
+ const struct primes *p;
+
+ mutex_lock(&lock);
+ p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
+ if (p != &small_primes) {
+ rcu_assign_pointer(primes, &small_primes);
+ kfree_rcu((struct primes *)p, rcu);
+ }
+ mutex_unlock(&lock);
+}
+
+/**
+ * next_prime_number - return the next prime number
+ * @x: the starting point for searching to test
+ *
+ * A prime number is an integer greater than 1 that is only divisible by
+ * itself and 1. The set of prime numbers is computed using the Sieve of
+ * Eratoshenes (on finding a prime, all multiples of that prime are removed
+ * from the set) enabling a fast lookup of the next prime number larger than
+ * @x. If the sieve fails (memory limitation), the search falls back to using
+ * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
+ * final prime as a sentinel).
+ *
+ * Returns: the next prime number larger than @x
+ */
+unsigned long next_prime_number(unsigned long x)
+{
+ const struct primes *p;
+
+ rcu_read_lock();
+ p = rcu_dereference(primes);
+ while (x >= p->last) {
+ rcu_read_unlock();
+
+ if (!expand_to_next_prime(x))
+ return slow_next_prime_number(x);
+
+ rcu_read_lock();
+ p = rcu_dereference(primes);
+ }
+ x = find_next_bit(p->primes, p->last, x + 1);
+ rcu_read_unlock();
+
+ return x;
+}
+EXPORT_SYMBOL(next_prime_number);
+
+/**
+ * is_prime_number - test whether the given number is prime
+ * @x: the number to test
+ *
+ * A prime number is an integer greater than 1 that is only divisible by
+ * itself and 1. Internally a cache of prime numbers is kept (to speed up
+ * searching for sequential primes, see next_prime_number()), but if the number
+ * falls outside of that cache, its primality is tested using trial-divison.
+ *
+ * Returns: true if @x is prime, false for composite numbers.
+ */
+bool is_prime_number(unsigned long x)
+{
+ const struct primes *p;
+ bool result;
+
+ rcu_read_lock();
+ p = rcu_dereference(primes);
+ while (x >= p->sz) {
+ rcu_read_unlock();
+
+ if (!expand_to_next_prime(x))
+ return slow_is_prime_number(x);
+
+ rcu_read_lock();
+ p = rcu_dereference(primes);
+ }
+ result = test_bit(x, p->primes);
+ rcu_read_unlock();
+
+ return result;
+}
+EXPORT_SYMBOL(is_prime_number);
+
+static void dump_primes(void)
+{
+ const struct primes *p;
+ char *buf;
+
+ buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
+
+ rcu_read_lock();
+ p = rcu_dereference(primes);
+
+ if (buf)
+ bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
+ pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s",
+ p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
+
+ rcu_read_unlock();
+
+ kfree(buf);
+}
+
+static int selftest(unsigned long max)
+{
+ unsigned long x, last;
+
+ if (!max)
+ return 0;
+
+ for (last = 0, x = 2; x < max; x++) {
+ bool slow = slow_is_prime_number(x);
+ bool fast = is_prime_number(x);
+
+ if (slow != fast) {
+ pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!",
+ x, slow ? "yes" : "no", fast ? "yes" : "no");
+ goto err;
+ }
+
+ if (!slow)
+ continue;
+
+ if (next_prime_number(last) != x) {
+ pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu",
+ last, x, next_prime_number(last));
+ goto err;
+ }
+ last = x;
+ }
+
+ pr_info("selftest(%lu) passed, last prime was %lu", x, last);
+ return 0;
+
+err:
+ dump_primes();
+ return -EINVAL;
+}
+
+static int __init primes_init(void)
+{
+ return selftest(selftest_max);
+}
+
+static void __exit primes_exit(void)
+{
+ free_primes();
+}
+
+module_init(primes_init);
+module_exit(primes_exit);
+
+module_param_named(selftest, selftest_max, ulong, 0400);
+
+MODULE_AUTHOR("Intel Corporation");
+MODULE_LICENSE("GPL");
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * rational fractions
+ *
+ * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
+ *
+ * helper functions when coping with rational numbers
+ */
+
+#include <linux/rational.h>
+#include <linux/compiler.h>
+#include <linux/export.h>
+
+/*
+ * calculate best rational approximation for a given fraction
+ * taking into account restricted register size, e.g. to find
+ * appropriate values for a pll with 5 bit denominator and
+ * 8 bit numerator register fields, trying to set up with a
+ * frequency ratio of 3.1415, one would say:
+ *
+ * rational_best_approximation(31415, 10000,
+ * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
+ *
+ * you may look at given_numerator as a fixed point number,
+ * with the fractional part size described in given_denominator.
+ *
+ * for theoretical background, see:
+ * http://en.wikipedia.org/wiki/Continued_fraction
+ */
+
+void rational_best_approximation(
+ unsigned long given_numerator, unsigned long given_denominator,
+ unsigned long max_numerator, unsigned long max_denominator,
+ unsigned long *best_numerator, unsigned long *best_denominator)
+{
+ unsigned long n, d, n0, d0, n1, d1;
+ n = given_numerator;
+ d = given_denominator;
+ n0 = d1 = 0;
+ n1 = d0 = 1;
+ for (;;) {
+ unsigned long t, a;
+ if ((n1 > max_numerator) || (d1 > max_denominator)) {
+ n1 = n0;
+ d1 = d0;
+ break;
+ }
+ if (d == 0)
+ break;
+ t = d;
+ a = n / d;
+ d = n % d;
+ n = t;
+ t = n0 + a * n1;
+ n0 = n1;
+ n1 = t;
+ t = d0 + a * d1;
+ d0 = d1;
+ d1 = t;
+ }
+ *best_numerator = n1;
+ *best_denominator = d1;
+}
+
+EXPORT_SYMBOL(rational_best_approximation);
--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+#include <linux/bug.h>
+#include <linux/kernel.h>
+#include <asm/div64.h>
+#include <linux/reciprocal_div.h>
+#include <linux/export.h>
+
+/*
+ * For a description of the algorithm please have a look at
+ * include/linux/reciprocal_div.h
+ */
+
+struct reciprocal_value reciprocal_value(u32 d)
+{
+ struct reciprocal_value R;
+ u64 m;
+ int l;
+
+ l = fls(d - 1);
+ m = ((1ULL << 32) * ((1ULL << l) - d));
+ do_div(m, d);
+ ++m;
+ R.m = (u32)m;
+ R.sh1 = min(l, 1);
+ R.sh2 = max(l - 1, 0);
+
+ return R;
+}
+EXPORT_SYMBOL(reciprocal_value);
+
+struct reciprocal_value_adv reciprocal_value_adv(u32 d, u8 prec)
+{
+ struct reciprocal_value_adv R;
+ u32 l, post_shift;
+ u64 mhigh, mlow;
+
+ /* ceil(log2(d)) */
+ l = fls(d - 1);
+ /* NOTE: mlow/mhigh could overflow u64 when l == 32. This case needs to
+ * be handled before calling "reciprocal_value_adv", please see the
+ * comment at include/linux/reciprocal_div.h.
+ */
+ WARN(l == 32,
+ "ceil(log2(0x%08x)) == 32, %s doesn't support such divisor",
+ d, __func__);
+ post_shift = l;
+ mlow = 1ULL << (32 + l);
+ do_div(mlow, d);
+ mhigh = (1ULL << (32 + l)) + (1ULL << (32 + l - prec));
+ do_div(mhigh, d);
+
+ for (; post_shift > 0; post_shift--) {
+ u64 lo = mlow >> 1, hi = mhigh >> 1;
+
+ if (lo >= hi)
+ break;
+
+ mlow = lo;
+ mhigh = hi;
+ }
+
+ R.m = (u32)mhigh;
+ R.sh = post_shift;
+ R.exp = l;
+ R.is_wide_m = mhigh > U32_MAX;
+
+ return R;
+}
+EXPORT_SYMBOL(reciprocal_value_adv);
+++ /dev/null
-#define pr_fmt(fmt) "prime numbers: " fmt "\n"
-
-#include <linux/module.h>
-#include <linux/mutex.h>
-#include <linux/prime_numbers.h>
-#include <linux/slab.h>
-
-#define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
-
-struct primes {
- struct rcu_head rcu;
- unsigned long last, sz;
- unsigned long primes[];
-};
-
-#if BITS_PER_LONG == 64
-static const struct primes small_primes = {
- .last = 61,
- .sz = 64,
- .primes = {
- BIT(2) |
- BIT(3) |
- BIT(5) |
- BIT(7) |
- BIT(11) |
- BIT(13) |
- BIT(17) |
- BIT(19) |
- BIT(23) |
- BIT(29) |
- BIT(31) |
- BIT(37) |
- BIT(41) |
- BIT(43) |
- BIT(47) |
- BIT(53) |
- BIT(59) |
- BIT(61)
- }
-};
-#elif BITS_PER_LONG == 32
-static const struct primes small_primes = {
- .last = 31,
- .sz = 32,
- .primes = {
- BIT(2) |
- BIT(3) |
- BIT(5) |
- BIT(7) |
- BIT(11) |
- BIT(13) |
- BIT(17) |
- BIT(19) |
- BIT(23) |
- BIT(29) |
- BIT(31)
- }
-};
-#else
-#error "unhandled BITS_PER_LONG"
-#endif
-
-static DEFINE_MUTEX(lock);
-static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
-
-static unsigned long selftest_max;
-
-static bool slow_is_prime_number(unsigned long x)
-{
- unsigned long y = int_sqrt(x);
-
- while (y > 1) {
- if ((x % y) == 0)
- break;
- y--;
- }
-
- return y == 1;
-}
-
-static unsigned long slow_next_prime_number(unsigned long x)
-{
- while (x < ULONG_MAX && !slow_is_prime_number(++x))
- ;
-
- return x;
-}
-
-static unsigned long clear_multiples(unsigned long x,
- unsigned long *p,
- unsigned long start,
- unsigned long end)
-{
- unsigned long m;
-
- m = 2 * x;
- if (m < start)
- m = roundup(start, x);
-
- while (m < end) {
- __clear_bit(m, p);
- m += x;
- }
-
- return x;
-}
-
-static bool expand_to_next_prime(unsigned long x)
-{
- const struct primes *p;
- struct primes *new;
- unsigned long sz, y;
-
- /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
- * there is always at least one prime p between n and 2n - 2.
- * Equivalently, if n > 1, then there is always at least one prime p
- * such that n < p < 2n.
- *
- * http://mathworld.wolfram.com/BertrandsPostulate.html
- * https://en.wikipedia.org/wiki/Bertrand's_postulate
- */
- sz = 2 * x;
- if (sz < x)
- return false;
-
- sz = round_up(sz, BITS_PER_LONG);
- new = kmalloc(sizeof(*new) + bitmap_size(sz),
- GFP_KERNEL | __GFP_NOWARN);
- if (!new)
- return false;
-
- mutex_lock(&lock);
- p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
- if (x < p->last) {
- kfree(new);
- goto unlock;
- }
-
- /* Where memory permits, track the primes using the
- * Sieve of Eratosthenes. The sieve is to remove all multiples of known
- * primes from the set, what remains in the set is therefore prime.
- */
- bitmap_fill(new->primes, sz);
- bitmap_copy(new->primes, p->primes, p->sz);
- for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
- new->last = clear_multiples(y, new->primes, p->sz, sz);
- new->sz = sz;
-
- BUG_ON(new->last <= x);
-
- rcu_assign_pointer(primes, new);
- if (p != &small_primes)
- kfree_rcu((struct primes *)p, rcu);
-
-unlock:
- mutex_unlock(&lock);
- return true;
-}
-
-static void free_primes(void)
-{
- const struct primes *p;
-
- mutex_lock(&lock);
- p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
- if (p != &small_primes) {
- rcu_assign_pointer(primes, &small_primes);
- kfree_rcu((struct primes *)p, rcu);
- }
- mutex_unlock(&lock);
-}
-
-/**
- * next_prime_number - return the next prime number
- * @x: the starting point for searching to test
- *
- * A prime number is an integer greater than 1 that is only divisible by
- * itself and 1. The set of prime numbers is computed using the Sieve of
- * Eratoshenes (on finding a prime, all multiples of that prime are removed
- * from the set) enabling a fast lookup of the next prime number larger than
- * @x. If the sieve fails (memory limitation), the search falls back to using
- * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
- * final prime as a sentinel).
- *
- * Returns: the next prime number larger than @x
- */
-unsigned long next_prime_number(unsigned long x)
-{
- const struct primes *p;
-
- rcu_read_lock();
- p = rcu_dereference(primes);
- while (x >= p->last) {
- rcu_read_unlock();
-
- if (!expand_to_next_prime(x))
- return slow_next_prime_number(x);
-
- rcu_read_lock();
- p = rcu_dereference(primes);
- }
- x = find_next_bit(p->primes, p->last, x + 1);
- rcu_read_unlock();
-
- return x;
-}
-EXPORT_SYMBOL(next_prime_number);
-
-/**
- * is_prime_number - test whether the given number is prime
- * @x: the number to test
- *
- * A prime number is an integer greater than 1 that is only divisible by
- * itself and 1. Internally a cache of prime numbers is kept (to speed up
- * searching for sequential primes, see next_prime_number()), but if the number
- * falls outside of that cache, its primality is tested using trial-divison.
- *
- * Returns: true if @x is prime, false for composite numbers.
- */
-bool is_prime_number(unsigned long x)
-{
- const struct primes *p;
- bool result;
-
- rcu_read_lock();
- p = rcu_dereference(primes);
- while (x >= p->sz) {
- rcu_read_unlock();
-
- if (!expand_to_next_prime(x))
- return slow_is_prime_number(x);
-
- rcu_read_lock();
- p = rcu_dereference(primes);
- }
- result = test_bit(x, p->primes);
- rcu_read_unlock();
-
- return result;
-}
-EXPORT_SYMBOL(is_prime_number);
-
-static void dump_primes(void)
-{
- const struct primes *p;
- char *buf;
-
- buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
-
- rcu_read_lock();
- p = rcu_dereference(primes);
-
- if (buf)
- bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
- pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s",
- p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
-
- rcu_read_unlock();
-
- kfree(buf);
-}
-
-static int selftest(unsigned long max)
-{
- unsigned long x, last;
-
- if (!max)
- return 0;
-
- for (last = 0, x = 2; x < max; x++) {
- bool slow = slow_is_prime_number(x);
- bool fast = is_prime_number(x);
-
- if (slow != fast) {
- pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!",
- x, slow ? "yes" : "no", fast ? "yes" : "no");
- goto err;
- }
-
- if (!slow)
- continue;
-
- if (next_prime_number(last) != x) {
- pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu",
- last, x, next_prime_number(last));
- goto err;
- }
- last = x;
- }
-
- pr_info("selftest(%lu) passed, last prime was %lu", x, last);
- return 0;
-
-err:
- dump_primes();
- return -EINVAL;
-}
-
-static int __init primes_init(void)
-{
- return selftest(selftest_max);
-}
-
-static void __exit primes_exit(void)
-{
- free_primes();
-}
-
-module_init(primes_init);
-module_exit(primes_exit);
-
-module_param_named(selftest, selftest_max, ulong, 0400);
-
-MODULE_AUTHOR("Intel Corporation");
-MODULE_LICENSE("GPL");
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0
-/*
- * rational fractions
- *
- * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
- *
- * helper functions when coping with rational numbers
- */
-
-#include <linux/rational.h>
-#include <linux/compiler.h>
-#include <linux/export.h>
-
-/*
- * calculate best rational approximation for a given fraction
- * taking into account restricted register size, e.g. to find
- * appropriate values for a pll with 5 bit denominator and
- * 8 bit numerator register fields, trying to set up with a
- * frequency ratio of 3.1415, one would say:
- *
- * rational_best_approximation(31415, 10000,
- * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
- *
- * you may look at given_numerator as a fixed point number,
- * with the fractional part size described in given_denominator.
- *
- * for theoretical background, see:
- * http://en.wikipedia.org/wiki/Continued_fraction
- */
-
-void rational_best_approximation(
- unsigned long given_numerator, unsigned long given_denominator,
- unsigned long max_numerator, unsigned long max_denominator,
- unsigned long *best_numerator, unsigned long *best_denominator)
-{
- unsigned long n, d, n0, d0, n1, d1;
- n = given_numerator;
- d = given_denominator;
- n0 = d1 = 0;
- n1 = d0 = 1;
- for (;;) {
- unsigned long t, a;
- if ((n1 > max_numerator) || (d1 > max_denominator)) {
- n1 = n0;
- d1 = d0;
- break;
- }
- if (d == 0)
- break;
- t = d;
- a = n / d;
- d = n % d;
- n = t;
- t = n0 + a * n1;
- n0 = n1;
- n1 = t;
- t = d0 + a * d1;
- d0 = d1;
- d1 = t;
- }
- *best_numerator = n1;
- *best_denominator = d1;
-}
-
-EXPORT_SYMBOL(rational_best_approximation);
+++ /dev/null
-// SPDX-License-Identifier: GPL-2.0
-#include <linux/bug.h>
-#include <linux/kernel.h>
-#include <asm/div64.h>
-#include <linux/reciprocal_div.h>
-#include <linux/export.h>
-
-/*
- * For a description of the algorithm please have a look at
- * include/linux/reciprocal_div.h
- */
-
-struct reciprocal_value reciprocal_value(u32 d)
-{
- struct reciprocal_value R;
- u64 m;
- int l;
-
- l = fls(d - 1);
- m = ((1ULL << 32) * ((1ULL << l) - d));
- do_div(m, d);
- ++m;
- R.m = (u32)m;
- R.sh1 = min(l, 1);
- R.sh2 = max(l - 1, 0);
-
- return R;
-}
-EXPORT_SYMBOL(reciprocal_value);
-
-struct reciprocal_value_adv reciprocal_value_adv(u32 d, u8 prec)
-{
- struct reciprocal_value_adv R;
- u32 l, post_shift;
- u64 mhigh, mlow;
-
- /* ceil(log2(d)) */
- l = fls(d - 1);
- /* NOTE: mlow/mhigh could overflow u64 when l == 32. This case needs to
- * be handled before calling "reciprocal_value_adv", please see the
- * comment at include/linux/reciprocal_div.h.
- */
- WARN(l == 32,
- "ceil(log2(0x%08x)) == 32, %s doesn't support such divisor",
- d, __func__);
- post_shift = l;
- mlow = 1ULL << (32 + l);
- do_div(mlow, d);
- mhigh = (1ULL << (32 + l)) + (1ULL << (32 + l - prec));
- do_div(mhigh, d);
-
- for (; post_shift > 0; post_shift--) {
- u64 lo = mlow >> 1, hi = mhigh >> 1;
-
- if (lo >= hi)
- break;
-
- mlow = lo;
- mhigh = hi;
- }
-
- R.m = (u32)mhigh;
- R.sh = post_shift;
- R.exp = l;
- R.is_wide_m = mhigh > U32_MAX;
-
- return R;
-}
-EXPORT_SYMBOL(reciprocal_value_adv);