* support the current MTU, including padding for header
* alignment and overruns.
*/
- efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
- EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
- efx->type->rx_buffer_hash_size +
- efx->type->rx_buffer_padding);
- efx->rx_buffer_order = get_order(efx->rx_buffer_len +
- sizeof(struct efx_rx_page_state));
+ efx->rx_dma_len = (efx->type->rx_buffer_hash_size +
+ EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
+ efx->type->rx_buffer_padding);
+ efx->rx_buffer_order = get_order(sizeof(struct efx_rx_page_state) +
+ EFX_PAGE_IP_ALIGN + efx->rx_dma_len);
/* We must keep at least one descriptor in a TX ring empty.
* We could avoid this when the queue size does not exactly
* @n_channels: Number of channels in use
* @n_rx_channels: Number of channels used for RX (= number of RX queues)
* @n_tx_channels: Number of channels used for TX
- * @rx_buffer_len: RX buffer length, including start alignment but excluding
- * any metadata
+ * @rx_dma_len: Current maximum RX DMA length
* @rx_buffer_order: Order (log2) of number of pages for each RX buffer
* @rx_hash_key: Toeplitz hash key for RSS
* @rx_indir_table: Indirection table for RSS
unsigned rss_spread;
unsigned tx_channel_offset;
unsigned n_tx_channels;
- unsigned int rx_buffer_len;
+ unsigned int rx_dma_len;
unsigned int rx_buffer_order;
u8 rx_hash_key[40];
u32 rx_indir_table[128];
/* Number of RX descriptors pushed at once. */
#define EFX_RX_BATCH 8
-/* Maximum size of a buffer sharing a page */
-#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
+/* Maximum length for an RX descriptor sharing a page */
+#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state) \
+ - EFX_PAGE_IP_ALIGN)
/* Size of buffer allocated for skb header area. */
#define EFX_SKB_HEADERS 64u
{
return buf->page_offset + efx->type->rx_buffer_hash_size;
}
-static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
-{
- return PAGE_SIZE << efx->rx_buffer_order;
-}
static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
{
if (unlikely(page == NULL))
return -ENOMEM;
dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
- efx_rx_buf_size(efx),
+ PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
__free_pages(page, efx->rx_buffer_order);
rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
rx_buf->page = page;
rx_buf->page_offset = page_offset + EFX_PAGE_IP_ALIGN;
- rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
+ rx_buf->len = efx->rx_dma_len;
rx_buf->flags = 0;
++rx_queue->added_count;
++state->refcnt;
- if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
+ if ((~count & 1) && (efx->rx_dma_len <= EFX_RX_HALF_PAGE)) {
/* Use the second half of the page */
get_page(page);
dma_addr += (PAGE_SIZE >> 1);
if (--state->refcnt == 0) {
dma_unmap_page(&efx->pci_dev->dev,
state->dma_addr,
- efx_rx_buf_size(efx),
+ PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
} else if (used_len) {
dma_sync_single_for_cpu(&efx->pci_dev->dev,
rx_buf->flags = 0;
- if (efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
+ if (efx->rx_dma_len <= EFX_RX_HALF_PAGE &&
page_count(rx_buf->page) == 1)
efx_resurrect_rx_buffer(rx_queue, rx_buf);